
3.1 Introduction

Filters are generally classified in the frequency domain in terms of the amplitude and phase 
response of their transfer function; though sometimes they are expressed in the time domain 
as well. The typical characteristics of an ideal LPF (low pass filter) in terms of its variation of 
attenuation with frequency shown in Figure 1.6(a) is redrawn in Figure 3.1. The transition of 
the filter from being a pass band to being a stop band occurs abruptly at W = 1.

It is well known that the transfer function of an ideal filter, in which transition between 
pass band and stop band is instant, is physically realizable only by using an infinite number of 
elements [3.1]. For a practically realizable filter, the transfer function is always expressed by a 
real rational function H(s), which is a ratio of polynomials in complex variable, s = (s + jw) as 
already given in Section 1.2.1 and repeated here as equation (3.1).
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In a real rational transfer function, coefficients ai and bj are real numbers and the degree of 
the numerator and the denominator is m  and n, respectively. Moreover, the degree of the 
denominator, n, should be more than or equal to the numerator degree, m, for the physical 
realization of the transfer function using finite number of elements to be feasible. The condition 
n ≥ m is necessary because ideal filters are non-causal and, therefore, cannot be implemented 
practically. 

To realize a practical form of an LPF, shown as approximated LPF characteristics using 
a dotted line in Figure 3.1, values of the coefficients ai and bj in equation (3.1) are to be 
determined. The next step will be to find the topology of the filter and values of element to 
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64 Continuous Time Active Analog Filters

be used, applying the coefficients of equation (3.1). Not only are different methods available 
for the realization of an arbitrary transfer function, but different forms of approximating 
the magnitude or phase of the transfer function are also available. Some classical methods of 
approximating the magnitude function are discussed in this chapter.

Pass band

� �H(0)

� �H j( )�

Stop band

0 1 �

Figure 3.1 Magnitude characteristics of an ideal normalized low pass filter shown by solid line, and 
that of a practical or real filter shown by dotted line.

The procedure of magnitude approximation which begins by comparing an ideal LPF 
mathematically, with that of an approximated response is discussed in Section 3.2. One of the 
most commonly used approximations, namely the maximally flat Butterworth approximation 
and the design of a Butterworth approximation based LPF is studied in Section 3.3. Also 
included here is the utilization of a circuit structure in the form of a ladder, called a lossless 
ladder, containing only inductors and capacitors. Equal-ripple approximation is another 
very important class of magnitude approximation, whose sub-classifications – Chebyshev 
approximation, inverse Chebyshev approximation and Cauer approximation – have been 
found to realize filter sections rather economically. In the rest of the chapter, we will describe 
the development of prototype LPFs using these approximations. Examples have been included 
of filters of average level order (n ~ 5,6) filters. An example of a maximally flat pass band with 
finite zeros, the significance of which shall be seen later, is also included. 

3.2 Magnitude Approximations

Response of the LPF shown by the dotted line in Figure 3.1 represents an approximation to 
the ideal LPF in terms of the magnitude of the transfer function. In the pass band region, 
gain of the transfer function is close to the ideal value at low frequencies; the gain reduces 
to a low value in the stop band region with a finite slope. In practice, the dotted line of the 
approximated response can take shapes other than the monotonic drop. Other important 
types of gain variation are discussed in brief in the following sections. Approximation can also 
be performed for the phase response of the ideal filter which shall be discussed in Chapter 
4. In all the magnitude approximations of LPF, the transition band is finite instead of the 
abrupt transition from the pass band to stop band of the ideal filter. This means that there 
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will be some deviation from the ideal, and hence, some error in the response. However, the 
amount of intentionally made error, shown in Figure 3.2, can be bounded, as the response 
has to remain restricted within the shaded region. The maximum allowable attenuation in 
the pass band is αmax and the minimum allowable attenuation in the stop band is αmin. The 
transition band separating the pass and stop band extends from w1 to w2. Depending on the 
specifications of the LPF in terms of αmax, αmin, w1 and w2, the next step is to find the topology 
of a network and the element values which satisfy these specifications. It is important to note 
the term normalized angular frequency W = (w/wc); by convention, this means normalized cut-
off frequency Wc = 1. 

a max

Pass band

0 dB

Attenuation

a min

Stop band( )a

Angular frequency, w
w1 w2

Figure 3.2 Approximated low pass characteristics lie within the shaded region.

Initially, an LP prototype transfer function is considered with all transmission zeros (zeros 
of the numerator) at infinity, that is, N(s) = 1; this is also commonly known as all pole function. 
A number of solutions can be obtained from the general amplitude function of the transfer 
function. Let us consider the magnitude squared transfer function: |H(jw)|2:
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Here, |H(jw)|2 is an even rational function for which |H(jw)| must be close to |H(j0)| within 
the frequency range 0 ≤ w ≤ w1 in the pass band and close to zero for w ≥ w2 in the stop 
band. Using suitable frequency normalization with respect to pass band edge frequency w1, the 
normalized pass band edge frequency shall be W = (w/w1). Hence, the pass band range is up to 
W = 1, and since N(s) has been selected as unity, |H(j0)| = 1 for all values of n. The function 
|H(jw)| now modifies into a normalized function |H(jW)|. For a mathematical understanding, 
it is preferable to express |H(jW)|2 in terms of another rational function |K (jW)|, such that: 
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From equation (3.4), the following relation is obtained:  

 |K(jW)|2 = {1/|H(jW)|2} – 1 = |D(jW)|2 – 1 (3.5)

Expression for the nth order magnitude squared function modifies from equation (3.3) as 
given in equation (3.6):
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Therefore, the nth order function, |Kn (jW)|2 of equation (3.5) will transform to the following:

|Kn(jW)|2 = B2nW2n + B2n−2W2n−2+ ....... + B4W4 + B2W2 (3.7)

This means that the squared magnitude of the characteristic function is a polynomial in W. It 
is the nature of |Kn(jW)|2 which give different forms of approximations for the ideal LPF (and 
as a consequence for other types of filter sections also) like maximally flat, Chebyshev, inverse 
Chebyshev or Cauer type.

3.3 Maximally Flat – Butterworth Approximation

A maximally flat response means that at W = 0, not only is its slope (or its first derivative)  zero, 
but the maximum number of derivatives are also equal to zero [3.2]. This stated condition 
requires that in equation (3.7), the maximum derivatives of Kn are zero, as shown in equation (3.8):
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It means that we are required to make B2n – 2 = …… = B4 = B2 = 0, resulting in the following 
expression, where ε is a characteristic term (a significant term effecting approximation):

|Kn(jW)|2 = B2nW2n = ε2W2n (3.9)

Hence, for a maximally flat response, the magnitude of the squared nth order transfer function 
is expressed as:        
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Response given by equation (3.10) is shown in Figure 3.3. Its magnitude decreases 
monotonically, and at W = 1, the loss becomes 10 log10(1 + ε2) dB, as its magnitude drops 
from |Hn(0) | to |Hn(0) |/(1 + ε2)0.5. Therefore, the expression for the maximum specified loss 
of αmax in the pass band shall be as follows:

αmax = 10 log10(1 + ε2) (3.11)

This gives an important relation for the characteristic term ε as:

( )max
½0.110 1αε = −  (3.12)

In the normalized magnitude form of the LP function with maximum flatness at dc (W = 0), 
when ε = 1, it is also called the Butterworth approximation; the characteristics being very similar, 
the terms maximally flat and Butterworth approximation are sometimes used synonymously.

� �H (0)n

� �H j( )�n

0

Normalized frequency - �

� �H (0)n

(1 + )e 0.52

1

Figure 3.3 Maximally flat normalized low pass response.

For the Butterworth approximation if ε = 1, attenuation at the edge of the pass band, 
obtained from equation (3.11), is simply:

αmax = 3 dB (3.13)

Substituting ε = 1 in equation (3.10), the nth order frequency de-normalized Butterworth 
response is obtained using the following relation, as mentioned here:

( ) 2
2

1
(1 )n nH jw

w
=

+
 (3.14)

As all pole responses were selected in the beginning with N(s) = 1, the Butterworth response 
has zeros only at w = •. The response, shown in Figure 3.4, has the following important 
properties as well.
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i. Magnitude of the transfer function at w = 0 is unity for all values of n.

ii. For all values of n, magnitude  1/ 2nH =  at W = 1(w = wc), corresponding to the 
attenuation of 3 dBs.

iii. In the stop band, for w > wc (W > 1), |Hn| decreases at the rate of 20n dBs per decade.

1.0

0.707

0,0

� �H j( )ωn

20 ndB/dec

w
c w

Figure 3.4 Butterworth response having loss of 3 dB at cutoff frequency wc.

The transfer function H(s) of equation (3.1) will have n poles. In order to  find poles with the 
Butterworth approximation w is replaced by  (s/j) in equation (3.14). Hence, the poles can 
be obtained by the roots in the left half-plane of the following relation:

D(s)D(–s) = 1 + (–s2)n (3.15)

These poles have been found to be located on a semicircle in the s-plane whose value (location) 
can be evaluated from the following:

2 1 2 1
sin cosk

k k
S j

n n
π π− −   = − ±        (3.16) 

The pole locations for k = 1, 2, …, n (up to n = 8)  are shown in Table 3.1. Coefficients of 
the Butterworth polynomial D(s) can be obtained from the following recursive relation, with 
b0 = 1.

1
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 (3.17) 

Table 3.2 shows the calculated values of the coefficient bk up to n = 8. Coefficient values  
in Table 3.2 and for any larger values of n can be calculated from equation (3.17).
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Table 3.1 Pole locations for the Butterworth responses

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

–0.7071068 –0.5000000 –0.3826834 –0.8090170 –0.2588190 –0.900968 –0.1950903

±j.7071068 ±j0.8660254 ±j0.9238795 ±j0.587785 ±j0.9659258 ±j.4338837 ±j0.9807853

–1.0000000 –0.9238795 –0.3090170 –0.7071068 –0.2225209 –0.5555702

±j0.3826834 ±j0.9510565 ±j0.7071068 ±j.9649279 ±j0.8314696

–1.0000000 –0.9659258 –0.6234898 –0.8314696

±j0.2588190 ±j.7818315 ±j0.5555702

–1.0000000 –0.9807853

±j0.1950903

Table 3.2 Coefficients of the Butterworth polynomial ( )
1

0

n
n k

n k
k

B s s b s
−

=

= + ∑
n b0 b1 b2 b3 b4 b5 b6 b7

2 1.000 1.4142136

3 1.000 2.0000000 2.0000000

4 1.000 2.6131259 3.4142136 2.6131259

5 1.000 3.2360680 5.2360680 5.2360680 3.2360680

6 1.000 3.8637033 7.4641016 9.1416202 7.4641016 3.8637033

7 1.000 4.4939592 10.0978347 14.5917939 14.5917939 10.0978347 4.4939592

8 1.000 5.1258309 13.137071 21.846151 25.688355 21.846151 13.1370712 5.1258309

3.3.1 Design of low pass Butterworth filter

For designing an LPF (low pass filter), specifications are given in different ways. For example, 
along with the value of cutoff frequency wc (for which ε = 1), αmin is given beyond the stop 
band corner frequency w2. Alternatively, specification can also be given in terms of αmax up to 
the corner frequency of the pass band w1 and αmin beyond the stop band corner frequency w2, 
as shown in Figure 3.2. In order to get a suitable topology and the values of elements used in 
it, pole locations for the Butterworth response or coefficients of the Butterworth polynomial 
are to be obtained using Table 3.1 and 3.2, respectively. However, to get either of the values, 
the order n is to be determined first; the other variable ε has already been given a value of unity 
for the Butterworth response – if ε ≠ 1 for the general maximally flat response, it has to be 
calculated from the specifications.

At the pass band corner and stop band corner, respectively, we can write:

( )2 2
max 10 110log 1 nα ε w= +  (3.18)

( )2 2
min 10 210log 1 nα ε w= +  (3.19)
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From equations (3.18) and (3.19), we get the following expressions: 

( )max0.12 2
1 10 1n αε w = −  (3.20)

( )min2 2 0.1
2 10 1n αε w = −  (3.21)

Dividing equation (3.21) by equation (3.20), we get:

min

max

0.1
2

2 1 0.1
10 1

( / )  
10 1

n
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αw w −=
−

  (3.22)

Taking log on both sides of equation (3.22), the expression for the degree n is obtained as 
follows:

maxmin 0.10.1

2 1

log (10 1) / (10 1)

2log( / )
n

αα

w w

 − − =  (3.23)

Solution of equation (3.23) yields the value of n which should be able to satisfy the given filter 
specifications. In almost all cases, it is not possible to obtain integers for the calculated value of 
n – n then has to be rounded off to the next higher integer value for obvious reasons.

To utilize the large amount of data available for the Butterworth response, in terms of 
pole locations and transfer function for any order n of the filter [1.2], it is useful to find the 
normalized cutoff frequency CBw  at which attenuation is 3 dB (Table 3.1 and Table 3.2 are 
small subsets of such information). For α = 3 dB, replacing w1 by CBw  in equation (3.18) 
means: 

( )2 2
CB3 10log 1 nε w= +  (3.24)

or  wCB = [(100.3 –1)/ε2]1/2n (3.25)

Equation (3.25) is an important relation between Butterworth and maximally flat responses.

3.3.2 Use of lossless ladder

In a large number of cases while realizing active filters, the starting point is a passive structure. 
Though different passive structures are available, one of the most used structures is a doubly 
terminated lossless ladder. Hence, the topic of lossless ladders and their utilization  is important 
and a matter of serious study. In this section, we will discuss the basics of lossless ladders in 
order to understand their use in developing an all-pole LPF structure. In its most simple form, 
a terminated lossless ladder is as shown in Figure 3.5(a). The ladder consists of only inductors 
and capacitors connected in a ladder form with input and output terminating resistances. This 
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ladder structure has been studied extensively for its utilization in realizing passive filters with 
different magnitude approximations like Butterworth, Chebyshev, or Cauer.  Element values 
for the ladder structure for all the common approximation methods have been calculated 
and made available for filter orders starting from n = 2 to higher n values. Figure 3.5(b) and 
(c) show the structure of a lossless ladder. The element values for Butterworth approximated 
filters of order n = 2 to 8 for the ladders shown in Figure 3.5 are presented in Table 3.3. 
The last element in Figure 3.5(b) and (c) differs depending on if n is odd or even for all pole 
LPFs. The ladder will be either minimum capacitor or minimum inductor when n is odd as 
the number of inductors will be one more than a capacitor or vice versa. When n is even, the 
number of inductors and capacitors will be equal and their total will be equal to n as a doubly 
terminated ladder is a canonic structure using the minimum number of dynamic elements.

VS

+

–

R = 1 �in L2

C1 C3

R = 1 �out

VS

+

– C2

L1 L3

1 �

1 �

VS V1

+
+

–

R in

Rout V2

+

––

Loss less ladder

(a)

(b)

(c)

Figure 3.5 (a) Basic structure of a doubly terminated lossless ladder; (b) and (c) Two normalized 
forms of lossless ladders.

In the normalized low pass doubly terminated ladder, the terminating resistors Rin = Rout = 
1 W and the frequency normalization is assumed to be done with respect to its 3 dB frequency 
wc. If  wc  is not at 3 dB frequency, a different de-normalizing frequency is to be used, which is 
given by equation (3.25) as discussed earlier.          
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Table 3.3 Element values for a doubly terminated lossless ladder for an all-pole LPF using  Butterworth 
approximation

n C1 L2 C3 L4 C5 L6 C7 L8

2 1.414 1.414

3 1.000 2.000 1.000

4 0.7654 1.848 1.848 0.7654

5 0.6180 1.618 2.000 1.618 0.618

6 0.5176 1.414 1.932 1.932 1.414 0.5176

7 0.4450 1.247 1.802 2.000 1.802 1.247 0.445

8 0.3902 1.111 1.663 1.962 1.962 1.663 1.111 0.3902  

n L1 C2 L3 C4 L5 C6 L7 C8

Example 3.1: Find the order of the maximally flat LPF which will satisfy the following 
specifications. Also find the corresponding transfer function.

αmax = 1dB, αmin = 40dB, w1 = 2000 rad/s, and w2 = 6000 rad/s.

Solution:  To find the order of the filter and its transfer function, equations (3.12) and (3.23) 
are used for calculating ε and n, respectively.

ε2 = (100.1 –1) = 0.25892 Æ ε = 0.50884

0.1 40 0.1 1log (10 1) / (10 1)
4.807

2 log(6000 / 2000)
n

× × − − = =

which is rounded to the next integer, n = 5.
For the fifth-order Butterworth filter, the values of the pole locations from Table 3.1 gives 

the following frequency-normalized transfer function.

( )
( )( )2 2

( ) 1
( ) 1 0.618036 1 ( 1.6186 1)

N S
H S

D S S S S S S
= =

+ + + + +
 (3.26)

5 4 3 2
1

 
3.236 5.236 5.236 3.236 1S S S S S

=
+ + + + +

 (3.27)

For using equations (3.24) and (3.25), which are valid for the Butterworth response (and not 
for a maximally flat response), S shall be replaced by (jwCB). Hence, using equation (3.25), the 
normalized cutoff frequency is as follows. 
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wCB = {(100.3 –1)/0.25892}0.5 × 5 = 1.144

The de-normalized cutoff frequency is given as:

wc = wCB × w1 @ 1.144 × 2000 = 2288 rad/s       

Hence, equations (3.26) and (3.27) can be modified to the following for the de-normalized 
frequency

( )
( )( )2 2 2 2

1
 

2288 1414 2888 ( 3701.98 2288 )
H s

s s s s s
=

+ + + + +
 (3.28)

5 3 4 7 3 10 2 13 16
1

 
7.408 10 2.741 10 6.2714 10 9.11478 10 6.27018 10s s s s s

=
+ × + × + × + × + ×

 (3.29)  

Obviously, the next step is to find an active network topology containing the suitable 
active devices and the values of the passive elements used. One of the most commonly used 
architecture employs operational amplifiers (OAs) as the active device along with resistances 
and capacitances (forming the active RC structure). A large variety of procedures are available 
which lead to the active RC topology and the passive element values for the transfer function 
given in the form of equations (3.26) to (3.29). These procedures will be discussed later after 
studying other forms of approximations.

In this section, we make use of Table 3.3 and the lossless ladder of Figure 3.5. For n = 5, 
if the minimum inductor configuration of Figure 3.5(b) is used, the structure’s normalized 
element values from Table 3.3 will be as follows:

C1 = C5 =  0.618F, C3 = 2.0 F and L2 = L4 = 1.618H

De-normalization of the elements is done by using a frequency scaling factor of 2288 rad/s and 
an impedance scaling factor of 1 kW. The de-normalized element values are as follows:

C1 = C5 =  0.2701 mF,C3 = 0.8741 mF, L2 = L4 = 0.707 H and Rin = Rout = 1 kW. 

The passive ladder shown in Figure 3.6 is simulated and the magnitude response is shown 
in Figure 3.7. At 318.018 Hz (1998.97 rad/s), attenuation was found to be 0.997 dB and 
at 955.85 Hz (6008 rad/s), attenuation was 41.9 dBs – an excellent response. The cutoff 
frequency was found to be at 364.15 Hz (2288.9 rad/s) against the theoretical value of 2288 
rad/s. The phase response of the passive filter is also shown in Figure 3.7; it has a phase shift 
of 180o at the cutoff frequency.
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+ +

– –

1 k� 0.70717 H 0.70717 H

1 k�Vin Vout

0.2701 Fm 0.8741 Fm 0.2701 Fm

Figure 3.6 Fifth-order Butterworth doubly terminated de-normalized lossless ladder for Example 3.1.

Active realization of this passive fifth-order filter shall be taken up in Chapter 10 using the 
cascade technique. 

Magnitude
Phase

1 2V (4) VP (4)
10 Hz 100 Hz 1.0 kHz 10 kHz

Frequency

0 d

–250 d

–500 d
>>

500 mV

250 mV

1 2

0 mV

Figure 3.7 Simulated response of the fifth-order low pass Butterwoth filter shown in Figure 3.6 for 
Example 3.1.

3.4 Equal-ripple Approximations

It is often desirable to obtain a faster attenuation rate beyond the pass band corner frequency 
– as fast as is practically and economically feasible with lesser number of elements. In the 
maximally flat Butterworth response, the order of the filter is n and hence, the number of 
elements used becomes large in order to achieve larger attenuation. Hence, to improve on 
the value of n, the condition of being maximally flat in the pass band can be dropped. The 
magnitude characteristic is allowed to ripple between a series of maxima and minima. Ripples 
can be obtained only in the pass band or stop band, or in both, resulting in following further 
classifications.
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3.5 Chebyshev Approximation

The Chebyshev approximation of a magnitude function is obtained when ripples of equal 
height appear in the pass band of the transfer function along with a sharp decrease in the gain 
beyond it. To get such an approximation, the characterizing function of equation (3.5) is 
selected in the normalized frequency range of 0 ≤ W ≤ 1 as:

( ) ( ) ( ){ }2 2 2 2 2 1cos h  cos hnK j C nε ε −Ω = Ω = Ω  (3.30)

Once again, ε is a real constant which is less than 1 and the Chebyshev polynomials are 
evaluated from the following recursive relation:

( ) ( ) ( )1 22n n nC C C− −Ω = Ω Ω − Ω  (3.31)

where C0(W) = 1 and C1(W) = W and for W ≥ 1, Chebyshev polynomial is given as follows:

Cn(W) = cos h{n cos h–1(W)} (3.32)

The amplitude response of the Chebyshev approximation can be obtained from equations 
(3.2), (3.4), and (3.30). For example, Figure 3.8 shows such an approximation for n = 4 (not to 
the scale), where ripples are shown for an even value of n. For odd values of n, the ripple height 
remains the same depending on the value of ε; however, at W = 0, the function magnitude 
|H(0)| = 1 and for even value of n, |H(0)| = (1 + ε2)–½.

� �H(0)

� �H j( )�

� �H(0)

For -oddn

For -evenn

(0, 0) �( / )w w1 ( / )w w12
1

1

(1 + )e2 –1/2

Figure 3.8 Magnitude function of a normalized Chebyshev approximation for order n = 4.

3.5.1 Low pass Chebyshev filter design

In order to design a low pass Chebyshev filter, we proceed like the Butterworth case, with w1 
and w2 being the pass band corner frequency and stop band corner frequency, respectively. 
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At the pass band corner frequency w1, use of equations (3.4), (3.10), and (3.30) gives the 
following expression for maximum attenuation:

( ){ }2 2
max 110log 1 nCα ε w= +  (3.33)

Since at w = w1 (W = 1), ( )2
1 1nC w = , from equation (3.33), we get: 

max0.12  (10  1)αε = −  (3.34)

and at normalized w2, that is, at 2

1

w
w

 
  

 or s

p

w
w

 
 
 

,  αmin being the minimum attenuation reached 

in stop band, its expression is obtained in the same way as equation (3.33) was obtained: use 
of equation (3.19) gives the expression for minimum attenuation in the stop band αmin as:

( ){ }2 2
min 2 110log 1 /nCα ε w w= +  (3.35)

Use of equation (3.32) modifies the expression for αmin as follows:

αmin ={10log{[1 + ε2 cosh2 {n cosh–1(w2/w1)}] (3.36)

Substituting ε2 from equation (3.34) in equation (3.36), we get:

min

max

0.50.1
1 2

0.1
1

10  1
cosh  cosh

10   1
n

α

α
w
w

−     −=      −  
 (3.37)

which gives the expression for the order n for the Chebyshev case as follows:   

maxmin 0.11 0.1

1
2 1

cosh (10 1) / (10 1)

cosh ( / )
n

αα

w w

−

−

 − − =  (3.38)

However, a more convenient form of expression is given in equation (3.39) if cosh function is 
replaced with the natural log function:

maxmin
½0.10.1

2 ½
2 1 2 1

4(10 1) / (10 1)

( / ) (( / ) 1)

n

n

l
n

l

αα

w w w w

 − − ≅
 + − 

 (3.39)

The value of n obtained from equation (3.39) has to be rounded up to the next integer. For 
order n, analysis has given the location of the left half pole the required transfer function as: 

sk = sk + jWk (3.40)
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where,

( )2 1
sin h( )sin

2k
k

a
n

πs
−

= −  (3.41a)

(2 1)
cos h( )cos

2k
k

j a
n

π−Ω =   k = 0, 1, 2 (2n – 1) (3.41b)

a = (1/n) sinh-1 (1/ε) (3.42)

It is observed that the poles lie on an ellipse in the complex frequency s plane and substituting 
ε and n in equation (3.42) and equation (3.41) gives the location (values) of poles. There are 
extensive tables available that provide the location of poles for various combinations of ε and 
n. Table 3.4 is a subset of such a table for ε = 0.5dB, 1.0 dB, and 2.0 dB only up to n = 6.

In Table 3.4, the second-order factor for the Chebyshev function in terms of α and b, that 
is, (s2 + 2αs + α2 + b2) is given. It results in the pole frequency wο = (α2 + b2)1/2 and the pole 
quality factor Q = (α2 + b2)1/2 /(2α). However, in general, the pole frequency and the pole 
quality factor in terms of the real and imaginary parts of the pole are given as follows:

( ) ( )½2 2 ,  / 2ok k k k ok kQw s w w s= + =  (3.43)

Table 3.4 Pole locations for the Chebyshev approximation, s = (–α + jb)

N  αmax = 0.5 dB αmax = 1 dB αmax = 2 dB

α b α b α b
1 2.8628 0 1.9625 0 1.3076 0

2 0.7128 1.0040 0.5489    0.8951 0.4019 0.8133

3 0.3132 1.0219 0.2471 0.9660 0.1845 0.9231

0.6265 0 0.4942 0 0.3689 0

4 0.1754 1.0163 0.1395 0.9834 0.1049 0.9580

0.4233 0.4209 0.3369 0.4073 0.2532 0.3968

5 0.1120 1.0116 0.0895 0.9901 0.0675 0.9735

0.2931 0.6252 0.2342 0.6119 0.1766 0.6016

0.3623 0 0.2895 0 0.2183 0

6 0.0777 1.0085 0.0622 0.9934 0.0470 0.9817

0.2121 0.7382 0.1699 0.7272 0.1283 0.7187

0.2898 0.2702 0.2321 0.2662 0.1753 0.2630

Example 3.2: Determine the pole location for the Chebyshev response for n = 3 and αmax = 
0.5 dB.

Solution: From equation (3.34): ε2 = (100.05 – 1) = 0.122, ε = 0.3493  
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The value of the parameter a from equation (3.42) is obtained as follows:

a = (1/3) sinh–1(1/0.3493) = 0.5913

which gives sin (ha) = 0.6264 and cos (ha) = 1.18. The location of poles is obtained from 
equation (3.40) and (3.41) as follows:

s1 = –0.6264,s2,s3 = –0.3132± j1.0219 (3.44a)

Therefore, the denominator of the transfer function shall be as follows:

D(s) = (s + 0.6264)(s2 + 0.6264s + 1.1424) (3.44b)

Example 3.3: Find the order of the Chebyshev LPF for the following specifications. Also find 
the corresponding transfer function.

max min 1 2
rad

0.5 dB,  40 dB, 2000 and 6000 rad / s 
s

α α w w= = = =  (3.45)

Solution: Using equation (3.39), order n is evaluated as follows:

½4 0.05

2 ½

4(10 1) / (10 1)
 3.6

(6000 / 2000) (6000 / 2000) 1)

n

n

l
n

l

 − − = =
 + − 

 (3.46) 

This needs to be rounded up to the next integer as 4. 
Pole locations can be found as in Example 3.3 or directly using Table 3.4, which are as 

follows:

s1,s 2 = -0.1754  ±  j1.0163 and s3,s4 = -0.4233 ± j0.4209 (3.47)  

 Hence, the normalized transfer function shall be given as follows:

( ) ( )2 2
0.3377

 
0.3508 1.0636 ( 0.8466 0.3563)

H s
s s s s

=
+ + + +

 (3.48)

For an even-order transfer function H(0) = H(1) = αmax = 0.5 dB or 0.944 (normalized), the 
numerator in H(s) = (0.944 × 1.0636 × 0.3563) = 0.3577. The obtained transfer function can 
be realized by direct form synthesis or as a cascade of two second-order non-interactive filter 
sections. However, its frequency level needs to be de-normalized with respect to 2000 rad/s. 
The de-normalized transfer function will be as follows:

( ) ( )
2

2 2 2 2
0.3577  2000

 
0.3508 2000 1.0636 2000 ( 0.8466 2000 0.3563 2000 )

H s
s s s s

×=
+ × + × + × + ×

 (3.49)
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As in the case of a Butterworth approximated filter, the doubly terminated lossless ladder is 
also a starting point for active filters when the Chebyshev approximation is used. However, in 
this case as the corner frequency depends on the ripple width, separate tables are needed for 
element values for different values of ripple widths. With reference to the lossless ladders of 
Figure 3.5(b) and (c), Table 3.5 is a small subset containing some commonly used data. For 
filter requirements not appearing in Table 3.5, we can either consult literature [1.2] or element 
values can be derived. It is important to note that normalized Rin =1W, but it is not equal to 

Rout for even n; its expression is given as { }2 2
out in 1  2 2 (1 )R Rε ε ε= + ± + .

Table 3.5 LPF element values for Chebyshev approximated response

n C1 L2 C3 L4 C5 L6 C7 L8  Rout

(a) Ripple width = 0.1 dB

2 0.84304 0.62201 0.73781

3 1.03156 1.14740 1.03156 1.00000

4 1.10879 1.30618 1.77035 0.81807  0.73781

5 1.14681 1.37121 1.97500 1.37121 1.14681 1.00000

6 1.16811 1.40397 2.05621 1.51709 1.90280 0.86184 0.73781

7 1.18118 1.42281 2.09667 1.57340 2.09667 1.42281 1.18118 1.00000

8 1.18975 1.43465 2.11990 1.60101 2.16995 1.58408 1.94447 0.87781  0.73781

(b) Ripple width = 0.5 dB

3 1.5963 1.0967 1.5963 1.0000

5 1.7058 1.2296 2.5408 1.2296 1.7058 1.0000

7 1.7373 1.2582 2.6383 1.3443 2.6383 1.2582 1.7373 1.0000

(c) Ripple width = 1 dB

3 2.0236 0.9941 2.0263 1.0000

5 2.1349 1.0911 3.0009 1.0911 2.1349 1.0000

7 2.1666 1.1115 3.0936 1.1735 3.0936 1.1115 2.1666 1.0000

L1 C2 L3 C4 L5 C6 L7

3.6 Inverse Chebyshev Approximations

Instead of a maximally flat response in the pass band, having equal ripples in it enables us to 
realize an active filter having the same specification with a lesser order network; hence, an 
equal ripple response is more economical than a flat response. It is expected that equal ripples 
in the stop band structure may further improve response realization. Such an approximation 
is known as an inverse Chebyshev approximation. Further, if there are equal ripples in both the 
pass band and the stop band responses, it is known as an elliptic or Cauer approximation. First, 
considering the inverse Chebyshev approximation, we can see that allowable attenuation at the 
edge of the stop band is αmin. It is obvious that this may serve no useful purpose for further 
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reduction in αmin with frequency, as shown in Figure 3.9. For this kind of approximation, 
its magnitude function |Hn(jW)| is given by the following relation using equations (3.4) and 
(3.30):

( ) 2
2 2
1

| |
1 1/ (1/ )

n
n

H j
cε

Ω =
 + Ω 

 (3.50) 

where its stop band edge frequency Ws is normalized to 1 as shown in Figure 3.9. The 
significant difference between the inverse Chebyshev and the Chebyshev function is that the 
frequency normalization in the inverse Chebyshev case is done with respect to the stop band 
edge frequency (ws or w2), whereas normalization was done with respect to the pass band edge 
frequency (wp or w1) in the Chebyshev approximation. Since  Cn(1) = 1 for all values of n, the 
magnitude squared function at W = 1 is given as follows: 

( ) ( ) ( ) ( )½2 2
2

1
| 1 | 1 / 1

1 1/
n nH j H j ε ε

ε
= → = +

+
 (3.51)

(1, 0)

� �H j( )wn

(0, 0)

e/(1 + )e2 0.5

� = 1S �

Figure 3.9 Magnitude function variation in a normalized inverse Chebyshev approximation.

The magnitude given by equation (3.51) is the upper limit of the inverse Chebyshev function in 
the stop band extending from W = 1 to •, as shown in Figure 3.9. The nature of the magnitude 
of the ripples in the stop band is the same as it was in the pass band of the Chebyshev function. 
The number of maxima and minima are also equal to the order of the inverse Chebyshev 
function as in the pass band. To find the nature of variation of magnitude in the pass band, 
investigation has to be done at W = 0 or 1Ω .

As –1(1/ ) 2 (1/ ) for 1n n
nC Ω Ω Ω    (3.52) 

{ }
2

2 2 2 2 2 22 1

1 1 1
( )

1 / ( 2 ) 1 ( / )1 1/ (2 )(1/ )
n n n nn n k

H j
εε

−−
Ω ≅ = =

+ Ω + Ω Ω+ Ω
 (3.53)
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where Wk = (ε2n–1)1/n (3.54)

The nature of equation (3.53) is the same as that of the maximally flat function of equation 
(3.10), which means that pass band of the inverse Chebyshev response is a maximally flat type 
of response.

3.6.1 Design of an inverse Chebyshev filter

In the previous section, it was shown that for the inverse Chebyshev response, ripples in the 
stop band extend from W = 1 to ∞, where W = 1 corresponds to the edge of the stop band and 
the function remains maximally flat in the pass band. This means that for an LPF, attenuation 
specifications will be as shown in Figure 3.10, where αmax is the allowable attenuation in the 
pass band; the attenuation in the stop band has to be at least αmin. Hence, the attenuation (in 
dB) given by the following equation (3.55) can be used. 

      A = –20 log|H(jW)| (3.55)

a min

a(dB)

Pass band Stop band

a max

�p � = 1s �

Figure 3.10 Attenuation characteristics of a low pass inverse Chebyshev function.

The equation gives the minimum value of attenuation, αmin as follows:

αmin = –10 log|H(jW)|2 = 10 log(1 + 1/ε2) (3.56)

It gives the expression for the constant ε as:

min
10.1 2 (10  1)αε −= −  (3.57)
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As in Figure 3.10, limit of the attenuation is αmax at the edge of the pass band Wp. Hence, using 
equation (3.50), we get the expression for αmax in terms of Wp and the de-normalized pass band 
edge frequency as given here.

( ){ } ( ) ( )max0.12 2 2 2
max 10log 1 1/ 1/ 1/ 10 1n p n pC C αα ε ε = + Ω → Ω = −  

 (3.58)

Substituting ε from equation (3.57) in equation (3.58),

max

min

0.1
2

0.1
10 1

(1/ )
10 1n pC

α

α
−Ω =
−

 (3.59) 

As Wp < 1 and equation (3.59) is applicable for the pass band, use of equation (3.30) for the 
value of 2( )nC Ω  gives:

min

max

0.1 ½
1

0.1
(10 1)

cosh cos h (1/ )
(10 1)pn

α

α
− − Ω =  −

 (3.60)

Solving for the order of the function n,

maxmin
½0.11 0.1

1

cosh (10 1) / (10 1)

cos h (1/ )p
n

αα−

−

 − − =
Ω

 (3.61) 

If the de-normalized pass band edge frequency is W1 rad/s and the stop band edge frequency is 

W2 rad/s,  1

2
p

 ΩΩ =  Ω 
, then and equation (3.61) can be modified as:

maxmin
½0.11 0.1

1
2 1

cosh (10 1) / (10 1)

cos h ( / )
n

αα−

−

 − − =
Ω Ω

 (3.62)

Equation (3.62) is the same as that for the Chebyshev function given in equation (3.38); this 
means that for the same specifications, the order of the inverse Chebyshev function will be 
the same as that for the Chebyshev response. Value of the parameter ε will also be the same; 
however, a major difference between the two responses is that the frequency normalization 
is done with respect to the stop band edge frequency WS  in the inverse Chebyshev function.

To find the transfer function of the inverse Chebyshev function, either an appropriate 
Table like 3.4 can be used, or the location of poles and zeros needs to be determined as follows.

The magnitude squared function of equation (3.40) can be expressed as follows:

( ) ( )
( )

2 22
2 2

( )(1/ )
( )1 (1/ )

n
n

n s j

z s z sC
H j

p s p sC
ε

ε = Ω

−ΩΩ = =
−+ Ω  (3.63)
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Hence, zeros are found in the stop band for W > 1, when ( )2 1/  nC Ω  is expressed through 
trigonometric functions, and equalized to zero, that is, ( )2 1/ 0n kC Ω = , or:

cos n cos–1(1/Wk) = 0 (3.64) 

Equality in equation (3.64) is valid when k is odd (it equals 1 when k is even). Then, with ϕk 
= n cos–1 (1/Wk), we get:

cos nϕk = 0 when nϕk = k(π/2). (3.65)

Equation (3.65) gives 

cos–1 (1/Wk) = ϕk = kπ/2n  (3.66)

Therefore, zero frequencies are obtained as follows:

Wk = sec(kπ/2n) for k = 1, 3, 5, ..., n (3.67)

We will now find the pole location of the inverse Chebyshev function. It can be observed 
that the denominator of equation (3.63) is the same as that for the Chebyshev function, with 
a difference that W is now replaced by (1/W). This means that to find the pole location for 
the inverse Chebyshev function, we can first determine the Chebyshev poles using equations 
(3.40)–(3.42) and then take its reciprocal. However, the value of ε to be used shall be the one 
obtained for the inverse Chebyshev function using equation (3.47). It is observed that the 
pole quality factor, Q for the inverse Chebyshev remains the same as that for the Chebyshev 
function.

Example 3.4: Find the order of the inverse Chebyshev filter for the following specifications. 
Also find the corresponding transfer function.

max min 1 21 dB,  40 dB, 2000rad/s and 6000 rad/s. α α w w= = = =

Solution: By calculation, the order n of the filter is 3.36; this can be approximated to 4. 
Zeros of the transfer function shall be found using equation (3.67) with Wzk = sec(kπ/2 × 

4). Hence, for k = 1,

Wz1 = sec(π/8) = 1.08239 and for k = 3, Wz2 = sec(3π/8) = 2.6131 (3.68a)

The de-normalized value of the zeros is as follows: 

1 1 2 26000 6494.34rad/s  and 6000 15678.7 rad/sz zz z= × Ω = = × Ω =  (3.68b)
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The first step to finding the pole values is to find the pole of the Chebyshev function with ε 
obtained using equation (3.47) as follows:

ε = (100.1×40 – 1)–1/2 = 0.01 (3.69)

Using equation (3.42),

( )11
 sin h 1/ 0.01 1.32458

4
a − = =  

 (3.70)

This yields sin h a = sin h 1.32458 = 1.74733 and cos h a = cos h 1.32458 = 2.0132
Hence, the real parts of the pole can be obtained as follows:

s1 = –sin ha × {sin(1/4)(π/2)} = –1.74733 sin (π/8) = –0.66867 (3.71a)

s2 = – sin ha × {sin(3/4)(π/2)} = –1.6143 (3.71b)

s3 = – sin ha × {sin(5/4)(π/2)} = –1.6143 (3.71c)  

s4 = – sin ha × {sin(7/4)(π/2)} = –0.66867 (3.71d)

The imaginary components can be obtained from equation (3.41b) as:

Wk = jcos ha × cos(2k –1)(π/2n)

W1 = j2.0132 cos (π/8) = j1.8599, W2 = j2.0132 cos(3π/8) = j0.7704

W3 = j2.0132 cos (5π/8) = –j0.7704, W4 = j2.0132cos(7π/8) = –j1.859 (3.72)

For the Chebyshev function, if we know the value of the real and imaginary parts of the pole, 
its magnitude and the quality factor shall be given as follows:

( ) ( )½2 2
0 0 and / 2k k k kC k kQs sΩ = + Ω = Ω  (3.73)

Then, the pole location for the inverse Chebyshev response case, pk = xk + jyk is given by:

2 2
( )
( )

k k
k

k k

j
p

s
s

− Ω=
+ Ω

 (3.74) 

This gives the magnitude and quality factor for the inverse Chebyshev response as follows:

( ) ( )½2 2
okIC IC1/  and k k k k kCp x y Q Q= + = Ω =  (3.75)
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Using equations (3.73)–(3.75), we get the following parameters:

( ) ( ){ } ( )
½½ 2 ½2 2 2

01 1 1 0.66867 (1.8599) 3.90646 1.9764sΩ = + Ω = − + = =   (3.76a) 

( ){ } ( )
½2 ½2

02 1.6143 (0.7704) 3.19948 1.7887Ω = − + = =  (3.76b)

( ){ }½2 2
03 02 04 011.6143 ( 0.7704)  and Ω = − + − = Ω Ω = Ω  (3.76c, d)

01 02
1 2

1 2

1.9764 1.7887
 1.47786, 0.554

2 2 0.66867 2 2 1.6143C CQ Q
s s

Ω Ω= = = = = =
× ×

, (3.77a, b)   

02 01
3 2 4 1

1 2
   and  

2 2C C C CQ Q Q Q
s s

Ω Ω= = = =  (3.77c, d)

1 1
1 2 2 2

1 1 01

0.66867 1.8599
 0.17117 0.47611

j j
p j

s
s

− Ω − −= = = − −
+ Ω Ω

  (3.78a)

s
s

− Ω − −
= = = − −

+ Ω Ω
2 2

2 2 2 2
2 2 02

1.6143 0.7704
  0.50455 0.2408

j j
p j   (3.78b)

s − Ω − +
= = = − +

Ω Ω
2 2

3 2 2
02 02

1.6143 0.7704
 0.50455 0.2408

j j
p j   (3.78c)

− +
= = − +

Ω4 2
01

0.66867 1.8599
0.17117 0.47611

j
p j  (3.78d)

Ω = + = + =2 2 ½ 2 2 ½
01IC 1 1 ( ) {(.17117) (.47611) } 0.5059x y   (3.79a)

Ω = + =2 2 ½
02IC {(.50455) (.2408) } 0.55906   (3.79b)

Ω = Ω Ω = Ω03IC 02IC 04IC 01IC,   (3.79c, d)

Instead of following the steps from equations (3.74) to (3.79), the pole location for the 
inverse Chebyshev function can  also be found by taking the inverse of the pole locations of 
the Chebyshev response obtained from equations (3.71)–(3.73), while using the value of ε 
obtained using equation (3.47); the quality factors remain the same. 

To obtain the transfer function of the inverse Chebyshev response, the pole-pair is associated 
with the zero nearer to it. Hence, the transfer function is obtained as follows:
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( ) { }{ }2 2 2 2
1 3

2 2 2 203IC01IC
01IC 03IC

1IC 3IC
 

z zs s
H s

s s s s
Q Q

+ Ω + Ω
=

   ΩΩ+ + Ω + + Ω  
  

( )( )2 2

2 2

1.1757 6.8283

( 0.3423 0.2559)( 1.0091 0.31255)

s s

s s s s

+ +
=

+ + + +
 (3.80) 

Since the calculation of poles and zero was done in the normalized form with normalization 
done with respect to the stop band edge frequency, the transfer function is also to be de-
normalized with respect to it. Finally, the filter can be realized by using any of the cascade or 
direct form synthesis procedures. If we wanted to realize the filter as two second-order sections, 
it can be done by using two notch filters. Since notch filter realization shall be studied later, 
this transfer function shall also be taken up later.

3.7 Cauer or Elliptic Approximation

The use of Chebyshev or inverse Chebyshev approximation result in an economical or optimal 
filter section rather than a filter with maximally flat response. It was expected that equal ripples 
in both the pass band and the stop band will further decrease the required order n of the filter 
section for the same specification; this assumption was indeed shown to be correct by William 
Cauer [3.1]. Such an approximation, shown in Figure 3.11, is called a Cauer approximation 
or elliptic approximation. As the solutions for this approximation lead to elliptic functions that 
are not easy to solve, exhaustive tables and design graphs are used instead of solving the elliptic 
functions.

Attenuation

adB

amin

amax

�
Z2 � � = 1

Z1 p �S �p1 �p2 �

Figure 3.11 Variation of attenuation for a typical Cauer or elliptic response.
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In the previous magnitude approximations, different expressions were assigned to the 
term |K (jW)| of equation (3.4) so that the pass band would be maximally flat, or have equal 
ripples in the stop band or pass band. To have equal ripples in both the frequency bands, the 
characteristics function K(S) is selected to be a ratio of polynomials whose poles and zero lie 
on the imaginary axis of the s plane. For K(S) to be such a new function of En(S) of order n, let 
En(S) = N(S)¢/D(S)¢. Then equation (3.4) can be written as:

( )2 2 2( ) 1/ 1n nH j Eε Ω = + Ω 

( ) ( ) 2
( ) ( )

( ) ( )
D j D j

D j D j N j N jε
Ω − Ω′ ′=

Ω − Ω + Ω − Ω′ ′ ′ ′
 (3.81)

In equation (3.81), ε is multiplied with En(S) as its value is not unity in maximally flat and 
equal ripple approximations, instead of being unity in case of Butterworth approximation.

This means that the poles of En(W) will be the zeros of |Hn(jW)|.  Analysis of the function 
assumes that frequency is normalized at the edge of the pass band, that is,  Wp = 1and  En(W 
= 1) = 1. Then, maximum attenuation at the pass band edge from equation (3.81) shall be:

( )2
max 1010 log 1α ε= +  (3.82)

This equation gives the same expression for ε which was obtained for the maximally flat or 
the Chebyshev approximation of equations (3.11) and (3.33), respectively. Further, in order 
to have equal ripples in the stop band (including at the stop band edge frequency Ws with 
attenuation of αmin, it is required that |En| = ±F. Hence, in the stop band, the expression of the 
minimum attenuation shall be:

αmin = 10 log10(1 + ε2F2) (3.83)

Substitution of ε from equation (3.82) in equation (3.83) results in the expression for F which 
is a familiar expression for the maximally flat as well as Chebyshev response vide equations 
(3.23) and (3.39), respectively, in connection with the evaluation of the filter order n.

3.7.1 Design of Cauer filters

The first step in the design of a Cauer filter is to find its order from the same four specifications: 
αmax, αmin, Wp, and Ws. While finding n has been rather straightforward and simple in the 
approximation methods discussed so far, for the Cauer approximation, is the calculations 
become quite involved and requires solution of elliptic functions. One way out from this 
complexity is by using  the fact that, invariably, the value of n obtained through calculations 
is not an integer and, therefore, the next higher integer value is selected. This approximation 
amounts to a bit of over-designing; however, it is customary that the given values of the 
specifications can be marginally changed. It allows using a lesser complex graphic process 
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in which n is obtained from a set of curves drawn for the variation of En with respect to Ws. 
However, the approximation also requires finding an expression for En  that needs to be a 
rational function meeting the requirements of the given specifications. Alternatively, we can 
use the following simpler method [3.3].

From the given specifications, a modulator constant q is calculated from the following 
relation:

q = u + 2u5 + 15u9 + 150u13 (3.84a)

Here, { }
2 ¼

2 ¼
1 (1 )

2(1 (1 )
k

u
k

− −=
+ −

 and the selectivity factor,

k = Wp/Ws (3.84b)

The next step is to find the discrimination factor D from the following relation:

( ) ( )maxmin 0.10.110 1 / 10 1D αα= − −  (3.85)

Then, the order of the elliptic filter n is obtained from the following relation: 

n = {log 16D/log(1/q)} (3.86)

In equation (3.86), the obtained value may not be an integer; the value then has to be rounded 
off to the next higher integer. Due to the change in the value of n to the next higher integer 
value, the actual αmin in the stop band is changed to the following:

max0.1

min
10 1

10log 1
16 nq

α
α

 −= +  
 (3.87) 

Obviously, we should ascertain that the value of αmin obtained from equation (3.87) satisfies 
the specifications of the design.  

Example 3.5: For the following specifications, find the order of an elliptic filter:

αmax = 1 dB, αmin = 40 dB, w1 = 2000 rad/s and w2 = 6000 rad/s 

Solution: Selectivity factor, k = 2000 / 6000 = 1/3. Using equations (3.84)–(3.86) for q, u, D 
and n, we get the following:

¼

¼
1 (1 1/ 9)

0.5 0.00736
(1 (1 1/ 9)

u
− −= =
+ −
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( ) ( ) ( )5 9 130.00736 2 0.00736 15 0.00736 150 0.00736 0.00736q = + + + ≅  

Value of the discrimination factor D is obtained as:

D = (100.1×40 – 1)/(100.1×2 –1) = 9999/0.2589 = 38621

Then, the order of the filter is obtained from the equation (3.86):

n = log (16 × 38621)/log (1/0.00736) = 2.714

Hence, the selected value of n = 3.
It may be noted that for the same specifications, the required filter order was 5 for the 

Butterworth approximation, 4 for equal-ripple filters. In practice, the difference becomes more 
prominent when there is a narrower transition band or selectivity factor with a large value. 

The actual minimum stop band attenuation with n = 3 from equation (3.87) will be as 
follows:

0.1

min 3
10 1

10log 1 46.08 dB
16(.00736)

α
 − = + = 
  

In this expression, the obtained theoretical value of αmin  is well under control. After finding the 
order of the filter, the normalized transfer function is to be obtained. Once again, the solution 
requires elliptic functions, which are quite complex. Algorithms have been developed for the 
purpose; however, the simpler option is to use the available design tables. In the vast literature 
pertaining to filters, these tables and the data arranged in the tables have been presented in 
different ways. Only the specific table corresponding to the stated specifications is to be used 
to get the location of poles and zeros and the transfer function. 

An alternate method for finding the order of the elliptic LPF is to use nomographs. Figure 
3.12 is such a nomograph, wherein the attenuation at the pass band edge frequency is αmax  
(normalized to 1 rad/s) and αmin  is the attenuation at some (normalized) stop band edge 
frequency Ws. To use the nomograph in Figure 3.12, a straight line is drawn through the 
specified αmax and αmin, shown as points 1 and 2 in Figure 3.13. Intersection of this line with 
the ordinate of the nomograph determines point 3. A horizontal line is drawn from point 3 
until it meets a vertical line drawn from point 4 which corresponds to the specified frequency 
Ws. The resulting intersection at point 5 decides the order of the required elliptic filter. Almost 
every time, point 5 lies between two curves corresponding to the loci of the filter orders; the 
higher value of the filter order is selected for obvious reasons.
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Figure 3.12 A nomograph for determining the order of an elliptic magnitude function.
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Figure 3.13 Method of using the nomograph in Figure 3.12.
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Normalized element values of a doubly terminated lossless ladder can be obtained from 
other tables. Figure 3.14(a) and (b) show these ladders and Tables 3.6 and 3.7 show the values 
of the elements for these ladders. Obviously, these ladders and tables are useful when some 
direct form of filter synthesis is used instead of the cascade form. However, if it is preferred to 
use the cascade form of synthesis, poles and zeros, and then the transfer function can be found 
through analyzing the ladder itself.

R = 1in L1 L3

L2 L4

C2 C4 Cn

L – 1n Ln

Ln–1

Cn–1

1/R
L

1/R
L

For evenn For oddn

(a)

L �2 L �4
R = 1in

C �1

C �2 C �4
C �n–1

L �n

RL

L �n–1

C �n–1 RL

C �n

For evenn For oddn

(b)

Figure 3.14 (a) Network configuration for Table 3.6 and Table 3.7. (b) Alternate configuration.

Example 3.6: Find a doubly terminated lossless ladder which gives an elliptic response while 
satisfying the following specifications. Verify the response using PSpice. 

αmax = 0.1 dB αmin  = 54 dBs, wp = 100 krad/s and ws = 150 krad/s

Solution: Normalizing the frequency by 100 krad/s, we get Ws = 1.5 rad/s. Using the nomograph 
of Figure 3.12, intersection of the line from the given attenuations of 0.1 dB and 54 dB and 
the vertical line for Ws = 1.5 rad/s falls between n = 5 and 6; hence, the required filter order will 
be 6. For n = 6 and Ws = 1.5 rad/s, Table 3.7 gives the normalized values of the elements as:

Rin = RL = 1 W, L1 = 0.86595 H, L2 = 0.18554 H, L3 = 1.43106 H, L4 =0.33007H, 
L5 = 1.28253 H, C2 = 1.27403 F, C4 = 1.27255 F, C6 = 1.03317 F

Using frequency scaling, elements are de-normalized by a factor of 100 krad/s and an impedance 
scaling factor of 104. The de-normalized element values are as follows:

Rin = RL = 10 kW, L1 = 0.086595 H, L2 = 0.018554 H, L3 = 0.143106 H, L4 =0.33007 H, 
L5 = 0.128253 H, C2 = 1.27403 nF, C4 = 1.27255nF, C6 = 1.03317 nF
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Table 3.6 Element values of a doubly terminated ladder for elliptic filters with pass band ripples of 1 dB

n  ws Kp L1 C2 L2 L3 C4 L4 L5 C6 L6 L7

3 1.05
1.10
1.20
1.50
2.00

8.134 
11.480 
16.209 
25.176 
34.454

1.05507 
1.22525

 1.42450 
1.69200 
1.85199

.25223

.37471

.52544

.73340

.85903

3.28904
1.94752 
1.11977

.48592

.22590

1.05507 
1.22525
1.42450 
1.69200 
1.85199

4 1.05
1.10
1.20
1.50
2.00

11.322
15.942 
22.293
34.179 
46.481

.63708

.80935 
1.00329 
1.25675
1.40677

.35277

.54042

.77733
1.11431
1.32367

2.41039 
1.40015 

.79634

.34362

.15960

1.11522 
1.18107 
1.26621 
1.38981 
1.46762

1.39953 
1.45001 
1.49217 
1.53225 
1.55071

1.0-dB pass band ripple

5 1.05 
1.10 
1.20 
1.50
2.00

24.135 
30.471 
38.757 
53.875 
69.360

1.56191 
1.69691 
1.82812 
1.97687 
2.05594

.67560

.77511

.87005

.97694
1.03392

.83449 

.58827 

.38720 

.18824
 .09152

1.55460
1.79892
2.09095
2.49161
2.73567

.26584

.39922

.56347

.79362

.93561

3.31881 
1.98907 
1.16672 

.51950 

.24486

.88528 
1.12109 
1.38094 
1.71889 
1.91939

6 1.05 
1.10 
1.20

 1.50
2.00 

29.133 
36.680 
46.571 
64.661 
83.221

1.07458
 1.22059
 1.37146
 1.55425
 1.65661

.80116 

.94235 
1.08633 
1.25876 
1.35450

.81300

.57746

.38284

.18779

.09179

.92735 
1.10900 
1.32610 
1.62529 
1.80860

.51753

.75718
1.05110
1.46557
1.72376

1.71498 
1.05819
 .63354 
.28655 
.13586

.92186 
1.01676 
1.12484 
1.26961 
1.35729

1.60511 
1.64682 
1.68498 
1.72482 
1.74424

7 1.05 
1.10 
1.20 
1.50 
2.00

40.926 
49.816 
61.422 
82.588 

104.268

1.82156 
1.91040 
1.99168 
2.07882 
2.12329

.86343 

.92662 

.98474  
1.04761 
1.07993

.42668

.30705

.20446

.10016

.04884

1.67632 
1.93579 
2.22804 
2.61372 
2.84446

.34381
 .48016 
.64444 
.87393 

1.01638

2.60271
1.68753
1.04856

.48973

.23538

1.23696
1.55276 
1.92724 
2.44021 
2.75306 

.46779

.59277

.73012

.90483
1.00567

1.63392 
1.10699 

.70551

.33349

.16034

1.22362 
1.41994

 1.62539
 1.87717 
2.01924

n  ws Kp C'1 L'2 C'2 C'3 L'4 C'4 C'5 L'6 C'6 C'7
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Table 3.7 Element values of a doubly terminated ladder for elliptic filters with pass band ripples of 0.1 dB

n ws Kp L1 C2 L2 L3 C4 L4 L5 C6 L6 L7

3 1.05 
1.10 
1.20 
1.50 
2.00

1.748
3.374 
6.691 

14.848
24.010

.35550 

.44626 

.57336 

.77031 

.89544

.15374

.26993

.44980

.74561

.93759

5.39596
 2.70353
 1.30805

 .47797 
.20697

.35550

.44626

.57336

.77031

.89544

4 1.05
1.10
1.20
1.50
2.00

3.284
6.478

12.085
23.736
36.023

.00442 

.17279 

.37139 

.62815 

.77554

.17221

.32758

.56638

.94009
1.17646

4.93764
2.30986
1.09294

.40730

.17957

1.01224
1.04894
1.11938
1.24711
1.33473

.84445

.89415

.92440

.93518

.93382

0.1 dB pass band ripple

5 1.05
1.10
1.20
1.50
2.00

13.841
20.050
28.303
43.415
58.901

.70813 

.81296
 .91441

1.02789 
1.08758

.76630

.92418
1.06516
1.21517
1.29322

.73572

.49338

.31628 

.15134 

.07317

1.12761
1.22445
1.38201
1.63179
1.79387

.20138

.37193

.60131

.93525 
1.14330

4.38116 
2.13500 
1.09329

.44083

.20038

.04985

.29125

.52974

.81549

.97720

6 1.05
1.10
1.20
1.50
2.00

18.727 
26.230 
36.113

 54.202 
72.761

.44177
 .57630 
.70984 
.86595

 .95131

.71651

.88798
1.06266
1.27403
1.39297

.90905

.61282

.39136

.18554

.08926

.83142
 .97304 
1.15974 
1.43106 
1.60132

.36274

.59060

.87407
1.27235
1.51866

2.44680
1.35666

.76185

.33007

.15421

.80463

.94305
1.09176
1.28253
1.39521

.99857
1.01381
1.02462
1.03317
1.03621

7 1.05 
1.10 
1.20 
1.50 
2.00

30.470
39.357
50.963
72.129
93.809

.91937 

.98821 
1.05029 
1.11593 
1.14910

1.07659
1.16726
1.24872
1.33554
1.37979

.34220

.24374

.16124

.07857

.03822

1.09623
1.27743
1.48377
1.75687
1.92026

.40518

.59720

.82869
1.15174
1.35221

2.20850
1.35681

.81542

.37160

.17692

.84335
1.04029
1.28723
1.63827
1.85664

.50342 

.67881 

.87428 
1.12502 
1.27023

1.51827
.96669
.58918
.26822
.12694

.41098 

.58282 

.75395 

.95588 
1.06720

n  ws Kp C'1 L'2 C'2 C'3 L'4 C'4 C'5 L'6 C'6 C'7
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Figure 3.15(a) shows the magnitude response of the passive ladder with ordinates on the linear 
scale and Figure 3.15(b) shows the magnitude on the log scale (magnitude on the log scale is 
shown to get a better view of both the pass band and the stop band). The simulated pass band 
edge frequency is 15.92 kHz (100.06 krad/s) and the stop band edge frequency is 23.86 kHz 
(149.977 krad/s) giving the normalized Ws  = 1.5 rad/s. Maximum attenuation in the pass band 
0.100 dB and the minimum attenuation in the stop band is 54.2 dB.

600 mV

400 mV

200 mV

0 V
100 Hz 1.0 kHz 10 kHz 100 kHz

FrequencyV (7)

(a)

V (7)

10 V

1.0 V

10 mV

100 uV

1.0 uV

100 nV
100 Hz 1.0 kHz 10 kHz 100 kHz

Frequency

(b)

Figure 3.15 (a) Magnitude response of the elliptic filter of Example 3.6 with ordinates on the linear 
scale. (b) with ordinates on the log scale.
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3.8 Maximally Flat Pass Band with Finite Zeros

It has been observed that in the maximally flat Butterworth response case, it takes a higher filter 
order to satisfy the same specifications compared to other approximations. This limitation 
caused by the slower transition from pass to stop band in the maximally flat Butterworth 
response is minimized by the introduction of finite zeroes in the otherwise all-pole LPF, where 
all the zeroes were at infinity. 

If finite zeroes are introduced in the maximally flat response, instead of N(s) = 1, N(s) will 
be a polynomial in terms of the complex frequency s in equation (3.3), and the degree of the 
polynomial will depend on the number of the zeroes to be added. Equation (3.5) will become 
modified while using equations (3.2) as:

( )Ω − ΩΩΩ = − =
Ω Ω

2 22
2

2 2

( )( )
( ) 1

( ) ( )

B AB
K j

A A
 (3.88)

However, for the response to remain maximally flat, equation (3.88) has to remain satisfied 
even when transmission zeroes are introduced. This condition implies that the following 
relation is satisfied for as many derivatives as possible:

( )( ) ( ) Ω Ω − Ω = = 
Ω Ω Ω  

2
2 2

2 2 2

( )
0

( ) ( ) ( )

k
k

k k

d K j B Ad
d d A

 (3.89)

Application of chain rule, differentiation of equation (3.89) gives following relation: 

 B2i = A2i  for i = 0, 1, …., (n – 1) (3.90)

Hence, in equation (3.2) or equation (3.88), A(W2) is selected in such a way that the desired 
zeroes are realized and the denominator is the sum of A(W2) and B2nW2n. With a modified 
transfer function, at W = 1, and |Hn(j1)|2 with equation (3.10), we get:

( ) ( )
2 2

22
2

(1) 1
1  (1)

1 1n n
n

A
H j B A

A B
ε

ε
= = → =

+ +
 (3.91)

The transfer function can now be found by multiplying Hn(jW) with Hn(–jW), and substituting 
S = jW:

( ) ( ) ( )
2

2 2
2

( )
|

( 1) *
n n j S n n

n

A S
H j H j

A S B S
Ω=

−Ω − Ω =
− + −

 (3.92)
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It is important to note that in an all pole transfer function, the gain drops at a rate of 20n dB 
per decade, but after the addition of finite zeroes, the rate of fall of gain in the transition band 
increases but the rate of fall of gain at higher frequencies will be at the rate of 20(n – m) dB 
per decade.  

The following example is provided to help understand the design process while introducing 
finite zeroes in a flat pass band transfer function.

Example 3.7: In a maximally flat LPF, it is desired that the dc gain of the filter remains as 
unity and its gain drops by 1 dB at 20 krad/s. Introduce transmission zeroes at 40 krad/s and 
50 krad/s to increase the rate of fall of attenuation in the transition band and find its transfer 
function.

Solution: As gain is dropping by 1 dB at 20 krad/s, this is taken as the normalizing frequency. 
Then the transmission zeroes will become W = 2 and 2.5, respectively, and with the dc gain as 
unity, the normalized transfer function is obtained using equation (3.92):

( ) ( )

2 22 2

2 22 2
2

2

1 1
2 2.5

*

1 1  
2 2.5

n n

n n

nn n
n

H j H j

B

   Ω Ω      − −               Ω − Ω =
   Ω Ω      − − + Ω               

 (3.93)

The numerator is of degree 4 and for a minimum rate of fall of attenuation of 40 dB at higher 
frequencies, the denominator should have degree n = 6; hence, B12 is to be determined for 
equation (3.93).

The value of B12 can be found from equation (3.91), as at W = 1, the gain drops by 1 dB, 
and we can write: 

( ) 2 12
6 2 21 1/ 1

3 5.25
4 6.25

B
H j

 
 
 = + 

    
        

 (3.94)

which is equal to 1 dB of attenuation or we can calculate that the output will drop by a 
factor of 10–(1/10) = 0.7943; hence, comparing this equation with equation (3.94), we get B12 
= 0.102767. The value of B12 is substituted in equation (3.94), and while S is replaced by jW, 
the transfer function is obtained from the following:

( ) ( )

2 22 2

6 6 2 22 2
12

1 1
2 2.5

1 1 0.102767
2 2.5

S S

H S H S
S S S

      + +            
− =

      + + +            

 (3.95) 
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The numerator has four roots, which are easily identifiable; however, the root finder is used 
to find 12 roots of the denominator. Along with a multiplying factor of 64.229, the following 
roots are obtained:

±1.256 ±j0.41, ±0.762 ±j0.932, and ±0.238 ±j1.085 (3.96)

In equation (3.96), the roots are in all the quadrants. Selecting the roots on the left half of the 
s plane, for a real rational function, the following factors (normalized) become available.          

  S2 + 2.511S + 1.744, S2 + 1.524S + 1.449 and S2 + 0.475S + 1.234 (3.97)

As result of the root multiplying factor of 64.229, the numerator coefficient will become 4 × 
6.25/(64.229)½  = 3.119. The resulting normalized transfer function will be as follows:

( ) ( )( )( )

2 2

6 2 2 2

3.119 1 1
2 2.5

2.511 1.744 1.524 1.449 0.475 1.234

S S

H S
S S S S S S

         + +               =
+ + + + + +

 (3.98)

Realization of the transfer function of equation (3.98) using cascade technique will be discussed 
in Chapter 10.
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Practice Problems 

3-1  (a) Find the pole location and the coefficients of the Butterworth polynomial for order n = 5, 8 and 10.  
 Compare the answers for n = 5 and 8 from Table 3.1 and 3.2.

 (b) Plot the pole values calculated in part (a) on the s plane.

 (c) Factorize the Butterworth polynomials found in part (a) using a root finder or any other method.

3-2 (a) Determine the transfer function for an LP filter having a maximally flat magnitude characteristic,   
 which is 2 dB down at 2 rad/s and 32 dBs down at 7.5 rad/s. 

 (b) Find a doubly terminated lossless ladder realization for the LP filter.

 (c) Find the element values for the LP ladder filter with its 3 dB frequency at 3.4 kHz.

 (d) Simulate the ladder structure used and verify the results.
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3-3 Design an LP filter for the following specifications

 amax, dB          amin, dBs                 w1, rad/s                  w2, rad/s
     1.0            40           2000          4500

 (a) Determine the degree n of the required maximally flat magnitude response.

 (b) Determine the location of poles on the s plane.

 (c) Find the quality factor of each pole.

 Determine the actual loss  αmax (w1) and αmin (w2)at the pass band and the stop band edge frequencies.

3-4 Repeat problem 3-3 for the following specifications:

 αmax = 2.0 dBs, αmin = 50 dBs, w1 = 2000 rad/s and w2 = 6000 rad/s.  

3-5 Repeat problem 3-3 for the following specifications:

 αmax = 1.0 dB, αmin = 30 dBs, w1 = 2000 rad/s and w2 = 3600 rad/s. 

3-6 Repeat problem 3-3 for the following specifications:

 αmax = 2.0 dBs, αmin = 40 dBs, w1 = 2000 rad/s and w2 = 5000  rad/s.

3-7 Consider the following set of specifications:

 (i) αmax = 0.5 dB, αmin = 32 dBs, w1 = 1500 rad/s, w2 = 3600 rad/s  

 (ii) αmax = 1.0 dB, αmin = 25 dBs, w1 = 2000 rad/s, w2 = 7000 rad/s  

 (a) Find the required value of order n of the LP filter with maximally flat response.

 (b) Determine the actual attenuation at the edge of the pass band and stop band.

 (c) Determine the attenuation at 2.5w1 and 5w1.    

3-8 Determine the Chebyshev polynomial C4(W), C5(W) and C6(W),  using equation (3.31)

3-9 Determine the pole location for the Chebyshev response for:

 (a) n = 5 and αmax = 0.5 dB, 

 (b) n = 5 and αmax = 1.0 dB, 

3-10 (a) Determine the order n, the pole location and the transfer function of an LP filter having 1.0 dB ripple 
 width from 0 to 2.5 rad/s and a maximum of 30 dB attenuation beyond 5.0 rad/s.

 (b) Find a resistance terminated lossless ladder for the filter realization in part (a). 

3-11 Find the transfer function, wo and Q values for the following specifications with the help of Table 3.4. 

 (i)  αmax = 1 dB, n = 6, 

 (ii) αmax = 2 dB, n = 5,  

 (iii) αmax = 0.5 dB, n = 4 

3-12 A sixth-order LP Chebyshev filter was realized with three options –αmax = 0.5 dB, 1 dB and 2 dBs. 
Determine a relationship between ripple width and respective quality factor. Which option shall be 
preferred and why? (Use Table 3.4)
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3-13 In a Chebyshev filter of order 5, (de-normalized) wCB = 1 Krad/s and αmax = 1.0 dB. Determine: (a) 
the value of ε, (b) the value of the pass band edge frequency w1, (c) the value of w 2

min| ( )|H j , (d) 
the frequencies of the peaks in pass band, and (e) the frequencies of the valleys in the pass band. (f) 
Accurately sketch the magnitude response, using only a calculator for the necessary calculations. Use a 
vertical scale in dBs and a linear radian frequency scale.

3-14 An anti-aliasing filter is needed for an A to D converter working at a sampling rate of 6000 samples/s. 
Hence, the anti-aliasing filter is to have a minimum attenuation of 60 dBs at 3 kHz using a Chebyshev filter.

 (a) If  w1 = 5 krad/s and αmax = 1dB, what is the required minimum order?

 (b) If αmax = 1dB and n = 7, what is the maximum value of w2?

 (c) If w1 = 5π krad/s and n = 7, what is the minimum value of αmax.

3-15 Determine the transfer function and give numerical values of poles for part (c) of Problem 3-14. What 
shall be the value of center frequency and pole-Q of the second order sections?

3-16 (a) Find the required order for a maximally flat magnitude function which is down 1 dB at 1 rad/s and   
 down 34 dBs at 1.5 rad/s.

 (b) Repeat part (a) for an equal-ripple pass band filter.

 (c) Repeat part (a) for an equal-ripple stop band filter.

3-17 For the attenuation characteristics shown in Figure P3.1, find the attenuation α at the frequency which is 
2.5 times the pass band edge frequency.

a

w0, 0 1.0 rps

1.0 dB

Figure P3.1

3-18 Specifications of an inverse Chebyshev function as shown in Figure P3.2 are as follows:

a max

a min

a(dB)

w1w 2 w

Figure P3.2

https://doi.org/10.1017/9781108762632.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.004


100 Continuous Time Active Analog Filters

 αmax  = 0.5 dB, αmin = 20 dBs, w1 = 36 krad/s and w2 = 80 krad/s 

 (a) Determine the order of the filter

 (b) Determine the location of poles and zeros.

 (c) Determine the frequency of the peaks and the valleys in the stop band.

 (d) Find the transfer function satisfying the specifications in terms of the product of second-order  
 (a first-order also if needed) sections.

3-19 Repeat sections (a) to (d) of Problem 3-18 for the following specifications:

 αmax  = 0.5 dB, αmin = 30 dBs, w1 = 2 krad/s and w2 = 3.45 krad/s 

3-20  Find order of an elliptic HP filter using two alternate methods for the following specifications:

 (i) αmax  = 1.0 dB, αmin = 30 dBs, w1 = 80 krad/s and w2 = 50 krad/s 

 (ii) αmax  = 0.1 dB, αmin = 20 dBs, w1 = 30 krad/s and w2 = 15 krad/s 

3-21  Find the passive ladder structures for the elliptic filters of Problem 3-20, with (a) inductors and capacitors 
in series occurring in the shunt branches, and (b) inductor and capacitors in parallel occurring in the series 
branches of the networks. 

3-22 Find practically suitable values of the elements while integrating for the filters obtained in Problem 3-21 
and test the circuits using PSpice.

3-23 Find order of an elliptic filter using two alternate methods for the following specifications:

 αmax = 1.0 dB, αmin = 50 dBs, w1 = 20 krad/s and w2 = 24 krad/s.

 Find passive ladder structures for the obtained filter with (a) inductors and capacitors in series occurring 
in the shunt branches, and (b) inductor and capacitors in parallel occurring in the series branches of the 
networks. Find the actual minimum attenuation in the stop band in both cases.

3-24 It is desired that the dc gain of the maximally flat LP filter with the specifications given in Problem 3-7(ii) 
remains unity when a zero is introduced at 2750 rad/s. Find the modified transfer functions.
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