
13.1 Introduction

One of the important issues in filter design is that parameter sensitivity has to be taken into 
consideration. A doubly terminated ladder is extensively used mainly because of the same 
reason, that is, parameters of the filter realized through it have low sensitivities. At the same 
time, an alternate synthesis method using the cascade approach has found favour because of 
its ability to tune specific pole–zeros in higher-order filters through the utilization of non-
interactive second-order sections. However, in the cascade process, sensitivities increase, 
especially for high-Q filters. Since we know that negative feedback improves the performance 
of electronic circuits in a number of ways, the same have been applied to obtain what is known 
as multiple feedback (MF) topologies. An MF topology consists of a network with a single 
feed-forward path comprising unilateral (active structures are mostly unilateral unlike passive 
structures which are bilateral) second-order sections, having different kind of feedbacks. The 
nature of the feedback decides its final topology. One of the topologies is called leap frog 
and was discussed in Chapter 9. While performing operational simulation, the circuit had a 
topology shown in Figures 9.22 and 9.24, where it is easy to recognize the structure as a leap 
frog structure. Another topology under the broad area of MF topologies known as follow the 
leader feedback (FLF) is the subject of this chapter.

In Section 13.2, the basic FLF structure and the kind of transfer functions obtained is 
included. Also included in this section is the derivation of the structure’s transfer function 
when either lossless integrators or lossy integrators are used in the feedback paths. Use of only 
a feedback block could provide all pole functions. Hence, feed-forward is also included, as 
will be discussed in Section 13.3, to improve the versatility of the scheme. A slightly modified 

Follow the Leader Feedback 
Filters

Chapter 13

https://doi.org/10.1017/9781108762632.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.014


  399Follow the Leader Feedback Filters

feed-forward scheme, called the shifted companion structure is discussed in Section 13.4. It was 
observed that all these schemes were special cases of a general FLF structure that is given in 
Section 13.5. Without sacrificing the generality, synthesis of the filter becomes a bit easier if 
the feedback blocks have BP structures with equal value of quality factor, instead of different 
quality factors. Such a scheme, known as the primary resonator block technique is also discussed 
in this chapter. 

13.2 Structure of the Follow the Leader Feedback Filters

Though the basics remain the same, there are slightly different FLF structures depending on 
the kind of basic blocks employed and whether the filter is an all-pole type or has finite zeros.

The basic structure of an FLF filter is shown in Figure 13.1, wherein the transfer function 
Hi(i = 1,2, …, n) decides the nature of the final response. The transfer function of the blocks 
can be bilinear or biquadratic; it may be made of lossless or lossy integrators.
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Figure 13.1 Basic structure of the follow the leader feedback filter scheme.

Without specifying the circuitry involved in providing the negative feedbacks k1, k2, … , kn 
and the summation at the input, application of KVL (Kirchhoff’s voltage law) at the input 
summing junction gives:

KV0 – {knVn+1 + kn–1Vn + kn–2Vn–1 + … …. + k2V3 + k1V2} = V1 (13.1)

As transfer functions of the blocks can be written as:
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400 Continuous Time Active Analog Filters

Equation (13.1) can be modified with V0 = Vin and Vn+1 = Vout as:
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Equation (13.6) can realize a high-order filter in which the poles and zeros will depend on 
the nature of the transfer function of the blocks Hi and the feedback factors ki. Zeros of the 
transfer function H(s) will depend on the zeros of Hi and its denominator will be a polynomial 
in s. If Hi  is a lossless integrator, the realized filter shall be an all-pole filter. However, if 
equation (13.6) is to be a general function with arbitrary zeros, Hi needs to a general biquad; 
this gives the reason for discussing different cases. 

13.2.1 Use of lossless integrator blocks

One of the simplest cases is the one in which the transfer functions Hi blocks are only lossless 
integrators (Hi = 1/s). With the use of such blocks, equation (13.6) will modify as:
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It gives the following relation:
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Equation (13.8) represents an LP filter section; though by taking the outputs at different 
points, HP and BP transfer functions can also be obtained. 
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In practice, inverting integrators are easier to realize than non-inverting ones. Hence, if all 
integrators are inverting lossless types, the feedback coefficients are to be multiplied by +1 or 
−1 to get all the feedbacks as negative. The following example will illustrate the procedure. 

Example 13.1: Realize a fourth-order Chebyshev filter with a corner frequency of 20 krad/s 
and a ripple width of 1 dB.

Solution: The normalized transfer function of a fourth-order LP Chebyshev filter with a corner 
frequency of 1 rad/s is as follows

( ) = =
+ + + +

out
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V K
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V s b s b s b s b
  (13.9)

For a ripple width of 1 dB, the values of the coefficients in equation (13.9) are as follows:

b0 = 0.2756, b1 = 0.7426, b2 = 1.4538, b3 = 0.9528 (13.10)

In order to get a gain of −1 dB at dc for the even order Chebyshev LP filter, value of K will be:

b0 ¥ (–1 dB) = 0.2756 ¥ 0.8912 = 0.2456.

Equation (13.9) can be modified in more than one way so as to be compatible with a circuit 
realizable in the form of Figure 13.1. The possible forms in which equation (13.9) can be 
written are as follows:

KVin – (s4 + b2s2 + b0)Vout – (b3s3 + b1s)Vout = 0 (13.11)
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Equation (13.12) can be realized using four lossless integrators and two inverting summers as 
shown in Figure 13.2(a).

Comparing the coefficients in equation (13.12) with that in equation (13.8), we can write 
k1 = 1/b3 = 1.0495, k2 = 1/b2 = 0.6878, k3 = 1/b1 = 1.346, and k4 = 1/b0 = 3.628. Coefficients 
k4, k2 and k0 are to be multiplied by (−1) and coefficients k3 and k1 are to multiplied by +1. The 
resulting circuit is shown in Figure 13.2(a), where frequency de-normalization is done by a 
factor of 20 krad/s and an impedance scaling factor of 103 was used to bring component values 
within a suitable range. The final element values are also shown in the figure.

The simulated magnitude response of the filter is shown in Figure 13.2(b). Its corner 
frequency is 3.1464 kHz (19.777 krad/s), maximum gain at ripple peaks is 0.9976 and dc gain 
is 0.8921, equivalent to 0.973 dB; all simulated parameters are found to be very close to the 
design values.

As mentioned earlier, equation (13.11) can be modified in other ways as well. In an alternate 
form, it is realized using three inverting lossless integrators, one inverting integrating summer 
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and one inverting summer as shown in Figure 13.3(a). Its simulated response is shown in 
Figure 13.3(b); the pass band corner frequency is 3.118 kHz (19.6 krad/s) and ripple width 
is 1.008 dB.
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Figure 13.2 (a) Fourth-order normalized low pass filter realization for Example 13.1. All resistances are 
in kΩ and capacitors are in nF. (b) Magnitude response of the fourth-order FLF low pass 
Chebyshev filter using lossless integrator blocks for Example 13.1.
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Figure 13.3 (a) Alternate FLF structure for the fourth-order low pass filter shown in Figure 13.2(a). 
All resistances are in kΩ and capacitors are in nF. (b) Magnitude response of a fourth-
order FLF low pass Chebyshev filter using lossless integrator blocks for Example 13.1: an 
alternate structure.
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13.2.2 Use of lossy integrator blocks

A lossy inverting integrator shown in Figure 13.4(a) has the following form of transfer function:
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Figure 13.4 (a) Normalized lossy inverting integrator to be used in an FLF structure. (b) FLF structure 
for a third-order filter using the inverter shown in Figure 13.4(a) for realizing transfer 
function of equation (13.15).

If such lossy integrators are used to realize FLF structured filters, equation (13.6) will be 
written in the following form:
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Equation (13.14) represents an all-pole LP filter of order n. If it is compared with the general 
all-pole LP response of equation (13.15) given in the following equation, coefficient matching 
can be done.
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With coefficient matching between equations (13.14) and (13.15), the general relations 
between bi and ki can be written as:

bn–1 = na + k1 

bn–2 = {n(n–1)/2}a2 + (n –1)ak1 + k2

b0 = an + an–1 k1 + …… + a2kn–2 + akn–1 + kn   (13.16)          

However, for comparatively lower-order filters, the relations will be simpler and can be used 
directly. For filter realization, a suitable value of a is selected and coefficients ki are found in 
terms of bi in equation (13.16). The transfer function of equation (13.15) is then realized 
through the basic structure shown in Figure 13.1 employing the lossy integrator shown in 
Figure 13.4(a) as the basic block. Care is taken to assign positive or negative sign for the 
coefficients ki in the feedback in order to have all feedbacks negative. The process is illustrated 
here with an example.

Example 13.2: Design a third-order Chebyshev filter having a ripple width of 2 dBs and a pass 
band edge frequency of 10 krad/s using the lossy inverting integrator shown in Figure 13.4(a).  

Solution: From Table 3.4, location of the poles for the desired filter is as follows:

s1–2 = –0.1845 ± j0.9231, s3 = –0.3689

Hence, the normalized transfer function of the all-pole LP filter having unity dc gain will be:

( ) out
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3268 0 9.

V
H s

V s s s
= =

+ + +
 (13.17)

Putting n = 3 in equation (13.16), we get expressions for bi and ki as:

b2 = 3a + k1 Æ k1 = b2 – 3a

b1 = 3a2 + 2ak1 + k2 Æ k2 = b1 – 3a2 – 2ak1

b0 = a3 + a2k1 + ak2 + k3 Æ k3 = b0 – a3 – a2k1 –  ak2 (13.18a)

For a selected value of the parameter, a = 1, and using values of the coefficients bi from 
equation (13.17), equation (13.18a) gives the values of coefficients ki as:

k1 = –2.2621, k2 = 2.5464, k3 = –0.9574 (13.18b)
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With these values of coefficients ki, for n = 3, equation (13.17) can be realized using the 
structure shown in Figure 13.4(b). For the design value of the pass band edge frequency, de-
normalization is done by a factor of 10 krad/s and impedance scaling is done by a factor of 
104, which makes the capacitance value in each integrator as 10 nF and the feedback resistor of  
10 kW. The transfer function of equation (13.17) will become as follows.

( ){ } ( ){ } ( ){ }
out

3 2
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Figure 13.5 shows the circuit diagram of the filter with de-normalized element values. Figure 
13.6(a) shows the phase response at the output of each OA, showing whether the outputs 
are in phase or out of phase with the input signal. Due to the negative sign with coefficients 
k1 and k3, output from integrators 1 and 3 are also applied directly to the summer OA0, 
with respective feedback resistance values of (104/2.2621) = 4.4206 kW and (104/0.9574) =  
10.444 kW. The feedback resistance value from the output at integrator 2 is (104/2.5464) 
= 3.927 kW and input resistance is (104/0.3269) = 30.59 kW. Figure 13.6(b) shows the 
simulated magnitude response of the filter. Initially, dc gain is 0.945, with a ripple width of 
1.96 dB. The ripple near the pass band does not reach its dc level, and the corner frequency is 
1.532 kHz (962.9 rad/s). However, with small adjustments in the coefficient of (s +1)3 from 
1.0 to 0.98 by making the feedback resistor in the summing inverter-0 as 10.2 kW, the filter 
shows improvement in the shape of the response with ripple at the pass band reaching the dc 
level; corner frequency is now 1.55 kHz (974.3 rad/s), dc gain is unity and the ripple width is 
1.85dBs.

13.3 Feed-forward Path Based FLF Structure

So far, the techniques used for the realization of FLF structure could give only all-pole filters. 
Researchers have shown that the required building blocks needs to be biquadratic sections for 
the realization of finite transmission zeros. However, some alternate methods which do not 
need biquadratic building blocks are also available. One such method which employs feed-
forward paths will be shown here. 

The structure shown in Figure 13.1 and implemented in the form of Figure 13.2(a), which 
employs lossless integrators as basic building blocks, realizes all-pole filters that have the transfer 
function as given in equation (13.5). In this basic structure, outputs are available in terms of sn 
Vout, sn–1 Vout, ……, s Vout and Vout. These outputs can be used further in a feed-forward form 
to get a general nth order filter with arbitrary transmission zeros as shown in Figure 13.7. In 
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the scheme, the original outputs from the lossless integrators are multiplied by coefficients ai 
and then added together to obtain the final output.

0
–

+ 1
–

+ 2
–

+ 3
–

+

Vin

Vout

10
10

10

30.59

10.2

4.420

3.927

10

10.444

10
10

–( + 1)s V
3

out
( + 1)s V

2
out –( + 1)s Vout

10
10

10

Figure 13.5 Circuit structure of the third-order filter for Example 13.2. All resistances are in kΩ and 
capacitors are in nF.
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Figure 13.6 (a) Phase responses at the input, and  outputs of the OAs in the third-order filter for 
Example 13.2. (b) Magnitude response of the third-order filter for Example 13.2.

+
Vin V0 V1

V2

–k1

–k2

–kn–2

–kn–1

–kn

K

+

Vn–2 Vn–1 Vn V �
1/s 1/s 1/s 1/s

a0
a1 a2 an–2 an–1 an

s V �n
s V �n–1 s V �n–2

s V �2
sV �

Vout

Figure 13.7 Realization of an nth order filter with finite zeros in the FLF structure employing lossless 
integrators and feed-forward paths.

As before, the ratio of the intermediate output V´to Vin  in Figure 13.7 will be given as:
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The ratio of the final output (Vout) with intermediate voltages V´ will be

(Vout/V´) = H2(s) = a0sn + a1sn–1 + … + an–2 s2 + an–1 s + an = N(s) (13.22)

Combining equations (13.21) and (13.22)
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out
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Hence, a general transfer function of equation (13.24) can be realized using only lossless 
integrators. Once again, as inverting integrators are easy to use, appropriate positive or negative 
multipliers will be assigned to the coefficients aj and ki.

While doing final summation using the inverting summer, some of the received signals may 
have negative sign and some may have positive sign. Some coefficients may be zero as well; in 
these cases, feed-forward path will be simply open. The following example will illustrate the 
process.

Example 13.3: Realize an active LP filter in FLF mode with the feed-forward technique. Its 
pass band extends up to 20 krad/s with a maximum ripple width of 1.0 dB; the stop band is 
beyond 40 krad/s with a minimum attenuation of 34 dBs. The filter has unity gain in the pass 
band.

Solution: The design obtains the following normalized transfer function for the given 
specifications.
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sV
H s K

V s s s

+
= =

+ + +
 (13.25)

For the unity dc gain, K = 0.10589. Transfer function of equation (13.25) is expanded, and 
functions H1(s) and H2(s) corresponding to equations (13.21) and (13.22) are obtained from it as:

( ) ′= =
+ + +1 3 2

in

0.10589
0.974 1.2443 0.5454

V
H s

V s s s
 (13.26)

H2(s) = (Vout /V´) = s2 + 5.1532 (13.27)
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Equation (13.26) can be written as:

   − + + − − =′ ′     

2
3in 1

0
1/ 0.10589 1/ 0.974 1/ 0.5454 1/1.2443

V s s
V s V  (13.28)

Equation (13.28) is realized as the top portion of Figure 13.8(a) using inverting lossless 
integrators with the value of coefficient multipliers k1 = (1/0.974) = 1.0267, k2 = (1/1.2443) = 
0.8038, and k3 = (1/0.5454) = 1.8335. As K = 0.10589, Vin is to be divided by 9.4437.

While realizing H2(s) of equation (13.27), a0 = a2 = 0. Hence, it is written as:

 + − − =′  
2

out
1

0
1/ 5.1532

V s V  (13.29)

For the realization of the part played by equation (13.29), the lower half part of Figure 13.8(a) 
needs only one summing inverter with multipliers from V´ being (1/5.1532) = 0.194 and 
unity from s2V´.

Frequency de-normalization by a factor of 20 krad/s is done, and an impedance scaling 
factor of 104 is used to find suitable element values, which are shown in Figure 13.8(a).

Figure 13.8(b) shows the PSpice simulated magnitude response of the filter. Peak gain is 
1.005 but the dc gain is 0.9862 and ripple width is 10.49 mV for an input of 100 mV, which 
corresponds to 0.962 dB. The corner frequency is 3.2168 kHz (20.219 krad/s) and gain at 40 
krad/s (6.38 kHz) is 0.017427 (−35.17 dBs). A zero occurs at 7.24 kHz (from the numerator 
of equation (13.25)). All the simulated parameters are very close to the design parameters.
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500 mV

1.0 mV

5.0 uV
10 Hz 100 Hz 1.0 kHz 10 kHz 100 kHz 1.0 MHz

V (22) Frequency

(b)

Figure 13.8 (a) Third-order filter section for Example 13.3, using feed-forward methodology.  All 
resistances are in kΩ and capacitors are in nF. (b) Magnitude response of the third-order 
elliptic filter for Example 13.3.

13.4 Shifted Companion FLF Structure

In Section 13.2.2, lossy inverting integrators are used to realize all-pole filters where the first 
feedback coefficient, k1 was derivable as (bn–1 – na). The common practice is to select a = 1 for 

the sake of simplicity in calculations. However, if a is selected as − 
  

1
1, nb

k
n

 will reduce to zero, 

which means that there will be no feedback after the first integrator (or any other building 
block used in place of the integrator). Such an arrangement is known as the shifted companion 
feedback (SCF) structure as shown in Figure 13.9(a)

Figure 13.9(b) shows the normalized inverting integrator when a π 1, which is to be used 
as the basic building block in the SCF scheme.

The SCF structure can also use feed-forward paths like those in Section 13.3 in order to 
realize the general transfer function having arbitrary zeros. The suggested process is also shown 
in Figure 13.9(a) with dotted lines joining a summer. An example will illustrate the procedure.
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Example 13.4: Realize the third-order Chebyshev filter of Example 13.2 to have a pass band 
edge frequency of 5 krad/s using the SCF structure. 

Solution: The normalized transfer function from Example 13.2 is repeated here for unity dc 
gain from equation (13.17):

( ) out
3 2

in

0.3269
0.7379 1.02218 0.3269

V
H s

V s s s
= =

+ + +
 (13.30)

Equation (13.30) can be written as:

2 3in
out out

1 1
0

1/ 0.3269 1/ 0.7379 1/ 0.3269 1/1.02218
V s

s V s V   − + + − − =      
 (13.31)

+
V0 V1
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–kn–2
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Vout
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Vin Vout

(a)

or V'

+
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1

1
V1

(b)

C

R2

V2

R1

1/a

Figure 13.9 (a) Shifted companion feedback FLF structure (and feed-forward as well) (b) normalized 
inverting integrator to be used in part (a).
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Equation (13.31) may be realized using the circuit of Figure 13.10(a). Calculation of the 
element values of the basic block, as well as values of the resistances providing feedback and 
feed-forward, are given here.

–

+

1
–

+ 2
–

+ 3
–

+
–

+

Vin
20

10
10

1030.59

10

10

10

95.017

11.895

40.65
40.65

20

40.65

20

Vout
–s V3

out
s V2

out
–sVout

(a)

5

4

100 mV

50 mV

0 V
10 Hz 100 Hz 1.0 kHz 10 kHz

V (22) Frequency

(b)

Figure 13.10 (a) Circuit realization of third-order Chebyshev filter for Example 13.4 using shifted 
companion feedback process. All resistors are in kΩ and capacitors in nF. (b) Response 
of the third-order filter.
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Order of the filter n being three, the coefficient k1 = b2 – 3a. While making k1 = 0: 

a = (b2/3) = 0.7379/3 = 0.24596 

k2 = b1 – n(n – 1) ¥ a2/2 = 0.84069

k3 = b0 – ak2 – a3 = 0.10524 (13.32) 

A frequency de-normalizing factor of 5 krad/s and impedance scaling factor of 10 kW is used. 
For a = 0.24596, the selected capacitor in each inverting integrator shown in Figure 13.9(b) 
will be 20 nF; R1 becomes 10 kW and R2 = 40.65 kW. The rest of the resistors realizing the 
coefficients k2 and k3 are obtained after impedance scaling as (1/0.84069 = 1.1895 ¥ 104 W) 
and (1/0.10524 = 9.5017 ¥ 104 W), which are shown in Figure 13.10(a). To get the dc gain as 
unity, the input resistance after impedance scaling will be (1/0.3269 = 3.059 ¥ 104 W).

The simulated magnitude response of the circuit is shown in Figure 13.10(b). DC gain 
is found to be 0.995 and a ripple width of 19.96 mV for an input voltage of 100 mV is 
equivalent to 1.96 dB. Corner frequency is 791.5 Hz (4975 rad/s).

13.5 General FLF Structure

In Section 13.2, a basic structure of the FLF feedback filter was discussed. The structure was 
shown in Figure 13.1. Building blocks were initially lossless, but later on lossy integrators were 
used to realize all-pole filters. The idea was extended to include feed-forward paths to realize 
arbitrary transmission zeros while using lossless or lossy integrators. The shifted companion 
approach was introduced in Section 13.4.

All the aforementioned schemes can be shown to be special cases of a generalized FLF 
process. In this section, the FLF structure will be studied from a generalized view, which will 
not only help in revising the simpler versions studied so far in the chapter, but also leads to 
another useful special class of FLF filters, known as the primary resonator block (PRB) based 
filters.

For Figure 13.7, if the transfer functions of each block is taken as Hi(s), we can write:

=

− = + ∑0 in
1

n

i i
i

V KV k V   (13.33a)

And the final output is written as:

=

= + ∑out 0 0
1

n

i i
i

V a V a V   (13.33b)
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Previous examples have shown that other than the basic blocks, the filter realization requires 
two summers using OAs; the realization of multipliers ki and ai is through resistors. A 
generalized form of FLF filters is easily derivable from Figure 13.7, which is shown in Figure 
13.11. Here as:

= =
′= =0 0

1  0  |  and |f
i i to n i i to n

fi i

R R
k a

R R
 (13.34)

–
+

Vin

H1 H2 Hi Hn

Rf 0

Rf 1

Rf 2

Rfi–1

Rfi

Rfn–1

Rfn

Rn

–
+

R �0
Ri 1–

R2

R1

R0

Ri Rn–1

RK

V0 V1 V2 Vi–1 Vi

Vn

Vout

Figure 13.11 A general FLF structure where Hi could be first- or second-order sections, and summing 
amplifiers are assumed to be ideal.

Equations (13.33a) and (13.33b) can be written respectively as:

=

− = + ∑0 0
0 in

1

n
f f

i
K fii

R R
V V V

R R
  (13.35)

=

′= −∑ 0
out

0

n

i
ii

R
V V

R
 (13.36)

Internal voltages Vi are easily calculated from the following expression:

0
1

( )    1, 2, , 
i

i j
j

V V H s i n
=

= = ……∏  (13.37)
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If Vi from equation (13.37) is substituted in equation (13.33a), then the expression of output 
voltage will be:

==

  − = +  
  

∏∑0 in 0
11

( )
n i

i j
ji

V KV k V H s  (13.38a)

= KVin + k1V0H1(s) + k2V0H1(s)H2(s) + … + knV0H1(s)H2(s) ... Hn(s)  (13.38b)

Hence, 
( ){ }==

= −
+ ∏∑

0

in
11

1
n m

m jjm

V K
V k H s

   (13.39)

In the expanded form, it can be modified as:

( ) ( ) ( ) ( ) ( )
0

in 1 1 2 1 2 1 21 ... ... ( )n n

V K
V k H s k H s H s k H s H s H s

= −
+ + + +

 (13.40)

Substituting V0 from equation (13.39) in equation (13.37), transfer function at the ith stage 
is obtained as:

From 
   

=      
0

0 in

i
i

V V
h

V V

( )
( ){ }

=

==

= = −
+

∏
∏∑
1

in
11

( )

1

i
jji

i n m
m jjm

K H sV
h s

V k H s
 (13.41)

Since ( )
1

( ) 1/ ( )
n

i n j
j i

h s h s H s
= +

= ∏  (13.42)  

Here, hn(s) is the transfer function for feedback network only and its expression is obtained 
from equations (13.42) and (13.41) as:

( )
( ){ }

1

1 11

( )( )

1/ ( ) 1

n
jji

n n n m
j m jj i jm

K H sh s
h s

H s k H s

=

= + ==

= =
+

∏
∏ ∏∑

 (13.43)

As discussed before, it is clear from equation (13.43) that for this transfer function, the zeros 
are decided by the zeros of Hj(s). For realizing hn(s) with arbitrary transmission zeros, Hj(s) 
should be a second-order function with finite transmission zeros, treatment of which is quite 
involved. Instead, if the basic blocks are second-order band pass (BP) functions, calculations 
become a little easier. Let the normalized second-order BP function for the building block in 
standard format be:
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( ) ( )
( )= =

+ +0 02
1/

( )
1/ 1

i
i i i i

i

Q s
H s h h h s

s Q s   (13.44) 

In equation (13.44), h0i is the mid-band gain and Qi is the quality factor of the ith stage.
Finally substituting Vi from equation (13.41) and V0 from equation (13.39) in equation 

(13.33):

( )
( ){ }

==

==

+
= = −

+

∏∑
∏∑

0 11out

in
11

{ ( )}

1

n m
m jjm

n m
m jjm

a a H sV
H s K

V k H s
  (13.45)

Implementation of using a second-order BP section as Hi(s) can be explained better with the 
help of a transfer function having a smaller value of n. Hence, for n = 4, H(s) will be expanded 
as shown in equation (13.46) and will be studied further.

( ) + + + +
= =

+ + + +
0 1 1 2 1 2 3 1 2 3 4 1 2 3 4out

in 1 1 2 1 2 3 1 2 3 4 1 2 3 41
a a H a H H a H H H a H H H HV

H s K
V k H k H H k H H H k H H H H

 (13.46)

Calculations involving equation (13.46) become easier if the Hi(s) are arithmetically asymmetric 
BPFs obtained from the low pass (LP) section using the transformation already discussed in 
Chapter 5, and repeated here.

w w w+ += → =
2 2 2

for normalize
1

    d  o o
o

s s
S S Q

B s s
  (13.47)

In equation (13.47), S is the normalized complex frequency variable of the LP prototype and 
Q = (wo/B) is the quality factor of the BP filter. The numerator and denominator of the BP 
transfer function of equation (13.44) is multiplied by (Q/s) to get the transfer function of the 
prototype LP.

( ) 0 02
/ /

    
1

i i
i

ii

i i
Q Q Q Q

H s h h Qs Q SQ Qs Q

= →
+ ++

 (13.48)

Equation (13.48) is the first-order prototype LP transfer function, where h0i becomes the dc 
gain of the LP filter –HLP(S) and if we write (Q/Qi) = qi, then

( ) i
LP LPi

i

q
H S h

S q
=

+
 (13.49)

To find the poles of the general FLF transfer function, if the BP to LP transformation is used, 
its order becomes (n/2) and the poles are decided by the values of qi and ki. For the nth order 
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FLF, the transfer function expression of the (n/2)th order LP has been derived for further 
processing. However, as suggested earlier, we will consider the case of the eighth-order FLF 
filter for the sake of easier understanding. 

Substituting the relation in equation (13.49) in the denominator of equation (13.46), we get:

( )( )( )( )
( )( )( ){ }

( )( ){ }
( ){ }

1 2 3 4

1 1 1 2 3 4

2 1 1 2 2 3 4

3 1 1 2 2 3 3 4

4 1 2 3 4 1 2 3 4

LP

LP LP

LP LP LP

LP LP LP LP

S q S q S q S q

k h q S q S q S q

k h q h q S q S q

k h q h q h q S q

k h h h h q q q q

= + + + + +

+ + + +

+ + +

+ +
 (13.50)

When the relation in equation (13.49) is substituted in the numerator of equation (13.46), we 
get the following relation for finding the zeros of the LP filter.

( )( )( )( )
( )( )( ){ }

( )( ){ }
( ){ }

0 1 2 3 4

1 1 1 2 3 4

2 1 1 2 2 3 4

3 1 1 2 2 3 3 4

4 1 2 3 4 1 2 3 4

LP

LP LP

LP LP LP

LP LP LP LP

a S q S q S q S q

a h q S q S q S q

a h q h q S q S q

a h q h q h q S q

a h h h h q q q q

= + + + + +

+ + + +

+ + +

+ +

 (13.51)

Coefficients of the denominator in equation (13.46) are found by comparing its expanded 
form in equation (13.50). However, we get four equations with b4 = 1 (as in equation (13.9)), 
in terms of eight unknowns, k1, k2, k3, k4, q1, q2, q3, q4. One of the solutions which also 
simplifies the procedure is the one which assumes equal quality factors for all the second-order 
BP sections, that is, q1 = q2 = q3 = q4= q. This means we need to use identical BP sections. Such 
a scheme is known as the primary resonator blocks (PRB) technique. Hence, we will continue 
the study of FLF filters in PRB form, which also includes the shifted companion approach.

13.5.1 Primary resonator block technique

For identical BP sections with the same value of quality factor q, if we compare equation 
(13.50) with the denominator of equation (13.46) and simplify, we get the  following relations.

k1 = b3 – 4qb4 (13.52a)

k2 = b2 – 6q2b4 – 3qk1 (13.52b)  

k3 = b1 – 4q3b4 – 3q2k1 – 2qk2 (13.52c)

k4 = b0 – q4b4 – q3k1 – q2k2 – qk3 (13.52d)

Here, there are four equations with five unknowns. It is used to advantage by making k1 = 0, 
through selecting q given by the following relation from equation (13.52a):
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k1 = 0 = b3 –  4qb4 Æ q = (b3/4b4) (13.53) 

It needs to be mentioned that for the nth order filter, equation (13.53) will become:

q = (bn–1/nbn) (13.54)

The remaining feedback coefficients in equations (13.52) can be found recursively as has been 
shown in previous examples. 

The process of finding coefficients while realizing transmission zeros is exactly the same as 
that for the case of poles; this has been explained in Section 13.3.

So far, the process of finding the feedback and feed-forward coefficients has been discussed 
when PRBs are used in FLF design. Obviously, finding the actual resistors realizing these 
coefficients should not be difficult. However, gain constants have not yet been specifically 
decided. In fact, these are free parameters and in a good design, they are selected to get 
maximum dynamic range without over-shooting of signals at any intermediate terminal, which 
would have distorted signals and thus might have given erroneous outputs. A process similar to 
the one discussed in the cascade process is to be followed for optimum design.

In case, one is interested in simulating a function without finite zeroes, no feed forward 
circuitry is required. In such case, numerator of the prototype LPF can be found out by 
substituting the relation of equation (13.49) in equation (13.43). Evaluation would then be 
replaced as shown below for a fourth order LP prototype:

N(S) = Ka4 hLP1 hLP2 hLP3 hLP4 q1 q2 q3 q4 (13.55)

Obviously, for identical prototyped expression will simplify as:

 N(S) = Ka4 (hLP q)4                                                                                          (13.56)

K = 1 in equation (13.56) for the dc gain of unity for the LP prototype.

Example 13.5: Design an eighth-order Butterworth BPF using the PRB structure having a 
center frequency of 2.5 kHz and quality factor of 20. Mid-band gain needs to be unity.

Solution: To realize the eighth-order Butterworth filter, we need to start with a fourth-order 
LP Butterworth filter, for which the normalized transfer function is given as:

( ) = =
+ + + +

out
4 3 2

1
2.6131 3.414 2.6131 1LP

in

V
H s

V s s s s
  (13.57)

To employ the shifted companion scheme and simplicity in FLF structure, equation (13.54) 
gives:

= =2.6131
0.65328

4
q  (13.58)
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Applying equation (13.52), we get the coefficient values of equation (13.34) as:

k2 = 0.8536, k3 = 0.3838 and k4 = 0.2036 (13.59)

As q = QBP/QLP = 0.6532 (from equation 13.48), for the given value of QBP as 20, QLP = 
30.616. Therefore, expression of the normalized transfer function of the PRB is written as:

( ) ( )
( )=

+ +
0

PRB 2
1/

1/ 1
LP

LP

h Q s
h s

s Q s
  (13.60)

In equation (13.60), h0 = (1/q) = 1.5308 in order to get unity mid-band gain for the PRB.
Since this example is for an all-pole filter, no feed-forward path is required.
The de-normalized transfer function of the PRB will be

( )
( ) ( )

π

π π
=

+ +
2

22
1

1.5308 5000 / 30.616

5000 / 30.616 5000

sV
V s s

  (13.61)

It is realized by a GIC based circuit shown in Figure 13.12(a), for which the expression of the 
transfer function, with R1 = R3 = R and C2 = C is:

( ) ( ){ }
( ) ( ) ( ){ }

+
=

+ +

4 52
221 4 5

1/ 1 /

1/ / 1/

Q

Q

CR R R sV
V s CR s R R RC

  (13.62)

Comparison between equations (13.61) and (13.62) give the following component values.
With R4 = R5 = R, and wo = 2500(2π) = 1/RC, for the selected value of C = 20 nF, we get 

R = 3.1818 kW and (1/CRQ) = 5000π/30.616 Æ RQ = 97.412 kW. With R4 = R5, the realized 
mid-band gain becomes 2. Hence, to bring it down to 1.5308, a potential divider at the input 
is to be used. For the potential divider, the resistor ratio will be (RQ/α) and (RQ/1 – α), where 
α = 1.5308/2 = 0.7654; it results in the input resistors of 127.27 kW and 415.22 kW.

The calculated values of the components are shown in Figure 13.12(a). PSpice simulated 
response of the PRB section is shown in Figure 13.12(b). Its mid-band gain is 1.5296, center 
frequency is 2.488 kHz and with a bandwidth of 80.98 Hz, realized  QLP = 30.73.

 PRB of Figure 13.12(a) is used in the realization of the eighth-order Butterworth BPF 
shown in Figure 13.13(a). Feedback resistances are calculated to realize the coefficients k3, k2 
and k4 given in equation (13.59).

Selecting Rf0 = 10 kW, we get Rf2 = 11.715 kW, Rf3 = 26.155 kW, Rf4 = 49.115 kW, 
and for K =1, Rin = 10 kW. (13.63)

The simulated response of the Butterworth BPF is shown in Figure 13.13(b). Cumulative 
effect of the gain (1.529) of the PRB results in the mid-band gain of unity. Center frequency 
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is 2.492 kHz and obtained with a bandwidth of 123.44 kHz, QBP = 20.19 against the design 
value of 20. Rate of fall of the output corresponds to an eighth-order filter. Outputs at the 
other PRBs are also shown in Figure 13.13(b).
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Figure 13.12 (a) Generalized impedance convertor based second-order PRB section for Example 13.5.  
(b) Its simulated magnitude response.
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Figure 13.13 (a) Eighth-order band pass maximally flat filter using PRB of Figure 13.12(a) as the basic 
block for Example 13.5. (b) Simulated magnitude response.

Practice Problems 

13-1 Design and test a fourth-order low pass filter with maximally flat characteristics having 1 dB attenuation 
at 1 kHz. Use the follow the leader feedback approach employing lossless integrators.  

13-2 Repeat Problem 13-1 using integrators with loss. All capacitors should be below 10 nF.

13-3 Realize a fifth-order LP filter having Butterworth characteristics using the follow the leader feedback 
technique using lossless integrators. The filter is to have a cut-off frequency of 5 kHz.

13-4 Design the filter in Problem 13-3 using lossy integrators.

13-5 Realize a fifth-order LP filter having Chebyshev characteristics with ripple width of 2 dBs using the follow 
the leader feedback technique while employing lossless integrators. The filter is to have a cut-off frequency 
of 5 kHz.

13-6 Use shifted companion FLF structure to design a fourth order LP filter with maximally flat characteristic 
having 1 dB attenuation at 1 kHz.

13-7 Realize a notch filter in FLF mode with feed-forward technique for the transfer function:

 
( ) +=

+ +

2

2
( 0.25)

  
( 0.09 0.083)

s
H s

s s
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 It is preferred that notch appears at 5 kHz. What is the peak value for the function and at what frequency 
it occurs?

13-8 Design a fourth-order Butterworth BPF using PRB technique. Its center frequency is 5 kHz and quality 
factor is 10. Use single amplifier biquad as the basic building block, 

13-9 Repeat problem 13-8 using multi amplifier biquad as building block.           

13-10 Apply a frequency de-normalization factor of 3.4 kHz for the following transfer function:

 
( ) +=

+ + +

2

2
0.274( 2.41)

( 0.635)( 0.361 1.042)

s
H s

s s s

 Design and test the realization using lossless or lossy integrators and feed-forward FLF structure approach.
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