First- and Second-order Filters

2.1 Introduction

Circuit designers/users evaluate filters and the order of the filters needed is based on what are
the given specifications. The filter order 7 can be small or large. There are techniques by which
filters of order 7 2 2 can be realized directly. Filters with order one or two can be used as such
depending on the requirement; they can also be combined to provide filters of higher-order.
Therefore, it is necessary to study the basic principles underlying the behavior of first- and
second-order filter sections and the important terms used for their parameters before studying
realization of higher order filters.

A first-order section can easily be realized using RC components only; but such sections
suffer from certain limitations as shall be shown in Section 2.2. Hence, it is advisable to
use first-order active filters with inverting or non-inverting amplifiers. A comparative study
of active first-order filters, along with a discussion on the non-ideal effect of operational
amplifiers (OAs) on their frequency response is given in Section 2.3 and 2.4. Terminologies
used for second-order active sections and characteristics associated with low pass (LP), high
pass (HP), band pass (BP), band reject (BR), and all pass (AP) responses are included in
Sections 2.5 to 2.11. Constraints of the finite bandwidth of the OA on second-order filters
are briefly discussed in Section 2.12. Three application examples in Sections 2.3.2, 2.3.3, and
2.7.1 are included to show the utility of these simple filter structures.

2.2 First-order Filter Sections

The transfer function of a physically realizable filter using a finite number of elements has to
be a real rational function [2.1]. The rational function is a ratio of polynomials in the complex
frequency s. It is repeated here from Chapter 1.
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His)=222 = : (2.1)
D(s)  b,s"+b,  +5" +...+bs+b
In this equation, the order of the transfer function is 7, with m < 7.
For m = n = 1, the transfer function of equation (2.1) reduces to the following.
N(s) (alx +a, )
H(s)=—"—==7—87= (2.2)

VTD6) T (st

As H(s) in equation (2.2) is a ratio of two polynomials representing a straight line, it is also
called a bilinear function. The transfer function H(s) of equation (2.2) can be modified into a
desirable form in terms of pole p; and zero z; zero as follows:

H(s):ﬂ(5+a0/dl):/es+zl (2.3)
b (5+bo/bl) S+ P

For the transfer function to be physically realizable in stable form, its pole must not be in the
right-hand side of the s plane [2.1]. Hence, 4, and &, will have to be positive and finite (or both
negative and finite), though 4, and 4, can be positive, negative, or even zero (one of the two,
either 4, or 4;). The zero z, can be located anywhere on the real axis. To realize the transfer
function H(s) with passive elements, a simple arrangement as shown in Figure 2.1 can be used.
Different variations are possible depending on the choice of impedances Z, and Z,. Some of
the combinations are as follows:

For Z, = R, and Z, = 1/5C}, as shown in Figure 2.2(a), the realized transfer function is H(s)
= (1/R,C)/(s +1/R,C))

For Z, = 1/sC, and Z, = R,, as shown in Figure 2.2(b), H(s) = s/(s + 1/R,C,)

For Z, = (R, + 1/sC)) and Z, = (R, + 1/5C,) as shown in Figure 2.2(c), the transfer function
becomes:

R (s+1/ R,C,)
TR R [54(C+Cy) /GG (R + Ry)]

H(s)

(2.4)

Figure 2.1  First-order bilinear transfer function realization using passive elements.
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Figure 2.2  Few first-order transfer function realizations using resistors and capacitors only.

The bilinear function of equation (2.4) has a pole p; and a zero z;; their expressions are as

follows:
C +C 1
P = Mand z = (2.5a)
CCy (R +Ry) R,C,
The gain of the transfer function of equation (2.4) is as follows:
. 1 N R
DC gain =————and gain at high frequencies = (2.5b)
(C+Gy) R +R,

It is important to note that in this passive circuit, the voltage gain at any frequency will never
be more than unity.

2.3 Active First-order Filters

In the previous section, it was shown that first-order transfer functions can easily be realized
using passive elements. However, there are quite a few limitations in such networks. For
example, all the values of pole (s) and zero (s) are not realizable. For example, an ideal integrator
is not realizable. An important limitation is a resultant disturbance in the transfer function
when the network gets loaded. Significant changes in the response take place because of the
loading effect. Hence, it is preferable to realize the elements of the circuit in active form, which
will additionally provide gain as well, which is generally needed.

The following sections describe a few simple applications of OAs being used as first-order
active filters.

2.3.1 Use of inverting amplifiers

If the elements used in Figure 1.11(a) (lossy inverting integrator) are replaced by impedances
Z,, Z, (or admittances Y}, V,), the transfer function of the circuit gets modified as shown in
equation (2.6).
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H(s) = ~(2,/23) ot (V1Y) (2.6)

The impedances Z,, Z, (or Y}, Y,) can be any series/parallel combination of R, and C; R, and
C, are as shown in Figure 2.3; the transfer function of the circuit is obtained as follows:

R 5+(1/R2C2) stz
H(s)=~(2,12,)=-"2 =—k— :
()=-(2/%) R s+(LIRG)  s+p @7

R, G, |7
Vin 1 o
- Vout
——O

Figure 2.3  Realization of active first-order section using an inverting amplifier.

Comparing this equation with equation (2.3), we can realize a first-order section with the
following parameters:

k= &; 7eroz, = and pole p, = !
R 20o RC

(2.8)

If the designer is aware of the location (value) of the pole and zero and the gain at s = 0
(or s = o), element values can be easily calculated using equation (2.8). It is to be noted that
equation (2.7) has three parameters, whereas element values to be found are four. Hence, one
element value (or an element ratio) has to be assumed.

Example 2.1: Design a first-order active bilinear function having its zero at 1000 rad/s, pole
at 2000 rad/s and gain of 20 dBs at very low frequencies.

Solution: Corresponding to 20 dBs, gain on linear scale is # = 102920 = 10 at very low
frequencies (or s = 0). Using equation (2.7):

H(0) =—(C,/C,) =10
If the OA is used in inverting mode, the gain will have a negative value of —~10. Corresponding
to the given pole and zero values, 1/R,C, = 1000 and 1/R,C; = 2000. Selecting C, = 1 uF,

we get C, = 0.1 UF, R, = 10 kQ and R, = 0.5 kQ. The desired circuit with element values
is shown in Figure 2.4(b). Figure 2.4(c) shows the circuit’s PSpice (Simulation Program for
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Integrated Circuits Emphasis: a simulator program used to verify circuit designs and predict
their behavior) simulation with an input voltage of 0.1 volt. At low frequencies, the output
voltage is approximately 1.0 V with a maximum of 2.0 V or gain of (-20).

2%10°Q

101 O |10*7 F
Vin 500 Q | 10*6 F Vin
o—AA— - Vou
| 0 I_
+

0.5%10°8F

2%10°Q

20V

15V

1.0V

05V

ov - - -
10 Hz 100 Hz 1.0 kHz 10 kHz 100 kHz 1.0 MHz
oV(5) Frequency
(c)
Figure 2.4

(a) Using series form and (b) parallel form of impedances in the circuit for Example 2.1.
(c) Magnitude response of the active bilinear circuit for the circuit in Example 2.1.

2.3.2 Bass cut/boost and treble cut/boost filters — application
example

In audio systems, low frequencies, which are typically in the range of a few Hz to 100 Hz,
are called bass notes. Mid-range frequency signals, typically ranging between 100 and 1000
Hz, are called middle notes. High frequencies are called #reble notes; they are typically above
1000 Hz. Low frequencies are responsible for the deep sound of bass guitars and drums. Most
instruments create sounds in the mid-range frequency; these include guitars, brass or string
instruments, and even the human voice. High frequencies are responsible for the sparkle sound
of cymbals and clarity of voices. Sound gets muffled if the treble note is missing or weak. All
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the three types of notes are enhanced or boosted else weakened or cut to improve the quality.
If no boost or cut is applied, the response is said to be flat. The following example is a simple
practical illustration employing an inverting amplifier for audio systems.

In equation (2.7), H(s) = -Z,/Z,. Hence, if Z, = R, and Z, is a parallel combination of
R,, with resistance R; and capacitance C; in series, as shown in Figure 2.5(a), we obtain the
following relation:

R, R s+(1/CR
H(s)=-"2—22 (L/GR) (2.9)
R Ry +Ry |s+1/C (R, +Ry)
200 k2
’\/;/\/
Vi, 632kQ 923kQ 2|nF
o NN | 1
- Vout
——O
r +
(a)
10T — %

i Treble boost

..................................

Bass boost !

...........................................

..........................

..........................

Bass cut | H . ! Treble cut
-10 + = : :
10 Hz 100 Hz 1.0 Hz 10 Hz
[¢] DB (V(4)) ¢ DB (V(42)) X DB (V(47)) A DB (V(48))
Frequency
(b)

Figure 2.5 (a) A bass boost (and treble cut) circuit. (b) Response of the bass boost/cut and treble
boost /cut by 10 dBs.
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The circuit in Figure 2.5(a) realizes a function which performs a bass boost action with the
following expressions for gain at high and low frequencies:

Gain at dc = R,/R, (2.10a)

R, R
Gain at high frequencies = =23 (2.10b)
R R, +R,

For getting a boost of 10 dBs, if R, is selected as 200 k2, we need an R, of 63.2 k€2, and for
a high frequency gain of unity, equation (2.10b) gives R; = 92.3 k. Pole frequency f. of the
bass boost circuit is decided by the choice of the capacitor C}, with its expression as follows:

1

_ _ (2.11)
27C,(R, + R;)

Je

With C; = 2 nF, £ will be 272 Hz for the selected resistances.

The circuit in Figure 2.5(a) can also be used to function as a #reble cur. To get a —10 dB
treble cut and 0 dB gain at dc with a pole frequency of 272 Hz, equation (2.10) and (2.11)
gives the required values of elements as: R; = 63.2 kQ, R, = 200 k€, R; = 92.3 kQ and C| =
2nF. Figure 2.5(b) shows the simulated responses of the designed bass boost and treble cut
filter section.

If Z, is a series combination of resistance Ry, with resistance Rs and capacitance C, in
parallel, and Z, = Ry as shown in Figure 2.6, its transfer function will be as follows:

H(s)= (Ry + Ry )+ sC,R;Rs 212)
136.8 kQ
Rs
V., 632kQ 4| an 200 kQ
Ry ) | G, Rg

Vout

Figure 2.6 A treble boost (and bass cut) circuit.

While realizing a treble boost circuit, expressions of gain at higher frequency and at dc are as
follows:
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Treble boost gain = R,/ Ry (2.13a)
dc gain = R/ (R; + Rs) (2.13b)

For a treble boost of 10 dB, selecting R, = 200 kQ, we require an R, = 63.2 kQ, for unity dc
gain, Rs = 136.8 kQ from equation (2.13b). The expression of the pole frequency is:

f= (R4 +Rs)

_m (2.14)

Hence, with C, = 4 nF, f will be 837 Hz.

The circuit in Figure 2.6 can also be used for bass cut function. To get a —10 dB bass cut, 0
dB gain at higher frequencies and pole frequency of 837 Hz, equations (2.13) and (2.14) gives
element values R, = 63.2 kQ, Rs = 136.8 kQ, R; = 63.2 kQ and C, = 4 nF. Figure 2.5(b) also

shows the simulated responses of the treble boost and bass cut circuits, verifying the design.

2.3.3 Fluorescence spectroscopy: application example

Frequency domain fluorescence measurements in atomic and molecular physics can be modeled
in terms of first-order low pass filters (LPFs). Hence, as fluorescence can be mathematically
equated to analog filters, a unified treatment of the entire fluorescence chain is possible by
cascading their transfer functions [2.2].

Without going into the theoretical background of the representation of fluorescence, let us
see the utility of simple LPFs as a useful practical application. It is observed that fluorescence
from a three-level system (Figure 2.7(a)) can be represented by a Laplace transform equation
[2.2]. This Laplace representation has been realized using two first-order cascaded LPFs. The
cascaded filter is simulated for (i) a very fast relaxation from level 2 to 3 in Figure 2.7(b) and
(ii) for a slower relaxation from level 2 to 3. The life time of the first-stage LPF for both the
cases was set at 1 second. For the second-stage LPF, values of the components were selected by
the inspection of the transfer function of a near-practical fluorescence measurement case with
a life time of 101! s and 103 s. Values of the elements for both the first filter and the two cases
of the second filter are obtained from the equation of life time = (1/2 7 RC):

R, =159 kQ, C| = 1 UF for stage 1 and (a) R, = 1.59 kQ, C, = 100 nF for case (i) and
(b) R, =0.159Q, C, = 10 pF for case (ii) (2.15)

Simulated response of the two cases is shown in Figure 2.7(c), where curve -Vp(51)’ represents
the decay rate of 10! and curve -Vp(5)’ represents the decay rate of 10°.

The equivalent circuit for the transfer function with two life time components is shown in
Figure 2.8(a). The frequencies used for the slow and fast transition rates in the circuit were
100 Hz and 1 MHz. For these frequencies, the design values of the components are as follows:

R =159kQ, C;=1pF R, =159kQ, C, =100 pF, R, = Ry = 10 kQ, R,
varies from 10 kQ to 11.11 kQ, 12.5 kQ, 16.66 kQ, 25 kQ, 50 kQ and 100 kQ (2.16)
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Figure 2.7 (a) Three-level representation of fluorescence. {With permission from R. Trainham et al.
[2.2]} (b) Low pass filter realization of the transfer function for the three-level fluorescence.
{With permission from R. Trainham et al. [2.2]} (c) Phase shifts corresponding to the two
cases of fast and slow RC time constants for the cascaded low pass filter in Figure 2.7(b).

R; was varied to change the weight age of the transition rate of the slow component. The
signals from the two LPFs were added and the final response is shown for two different ratios
of the intensity of the slow component to the intensity of the fast component in Figure 2.8(b).
Responses given by the filters of Figures 2.7(b) and 2.8(a) match very well with calculated
theoretical responses [2.2].
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Figure 2.8 (a) Realization of the transfer function for the two life time fluorescence. {With
permission from R. Trainham et al. [2.2]} (b) The family of curves of phase shifts for
different mixtures of two life times separated by four decades.
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2.3.4 Use of non-inverting amplifiers

A non-inverting amplifier using OA can also be used to realize a first-order bilinear function
by replacing its resistors with general impedances Z;, Z, (or Y}, ¥,) as shown in Figure 2.9.

o—+ Vout

Figure 2.9  Non-inverting amplifier for the realization of a first-order active bilinear transfer function.

The transfer function is as follows:
HG) =1+ (41Z) =1+ (V1Y) (2.17)

Comparison of equation (2.17) with equation (2.3) gives the following relation.

+ — —_
(Zz/zl)zk(’ a) _y_ stk= Dk = p) (2.18)
(s+2) (s+ 1)
As impedances Z;, and Z, are positive entities, the following constraints are to be met to keep
the numerator positive:

k=1and (kz; —p;) 20 (2.19)

The designer needs to be careful about the strict constraint out of the two in equation (2.19).
The absolute value is not important as it only adds to the gain which can also be controlled
with a cascaded amplifier/ attenuator. Element values depend on the way the impedances Z,
and Z, are realized. For example, if Z, is a series combination of R, and C, and Z, is a parallel
combination of R, and C, or vice versa, the circuit will realize a second-order transfer function.
With Z; and Z, both having resistors and capacitors in series, the flow of biasing current in
the inverting node of the OA is blocked (this needs to be overcome by connecting a high value
resistor in parallel with the input capacitor C)).
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Example 2.2: Design a first-order bilinear transfer function using a non-inverting amplifier
having the pole and zero of Example 2.1 with gain & = 5.

Solution: As, %> 1, the first constraint in equation (2.19) is valid for selecting Z; as a parallel
combination of R, and C; and Z, as a parallel combination of R, and C, in the non-inverting
amplifier of Figure 2.9. The obtained transfer function is as follows:

1,{(5)21/(,ut :(Cl +C,) s+ (R +R)/ RR,(C,+C,y) (2.20)

Hence, H(0) = 1 + (R)/R,), and at high frequencies, say
H(10kHz) = 1 + (C,/C,) (2.21)

Expression of its pole and zero are obtained as follows:

1 (R +R)
= andz) =———=—
R,C, RR,(C+C,y)

h (2.22)

With £ = H(10kHz) = 5, equation (2.21) gives (C,/C,) = 4; hence, selecting C, = 0.1 uF, we
get C; = 0.4 UF. For the pole at 2000 rad/s and the zero at 1000 rad/s, use of equation (2.22)
gives the values of R, and R, as 5 kQ and 1.25 kQ, respectively.

All the values of the elements used are shown in Figure 2.10(a) and the PSpice simulated
response is shown in Figure 2.10(b). For an input voltage of 1.0 V, the circuit has a minimum
output voltage of 1.25 V at low frequencies and a maximum of 5.044 V at around 10 kHz. A
gain of 5 can be verified at around 10 kHz, the circuit’s useful frequency range. The voltage
peaks at nearly 81 kHz is due to the effect of the frequency-dependent gain of the OA; the
peak voltage is controlled by the supply voltages of the OA. Additionally, if the input voltage
is increased beyond nearly 1.0 volts, the output gets distorted due to the effect of the slew rate
constraint.

Vout

R, =1.25kQ

(a)
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Figure 2.10 (a) Circuit realizing the transfer function of Example 2.2 using a non-inverting amplifier.
(b) Response of the first-order bilinear circuit of Figure 2.10(a).

2.4 Effect of Operational Amplifier's Pole on Integrators

Analysis of the circuits done in the chapter so far assumed OAs as ideal. Finite values of the
circuit’s input and output resistors do come in the picture but the most significant effect of the
resistors is that of the finite and frequency-dependent open-loop gain. This non-idealness is
mainly responsible for the use of OA (with the commonly used type, like 741) based circuits
being restricted to low frequencies (in the audio frequency range) as was shown in Example 2.2.

This section will look into the performance variation of the first-order filters discussed
in Section 2.3 when the OA is represented by its first-pole roll-off model given in equation
(1.17). Effect of finite values of R; and R, is not considered here for two reasons. First, their
values are not far from ideal; hence their effect is minimal and their introduction will only
increase the complexity unnecessarily. Second, in critical cases, the effect of the finite values of
the resistors can be absorbed in the components employed in the filter realizations.

For the realization of the inverting amplifier of the first-order section shown in Figure 2.3,
the ratio of the output to the input voltage is as follows:

‘/out ZZ 1
__ 4 (2.23)
Via Zy 1+ (+ 2,1 Z) 1 A(s)
. Z, stz . L
With ——==—k from equation (2.7) and £ —?2 from equation (2.10a), limitation

Z, s+
of the use of OA can be observed by using the approx1mated model given by equation (1.17)
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while neglecting its first-pole frequency of @,. The integrator model gives sufficiently accurate
results at high frequencies; though at very low frequencies, @, cannot be neglected for correct
results. Hence, equation (2.23) can be modified to the following:

4 (s+2) — (+) (2.24)
Vi, (s+ p0)+(s/ B)(s+ py)+ k(s +2)] SZ(HBk)’L’(lJl;kZIJWl :

For an ideal OA, B being infinite, equation (2.24) will reduce to equation (2.7), and when
B is finite, larger B or smaller values of z; and p, will lessen the parasitic effect. Frequency
dependence of the OA gain has increased the denominator order by one, resulting in two
poles. One of the poles will be near the original pole p, as (p, + Ap,) and a second pole, p, will
be far from p,, but the distance between the two (or the effect of non-ideality) will depend on
the value of B (unfortunately, this is not the same for all OAs) and the value of the parameters

21> 21, and 4.

Example 2.3: Design a first-order circuit using an inverting amplifier which will have a pole
at 2 x10° rad/s, zero at 10° rad/s and a gain of 2 at low frequencies. Find the effect of the
frequency-dependent open-loop gain of the OA with Bas (i) 10¢rad/s, (ii) 0.5 x 10° rad/s and
(iii) 10° rad/s. Compare the results with the simulated responses of the circuit.

Solution: In a similar way as in Example 2.1, the structure of the circuit is similar to that in
Figure 2.11(a) or 2.11(b) with the following values if OAs were taken as ideal during analysis.

R, =250, R, = 1000Q, C, =2 x 108 Fand C, = 108 F
R/ =500Q, R, =1000Q,C;/ =2x10F and C} =0.5x107° F

With frequency-dependent gain, A(s) = Bls, the expression of gain is obtained as follows:

1% (s+10%)

out — _2

V. 5 5
in fz(1;2)+{1+2x10 zleo )+2><105

(2.252)

For further analysis and in order to determine the effect of the frequency dependence of the
gain of the OA, three cases are taken with different values of the gain bandwidth product B.

i.  For B=10°rad/s, equation (2.25a) can be modified as follows:
(s+10%)

=-2 (2.25b)
Vin 3x107°s% +1.45+2x10°

When B = 10° rad/s, we get conjugate poles p; , = (-2.333 £ 1.1055) x 10° rad/s.
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In this case, the poles are not too far from the design pole value, and the characteristics
show small deviation with peak gain having small reduction. The peak value is 3.9735

(against a theoretical value of 4), that too only at a higher frequency of 250.55 kHz, nearly
one-fourth of B.

ii. For B=0.5x 10 rad/s, we get conjugate poles p, , = (-1.5 £ j1.0408) x 10° rad/s.

In this case, the characteristics gets deviated a bit more, with peak gain going down to
3.95 at 159.3 kHz, still at a reasonably high frequency.
iii. For B =105 rad/s, we get two real poles at —1.0 x 105 rad/s and —0.666 x 10° rad/s, and
the characteristics get highly deviated with the gain doing down to 3.73, a deviation of
6.75%, at 78.7 kHz, because of the second real pole positions.

10° Q

10° O |10*8 F
Vin 250 Q |20 nF ) v Via
O VVYV | | out

50V

25V

ov

1.0 kHz 10 kHz 100 kHz
oV (51) oV (52) avV((53) xV (5

Frequency
(c)

(a) Series, and (b) parallel forms of circuits for Example 2.3. (c) Magnitude response of

the circuit of Figure 2.11(a) with ideal OA and OA with bandwidth = 10°, 0.5 x 106 and
103 rad/s.

1.0 MHz

Figure 2.11
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It is clear from these observations and the response, when OA is ideal in Figure 2.11(c), that
the higher the ratio of gain bandwidth product to the working pole frequency, the more the
non-ideality effect gets reduced. It may be noted that the value of the dc gain 4 also plays an
important role in the amount of non-ideal effect; the larger the value of 4, the more deviation
in pole location. In the example provided here, the pole value was intentionally selected high
enough and close to B to highlight the non-ideality effect of OAs.

It is observed that when the first-order section is realized using a non-inverting amplifier,
the non-ideality of the operational amplifier affects the filter in a similar way. Order of the
filter is increased by one for each OA; the original pole deviates and the amount of deviation
depends on the ratio of B with the pole value and on the gain value 4.

Example 2.4: Design a first-order section using an ideal non-inverting amplifier with the same
specifications as in Example 2.3. Evaluate the effect of the non-ideality of the OA through
simulation results.

Solution: Using the non-inverting circuit of Figure 2.10 and taking OA as ideal, the obtained
expression of the gain is as follows:

_(R+B)

s+

Vour _ (C+GC)  RR(C+G) (2.26)
Ve G s+(U/GR,) '

Values of the elements for the given specifications p; = 2 x 10° rad /s, z; = 10° rad/s and dc
gain of 2 from equation (2.26) are obtained as follows:

R =R,=05kQ, C, =0.03 uF and C, = 0.01 uF

The circuit with the aforementioned element values is shown in Figure 2.12(a) and the
simulated response of the ideal case is shown in Figure 2.12(b) having a dc gain of 2 and a
high frequency gain of 4.

For the non-inverting amplifier circuit of Figure 2.5, expression of the ratio of the output
to input voltage with A(s) = B/s is given as follows:

Vot Z, 1 stz
R =k 2.2
Vin [ ZIJ 1 ZZ é 2 é ( 7)
1+ 1+ 22 ST 1+—z |5+ p
A(S) Z B B

Equation (2.27) results in two poles. Value of the poles will again depend on the value of B, its
ratio with p; and the value of the gain 4.

For B =10° rad/s, p, , = (-3 £ 1) x 105 and peak gain of 3.8 occurs at 126.36 kHz.
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For B = 0.5 x 10° rad/s, p, , = (~1.75 % 1.39) x 10° and response drops with peak gain,
dropping to 3.7 at a frequency of 100 kHz.

For B =10 rad/s, p, , = (<0.75 £ j0.661) X 10°, the response further worsens, having a peak
gain of only 3.26, and an error of 18.5% at a much lower frequency, 62.28 kHz.

All the three responses, along with the case when OA is almost ideal, are shown in Figure
2.12(b). It is to be noted that distortion in the non-inverting amplifier case is comparatively
much larger than the inverting amplifier case.

0.5 kQ

05V

'
............ Lececccccacaananas
v

.............................................................

! Near ideal N

......................................................

ov
1.0 kHz 10 kHz 100 kHz 1.0 MHz
oV (3) ¢V (31 vV(31l) xV(3111)
Frequency
(b)

Figure 2.12 (a) Non-inverting amplifier circuit for Example 2.4. (b) Magnitude response of the circuit
of Figure 2.12(a) with ideal OA and OA with bandwidth = 10°, 0.5x10° and 10 rps.
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2.5 Biquadratic Section: Parameters w, and Q,

Moving on from first-order sections to second-order ones, transfer functions of second-order
sections can be easily obtained by cascading two first-order sections. The overall transfer
function is simply the product of the individual transfer function of the first-order sections,
provided they satisfy the condition of cascading, that is, they have very high input impedance
and very low output impedance. However, such second-order sections realize poles only on
the negative real axis (with OAs considered ideal), which can be realized even with only passive
elements. This is where the following second-order section, given by equation (2.28), comes
in. The equation gives a basic module that is used in different ways to construct various
higher-order filter sections, for example, in cascade or multiple feedback form.

(s)= N(s) _4252+415+do

=— (2.28)
D(s)  bys™ +bys+ b,

It is, therefore, useful to concentrate first on such sections expressed in terms of poles and
zeroes as follows:

H(.c) zﬁw (2.29)

b, (H'Pl)(H'Pz)

The importance of the aforementioned section, which is commonly known as a biguadratic
section comes from the condition that the poles are complex conjugate; the zeroes may or may
not be complex conjugate. With the condition that the poles are in conjugate pair form, the
transfer function can be expressed in terms of real and imaginary parts of the zeros R (z;) and
I,.(z)), and the real and imaginary parts of the poles, R, (p;) and I, (p,) as follows:

H(s):k szz +|:2Rc (zl)]s+R§(z1)+12,;(Z1) :ksi+(a)z /Qz)hLa);2 (2.30)
S+ 2R (p) [s+RIp)+ T (p) 5+ (0, 1Q,)s+ 0]

Here @, is the pole frequency, which is given in terms of its real and imaginary parts as follows:

o =R (p)+15(p) 2.31a)

At frequency @,, the gain function becomes approximately the highest. At the zero frequency
®,, the gain function become approximately the least and its relation is given as follows:

w> =R%(z)+12(z) (2.31b)

Conjugate zeros and poles, and their real and imaginary components are shown in Figure 2.13.

For the biquadratic function of equation (2.28) or equation (2.30), dc gain is given as
follows:
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20logyq | H (j0)[=20log o (£ @ / ) (2.32)
ZI? ----{jo
<Re(p) = ,/2Q5
py et @207 .
f j L (p) = @o(1-1/4Q)""
o : X o
: : 4
X : In(py)
[ <L ..... R { Iim(z)
I Re(py)~ l
S TR B X
Re(z)| .

Figure 2.13 Conjugate zeroes and poles of a second-order section, located on the s plane and their
relation with Q,.

And the asymptotic gain for @ reaching infinity is as follows:

20log,, | H (jeo) |= 20logy (#) (2.33)

Another important parameter which defines the sharpness of the magnitude response near the
maxima, |H(j®,)| is known as pole quality factor Q,, which is given as follows:

Q, wg)z[RJmf+L4ﬁf]

= R R, (])1) (2.34)
Whereas the depth of |H(j®,)| is defined by the zero quality factor Q,, given as follows:
o, R (z) +1,(z)°
= = 2-
Q. R (2) [ 2R, (z,) (2.35)

In most cases, R.(z;) = 0, which means Q, = e and w, = [, (z,). This results in infinite
(ideally) attenuation at ®,. From equation (2.34), R_(p,) can be expressed as follows, which is
shown in Figure 2.13.

R.(y) = ©,/2Q, (2.36)
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Combining equations (2.34) and (2.31a), we get the following relation.

%)

L (p)=0,(1-1/4Q7) (2.37)

This is also shown in Figure 2.13, and from equations (2.36) and (2.37), we get:

[R+20) =0, 238)

which means that for all values of Q,, the location of pole p; will lie on a circle with radius @,
For Q, = 0.5, the poles became real; whereas for high Q,, the poles are close to the imaginary
axis.

2.6 Responses of Second-order Filter Sections

It is important to note that the zero ®, can be anywhere on the s plane while deciding the
nature of the filter, namely, low pass (LP), high pass (HP), and band pass (BP), and pole
frequency ®, and pole quality factor Q, are the main design parameters. It is the value of @,
which differentiates between the pass band and stop band of the LP and HP filters or decides
the center frequency of the BP or BR (band reject) filters. The value of Q, does have an effect
on the gain response of the LP and HP sections at @,, but it is most significant in deciding the
quality of BP or BR filters. Significance of @, and Q, will be illustrated in detail in the next
sections.

2.7 Second-order Low Pass Response

When 4, = a, = 0, in equation (2.28), the expressions of the transfer function H(s) in equations
(2.28)—(2.30) will change to that of a second-order LP transfer function. Since the constant 4
is only a magnitude multiplier and does not affect the frequency response, it can be scaled, and
the LP transfer function can be written as follows:

2

120}
() 5 (2.39)
w(s)=7 T (@,1Q,)s+ 0>

The network analysis is done assuming the input to be sinusoidal (or to be a combination of
sinusoidal signals), s—j@. Hence, the magnitude and phase of the LP transfer function shall
be as follows:

|y (joo)| = ko, (2.40)
LP I:(a)oz_wz)_l_(wo/Qo)Zwl]‘/z
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b
= 2.41
[1-0?)+(@,1Q,)1" 240
Y
¢ p =—tan 1% (2.42)
=—tan"! % (2.43)

In equations (2.41) and (2.43), w, = (W/®,) is termed as a normalized frequency.

Magnitude and phase function of the LP are shown in Figure 2.14(a) and (b), respectively,
where the magnitude function is as follows:

|Hp(0)|= &, |Hp(j@,)| = #Q, and |H p(je)] — 0 (2.44)

Wpeak = (OGM)
T p T [ Hpea| = kQoh1-1/4Q3

[H(w)| = # or —90°
-40 db/decade

-180°
0,0 @peak w—> 0

(a) (b)

Figure 2.14 (a) Gain variation of a second-order low pass section, and (b) phase variation of the
second-order low pass section for all values of Q,.

These are shown in Figure 2.14(a), where the peak value is obtained by differentiating the
magnitude function. Peak value of the transfer function H,,,, and the frequency at which it
0CCUIS e, are respectively given as follows:

iy =#Q, 1{1-1/4Q2} " 2 k0, (2.45)
Opese =0,{1-1120} " = 0, (2.46)

Approximation in equations (2.45) and (2.40) are satisfactory only with large values of Q,. For
® > m,, rate of drop of the magnitude function is proportional to (1/@?)or —20 dB/dec. The
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rate of drop for a second-order section is also known as rwo-pole roll-off; as compared to single-
pole roll-off for a first-order transfer function having only one pole.

For the LP filter, sometimes it is desirable not to have a significant peak in the pass band.
However, it is shown in Figure 2.14(a) that relative to |Hp(jO)|, H,,ey is larger by Q, times,
which implies that for avoiding significant peak, Q, should have a low value (say < 0.9) for the
LP filters. For Q, = 0.707, equation (2.406) gives that the peak of the magnitude function shall
occur at @ = 0.

It is important to note that while designing LP filters, the usual specifications are given in
terms of the half-power frequency @, where |Hyp(j®,)| is 0.707 times its value at dc |H; p(j0)|
(for Q, < 0.9). Since the gain (v,/v,,) falls by a factor of 0.707 at the half-power frequency ®,
it is also called —3 dB frequency. Another required specification for the LP filter design is
|H; p(j0)|, which decides the gain required by the filter at dc.

For the phase function shown in Figure 2.14(b), value of phase change with @ is as follows:

©(0) =0, p(w,) =-90° and P(w — o) — -180° (2.47)

Example 2.5: Show that the circuit in Figure 2.15 behaves as a second-order LP function.
Design it for @, = 10 krad/sand Q, =1/+/2 and /2.

Solution: Taking OA as ideal, nodal equations at nodes 2 and 3, respectively, are as follows:

Vi(G+Gy+ Gy +5C) -V, G, -V, G, =0 (2.48)
V1G5 + Vo sC =0 (2.49)
G,
AAVAY,
=
[
VA, - Ve
)

C

8]

Figure 2.15 Second-order low pass filter section for Example 2.5.

Combining equations (2.48) and (2.49), the transfer function is obtained as follows:

Vour _ _ (1G5 1 G,Cy) (2.502)
Vi S +5{(G+G,+Gy)1C,}+(G,Gy 1 GCy) '
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It gives the expressions for @, and Q, as:

%)
G, G, +G, +G; \ CC, G,G;

(2.50b)

Selecting R, = R; = 5 kQ, with @, = 10 krad/s, we get the following from equation (2.50b):

C,C,=0.04% 10714 (2.51a)

Corresponding to Q, =+/2 , selecting R, = 1 kQ gives a dc gain of # = 5. Required values of
the capacitors are obtained from equations (2.50b) and (2.51a) as follows:

C, = 2.0206 nF and C, = 0.1974 uF (2.51b)

Figure 2.16 shows the magnitude responses of the PSpice simulation of the LP filter having
Q, value as 1/+/2 and 2 . Magnitude response for Q, =1/+/2 does not show any peak and
its 3 dB frequency is 1.582 kHz (9.944 krad/s) with a dc gain of 5. However, the response
for the corresponding LP filter with Q, = J2 , for which, with the same resistance values, the
capacitances required are C; = 4.04 nF and C, = 0.09899 uF, shows a peak gain of 7.526 at a
frequency of 1.378 kHz (8.661 krad/s) in conformity with equations (2.46) and (2.45). Figure
2.16 also shows the corresponding phase responses for the two cases. Though the rate of variation
in phase differs, in both the cases, a phase shift of 90° occurs at 1.592 kHz (10.0068 krad/s).

IS.OV' 2 180d —:\% Q=1414
S S w—
40vV{  90d
>>
0OV- 0d

10 Hz 100 Hz 1.0 kHz 10 kHz

+V(4) ©V(#4l) O VP (4) A VP (41)
Frequency
Figure 2.16 Magnitude and phase response of the low pass filter of Figure 2.15 with Q =

ﬁandl/ﬁ.
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2.7.1 Earthworm seismic data acquisition: application example

The Earthworm System is a seismic network data acquisition and processing system developed
by the US Geological Survey in the 1990s [2.3]. The system contained a number of real time
electronic seismic wave forms (may be more than 16) that were fed to a multichannel digitizer
(consisting of one, two or four 64 channel multiplexer boards).

Like any other data acquisition system, this system also faced the problem of picking up
noise. In the beginning, passive filters were used to eliminate/reduce noises. However, passive
filters introduced a 24 kQ impedance between the source and the input. To overcome this
limitation, a two-pole LP active filter using a single non-inverting OA as shown in Figure
2.17(a) was employed [2.4]. Quad OA T1064 provided low impedance while consuming less
power. Consumption of less power was an important parameter as a large number of such
filters were used in the system.

Coa| |0.22 uF
|
\%
Vin Roa Roa ,_8m
13Q 243 Q

Cob| 0.11 uF

()

1.0 Hz 10 Hz 100 Hz 1.0 kHz
[¢] V(4) Frequency

(b)
Figure 2.17 (a) Low pass filter used in the Earthworm System [2.3]. (b) Simulated response of the low
pass filter of Figure 2.17(a).
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Figure 2.17(b) shows the simulated response with the 3 dB frequency being 60.17 Hz. It may

be noted that even a simple filter can be utilized for major projects.

2.8 Second-order High Pass Response

A biquadratic function can be converted to an HP response when coefficients 4, = 2, = 0.
Equation (2.30) is modified as follows:

fes?
S+, 1Q,)s+w?

Hyp (5)= (2.52)

Here # is the high frequency gain. The gain function of the HP section is shown in Figure
2.18, which is very similar in nature with the LP response,

P %3
Opee =0, 1{1-12Q7} =0, (2.53a)

s =kQ, 111-1/4Q2}" = kQ, (2.53b)

(0,0) @o

o —>

Figure 2.18 Gain variation of a second-order high pass section.

Approximation in equations (2.53) and (2.406) are satisfactory with large values of Q,. Once
again, its gain drops at a rate of —40 dB/dec in the pass band for ©® < @, , and the gain is 3 dB
below the high frequency gain, of |Hyyp (@ — o0)| = k at the half-power frequency @, (for Q,
< 0.9). The rate of gain drop is also known as rwo-pole roll-off, as compared to the single-pole
roll-off for a transfer function having one pole only.

For the HP filter, it is desirable not to have a significant peak in the pass band. However,
it is shown in Figure 2.18 that relative to |Hyyp (joo)|, ey is larger by nearly Q, times, which

https://doi.org/10.1017/9781108762632.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.003

Continuous Time Active Analog Filters

implies that to avoid significant peak, Q, should have a low value (say < 0.9). For Q, = 0.707,
equation (2.53b) gives that the peak of the magnitude function shall occur at @ = oo.

It is important to note that while designing an HP filter, the usual specifications are given
in terms of the half-power frequency @,, where the |Hyyp (jo)| is 0.707 times its value at infinity,
|Hyp (joo)| (for Q, < 0.9). Since the gain (v,/v,,) falls by a factor of 0.707 at the half-power

Sfrequency @, it is called —3 dB frequency. Another required specification for the HP filter
design is |Hyp (joo)|, which decides the gain required by the filter at very high frequencies.

Example 2.6: Show that the circuit in Figure 2.19(a) behaves as a second-order HP function.
Design it for @, = 10krad/s and Q, =1/+/2 and 2.

Solution: Taking OA as ideal, the nodal equations at nodes 2 and 3, respectively, are as

follows:
Vi GCy + Gy +5C5 +5C) =V, sCy— Vi sC =0 (2.54a)
VisCy+ V,, Gs=0 (2.54b)

Combining equations (2.54a) and (2.54b), the transfer function is obtained as follows:

Vour _ £(G1Cy) (2.554)
Vi S 4+5{G5(C+Cy +C) GG, }+(G,Gs 1 CCy)

This gives the expressions for @,and Q, as

C.C G,G
w? =G,Gs1C5C4, Q, = 34 ( 255

Va
de=(C,/C 2.55b
G.(C,+C, +C) C3C4) and k=(C; / Cy) (2.55b)

Selecting C; = C; = 100 nF, we get the value of C; = 500 nF for 4 = 5, and the following
relation from equation (2.55b) with @, = 10 krad/s:

G,Gs =107 (2.56)

Corresponding to Q, =+/2, using equation (2.55b), and selecting Ry = 10 k<, the required
values of the resistance R, = 100 Q is obtained from equation (2.56).

Figure 2.19(b) shows the magnitude responses of the PSpice simulation of the HP filter
having Q, =1/+/2 and v/2. Magnitude response for Q, =1/+/2 does not show any peak and
its 3 dB frequency is 1.602 kHz (10.069 krad/s) with a dc gain of 5.09. However, the response
for the corresponding HP filter with Q, = J2, for which, with the same capacitance values,
the required resistances are R, = 202 Q and Rs = 4.949 kQ, shows a peak gain of 7.598 at a
frequency of 1.8078 kHz (11.363 krad/s) in conformity with equations (2.53a) and (2.53b).
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8.0V

40V

0VH+
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz
X V(4) x V(41) Frequency
(b)

Figure 2.19 (a) Second-order high pass filter circuit for Example 2.6. (b) Magnitude response of the
high pass filter of Figure 2.19(a) with Q= ﬁand 1/\/7,

2.9 Second-order Band Pass Response

When 4, = a, = 0, a biquadratic section become a BP section, whose transfer function is given
as follows:

k(w1 Q,)s
iy () =5 )

s)=
s, 1Q,)s + o}

(2.57)
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ksw(®,/Q,)

(@ -0 +(,1Q,) "]

Hence, |HBP (]CO)‘ = Vs (2.58)

-1 (wwo /Qo)

(0 - ®°)

[

and  ¢(jo)=90"-tan (2.59)

Equations (2.58) and (2.59) are the magnitude and phase function of the BP section, which
are sketched in Figure 2.20(a) and (b), respectively. Since Hpp(s) has a zero at 0 and oo, the
magnitude function reduces to zero at dc and at infinite frequency; the peak occurs at w = @,

k |----------- 1
kZ |-==-nnmnns ' o0
,/'Q,
T : T 45°
|Hgpl E ®°
- o
H(w)|i=
| |: ® —45°
=-10 dB/':c‘lecade -90°
0,0 @, @

(a)
Figure 2.20 (a) Magnitude and (b) phase variation of a second-order band pass section.

The magnitude function drops from the peaks on both sides at a rate of 10 dB/dec with its
value becoming 3 dB less than the peak value of 4 at the half-power frequencies @, and ®,.

For designing a BP section, important specifications include the bandwidth (BW), the
distance between @, and ®,, or the range of frequencies for which the power output remains
more than half of the peak power. The BW, @, and , are found by putting the square of the
magnitude function |Hyp (j@)|? = (1/2). It gives

Va

0,0, =0, |:{1+(1/2Q0)2} i(l/z@)] (2.60)

The product and difference of the two frequencies are as follows:
— 2 — —
o X, =0, and(w, - 0,)=(0,/Q,)=BW (2.61)

which means that @, is the geometric mean of @, and @, and the BW is inversely proportional
to the pole Q(Q,). Figure 2.21 shows the effect of the value of Q,on the BP response, which

becomes thinner/ sharper as Q increases.
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|Bppeak|

Magnetitude

Wo Frequency

Figure 2.21 Typical response of a band pass filter with varying Q, (Q,,< Q,,<Q.3).

Regarding the phase-function of equation (2.59), it is observed that it is similar to that for
the LP case except with the addition of 90° at dc, which means that it asymptotes at —90° for
@ — oo. Moreover, the values for both the frequencies @, and ®, are 45° and —45° from

equation (2.59).

Example 2.7: Figure 2.22 shows a single OA based BP filter. Derive its transfer function and
compare the response for pole Q value of 2, 5 and 10 at a center frequency of 10 krad/s.

Solution: Considering OA as ideal, with its inverting terminal at virtual ground, the nodal
equations at terminal 2 and 3, respectively, are obtained as follows:

Vi(G, + Gy +sCy +5C) =V, sC, -V, G, =0 (2.62)

VisC+ V.

out

Gy=0 (2.63)

Figure 2.22 A second-order band pass filter section for Example 2.7.
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Combining equations (2.62) and (2.63), the transfer function is obtained as:

Vour __ (G, 1C)) (2.64)
Vi S45G{(G+G,)1 GG 1 +{G5(G +Gy) 1 GG, } ‘
It gives the expressions for @, and Q, as
C,C "’
{[ IG ZJ(GI +Gz)}
@2 =BGt o LT (2.65)
GG, (C+GC)

Selecting equal values for capacitors C; = C, = 0.005 uF, for @, = 10krad/s, equation (2.65)
provides the following element values.

For Q,=2, R, = R, = 10 kQ and R; = 80 kQ.
FOl‘Qﬂ=5,R1=R2=4kQandR3=200kQ.
For Q,=10, R, = R, = 2 kQ and R; = 400 kQ.

Figures 2.23 and 2.24 show the magnitude and phase response for the aforementioned
three cases; the respective center frequencies, bandwidth, and quality factor obtained through
PSpice simulation is as follows:

f, =1.587 kHz, bandwidth BW = 790 Hz, resulting in Q, = 2.008.

/, =1.578 kHz, bandwidth BW = 313.7 Hz, resulting in Q, = 5.033.

f, =1.567 kHz, bandwidth BW = 162.9 Hz, resulting in Q, = 10.1.

As the responses and the resulting parameters show, the circuit works very well at this

frequency range.

10V

Al V() oV(4l) + V(42 Frequency

Figure 2.23 Magnitude response of the band pass filter of Figure 2.22 with Q=2, 5 and 10.
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-0d

-100d -

-200d

-300d
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

[4] VP (4) o VP (41) + VP (42) Frequency

Figure 2.24 Phase response of the band pass filter of Figure 2.22 with Q= 2, 5 and 10.

2.10 Band Reject (BR) Response

A BR response, which passes all signals except those falling in certain band of frequencies, is
obtained by putting 2, = 0 in the biquadratic function of equation (2.28). It results in the

following:
Hag (5) =25 % (2.66)
BR s+ (,1Q,)s + o’ '
___ K ror) (2.67)

(o, Q,)s+w?

Here, K = |Hgg (jo)| is the gain as @ — o and the rejection band of frequencies is centered
at @ = M, as the numerator has a zero at @,. It is the value of Q, which determines the rate of
change of the BR response beyond @,, as well as the amount of bump in the response.

The BR filter is also known as nozch filter because of the shape of the magnitude characteristics.
However, depending on the relative value of @, in comparison to @,, notch filter is called a
symmetrical notch, high pass notch (HPN) or a low pass notch (LPN) for @, = @, ®,> ®,and @,
< m,, respectively. The three types of notch responses are shown in Figure 2.25(a), (b), and (c).
Here the bump in HPN or LPN occurs at @ = @, Expressions for the frequency @, and
the maxima of the transfer function for the LPN and HPN, which occurs at e, Ar€ given as:
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1
Oy =0, [[1+ (2.68)
peak Hl—(wowz)zHZQf
| HpR(GO)|max = KQ, {1 — (@0 @, )?}] (2.69)

|HBR(jw)|
K

KN2

0,0 W= O, “w—>

@

A

o N

HaGo) ; }
E |Hiu(joo)
AN LYY T [
K2 : K'NZ
K o E K 2
w? i 02
H 0
0,0 @Oz Wy Dpeak O —> 0,0 WDpeak Do (0 o —>
(b) (©)

Figure 2.25 (a) Gain response of a symmetrical notch, (b) high pass notch, and (c) low pass notch
with K = |HBR(jw) | max*

Bandwidth of the BR filter is same as that for the BP filter:

(BW)pr = 0,/Q, (2.70)

https://doi.org/10.1017/9781108762632.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.003

First- and Second-order Filters

2.11 Second-order All Pass Response

An all pass (AP) filter has constant magnitude response for all frequencies. For this type of filter
to be realized, coefficients of the biquadratic section are selected in such a way that the transfer
function becomes:

s —(w,1Q,)s+ o’

H =K 2.71
AP (S) 52 +(@,/Q,)s+ 6002 ( )
Hence, for sinusoidal input
_ o’ —0*)- jo(w, /
HAP(]w):K( P 2) ] (2,/Q,) (2.72)
(0, —w")+ jolw,/Q,)

Here, H,p(jw) has to remain constant for all frequencies and the phase and delay of the AP
filter are obtained as follows

. /
(pAP (a)a)z—Ztan 1% (273)
2 2
Dyp(®,)= 2[& J (@, +@) (2.74)

2
{(a)o2 —0*) + 0’ (&) }
Q,

Figure 2.26 shows the variation of phase of the AP filter for a certain value of Q, along with its
magnitude response and Figure 2.27 shows the variation of one-half delay for a few values of
Q,. It is observed that for Q, =1/+/3, the delay become maximally flat, whereas for Q, >1/+/3,

the delay variations have a peak.

|H(jo)] ¢(w) degree
Phase
-0
Gain
0OdBF—m—mm—— ——-——— ..
——————————— Nttty RPEY
|
|
l
] — 360
o, @

Figure 2.26 Variation of phase and gain response of a second-order all pass filter for a certain value of Q..
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Figure 2.27 One-half delay of second-order all pass filter as a function of Q,.

In the second-order BR as well as AP filters, finite zeroes are to be realized for which realization
methods are a bit different than LP, HP, and BP types. It is for this reason that simulation
examples for notch and AP filters shall be taken up at a later stage.

2.12 Effect of Operational Amplifier's Pole on Biquads

Finite frequency dependent gain of the OA, represented by the single-pole roll-off model of
equation (1.17) introduces one extra pole for the first-order filter section. In fact, it introduces
as many extra poles as the order of the filter section. It affects the filter characteristics by
changing all its important parameters like gain, cut-off/ pole frequency and rate of fall of
the signal in the stop band; each with varying degree. Amount of variation in the parameter
depends on the filter specifications (values of the required gain, pole frequency and pole Q),
finite value of the gain-bandwidth product of the OA, and on the method (structure) used for
the realization of the filter, like generating biquads using the two-integrator loop method, or
any single amplifier generating biquad method, and then cascading them using these biquads
in a multiple feedback structure or using direct forms of realizations for higher-order filters.
Hence, the effect of OA’s poles shall be taken up in later chapters along with different methods
of filter realization and the corrective steps applied to overcome the deviations occurring in the
filter parameters.
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Practice Problems

2-1 Find the transfer function for the circuit shown in Figure P2-1. Calculate and verify the frequency at which
its gain changes by 3 dBs from dc level using PSpice, with R, =R, = 10 kQ and C = I nF. Consider the OA
as near ideal.

R, Ry
Vin
Vout
C

Figure P2.1 Figure for Problem 2-1 and 2-3.

2-2  Find the transfer function for the circuit shown in Figure P2-2 Calculate 3 dB frequency and test the circuit
using PSpice with R, =R, = 10 kQ and C = | nF. Consider the OA as near ideal.

2-3  Repeat the problem 2-1 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s, and (c) 25 krad/s.
Find percentage error in the gain at the 3-dB frequency level for the three cases and compare with the case
when OA was considered near ideal in the problem 2-1.

Figure P2.2 Figure for Problem 2-2 and 2-4.
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Repeat the problem 2-2 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s, and (c) 25 krad/s.
Compare the gain at the 3-dB frequency for the three cases and find percentage error in it with the case
when OA was considered near ideal in the problem 2-2.

Find the transfer function for the circuit shown in Figure P2-3 Calculate the peak magnitude and find the

frequency at which it occurs using PSpice with R, =R, = 10 kQ and C, = C, = 2 nF. Consider the OA as
near ideal.

G

Vout

Figure P2.3 Figure for Problem 2-5 and 2-6.

Repeat the problem 2-5 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s, and (c) 25 krad/s.
Compare the frequency at which peak gain occurs and obtain percentage error in the result for the three
cases with the case when OA was considered near ideal in the problem 2-5.

Find the transfer function for the circuit shown in Figure P2-4. Test the circuit using PSpice with R, =R,
=10 kQ and C = 0.5 nF and find the frequency at which gain drops by 3 dBs. Consider the OA as near
ideal.

o -~

R,

Lot

Figure P2.4 Figure for Problem 2-6 and 2-7.

Repeat the problem 2-7 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s and (c) 25 krad/s.
Compare the result for the three cases with the case when OA was considered ideal in the problem 2-7
while finding error in the frequency at which gain falls by 3 dBs.

Figure P2.5 shows a second-order passive RLC filter. (a) Derive its transfer function and mention the type
of response given by the filter section. (b) Find the values of poles and zeroes when R =500 Q, L = 10
mH and C = 0.04 pF. (c) Calculate the parameters @,, Q,and dc gain. (d) If the magnitude response has
a peak, then what is the value of the voltage gain and at which frequency does it occur?
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R L
—AA—TT o
Vin C :: Vout
o o

Figure P2.5 Figure for Problem 2-9.

2-10  For the circuit of Figure P2.5, calculate the value of Q, in each case if R changes from 500 Q to 250 €,
100 Q and 50 Q. Find the location of poles on the complex frequency variable plane and show that the
poles lie on a semi-circle. What is the radius of the semi-circle?

2-11 Check whether peak in the magnitude response of the circuit in Problem 2-9 occurs at @, or not. Justify
the location of the peak.

2-12  Repeat Problem 2-9 if location of inductor and the capacitor are interchanged.

2-13  Use the circuit of Figure 2.15 to design a second-order LP filter with the following specifications: cut-
off frequency f,= 15.9 kHz, Q = 2.5 and dc gain of zero dB. (b) Test the magnitude and phase with
PSpice/EWB while using 741 type OA.

2-14  Calculate magnitude and phase of the LP filter with following specifications: f, = 1.59 kHz and Q= 2.5.
for frequencies 0.25 X f,, 0.5 X f, f, 1.5 f,. 2 x f, and compare it with the simulated response.

2-15  Verify equations (2.45) and (2.46) for the LP filter of Problem 2-13 by comparing the parameters by
obtaining theoretically and from the simulated response.

2-16  Derive the voltage ratio transfer function for the circuit shown in Figure P2.6. What kind of response is
available from it?

O Cs3 !

“HH

Figure P2.6 Figure for Problem 2-16.

2-17  Design the circuit of Figure P2.6 for critical frequency of 7.95 kHz and Q, = 2.5 and test the magnitude
and phase response.
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2-19

2-20

2-21

2-22
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Verify equations (2.55a) and (2.55b) for the filter section in Problem 2-17 theoretically and from the
practical/simulated test results.

Repeat Problem 2-14 for the filter of Figure P2.6.

(a) Determine suitable element values for the realization of the BP filter shown in Figure 2.22 for realizing
pole Q, =5 and a complex pole pair lying on a circle of radius = 50 krad/s.

(b) Determine the peak gain.

(c) Determine the spread in element values.

(d) Determine error in complex pole radius and Q, when OA has B = 500 krad/s.

Redesign the circuit in Figure 2.22 for w,= 40 krad/s and Q,= 10.

(a) Calculate and verify the simulated value of the filter bandwidth while using ideal OA.
(b) Repeat (a) for OA with B = 400 krad/s.

(c) Calculate and verify the phase shift of the filter at 3 dB frequencies.

Derive equations (2.73) and (2.74).

https://doi.org/10.1017/9781108762632.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.003

