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Single Amplifier Second-order
Filters

7.1 Introduction

Depending on the specifications, the required order of the filter may be small or big. For
less challenging requirements, a second-order or even a first-order section may be adequate.
However, higher-order sections may become necessary in other situations. For higher-order
filter requirements, either the direct form approach is used, or a combination of second-
order second sections is used which are connected in a cascade form or in a multiple-loop
feedback form. Hence, the study of and realization methods of second-order sections assumes
importance as they are used either stand-alone or form the building blocks for higher-order
filters. Since the overall performance of the higher-order filter depends on the individual
second-order building blocks, it is very important that these building blocks have desirable
and attractive properties; the following are some such requirements.

(c) Low sensitivities of the two important filter parameters, pole frequency ®, and pole-Q,
with respect to the circuit elements are highly desirable.

(d) Utilization of a lesser number of passive elements (active elements as well, though in
present discussion, it is assumed that only one active component is used) makes the
realization economical in discrete, as well as in integrated form.

(e) Values of the passive components should be in the practical range of integrated circuit
(IC) fabrication, and the component spread is preferred to be as small as possible in order
to make them attractive in IC form.

(f) Independent tunability of the parameters @, and Q is important as analog filters require
some tuning.
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(g) To properly connect the second-order blocks in cascade or in multiple feedback system,
their input impedance should be as high as possible and the output impedance as low
as possible at all working frequencies. Otherwise, it can change the characteristics of the
overall higher-order filter.

A large number of second-order active building blocks are available with each one claiming
advantages over the others. Study of the development procedure of such sections might help
the readers to gain more insight towards selecting the optimal section or help in designing new
circuits/improving upon the existing ones.

Hence, we begin the study of development of second-order sections using a single passive
feedback in Section 7.2; the effect of using different types of passive structures in the feedback is
also included. Versatility of the configuration is shown to be improved with multiple feedbacks
in Section 7.3. Certain constraints of the single input are overcome in differential-mode input.
Next, general active RC feedback is studied in Section 7.5 to gain more understanding of the
factors responsible for controlling the sensitivities. It was found that the well-known circuits of
Sallen—Key and Delyiannis—Friend, which will be studied in Sections 7.7 and 7.8, are, in fact,
special cases of the general active RC feedback structure discussed in Section 7.5.

7.2 Single-feedback Basic Biquadratic Section

A simple and common configuration for generating a biquadratic (biquad) section is shown
in Figure 7.1. It uses a single-ended operational amplifier (OA) with its non-inverting input
grounded, a passive RC two-port (three terminals) section (/Vy) in the negative feedback path
and another RC two-port section in the feed-forward path (V). Let the two-port sections be
represented by the admittance parameter y, and y, as follows:

I

1

T
Z

Vout

I—
=

Figure 7.1 Basic biquad configuration using single feedback with a single-ended operational
amplifier.

|:llz:|=[.yllz _.)’12z:||:vvin:| (7.1)
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1 Nip T 4
=l ! (7.2)
[2;; —Jap J22p Voue
With the inverting input terminal of the OA at the virtual ground potential, and its input
current neglected being small, summation of currents at the inverting terminal gives:

b+ 11y =0 ==y, Vig + 222 V+}’11p V_,y12p Vour =0 (7.3)
If the OA is considered ideal, A — oo, V' = 0 and the transfer function is obtained as:

Vou! Vin) = 021/7125) (7.4)

The networks IV, and IV, being RC-only networks, their natural frequencies lie on the negative
real axis of the complex frequency s plane. If the two networks are selected in such a way
that their natural frequencies cancel each other, then they will not affect the overall transfer
function. In that case, if the transfer function is represented as a ratio of two polynomials in
s as in equation (7.5), then selection of an arbitrary polynomial Q(s) representing the natural
frequencies of the two RC networks shall be given as in equation (7.6).

(Voud Vin) = IN()/D(s)} (7.5)

D215 = — AN/ Q()} and — yy5, = — {D(s)/ Q()} (7.6)

It is obvious from equation (7.5) and (7.6) that the zeros of the transfer function are decided
only by the zeros of the transfer admittance y,,, of the feed-forward network. Since an RC
network without inductors can have transmission zeros anywhere in the complex frequency
plane except on the positive real axis, all types of stable transfer functions like LP (low pass),
HP (high pass), BP (band pass) or BR (band reject) can be realized except an odd order all pass
function. Again, from equation (7.5) and (7.6), poles of the transfer function are decided by
the zeros of the transfer admittance y;,,, with the same location restrictions.

We can use the following general expression for a normalized biquad:

N(s)
52+(a)0/Q)+a)f

H(s) = (7.7)

From the aforementioned discussion, it is obvious that realization of the transfer function
reduces to the synthesis of the two RC two ports V, and /V,. Conventional methods of RC
synthesis are to be used for the realization of the RC networks. However, if N(s) and D(s)
contain complex roots, then the synthesis is a little involved. For the second-order admittance
functions, Table 7.1 can also be used, though the choice is not limited to this table.
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Table 7.1 Short circuit transfer admittances of some common RC two ports sections

Typ e.Of H(s) Circuit Element values
function
— W A ANN— G, = 2415,5, - 5,)
a G, G, G; )
— — Gz =4a / 52

Low pass  py) _

ol |
ol |

C:2ﬂ/522(61_52)
° o
o || AN | | o G =a
. : . (8,-8, £(8,+3,)%
as® G, = (0170,) £(0,40,
High pass D) (26,0,)/ a
7o ° (6,6,)t%
(2686,12)
1
With X = {(51 +62)2 —85152}2
— 5 A MA—o G =3,
as ¢ A o B
Band pass  py) ! L 2 G, = Z1l+ Zzl,C =al 8,0,
° o o 6,

3, = (27 88,5, );

Example: 7.1 Realize a second-order BPF (band pass filter) section with a pole-Q of 5, a
pole frequency of 5 kHz and a center band gain of 20 dB using a single-ended OA based

configuration.

Solution: The following will be the frequency-normalized (@, = 1) transfer function of a
second-order BPF while using the configuration of Figure 7.1.

% —h
out __ 75 (7.8)

Vi S P abs+1

(0,/Q) = b, gives b = 1/5, and with s = jo, the gain magnitude at the center band of 20 dBs
gives 20 log(h/b) = 10, or h = 2. Assuming a tertiary polynomial Q(s) = (s + 9), for the IV, block,
we get the parameter y,;, as:

Va1, = —hs/(s + 0) (7.9)
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A suggested circuit for realizing equation (7.9) is shown in Figure 7.2(a) for which:

o1, = (<s/R(s + 1/RC) (7.10)
Comparing equations (7.9) and (7.10), we get:

R=1/h=0.5Qand C=hld (7.11)

To cancel the arbitrary polynomial Q(s) of equation (7.6) and to find the two-port IV, it is
assumed that:

RC= CR R (R, + R) (7.12)

With selected Q(s) and using the denominator of the transfer function in equation (7.8), 2y
can be written in compact and, then in expanded form as:

S +bs+1 B

2
_5+([,_5)+M
s+6

) (7.13)

“N2p =
Equation (7.13) represents a parallel combination of a capacitor, a resistor and a bridged-T
network circuit as shown in Figure 7.2(b). Expressions for the elements shown in the figure
are compared with the denominator in equation (7.8); it gives, 4, = 1, 2; = b and 4, = 1. The
bridged-T network is simplified by choosing 0 = & = 0.2, which results in R; being infinite.
With R; open circuited, the T network has the following expression for y,,:

___ W/RRG)
2 . [1 . ) (7.14)

st—| —+—

G\R &
A parallel combination of the admittance of a T network and capacitance C; gives the
admittance of the feedback network —y,,, as:

s +5(R1+R2)L+ L

_ _ RIRZ CZ RIRZCICZ
}’12;;— § Rl +R2 (715)

G RR,GC,

Further, from equation (7.13) and Figure 7.2(b), with the following element values and
relations (C; =a, =1 F, 4, =6=0.2,4,=1 and C = h/d = 10 F), the obtained normalized
resistance values are:

G =G,=2(1-02x02+1x0.2x0.2)/0.2 =10 Mho — R, =R, = 0.1 Q (7.16a)

Using equation (7.12) and R = 0.5 Q, we get the value of C, = (4/6%) = 100 F. Dividing
equation (7.10) by equation (7.15), (3,1, by - y1,,), we obtain the transfer function of the filter
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for which the normalized pole frequency, w,=1/,/RR,C,C, = 1 rad/s. De-normalization
with frequency

®, =27 x 5 x 103rad/s will give the element values as:
C, = (1/mx 10%) = 31.8 uF, C, = 3.18 mF and C = (10/7 x 10%) = 318 UF (7.16b)

Further, for realizing resistance and capacitance values appropriate for IC fabrication, the
values obtained can be impedance scaled (say) by a factor of 10%. The resulting element values
will be as follows:

Cy=31.8nF, C,=318nF, C=31.8nFand R, = R, = 1 kQ; R=5kQ (7.17a)

The complete second-order BP section using bridged-T network in feedback path is now
shown in Figure 7.2(c). Figure 7.2(d) shows the network’s PSpice simulated response having a
mid-band gain of 9.975 at a center frequency of 4.86 kHz. Bandwidth being 945.3 Hz results
in pole-Q = 5.14.

o— ¢ AA—
‘; [ t —yp=asl/(s+ 6)
51 2 withG=a
() C=alé
G;
/\/\/\’ _ ﬂzsz +as+a,
| S R s+0
¢, Il g G, =Gy =2ay—ad+a,87%)1 8
1=06y =24 —4 201
e AM—TAM—— T
T T Gy=a—a
Vi :% V, CIZ‘ZZ
i > i Cy=4(ay — a6 + a252)/52
(b)
| |3.18 nF
1kQ ' 1kQ

3.18 nF
+ Yy IF_l:‘A;
1

Q
31.8 +
Vin Vout
o o

(©)
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1.0V

fo =4.86 kHz
Q=485

0.5V

L —A—
ov

2.0 kHz 3.0 kHz 10 kHz 16 kHz
oV (5) AV (51) Frequency

(d)

Figure 7.2 (a) An admittance function realization for Example 7.1. (b) An admittance function
realization using bridged-T network. (c) Second-order band pass filter section for
Example 7.1. (d) Magnitude responses of a band pass filter using a bridged-T network for
Example 7.1.

Another BPF for a center frequency of 10 kHz with a mid-band gain of 10 and Q = 10 is
designed using the same structure. The required element values in this case are as follows:

Cy=1nF, C,=0.1nF, C=40nFand R, = R, = 7.96 kQ; R = 159.2 kQ (7.17b)

The simulated response is also shown in Figure 7. 2(d); value of the center frequency is 9.12
kHz; mid-band gain is 9.84 and Q = 10.9.

It is to be noted that the element for the LP, HP and BP responses can be obtained directly
from the relations given in Table 7.2.

Table 7.2 Element values for the multi-loop feedback structure

Elements shown Element values of a Element values of a Element values of a
in Figure 7.5 low pass section high pass section band pass section
(explained later)
le G]Zb/\/bo Cl:b Gl:h
(26 + h) by (2+h) 26
Y, G, = 0\/ G, =" Gy=—""2—h
b\ by b b
Contd.
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Y, G, =G, Ci=GC, Ci=C,

b
. _ b\ b, G, = b Gsz?l
> (26, + h) 2+5)

7.2.1 Signal conditioning modules: application example

Signal conditioning modules (SCMs) are an essential part of circuits for measuring process
control variables, such as temperature, pressure, strain, and so on. SCMs are subject to a
number of noise signals which are both electrically and magnetically induced. Elimination of
noise from the mixed signal requires appropriate filtering.

One such module, namely, the DSCA 43 DIN rail analog inpur module, 4-way isolation,
multiple LP, anti-aliasing filter is discussed here as an application example [7.1] of a single
feedback biquadratic configuration. The module requires LPF with a 4 Hz, 3 dB frequency at
a roll-off of 120 dBs per decade. Such a filter attenuates the 50/60 Hz noise by 100 dBs.

To get the required roll-off, order of the LPF can be calculated: it is found to be six. Hence,
from Table 3.1, the pole locations of the sixth-order Butterworth characteristics are as follows:

~0.2588 +0.9659, —0.7071 % j0.7071, —0.9659 * j0.2588. (7.18)

Since it will be an all pole filter, the following will be the transfer functions of the three second-
order sections that will be connected in cascade.

H(s) = 1/(s* + 0.5176s + 1) (7.19a)
Hy(s) = 1/(s* + 1415+ 1) (7.19b)
H(s) = 1/(s2 + 1.9318s + 1) (7.19¢)

A number of circuits are available for realizing second-order LPFs. Figure 7.1 shows the
structure of the single feedback with a single input op amp circuit that will be used for this
application example. The following is a standard form of the normalized transfer function of
a second-order LPF:

By

Via __(52+bs+1)

%

out __

(7.20)

For the first LD section, using equation (7.19), & = 0.5176 and with dc gain of unity, 4, = 1.

Following the procedure of Example 7.1, a tertiary polynomial Q(s) = (s + 9). The following
will be the parameter y,,, for the block V, :

Va15=—alls + 6) (7.21a)
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A suggested circuit for realizing equation (7.21a) is shown in Figure 7.3(a), for which:

G =2aldand C = 4al & (7.21b)
R R
o NN NN o
“Tc
o o
(a)
| |C12
[
Ry Ry
T VVVvV—1
Vm ROI R02
— " \NWN—+ANN——- = Cy Vout
I +
Cot | =
- (b)
0

-200

-400
10 mHz 1.0Hz 100 Hz 2.0 kHz
[¢] DB (V(51)) Frequency

(0)

Figure 7.3  (a) A suggested circuit for the realization of equation (7.21a). (b) A second-order low pass
section obtained while employing a single feedback biquadratic section. (c) Simulated
magnitude response of the sixth-order filter shown in Figure 7.3(b).
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To cancel the arbitrary polynomial Q(s) of equation (7.21a) and find the two-port A’P’ the
bridged-T network of Figure 7.2(b) is selected. With @, = 1, 2, = 6 = 0.5176 and b, = 1, we

get C,=1F, C, = 5 5147 =14.936 F. The resistance values are: R, = R, = 6/2 = 0.2588, R,

=
= oo, with &= 4. 6

For the T network of Figure 7.3(a), Ry, = 0/2/ = 0.2588 and C,, = 45/ & = 4/0.5166% =
14.936 F.

The component values are de-normalized using an impedance scaling factor of 10 k€2
and frequency scaling factor of 24.143 rad/s (4 Hz). The element value for the first second-
order section is given in equation (7.22a) and the corresponding first LP section with element
symbols is shown in Figure 7.3(b).

Ry =2.588kQ =R |=R,,, Cy; = 59.378 UF = C,}, C,, = 3.977 UF (7.22a)

Similar steps were taken to design the other two second-order sections. De-normalized values
of the corresponding elements are as follows:

R02 = 7705 kQ = R21 = Rzz, C02 = 7954 MF = CZ]’ C22 = 3977 HF (722b)
Ry; = 9.659 kQ = Ry, = Ry, Cys = 4262 UF = Gy, Gy, = 3.977 UF (7.22¢)

The three sections are cascaded with H,(s) being the first section with minimum pole-Q
followed by H,(s) and H;(s). The simulated magnitude response of the cascaded filter is shown
in Figure 7.3(c). Its 3-dB frequency occurs at 3.9989 Hz and with an attenuation of 47.726
dBs at 10 Hz and 167.73 dBs at 100 Hz, the obtained roll-off is 120.3 dBs per decade.

7.2.2 Bridged twin-T RC network

In a number of applications, it becomes necessary for a BP section to be more selective. In
such cases, the filter requires a high value of pole-Q (or a small value of the coefficient 4 in
equation (7.8)). It was observed in Example 7.1 that even for Q = 5, the component spread
is high, which is not attractive in IC implementation. Hence, instead of using the bridge-T
network shown in Figure 7.2(b), it is advised to use a bridged twin-T network which is shown
in Figure 7.4(a). A bridged twin-T network is in effect a parallel combination of an HP-T, an
LP-T network and a resistance R'. For the HP-T network, which comprises C;, C, and R;,
transfer admittance, —y,,; is given as:

C.C)I(C+C,) s
_}’12H={( 1 2) ( i+ 2)} (7.23a)

+7
Ry (C+C),)
However, for the LP-T network comprising R|, R, and C;, transfer admittance is given as:

1/(RR,C5)

—J2rL = (1 )
st—| —+—
G\R &
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— 9, = sameasinFig.7.2(b)
Gl = GZ = 2(ﬂ0 - ﬂ15)/6

G*=a /2
G; =4a,0
C=C,=2a,

Cy = 4(ay — 2,0)1 &

5.0
AAVAY
63.6 63.6
| |
| |
0.625 0.625
05 63.6
e M\—| =" , 0
n +
Vin 102.76 I 0.25 Vout
o _T_ o)
(b)

4 kHz 8 kHz 10 kHz

Frequency

(c)

Figure 7.4 (a) A bridged twin-T network. (b) Circuit realization for the band pass filter of Example
7.2. Capacitors are in nF and resistors are in kQ. (c) Magnitude response of the band pass
filter using twin-T feedback for Example 7.2.
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If the twin-T network is symmetrical, R, = R, and C; = C,, a factor of half appears in the
simplified expression of equation (7.23a, b), which forces:

b to be halved — effective R is halved. (7.24)

Utilization of the twin-T network in the feedback path of the basic configuration of Figure 7.1
requires the following form of representation of the transfer admittance 12yt

s (1-6b)

- =—" += "4} 7.25
N2y (5+5)+ s+0 " ( )

Again, expressions of the elements in Figure 7.4(a) and the denominator of equation (7.8)
are compared. It is worth noting that the twin-T network is a third-order section, but can be
reduced to a second-order section, according to our present requirement by single pole—zero
cancellation through the selection of J as:

5: 1 ZL L+i - 1 = 2 (726)
R(C,+C) C\R R ) 2RC, CR

The following example will illustrate the procedure and the advantage in terms of getting a
low component spread.

Example 7.2: Redesign the BP section of Example 7.1 while using the twin-T network of
Figure 7.4(a).

Solution: With Q =5, 4, = 6=0.2, and as in Example 7.1, /=2, R= (1/h)) = 0.5 Q and C =
hl& =2 F. For 6 assumed to be unity and using the expressions for elements in Figure 7.4(a),
withay=1,4,=02and 2, = 1.

C=(hl6)=2F (7.27a)
R, =R, ={0/2(ay— a,0)} = 0.625 Q and R; = 1/44,6 = 0.25 Q (7.27b)
R =(002)/2=5Q,C = Cy=2a,=2F, Cy =4 (ay—2,0)/& =32 F (7.27¢)

The component spread comes down significantly for capacitance from 100 to 1.6, though the
resistance spread has increased to 20. For @, = 2 x 5 krad/s, capacitance values will change
as follows:

C =Cy=63.6x10°F, Cy=102.76 x 10F and C = 63.6 x 10 F (7.27d)

To bring all components in the preferable range for IC integration, impedance scaling by a
factor of 103 is performed to give the following element values.
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Ri=Ry=625Q, R, =250 Q, R =5kQ, C, = C, = 63.6 nF, C; = 102.76 nF and C = 63.6 nF
(7.27e)

The complete circuit is shown in Figure 7.4(b) and its PSpice simulated response is shown in
Figure 7.4(c). Its center frequency is 4.93 kHz, bandwidth is 938 Hz resulting in Q = 5.25,
and a mid-band gain of 10.33; these results are close to the design specifications with improved
capacitor spread.

7.3 Multiple Feedback Single Amplifier Biquad (SAB)

A large number of configurations are available in literature in which a number of two-terminal
passive elements are connected in the negative feedback path of an OA. The multiple feedbacks
can provide realizations of biquadratic and all pole functions with different levels of advantages
and constraints. A widely used multi feedback single amplifier arrangement obtained from a
multiple-loop feedback arrangement [7.2], is a double-ladder or Rauch structure shown in
Figure 7.5. Application of Kirchhoff’s current law (KCL) at nodes 1 and 2 with node 1 at
virtual ground gives the following equations, respectively.

VouYs+ V,Y3=0 (7.28a)

out

(Vi = V)Y, + (Vo= V) Yy + ((V)) Y3 = VY, = 0 (7.28b)

Figure 7.5 Double ladder multiple feedback single amplifier second-order section.

Hence, the voltage ratio transfer function is obtained as follows:

V.

out

V.

m

_ 1Y,
VY, +Ys (4 +Y, 47, +Y,)

(7.28¢)

Selection of elements for the admittances Y] to Y5, either as a resistor or capacitor, can give a
large number of circuits. Their selection decides whether the filter would be an LP, HP, BP or
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any other type. Instead of using a single-element, a combination of RC components can also
be used: this provides more versatility to the network. For any specific selected combination of
elements, the network can be studied to determine the kind of response that can be obtained
and any constraint, such as the achievability of a quality factor, or the level of sensitivity of the
parameters with respect to the passive and active elements. Out of the many choices available,
if ¥} and Y; are conductances, Y5 is a capacitor and either Y, or Y} is a capacitor as shown in
Figure 7.6, an LP response with the following transfer function is obtained.

V;)ut - _ G1G3 (7 29)
Ve CCss” +C5(G+ Gy + Gy ) s+ GGy ‘

Gy

AYA%AY
Cs
o | o AT

Figure 7.6  Second-order low pass function realization of equation (7.29).

Further showing the versatility of the structure, a BP function can be realized with either ¥}
or Y as a capacitor, and the other one a conductor. If Y} = G, and Y; = 5C; Y needs to be a
capacitor, Y5 a conductor and Y, can be either a capacitor or conductor (shown in Figure 7.7).
Hence, selecting Y, = G, the transfer function shall be that of a BPF:

Vvout _ _G1C3 s
Vie  C3Cys” +G5(C3+Cy)s+G5(G +G,)

(7.30)

| [Cs
e,

—O
—MA——]
+ Vout
Vin GZ
o o)

L

Figure 7.7  Second-order band pass function realization of equation (7.30).
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For the realization of an HP function, the numerator will have a term with s>. Hence, selecting
both Y and Y as capacitors, Y} also needs to be a capacitor. With Y, and Y5 as conductors,
the circuit will be as shown in Figure 7.8(a) with the following HP function.

out __ _C1C352
Vie  CCys" +Gs(C+C5+Cy) s +G,Gs

(7.31)

Designing of the filter section can easily be performed using the coefficient matching technique.
Consider the HP second-order voltage ratio transfer function:

2
Vow I (7.32)
Vie byt +bs+b,
50 nF| |C4
s4810
0.5 uF 50 nF R ?
5

+ | G % | Cs Vout

Vin R2 2

o S )

L

1.5V

1.0V

0.5V

ov
100 Hz 1.0 kHz 10 kHz 100 kHz

[a]V (4) Frequency
(b)

Figure 7.8 (a) Second-order high pass function realization of equation (7.31). (b) Second-order high
pass filter response for the circuit shown in Figure 7.8(a) for Example 7.3.
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By comparing the coefficients for the HP function of equation (7.31) with equation (7.32),
the following design equations can be obtained.

h=C, Cy, by = G,G;s (7.33a-b)
by = Gs(C, + Cy +Cy), by = C; C, (7.33c-d)

Selection of element values usually put a constraint on the performance parameters. For
example, if equal value capacitors are used, that is, C; = C5 = C; = C, with b, = A, h will also be
unity. If we use equal value capacitors, having 4 as unity is not a severe constraint, rather it is
an advantage. However, these capacitors may result in a high spread of resistance; it may also
require an additional amplifier to get the required gain (if needed).

Example 7.3: Design a normalized second-order HP Butterworth filter using multiple
feedback in a single OA configuration, with a pass band gain of 20 dBs. De-normalize the filter
for a cut-off frequency of 3.2 kHz. Use suitable element values and obtain the filter’s response.

Solution: The network structure is shown in Figure 7.8(a) and the desired Butterworth function
has 4 = 10, b =+/2 and 4, = 1. As mentioned earlier, many possibilities are available for the
selection of element values. Solving equations (7.32) and (7.33) for equal value capacitors and
without using an extra amplifier for getting / = 10, two possible sets of relations and resulting
elements are as follows:

Setl: WithC,=C;=C h=10=C— C=410, b,= G,G;s, z,l=ﬁ=c;5(z\/ﬁ+c4) and
by=1=10C; = C, =1/10,G5 =20/21,G, =21/20

Set2: With(C;=C=Cb,=1C—>C=1,h=10=C}, =2 =G5(10+1+1) = G5 =
N2/12,6,=1=G,N2/12 5 G, =12/2

Element values for the normalized functions are in ohms and farads, respectively. De-
normalizing the filter section with @ = 277 x 3.2 krad/s and using an impedance scaling factor
of 103, value of the elements for the second set are as follows:

C,=C4=50nF, C, = 0.5 UF, R, = 0.118 kQ and R = 8.48 kQ

Figure 7.8(b) shows the PSpice simulated response of the HP filter. The filter’s output flattens
at 1.028 volts for an input voltage of 0.1 volt, providing a high frequency gain of 10.028. The
cut-off occurs at 3.19 kHz; a very close response to the design. A peaking occurs at higher
voltage due to the frequency dependent gain of the OA.

7.3.1 Power line communication: automatic meter reading

Automatic meter reading (AMR) is one of the most well-known applications of power line
communication (PLC). PLC is now considered an optimal solution to provide communication
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between a residential or industrial consumer and power distributers. However, the frequency
response of the electric grid for a certain consumer is different from any other consumer due
to various reasons; because of this reason, a system level solution is required.

The European regulatory committee responsible for allowing the communication
requirement (CENELEC) has provided five different frequency bands and stipulated the
maximum transmission and distribution levels when transmitting data over the power line.
The frequency range for the signal transmission of signals has been divided into five bands,
and the frequency range for the distribution company use and their licensees is from 9 kHz to
95 kHz. A fourth-order LP Butterworth filter having a cut-off frequency of 95 kHz have been
employed [7.3]. Though other circuit structures can be used, the multiple feedback topology
of Figure 7.6 was selected; two such stages may be connected in cascade.

From Table 3.1, location of poles for a fourth-order Butterworth filter are as follows:
510 = —0.38268 + 0.9238, s, , = ~0.9238 + j0.38268

Hence, the normalized transfer function for the two second-order stages will be as follows:

20
s2 +1.9576s+1

2.5
s +0.76536s+1

Hz(f)

Hl(’)

To get an overall dc gain of 5 (14 dBs), the numerators of the transfer functions were selected
as 2.5 and 2.0, respectively. Both the transfer functions are compared with equation (7.29)
and the elements are de-normalized with a frequency scaling factor of 95(2n) krad/s and an
impedance scaling factor of 1 k€. The resulting element values for the two sections are as
follows:

Ry = Ry = 3.135kQ, Ry, = 7.839 kQ, Cy, = 1.674 nF, Cy, = 68.1 pF

Ry = Ry = 1.277 kQ, Ry, = 2.554 kQ, Cy, = 1.674 nF, Cs, = 0.5132 nF

The simulated frequency response of the filter is shown in Figure 7.9, having a 3 dB frequency
of 93.1 kHz.

Another PLC module for the distribution of signals in the CENELEC band of frequencies
is available [7.4]. The module’s receiver signal path is shown in Figure 7.10. It consists of a
passive HPF with a cut-off frequency of 25 kHz, an active LPF with a cut-off frequency of
125 kHz, with two in-between programmable gain amplifiers (PGAs). The third-order passive
HPF with element values is shown in Figure 7.11(a). The third-order LPF introduces 6 dBs of
attenuation to keep the dc level at 1.65 V according to the specifications. For the third-order
active LP filter, a multiple feedback circuit as shown in Figure 7.6 is used. The value of poles
for a third-order Butterworth filter from Table 3.1 are as follows:

515 =—-0.5£70.866 and s; = —1.0
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-80
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[o] DB (V(10)/V(1))
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Figure 7.9  Magnitude response of a fourth-order low pass filter for power line communication.

Passive HPF Active LPF
PGA'1 PGA2
-6 dB in-band . . -6 dB in-band
25 kHz at gain steps gain steps 110 kHz at
0,9,19,32dBs 0,32 dB
-3dB -3dB

Figure 7.10 Receiver signal path for a PLC module [7.4].
Hence, the transfer function of the LPF with a dc gain of 0.5 (-6dB) will be as follows:

) 0.5 __ 05 1
HLP(S)_(52+S+1)(;+1) (j2+s+1)(5+1)

For the first-order LP section, the normalized elements will be R, = 1Q and C;, = 1 F. Using
equation (7.29), the normalized elements for the second-order section are R| = R; = 4Q, R, =
2Q, C, = 1F, Cs = 0.125 F. De-normalization with a frequency scaling factor of 125 x (27)
krad/s and an impedance scaling factor of 10° Q results in the following element values.

Ry=1kQ, C, = 0.12727 nF, R, = Ry = 4kQ, R, = 2kQ, C, = 0.12727 nF, C, = 0.159 nF
The third-order LPF is shown in Figure 7.11(b). The filter needs to remove signals having a

frequency above 110 kHz with a 6 dBs in-band attenuation. The simulated frequency response
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of the HPF and the LPF is shown in Figure 7.11(c) with a 3 dB frequency of 125.3 kHz, in
conformity with specifications.

G G,
—"VW—
180 Q

0.033 uF 0.033 uF

Lis{1mH R,180Q

Vi 4 kQ 4kQ

o AN —4—ANN\— 1 kQ Ve

(b) =

fo = 125 kHz!

-50

....................................................................................

-100 . : -
1.0 kHz 10 kHz 100 kHz 1.0 MHz
o DB (V(5)) x DB (V(51)) Frequency
(c)

Figure 7.11 (a) Passive high pass filter structure for Figure 7.10 [7.4]. (b) Third-order low pass filter.
(c) Responses of the third-order active low pass and passive high pass for CENELEC
module.
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7.4 Differential Input Single Amplifier Filter Sections

Single amplifier single-ended sections explained in Sections 7.2 and 7.3 are good examples
of efficient and economical implementation of second-order sections. However, there are
certain general constraints when using these sections, which include their inability to realize
complex conjugate zeros or their need for a specific choice of elements. It has been observed
that utilization of the differential nature of OAs increase the versatility of the filter section. In
the following sub-sections, we will discuss this nature in more detail.

7.4.1 Differential input single feedback biquad

Figure 7.12(a) shows an OA in differential mode with single feedback for realizing the same
range of transfer functions as that in the sections explained in Sections 7.2 and 7.3 [7.2]. The
open circuit transfer functions of the passive RC networks /V, and N}, are H,(s) and Hp(s),
respectively. With the open-loop gain of the OA being A, we get:

V;utzA(Vvl_ ‘/2) =A(H ‘/in_Hp V. )

z out

4

out

IVip) = HJ(H, + 1/A) = HJH, for A — (7.34)

If the poles of H,(s) and H,(s) are chosen in such a way that they cancel each other, the
synthesis of the transfer function resolves into the separate synthesis of two-port RC networks.
For the normalized second-order case, the following H,(s) can be realized using a number of
simple ladder structures, whereas the Hp(s) of equation (7.36) may be a bridged-T or twin-T
structure as explained earlier.

H(s) = N(s)/(s* + bs + 1) (7.35)
S +1/Q)s+1
H, () sS4 bs+1 730

For finite A, substituting equations (7.35) and (7.36) in equation (7.34), we get:

74 1 N(s)

ot (7.37)
V., 1+1/4
in RN LN P < s+1
Q A
This equation gives the effective selectivity or quality factor as:
Q= Q/(1+Q,/A) (7.38)

In equations (7.37) and (7.38), QP = 1/b, the pole-Q of the denominator from equation (7.36).
While using the bridged twin-T network of Figure 7.2(b) for ]—]p(s), the selected ele-

ment values are as follows:
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R =R,=R Ry=(RI2),C,=C,=C, Cy=2Cand R = (Rla)

This gives the transfer function of [-]p(s) as:

Vour _ N(s)

(7.39)
Vi 2 +(j+24)5+(1+2d)

From equation (7.39), expressions of the center frequency and quality factor, respectively, are
as follows:

o, =o,(1+24)" (7.40)
_ (#2091 (7.41)
a (24 +4/ A) 2a '

n

The small shift in the pole frequency given by equation (7.40) is easily corrected by a pre-
distortion of the twin-T design. Structure of the H, network needs to be in the form shown
in Figure 7.12(b); otherwise, the response functions will be restricted. The advantage of using
OA in differential mode is that it avoids increase in sensitivity due to interaction between the

two-port networks 7, and H,. Order of sensitivity of the overall network is mainly decided by
the choice of the network H,.

i

V2
A o]
i +
o—— H, +
+
Vout
Vin
5 _

R, C
ol |
Vi _ Ry, 'V,
a
o %o}

®)
Figure 7.12 (a) Differential input single feedback single operational amplifier biquad. (b) A preferred
RC two port network for realizing network H, shown in Figure 7.12(a).

https://doi.org/10.1017/9781108762632.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.008

Single Amplifier Second-order Filters

7.4.2 General differential input single OA biquad

The biquad realizations discussed in the previous sections have the restriction that there are no
positive real poles and zero for their transfer functions. To overcome this restriction, additional
single-ended infinite gain amplifiers are used. A more economical way to avoid this constraint is
to use a general differential input configuration as shown in Figure 7.13. Applying Kirchhoff’s
current law at the terminals V), and V), we get the following relations for obtaining the transfer
function [7.5].

Vo= Vid i+ Vo + (V, =V, ) 33=0 (7.42a)
Ve=Vid Jat Vi + (V= Vo .= 0 (7.42b)
Vouw = (V= V)4 (7.43)
Vp
Y, * Y;
[
Y, -
o—e A o
+ +
l +
Ya TVZ Y
Vin Vout
Yy,
o o

Figure 7.13 General differential input single operational amplifier biquad configuration.

The obtained transfer function for the general differential input single OA is as follows:

Vour _ Yo+ 0+ 3) =00+ 1+ 2.) -
Ve 330a* 3 +5)=0.(n+ 34 53)+ QLA+ 92+ 33) G+ 35+ 90)

When A — oo, the transfer function of equation (7.44) is considerably simplified as shown in
equation (7.46), provided the condition presented in equation (7.45) is satisfied.

Oat 2+ 90 =1+ 92+ 93) (7.45)
Vvout Ja— N
= (7.46)
I/in V3= e
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Equation (7.46) ensures that any real transfer function N(s)/D(s) can be realized from the
configuration shown in Figure 7.13.

Procedurally, the numerator and denominator are to be divided by a polynomial Q(s) with
simple negative real roots, which has order at least one less than that of M) or D(s). The
problem will then reduce to realizing the driving point admittances (y;, y3, y, and y.) using RC
elements. The rest of the driving point function y, and y, are obtainable using equation (7.45)
as follows:

V6=2=3=2) = 0.~ ) (7.47)
={D(s) = N(s)}/Q(s) (7.48)

Example 7.4: Realize the following BP transfer function using the configuration of Figure 7.13.

H(s)= (7.49)
s7+0.205+1.01

Solution: Selecting auxiliary polynomial Q(s) = (s + 1) and an order less than H(s), we get:

N(s) s s

Q) GaD) se1 OTFeT (7.50)
D(s) s> +0.2s+1.01 _ (18l
Q) (s+1) =(s+1.01) ===y~ (7.51a)
D(s)-N() —0.8s+1.01 2815

Q) (s+D) = (s+101) G T (7.51b)

Here, y, is an open circuit, y, y, and y, are a series combination of R and C elements and y;
and y, have parallel RC elements. The normalized element values from equations (7.50-51)
are as follows:

R,=1Q in series with C,= 1 F, R. = 0.5525 Q in series with C, = 1.81 F, R, = 0.3558 Q
in series with C, = 2.81 F, Ry = R, = 0.99 Q in parallel with C; = C, = 1 F, respectively.

In order to get the center frequency at 10%rad/s, the frequency is de-normalized with a factor of
1.01)7" x 10*. Further, an impedance scaling of 104 gives the following element values, which
are also shown in the filter circuit presented in Figure 7.14(a).

R,=10kQ, C,= 10.0498 nF, R = 5.525 kQ, C, = 18.19 nF, R, = 3.558 k2,
C,=28.24nF, Ry = R, = 9.9 kQ, and C; = C, = 10.0498 nF. (7.52)

Figure 7.14(b) shows the PSpice simulated magnitude and phase response of the BPF. The
obtained mid-band gain is 5.0. Center frequency f,= 1.595 kHz and a bandwidth of 318 Hz
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give the value of pole-Q as 5.017; this confirms the design parameter values. In the phase
response, a 0° phase shift occurs at 1.6 kHz as per design.

100d 1 P 600mV

400mV
0d +

200mV

>> : '
-100d - oV
100 kHz 1.0 kHz 10 kHz
12:Vp (10) + V10 Frequency
(b)

Figure 7.14 (a) Second-order band pass filter section using a differential mode operational amplifier
for Example 7.4. (b) Magnitude and phase response of the differential input single
operational amplifier band pass filter depicted in Figure 7.14(a).

Example 7.5: Design a BR filter with the following normalized transfer function using a
general differential input single OA biquadratic circuit.

(5)_N(s)_ s2+0.25
D(s)  s*+0.095+0.83
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Solution: Selecting the auxiliary polynomial Q = (s + 1), we get:

2
Mzﬂz(ﬁ-Olﬂ—l'zss —y,=s+0.25and 5 =1.25s/ (s +1).
Qs) s+1 1
2
Do) _ 5" +0.09s+0.83 =5+0.83— 1745 — y3=s5+0.83and y, =1.74s/ (s +1)
Q(s) s+1 s+1
D(s)—N . . .
()= NG) _0.095+058 _ < 049 — y,=0.58and y, =0.495/ (s +1)
Q(s) s+1 s+1

Admittances y,, y, and y, are a series combination of R and C elements, y, and y; are parallel
RC elements and y,, is only resistive. The normalized element values are as follows:

R =40Q,C,=1F R,=1724Q, R =05747 Q, C,= 1.74 F, R, = 0.8 Q, C, =1.25 F,
R, =2.0408 Q, C, = 0.49 F, Ry = 1.2048 Q and C; = 1 F

Frequency de-normalization by a factor of 0.837%- x 10%and an impedance scaling by 104 will

result in a notch frequency of (V0.25V/~0.83)x10* rad/s (873.1 Hz), a dc gain of 0.3012 and
a high frequency gain of unity with the following element values, which are shown in Figure

7.15.

R,=40kQ, C,=9.1104 nF, R, = 17.24 kQ, R, = 5.747 kQ,
C,=15.852nF, R, = 8.0 kQ, C, = 11.388 nF, R, = 20.408 kQ,
C, = 4.461 nF, R, = 12.048 kQ and C; = 9.1104 nF

12.048

Figure 7.15 Second-order band stop filter using a differential mode operational amplifier for Example
7.5. All capacitors are in nF and resistors in kQ.

Figure 7.16 shows the PSpice simulated magnitude and phase responses of the BR filter. Its
gain at dcis 0.3011(0.3012) and gain at high frequencies is 0.998 (1.0); notch occurs at 875.04
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Hz (873.1 Hz) and a peak gain of 7.14 occurs at 1.595 kHz (1.591 kHz). This response is very
close to the design.

| 0d7 ,800mV — -

-200d4{ 400 mV

>>
-400d- 0mV :
100 Hz 1.0 kHz 10 kHz
(o] Vp (10) vV (10)
Frequency

Figure 7.16 Magnitude and phase responses of the band reject filter for Example 7.5.

7.5 General Active RC Feedback Single Amplifier Biquad

In Sections 7.2 to 7.4, single amplifier biquad generation using OAs in single-ended mode
and in differential mode were discussed. Obviously, a large number of circuit configurations
are available and many more are likely to be found. Such circuits are selected for a particular
application depending on their performance characteristics. However, the criterion that is
very important for all circuits is the sensitivity factors with respect to the elements used. Study
of a general active RC feedback circuit is helpful in gaining an understanding of the factors
responsible for increase (decrease) in sensitivities. Such a study also helps in a systematic
generation of good quality single amplifier RC biquads. It can be seen that the circuits studied
in the previous sections were in effect special cases of such a general case.

Consider a general active RC single amplifier block configuration shown in Figure 7.17.
With Hj;being the transfer function corresponding to the output and input terminals 7 and j,
we get

Voue = AW WVoud Hip(s) = Hip (9} + A) [Vig{Hyy () = Hy,(5)}] (7.53a)
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With OA being ideal (infinite gain), the overall transfer function is obtained as:

_ Vo _ Ha (5)_H31(5)
H(s)_ Vi _Hsz(‘)_H4z(5)

1

(7.53b)

From equation (7.53b), the following two important inferences are obtained.

(a) For H(s) to be a second-order function, the RC network should also be second-order.

(b) Transmission zeros of the active RC network are determined by the feed-forward path,
whereas poles (natural frequencies) are set by the feedback path; this confirms an inference
already seen in the previous sections.

1

2 3 h
- RC A —0
+
Network
Vin Vout
o o

Figure 7.17 General active RC single amplifier configuration for biquad realization.

Theoretically, there is no problem in realizing a transfer function using the configuration
shown in Figure 7.17, but it requires a three-port RC network, which is rather involved. In
order to make the realization simpler, the network is broken into two-port RC networks as
shown in Figure 7.18. With transfer function Hl-j(s) = (Vi Vj) notation, output is obtained as
follows:

0
in RC1
1
——o0
J_ +
rd e
2
\%
Vi in RC2 out
0
o 0

Figure 7.18 General active RC single amplifier configuration from Figure 7.17 with two two-port
networks: RCI and RC2.

‘/out _ H2in _Hlin (754)
Ve (Hyg—Hy)+ (11 Als))

m
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1 (NZinDlin -N D2in)DIOD20

lin

_DlinDZin (NIODZO _NZODIO)

For A(s) nearing infinity (7.55)

Poles of the transfer function, from equation (7.55), are given by the following equation:
(N1gDsg = NyyDi) = 0 (7.56)

In order to get a second-order polynomial for getting only two roots in equation (7.56), it is
essential that the transfer functions H,, and H, are selected in such a way that the denominator
D,,and D, are same and cancel each other. Otherwise, the order of the polynomial will become
more than two. In fact, even selecting D, = D, is not sufficient to make the polynomial of
equation (7.56) a second-order one since practically there is always some mismatch between
the components of D,, and D,,. Therefore, it is advised to select either RC1 or RC2 as
frequency independent. (The same argument is valid for the configuration of Figure 7.12(a)).
Selecting RC2 (say) as a purely resistive network as shown in Figure 7.19, H,, = (k — 1)/k.
Hence, the poles are now determined from equation (7.57), which is obtained using equation

(7.56).

Hm—(kk%l)=0—>1vw—%1)w =0 (7.57)

In equation (7.57), if # = 1, poles of the realized transfer function depend on the numerator
polynomial of the negative feedback network in the same way as for the structure shown in
Figure 7.5 and Figure 7.12(a). For £ >1, some positive feedback is also applied which causes
enhancement in the pole -Q, the main RC feedback goes to the inverting terminal of the OA.
Hence, this structure is also called enbanced negative feedback (ENF) circuit.

0
o———|in RCI1
+ 1 O
A ——O

+ +

Vin 26— \V\WN—
R Vout
% R(k-1)

o T ’o)

Figure 7.19 Simplified structure from Figure 7.18 while ensuring that it is a second-order active RC
network.

Instead of making RC2 resistive, RC1 network can be made resistive with RC2 as a
frequency dependent structure. Such a configuration is called an enhanced positive feedback
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(EPF) circuit. The EPF configuration is shown in Figure 7.20. With H,, = 1/k, poles are
obtained from equation (7.54) using the following relation:

R 1 R(k-1)

m 2 + Vout
O0——in RC2

Figure 7.20 Enhanced positive feedback circuit obtained from Figure 7.18.

Special cases of these structures can be obtained with 4 = 1 as well. Figures 7.21(a) and (b)
show the modified forms of Figures 7.19 and 7.20, respectively, with % = 1; it is essential that
these forms are studied to understand the limitations of similar structures.

O—in Vout
1 Vout —O
—O

(a) (b)

Figure 7.21 (a) Infinite gain negative feedback (NF), and (b) unity gain positive feedback (PF)
configuration.

7.6 Coefficient Matching Synthesis Technique

Before taking up specific cases of general RC feedback discussed in the previous section, a
significant method of network synthesis needs to be formalized, though we are already using a
method without mentioning it as a procedure.

In the coefficient matching synthesis technique, a network is available for which the transfer
function is determined by the conventional method. Coefficients in the transfer function are
obviously in terms of the elements used in the filter structure. The coefficients of the transfer
function are then equated to the function to be realized. This results in a set of simultaneous
algebraic equations in terms of normalized (or sometimes de-normalized) values of the
components. In general, such equations are lesser in number than the number of elements
used. This allows assumption of values for some of the elements, which affects the performance,
sensitivity, and component spread. Therefore caution is necessary.
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As a technique, the coefficient matching method is particularly useful for second-order (or
at most third-order) sections, and has been extensively used. Obviously, the choice of the initial
filter structure decides the usefulness, advantages or limitations of the filter; many choices are
available for any particular type of filtering action. For example, a large number of circuits
can be used in order to obtain a passive RC network in the ENF and EPF configurations.
At the same time, as mentioned earlier, the selection of elements or certain element ratios
(depending upon the degree of freedom in design) also affects the filter performance. The
technique becomes difficult for higher orders, hence, it is seldom used.

7.7 Sallen and Key Biquad

The Sallen and Key biquad circuit, introduced in 1955, was probably the first set of circuits
that could realize almost all types of second-order responses [7.6]. Figure 7.22 shows one of
these circuits realizing a LP response. Incidentally, it happens to be an ENF circuit where
the passive circuit RCI is realized by R;, R,, C}, and C,. Obviously, a different combination
of these elements or some other passive structure may give another type of response. The
transfer function of the circuit in Figure 7.22 can be obtained using equation (7.54) or (7.55).
However, a direct application of KCL at nodes 1 and 3 gives the transfer function more easily,
as shown here. While considering OA as ideal:

Vi=Vyand V, = {(k— IRV, (7.59)

Vi (Gy+5C) =V, Gy=0 (7.60)

V(G + Gy +sC) -V, G-V, G-V,

out

sC; =0 (7.61)

Vout

Figure 7.22 Sallen and Key second-order low pass filter section.

Substituting V; from equation (7.60) and V; and V, from equation (7.59) in equation (7.61)
and simplifying, we get:
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Vour _ (k1 k-1)(GG, I CC,) 7.62)
Vin 24 (G, +G2)_ G, +G162
G k-DG | GG,

Comparing equation (7.62) with the standard format of a second-order LP section shown
again in equation (7.63) and applying the coefficient matching technique:

by, @F
H = £ 2 (7.63)
Lr (X) s +(a)o /Q):+a)f
The following relations are obtained.
2 GGy
, G, (7.64)
v
0, _G+G, G 5Q= (k-1)(C.C6\G,) (7.65)
Q o (k-1)C, (k=1)(G,+G,)C, - G,C,
}le =k/(k—1) (7.66)

From equation (7.66), it is obvious that the dc gain /), shall will always be more than unity.
It is not a serious problem but shows one of the limitations connected with dc gain. The
issue can be resolved by cascading an amplifier, though this may increase the cost of the filter.
Alternatively, if it is necessary to have a dc gain less than that obtained as such, only a resistive
potential divider at the input or output can serve the purpose, provided the divider’s loading
effect is taken care of.

There are three design parameters, /), ®, and Q against four passive elements, G, G,,
Cy, and G, and coefficient # which affects /7, as well as Q. Hence, there are options available
for pre-selecting some element values or their ratios. To make the equations suitable for
integration, we can select C; = C, = C, then, equations (7.64)—(7.66) modify as:

0, =(GG,1C?) (7.67)
Q=(k-1)(GG,)" I{(k-1)G, +(k-2)G,} (7.68)
Further, if G, = G, = G, @, = GIC (7.69)
Q= (k= 1)/(2k-3) (7.70)

Example 7.6: Design an LP Chebyshev second-order filter having a ripple width of 0.5 dB
and a corner frequency of 3.18 kHz using the Sallen and Key circuit. It should have maximum
gain of unity.
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Solution: From Table 3.4, the pole location for the desired specifications is as follows:
s=-0.7128 ij1.004
This gives the normalized transfer function of the second-order filter as:

H(s)

_1.5161x0.944
s2 +1.42565+1.5161

(7.71)

In the numerator of equation (7.71), 0.944 comes from the fact that for an even order
Chebyshev filter, the dc gain drops from normalized unity by the ripple width; which is 0.5
dB in this case.

With @, =+/1.5161 =1.2313, equation (7.71) gives Q = 1.2313/1.4256 = 0.8637

1.0 V-

..........................

V;

n R5(9.5311 kQ)

8.121 kQ Vour
Ry

10 kQ (10 kQ)

11.87kQ 1

(@)
2.0 V- -

0V

_Peak Gainiof Unty with|DC Gain =D.944. |
10 Hz 100 Hz 1.0 kHz
oV () +V(5) Frequency
(b)
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120 mV

80 mV

40 mV:

oV (5) Frequency
(d)

Figure 7.23 (a) Sallen and Key low pass circuit with element values for Example 7.5. (b) Second-order
low pass Chebyshev filter response using the Sallen—Key circuit shown in Figure 7.23(a).
(c) First-order filter section component in a moving air vehicle model. [with permission
from N. Chattaraj et al. [7.7]]. (d) Simulated response of the filter employed with moving
air vehicle.

Selecting normalized C = 1, equation (7.67) gives G, x G, = 1.5161. Further, with G, = G, =
G =1.2313, and using Q = 0.8637, the value of 4 is obtained from equation (7.70) as:

0.8637 = {(k—1)/(2k—3)} — k=2.18738

The value of the dc gain obtained from equation (7.66) is 1.842, and in order to get a dc gain
of 0.944 and a maximum gain of unity, a potential divider at the output as shown in Figure
7.23(a) is used with a ratio of R, and Ry as 1: 0.9513.

De-normalizing the elements with a frequency scaling factor of 3.18 kHz and an impedance
scaling factor of 104, the element values are:

C,=C,=5nF, R =R, =8.121 kQ, R= 10 kQ, R(k— 1) = 11.873 kQ, R, = 10 kQ and
Ry=9.513 kQ
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The circuit in Figure 7.23(a) shows these element values, and the simulated response is shown
in Figure 7.23(b). The pass band edge frequency is 3.21 kHz and the ripple width is 0.51 dB,
both of which are in very close agreement with the design. The effect of the passive potential
divider is also clear in the two responses, bringing the final gain to unity.

The component spread is an important consideration in the selection of filters while
implementing in integrated form. Another important issue is the sensitivity expressions and
values for the passive and active elements used with respect to the design parameters. In the
present case, the component spread is ideal as far as R, R,, C; and C, are concerned. R, and
Ry depend on the amount of reduction in the filter gain (if reduction is required) but the value
of % decides the final component spread and it also affects the sensitivity of Q as will be shown
here.

Using equations (7.64) and (7.66), the sensitivity of @, and /alp is found to be:

1 o
5% =, 5P
R, R, Cp, C, 5 2Ok

P

o 1
R e, =0 S = =053

From equation (7.65), evaluation of the sensitivity of Q is a bit involved, but for the present
case, without losing any generality, from equation (7.70):

Q_kd0Q__ k  _
%= ok (k—1)(2k-3) 134

which means that for the present design, with # = 2.187, Q will change 1.34% for a 1% change
in the value of Q. The value of Q-sensitivity is not alarming but the condition will become
worse if % reaches values near 1.5 for which the denominator in Q-sensitivity will increase
alarmingly.

7.7.1 Micro air vehicle: a case study

Flapping wing micro air vehicles (MAVs) technology has attracted considerable attention in
recent times. Advances in micro-electromechanical systems have led to the development of a
number of new miniature devices such as infrared sensors and cameras, and MAVs can act
as platform for these micro sized systems. Piezoelectrically actuated flapping wing MAVs is
an emerging technique. Hence, MAVs based on piezoelectrical actuators are now subjects of
intense study. In one such study [7.7], it was suggested that an active filter based unipolar high
voltage driver be used to obtain the desired result. Analysis and synthesis of a Chebyshev active
LPF was done for this purpose.

The average flapping wing frequency of insects, that were observed for inspiration, lies
below the 50 Hz range. Hence, in this case, a flapping frequency range of 30-50 Hz was
considered for designing a driver of the piezoelectric actuator.
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The evaluated specifications for the LPF in this case were as follows: maximum gain = 1,
minimum allowable gain = 0.99, pass band edge frequency ®, = 271(50) rad/s. Hence, the
required order of the Chebyshev filter was three for which the following was the normalized
transfer function.

1.
H(s)= L7 (7.72)
(s+1.006)(s” +1.006s +1.76)

The Sallen—Key circuit shown in Figure 7.22 was selected for the second-order section with
the following values for the de-normalized elements: R, = R, = 10 kQ, C, = 633 nF, C, = 91
nF. The circuit was followed by an RC circuit shown in Figure 7.23(c), which represents the
first-order component of the transfer function; this models the capacitance of the piezoelectric
bimorph actuator in series electrical connection.

The simulated response of the filter is shown in Figure 7.23(d).

7.8 Delyiannis-Friend Biquad

The classic and widely reported second-order filter circuit given by Deliyannis [7.9] and Friend
[7.10] (D&EF circuit) is an excellent example of an EPF configuration. It is convenient to study
the circuit first without positive feedback and later introduce the feedback. An example of a
second-order BP section was illustrated in Section 2.9 of Chapter 2. It is basically the same
as a D&F circuit, except for a small difference in the formation of input resistance, which
obviously reflects in some difference in the expressions of center frequency @, and pole-Q with
the D&F circuit shown in Figure 7.24.

C 4
v 2

£G;
AN -4 Vou
—0
(1-9G,

Figure 7.24 Deliyannis and Friend’s second-order band pass filter circuit.
Applying KCL at terminals 1 and 2, respectively, we get:
Vi(gG, + G, — gG, + 5C; + sC,) = V;, 0G| — V,sC, =V sC, =0 (7.73)

V,(sCy + Gy) — VisCy— V.

out

G,=0 (7.74)
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For the OA open-loop gain being finite:
Vo= AV5=V)). (7.75)
If the effect of finite A is to be investigated, equation (7.75) will be used; otherwise, considering

OA as ideal, V5 = V, = 0. With OA as ideal, equation (7.73) and (7.74) are simplified and

combined to obtain the transfer function as:

% G, /C
;ut:_ (C?(Jré)l): e (7.76)
in 2ot g G
GG GG
Comparing this equation with the standard format of a second-order BP section of equation
(7.77):
17/7 (w /Q)5
Hyp (s)=5——— (7.77)
w () 5* +((/J0 /Q)5+w3
The coefficient matching technique gives the relations of important parameters as:
w; =(G,G, 1 CC,) (7.78)
C +C " 1
&=MG2 —-Q=(CC)" (G 1G,)* (¢ +C,) (7.79)
QL GG
by, =1 + CICYQ (7.80)

Ordinarily, equations (7.78)—(7.80) are used to find element values for the given specifications
@, Q and 4, However, without losing generality, a good choice is C; = C, = C, which
modifies these equations as equations (7.78)—(7.80), respectively.

0} =GG,IC* »w,=(GG,)" IC (7.81)

Q=1%(G,1G,)” (7.82)

by, =28Q° (7.83)

From equations (7.78)—(7.80), the expressions of the elements are found in terms of the
specifications:

R,=2QI®,0, R, =1/2Q@,C, and g = b, 2Q? (7.84)
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Equation (7.84) shows the high resistance spread as (R,/R,) = 1/4Q?% the mid-band gain
is proportional to Q?. These characteristics were reflected in Example 2.7; for Q = 10 and
effective g = 0.5, resistance spread was 200 and mid-band gain was 100. If the mid-band gain
is to be reduced, a smaller value of coefficient g has to be used.

7.8.1 Enhanced-Q circuit

It is observed that resistance spread can be considerably reduced when the D&F circuit is
modified in the form of an EPF configuration as shown in Figure 7.25. Denominator of its
transfer function can be formed using equation (7.58). However, there is an alternate method
which uses the application of KCL as earlier; with OA taken as ideal:

Vy=V3 =V (k=1)/ k (7.85)
Vi (gG, + Gy — gG, +5C, +5C,)) = Vi Gy = VasCy =V, sC =0 (7.86)
V, (sC, +G,)-VisCy =V, .G, =0 (7.87)

Vout
—O

Figure 7.25 Deliyannis and Friend’s circuit with Q-enhancement in ENF configuration.

Simplifying the aforementioned three equations, we get the transfer function.

Gks | C,
H(s)=- £ (7.88)
R T TS
Once again, we can select C} = C, = C, and the transfer function will simplify as:
H(s)=—1z7 g/eles '« (7.89)
P Gi(1-k) )+£G2 5+G€2
C C C
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From equation (7.89), the expression for center frequency remains the same; expression of the

enhanced Q(Q,), and gain A(},) are obtained as follows:

0,=(GG,)*IC (7.90)
Vs

&2(1_/6‘)(;—1-"262%@:1/2 (61 /G,) (7.91)

Q, C 1 (1-£)(G, 1 G,)+1

p o kG (7.92)

“ (1-k)G, +2G,

Expression of Q, in equation (7.91) and 4, in equation (7.92) can be written in terms of the
quality factor Q from equation (7.82).

_ Q
Q= 2Q2 (1-£)+1 793
b= gikl —2¢kQ,Q (7.94)
(1-k)+—
2Q

Equations (7.90) to (7.94) can be used to find the expressions or relations for element values.
However, before discussing these relations, we need to determine the constraints, which can
also be helpful in the design of the filter. Since coefficient #> 1 (when 4 = 1, it does not remain
EPF form of the circuit), from equation (7.93), we get that:

Y2
2Q° (1—k)<1—>Q<(¥) (7.95)

To keep the resistance ratio small while forming the potential divider, the value of 4 should not
be large, as even with a small value of Q, sufficiently large values of Q, can be realized, as can
be seen from equation (7.93). From equation (7.82), it can be observed that a small value of Q
means a small ratio between R, and R, resulting in smaller resistance spread.

The first step in the filter design is to assume a small arbitrary value for 4; then, equation
(7.95) is used to find the upper limit for Q. A value for Q is assumed which is less than its
upper limit and equation (7.82) is used to get a ratio between G| and G, and their normalized
values. Since the expression for @, remains unchanged in the EPF case, equation (7.90) is used
to give a nominal value of C for a selected nominal value of G, and G,.

Equation (7.93) now gives the value of £ for a specified value of Q, and the assumed value of
Q. The obtained value of # gives resistance values for the potential divider and equation (7.94)
gives the value of coefficient ¢ for a specified value of 4,.
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Example 7.7: Design a BPF having a central frequency of 20 krad/s, pole-Q = 10 and mid-
band gain of 10 employing an enhanced Q circuit. Repeat the design for pole-Q = 20 and a
mid-band gain of 20.

Solution: Selecting arbitrarily # = 3, a small value, from equation (7.95):

1%
Q<(?) =1.414

Hence, we select Q = 1.2, and from equation (7.82):

1

Q=1.2=5,/(Gl/Gz)—>for62=1,G1 =5.76 (7.96)

Next, using equation (7.90), for normalized center frequency = 1

(GG,)=C=24 (7.97)
For Q, = 10, applying equation (7.93) with Q = 1.2:

1.2
=10= ‘ — £=1.30555 (7.98)
@ 2%1.2%1.2*(1-4)+1

And then, using equation (7.94), we get:
/7e =10=2¢x 1.30555 x 1.2 x 10 = g=0.31915, (1 — g) = 0.68085 (7.99)

Applying a frequency scaling of 20 krad/s and an impedance scaling of 10 kQ, element values
are:

R=10kQ, R(k—1)=3.0555kQ, ﬁ=5.4395k9, lRl =2.55kQ, R, =10kQ, C, = C, =12nF
g —£

(7.100)

Using these element values, the circuit shown in Figure 7.25 is simulated and its response is
shown in Figure 7.26. Its center frequency is 3.1623 kHz (19.877 krad/s); a bandwidth of
313.22 Hz gives Q, = 10.096 and the mid-band gain 4, is 10.007.
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20V

1.0V

ov
2.0 kHz 3.0kHz 5.0 kHz
+V(5) ¢ V(52) Frequency

Figure 7.26 Simulated response of the band pass filter, with theoretical Q= 10 and Q= 20, using the
enhanced Q circuit shown in Figure 7.25. Input to the filters was 0.1 V.

Not only is the obtained parameter very close to the design, the resistance spread is less

than 4.

Using the same procedure for the second case with Q, = 20 and 4, = 20, the obtained value
of k=1.3264 and g = 0.3141. With capacitor values remaining the same, resistance values are:

R=10kQ, R(k—1)=3.2638kQ, R 5506610, lRl
g —&

The simulated response is also shown in Figure 7.26. The center frequency is the same with
realized pole-Q = 20.18 and mid-band gain = 20.

=2.5312kQ, R, =10kQ (7.101)
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Practice Problems

7-1  Design and test a second-order BP filter using a single OA and a bridged-T network in its feedback path.
Its center frequency is to be 25 krad/s, mid-band gain should be of 20 dBs and pole-Q of 2.5.

7-2  (a) Derive two-port y parameters for the circuit shown in Figure P7.1.

(b) Design and test a second-order LP filter using a bridged-T RC network of Figure 7.3(a) in the feedback
path of an OA, and the RC network of part (a). Cut-off frequency of the filter is 100 krad/s and the dc

gain 0.5.
G G
__¢C
o o)
Figure P7.1

7-3  Repeat Problem 7-2 (b) for a maximally flat LP filter for which dc gain is to be unity, and the gain drops
by I dB at 10 krad/s.

7-4  (a) Derive two-port parameters for the circuit shown in Figure P7.2.

(b) Design and test a second-order HP filter using the bridged-T RC network in the feedback path of an
OA, and the RC network of part (a). The cut-off frequency of the filter is 50 krad/s and the high
frequency gain is 0.5.

Figure P7.2
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7-5

7-6
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7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-15

7-16

7-17

7-18

Single Amplifier Second-order Filters

Design and test a second-order BP filter using a single OA and a bridged twin-T network in its feedback
path. Its center frequency is to be 10 kHz, mid-band gain 5 and pole-Q 20.

Using multiple feedback with a single OA, design and test a second-order LP filter with a dc gain of 6 dBs
and a cut-off frequency of 100 krad/s.

Repeat Problem 7-6 fora | dB drop occurring at 50 krad/s; the filter should have a dc gain of 12 dBs.

Using multiple feedback with a single OA, design and test a second-order HP filter with a high frequency
gain of unity and an attenuation of 2 dB at a frequency of 60 krad/s.

Using multiple feedback with a single OA, redesign the BPF with specifications in Problem 7-1.
Realize and test the following transfer function using the configuration of Figure 7.13.

x10%s
H(s)= 2 . 3 8
$T+2X10°s+10

Design and test a BR filter for the following transfer function using the general differential input single OA
configuration shown in Figure 7.13.

2
+I.

H(s :725 44

s“+0.I1s+1.21

De-normalize with a frequency scaling factor of 50 krad/s and a suitable impedance scaling factor to bring
all components in a range compatible with integration.

Redesign and test H(s) of Problem 7-11, if the constant term in the numerator is 0.25.

Design a second-order AP section using the configuration as in Problem 7-11 such that its phase shift
becomes —180° at 25 krad/s.

Design a Sallen and Key LP second-order filter with the following specifications:

Ripple width in the pass band = | dB, pass band edge frequency = 100 krad/s.
Test the circuit with OA having a very large bandwidth, as if OA is ideal.

Design and test a maximally flat Sallen and Key LP circuit for f,= 1.59 kHz and Q= 2. Modify the circuit
to get dc gain of unity. Find the incremental sensitivities of @, and Q with respect to the passive elements.

(a) Replace the passive components in Figure 7.24 by the circuit shown in Figure P7.3, and show that it
realized a second-order LP filter. Obtain the expressions of the parameters (a) considering OA as ideal and
(b) as non-ideal.

Design and test a circuit obtained in problem 7-16 (a) with cut-off frequency of 20 krad/s and Q= 2.5
using OA 741. Justify the difference in the peak magnitude value with the value of Q.

(a) Design and test the D&F circuit of Figure 7.24 with the following specifications:
@, =10 kHz, Q=10 and mid-band gain=5

(b) Find the incremental sensitivities of the parameters @, and Q with respect to the passive elements.
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7-19  Redesign and test the BP filter of Problem 7-18 using the Q-enhancement circuit of Figure 7.25. Compare
the component spread with that in Problem 7-18.

Vout
G, N
G,
Vin Gl 1 G3
A AN——02

Lo
Figure P7.3

7-20  Replace the passive components in Figure 7.24 by the circuit shown in Figure P7.4, and show that it
realizes a second-order HP filter. Obtain the expressions of the parameters (a) considering OA as ideal
and (b) as non-ideal.

G,

s

Figure P7.4

7-21  Design and test the circuit obtained in Problem 7-20 (a) with a cut-off frequency of 20 krad/s and Q=2.5
using OA741. Justify the difference in the peak magnitude value with the value of Q.

7-22  Repeat Problem 7-19 using an enhanced-Q D&F circuit with increased value of Q as 20. Also find the
sensitivities of the parameters with respect to the elements.
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