
5.1 Introduction

In Chapter 3, magnitude approximations were studied for the low pass (LP) response. 
Specifications for the LP response contained maximum attenuation in the pass band αmax, 
minimum attenuation in the stop band αmin, and corner frequencies of the pass band Wp 
and stop band Ws (or the selectivity factor = (Wp/Ws)); for a normalized LP filter, the value of 
the selectivity factor becomes Ws. Such approximation methods are not commonly available 
for other types of filter responses like high pass (HP), band pass (BP), or band reject (BR). 
However, this is not too much of an issue as frequency transformations are available, which 
can convert all the important characteristics of an LP filter to that of any other type of filter 
response and vice-versa. This process of using frequency transformations is a longer procedure 
compared to direct approximation of other types of responses, but it has some basic advantages. 
Instead of using different approximation procedures for the different types of filters, extensively 
available charts and tables for the LP response are used for the maximally flat-Butterworth, 
Chebyshev, inverse Chebyshev, and the elliptic forms of approximations. The values of poles 
and zeros, the expression of the transfer function and structure in ladder form with element 
values are available for small and large order n of the LP filter. The procedure of frequency 
transformation is lengthy because it involves conversion of the specifications of the filter to be 
designed (FTD) in terms of a corresponding low pass prototype (LPP). After designing the LPP, 
its transfer function is then converted back to that of the FTD.

Transformation of an LPP to the prototype HP, BP, and BR is described in Sections 5.3 to 
5.5; the respective transformation factors are also described. Besides these transformations, the 
level of impedance has to be changed to control the values of the passive components that are 
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126 Continuous Time Active Analog Filters

allowed to be used in a practical circuit. Impedance scaling and conversion of an LPP to an LP 
filter of some other frequency is studied in Section 5.2.

For convenience and to avoid confusion between the frequency axes of the FTD and LPP, 
different symbols are used. For the LPP, the complex frequency variable is expressed in capital 
letters S = Â + jW; small letters s = s + jw are used for the FTD. To transform the transfer 
function of the LPP, HLP(S) in terms of the transfer function of either HP: THP(s), BP: HBP(s), 
or band elimination (stop): HBE(S) functions, we need to find an appropriate functional 
relation as follows:

 W = f(w) (5.1)

The function f(w) has to be selected in such a way that the approximated magnitude function 
of LPP, |HLP(jW)| = |HLPP{f(jw)}| = |HHP(jw)| (say) for HPF.

It is important to note that transformation through equation (5.1) affects only the frequency 
axis. The magnitude on the y-axis is not affected; therefore, the amount of variation of gain in 
the pass and stop band will remain the same.

There is an alternate method of converting the LPP magnitude response to other responses 
known as the network transformation method. It will be shown that this method is more 
convenient as it can use the available extensive networks and element values of doubly 
terminated LPP ladders for any arbitrary specifications.

5.2 Frequency and Impedance Scaling

We have discussed normalized and de-normalized frequency earlier. Study of approximation 
can be in both forms, but doing it in normalized form is comparatively easy. Changing from 
one frequency level to another is called frequency scaling; changing the frequency level from 
unit frequency to another frequency (usually higher) is called frequency de-normalization. In 
this section, we will express frequency and impedance scaling in a formal way and also observe 
their effect on the location of poles and zeros of the transfer function of the prototype filter.

5.2.1 Frequency scaling

The simplest form of frequency transformation is a frequency scaling operation which is given 
in terms of the frequency scaling parameter wo as follows:

S = (s/wo) Æ s = woS (5.2)

The transformation in equation (5.2) converts an LPP response to another LP response at 
a different frequency level: from normalized to de-normalized, with S being considered as a 
normalized frequency.

Use of the transformation equation (5.2) changes a numerator factor (S – zi) to (s – wozi) 
and a denominator factor (S – pj) to (s – wo pj) in the factorized form of an LPP transfer 
function. This means that poles and zeros for the new LPF are simply multiplied by the 
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  127Frequency and Impedance Transformations

frequency transformation factor wo. Hence, expressions for the new zeros and poles will be as 
follows: 

(zi)s = (wo zi)S, (pj)s = (wo pj)S  (5.3)

While transforming an LPP to another LP, the normalization frequency and its mirror image 
in the negative x-axis, ±W converts to the frequency ±woW. However, the transfer function 
retains the same magnitude. Hence, as shown in Figure 5.1(a) and (b), magnitude of the LPP 
and LP are equal, that is, |TLPP(jW)| = |HLP(jw)| and the pass band edge frequency Wp = 1 rad/s 
and stop band edge frequency WS rad/s gets converted to wp = wo rad/s and ws = woWS rad/s, 
respectively.

| ( )|H j�LPP

�
�S

1

| ( )|H jwLP

wp w s

w
(a) (b)

Figure 5.1 Transformation of frequency level from (a) low pass prototype to (b) another low pass.

A filter section is realized either using only passive elements or including active elements. It is 
only the inductors and capacitors which are frequency dependent; hence, only the values of these 
elements are affected during frequency transformations. Use of the frequency transformation 
equation (5.2) converts the inductor impedance of LPP, ZL = jWL ohms to ( )L /L oZ j w= Ω′  
ohms and the capacitor impedance of LPP, Zc = 1/jWC ohms to ( )/C oZ j Cw= Ω′  ohms. Thus, 
the value of the inductance and the capacitance are divided by the factor wo, as illustrated in 
Figure 5.2(a) and (b).

5.2.2 Impedance scaling

After designing a filter, the circuit configuration is to be selected. Element values of the selected 
circuit depend on the selected architecture, specifications of the filter and the frequency range 
of operation. The resulting circuit has to be realized in either discrete form or in an integrated 
circuit (IC) form. For either form of practical realization, element values should be in a practical 
range. For example, in IC form, capacitance values should be as small as possible, preferably 
below the nF range and the resistances should be of the order of or less than a few kilo ohms 
range. To convert the element values of the designed circuit to within the practically desirable 
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128 Continuous Time Active Analog Filters

range, impedance scaling is almost essential, where all impedances of the network are scaled by 
a common factor say k. It is important to note that while performing impedance scaling the 
voltage ratio transfer function of the circuit is not affected because it is dimensionless.

Z   = j L�L

�
L

Z = /¢ wj L�L o

L L H= ( / )w� o

L�

Z   = 1/j C�c Z = /j C¢ w �c o

�

C C¢

C C= /w¢ o

(a)

(b)

Figure 5.2 Change in the value of (a) inductor and (b) capacitor, due to the frequency transformation.

Similar to the frequency scaling, during impedance scaling also, the initial circuit whose 
impedance level is to be changed is called the normalized impedance circuit (NIC) and the 
circuit after the impedance scaling is called the de-normalized impedance circuit (DIC). Hence, 
impedance scaling operation is expressed as:

z(DIC) = k ¥ Ζ(NIC)  (5.4)

Application of equation (5.4) changes the impedance level of resistor (R), inductance (L), 
capacitance (C), transconductance gain coefficient (Gm) and transresistance gain coefficient 
(Rn). The respective changed expressions for the DIC are as follows.

( ), , 1/ , , and m
n

C G
k

kR Z kL Z Z ZkR
k

w w   
      

 (5.5)

These changed expressions result in a change in the respective circuit element values:

r = kR W, l = kL H, c = C/k F, gm = Gm/k mho, and rn = kRn W (5.6)

Example 5.1: Apply frequency scaling by a facto wo = 10 krad/s and impedance scaling factor 
k = 105 to the LPP passive ladder structure of a seventh-order Chebyshev filter with a 1 dB 
pass band ripple width (shown in Figure 5.3(a)), and find the element values after the scaling.

Solution: In the original ladder structure, values of the elements are:

= = Ω = = = =

= = =

* * * * * *
1 2 1 7 3 5
* * *
2 6 4

1 , 2.1666 , 3.0936 ,

1.1115 , 1.735

R R C C F C C F

L L H L H
   (5.7a)

Application of frequency scaling will not change the resistor values, but inductances and 
capacitances will be divided by 104; hence, the frequency scaled elements are as follows:
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  129Frequency and Impedance Transformations

R1 = R2 = 1 W, C1 = C7 = 0.21666 mF, C3 = C5 = 0.30936 mF,  
L2 = L6 = 0.11115 mH, L4 = 0.1735 mH (5.7b)

Vin

+

–

+

–

Vout

1.0 � 1.11154 H 1.735 H 1.11154 H

R*1 L*2 L*4 L*6

C*12.1666 F 3.0936 F C*3 3.0936 F C*5 2.1666 F C*7

R*2

1.0 �

(a)

500 mV

250 mV

0 V
10 Hz 100 Hz 1.0 kHz 10 kHz 100 kHz

Frequency

10 krad/s 50 krad/s

Ripple with = 1 dB

V (5) V (51)

(b)
Figure 5.3 (a) Seventh-order passive low pass ladder structure with 1 dB pass band ripple.  

(b) Transformation from low pass prototype to low pass responses at higher frequencies.

Impedance scaling by a factor of 105 will increase the values of the resistors and inductors but 
decrease the values of the capacitances. Hence, the final element values will be:

R1 = R2 = 100 kW, C1 = C7 = 2.1666 nF, C3 = C5 = 3.0936 nF,  
L2 = L6 = 11.115 H, L4 = 17.35 H (5.7c)

The original passive ladder had a pass band edge frequency wp of 1.0 rad/s. After the frequency 
transformation, the design value of wp becomes 10 krad/s. The PSpice simulated value of 
wp from the response shown in Figure 5.3(b) is 9.995 krad/s (1.59 kHz). The ladder was 
frequency transformed again by a factor of 50 krad/s; the response in this case is also shown in 
Figure 5.3(b). wp is 49.78 krad/s (7.92 kHz).  
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130 Continuous Time Active Analog Filters

5.3 Low Pass to High Pass Transformations 

Most of the time, the magnitude function of a filter |H(jw)| is sketched in the first quadrant, 
that is, where the frequency remains positive, though the function |H(jw)|2 spreads on to both 
quadrants. As the magnitude function H(jW) is an even function |H(jW)| = |H(–jW)|, it gets 
reflected on the negative x-axis. For example, Figure 5.4 shows a sketch for a maximally flat 
response for the complete range of frequency, that is, from –∞ to +∞. For the normalized 
frequency response of an LP filter, pass band extends in the range |W| £ 1 and the stop band 
ranges from Ws to ∞ and from –Ws to –∞. To convert the normalized LPP of Figure 5.4 to 
an HP response, the pass band should range from w = 1 to ∞ and w = –1 to –∞, and the 
stop band from –ws to + ws, respectively, as shown in Figure 5.5. Study of the two figures 
suggests the form of frequency transformation from an LPP to an HP FTD. Zeros of the LPP at  
W = ∞ and –∞ are to be converted so that they are at w = 0 for the HP filter. Comparison 
between Figures 5.4 and 5.5 suggests that the pass band of the LP (–1 £ W £ +1) needs to be 
converted to a pass band of HP as (+1 £ W £ –1). Such a transformation is obtained by selecting:

s = 1/S or S = 1/s (5.8)
| ( )|H j�LPP

1

–� s –1 0 1 +� s

1/(1 + )e2 1/2

�

Figure 5.4 Even function response of a maximally flat low pass function.

While working on a transfer function in terms of the complex frequency variable s, it is needed 
to replace jW by S and jw by s. Hence, from equation (5.8),

jw = 1/jW Æ w = – (1/W) or jW = 1/jw = – (j/w) Æ W = – (1/w) (5.9)

Let us consider a normalized second-order LPP with quality factor Q and dc gain K, and 
corresponding frequency de-normalized transfer function, as given by equation (5.10) below: 

( )
2

LPP
2 2 2

1
1  1   

o

o
o

H S K K
S S S S

Q Q

w
w w

= =
   

+ + + +      

 (5.10a)

Application of the transformation equation (5.8) shall lead to the following corresponding HP 
transfer functions:

( )
2 2

HP
2 2

2
1 1 1 1   

o o

s s
H s K K

s s s s
Q Qw w

= =
   

+ + + +      

 (5.10b)
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| ( )|H jwHP

1

1/(1 + )e2 1/2

–1 –ws 0 +ws 1

Figure 5.5 Even function response of a maximally flat normalized high pass function.

Obviously, it will retain the same quality factor Q but pass band edge frequency wo shall 
become (1/wo) for the HP filter.

Based on the aforementioned discussion, to obtain a network for a normalized HP filter 
(HPF) section, the following steps are to be taken.
1. Normalize the specifications of the given HPF by dividing the frequency axis by the pass 

band edge frequency wp so that its pass band is in the normalized frequency range w ≥ 1.
2. Find the normalized stop band edge frequency of the HPF (ws/wp).
3. Using the transformation relation of equation (5.9) (neglecting the negative sign), obtain 

the selectivity factor for the LPP (Wp/Ws).
4. Use any type of magnitude approximation for obtaining the HLPP(s) for the calculated 

selectivity factor and the given attenuation (or ripples) in pass and stop band.
5. Apply the LP to HP frequency transformation of equation (5.8).

Example 5.2: Design an HPF using LP to HP transformation, with a maximally flat response 
having the following specifications:

αmin = 40 dB, αmax = 1dB, ws = 1000 rad/s and wp = 4000 rad/s 

Also determine the attenuation at 1500 rad/s and 750 rad/s.

Solution: In the first step, specifications of the HPF are normalized by dividing the frequency 
range by wp, so the stop band edge normalized frequency becomes 0.25 rad/s.

Next, the selectivity factor of the normalized LPP = 1/Ws = 1/0.25 = 4.
Design of the LPP requires calculation of the factor ε and order of the filter n. Application 

of equations (3.12) and (3.23), respectively, gives: 

max0.12 0.1(10 –1) (10 –1) 0.258αε = = =  (5.11)

4 0.1log{(10 1) / (10 1)}
3.79

2log4
n

− −= =   (5.12)

Therefore, order of the LPP will be 4. Use of Table 3.1 gives the location of pole for n = 4 as:
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p1,2 = 0.3826836 ± j0.9238795 and p3,4 = –0.9238795 ± j0.3826836

The normalized transfer function of the LPP is obtained as shown here:

( ) =
+ + + +LPP 2 2

1
(S 0.7653668 1)( 1.847749 1)

H S
S S S

  (5.13)

Applying LP to HP transformation of equation (5.8) on the transfer function HLPP(S), the 
transfer function of the fourth-order normalized HP becomes:

( )
4

HP 2 2( 0.7653668 1)( 1.847749 1)
s

H s
s s s s

=
+ + + +

  (5.14)

There are several options to synthesize equation (5.14). In one option, the section is broken 
into two second-order sections with transfer functions H1 and H2 (given in the following 
equations), which will be cascaded and then frequency and impedance scaling shall be applied. 

( )
2

1 2( 0.7653668 1)
s

H s
s s

=
+ +

  (5.15)

( )
2

2 2( 1.847749 1)
s

H s
s s

=
+ +

 (5.16) 

A single amplifier second-order filter section shown in Figure 5.6 has the following expression 
in equation (5.17). It is used to realize the transfer functions H1 and H2.

–

+

Vin C1
Vout

C3

C2

G2

G1

Figure 5.6 A single amplifier, second-order high pass filter.

2
1 3out

2 1 2 3 1 2in
2

2 3 2 3

( / )
( )

   

C C sV
C C C G GV s G s

C C C C

= − + +
+ +

  (5.17)

To maintain high frequency gain as unity, comparing equations (5.15) and (5.17), and 
assuming

C1 = C3 = 1, we get:
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( )= = → = Ω = Ω2 1 2 2 12
3

1/ , and with 0.7653 3.919 ,  and 0.2551 
C

G G G R R
C

 (5.18a)

Frequency normalization is to be done with respect to the 3 dB frequency. To convert the pass 
band edge frequency of 4000 rad/s to 3 dB frequency, from equation (3.25):

wCB = {(100.1×3 –1)/0.2589}1/2×4 = 1.183  (5.18b)

Hence, the frequency scaling factor will be 4000/1.183 = 3381.2 rad/s. If all the three capacitors 
are selected as 0.1 mF, which is a convenient practical value, the impedance scaling factor shall be 
107/3381 = 2957. Using this impedance scaling factor, we get R11 = 754 W and R12 = 11.588 kW.

In the same way, comparing equation (5.17) with the transfer function H2 of equation 
(5.16), element values are C12 = C22 = C32 = 0.1 mF, R12 = 1.797 kW and R22 = 4.803 kW. The 
cascaded fourth-order HP circuits with the element values used are shown in Figure 5.7(a); 
their PSpice simulation is shown in Figure 5.7(b).

–

+
Vin

+

–

C11 C31

0.1 F� 0.1 F�

C21

0.1 F�
R21

R11

0.736 �

–

+

C12 C32

0.1 F� 0.1 F�

C22

0.1 F�
R22

R12

0.797 k�

11.306 k�
4.803 k�

Vout

(a)

1.2 V

0.8 V

0.4 V

0 V
10 Hz 100 Hz 1.0 kHz 10 kHz

V (42) Frequency

(b)
Figure 5.7 (a) Fourth-order high pass maximally flat filter for Example 5.2. (b) Magnitude response 

of the fourth-order high pass filter of Figure 5.7(a) for Example 5.2.
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Simulated 3 dB frequency is 539.6 Hzor 3391 rad/s, high frequency gain is unity, pass band 
edge frequency (4000 rad/s) attenuation is 42.6 dB, and stop band edge frequency (1000 
rad/s) attenuation is 0.972 dB. Attenuation at 1500 rad/s and 750 rad/s is 28.2 dB and 52.4 
dB, respectively. The observed parameters are very close to the design values as specifications 
are very well satisfied. 

Low Pass to High Pass Network transformation: LP to HP frequency transformation can also 
be applied directly on a network of a LPP. For a network which contains, resistors, inductors, 
capacitors and active device, frequency trans-formation shall affect only the inductors and 
capacitors. Use of equation (5.8) shall transform these components as shown in figure 5.8. 
Impedance of inductance (SL) gets changed to capacitive impedance having capacitor value of 
(1/L) and correspondingly capacitive impedance (1/SC) changes to inductive impedance with 
inductance value (1/C). This conversion process is often used instead of dealing in pole/zero 
reciprocation. While performing network transformation it is important to note that such a 
conversion shall be done on the elements, when the LP transfer function is normalized to get 
a normalized HPF with the pass band edge frequency Wp = 1. Later, frequency scaling shall be 
performed on the normalized HPF for a desired pass band edge frequency; pole-Q shall remain 
unchanged from the LPF.

�

�

SL
L/s

1/SC
s C/

Figure 5.8 Application of an LP to HP frequency transformation on inductive and capacitive 
impedances.

5.4 Low Pass to Band Pass Transformation

Figure 5.9(a) shows the frequency response of a normalized LP function, approximated in 
maximally flat form with its 3 dB frequency at W = 1 and normalized stop band edge frequency 
Ws. Application of a suitable frequency transformation should give a band pass (BP) response 
as shown in Figure 5.9(b) converting the 3 dB frequency of the LPF to the lower and upper  
cut-off frequencies and the stop band frequency gets converted to the two stop band frequencies 
ws1 and ws2 of the BPF. The pole frequency at W = 0 is converted to the normalized center 
frequency wo = 1. The LP response in Figure 5.9(a) was shown only in the first quadrant; 
whereas for the rational transfer function spread over the whole frequency range of –• to 
+•, Figure 5.10(a) shows the LP response in inverse Chebyshev form. Its pass band ranges 
from W = −1 to +1, which is to be transformed to the pass band of the BPF, extending from 
frequency w1 to w2 for positive frequencies. Obviously, the center frequency of the BPF where 
its magnitude is maximum will lie within the frequency range w1 £ w £ w2; this equals 1.0 
for the normalized frequency BPF with w1 < 1 and w2 > 1. For the LPP, there will be a pole at  
W = 0 and zero at W = ±•, whereas for the transformed BP, there will be zeros at w = ±1 and 
a pole at w = 0 and ±•. For such a conversion, the following function will be sufficient.
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( )w w w
w w

− + −Ω = =
21 ( 1)1 1 ( 1)

(BW) BW
 (5.19)

In equation (5.19), the term BW has been included to normalize and adjust the slope of the 
function as explained in the following text. For the LPP, its pass band edge frequency W = 1. 
Hence, from equation (5.19), we get:

w w w
w

−Ω = = → − − =
2

21 ( 1)
1 * BW 1 0

BW
 (5.20)

It has been shown that the pass band edge frequency of the LPP (W = 1) has been transformed 
as the pass band edge frequencies of the transformed BPF: –w1 and w2. As these frequencies 
–w1 and w2 should be the solution of equation (5.20), we can express the following.

(w + w1)(w – w2) = 0 Æ w2 – w(w2 – w1) – w1w2 = 0 (5.21)

It is important to note that the scheme is more useful in passive structures employing both 
inductors and capacitors. In active-RC circuits it is not preferable as such, because it will 
convert capacitors as inductors, which shall have to be simulated using active-RC circuits. 

1.0

| ( )|H j�LP

3 dB

0,0 1 �s

�

1.0

| ( )|H j�BP

0,0 1s1w 1w 2w s2w
w

3 dB

(a) (b)

Figure 5.9 Application of a normalized low pass magnitude response transformation to convert it to 
a normalized band pass response.

Comparing equations (5.20) and (5.21), we get the following expression:
BW = w2 – w1, and the product of the normalized pass band edge frequencies,

w1 ¥ w2 = 1 (5.22)

Hence, BW = (w2 – w1), introduced in equation (5.19), is the bandwidth of the BPF and its 
normalized center frequency w = 1 is the geometric mean of the pass band edge frequencies, 
w1 and w2.

Now, multiplying equation (5.19) by j
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w w
w w

 − −Ω = = −  

2 21 1 1
 

BW BW
j

j
j

 (5.23)

With S = jW and s = jw, we can write equation (5.23) as follows:

( )+= = +
21 1

1/
BW

s
S Q s s

s
 (5.24)

Hence, Q, referred to as the quality factor is defined as the center frequency (w = 1) of the BPF 
divided by the bandwidth (BW).

For a normalized BPF with center frequency as wo instead of 1.0, equations (5.19), (5.22) 
and (5.23) will be modified as follows:

2 21
BW

ow w
w
−

Ω =  (5.25)

2
1 2 ow w w× =  (5.26)

| ( )|H j�LP 1.0

–�z –1.0 0 1.0 �z

�

1/(1 + )e2 1/2

| ( )|H jwBP 1.0

1/(1 + )e2 1/2

–wz2 –w2 –1 –w1 –wz1 0 wz1 w1 1 w2 wz2
w

(a)

(b)

Figure 5.10 (a) A normalized low pass response in inverse Chebyshev approximated form transformed 
to (b) a normalized band pass response.

( )o

o

s
S Q

s
w

w
= +  (5.27) 
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With quality factor Q as: 

Q = wo/(w2 – w1) (5.28)

Either equation (5.19) representing the normalized transformation factor or the de-normalized 
transformation factor of equation (5.25) can be used to convert LPP to BP functions. However, 
with transformation, the order of the BP function becomes double of the order of the LPP. 
For example, a third-order LPP became a sixth-order BP, and so on. Hence, the application of 
the frequency transformation will change the transfer function. Denominator of the transfer 
function can be expressed as before, either in a polynomial form or in terms of second-order 
factors. When the denominator is expressed in polynomial form, any direct form of synthesis 
procedure can be adopted. Alternatively, when the denominator is in the factorized form, 
a variety of methods employing second-order sections, including a cascade of second-order 
networks can be used. However, for the factorization, location of poles of the transformed BP 
function has to be found out as will be discussed here.

A first-order LP function with a real pole at S = –Sr results in two complex poles in the 
normalized BP functions as follows:

p1,2 = –(Sr / 2Q) ±j{1 – (Sr / 2Q)2}1/2 (5.29)

While arriving at the result in equation (5.29), it is assumed that 2Q > Sr, so that the poles p1 
and p2 are complex.

With the pole of the first-order LPP being at –Sr, its transfer function HLPP(S) = 1/(S + Sr) 
will be converted to a second-order transfer function for which the transformed BP section 
will be as follows:

HBP(s) = 1/(s – p1) (s – p2) = 1/{s2 + (Sr /Q)s + 1} (5.30)

Somewhat more complex is the case when the LPP has complex conjugate poles (–S ± jW), 
which are converted to four poles for the BP function. These four roots appear in the following 
conjugate complex pair form.

( ){ } ( ){ }w w w w+ + + +2 2 2 2
1 1 1 2 2 2/ /o o o os q s q  (5.31)

Here, wo1, wo2 are the pole frequencies and q1, q2 are the pole quality factors of the two second-
order BP sections. Because of the nature of the complex conjugate poles of the LPP function 
and the transformation factor, equation (5.31) possess the following properties: 

wo1 ¥ wo2 = 1 and q1 = q2 = q (5.32)

This means that the two normalized pole frequencies are reciprocal of each other and 
symmetrical about wo = 1; the pole quality factor are equal in value.

If the LPP has the following second-order transfer function

( ) ( ){ }2 2
LPP 1/ /o oH S S Q= + Ω + Ω  (5.33)
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Utilization of the properties in equation (5.32) helps in finding the expression for the pole 
frequencies wo2 and wo1 which have been shown to be:

w
w

 Ω
= = + −

Ω
 

1/22

2 2 2 2
1

1 1 1
22

o o
o

o

q
Q Q q

 (5.34)

From equation (5.34), wo1 and wo2 can be found once value of q is known, which can be 
obtained from the following:

1/222 2 2
2 2 2

–1
2 2

o o

o o o

Q Q Q
q

     Ω  = + ± + 
Ω

Ω Ω    Ω       

 (5.35)

Restriction in equation (5.35) is that only the plus sign of the square root is taken to obtain 
the positive value of wo2.

Example 5.4: An LPP has pole pairs at S = S ± jW = –1.0 ± j1.0. Find the location of poles 
and values of the pole-Q for a transformed BPF.

Solution: For the given pole location, transfer function of the LPP shall be:

HLPP (S) = 1/(S2 + 2S + 2) (5.36) 

Hence, the normalized pole frequency and the pole-Q of the LPP are 2  and 1/ 2 ,  
respectively. Using the LPP to BP transformation factor of equation (5.24), the transfer 
function of the normalized BPF shall be obtained as follows (for (Q = 1/ 2  )):

( )
2

BP 2 4 3 22 2
2

1 2
2 2  6 2 2 11 12   2

s
T S

s s s ss sQ Q
s s

= =
+ √ + + √ + + ++ +  

  (5.37)

To find the location of the four poles of the BPF, equation (5.35) is used to find q (for (Q = 
1/ 2  )) as:

( )

1
2 2

2 1 2 2 2 2
–1 0.5 (1 1/ 2 )  0.85355

2 2(2) 2 2 2 2 2
q

      = + ± + = + =           

The equation gives q = 0.9293; hence, from equation (5.34):

½

2 1
0.9293 2 1 1 1

2 2 2 2.155, and  0.464
2 2 0.85355 2.155o ow w = × + × − = = =  

 (5.38) 
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Location of the poles for the BP section are given as:

½

1,2 1 2
1 1

1
2 4os j

q q
w

   = − ± −        

 
½

2
1 1

0.464 1 0.2496 0.3901
2 * 0.9293 4

j j
q

   = − ± − = − ±     
 (5.39a)

 s3,4 = –1.159 ± j1.8121 (5.39b)

Obviously, roots of the denominator in equation (5,37) shall yield the pole values as obtained 
in equation (5.39).

5.4.1 Design steps for transformation to BPF

To design a BPF with the requisite specifications, the following steps are to be taken if an LPP 
to BP frequency transformation is used.
i. Calculate the pole frequency wo of the BPF. If it is not given in direct form, it may be 

obtained from the pass band edge frequencies as wo = (wp1 × wp2)1/2.
ii. Next, the stop band frequencies of the BPF are made geometrically symmetric with respect 

to the pole frequency obtained in step (i) through altering ws1 or ws2.
However, this choice of alteration in either ws1 or ws2 has to be such that one of these becomes 
more constrained; the stop band becomes narrow, making the design specification a little 
more severe. For ( )2

1 2 1/ , s o s sw w w w<  is to be assigned a new value as ( )2
1 2/s o sw w w≥ .  

Otherwise, a new value assigned to ws2 shall will be calculated from ( )2
2 1/s o sw w w= . 

iii. Using the modified stop band of the BPF, selectivity factor of the LPP is calculated as  
WS = (ws2 – ws1)/(wp2 – wp1).

iv. Parameter wo becomes modified due to the changed value in ws1 or ws2 as wo = (ws1 ¥ 
ws2)1/2.

v. Change in the value of wo creates asymmetry in wp1 and wp2 with respect to it. Hence, 
either wp1 or wp2 is to be constrained similar to the case for stop band. If ( )2

1 2/p o pw w w< ,  
then wp1 is assigned a new value from ( )2

1 2/p o pw w w≥ . Otherwise, wp2 is assigned a new 
value from ( )2

2 1/p o pw w w= .
vi. The modified selectivity factor of the LPP is now calculated due to the change in the pass 

band frequency range.
vii. Out of the two selectivity factors obtained in step (iii) and step (vi), the larger one is 

selected; transformation parameters wo and BW are evaluated corresponding to the steps 
(i)–(iii) or (iv)–(vi), whichever leads to the larger value of the LPP selectivity, as it leads to 
the lowest order n for the LPP(S).
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viii. Any method of approximation can be used and the LPP transfer function HLPP(S) is then 
obtained using the calculated value of the order n and ripple factor ε.

ix. A transformation factor is used to obtain a BP transfer function by replacing S with {Q 
(s2 + 1)/s} in HLPP(S).

x. The BP is now realized selecting any suitable synthesis process.

Example 5.5: Using the given unsymmetrical frequency specification of a BPF, calculate the 
selectivity factor for an LPP from which BPF is to be obtained; pass band frequencies, wp1 = 
5(2π) krad/s and wp2 = 7.2(2π) krad/s, stop band frequencies, ws1 = 4(2π) krad/s and ws2 = 
10(2π) krad/s.

Solution: Center frequency of the BPF, ( ) ( )w w w π π π= × = × = ×½½
1 2( ) 10 14.4 6 2  o p p

krad/s. With ( ) ( )22
2/ 36 2 / 20 7.2 o sw w π π= × = krad/s being less than ws1, the new value of 

ws2 shall be ≤ 36(2π)2/8π = 18π krad/s. As (ws1ws2)1/2 = (9 × 4)1/2 2π = 12π, equals the center 
frequency wo, there shall be no change in the pass band edge frequency. Since BW = (7.2–5)2π 
= 4.4π krad/s, selectivity factor will be = (9–4)/(7.2–5) = 2.27.

Example 5.6: Find the transfer function of a BPF with the following specifications using LP 
to BP transformation: maximum attenuation of 1 dB between 4 and 9 kHz and minimum 
attenuation of 40 dBs below 1.5 kHz and beyond 22.5 kHz. 

Solution: With the pass band edge frequencies being 4 and 9 kHz, center frequency  
fo = (4 × 9)1/2 = 6 kHz, and bandwidth = 5 kHz; hence, pole-Q = 1.2.

First, an LPP is to be obtained. Therefore, the specifications of the BPF are to be 
transformed for the LPP. All the frequencies are normalized with respect to fo. It gives lower 
cut-off frequency w1 = 0.6667, upper cut-off frequency w2 = 1.5; and their product is unity. 
Normalized lower stop band edge frequency ws1 = (1.5/6) = 0.25 and upper stop band edge 
frequency ws2 = (22.5/6) = 3.75. Since product of ws1 and ws2 is not unity but less than wo

2, a 
new value has to be given to ws1, which is equal to wo

2/ws2 = 0.26667 as mentioned in step (ii) 
of the design process. With the modified stop band, selectivity of the LPP will become:

WS = (ws2 – ws1)/(wp2 – wp1) = (3.75 – 0.26667)/(1.5 – 0.6667) = 4.18 (5.40)

Required order of the LPP with Chebyshev approximation (from Chapter 4) will be:

( ) ( ){ }
( ){ }

4.0. 0.1

½2

ln 4 10 1 / 10 1 ½ 5.9738
2.832

2.1088ln 4.18 4.18 1
n

− −
= = =

+ −   (5.41)

Since it is to be rounded to the next integer, n = 3. Pole location of the third-order Chebyshev 
filter obtained from Table 3.4 is as follows:

S1 = –0.4942, S2–3 = –0.2471 ±j0.966 (5.42)

Normalized transfer function of the third-order LPP will become: 

https://doi.org/10.1017/9781108762632.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.006


  141Frequency and Impedance Transformations

( )
( )( )LPP 2

0.4942
0.4942 0.4942 1

H S
S S S

=
+ + +   (5.43) 

|HLPP(jWS = 4.18)| from equation (5.43) shows that attenuation is little over 40 dBs, satisfying 
the requirement.

Numerator of the equation (5.43) is 0.4942 as that will result in HLPP(0) being unity for the 
third-order Chebyshev filter. Next, equation (5.27) will be applied on equation (5.43) to get 
the normalized transfer function of the BPF.

( )
3

BP 6 5 4 3 2
0.4942

1.728 1.4236 6.6772 3.34109 6.6772 1.4236s 1.728
s

H s
s s s s s

=
+ + + + + +

 (5.44)

The root finder is used to find roots in equation (5.44) which are as follows:

s1–2 = –0.206 ±j 0.979, s3–4 = –0.142 ±j 1.478 and s5–6 = 0.064 ±j 0.67 (5.45) 

Hence, equation (5.44) is broken into three second-order sections for which factorization of 
the denominator gives:

1.728 (s2 + 0.412s + 1) (s2 + 0.284s + 2.204) (s2 + 0.129s + 0.454) (5.46)

Equation (5.46) along with the numerator in equation (5.44) can be broken into three second-
order sections and realized using the cascade method or equation (5.44) can be used for any 
direct form of synthesis.

5.4.2 Low pass to band pass network transformation

Similar to the LP to HP transformation case, the LP to BP transformation can also be applied 
directly to the LPP network. An inductor in the LPP having impedance Zp(S) = SLp gets 
converted to a series combination of an inductor and a capacitor as shown in Figures 5.11(a). 

�

�

Z S( ) = SLp p L L= ( /BW)B p C L= (BW/ )B p

Y S( ) = SCp p

C C= ( /BW)B p

L C= (BW/ )B p

(b)(a)

(d)(c)

Figure 5.11 Element transformation from low pass prototype to a band pass network.
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( )  += = +    
 
 

2

BP
1 1 1

  s
BW BW BW  s

p
p

p

Ls
Z s L

s

L
 (5.47) 

Expressions of the resulting series combination of inductor and capacitor, respectively, are: 
inductor Lp/BW and capacitor CB = BW/Lp as shown in Figure 5.11(b). Likewise, a capacitor 
in the LPP having an admittance Yp(s) = SCp, shown in Figure 5.11(c), gets transformed as 
follows:

 += = +  

21 1 1
BWBW BW

p
B p

p

sCs
Y C

s s
C

 (5.48)

Equation (5.48) represents a parallel combination of a capacitor (Cp/BW) and an inductor 
(BW/Cp) as shown in Figure 5.11(d). Resistance being frequency independent, it is not affected 
by the frequency transformation. Hence, conversion of an LPP network to a BP network can 
easily be done by using the aforementioned transformations of the inductors and capacitors. It 
is important to note that the transformed BP network will be a frequency normalized network 
with center frequency wo = 1, which will be applied to passive structures.

Example: 5.7: A third-order Chebyshev approximated normalized LPP ladder structure as 
shown in Figure 5.12(a) is to be transformed to a BPF through network transformation. 
Obtain the resulting network and element values of a frequency normalized BP network 
having normalized BW = 0.1. Also obtain the element values for center frequency wo = 105 

rad/s with an impedance scaling factor of 104.

Vin

1 � 2.2036 H 2.2036 H

Rin L1
�

L3
� +

–

C2
� 0.9941 F

1 � VoutRout

+

Vin

–

+

–

10 k� 2.0236 H
0.04538 nF

2.0236 H
0.04538 nF

0.010059 H
9.941 nF

10 k� Vout

Figure 5.12 (a) Third-order Chebyshev approximated normalized low pass filter. (b) Network 
transformed de-normalized band pass filter from part (a).
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Solution: For the LPP, which is to have a pass band ripple width of 1 dB, element values are 
as follows:

* * *
in out 1 3 21 , 2.0236 H a nd 0.9941  FR R L L C= = Ω = = =

With BW = 0.1, using equations (5.47) and (5.48), * *
1 3 L L= changes to a series combination 

of l1,3 = 20.236 H and c1,3 = 0.04941 F, and *
2C  transforms to a parallel combination of c2 = 

9.941 F and l2 = 0.10059 H.
Application of frequency translation from wo = 1 to 105 rad/s and impedance scaling by 104 

converts elements to the following:

L1 = L3 = 2.0236 H, C1 = C3 = 0.04438 nF, L2 = 10.059 mH, C2 = 9.941 nF,  
and Rin = Rout = 10 k

Figure 5.12(b) shows the transformed BP network with element values. Figure 5.13 shows 
its PSpice simulated response. The response keeps the nature of variation of output voltage 
very well with the simulated center frequency being 15.917 kHz; the ripple width in the pass 
band is 1.15 dB. The lower and upper 3 dB cut-off frequencies are 15.104 kHz and 16.771 
kHz, giving BW = 1.667 kHz, and resulting in a pole Q of 9.548.

V (6)

600 mV

400 mV

200 mV

0 V
10 kHz 25 kHz

Frequency

Figure 5.13 Simulated response of the band pass filter of Figure 5.12(b) obtained through network 
transformation for Example 5.7.

5.5 Low Pass to Band Reject Transformation

Band reject (BR) response being similar in nature to a BP response, it can be transformed from 
an LPP using a transformation factor similar to the one used for BP transformation:
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=
+2BW

( 1)
s

S
s

 (5.49)

Transformation through equation (5.49) can also be explained in terms of two transformations, 
one from LPP to HPP and one from HPP to a BP transformation as mentioned in the following 
two steps, resulting in a BR function.

S is replaced by (1/S' ), then (5.50)

S' is replaced by 
 +
  

21 1
 

BW
s

s
 (5.51)

The BR magnitude response has the following constraints and conditions.

ws1 ¥ ws2 = wp1 ¥ wp2 = 1 (5.52)

w w− = Ω = Ω′2 1 BW BW /s s s s  (5.53)

To realize a BRF, specifications are given in terms of pass band and stop edge frequencies, wp1, 
wp2, ws1 and ws2 and the pass band and stop band attenuations Amax and Amin, respectively. 
Using similar procedure as that for the BP case, selectivity factor of the LPP is found from 
the expression WS = (wp2 – wp1)/(ws2 – ws1). In the same way, frequency specification must be 
symmetrized with respect to wo = 1.

Band reject network transformation: Application of the transformation factor of equation 
(5.49) with an inductor of the LPP network having admittance YR(S) = 1/(Slp) becomes an 
admittance YBR(s) = sCR + 1/sLR; here CR = 1/BWlp and LR = BWlp. A capacitor cp in the LPP with 
impedance zc(S) = 1/(Scp) gets transformed to an impedance function ( ) ( )= +′ ′BR 1/R RZ s sL sC
with ( )=′ 1/ BWR pL c  and ( )=′ BWR pC c . This means that like the BP case, inductances and 
capacitances of the LPP are transformed to a parallel and series combination, respectively, of 
an inductor and a capacitor in the BR network. Figure 5.14 shows such a transformation of an 
inductor and a capacitor.

�

�

lp

cp

BWlp

1/BWlp

1/c BWp
c BWp

Figure 5.14 Transformation of low pass prototype network elements to normalized network elements 
of band reject filter.
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Practice Problems 

5-1 The circuit shown in Figure P5.1 is a prototype filter at 1 rad/s level. Scale the circuit so that it will have a 
load resistance value of 1 kW and the parallel LC branch will resonate at 10 kHz.

5-2 What will be the value of resistance scaling factor kR and frequency scaling factor kw, for the circuit shown 
in Figure P5.1, so that the load capacitance will become 10 pF and the inductor will have a value of 5 mH.

V1

+

–

1 �
0.19 F

0.84 H

1 F 1 F
1 � V2

Figure P5.1

5-3 The network shown in Figure P5.2 is to be scaled by increasing the level of impedance by 100 and the 
level of frequency from 1 rad/s to 105 rad/s. Find the element values in the scaled network.

8/3 H

5/3 H

3/5 F

3/25 F

Figure P5.2

5-4 Design an HPF having maximally flat response and the following specifications, using LP to HP 
transformation:

 αmin = 30 dBs, αmax = 1 dB, ws = 1 krad/s and wp = 2.6 krad/s

5-5 Redesign the HPF having the specifications of Problem 5-4 using Chebyshev approximation. Also find the 
filter attenuation at 1.2 krad/s and test the design.

5-6 (a) Design an HPF with a maximally flat response for which specifications are shown in Figure P5.3  
 employing LP to HP transformation. 

 (b) Determine the actual attenuation of the filter at 1800 rad/s and 2200 rad/s.

5-7 An HPF with equal ripples in the pass band is to be designed, employing LP to HP transformation, for 
which specifications are shown in Figure P5.3.

 Design the filter using either a single OA filter circuit of Figure 5.6 or the Sallen–Key section and test the 
circuit.

 Modify the circuit which provides a 10 dB increase in the gain at high frequencies, without employing 
addition OA.
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44 dB

0,0 2000 4000 6000 8000
w(rad/s)

a(dB)

0.5 dB

Figure P5.3

5-8 Apply the LP to HP transformation to the following network function H(s), and compare the critical 
frequencies for both the network functions. What is the inference while comparing the critical frequencies 
of the LP and the HP functions?

 
( ) +=

+ +2
2 1

4 6

s
H s

s s

5-9 Find the transfer function of the Sallen–Key circuit shown in Figure P5.4. Apply the LP to HP transformation 
s Æ 1/s and obtain the transfer function and structure of the transformed circuit. Apply impedance scaling 
factor of 103 and frequency scaling factor of 104 and simulate the circuit.

k = 2
Vin

R1 R2

1/3 � 1 � C1

1 F

1 F

C2

Vout

Figure P5.4

5-10 Apply the LP to BP transformation on the LP circuit of Figure P5.5. Find the transfer function of the LP prototype 
and the transformed network. Determine the value of the pole-Q for the BPF. Use suitable impedance scaling 
on the BP network such that its center frequency is 10 kHz and test the circuit using PSpice.

1 H

+

–

+

–

1 �V1 V2

Figure P5.5
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5-11 Design a BPF which satisfies the specification shown in Figure P5.6, with attenuation being 0 dB at 
w = 2700 rad/s. Construct the circuit with suitable second- (and first-) order sections; maximally flat 
approximation is to be usedfor the LP prototype.

30 dB

36 dBamin 1

amin 2

a(dB)

w(rad/s)

amax

0,0 1000 2400 3000 5400

2.0 dB

Figure P5.6

5-12 Repeat Problem 5-11 with the equal-ripple approximation used for the LP prototype.

5-13 With a maximally flat response for a BPF, it is desired that the maximum allowable attenuation is 1 dB in 
the frequency band of 1000 rad/s to 2000 rad/s. Design the BPF with the constraint that only two OAs 
can be used in the final realization. What shall be the largest obtainable attenuation at a frequency of  
6000 rad/s?

5-14 Design a filter with a maximally flat response for which the specifications are: attenuation = 30 dB for  
0 £ w £ 500 rad/s and 4000 rad/s £ w £ •, attenuation = 2 dB for 1000 rps £ w £ 2000 rps. The mid-band 
gain is to be 0 dB, and only 0.1 mF capacitors can be used in the final realization. 

5-15 Redesign the filter in Problem 5-14 with a pass band having equal ripples.

5-16 The LP prototype shown in Figure P5.7 has a 3dB frequency of 1 rad/s.

(a) Apply an LP to BP transform so that the BP filter has Q = 10 and center frequency fo = 1 kHz. Verify 
the response using a computer method.

(b) Convert the LPF to a BRF with band stop width of 0.25 kHz and maximum attenuation at 1 kHz. 

1 � 2 H

+ +

– –

V1
1 F 2 F

V21 �

Figure P5.7
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5-17 Third-order Chebyshev approximated normalized LP prototype structure of Figure 5.12(a) is to be 
transformed to a BS filter through network transformation. Obtain resulting network and element values 
for normalized bandwidth of 0.1 for the BS filter. Also obtain element values for center frequency of 105 
rad/s and after using impedance scaling factor of 104. 

 Verify the response for the passive BS filter.

5-18 Repeat Problem 5-13 but employ Chebyshev approximation.
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