
10.1 Introduction

In Chapter 2, a number of first-order active filters were realized along with the basic 
configuration of bilinear functions. Chapters 7 and 8 were devoted to the development of 
second-order filter sections using one or more than one OA (operational amplifier). However, 
as mentioned earlier, all filter specifications are not achievable only through second-order 
sections; higher-order filters become necessary. For the realization of higher-order filters, ladder 
simulation techniques through element (inductor/frequency dependent negative resistor: 
FDNR) substitution was discussed in Chapter 9. Ladder simulation using signal flow graph 
technique, which is better known as the operationally simulated method was also discussed in 
Chapter 9. The present chapter deals with another basic method of realizing higher-order filter 
sections known as the cascade design method.

Section 10.2 will discuss the basics of cascade design and the conditions to be satisfied by 
first- or second-order sections in order that these could be used for cascading and obtaining 
higher-order filters. After taking up some examples of cascade design, the importance of cascade 
optimization will be discussed in Section 10.3 through an example section. While cascading a 
number of second-order sections, a proper combination of poles and zeroes (Section 10.3.1), 
correct assignment of gain for each section (Section 10.3.2) and their proper order (Section 
10.3.2) play a very crucial role. Hence, all the three aspects will be discussed in some details.

It is well-known that due to the tolerance associated with passive elements as well as with 
the parameters of the active elements, and their possible variation due to the change in the 
biasing voltage and operating temperature, filter parameters gets deviated. Therefore, it is 
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300 Continuous Time Active Analog Filters

imperative to provide on-chip tuning of the parameters, especially the pole frequency wo and 
pole-Q of the individual second-order sections used in the cascade. This chapter introduces the 
idea of filter parameter tuning. In Section 10.4, we get a better insight into the cascade design 
method of filter design.

10.2 Cascade Design Basics

To realize higher-order filters, cascading of second-order sections finds considerable favour in 
the eyes of a majority of filter designers; a first-order section is also cascaded in case of an odd-
order filter. It will be shown later that such a technique has few advantages like the ability to 
tune filter parameters easily, and that it possess controlled tunability of the filter parameters 
with respect to the elements used.

Lower-order building blocks are connected as shown in Figure 10.1. Over all, the transfer 
function is simply the product of the transfer functions of the individual building blocks as 
shown here.

H(s) = H1(s) × H2(s) × ……. × Hn(s) (10.1)

H s( )1 H s( )2

+ +

–
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–
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–
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+

–
Vn+1

Figure 10.1 Cascading arrangement of n number of two-port networks.

Here, the transfer function Hi(s) = Vi+1(s)/Vi(s) can be first-order; most often, second-order 
sections are used. However, this relation and the relation in equation (10.1) will be valid only 
when the individual sections are non-interactive, that is, the preceding sections do not load 
the previous section. From the basic knowledge of two-port networks, we know that perfect 
non-interactiveness will be achieved when the output impedance of each building block 
(Zoi) is zero and their input impedances (Zij) are infinity. In practice, due to the finiteness of 
the input and output impedances of the individual sections, there will be some interaction 
between the two-port networks; hence, some deviation in the overall transfer function from 
the design is likely to occur. When two-port networks (second-order or first-order) are realized 
using OAs, it is always desirable to get its output at the output terminal of the amplifier. The 
output impedance of the OA being practically small, OAs are suitable for cascading. When 
passive two-port networks or an output terminal with higher impedance is to be cascaded, it is 
advisable to insert a buffer in between the networks as shown in Figure 10.2.

There are a number of advantages in cascade design method of higher-order filters. As the 
pole-Q and the critical frequency wo of each second-order section depends on one pole pair 
and the nature of the second-order filter depends on one zero (pair), it becomes easier to tune 
these parameters, which is very difficult in direct realization methods. Since individual second-
order sections can be tuned easily, the overall tuning of response also becomes easy. It is to be 
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noted that as only second-order sections are needed for higher-order filters, the best possible 
second-order section with all possible optimizations for that particular application can be used. 
For example, the selected section may have minimum possible sensitivity, and variability, with 
respect to the elements used. 

Network

1
Network

2

Vin –

+

Vout

Figure 10.2 Insertion of buffer between two interactive two-port networks.

When a transfer function of order n, as given in equation (1.1) and repeated here, is to be 
realized, it is known that n ≥ m. For n being even, there shall be (n/2) pole pairs and (n/2) 
second-order sections shall be connected in cascade. 
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 (10.2)

If n is odd, (n – 1)/2 second-order sections and one first-order section will be connected in 
cascade. In general, the transfer function of each second-order function will be expressed as:

( ) ( )
α α α

w w
+ += =

+ +

2
2 1 0

2 2
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/

i i i
i i i i

oi i oi

s s
H s k k h s

s Q s
 (10.3)

Obviously, all second-order functions may not have the numerator coefficients α2, α1 and α0 
as finite. It will depend on the number of finite zeros and the type of response of that particular 
section.

Let us go through the basics of the cascade approach with the help of some simple examples.

Example 10.1: Realize a Butterworth LPF (low pass filter) which will satisfy the following 
specifications using the cascade form of synthesis. 

αmax = 1 dB, αmin = 40 dBs, w1 = 2000 rad/s, w2 = 6000 rad/s

Solution: In Example 3.1, order of a filter in the form of a lossless passive ladder was found as 
5 for the desired specification. For the fifth-order Butterworth filter, using the values of pole 
locations from Table 3.1 and with the cut-off frequency (de-normalization) given as wc = wCB 
× w1 @ 1.144 × 2000 = 2288 rad/s, the following forms of transfer function were obtained:

( )
( )( )=

+ + + + +2 2 2 2
1

 
2288 1414 2288 ( 3701.98 2288 )

H s
s s s s s

 (10.4)
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=
+ × + × + × + × + ×5 3 4 7 3 10 2 13 16

1
 

7.408 10 2.741 10 6.2714 10 9.11478 10 6.27018 10s s s s s
 (10.5) 

Obviously, the next step is to find an active network topology containing suitable active devices, 
and values of the passive elements used. To realize higher-order filters using the cascade form, 
the transfer function of equation (10.4) needs to be broken to form a product of three transfer 
functions. Hence, a first-order function H1(s) and two second-order functions H2(s) and H3(s), 
with respective dc gains of k1, k2 and k3 will be used. The resulting overall transfer function 
will be:

H(s) = H1(s) × H2(s) × H3(s) (10.6)

where expressions of the three transfer functions obtained from equation (10.4) will be: 

( ) =
+

1
1

2288
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s
 (10.7)
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( ) =
+ +

2
3

3 2 2
2288

3702  2288
k

H s
s s

 (10.8b)

Obviously, the dc gain of the product of the three transfer functions will become (k1 × k2 × k3), 
which should be equal to 1; the overall dc gain of the transfer function H(s). Arbitrary values 
can be assigned to the individual dc gains in order to get their product as 1. However, one easy 
and convenient choice in the beginning is to make all three dc gains as unity (later, we shall see 
that the choice of dc gains for individual sections is not arbitrary for good designs). 

The first-order transfer function of equation (10.6) with k1 = 1 can be realized using an 
active section, along the lines followed in Section 2.3.1, as shown in Figure 10.3(a). Its transfer 
function is given as:

( ) =
+

1
11

2

1/
1 /
CR

H s
s CR

 (10.9)

If the selected value of capacitor C = 0.1 mF, to get k1 = 1, R1 = R2 = 4.37 kW in equation 
(10.7).

The remaining two second-order sections are realized using the circuit shown in Figure 
2.15, redrawn in Figure 10.3(b), for which the transfer function is repeated here:

( ){ }= −
+ + + +

1 3 1 2out
2

in 1 2 3 1 2 3 1 2

( / )
  / ( / )

G G C CV
V s s G G G C G G C C

 (10.10)
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It has the expressions for wo, dc gain and Q as:

w
   

= = =   + +   

½
2 2 3 2 31 1

1 2 2 1 2 3 1 2
,  dc gain , and

  o
G G G GG C

Q
C C G G G G C C

 (10.11)

For the transfer function H2(s) of equation (10.8a), it is compared with equation (10.10). 
Selecting C1 = 0.1 mF and with k2 = 1, use of equation (10.11) gives the value of G1 = G2 = G3 
= 0.1244 mA/V, C2 = 0.0291 mF; so hence, R1 = R2 = R3 = 8.101 kW.

R2
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Vout

C
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R2

R3
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C1

C2

(a) (b)

Figure 10.3 (a) An active first-order low pass circuit and (b) a second-order low pass filter circuit.

Similarly, for H3(s), element values are C1 = 0.1 mF, C2 = 4.252 nF, R1 = R2 = R3 = 21.196 kW. 
Three circuits are connected in cascade to get the overall transfer function. The complete 

circuit, having a sequence of sections as H1 followed with H3 and then H2, along with the 
element values is shown in Figure 10.4(a). The simulated magnitude response is shown in 
Figure 10.4(b). It is observed that the output to input voltage ratio at 2000 rad/s is 0.889 or 
the attenuation is 1.012 dB, which is just above the design value of 1 dB. At 6000 rad/s, the 
output to input voltage ratio is 0.008106 which is equivalent of 41.2 dB attenuation; more 
than the design value of 40 dBs. However, there is a peak with a voltage of 1.28 volt at the 
output of the second stage. If the final output is limited to 10 volts, then the maximum input 
should not exceed 7.81 volts.
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Figure 10.4 (a) Fifth-order low pass Butterworth filter using the cascade process for Example 10.1 and 
(b) the simulated response at intermediate and output nodes. (c) Response using cascade 
process with different sequence of sections for the circuit of Example 10.1.
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If the sequence of sections is changed arbitrarily so that H3 is followed by H1 and then H2, 
the simulated response is shown in Figure 10.4(c). The final output response is unaffected, but 
an intermediate peak has a voltage level of 1.7 volts, which means that with this sequence of 
sections, the allowable input reduces to 5.88 volts for a maximum output voltage of 10 volts. 
The effect of selection of another sequence (correct) will be taken up later.

Example 10.2: Realize an LPF with the following specifications using Chebyshev approximation. 
Obtain the frequency response while realizing it through the cascade process.  

αmax = 0.5 dB, αmin = 40 dBs, w1 = 2000 rad/s, w2 = 6000 rad/s (10.12)

Solution: In Example 3.3, the required filter order was obtained as 4 for the given specifications. 
The following was the normalized transfer function.

( ) ( )=
+ + + +2 2

0.3577
 

0.3508 1.0636 ( 0.8466 0.3563)
H s

s s s s
 (10.13) 

Since for an even-order transfer function H(0) = αmax = 0.5 dB or 0.944 (normalized), the 
value of the numerator in H(s) becomes (0.944 × 1.0636 × 0.3563) = 0.3577 for maximum 
pass band gain of unity.

 As frequency de-normalization is to be done by 2000 rad/s, the de-normalized transfer 
function is obtained as:

( ) ( )
×=

+ × + × + × + ×

2

2 2 2 2
0.3577 2000

 
0.3508 2000 1.0636 2000 ( 0.8466 2000 0.3563 2000 )

H s
s s s s

 (10.14)

As in Example 10.1, the transfer function of equation (10.14) is broken into the following two 
second-order LP functions:

( ) ( )
×=

+ + ×

2

1 2 2
1.0636 2000

 
0.3508 * 2000 1.0636 2000

H s
s s

 (10.15)

( ) × ×=
+ × + ×

2

2 2 2
0.3563 0.944 2000

 
( 0.8466 2000 0.3563 2000 )

H s
s s

 (10.16) 

Both the transfer functions H1(s) and H2(s) are realized using the circuit shown in Figure 
10.3(b) whose transfer function and expressions of parameters are given by equations (10.10) 
and (10.11), respectively.

For transfer function H1(s), assuming G21 = 10–4 mho (second subscript 1 corresponds to 
the first biquad) as the dc gain is 1.0, we get:

(G11/G21) = 1; hence, R11 = R21 = 10 kW (10.17)      
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Without losing generality, selecting R31 = 10 kW as well, with (wo/Q) = 0.3508 × 2000 
and w = ×2 21.0636 2000o , application of equation (10.11) gives C11 = 0.4276 mF and C21 = 
0.005498 mF.

For the transfer function H2(s) (with second subscript 2), assuming G22 = G32 = 10–4 mho, 
and with dc gain being 0.944, we get:

(G12/G22) = 0.944 or R22 = 10 kW, R32 = 10 kW, R12 = 10.593 kW (10.18)  

Similar to the function H1(s), application of equation (10.11) for H2(s) gives C12 = 0.17387 
mF and C22 = 0.04035 mF.
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Figure 10.5 (a) Fourth-order low pass Chebyshev filter using cascade process for Example 10.2; (b) its 
simulated magnitude response. 

Combining the circuit implementation of the transfer functions H1(s) and H2(s) in cascade, 
the overall circuit along with element values is shown in Figure 10.5(a). Its magnitude response 
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through simulation is shown in Figure 10.5(b). The observed pass band edge frequency is 
318.2 Hz or 2000.1 rad/s. Maximum output voltage at peaks being 1.002 V for input voltage 
of 1 volt and at the pass band edge frequency, voltage level is 944 mV, corresponding to an 
attenuation of 0.5 dB; the attenuation becomes 46.1 dBs at 6000 rad/s. DC gain of the filter is 
also 0.944, which corresponds to 0.5 dB. The circuit satisfies attenuation requirements at pass 
band and stop band edge frequencies with enough margin and shows maxima and minima as 
expected. 

10.3 Optimization in Cascade Process

With the help of Examples 10.1 and 10.2, it is clear that process of cascading is simple. The 
main issue is to get an appropriate second-order section for each second-order function (and 
a first-order section, if needed). Unfortunately, actual implementation while cascading even a 
few second-order sections involves some serious considerations, which is important not only 
for the optimization of the performance, but also the correct functioning of the overall higher-
order filter section.

For the simple fourth-order function of Example 10.2, two transfer functions H1(s) and 
H2(s) were shown to be cascaded. While forming these transfer functions, pole pairs and 
zeros were combined arbitrarily. Obviously, there is more than one possible combination that 
will result in the fourth-order filter. While cascading three sections, there are six possible 
combinations of pole pairs and zeros and many more for a larger number of sections to be 
cascaded. It will be shown in the next section that assignment of zeros with a pole pair should 
not be arbitrary as it affects the performance. A criterion has to be evolved for the proper 
combination of pole pairs and zeros.

Once the proper combination of poles and zeros is accomplished, there is more than one 
possibility in assigning the order in which the sections will be cascaded. Again, for the sixth-
order function, there are the following six possible combinations in which the blocks may be 
cascaded.

H1 H2 H3, H1 H3 H2, H2 H1 H3, H2 H3 H1, H3 H1 H2, H3 H2 H1  (10.19)

Unless specified, one may wonder why the order of cascading is important. In fact, along 
with the third issue, which will be explained soon, proper ordering of second-order sections 
significantly affects the working of the overall filter and may deviate its performance drastically. 

The third important issue is the assignment of gain for individual two-port blocks. Since 
the overall gain will be the product of the gain of the individual blocks, a designer might like 
to assign it arbitrarily to each block. However as mentioned earlier, the assignment of gain to 
individual blocks along with its ordering has to be done very carefully.

The reasons behind these considerations of pole−zero pairing, ordering of the sections and 
assignment of gain to the sections are two-fold. The first consideration is to check that the 
signal level at any internal or external node does not exceed or reach the saturation level of the 
active device decided by the level of the supply voltage or due to the constraint of the slew rate. 

https://doi.org/10.1017/9781108762632.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.011


308 Continuous Time Active Analog Filters

If this happens, harmonics will get generated and the resulting filter parameters will deviate 
from the design parameters. The second consideration is to maximize the dynamic range: the 
ratio of the undistorted signal to the noise level present in the system at each cascading stage. 
The basic principle used for maximizing the dynamic range is to maximize the minimum level 
of the signal in the pass band of each second-order filter section so that the effect of noise is 
minimum on the signal. This action produces a flatter type of response in which the ratio of 
maximum signal at any node to the minimum signal comes as close to unity as possible. In 
addition to the aforementioned considerations, the maxima of the output voltage for individual 
sections should also be made equal as will be shown later.

The idea explained here can be expressed mathematically as well, which forms the starting 
point of developing algorithms and computer programs for the purpose. Let Vo,max be the level 
of output voltage of the OAs used, which is the upper limit of the signal level set by the power 
supply level or the slew rate at all frequencies including both the pass and stop band. Then the 
maximum magnitude of the output signal for each individual biquad |Voj(jw)| should satisfy 
the following condition:

max |Voj(jw)| < Vo,max for 0 ≤ w ≤ ∞ (10.20)

The condition imposed by equation (10.20) needs to remain valid for all signal frequencies 
falling in the pass and stop band; the reason being that if any signal is overdriven even in the 
stop band, it may generate harmonics, which may interfere with the valid output.

On the other hand, it is necessary to check that the signal does not become so small at the 
intermediate stage or individual block output level that it gets corrupted by the circuit noise. 
If the signal to noise ratio becomes small, the signal becomes indistinguishable from the noise. 
Hence, another condition which is required to be fulfilled is that the smaller signals at all 
outputs of the biquad should be enlarged in the pass band as much as practically possible.

 min |Voj(jw)| Æ maximize in the pass band  (10.21)

The condition imposed by equation (10.21) needs to be valid only in the pass band; it is not 
required in the stop band as the smallness of signal there will not do any harm.

The brief discussion in this section and the conditions given in equations (10.20) and 
(10.21) imply that higher magnitude signals need to be pulled down to remain below Vo,max 
and smaller magnitude signals need to be amplified. This creates a kind of flatness in signals 
at the output of the individual second-order section as mentioned earlier. In other words, we 
need to make the ratio of maximum signal to minimum signal at all the intermediate levels and 
the final output as small as possible. Later this point will be taken up in mathematical terms.

10.3.1 Pole−zero pairing

In order to explain the idea of flatness of signals at all cascaded stages, let Vok  be the output 
voltage at the kth stage. Normally, the output at any stage is taken as the output of the OA. If 
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the biquad uses only one OA, then Vok shall will be its output; however, for a multi amplifier 
biquad, Vok will be the largest output signal amongst all the amplifiers used. This implies 
that for the kth stage, there will be no signal greater than Vok. Therefore, as discussed in the 
previous section, poles and zeros should be paired in such a way that the signal maximum  
Mk = max|Vok(jw)| is minimized below Vo,max for all the input signal frequency range of pass 
and stop bands. At the same time, the signal minimum mk = min |Vok(jw)| is maximized in the 
pass band. Maximization of mk and minimization of Mk means that |hk(jw)| in equation (10.3) 
should be as flat as possible in the frequency range of interest. For a mathematical treatment, 
measure of flatness of the signal can be expressed as:

dk = (Mk/mk ) Æ 1 with k = 1, 2, ……, n (10.22)

Obviously, the intention is to minimize dk and the assignment of zeros to a pole pair in 
equation (10.3) should be such that it minimizes the maximum value of dk, or:

dmax = max[dk] Æ minimum for k = 1, 2, ……, n (10.23) 

For comparatively smaller order filters say (4 or 5), evaluation of dk, though laborious, can be 
done in a reasonable time period and then equation (10.23) satisfied. However, for higher- 
order filters, manual evaluation of dk becomes highly time consuming and requires use of 
computer and an appropriate software. Fortunately, for quite a few cases, instead of taking 
recourse to computer programs, decisions based on intuition and experience became helpful. 
For example, when the transfer function has more than one zero at the origin, the type of 
filter section can be of different types for the same final transfer function. For example, for 
a numerator having a term s2, the possible combinations can be s2 and 1, or s and s, which 
will mean that realization can be in the form of a combination of a HP (high pass) and a LP 
(low pass) or a combination of two BP (band pass) sections, respectively. However, a much 
more important consideration comes in the form of a thumb rule of forming pole−zero pair 
combinations which are closest to each other. This thumb rule gets its idea from the fact that 
when the value of the combined pole and zero is close to each other, magnitude of the section 
will be a minimum; which is our aim.

Example 10.3: To design a sixth-order filter in cascade form, find the optimum pole−zero pair 
combination for the following transfer function:

( ) + +=
+ + + + + +

2 2

2 2 2
( 0.25)( 2.25)

( 0.09 0.83)( 0.1 1.18)( 0.2 1.01)
s s s

H s
s s s s s s

 (10.24a)

Solution: Transfer function zeros and poles are:

z1 = 0, z2,3 = ±j0.5 and z4,5 = ±j1.5 (10.24b)

p1,2 = –0.045 ± j0.9099, p3,4 = –0.05 ± j1.0851 and p5,6 = –0.1 ± j1.0 (10.24c)

Poles and zeros are shown in Figure 10.6, in the second quadrant of the complex frequency s 
plane. Applying the thumb rule of combining the nearest poles with zeros, we get the following 
combination of three second-order sections:
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( ) ( ) ( )+ += = =
+ + + + + +

2 2

2 2 2
( 2.25) ( 0.25)

,  ,  
( 0.1 1.18) ( 0.09 0.083) ( 0.2 1.01)A B C

s s s
H s H s H s

s s s s s s
 (10.25)

Each transfer function in equation (10.25) will have to be assigned a gain ka, kb and kc to get 
the required overall gain.

p(3, 4)
p(5, 6)

p(1, 2)

1.5

1.0

0.5

0–0.05–0.1

jw

σ

Figure 10.6 Poles and zeroes for the transfer function in Example 10.3.

It is significant to note that when performance of the fifth-order LP of Example 10.1 is to 
be optimized while using the cascade approach, the pole−zero pairing step is not required as 
all the zeros are at infinity. In fact, for all pole functions, the optimization process starts from 
the section ordering. 

10.3.2 Section ordering

Once pole−zero assignment is made and n second-order sections are formed, it is required to 
decide their order in the chain of cascade. Once again, the aim is to get maximum dynamic 
range, and the procedure is very similar to that adopted for pole−zero pairing. We need to try 
and keep the variation of the signal for any individual section as flat as possible so that the ratio 
of the voltage at the output of the kth intermediate section to the input to the first section is 
as flat as possible.

As the mathematical treatment is similar for all cases, useful algorithms and computer 
programs have been developed. However, some simpler solutions, which do not require 
computer programs, are also available. It is generally desirable to keep either a LP or a BP 
section as the first in the cascade chain in order to suppress high frequency signal components 
which would have been generated due to the slew rate limitation. Similarly, a high or a BP 
section is put at the end of the cascade chain in order to suppress any low-frequency noise 
including dc offset and power supply ripples. However, a much more significant factor which 
decides the ordering of the sections is the value of the pole-Q of the biquads. Since a larger Q 
value means a larger peak gain, it is advised to keep the lowest Q section at the beginning of 
the cascade followed by sections with increasing values of the pole-Q. If Qi is pole-Q of the ith 

section in an n section cascade, sections are selected with the following condition:

Q1 < Q2 < …… < Qn for i = 1, 2 ……, n (10.26)
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Example 10.4: For the transfer function of Example 10.3, find the optimum order of the 
second-order sections as derived in equation (10.25).

Solution: As suggested, a good choice is to put the sections governed by the condition given in 
equation (10.26). Hence, the quality factor of the three sections are calculated as:

√ √ √= = = = = =1.18 0.83 1.01
10.86, 10.12, 5.025 

0.1 0.09 0.2A B CQ Q Q  (10.27)

This means that the most appropriate order of the sections given in equation (10.25) is HC 
followed by HB and then HA.

For illustration purposes, the transfer function H(s) of equation (10.24) is realized with two 
different orders of second-order sections; one depending on equation (10.27) and the other a 
different order. Presently, the gain assigned to each section is taken as unity.

Incidentally, the transfer functions HC and HB have already been realized in Chapter 7 as 
Examples 7.4 and 7.5, respectively, with filter circuits shown in Figures 7.14a and 7.15. In 
order to realize the overall transfer function, HA is also designed selecting the general differential 
input single OA biquad of Section 7.4.2, which was used for HC and HB as well.

For the general configuration of Figure 7.12, selecting the auxiliary polynomial Q(s) = s + 
1, we get:

( )+= = + −
+ +

2( ) 2.25 3.25
2.25

( ) 1 1
N s s s

s
Q s s s

 (10.28)

This gives = + =
+1

3.25
2.25,  

1a
s

y s y
s

 (10.29)

( ) − −= = − +
+ +

( ) 0.1 1.07 1.17
1.07

( ) 1 1
D s N s s s

Q s s s
  (10.30)

This gives = =
+ 2

1.17
,  1.07

1b
s

y y
s

 (10.31)

2( ) ( 0.1 1.18) 2.08
1.18

( ) 1 1
D s s s s

s
Q s s s

+ += = + −
+ +

 (10.32)

This gives

3
2.08

1.18,  
1c
s

y s y
s

= + =
+

 (10.33)

Here, y1, yb and yc are a series combination of resistance and capacitance, ya and y3 are a parallel 
combination of resistance and capacitance, whereas y2 is only a resistor. Normalized element 
values are:

Ra = 0.4444 W, Ca = 1 F, R1 = 0.30769 W, C1 = 3.25 F, R3 = 0.8474 W, C3 = 1 F,  
Rc = 0.4807 W, Cc = 2.08 F, Rb = 0.8547 W, Cb = 1.17 F and R2 = 0.9345 W
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Frequency de-normalization with 1.18–0.5 × 104, to get its peak value at 104 rad/s, and 
impedance scaling of 104 gives the following element values, which are also shown in the filter 
circuit of Figure 10.7(a). Expected notch frequency is 1.18–0.5 × 104 × 2.250.5 rad/s = (2197 Hz).

+

– Vout
Vin

3.0769 k� 35.304 nF
10.862 nF

8.474 k�

9.345 k�

10.862 nF

4.44 k�
4.807 k� 22.52 nF

8.547 k�

12.059 nF

(a)

12 V

8 V

4 V

0 V
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz

V (10)
Frequency

(b)

Figure 10.7 (a) Realization of the notch filter for Example 10.4. (b) Its magnitude response.
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Ra = 4.444 kW, Ca = 10.862 nF, R1 = 3.0769 kW, C1 = 35.304 nF, R3 = 8.474 kW,  
C3 = 12.079 nF, Rc = 4.807 kW, Cc = 22.52 nF, Rb = 8.474 kW, Cb = 10.862 nF and  
R2 = 9.345 kW

Element values are shown in the filter circuit of Figure 10.7(a). Magnitude response of the BR 
(band reject) filter is shown in Figure 10.7(b). Its dc gain is 1.91, high frequency gain is unity, 
peak gain of 11 occurs at 1.569 kHz and the notch frequency is at 2.204 kHz.

Example 10.5: Determine the correct order of the sections for the fifth-order LP Butterworth 
filter of Example 10.1 and find the allowable input voltage for a maximum output of 10 volts.

Solution: In Example 10.1, out of the three sections, H1(s) is a first-order section which shall 
be the first section in the cascade. For the functions H2(s) and H3(s), the respective pole-Q are 
Q = 1.618 and Q = 0.618. Hence, as per equation (10.26), H3(s) will follow the first-order 
section and H2(s) will be the last section. 

With this sequence of sections (H1H3H2), the simulated response at all the outputs is shown 
in Figure 10.8. It is observed that all the three responses are monotonically decreasing with no 
peaking. The maximum voltage gain is unity at dc; hence, for the maximum output voltage of 
10 volts, input can be 10 volts.

10 V

5 V

0 V
10 Hz 100 Hz 1.0 kHz 10 kHz

Frequency
V (4) V (1) V (42)

Final output

Intermediate stage 2 Intermediate stage 1

Figure 10.8 Fifth-order low pass active Butterwoth filter response using cascade process with correct 
sequence of sections; example 10.5.

10.3.3 Gain assignment

After completing the two steps discussed previously, we know the level of output voltage after 
every stage including that at the final output. Care was taken not to over-drive any output. 
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The next step is to assign gain to each section. Assignment of gain follows the principle that all 
internal output voltages become equal (as far as possible) in magnitude corresponding to the 
specified final output voltage. It may be noted that the absolute value of the overall gain is not 
to be obtained at all costs; a simple gain amplifier in cascade will be able to adjust the overall 
gain if needed.

For the transfer function H(s) of equation (10.2) and using the notation of equation (10.3), 
we can define a constant Mi as:

=

= = … −∏
1

 | ( ) | with 1, 2, , ( 1)
i

i j
j

M h s i n  (10.34)

The desired condition is that Mi = Mn, that is, the final output after n stages. Even after the 
first stage, that is, 

i = 1, k1 M1 = max |H1(s)| = k1 |max h1(s)| = K Mn (10.35)

where 
=

= ∏
1

n

j
j

K k  (10.36)

It gives the relation for k1 as:

k1 = K(Mn/M1) (10.37)

The relation given by equation (10.37) is true for intermediate stages as well; hence, for any 
consecutive stages,

ki = (Mj–1/Mj), j = 2, …., n (10.38)

Equation (10.38) is used for assigning gain to each stage. Assignment of gain to each second-
order section ensures near equal output at the final output, as well as at intermediate stages. It 
ensures maximum possible input signal that can be applied without the signals going beyond 
saturation in OAs. The statement is correct for a single OA second-order section, where output 
is taken at the OA output used. For a second-order section using more than one OA, care has 
to be taken as mentioned before. 

Example 10.6: Realize the Butterworth filter of Example 10.5 with overall gain as 6 dBs.

Solution: With the correct order as in Example 10.5, unity gain was easily achieved with each 
section having a gain of one. If a gain of 6 dBs is desired, it can be done without assigning 
gains to individual sections as discussed in Section 10.3.3 for the all pole filters which were 
cascaded in correct ordering. Hence, simply having a gain of 2 in the first-order section will 
suffice; resistance R1 in it is changed to 2.185 kΩ, and the rest of the circuit of Example 10.5 
remains the same. 
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Example 10.7: Assign proper values of gain to the three second-order biquadratic sections of 
Example 10.3, when they are in the sequence suggested in Example 10.4, such that the overall 
gain is 40 and center frequency is 10 krad/s. Also find:
(a) Maximum allowable input signal if the maximum allowable output is 10 volts.
(b) What happens when the second-order sections are cascaded in correct order, but each 

section has unity gain?

Solution: (a) Equation (10.34) relates the maximum amplitude at each output node after 
the first, second and third section for given example. For individual sections, it can be found 
mathematically (or using a computer program). However, sections HC and HB have already 
been simulated, and from Figures 7.14(b) and 7.16, max |HC(jw)| = 5.0 and max |HB(jw)| 
= 7.14. Section HA has been designed and simulated in Example 10.4, and its peak value is 
almost 11. Hence, using the notations given in Section 10.3.3:

M1 = 5, M2 = 5 × 7.14 = 35.7, M3 = 35.7 × 11 = 392.7

With the overall gain to be 40, KM3 = 40, so K = 40/392.7
Gain to be assigned to the respective sections are as follows:

= = = = = =1 2 3
40 5 35.7

8,  0.14,  0.0909
5 35.7 392.7

k k k  (10.39)

With these gain values, the overall transfer function will be:

H(s) = k1 HC(s) × k2 HB(s) × k3 HA(s)

( )
( )

+ += × ×
+ + + ++ +

2 2

2 22

0.14 0.258 0.0909( 2.25)
( 0.2 1.01) ( 0.1 1.18)0.09 0.83

ss s
s s s ss s

 (10.40)

Individual second-order sections are to be designed with the new assigned gain values. The 
same circuit structure and methodology, which was used so far (though, any other circuit can 
also be used), is used now.

For the general differential input single OA biquad, the auxiliary polynomial is again 
assumed to be Q(s) = (s + 1); this gives the following relations for k1HC(s):

= → = =
+ +

1
( ) 8 1

, 01 1( ) ( 1)
8 8

a
N s s

y y
Q s s

s

 (10.41) 

( )
2

3
( ) 0.2 1.01 1.81

1.01 , 
( ) ( 1) ( 1)c

D s s s s
y s y

Q s s s
+ += → = + =

+ +
 (10.42)

( ) ( )
2

2
( ) 7.8 1.01 9.81

1.01 , 
( ) ( 1) ( 1)b

D s N s s s s
y s y

Q s s s
− − += → = + =

+ +
 (10.43)
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For k2HB(s), the corresponding relations are:

( )+= → = + =
+ +

2

1
( ) 0.14 0.035 0.175

0.14 0.035 , 
( ) ( 1) ( 1)a

N s s s
y s y

Q s s s
 (10.44) 

( )+ += → = + =
+ +

2

3
( ) 0.09 0.83 1.74

0.83 , 
( ) ( 1) ( 1)c

D s s s s
y s y

Q s s s
 (10.45)

( ) ( )− + += → = + =
+ +

2

2
( ) 0.86 0.09 0.795 1.565

0.86 0.795 , 
( ) ( 1) ( 1)b

D s N s s s s
y s y

Q s s s
 (10.46) 

For k3HA(s), the corresponding relations are: 

( )+= → = + =
+ +

2

1
( ) 0.0909( 0.225) 0.2045

0.0909 0.2045 , 
( ) ( 1) ( 1)a

N s s s
y s y

Q s s s
 (10.47)

( )
2

3
( ) 0.1 1.18 2.08

1.18 , 
( ) ( 1) ( 1)c

D s s s s
y s y

Q s s s
+ += → = + =

+ +
 (10.48)

( ) ( )− + += → = + =
+ +

2

2
( ) 0.9191 0.1 0.8755 1.6946

0.9191 0.8755 , 
( ) ( 1) ( 1)b

D s N s s s s
y s y

Q s s s
 (10.49)

For the three sections, with an impedance scaling factor of 104 and a frequency de-normalization 
factor of (1.01)–½ × 104, (0.83)–½ × 104 and (1.18)–½ × 104 for the respective transfer functions, 
k1HC(s), k2HB(s) and k3HA(s) are used and the resulting structures are cascaded in the order as 
decided in Example 10.4. Figure 10.9 shows the complete filter with de-normalized element 
values.

10.049

9.9

Vin

12.048

9.11–

+
–

+

8.747

10.86
–

+

Vout
1.25 80.4

10.049

9.9

1.019
5.529

98.58

18.19

V01

57.14 1.594

1.275

285.7

7.834

12.587

6.389
14.253

5.747

V02

1.1

33.85 2.968

15.85 45.022
5.987

17.03

11.422

9.226
4.807 22.594

Figure 10.9 Cascade realization of the sixth-order BP filter for Example 10.7. All resistors are in kΩ and 
capacitors are in nF.
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In Figure 10.10(a), the magnitude response of the sixth-order cascaded filter is shown with 
the output voltage on the y-axis on linear scale, while the same is shown in Figure 10.10(b) 
with the y-axis on log scale, depicting the notches clearly. Notch frequencies are 877.6 Hz and 
2.314 kHz with 98.66 dBs and 59.3 dBs attenuation. Center frequency is 1.607 kHz (10.101 
krad/s) with a gain of 40.65 against the design value of 40. 

1.0 V

0.5 V

0 V
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

Frequency
V (103) V (10) V (102)

(a)

1.0 V

10 V

100 V

1.0 uV
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

Frequency
V (103) V (10) V (102)

(b)
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10 V

1.0 V

10 mV

100 uV

1.0 uV

100 nV
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

Frequency
V (103) V (10) V (102)

(c)

Figure 10.10 (a) Magnitude response of the sixth-order BP filter for Example 10.7. (b) Magnitude 
response of the sixth-order BP filter with the ordinate on log scale. (c) Magnitude response 
with order of the sections different from what is recommended.

(a) In order to make the level of the output voltage as 10 V, the input level can be as high as 
250 mV (theoretically), and practically, 246 mV as simulated. If the order of sequence is 
changed with k2HB(s) at first, followed by k3HA(s) and then k1HC(s), the responses at the 
three outputs are shown in Figure 10.10(c). The final output level and the gain remains 
the same but the intermediate levels have gains of approximately unity. Notches do appear 
at 872.7 Hz and 2.31 kHz in the final output.

(b) If the section is formed with correct pole−zero combination and cascaded in correct 
sequence, but is assigned unity gain for each individual sections, instead of assigning 
gains as calculated, the simulated response is as shown in Figure 10.11. The final output 
amplitude becomes 10 V for an input voltage of 28.4 mV, compared to 250 mV for the 
same design but with correct gain assignment, as shown earlier. For this input level, the 
intermediate voltages are 142.53 mV and 1.015 V; obviously, all three voltage levels are 
not nearly the same and the overall gain becomes 350.14. 
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10 V

1.0 V

1.0 mV

10 uV
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz

Frequency
V (10) V (102) V (103)

Figure 10.11 Magnitude response of the sixth-order BP filter for Example 10.7 with correct order of the 
sections but with unity gain assignment to the three sections.

Example 10.8: Discuss what happens with the response of the transfer function of equation 
(10.24) if the closest pole and zeros are not paired.

Solution: Let a different pole−zero pairing be done; the resulting three sections obtained by 
combining z4,5 with p3,4, z2,3 with p1,2 and z1 with p5,6 from the zero and pole locations given 
in equation (10.24b,c) are as follows:

( ) ( ) ( )
( )

2 2

1 2 32 22

2.25 0.25
, , ( )

( 0.1 1.18) ( 0.2 1.01)0.09 0.083

ss s
H s H s H s

s s s ss s

+ += = =
+ + + ++ +

 (10.50)

For the general differential input single OA biquad, the auxiliary polynomial is again assumed 
to be Q(s) = (s + 1); this gives the following relations for H1(s):

= → = + =
+ 1

( )
/ ( 1)   0

( ) ( 1) a
N s s

y s s y
Q s s

 (10.51) 

( )+ += → = + =
+ +

2

3
( ) 0.1 1.18 2.08

1.18 , 
( ) ( 1) ( 1)c

D s s s s
y s y

Q s s s
 (10.52)

( ) ( )
2

2
( ) 0.9 1.18 3.08

1.18 , 
( ) ( 1) ( 1)b

D s N s s s s
y s y

Q s s s
− − += → = + =

+ +
 (10.53)
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For H2(s), the corresponding relations are: 

( )+= → = + =
+ +

2

1
( ) 2.25 3.25

2.25 , 
( ) ( 1) ( 1)a

N s s s
y s y

Q s s s
 (10.54) 

( )+ += → = + =
+ +

2

3
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( ) ( 1) ( 1)c

D s s s s
y s y

Q s s s
 (10.55)

( ) − −= → = =
+ + 2

( ) 0.09 1.42 1.33
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( ) ( 1) ( 1)b
D s N s s s

y y
Q s s s

 (10.56) 

For H3(s), the corresponding relations are: 

( )+= → = + =
+ +

2

1
( ) 0.25 1.25
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( ) ( 1) ( 1)a

N s s s
y s y

Q s s s
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( ) − += → = =
+ +2

( ) 0.2 0.76 0.56
0.76, 

( ) ( 1) ( 1)b
D s N s s s

y y
Q s s s

 (10.59)

For the three sections, an impedance scaling factor of 104 and a frequency de-normalization 
factor of (1.18)–½ × 104, (0.83)–½ × 104 and (1.01)–½ × 104 are used for the transfer functions, H1(s), 
H2(s) and H3(s). The resulting structures, with element values calculated from the respective 
equations are shown in Figures 10.12(a), 10.13(a), and 10.14(a), respectively. Figure 10.12(b) 
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500 Hz 1.0 kHz 3.0 kHz 5.0 kHz
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(b)

Figure 10.12 (a) Realization of the transfer function H1(s) for Example 10.8. (b) Magnitude response of 
the band pass function with unity gain.

shows the simulated response of H1(s), a BP response with center frequency of 1.6035 kHz, 
pole-Q of 10.46 and mid-band gain of 9.61. Figure 10.13(b) shows the simulated response 
of the function H2(s), BR characteristic with a notch at 2.639 kHz, dc gain being 2.71, high 
frequency gain being unity and peak gain of 30.79 at 1.607 kHz. Figure 10.14(b) shows a BR 
response for function H3(s) with a notch at 791.7 Hz, dc gain of 0.247, high frequency gain of 
unity and peak gain of 3.85 at 1.622 kHz. 
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Figure 10.13 (a) Circuit realization of the transfer function H2(s) for Example 10.8 with unity gain.  
(b) Magnitude response of the transfer function H2(s) with unity gain.
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(b)

Figure 10.14 (a) Circuit realization of the transfer function H3(s) for Example 10.8. (b) Magnitude 
response of the transfer function H3(s) for Example 10.8 with unity gain.

The three sections are cascaded and Figures 10.15(a)–(b) show the response of the complete 
filter. Overall gain is 139.4; hence, to get 10 V output, the input has to be less than 71.7 mV. 
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100 V
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(b)

Figure 10.15 (a) Response of the sixth-order filter for Example 10.8 with a pole–zero combination 
other than the case when the nearest poles and zeros are combined. (b) Response of the 
sixth-order filter while the sequence order is also different.

Example 10.9: Employing the cascade approach, realize an active RC filter for the following 
specifications, with dc gain as unity:

αmax = 1 dB, αmin = 40 dBs, w1 = 2000 rad/s, w2 = 6000 rad/s

Solution: In Example 3.4, it was found that a fourth-order inverse Chebyshev filter will be 
required for these specifications, for which the obtained transfer function is as given here:

{ }{ }+ +
=

+ + + +

2 2

2 2

1.1757 6.8283
( )

( 0.3423 0.2559)( 1.0091 0.31255)

s s
H s

s s s s
 (10.60)

For the transfer function in equation (10.60), poles and zeros are:

z1,2 = ± j1.0843, z3,4 = ± j2.6131, p1,2 = –0.17117 ± j0.47611, p3,4 = –0.50455 ± j0.2408

Cascade optimization suggests a combination of z1,2 with p1,2 and z3,4 with p3,4 which results 
in the following two second-order functions from equation (10.60).

{ }+
=

+ +

2

1 2

1.1757
( )

( 0.3423 0.2559)

s
H s

s s
 (10.61)

+=
+ +

2

2 2
{ 6.8283}

( )
( 1.0091 0.31255)

s
H s

s s
 (10.62)
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Parameters of the two second-order normalized functions are:

wo1 = 0.50586, wo2 = 0.55906, Q1 = 1.4778 and Q2 = 0.554

Both the transfer functions are LP notch, for which a number of circuits and approaches are 
available; we select the modified summation method of Section 8.6.1. 

With the required overall dc gain being unity, use of equations (10.36) to (10.38) gives the 
value of gain coefficients as:

k1 = 0.2178 and k2 = 0.04577

With these values of gain coefficients, the transfer functions modify as:

2

1 2
0.2178 0.2559

( )
( 0.3423 0.2559)

s
H s

s s
+=

+ +
 (10.63)

2

2 2
0.04577 0.31255

( )
( 1.0091 0.31255)

s
H s

s s
+=

+ +
 (10.64)

To realize the aforementioned transfer functions, the Ackerberg–Mossberg biquadratic circuit 
is used in the modified summation approach; the respective design values of elements after de-
normalization by 6000 rad/s and impedance scaling of 10 kW, are as follows:

QR1 = 14.778 kW, R31 = R41 = R51 = R61 = 10 kW, Rγ1 = 10 kW, C11 = C21 = 32.94 nF and 
Cα1 = 7.1743 nF

QR2 = 5.54 kW, R32 = R42 = R52 = R62 = 10 kW, Rγ2 = 10 kW, C12 = C22 = 29.811 nF and 
Cα2 = 1.3644 nF

The cascaded fourth-order filter is shown in Figure 10.16(a) and its simulated magnitude 
response is shown in Figure 10.16(b). The pass band is maximally flat, having unity gain at dc 
with an attenuation of 0.422 dB at 2000 rad/s and attenuation of 40.1 dBs at 6000 rad/s; this 
satisfies the specifications easily.

Example 10.10: Realize a maximally flat LPF in which it is desired that its dc gain remains 
unity and its gain drops by 1 dB at 20 krad/s by introducing transmission zeroes at 40 krad/s 
and 50 krad/s to increase rate of fall of attenuation.

Solution: For the given specifications, the desired transfer function was obtained in Example 
3.7 of Chapter 3. The required sixth-order transfer function as obtained in Example 3.7 is as 
follows:

( ) ( )( )( )

         + +               =
+ + + + + +

2 2

6 2 2 2

3.119 1 1
2 2.5

2.511 1.744 1.524 1.449 0.475 1.234

S S

H S
S S S S S S

 (10.65) 

https://doi.org/10.1017/9781108762632.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.011


326 Continuous Time Active Analog Filters

–

+

Vin

1 +

–
2

+

–

3

–

+
3 +

–
4

+

–

5

Vout

10 k�

10 k�

10 k�

10 k�

10 k�

10 k�

10 k�

10 k�

10 k�

10 k�

7.17 nF

32.94 nF

32.94 nF

14.778 k�

29.811 nF

1.364 nF 5.54 k�

29.811 nF

(a)

1.0 V

10 mV

100 uV
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz

V (33)
Frequency

(b)

Figure 10.16 (a) Fourth-order inverse Chebyshev filter circuit for Example 10.9. (b) Its magnitude 
response.
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Transfer function in equation (10.65) is to be broken into second-order sections. As a first 
step, the nearest poles and zeros are to be combined. Hence, the values of the poles and zeros 
are:

z1,2 = ± j2, z3,4 = ± j2.5, p1,2 = –1.256 ± j0.41, p3,4 = –0.762 ± j0.932, and p4,5 = –0.238 ± j1.085

Based on the closeness between poles and zeros, the following second-order sections are formed.

( )
( ){ }

( )
+

=
+ +

2

1 2

/ 2 1

2.511 1.744

s
H s

s s
 (10.66)

( ) ( )=
+ +

2 2
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1.524 1.449
H s

s s
 (10.67)

( )
( ){ }

( )
+

=
+ +

2

3 2

/ 2.5 1

0.475 1.234

s
H s

s s
 (10.68)

The next step is the selection of the sequence of the sections for which the mentioned thumb 
rule in terms of pole-Q values can be applied. The respective values of the pole-Q for the 
transfer functions H1, H2 and H3 are:

Q1 = 0.5259, Q2 = 0.7898 and Q3 = 2.3386

Hence, in the proposed cascade H1 will be followed with H2 and H3 will be at the end. 
Otherwise, it will be preferred to have the LP section in the beginning.

Next, the assignment of gain is to be done for the individual sections so that dynamic range 
is maximized and the responses at all intermediate section nodes become as flat as possible. 
The voltage maxima at the output of each section are to be evaluated either by calculation or 
by inspection. As the function H2 is an LP section with Q2 = 0.7899, its maxima will occur at 
dc, which means h2 = 3.119/1.449 = 2.1525; similarly, H1 which functions as an LP notch, 
with Q1 = 0.5259, has its maxima also at dc, which results in h1 = 1/1.744 = 0.5733. As we are 
designing an LPF with gain unity at dc, for H3, the value of h3 was also taken at dc, which is 
h3 = 1/1.234 = 0.81. From these values, we can write:

M1 = |h1|max = 0.5733, M2 = |h1 h2|max = 2.1525 × 0.5733 = 1.234 and M3 = |h1 h2 h3 |max = 
1.234 × 0.81 = 1.0

As the final gain is to be unity, KM3 = 1, and value of the gain coefficients of the three sections 
are evaluated as:

k1 = 1/0.5733 = 1.744, k2 = 0.5733/1.234 = 0.4646, k3 = 1.234/1.0 = 1.234

Having obtained the gain coefficients, the biquadratic arrangement known as modified 
summation method of Section 8.6.1 was selected for the realization of the three transfer 
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functions. For the sake of reference, the expression of the biquad is repeated here as equation 
(10.69).

( )
α b γ+ − += −

+ +

2 2 2
out

2 2 2
in

( ) / /
{ / } 1/

V s s k CR C R
V s s CRQ C R

 (10.69)

Comparing equation (10.66) with equation (10.69), k = b = 0, α = 0.25 and γ = =1.744
1

1.744
. If 

normalized R = 1, we get C = 1/1.7440.5 = 0.7572. As the frequency normalization was done 
by a factor of 20 krad/s in Example 3.7, the same is used for de-normalization, and with an 
impedance scaling factor of 10 kW, the values of the elements for H1(s) are obtained as:

C1 = 3.7861 nF, α1 C1 = 0.9465 nF, R1 = 10 kW, Q1 R1 = 5.259 kW, R1/γ1 = 10 kW
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Figure 10.17 (a) Sixth-order cascaded low pass filter structure for Example 10.10. (b) Its magnitude 
response.

With the same circuit configuration and frequency and impedance scaling factors, element 
values for the remaining transfer functions H2 and H3, respectively, are as follows:

C2 = 4.1538 nF, α2 C2 = 0, R2 = 10 kW, Q2 R2 = 7.898 kW, R2/γ2 = 10 kW 
C3 = 4.501 nF, α3 C3 = 0.8889 nF, R3 = 10 kW, Q3 R3 = 23.386 kW, R3/γ3 = 10 kW

Figure 10.17(a) shows the complete sixth-order cascaded filter with element values and Figure 
10.17(b) shows its simulated magnitude response. The filter’s dc gain is unity, attenuation at 
20 krad/s is 1.09 dB and zeros occur at 40.14 krad/s and 49.82 krad/s; this is very close to the 
design specifications. 

10.4 Tuning of Filters

There has been a significant improvement in the fabrication processes and manufacturing 
methods of electronic components and devices and it has resulted in considerable advances 
in the performance capability of active filters. However, increasing complexities in various 
application fields such as communication, instrumentation and control has necessitated in more 
miniaturization. Fabrication processes of integrated circuits (ICs) have advanced from the thin 
and thick film technology to the hybrid and to the monolithic form. Unfortunately, even with 
tremendous advancements, both passive and active components suffer from manufacturing 
tolerances of varying degrees, affecting the performance parameters of the filters. Deviation 
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in the filter parameters depend on the amount of tolerance of the components. Therefore, it 
becomes necessary to adopt correction methods such that the practically obtained performance 
is within the prescribed limits of the design, and the circuit and the system works as desired.

It has been mentioned a number of times that for OA based continuous-time filter circuits, 
parameters are set by RC products; this is barring OA-R and OA-C circuits where parameters 
depend on gain bandwidth product as well. In OTA based circuits, the parameters depend 
on the capacitance to the trans-conductance ratios. This means that not only the passive 
components but also the active components should be realized with maximum accuracy and 
their parameters should remain stable.

The presence of production tolerance in components requires that post-design adjustment is 
an essential step in meeting tight specifications. While pre-distortion is also an important step 
for compensating the effects of component imperfections, it is the post-fabrication parameter 
tuning which is almost essential. Of course, the specific tuning employed depends upon the 
function to be realized, the network configuration used and the technology of implementation. 
Over the years, functional tuning [10.1], deterministic tuning[10.2] and automatic tunings have 
been developed and used; these are briefly discussed here.

Functional and Deterministic Tuning Functional tuning is performed by adjusting the 
parameters. This is done by changing the components at a frequency of known phase shift 
while the circuit is in operational mode. Selection of phase, instead of magnitude is done 
because it was observed that change in phase is more pronounced than change in magnitude 
of filter near the region of the critical frequency, wo.

C

Phase – sensitive detector

–

+

Vin
Vout

G1

G2

C

G5

GD

DFET

Figure 10.18 Self-tuned signal-tracking multi-loop feedback filter configuration.

Ideally, the process of tuning proceeds by controlling the parameters of interest in a non-
interactive fashion through change in a single circuit element; which in almost all the cases, 
is a resistor. Obviously, complete non-interactiveness is practically difficult to achieve, which 
necessitates a tuning sequence. Without going into the details of the functional tuning, it 
can be said that the trial and error process for precision is slow and suitable only for simpler 
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circuits. Moreover, the process of change in the controlling resistor through laser trimming 
is irreversible. Finally, this kind of tuning is possible in hybrid circuits and not in monolithic ICs. 

In deterministic tuning, the time-consuming iterations of functional tuning are avoided 
by introducing a predictive step of performing initial circuit analysis. Exact design equations 
are formulated considering all known imperfections, like frequency dependent amplifier gain 
and capacitor losses. However, once the analysis is done without making the circuit inter-
connections, final design equations become a set of non-linear expressions and demand a 
computer solution. At the end, laser trimming is performed, making this approach unsuitable 
for monolithic ICs. 

10.4.1 Automatic tuning

In applications where the input signal frequency varies over a wide range, a wide bandwidth 
filter is not suitable for effective rejection of noise. One solution for the problem is to use 
a high Q BPF with its center frequency wo being continuously adjusted to a desired value. 
In such a case, it is also required that the bandwidth BW = wo/Q and mid-band gain Ho 
remain constant and unaffected by the change in wo. These conditions are achievable in OA-
RC circuits in which tuning of wo is possible by a single resistor, and this resistor does not 
affect BW or Ho. There are quite a few multi-OA circuits like state variable and GIC based 
configurations satisfying the required conditions. The single OA multiple feedback circuit 
discussed in Section 7.3 comes in that category, for which equal capacitance C:

5 1 2 5 1 5( ) / ,  BW 2 / and  / 2o oG G G C G C H G Gw = √ + = = −  (10.70)

It is clear from equation (10.70) that G2 is present in the expression of wo only but not in the 
expressions of BW and Ho. Automatic tuning is implemented by means of a phase detector 
as shown in Figure 10.18 [10.3]. The phase detector differentiates the input and output filter 
waveforms before their comparison and necessary steps, such as gating, smoothing and feeding 
to the FET acting as a voltage-variable resistor.

In practice, the arrangement of automatic tuning comprises the phase-locked loop (PLL), 
which tracks a given signal while passing signals only in a small bandwidth [10.4]. Such a 
system can be integrated in monolithic form. The method will be discussed later in connection 
with the realization of active R and active C filters in Chapter 17. 
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Practice Problems 

10-1 A LP filter has the following specifications: 

 w1 = 10 krad/s, w2 = 36 krad/s, Amax = 1 dB ripple and Amin = 50 dBs 

 Design an active RC filter to satisfy the specifications using single amplifier second-order sections in 
cascade approach and test it.

10-2 A HP filter has the pass band from 104 rad/s to infinity. The peak to peak ripple in the pass band has to 
be less than 2 dBs. For w ≤ 2 krad/s, the loss must be greater than 50 dBs. Design and test an active RC 
filter to satisfy the specifications using the cascade approach. 

10-3 Design and test an equal-ripple BP filter to satisfy the specifications: (a) the pass band extends from 2000 
to 8000 rad/s. The ripple width in the pass band does not exceed 0.5 dB. (b) The magnitude is at least 30 
dB down at 24 krad/s from its peak value in the pass band.

10-4 Realize a fifth-order LP Chebyshev filter using cascade approach. Optimize its dynamic range. Ripple 
width in the pass band is 2 dBs, and frequency is normalized by 25 krad/s. Use practical element values 
and test the filter.

10-5 Realize the following transfer functions by cascading second-order sections using single amplifier biquads 
while frequency de-normalization will be with 10 krad/s. 

 (a) ( ) ( )( )2 2

4
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H s

s s s s
=

+ + + +

 (b) ( ) ( )( )2 2
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=
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10-6 Repeat Problem 10-1 using multi amplifier biquads.

10-7 A fifth-order normalized LP filter can be realized by a cascade of first- and second-order functions as 
shown here:

 

( )
( )( )( )

1 2 3
2 21 1.61803 1 0.61803 1

k k k
H s

s s s s s

× ×=
+ + + + +

 A possible design for the system is suggested in Figure P10.1. Prove its adequacy or provide an alternate 
design.
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Figure P10.1

10-8 Specifications of an inverse Chebyshev function as shown in figure are: 

 αmax = 0.5dB, αmin = 20 dBs, w1 = 36 krad/s and w2 = 80 krad/s. 

 Determine the order of the filter and find transfer-function satisfying the specifications in terms of the 
product of second-order (a first-order also if needed) sections. Optimize dynamic range of cascaded filter.

10-9  Repeat problem 10-8 for the following specifications:

 αmax = 0.5 dB, αmin = 30 dBs, w1 = 1 krad/s, and w2 = 3.45 krad/s.
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