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Direct Form Synthesis: Element
Substitution and Operational
Simulation

9.1 Introduction

In the previous chapters, we studied realization of first-order and second-order filter sections.
Though these filter sections are used as such, they are also used to generate higher-order filters
employing different processes including the cascade process. However, a common alternate
process for realizing second- or higher-order filter section is the direct form of synthesis. There
are two broad categories in the direct form of synthesis: (i) element substitution method and (ii)
operational simulation method. Though the filter realization procedures in the aforementioned
categories differ, the starting point is the same. Initially, a passive structure with element values
(mostly frequency and impedance normalized) is obtained. It is then converted into its active
form. Although they have the same starting point, the construction and characteristics of the
active circuit obtained through the direct form and that obtained through the cascade form
differ on many counts, as shall be illustrated later.

The most common passive structure that is used to realize passive filters is the doubly
terminated lossless ladder. A typical lossless ladder is shown in Figure 9.1 where R, and R; are
the terminating resistors and the ladder contains only lossless elements, that is, inductors and
capacitors; each series and shunt branch of the ladder can be any combination of inductors/
capacitors.

We will first discuss the element substitution type of direct form synthesis procedure, which
is mainly the avoidance of the use of inductors. Therefore, simulation of inductors forms an

https://doi.org/10.1017/9781108762632.010 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.010

Direct Form Synthesis: Element Substitution and Operational Simulation

important part of the chapter. Inductance simulation, configurations for inductance simulation
and active filter realizations without using an inductor are discussed in Sections 9.2-9.5.
Section 9.6 deals with the simulation of a floating inductance, mainly through using two circuit
structures of grounded inductances. Another method in which the inductor can be eliminated
from the general lossless ladder is through scaling of the structure by the complex frequency
variable s. This method generates a new type of element called the frequency dependent negative
resistance (FDNR). As simulation of inductors and FDNR requires impedance conversion
configurations, it is important to study the basics of these concepts. The technique is included
in Section 9.8.

Ri, L, Ly
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+ G,
(VID J— —
-t G Ls
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Figure 9.1 A typical doubly terminated lossless ladder structure with input resistance R, and load
resistance R;.

An alternate method applied on ladders is based on the modeling of circuit equations and
current-voltage relations of the circuit elements instead of direct element substitution. The
electronic circuit is represented by a signal flow graph containing directional branches and
nodes where branching takes place. It can also be represented in block diagram form with
branches comprising blocks representing current-voltage relations of passive elements. Often,
the employed blocks are integrators (or differentiators) interpreting inductors and capacitors.
These blocks also incorporate summation of voltages and will be discussed in Section 9.9.

Once the principle of operational simulation is explained in detail, it is first utilized to
get an LP (low pass) ladder and then for a BP (band pass) ladder structure in Sections 9.10
and 9.11, respectively. Since all networks may not be in as simple form as an LP or a BP, the
scheme for realizing general ladders is studied in Section 9.12.

At first, the operational simulation method appears to be solving the problem in a
roundabout manner compared to the element substitution method. In fact, the procedure is
a bit lengthy, but it is observed that the method has certain advantages. In general, it employs
a lesser number of active devices and deals well especially with floating inductors/FDNRs
realizations as it does not require back-to-back matching circuits. As shall be shown later, a
proper selection of integrators helps in considerable reduction in the non-ideal effect of OAs
used, making the circuit useful in a comparatively larger frequency range.

Lossless Ladders: The lossless ladder structure is very popular among filter circuit designers
because of its excellent property of very low sensitivity to component tolerances [9.1]. When
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such a ladder is converted to its active form, the property of low component tolerance
sensitivity is transferred to it, which makes the structure attractive even at lower frequencies
(audio or even up to a few hundred kHz; depending on the kind of active device used); whereas
passive ladders continue to be used at higher frequency applications where active filtering is
not suitable or where power supply is not available for active devices.

One important advantage in using lossless terminated ladders for active filters is that a large
amount of literature is available in the form of filter structures, detailed description in terms of
their transfer functions, pole locations and normalized element values from low to high-order
filters [1.2]. Such available literature is of great help for active filter design. One of the main
reasons for converting LC lossless ladders to their active forms is, as mentioned earlier, the
non-availability of good quality inductors in most of the operating frequency range.

9.2 Gyrator and Inductance Simulation

As seen in Figure 9.1, inductances used in the ladder can have one terminal connected to the
ground, which are known as grounded inductors (GIs), or none of their terminals connected
to the ground, which are known as floating inductors (FIs). First, let us look at the simulation
of a GI as shown in Figure 9.2(a). The method will be later extended to realize an FI as shown
in Figure 9.2(b). For simulating a GI, it is required to find a circuit which contains only
resistors, capacitors and some active device(s); moreover, its driving point impedance should
appear as that of an inductance. Such a configuration is known as impedance converter or
gyrator. Symbol of a simplified gyrator is shown within the dotted box in Figure 9.3, which is
defined by the following equation [9.2].

I, =-(1/nV,and I, = —(1/n)V; (9.1)

Vipo———— I, L A
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Figure 9.2 (a) Grounded inductance, and (b) a floating inductor representation.

The important parameter of a gyrator 7 is known as a gyrator constant; the constant has the
units of ohm. From equation (9.1), the input impedance of the gyrator will be:

Za(5) = (V1) = PI(15C) = s2C 9.2)
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Figure 9.3  Grounded inductance simulation using a gyrator terminated in a grounded capacitor.
Therefore, a gyrator terminated in a capacitor Csimulates an equivalent inductor L given as:
Ly-rC ©93)

Obviously, instead of using a capacitor C, termination can be done using any general load
impedance Z;(s) and in that case, the simulated input impedance will become:

Z,.(6) = PHZ, ()} (9.4)

As mentioned earlier, the current-voltage relation of a simplified gyrator is presented in equation
(9.1). In a general gyrator, the admittances in equation (9.1) are not necessarily equal, that is

(L1V)) = y13 = (F1ry) = g, and (L/V)) = yy = (1)) = =g, 9.5)

The equivalent circuit of a general gyrator (Figure 9.4) can be obtained from equation (9.5).
It is obvious that the practical realization of a gyrator is easy in terms of transconductance
elements. Such a circuit, transconductance amplifier-based filter circuits, will be studied later
in Chapter 15. Practical realization of gyrators using OAs will be discussed in the next section.

Figure 9.4 Small signal equivalent circuit of a general gyrator.

In a general ladder structure, it is also important to simulate Fls depending on the selected
passive structure. Simulation of Fls is rather difficult and requires a cascade of two grounded
gyrators and an embedded capacitor, as shown in Figure 9.5 [9.3]. Practical realization of an
FI will be discussed after obtaining the practical realization of a GI.
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Figure 9.5 (a) Floating inductance simulation using back-to-back gyrators and (b) equivalent circuit.

9.3 Impedance Converters Using Operational Amplifiers

The terms ‘gyrator’ and ‘impedance converter’ can be used interchangeably as both convert
the nature of impedance connected as termination. A general configuration which has been
employed for the development of the impedance converter is shown in Figure 9.6. This
configuration is found suitable for developing impedance converter circuits using OAs. In
Figure 9.6, the schematic consists of R,, a feedback resistor, and a rwo-port nerwork, which has
to be determined in order to make it an impedance converter. Assuming the two-port network
has infinite input impedance and zero output impedance, it is desired to get the following
voltage-current relation for simulating inductance at the input terminals.

(VilIip) = Zin() = 5L (9.5)
Ry
AAVAY
I, I,

O O

+ Two-port +

in network Vout

o— ——o
1

Figure 9.6 A schematic for impedance conversion.

With no current flowing into the two-port, 1, = (V,, — V, )/ R;, so substituting /, in equation

(9.5):

V.=V V
Vi, =s[—2— 5| S i=(1-R /sL .6
in S Rl (V ] ( 1 S) (9 )

in

The required transfer function for the network, as shown in equation (9.6) is obtained by
subtracting the gain of an integrator from a unity gain amplifier. Figures 9.7(a) and (b) show
simple and known circuits for the non-inverting gain of 2 and the inverting ideal integrator
with additional non-inverting input. These circuits are joined in Figure 9.7(c) for which

https://doi.org/10.1017/9781108762632.010 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.010

Direct Form Synthesis: Element Substitution and Operational Simulation

V, = 2V;,. With both the input terminals of OA2 being at the same potential V; ; the current-
voltage relations for OA2 and at the input terminal gives the following relations:

(‘/2 - ‘/m)/R - (I/m/R) = (I/m - I/()ut)SC' (97)

1, =(Vin_V

m out

)R, (9.8)

Elimination of V_ in equations (9.7) and (9.8) gives:

Z. = (V,/R) = sCRR, 9.9)

mn

Hence, the circuit shown in Figure 9.7(c), which is known as the Riordan inductance
simulation circuit [9.4] simulates an inductor with value L = CRR, = CR? for R= R,.

C

Figure 9.7 (a) Non-inverting amplifier with gain =2, (b) Ideal non-inverting integrator and (c) Riordan
inductance simulator circuit, performing impedance conversion through a combination of
(a) and (b).

9.4 Antoniou’s Inductance Realization

There are other possible configurations to realize the two-port network shown in Figure
9.6. A well-known configuration employs a non-inverting amplifier of Figure 9.8(a) and the
inverting integrator in a differential input mode as shown in Figure 9.8(b). Here the feedback
resistor of a difference amplifier is replaced by a capacitor C and the non-inverting terminal gets

a potentially divided input V, = V{Rs/(R, + Rs) = kV. Applying KVL (Kirchhoff’s voltage law)
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at the input terminal of the OA2 in Figure 9.8(b) and with the knowledge that the amplifier is
an ideal OA with the inverting terminal voltage being equal to V,, we get:

Vi = WIR; = (V) = V. )sC,y (9.10)
or (Vo /Vy) = k+ {(k=1)/(sC,Ry)} (9.11)
| |
| |
i R,
- Vout
V, 2 —O
+
Ry
Rs
(a) (b)

Figure 9.8 (a) A non-inverting amplifier with gain (1 + R,/R), and (b) inverting integrator in
differential mode.

To make the circuit compatible with the relation of equations (9.6), # is to be eliminated in
equation (9.11). It is done using a non-inverting amplifier with gain, 1 + (R,/Rs) = (1/k) as
shown in Figure 9.8(a) at the input terminal V] of Figure 9.8(b). However, connecting in this
manner will result in a circuit containing five resistors (and one more resistor R, as feedback
resistor). Instead, two resistors in the non-inverting amplifier can be saved by connecting the
amplifier’s inverting terminal directly to the inverting terminal of the OA2, whose voltage is
also V, = (£V}) and V| = (V, /k). The resulting circuit, in addition to the feedback resistor R;,
is now shown in Figure 9.9(a). Analysis of the block inside the dotted line gives the following

relation.
Vour _{;___ R4 9.12)
Vin sCy Ry Rs
Comparing equation (9.12) with equation (9.6), the simulated inductance has the following
expression
L= (RRRCYIRY) (9.13)

The circuit shown in Figure 9.9(a) is known as Antoniou’s generalized impedance converter
[9.5] of type I. Though presently it is shown to be simulating inductance, we will see later that
its generalized form can be that of a generalized impedance converter (GIC). Type II GIC
is obtained by simply interchanging R, with C,, as shown in Figure 9.9(b), for which, the
simulated inductance is given as:
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Loy = (RR;RsC,IR) (9.14)

If all the resistances used are selected equal in both types of GICs, the simulated inductance
becomes L, = R*C; the same as obtained before in equation (9.9). It is to be noted that for
the GIC, comparing the constant with the gyrator-based simulator, gyration constant » = R.

Vout
O
Rl
Ry
R
- Vout
Vin Vz 2 °
oO———¢
REy
RS
(b)

Figure 9.9 (a) Antoniou’s general impedance convertor type |. (b) Antoniou’s generalized impedance
converter type Il.

GICs have been used extensively for element simulations. Because of their importance, GIC
needs to be studied carefully. Hence, instead of restricting the study to the GICs of Figure
9.9(a) and (b), the circuit configuration is redrawn in a form which is common in use and
convenient for analysis. Figure 9.10 shows a general Antoniou’s GIC in dotted rectangles; it
was briefly discussed in Chapter 8 as well. Assuming OAs as ideal, voltage V), V5, and V5 shall
be equal and the input impedance of the GIC is easily obtained as

Zo(5) =AZ1 () Z5() Zs ()Y Z,(5) Z4(5)} (9.15)
GIC:s of type I and II can easily be shown to be special cases of this general configuration. The

general form is called the generalized impedance converter because of its ability to realize many
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other types of impedances depending on the kind of elements (or combination of elements)
used for Z,, i = 1 to 5. For example, selecting Z,= R, i = 1, 2, 3 and 5 and Z = 1/5C, the input
impedance will be the same as for equation (9.14).

5

N —

l\)+
|N
L |

l||—O|<—

Figure 9.10 Commonly used structure for a generalized impedance converter.

9.5 Filter Realization Using Inductance Simulation

Once inductance simulation through an active RC circuit becomes available, active simulation
of the LC ladder becomes simple enough. The obvious starting point is obtaining the passive
filter structure and the values of the elements used. Inductances are then replaced by suitable
active RC structures and the rest of the capacitors and resistors remain connected in the same
position/location. Hence, the resulting overall circuit becomes an active RC structure.

Figure 9.11(a) shows the structure of a third-order HP passive filter section. This passive
structure is suitable for the inductance simulation technique as it employs a GI. Hence, the
structure shown in Figure 9.10 is easily used to simulate the inductor. Once the inductor is
replaced, an active RC version of the third-order HP filter is conveniently obtained. It may be
noted that the passive HPF is shown to have normalized terminating resistors R, and R,. The
element values of C;, L, and C; are easily available from design tables [1.2]. Hence, for the given
value of Z,, element values of the inductance simulator are evaluated using equation (9.14).

Example 9.1: Design a third-order HP active filter using the inductance simulation technique,
having pass band ripples less than 1 dB and corner frequency of 200 krad/s. Compare its
response with that of the passive filter.

Solution: For the given specifications, the circuit shown in Figure 9.11(a) will satisfy the
requirements with the following normalized element values:

R =R, =1Q, C = C;=0.62645 Fand L, = 0.9118 H (9.16)
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Using an impedance scaling factor of 104 and a frequency scaling factor of 200 krad/s, the de-
normalized element values for the passive filter from equation (9.16) will be:

R =R, =10%Q, C, = C; = 0.31322 nF and L, = 0.04559 H 9.17)

For conversion of a passive filter to an active form, inductance L, from equation (9.17) is
simulated using the circuit shown in Figure 9.10 and equation (9.14).

L, =0.04559 H= CR> — C = 0.4559 nF with R= 104 Q (9.18)

The GI shown in Figure 9.10, having element values as in equation (9.18), is substituted in
Figure 9.11(a), resulting in the circuit shown in Figure 9.11(b). The simulated response is
shown in Figure 9.11(c) with the following important observations.

Voltage gain at high frequencies = 0.4626, peak voltage gain = 0.498, ripple width = 0.88
dB and corner frequency = 28.63 kHz (179.96 krad/s). Obviously, there is a significant
difference between simulated and design value of the corner frequency (~10.02%), and the
high frequency gain is dropped by nearly 7.48%, though the shape of the characteristic

remains intact. Deviations in parameters are due to the effect of the frequency-dependent gain

6264 F
Lo CT/|066 \TC
1 3
o > * ‘o)
—NW—| | 0
1
\% L, R v,
in 2 1Q out
09118 H
+ +
o < * ‘o]

R, C
24
A A AMN AN~ | +—o
! R21 R22 R23
Vm \2/ R25§ RZ Vout
o _T_ ® o)
(b)
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Figure 9.11 (a) A third-order normalized passive high pass filter structure for Example 9.1. (b) The

active RC version of Figure 9.11(a) through simulation of grounded inductance L, with
inductance simulation using GIC (c) Response of the active third-order high pass filter
from Figure 9.11(b) at lower and higher corner frequencies, and the response of the
passive filter of Figure 9.11(a).

of the OA model. The same active filter, which is simulated for a lower corner frequency of
20 krad/s, had the following element values:

C, =G, =3.132nF, L, = 0.4559 H — C, = 4.554 nF 9.19)

The simulated response is also shown in Figure 9.11(c) with the following observations:

Voltage gain at higher frequencies = 0.496, corner frequency = 3.15 kHz and ripple width
= 0.5376 dB. Error in the corner frequency is now only -1% and gain deviates only by 0.8%.

Figure 9.11(c) also shows the PSpice simulated response of the passive filter which we can
compare with that of the response of the active filter. The following are the observations.

Voltage gain = 0.5, ripple width = 0.5086 dB and corner frequency = 31.83 kHz (200.1
krad/s). The filter’s voltage gain remains constant even at much higher frequencies, as it is not
affected by the limitation of the OA.

9.6 Floating Inductance Simulation

In the last section, we saw an example of a GI simulation in a simple passive circuit. Quite
often, a floating inductor (FI) also becomes a necessity and it has to be simulated as well. The
FI shown in Figure 9.5(b) being a two-port structure is represented in terms of y parameters as:
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1 1 -1
[}’] :5[,—|:—1 1 :| (9.20)
eq

For the simulation of an FI, two gyrators in back-to-back form are to be joined as shown in
Figure 9.5(a). In order to obtain a circuit realization of an FI using two back-to-back gyrators,
the well-known technique of lifiing the element terminal from the ground [9.6] is used on a
GI circuit like that used in the circuit in Figure 9.10. The resulting configuration is shown
in Figure 9.12. It is important to note that while using any circuit involving OAs, care has
to be taken that a path for the flow of bias current remains available. Hence, for the circuit
realization of the FI shown in Figure 9.12, a resistance each may be connected in parallel with
the capacitors to enable the flow of biasing current. However, these extra resistors have to be of
high value so that the parasitic inductance introduced due to these resistances is not significant.

|||—0

Figure 9.12 Floating inductance realization using back-to-back gyrator based grounded inductance
simulators.

The major limitation of the process is that an FI simulator uses a large number of passive
and active elements. Another significant issue crops up when the two gyrators are connected
back-to-back. The gyrator constants need to be the same; otherwise, there will be a mismatch
and the unity element in equation (9.20) will not be exactly unity, resulting in some parasitic
elements. Obviously, it is not practically possible to exactly match the component values even
in the IC form (mismatch can be minimized). This is a drawback in using such a configuration
for FI. Hence, we need to look at other techniques of obtaining an FI circuit which do not
require component matching. An alternative is to select a circuit which needs a lesser number
of Fls. It is to be noted that Z, in equation (9.20) will have the same expression as L, in

equation (9.13) or (9.14) for GI.

Example 9.2: For the passive BPF shown in Figure 9.13(a), obtain an active RC filter using
the inductance simulation method. Find the element values used with the center frequency of
the filter as 20 kHz and bandwidth as 2 kHz.

Solution: The transfer function of the BPF of Figure 9.13(a) is obtained as:

(VoIVy) = (RID)sH{s* + (RIL)s + (1/LC)} (9.21)
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Figure 9.13 (a) Second-order prototype passive band pass filter, (b) its active RC version while
simulating a floating inductor using the circuit shown in Figure 9.12. All resistances = 10
kQ,butR=1kQand R, =R, =10 MegQ, C, =C,, =C=0.795 nF.

The important parameters of the filter are as follows:

v
= %> Q= l(i) and mid-band gain=1.0 (9.22)
(LC)” R\ C

For @, =1 rad/s, the normalized element values from equation (9.22) are:
L=1H,C=1Fandas Q=(20/2) =10, R=0.1 Q (9.23)

For the passive filter, an impedance scale factor of 10#and a frequency scaling factor of 20(27)
krad/s is used; this gives the following de-normalized element values:

R=1kQ, C=0.7954 nF and L = 0.07954 H (9.24)

For the floating inductance, L = 0.07954 H, the circuit shown in Figure 9.12 is inserted in
Figure 9.13(a) and application of equation (9.14) to find the element values for inductance
gives an active filter circuit as shown in Figure 9.13(b). Resistances R,, R, and R; in both the
gyrators are 10 k€, and capacitances Cy; and Cy, are equal to 0.7954 nF. It is important to
note that Rs is 104 Q and not the summation of two Rgs while connecting two back-to-back
circuits, as one resistor acts as the terminating resistor for both sides. Bypass resistors Ry, and
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R;z are selected as 10 meg€ each, sufficient to allow the passage of bias current, and large
enough so that their effect is minimal on the filter performance. The circuit is simulated and
the response shown in Figure 9.14.

1.2V
08V
04V
_____________ fo=20ikHz N .
s =]
0V Pl e DT <
2.0kHz 3.0kHz 10 kHz 30 kHz

*V (16) 0V (162) Frequency

Figure 9.14 Magnitude response of the active band pass filter shown in Figure 9.13(b) at lower and
higher center frequencies.

The simulated value of the mid-band gain is 1.017, center frequency is 18.889 kHz, upper
and lower cut-off frequencies are 19.778 kHz and 18.027 kHz, respectively. Bandwidth being
1.756 kHz, Q becomes 10.75. Obviously, the main reason for deviation in the parameters is
due to the frequency dependence of the OAs gain.

The same BPF was simulated for a lower center frequency of 5 kHz. All the calculated
resistances remain the same but all the capacitances are now 3.1818 nF. The simulated
magnitude response in this case is also shown in Figure 9.14. Mid-band gain was found to be
0.9987 at a center frequency of 4.927 kHz. The upper and lower cut-off frequencies of 5.177
kHz and 4.690 kHz, respectively gave Q = 10.11; this is now, a much smaller deviation in filter
parameters, because of lower working frequency.

9.7 Generalized Inductance Simulation

The inductance simulation method is more useful for the circuit having inductances in
grounded forms. Whenever FI is to be simulated, it involves a large number of components
and their matching as well. It becomes a little confusing when a circuit contains both GIs and
FIs. However, a technique known as the Gorski-Popiel (GP) embedding technique [9.7] is
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of great help in simulating a combination of GIs and Fls, which will require a lesser number
of elements compared to the case of conventional direct simulation of GIs and FIs. In this
technique, instead of simulating individual inductors, a complete sub-network comprising
inductors (any number) is simulated through a GIC. This simulated network then simply
replaces the original sub-network of the inductors.

To understand the generalized inductance simulation (GIS) technique, consider the GIC
circuit shown in Figure 9.10 in the form of a two-port network, as shown in Figure 9.15(a).
Assuming the OAs to be ideal means V, = V|, and with R, = R; and Z; of Figure 9.10 replaced
by (V,/1,), we get the driving point impedance at port 1 as

(Volhh) = SCuR) (VA1) (9.25)

Obviously, when the simplified block form of GIC shown in Figure 9.15(b) is terminated in a
resistance R, the input will be an inductance as before, with the inductor expression as:

Lo = (CR)R=L'R 9.26)

The GIC in the block form, terminated in a resistance as shown in the dotted rectangle in
Figure 9.15(b), yields the following from equation (9.25):

L= GCR)T, = (L), 9.27)

I INY R, R, ¢, L
x T Il '
Vi I v, T :
2 sL':1 !
| | |
0 T ° 0 T Sl

—~
S
=
—~
o
=

Figure 9.15 (a) Generalized impedance convertor as a two-port network and (b) representation of the
GIC in a block form.

The important conclusion of the exercise is that if a GIC is placed at the input branch of a

resistor, the resistor gets converted into an inductor. According to the generalized inductor
simulation scheme, any number of branches of a network can have a GIC at its input which
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will convert all terminating resistors as inductors. In order to simulate an inductor Leq, the
terminating resistor value will be:
’
(Leq/L ) — (Leq/C4R1) (9.28)

From the point of view of IC fabrication of the active filter, it is preferable to use the same
GICs with varying terminating resistors for the simulation of inductors with different values.
However, if it results in a situation where the terminating resistor value becomes unsuitable for

IC fabrication, a different GIC can be used.

Example 9.3: Realize a fifth-order Chebyshev LPF having a maximum of 1 dB ripples in the
pass band. Let the corner frequency be 10 krad/s; use the GP technique.

Solution: Figure 9.16(a) shows the ladder structure and the normalized element values of the
filter for the given specifications from Table 3.5. Cross points have also been shown in the
figure for the application of the GP technique, where terminated GIC circuits will be inserted.

1Q 2.1349H 3.0H 2.13499H

T R;, L
Vlm

(e, O

Ry Ry Ry ey | (01 mF
o~ A AN—MAH 2250
1kQ 1kQ 1kQ
(b)
Vi, 1kQ 213499kQ  3.0kQ 21349 kQ Vout

T 0.109 uF
(©)
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250 mV

ov
10 Hz 100 Hz 10 kHz
AV (21)
Frequency

(d)

Figure 9.16 (a) Fifth-order passive Chebysheyv filter for Example 9.3 (b) GIC circuit, with elements
values, which is to be terminated and (c) the active version of the filter using the Gorski-
Popiel ladder embedding technique. (d) Magnitude response of the filter in Figure 9.16(c).

Application of the frequency scaling factor of 10 krad/s and an impedance scaling factor of 103
results in the following element values:

R,=R =1kQ, L, =Ls=021349 H, L; = 0.3 H, and C, = C; = 0.10911 uF 9.29)

Since for the realization of inductances, terminated GICs are to be used at the cross point,
Figure 9.16(b) shows a GIC in which resistances R, = R, = Ry = 1 kQ each. If C; is selected
as 0.1 UF, the terminating resistances for the inductors L; and Ls of equation (9.29) will be
calculated using equation (9.14) as:

10° X 0.21349

R =Rys= 10° X103 1077

=2.1349kQ and R;; will be 3.0 kQ

Figure 9.16(c) shows the structure of the active ladder, where the GIC circuit of Figure 9.16(b)
will be substituted at the four places as indicated; for the rightmost GIC, the inverted direction
needs to be noted. The circuit was simulated and the magnitude response is shown in Figure
9.16(d), for which dc gain is 0.5, ripple width is 0.995 dB and pass band edge frequency are
1.584 kHz (9.956 krad/s); very close to the design values.

https://doi.org/10.1017/9781108762632.010 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.010

Direct Form Synthesis: Element Substitution and Operational Simulation

9.8 Filter Realization Using FDNR

Instead of replacing inductors through an active RC simulator, an alternate scheme was given
by L. Bruton in 1969 [9.8]. In this scheme, all the elements are multiplied by a factor (1/s).
Such a transformation converts an inductive impedance (sL) to a resistor element of value
L ohms. At the same time, it converts a resistor (R) to a capacitive element (R/s), that is, a
capacitor with value (1/R) farad. However, the capacitive impedance (1/sC) gets converted to
(1/s*C); not a conventional element. For s = j, this converted impedance is:

=1/ w*C (9.30)

s=jo

Z, =(1/5C)

Equation (9.30) shows that the impedance is negative, real and frequency dependent; hence,
an appropriate name would be frequency dependent negative resistance (FDNR). Sometimes, it
is also called a super capacitor as it is converted from a capacitor, and a usual symbol for it is
three parallel lines. It is necessary to note that the transformation of element impedances by
1/s does not affect the transfer function of the network as it is a ratio of two polynomials in s.

After the transformation, RLC circuit now comprises resistors, capacitors and FDNRs (an
RCD network). Obviously, to convert an RLD network to an active RC form, the FDNRs
have to be simulated in the same way as the inductances were simulated, be it in the grounded
or in the floating form. Fortunately, a large number of active RC circuits are available in
literature for simulating FDNRs. One such circuit is obtained through the use of the GIC
shown in Figure 9.10, for which the input impedance is given as

20 = 2,2,751 7,7, (9.31)

Selecting Z, = 1/5Cy, Zs = 1/5Cs, Z; = Rs, Z, = R, and Z; = R, as shown in Figure 9.17(a), the
circuit provides a grounded FDNR with the expression of its impedance as given here.
R, 1 CCsR,R,

- =L withD=

(9.32)

Zin (5)

Figure 9.17(b) shows the capacitor’s symbolic representation of three parallel lines. Different
values for the capacitors C; and Cs and R, and R; can be chosen, but it does not give any
specific advantage. Since equal value capacitors are desirable in integration, we prefer to select
C, = Cs = C. It has been shown that for a GIC, it is better to use R, = R; = R, hence, a simplified
expression of input impedance from equation (9.32) will be as follows:

1

—— or D=C*R (9.33)
52C2R4 4

Z, (s) =
Application of the FDNR technique is obviously preferred for those networks which use more
grounded capacitors, as such networks will have FDNRs in the grounded mode. At the same
time, the floating inductance gets converted to resistors. For simulating FDNR in floating
form, the method of realization and limitations are exactly the same as those in the case of FIs.
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Figure 9.17 (a) Circuit diagram of a grounded FDNR obtained through GIC and (b) its symbolic
representation.

While using the FDNR technique of converting passive RLC circuits to an active RC, there
are certain practical glitches that need to be removed. For a doubly resistor-terminated ladder,
the source resistor and the load resistor also get transformed to capacitors. The following
example will help in designing an FDNR based filter and also illustrate the conversion of the
two aforementioned resistors. The method of overcoming the practical glitches mentioned
here will be discussed after the example.

Example 9.4: Obtain an active RC filter structure using FDNRs from a passive fifth-order
Chebyshev LP filter having a cut-off frequency of 100 krad/s, a ripple width of 1 dB with

source and load terminating resistors of 10 k2.

Solution: The structure and element values of a normalized fifth-order LP passive filter
obtained from the standard design table or through the method described in Chapter 3 is
shown in Figure 9.16(a). It is a minimum inductance configuration, and its normalized
element values are already given in equation (9.29) and repeated here:

Ry=R,=1QL =L =21349H,L;=3Hand C, = C, = 1.0911 F
Application of (1/s) transformation on the elements converts it to the circuit elements as shown

in Figure 9.18(a).

If we use a normalizing frequency of 100 krad/s, the normalized pass band edge frequency
will be at 0 = 1.

Once the passive filter structure and its element values are obtained/designed and (1/s)

transformation has been performed, the following are the next steps to design the converted
FDNR(s).

Using equations (9.33), we get the element values for both FDNREs as:

D=1.0911x R, C* = C= 1.04455 F for R, = 1 Q

https://doi.org/10.1017/9781108762632.010 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.010

Direct Form Synthesis: Element Substitution and Operational Simulation

Inductances converted as resistances will have normalized values as:

Ry, =R;,=2.135Qand R;; = 3.0 Q.

Active FDNRs are then put in place of D,, D, shown in Figure 9.18(a). The values of the
resistor R, and Rj are not selected so far; they are arbitrary and can also be selected after
frequency and impedance de-normalization. The frequency de-normalization factor being 100
krad/s, we select an impedance normalization factor of 10 k€. The final circuitry of the active
RC fourth-order LPF is shown in Figure 9.18(b) with the de-normalized value of the elements

as follows:
C11 = Csl =

RLl = RL3 = 21-349 kQ and RLZ = 30 kQ

12= CSZ = 104455 nF, R41 = R42 =10 kQ

Resistors R, and R; in each FDNR are selected as 10 k€2, an arbitrary value; this equals resistor

values already used in the circuit.

1F 21349 Q 30Q 21349 Q
m
_|py _|ps c,
1.8485 — j r» Vot —— 1 F
1 1.0911 1
c ——
(a)
C;'O fF 21.349 kQ 30 kQ 21.349 kQ
ot AN I D

AR —_ —

10 meg __1.04455 nF 1.04455 nF

10 ksz? 10 ksz%
c 2
Vin 10 kQ ::
1.0 nf-
] | 10 kQ
1.04455 nF 1.04455 nF
O
=
(b)
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Figure 9.18 (a) Fifth-order passive doubly terminated low pass filter structure after (1/s) transformation
and (b) active RC configuration using FDNRs after de-normalization of elements.
(c) Response of the filter shown in Figure 9.18(b) while using grounded FDNRs.

Due to the conversion of terminating resistors as capacitors, it can be seen from Figure
9.18(b) that the input biasing current cannot flow in the non-inverting terminal of OA1 and
3 in the same way as in the case of inductance simulation. Using the same remedy in this case
as well, the terminating capacitors C,, and C; (1 nF each) are bypassed by large value resistors
R, and R, as shown linked through dotted lines in Figure 9.18(b). Obviously, the bypass

resistors (which are equivalent to inductors in the original passive RLC circuit) have to be high
enough, so as not to significantly affect the response of the filters.

Another issue to be resolved for the practical implementation of the filter is that the
termination resistors which have been transformed as capacitors, have to be re-inserted in the
circuit as these were not part of the lossless filter structure. The problem is solved through the
use of non-inverting buffers at the input and output terminals as shown in Figure 9.18(b).

Figure 9.18(c) shows the PSpice simulated response of the active filter of Figure 9.18(b).
Voltage gain at low frequencies is 0.4984, corner frequency is 15.368 kHz (96.6 krad/s) and
ripple width is 0.947 dB, with gain at 40 kHz dropping by 62 dBs; a sufficiently good response.

9.9 Principle of Operational Simulation
To begin our discussion on the operational simulation technique, a ladder structure is selected

for its simplicity and due to the fact that it is a common structure for filter realizations.
Figure 9.19 shows a sixth-order ladder structure in block form along with the currents in the
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branches and voltage levels across branch immittances. The block diagram is valid for single
or doubly terminated ladders. The circuit can be described in terms of the following currents
and voltages.

Vi Voo Vi V= Vo Vi Vo= V-V 9.34)
L=1-L I;= LI, Iy =I5 as L, is zero (9.35)
+Vi- +V3 - +Vs -

Figure 9.19 Block form representation of a sixth-order doubly terminated ladder. V. is the source
voltage and Z, contains the source resistance R,. Z, contains the terminating resistor R,

In addition, the current-voltage relation for the series and shunt branches can be written as:
1= (VIZ) = Vi Iy = (V1) = VyYs, Iy = (V31 23) = Vis .30
V, = ,Z, = (LIYy), Vy = [,Zy = 1Y), Vi = [.Zs = (1] Y,) 9.37)

For the development of the procedure in which current-voltage relations of the branches

can be simulated operationally, the aforementioned four equations can be combined in the
following form.

L =V,=V), V,= 2,1, - I3) (9.38a, b)
L=Y(V,=Vy), V= Z(l5- I5) (9.39a, b)
I5 = Ys(Vi= V), Vi = Zls (9.40a, b)

Apart from the realization of the elements Z(or Y)), which will be taken up later in the chapter,
operational simulation faces the following two problems if the circuit is to be realized using

OA:s.

The first problem is that in equations (9.38) to (9.40), if the output side is in terms of
voltage, the input is current or vice versa, whereas in the OAs, both input and output are in
terms of voltages. The second problem is that summation of voltages is easier while using OAs,
but differencing them is a bit involved. Both the problems are solved step by step.
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The first of the two problems is solved by scaling equations (9.38) to (9.40) by a resistor R’
and changing their way of representation. Hence, for equation (9.38a), we can write:

R =RY, (V.- V) (9.41a)

In equation (9.41a), R’} becomes a voltage, which we will denote using a lower case voltage
symbol with a subscript / as v;;. Use of the lower case symbol is to identify that it was obtained
after normalization through R’ and subscript 7 denotes that, initially, this voltage was in the
form of current. Another important point is that the term R"Y;, which becomes dimensionless
and is the ratio of two voltages as v,/ (v, — v,), will also become a transfer function /y,. Hence,
in the modified form, equation (9.41a) is written as:

vy = hy (v, — vy) (9.41b)

In equation (9.41b), subscript y1 on the transfer function indicates that it was obtained from
admittance V].

Following the same notation, equations (9.38) to (9.40) are written as follows, where both
sides of the equation are in terms of voltages.

Vy = (ZIR)RI, —~R1I) = vy = b, (v, — v) 9.42)
RI=RY,(Vy— V) > v = hys(v, - vg) (9.43)
Vi = (ZJR)RI — R1I) = vs = h (v — vy5) (9.44)
RI=RY(RV,~ RV = vjs = hys(v;— ) (9.45)
V, = (ZJR)(R L) — v = b g(~v;5) (9.46)

In the transformed equations (9.41b) to (9.46), only v, is positive, v, has a negative sign and
the rest of the voltages v,, v53, vy, and vy appear in both inverting and non-inverting form
and in the voltage differencing form. Since differencing of the voltage is a bit involved, this
differencing in voltages is to be avoided; in its place, voltage summation is used. In this case,
at least four inverters are needed to get both inverting and non-inverting voltages v,, vy, vy,
and vjs. Use of these extra inverters will make the circuit complex and uneconomical. A better
alternative is to make those transfer functions, which became available in these equations from
the impedances Z,, Z; and Z, inverting; 4,; is replaced by —4,;. Under such a condition, the
transformed equations (9.41b) to (9.46) will modify to the following:

vy = hﬂ{vj + ()}, (<vy) = =hloy + (—vp)} (9.47a, b)

v = lﬂﬁ{(—vz) + v}, vg = —hl(—vp) + vps) (9.47c, d)
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U[S = hys {Z/4 + (_1/6)}5 _1/6 = _/726(”[5) (9.476, f)

Equation (9.47) can be implemented operationally using the symbolic notations shown in
Figure 9.20. Now inverters are not required since v,, v, and v are only negative, whereas
voltages vy, v4 and vy are only positive. The operational representation of equation (9.47)
is shown in Figure 9.21, where only summers are needed. According to convention, signals
originating due to current are placed on the upper line in the diagram and signals originating
from voltages are placed in the bottom line. Figure 9.21 can be re-drawn as shown in Figure
9.22. It may be noted that every loop in both Figures 9.21 and 9.22 comprise one positive and
one negative transfer function; this is important from the stability point of view.

Operation Block diagram
Vs
V3=Vi+V, Vi A Vs

/

o \%

Connector [

Figure 9.20 Block diagram symbols for the operational equations.

Use of alternate inverting and non-inverting transfer functions in the loop avoid the use of
extra inverters, but it creates the possibility of the output being out of phase by 180°; this is
not of much significance.

i m Vi3 m V5
o/ N

hy1 ~hy, hys ~hzy hys ~hz

o

Vs \_/ V2 _/ V4 _/ Ve
Figure 9.21 Operational representation of equation (9.47).
Avoidance of inverters is achieved by selecting the impedance-based transfer function as

negative, resulting in equation (9.47) and its circuit representation in block form is shown in
Figures 9.21 and 9.22. Alternatively, in the same way, admittance-based transfer functions
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Figure 9.22 An alternate form of presentation of Figure 9.21.

may be made negative. Keeping in mind the negative sign, the transformed parts of equations

(9.41) to (9.46) will modify as equations (9.48):

—vn = _hyl{”x + ()} —v; = hpl(-vp) + vp3} (9.48a, b)
v = =hysl(=0) + vihs vy = hglop + (—ups)) (9.48¢, d)
—vys = —/Jys{114 + (—v)}, —vg = by (—vps) (9.48e, f)

Like in the previous case, equation (9.48) is represented in block form in Figures 9.23 and
9.24. Once the block form of the equations is available, each of the transfer functions is to
be realized, which will depend on the element(s) used in a particular series and shunt branch.

~n C\ i m ~Vis
N N

-hy1 +hy, ~hy3 +hyy ~hys +h,e

Figure 9.23 Operational block diagram or relationship for equation (9.48).

v v
v Vi3 YIs
O RO -O- - O - O

Figure 9.24 An alternate form of Figure 9.23.

The operational simulation method of particular types of ladders will now be discussed
while applying the procedure just described.
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9.10 Operational Simulation of a Low Pass Ladder

Even when a high pass (HP), band pass (BP) or band stop active or passive filter is to be
realized, the procedure begins with a low pass (LP) structure. Later, it is transformed to the
desired characteristics. Hence, the general block form structure shown in Figure 9.19 is now
taken up to develop a procedure for an operationally simulated LP ladder. Figure 9.25 shows
the structure of a sixth-order doubly terminated LPF, for which equations (9.36) and (9.37)
will become the branch equations as shown here:

Vi V; Vs
[12 L ,]32_3, 52_5 (949)
s+ R sLy sLs
I
vy=dr oyt oy 5 (9.50)
sC, sCy sCs +G,

Figure 9.25 A sixth-order doubly terminated low pass ladder structure.

In order to convert the passive ladder into the form of operational representation shown in
Figure 9.21 (or 9.22), we need to find the transfer functions Ay, by, hys, by, by and by
To get these transfer functions, all branch immittances are scaled by a resistor K, as it was
done in the previous section, and the transfer functions based on impedances, /,,, /4, /. are
multiplied by (~1) in conformity with equation (9.47) and the block figures in Figure 9.21 or
9.22. Hence, we get:

4

by, =R'Y, = r___ ! 1! - (9.51)
(L +R) (SLI'FRIJ STy +A
R K
Z 1 1
—hZz = — 3 :——,:—— (952)
R sC,R ST,
1 1
sLy /R 5T
1 1
—hyy=— —=—— (9.54)
5C4R ST4
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1 1
hys=———=— (9.55)

sLsIR STs

1 1
—hys=— - —=— - (9.56)
sCeR +G,R (st +1/7)

In equations (9.51) to (9.56), 7; is the time constant as C;R" or L/R’, and ri, =R, IR . Ttis
observed that the realization requires a non-ideal non-inverting integrator for equation (9.51),
two lossless inverting integrators for equations (9.52) and (9.54), two lossless non-inverting
integrators for equations (9.53) and (9.55) and a finite gain inverting integrator for equation
(9.56). It may be noted that had it been a case of fifth-order filter without C, an inverter
would have sufficed for operationally simulating the resistor R; for equation (9.56).

Hence, the problem boils down to the selection of proper, ideal and non-ideal, inverting
integrators and non-inverting integrators. For the integrators, each integrator should have
two inputs so that along with integration, it sums two voltages like »,and (-v,) and v}, and
(—v73). In Chapter 8, a number of inverting and non-inverting integrators have been discussed.
Figures 8.5 and 8.6 show inverting integrators, with and without active compensation, and
Figure 8.7(a) shows a non-inverting integrator using an inverter. However, all the circuits have
one input. We know from the circuit of an OA summer that addition of another resistor at
the inverting input will do the job. Another important point is that all these integrators are
lossless, and to make them non-ideal, a resistor (like QR) is to be connected in parallel with the
feedback capacitor as in the Ackerberg—Mossberg biquadratic circuit shown in Figure 8.7(a).
Based on this brief discussion, Figure 9.26(a) shows a two input non-ideal inverting integrator
without any compensation and Figure 9.26(b) shows a two input inverting integrator with
active compensation. Though any configuration can be used, the choice of this combination
has the advantage that in any of the loops, the negative guality of the inverting integrator
almost cancels the positive quality of the non-inverting integrator, making the combination
better for an extended frequency range. Feedback resistance R has to be made open to realize
ideal inverting and non-inverting integrators, as shown in Figures 9.26(a) and (b), respectively.

A A \
R
VA R A | | C VA RA C
R | R
Vg B Vg B
o—AANN— V, —A\NN——- L V,
0 o
+
" - ()

Figure 9.26 (a) A two input non-ideal inverting integrator without compensation and (b) a two input
non-ideal non-inverting integrator with active compensation.
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For Figure 9.26(a), with OA assumed as ideal:

V,=- ! Q+& (9.57)
SC+Gf RA RB

For the active integrator, a scaling factor R, is used, which is independent of other branch
constraints and values in order to provide flexibility in selecting proper component values.
Hence, equation (9.57) modifies for the non-ideal integrator as:

V;[ R mivB):—
sCR,+G R \ R, Ry

(@4 V,+a,V5p) (9.58)

ST+,

With G,= 0, equation (9.58) will reduce to the following for an ideal integrator:

]7 S V ) ‘/ — — — |/ + ‘/ 9.59

Analysis of the circuit in Figure 9.26(b), taking OAs as ideal gives:

5C+Gf RA RB

Once again scaling it by resistor R, equation (9.60) modifies as:

Vo=t ik 1G R (lf: VA+%VB)=+#(WA rol ey
$ + ST+7,
s s A B

s

With Ry= oo, expression for a two-input ideal non-inverting integrator will become:
1
I/o = +—(d1VA +6Z2VB) (962)
ST

Now the results of the aforementioned equations for non-ideal and ideal cases can be applied
on equations (9.51) to (9.56) along with equation (9.47). First, those three equations are taken
which are based on admittance-based transfer functions, as these will be realized using the non-
inverting integrator shown in Figure 9.26(b) with (or without feedback) resistor Rf

1 .+ (=vy)
on =g ()= ﬁ 0.632)
R K
1 (—”z)+7’4
—Vr3 =7,{(—1/2)+u4}=7 (9.63b)
sky [ R sT3
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o PR (0 e A (=) (9.630)
sLs /R 575

Vrs =

Next, two equations involving impedance-based transfer functions are taken up, which shall be
realized using the inverting integrators shown in Figure 9.26(a) without Ry.

(_Vz) == 1_, {”11 + (_”13 )} =_n*rs) Cors) (9.64a)
sC, 5Ty
1 +(-
vg=— ; {”11 + (_”13 )} =% ) (9.64b)
5C4R ST4
The last factor corresponds to equation (9.56), which will be realized using an inverting
integrator.
1 ’ ’
(—116)=——{v15}=—1/[5/{(1/rL)+5C6R } (9.652)

GLR,HCGR'

whereas, if Cg is absent, it becomes a fifth-order LP filter. Then, the last factor corresponding
to equation (9.56) will be realized using an inverter as:

1 ,
(_”6)2 - . {2115}=—1)15(rL) (9.65b)
G,R

Combining the results of the aforementioned equations, the realized circuit for the fifth-order
LP active filter through operational simulation is given in Figure 9.27. In this realization, three non-
inverting, two inverting integrators and one inverter will be used; hence, a total of nine OAs
were needed. If the block forms of Figure 9.23 or 9.24 are used, it will require three inverting
and two non-inverting integrators and an inverter, which would need a total of eight OAs.

in

Figure 9.27 Realization of the fifth-order low pass ladder through operational simulation employing
integrators of Figure 9.26.
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In brief, operational simulation of an LPF can be completed in the following steps.

i.  After choosing an approximation method, a lossless LC ladder along with its element
values and terminating resistances is obtained.

ii. All the branch elements are scaled by a resistor to convert the immittances to transfer
functions.

iii. Either of the signal flow diagrams of Figure 9.22 or 9.24 can be selected; generally, the
block diagram requiring lesser number of non-inverting integrators is chosen as it saves

one OA.

iv. Blocks of integrating transfer functions are then replaced by active integrators, with
each block having an independent impedance scaling factor for additional flexibility in
selecting element values suitable for IC fabrication.

The following example will illustrate the procedure.

Example 9.5: For the given specifications, it was calculated that a fifth-order LP Chebyshev
filter with pass band ripples of 0.5 dB will be suitable. Find an active filter using the operational
simulation method which will have an LP cut-off frequency of @, = 10° rad/s and a source
resistance of 1 k€.

Solution: Figure 9.28 shows the structure and element values for a passive LP fifth-order
Chebyshev filter having 0.5 dB ripples. The normalized element values, with cut-off frequency
®, = 1 rad/s and normalized input terminating resistance R, = 1 € are as follows:

L =Ls=17058H, C,= C;=1.2296 F, L, = 2.5408 Hand R, = 1 Q

Rin Ll
t 0 1.7058 H
Vin
o

Figure 9.28 Fifth-order low pass filter with normalized element values having 0.5 dB ripples in the
pass band.

Equations (9.51) to (9.56) can be written for these element values, wherein R is the scaling

resistance:
by =11 (1'70,58‘ +L ] —hyy =—1/122965K (9.6, b)
R R
hyy = 1/(2.54085/R’), —h 54 = —1/1.2296sR’ (9.67a, b)
hys = 1/(1.7058s/R’), —h,s = —1/R’ (9.68a, b)
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Transfer functions of the equations (9.66)—(9.68) are now compared with equations (9.63)—
(9.65) and depending upon which transfer function is to be realized with an inverting or
a non-inverting integrator or an inverter (or buffer), element values for each circuit will be
obtained.

For the first transfer function 4y, from equations (9.63a) and (9.66a):

vy = 1, - {1/5 +(-v, )} (9.69)
(1.70585/R )+(1/R )

When it is compared with equation (9.61), it gives the following relation for a non-inverting
integrator:

R R
v = ;{ v, +—‘(—v2)} (9.70)
(SCR+GpR) | Ry * Ry

Since in the block diagram of Figure 9.21, v, and (-v,) are added with equal weightage, the
selection can be made such that R, = Rz = R. Comparison of equations (9.69) and (9.70) gives:

1/(1.70585/R) + (1/R) = 1/(sCR, + Gy R) (9.71)

Individual terms on the right-hand side of equation (9.71) are compared with respective terms
on the left-hand, and application of the block impedance scaling factor R, and the frequency
normalization factor @, results in:

CR = —1'7058(1?1 /o, and S = R (9.72)

R Rey R
In equation (9.72), there are two scaling factors, K and R, which give enough flexibility in

selecting practical values for the passive components. Selecting the value for capacitor C = 1
nF, and R, = 2.5 k€, equation (9.72) gives:

o i = L7058(R @) _1.7058x2.5kQ

s - = 42.645%x10°Q’
C IX1077 x10

’ 6
Ry = RR _42.645x10° oo\

R 2.5%10°

If we select R, = 5 kQ = R, = Ry, the aforementioned equations give R’ = 8.529 kQ and with
this, all the components of the non-inverting integrator have been obtained.

For the next integrator, which is inverting and ideal, equation (9.64a) will be used.

1
V= (- (9.73a)
(=22) 1.2296sR {y” ( %)} :
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Equation (9.73a) is compared with equation (9.59) (with Gf= 0).

1 R R
V. )=_ R VTl Y B 7 .73b
( L2) «CR {RA 11+RB( 13)} (9.73b)

Since the scale factor of the two summing voltages V}; and —V/; is unity, we select R = R, =
Ryp. Then, the same impedance scaling and frequency de-normalization used in the first case is
applied, which gives:

CR,=1.2296 RIR, 0,
For a selected value of C = 1 nF as before:

R, 12296 _ 1.2296

S

= - =4.9184
R RCw, 25x10°x1nFx10’

It is important to note that since all integrators are independent of each other, the active
scaling factor R, in each case may be different, whereas the rest of the ladder will be scaled by
the same factor R” = 8.529 kQ which was obtained while designing the first integrator.

Hence, for the inverting integrator R, = Ry, = Rp, = (4.918 x 8.529) = 41.94 kQ.
For the third integrator, from equation (9.63b):

1
(—Vfa)z—,{(_yz)”L%}-
2.5408s/ R

Comparing this with equation (9.61), with G;= 0:

1 JR, R
(st)—ﬁ{&( ) V4} 9.74)

This provides the following relation after impedance and frequency scaling:

_ 2.5408(R, | ®,)

4

R

CR,

If Cis selected as 1 nf, g, = —22408X25x 1 _ 7.447kQ .
" 8.529%10° x10° x107°
Hence, having unity gain for (-V}) and (V), R, = Ry3 = Rps = 7.447 kQ.
For the fourth integrator from equation (9.64a), selecting the value of C, = Cj, the inverting
integrator will be exactly the same as the second inverter.

For the fifth integrator, which is non-inverting, from equation (9.63c) Ls = 1.7058 H,
the same as L;; hence, its circuit realization will be the same as that of the first non-inverting
integrator; with Rropen since it needs a lossless integrator.
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The last unit being an inverter, equation (9.61) reduces to the following:
(9.75)

(-v6)=- Gflz R {%(”ls )}

Using equations (9.65b) and comparing — = —ﬁ(yjs) with equation (9.75):
I3

For Ryg =5k, R, = Ry, = 2.5kQ, Ry = 5k x 2.5 k/8.529 k = 1.465 kQ

41.94 k
RA4§ Rpy
. I
L\ 7
Inf[ R
C
Rp ok 1 _1c 5
17.058 k nk/+ j_ 1 nF + J__ 17.058 k 1 nF
Vo Ry = Rp Ry3 = Rgs Rys
i A WA, —WWA——AW
5k 5k 2 7447k 7447k "4 5k
(a)
600 mV _ — _
400 mV
200 mV : 1
ov . : H
100 Hz 1.0 Hz 10 kHz 100 kHz 1.0 MHz
Frequency

10 Hz
101V (30) ¢ V (501)
(b)

Figure 9.29 (a) Circuit realization for the low pass filter of Example 9.5. (b) Frequency response of the
operationally simulated filter shown in Figure 9.29(a) and the passive filter shown in Figure 9.28.
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Figure 9.27 is redrawn as Figure 9.29(a) with all calculated element values and Figure 9.29(b)
shows the simulated magnitude response of the operationally simulated filter. Its corner
frequency is 15.6 kHz (98.05 krad/s), voltage gain is 0.4998 and the ripple width is 0.555dB.
At 200.8 krad/s (31.953 kHz), attenuation is 43.8 dBs. For comparison sake, the passive filter
shown in Figure 9.28 was also simulated and its response is also shown in Figure 9.29(b). Its
corner frequency is 15.902 kHz (99.95 krad/s), ripple width is 0.5061 dB and an attenuation
of 42.53 dBs is at 31.888 kHz (200.4 krad/s). It can be easily observed that the operationally
simulated response almost overlaps the passive response except that the ripple width is slightly
more.

9.11 Operational Simulation of the Band Pass Ladder

In many cases, a BPF is designed using an initial design of a prototype LPF and then
transforming it as discussed in Section 5.4 of Chapter 5. The effect of such a transformation
is that the lossless inductance and capacitances get converted as series LC and parallel LC
branches, respectively. Figure 9.30(a) shows a simple LP ladder and its converted BP form in
Figure 9.30(b); the series resistor with the inductor gets converted into an RLC branch whose
impedance is given as:

Zy=(R,+SL) >R, +LQG+1/s) =R, +sQL, + L, Qls

=R, +sLigp + 1/5Cypp (9.76)

R L L
: L 122 Cigp: B | Csep °
¥ e
Vin _— Logp — PRER Vou
Cypp 4BP <)
o ’e)
(b)

Figure 9.30 (a) Doubly terminated fourth-order lossless low pass ladder and (b) the band pass ladder
obtained from (a) through low pass to band pass transformation.
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The lossy capacitance at the output end gets converted into a shunt RLC branch having
admittance as:

Y, =G+ SC,— G+ CQs + 1/s) = G + sC,Q + C4Qs

= G, +5sCypp + 1UsLypp 9.77)
whereas the lossless branches have been shown to be, respectively:

Y, = sCypp + 1/sLypp and Zs = sLypp + 1/5Csp (9.78)
In equations (9.76) and (9.77), elements of the normalized BP section are:
Lygp = QLy, Cigp = 1/QLy, Lygp = 1/QC, and Cpp = QC; 9.79)

Admittance of the series arm of equation (9.76) and the impedance of the shunt arm of
equation (9.77) can be written as:

1/L
Yigp =— (U Ligp)s (9.80)
5"+ (R, / Ligp ) s +1/ (LigpCipp)
1/C
Zgp = (1 Cipe ) 9.81)

s*+(GL 1 Cypp) s+ 1/ LigpCigp)

For the operational simulation of the BPF shown in Figure 9.30(b) in the form of the block
diagram shown in Figure 9.23 or 9.24, equations (9.80) and (9.81) are scaled by R’, in order
to convert them into the form of the following voltage ratio transfer functions

) (R"/ Ligp)s
e 9.82
1BP Yl( ) 2 +(Rin /LlBP)H'l ! (LgpCipp) o
G/ Cypp s
ZyppG =hy4(s)= ( ) o

s* +(GL 1 Cypp) s+ (1) LigpCigp)

Expressions in equations (9.82) and (9.83) represent inverting and non-inverting BP functions
with a finite value of pole-Q.

For the internal branches, which do not contain resistors, scaling by the resistor R gives the
respective transfer functions shown here, which are inverting and non-inverting BP functions
with infinite pole-Q.

Zyup (5) =y ()= (G" 1 Cypp)s

, _ (9.84)
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(R, /IGBP)S

_ 9.85
(s> +1/ LygpCspp) ©8)

—Y3ppR =—lhy; (5) =

It is obvious from the aforementioned equations that a doubly terminated BPF obtained
from an LPF through frequency transformation can be realized using only second-order filter
sections which are able to realize finite as well as infinite Q. Such filter sections should be
capable of adding two inputs, and these will be connected alternately inverting and non-
inverting form; in exactly the same way as in the LPF case.

There are a number of active circuits for the realization of second-order BP functions
employing one or more than one active device. Obviously, the advantages and limitations of
the applied second-order section will be reflected in the overall functioning of the operationally
simulated realization. Use of one OA BPF section will be economical but usually such
realizations have high sensitivities, whereas multi amplifier sections may not be economical
but are less sensitive. The following example will help in understanding the procedure for
operationally simulating a BPF.

Example 9.6: A doubly terminated LP Butterworth approximated filter structure is shown
in Figure 9.31. Using frequency transformation, convert the filter to a BPF having center
frequency @, = 104 rad/s, and Q = 5. Find a suitable active realization using the operational
simulation method.

Solution: From equation (9.79), normalized value of the elements of the BPF are:

Lygp = 5 x 0.7645 = 3.8225 H, Cyp = 1/5 x 0.7645 = 0.2616 F
Lygp=1/5x 1.848 = 0.1082 H, Cppp = 5 x 1.848 = 9.24 F

Ligp =5 x 1.848 =9.24 H, Cypp = 1/5 x 1.848 = 0.1082 F

Lygp = 1/5 x 0.7645 = 0.2616 H, Cypp = 5 x 0.7645 = 3.8225 F (9.86)
R,=1Q 0.7645H 1.848 F
o—/\/\/\,—fvb’b’\—o—fb’m * lo)
+ +
Vin _ J— RL =1Q Vout
1.848 F 0.7645 F
o o)

Figure 9.31 Fourth-order Butterworth filter structure with normalized elements values for Example 9.6.

After frequency normalization by @, = 104 rad/s and impedance normalization by a factor of
103, element values become:

https://doi.org/10.1017/9781108762632.010 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.010

Continuous Time Active Analog Filters

R, =1kQ, Ly, = 382.25 mH, Cjpp = 26.16 nF (9.87)
Lygp = 10.82 mH, Cypp = 924 nF (9.88)
Lygp = 924 mH, Cypp = 10.82 nF (9.89)
Lygp = 26.16 mH, Cypp = 382.25 nF, R, = 1 kQ (9.90)

Figure 9.32 shows the transformed passive eighth-order BPF structure with de-normalized

element values.

382.25 mH 924 mH 10.82 nF

3 26.16 nF
1000 (LS29H) | (65anp) (696H) 112705 nF)
+ VYV | | [ 2
10.82 mH
(2.705 mH)
Vin :: :: 103 Q Vout
924 nF 382.2 nF
3.696 LF 1.529 uF
( ME) ( HE) 26.16 mH
— (6.54 mH) 5

Figure 9.32 Eighth-order band pass filter with de-normalized element values from Figure 9.31 for
Example 9.6.

Series and shunt branches comprising the elements in equations (9.87) and (9.90),
respectively, are written like equations (9.80) and (9.81), and scaled by R'(k€2) in order to be
represented by transfer functions of equations (9.82) and (9.83). The resulting equations will
be as follows:

(R 70.38225)s

b (s)=— (9.91)
1) 52 +(103 /0.38225)s+(0.38225><26.16><10’9)

(G' /0.38225 % 10‘6)5
(9.92)

by (’) =

2 +(107 /038225107 )5+ (0.02616*0.38225x10™°)
Taking the same steps, equations (9.88) and (9.89) will transform into the following equations:

(G' /924X10_12)5
(9.93)

b, (5 =

& +1/(0.1082><924><10‘12)

) (R’/0.924); 00
_ 9.9
3» ;2+1/(0.924><10.82><10‘12)
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There are some choices available for the realization of the four transfer functions, equations
(9.91)—(9.94). Separate configurations can be chosen for the inverting and non-inverting
second-order BP sections, with finite and infinite Q. In the present example, a modified Tow—
Thomas biquad with two inputs as shown in Figure 9.33 is used. The important feature of the
modified circuit is that both inverting and non-inverting BP responses are available at the OA
outputs and infinite Q is obtained simply by open circuiting the resistor R* Therefore, the
design of all the four transfer functions becomes modular; an attractive feature for integration.
Assuming ideal OAs, analysis of the circuit of Figure 9.33 gives its transfer function as:

/C
Vip =(ﬁ+ﬁ} > +( (1 ])S (9.95)
s

Ry Ry HGR')s+(1/ GCRR,)
Ry
N
.._| ICI_

v, R

& AMN—ANA— : )
Vi ~ ) '

B Rg ‘ >—

o j::
= Vgp -Vip

Figure 9.33 Modified Tow-Thomas biquad with two inputs.

From equation (9.95), parameters are

o, = 1/(C, C, R, R,)" (9.96)
1 x 1 C
&: - >Q=R 1 (9.97)
Q GR RR, G,
Normally, C, = C, = C, then the parameters are:
1 * 1
w,=1/C(RR,)” and Qgp =R ( ) (9.98)
RR,

To get infinite Qpp, R* is made open, which does not affect the expression for @,. Without
affecting generality, R, = R, = R, and as the two voltages V, and V} is to be added with equal
weightage, we select R, = Rp. In the finite Q case, the simplified form of equation (9.95)
becomes:

(V4 +Vp)(1/CRy)s

Ver, = ’ (9.99)
BT +(1/CR )5+ 1/ (CRY
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Selecting C'= 107 F, in all the four branches, from equation (9.98), it gives:

R=1/104x 107 = 1 kQ (9.100)

For evaluation of the rest of the elements of branch 1, comparing the parameters of equation
(9.99) with equation (9.82), we get:

1 R, R 1

= and ——= 9.101)
CR  Lyp Lgp  CRy
R*= L,p/ CR, = 0.38225/10~ x 103 = 3.8225 kQ (9.102)
With R =1 kQ, we get from equation (9.101):
Ry = Ligp/CR = 3.8225kQ = Ry, (9.103)

In equation (9.103), subscript 1 indicates elements for the first branch for which all elements
have been calculated. For shunt arm 2, equation (9.99) (with R open) is compared with
equation (9.84). It gives:

Ry = Coppl G’ C=9.24kQ = Ry, (9.104)

For the third (series) branch, R*is open and comparison between equations (9.99) and (9.85)
gives:

Ry = Lyppl CR = 9.24 kQ = Ry, (9.105)
For the fourth (shunt) arm, comparison between equations (9.99) and (9.83), we get:
R*=3.8225kQ, R, = 3.8225 kQ (9.106)

Figure 9.34(a) shows the operationally simulated eighth-order BPF. Care is taken to keep
alternate inverting and non-inverting blocks.

Figure 9.34(b) shows the simulated response of the active filter of Figure 9.34(a), having
a center frequency of 1.5969 kHz (10.037 krad/s) with a mid-band gain of 0.547, instead of
0.5. With a bandwidth of 320.8 Hz, obtained Q = 4.977. It is observed that the pass band is
also flat as it should be. Figure 9.34(b) also shows the simulated response at the same center
frequency, with Q = 5, for the passive structure. With the mid-band gain as 0.5, the pass band
is still flatter with Q = 5.02.

Figure 9.34(c) shows the simulated response at the same center frequency with Q = 20, for
the operationally simulated as well as passive structure. De-normalized element values for the
filter with Q = 20 are also shown in Figure 9.34(a) within brackets. The response is not flat
and the mid-band gain is also increased to 0.713 instead of 0.5. The realized value of Q = 19.6.
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3.8225 kQ 3.8225 kQ 9.24kQ 9.24kQ
—\\V\ AAVAY AAVAY NV o
Vin Vout
Il » 1l
N, 10 F 10F 7 e
/‘ C 1078 1078 Lt
3.8225kQ = =
5kQ 5kQ
i ) g |9
— LN —
+ c § §

e/
N

1kQ

! 3.8225 kQ
+ 7 [107F |
9.24kQ 3.8225 kQ
600 mV ,
Activefilter
400 mV
200 mV
0V
1.0 kHz
OV (84) AV (61) Frequency
(b)
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1.0V
05V
ov +
1.4kHz
10:V (84) + V (666) Frequency

(©)

Figure 9.34 (a) Operationally simulated eight-order band pass filter for Example 9.6. (b) Simulated
response of the filter with Q = 5, and passive filter (c) Response of the operationally
simulated eighth-order band pass filter with Q = 20.

9.12 General Ladder Realization

LP and BP lossless ladders are very important from the point of view of filter design. From the
discussion so far, it can be observed that the procedure for their realization through operation
simulation is a bit long but follows a set pattern. Of course, the design depends on the kind
of structure used for realizing a particular second-order transfer function for the inverting
or non-inverting mode branch. However, there are many ladder configurations other than
an all pole LP and BP in which the branches (series or shunt) are in a most general form. A
branch can comprise inductors and capacitors in both series and parallel form and resistors as
well. Figures 9.35(a) and (b) show one such general structure each in series and parallel form.
Herein, in Figure 9.35(a), subscript s indicates an element in the series branch and in Figure
9.35(b), p indicates parallel (or shunt) branch elements. While operationally simulating, the
series branches are expressed in admittance form and the shunt branch in impedance form, and
both are scaled by the same value resistance R. Following the same procedure and expressing
them in continued expansion form, first for the series branch, we get the following expression.

, 1
— 9.107
R Y(s) &4_&34_ ] . ] ( )
R F fC:lR, nyzR' + %
%S
R
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o ° °
LsZ Lp2
R L | | Ry Ly _—
s1 s1 | Cq P P Cpl
C
CSZ O P2
() (b)

Figure 9.35 (a) Series and (b) shunt branch of a ladder with arbitrary combination of elements.

Since R’ Y(s) can be written as /,(s) and the scaled elements can be written in lower case

symbols, equation (9.107) modifies as:
1
hy (s)= . . (9.108)
rytelgt
Tl sCoy
Stso

Similarly, for the shunt branch, the impedance function divided by X and the resultant

transfer function with negative sign are:
Z

_ R(’S) _ (9.109)

RG.  +sC R + +
21 2! 51 L];Z 1

R R sC sz'

Since Z(s)/R’ can be written as 4,(s) and the scaled elements can be written in lower

case symbols, equation (9.109) modifies as:
1
—hy(s)=- T T (9.110)
2 +5€P1+T+7

kY
1 Slpz

+—
SCPZ
Note that series branches result in a current, like 7; = Y{V, + (=V})} in Figure 9.19, which gets

converted to a voltage after resistance scaling, and the shunt branches result in voltages like V,
= Z, (I, = I); scaled as well.

A suggested approach for the realization of the kind of transfer function of equations (9.108)
and (9.110) uses a two-input summing inverter with an arbitrary transfer function H(s) = (V/
V.. and admittance Y(s) in its feedback path as shown in Figure 9.36(a) and (b). Assuming
OA as ideal, a simple analysis of Figure 9.36(a) shows that:

Vour =—;(VAGA+VBGB)=—G—{&VA +@VB} (9.111)

Y(S)H(S) Y(S)H(S) G G;
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(b)

Figure 9.36 (a) A schematic realizing the transfer function for equation (9.111), with H(s) = (V{/V, )
and (b) its dual for realization of the inverting transfer function.

Equation (9.111) shows the summation of two input voltages resulting in a voltage ratio transfer
function which is inverting and proportional to the inverse of ¥(s) x H(s), with R = 1/G” as
the scaling resistor. Obviously, this arrangement is valid for the inverting transfer function
blocks in operational simulation as represented by equation (9.110). In a dual scheme, shown
in Figure 9.36(b), with two voltages connected to the non-inverting input of the OA and
the inverting terminal grounded, and with transfer function (—H(s)), exactly the same output
as in equation (9.111) results in a non-inverting transfer function, which is used for the non-
inverting blocks in operational simulation as represented by equation (9.108). It is to be noted
that, in each version, with the help of negative feedback, one inverting and one non-inverting
combination of OA and H(s) is maintained for the stability of the arrangement.

As mentioned earlier, H(s) is an arbitrary function in s; hence, one can realize not only the
transfer function of equation (9.108) and (9.110), but anything simpler or more complex than
that. Presently, we will limit our discussion to the circuit realization of Figure 9.35, but it can
be extended to other circuits or simplified to the LP and BP circuits, which are nothing but
special simpler cases of the circuit in Figure 9.35.

9.12.1 Realization of shunt arm

To realize the inverting transfer function of equation (9.110), four feedback branches need to
be connected between terminals P and Q of the circuit in Figure 9.36(a) corresponding to each
branch of the circuit in Figure 9.35(b). For the realization of single elements, R}, L, and C,;,
the structures shown in Figure 9.37(a) will be connected between terminals P and Q, whereas,
for realizing the parallel combination of L, and C),, the circuit shown in Figure 9.37(b) will
be connected between terminals P and Q. Assuming both OAs as ideal, a routine analysis gives

the following relations in Figures 9.37(a) and (b), respectively.

Vo=H,V,

out’

Va=H, Vyyand Vo= H, V,

out

(9.112)

Gy Voo t 13 CH) + Yy (HYY V=001 V= Gy V, /(Y3 Hy + Yy HY) (9.113)

out
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P Vo Q
T o«
S (" S
V. Q
P cl
Y, H Ly
1 1 v P

Figure 9.37 Expanded configuration for realizing (a) R, L,; and C,, and (b) L,, and C,, of a ladder
like that shown in Figure 9.35(b).

Substitution of Figures 9.37(a), (b) in Figure 9.36(a), yields the following relation:
GuVa+ Gy Vp+ Vg Yo+ Vg Y1+ Vg Y3+ Vi3G5, =0 (9.114)

Substituting Vg, V,;, V, and V5 from equations (9.112) and (9.113) in equation (9.114) and

scaling by resistor R”, the following output voltage is obtained.

R// R,’ 1

9.115
= Vet ©.115)

GHR A RHR 4 HR + A,

G31G32R G31G32R

Equation (9.115) shows the output voltage as a function of two voltages V, and Vj, which are
being added. If these voltages are to be added directly without any weightage, then R, and Ry
will be equal to R”. If the voltage levels are to be changed, which is sometimes required for
changing the dynamic range of the filter section, then it is done by opting for a proper ratio
between R” and R, and Rz Components of the transfer function of equation (9.115) can be
compared with the inverting transfer function of equation (9.110) and a procedure can be
developed for finding the nature of the transfer function H(s) and the value (expression) of
elements to be used in it in terms of the elements of the circuit shown in Figure 9.35(b).

For the shunt arm of the ladder, to realize the element R, we select ¥, = Gyand H, = 1,
which means:

g1= YoH, R — Gp1 R =GyR orR,=(R'IR) Rp = kp Rp, where /ep =R'IR (9.116)

For the realization of the capacitance C,,, we select ¥, = sC| and H, = 1, which results in:

12
s¢y=Y) Hi R —sCy R =5C, R or C = (RIR') C,y = C,y/k, (9.117)

It is better to fix the value of /ep from equation (9.117) and use equation (9.116) to get the
value of R, If R, is not present in the shunt branch of the original ladder, then R, shall be
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open circuited, and similarly, if C}n is absent, C; shall will also be absent, and kp can be selected
using equation (9.116).

For the realization of inductor L,;, we select H, = (1/sCyR,,), a non-inverting integrator,
and Y, = G,,, which means that:

L
L =Y,H,R" — 1l ___Gn R” = RyRy, =~k forC,=C, =C (9.118)
sl Lyl R sCyRy, c

Circuit structure for the realization of R,;, L, and C, corresponding to equations (9.116),
(9.117) and (9.118) are shown in Figure 9.38(a).

Figure 9.38 Circuit realization for (a) R,;, L,; and C, and (b) L,, and C,, of the shunt branch of a
ladder like that shown in Figure 9.35(b).
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For the branch containing a series combination of L, and C, first to find the relations for

Lp2’ we select A5 = 1 and Y; = sC;; this gives the following relations:
Y-:H L CiR R L 7L
5[])2 __ 1313 5 P,Z :5#%1@31&2 ZLZR, :Lz/ep forC;=C (9.119)
G31G5R R R C; R C

For the realization of the capacitor C,,, we select, Y, = G4, and H, = (1/sC,R,,) a non-invertin
p 2 4=0Uyg 4 41 g
integrator, and we get:

1 _ YiH, 1 _1GuRR,
scpy GyGHR” sCHR s CyRGRY
Substituting for R;; R;, from equation (9.119), we get:

Co R Ly Cpnly,
Ry Ry, =C—P4R” X%/@P = f’sz’ forC,=C (9.120)

The circuit structures for the realization of ,, and C,,, corresponding to equations (9.119)
and (9.120) are shown in Figure 9.38(b), which are to be combined with Figure 9.37(a).

Equations (9.116) to (9.120) serve as the design equations for the structure and the element
values. Once &, is fixed, and C; = C, = C5 = Cj = Care selected, the products Ry Ry,, R5;R3;
and Ry, R,,, are found out. There is no constraint and we can select:

R, =R, (9.121)

The remaining input resistances R, and Ry are decided depending on the voltage gain given to
the two voltages V; and V. For the usual case of summing the voltages directly,

R,=Ry=R' (9.122)

9.12.2 Realization of series arm

Admittance of a series arm, which is shown in Figure 9.35(a), is converted to a transfer function
of equations (9.107) and (9.108). Its non-inverting expression is realized by similar structures
as of Figure 9.37, shown in Figure 9.39, where input voltages are applied at the non-inverting
terminal of OA, A, of Figure 9.36(a); the rest of the inputs are given to the inverting terminal.
Analysis results in exactly the same output voltage expression as in equation (9.115) without
the inverting sign as desired.

Using the same procedure as was adopted for the shunt branch, the following selections
were made for the elements R}, L; and C,;.

1

Hy=H,=-1,-H,=—
0 1 2 5C2R21

(9.123a)
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Figure 9.39 Circuit realization for (a) R, L5, and Cs; and (b) Ly, and Cs, of the series branch of a
ladder like that of Figure 9.35(a).

Corresponding to equation (9.123a), the circuit structures to be connected between terminals
P and Q of Figure 9.36(a) are shown in Figure 9.39(a). Selected components will be as:

Yy =Gy, Y,=5C, Y, =5C,, (9.123b)

The following selections were made for the elements L, and C,.

1

H.=1, H=—
’ TSGRy

(9.124a)

Corresponding to equation (9.124a), the circuit structures to be connected between terminals
P and Q of Figure 9.36(b) are shown in Figure 9.39(b). Selected components will be as:

Y, =sC,, Y, = G, (9.124b)

Component values are obtained as:

Y,HyR” =R, /R’ — R, =(R'R")/ R, = (k)| R, (9.125a)

” , rpr 2
YHR"=sLy | R — Cy =Ly | (R'R")= Ly | k; (9.125b)

As before, after selecting a suitable value of C| = C, £, is fixed from equations (9.125b); then,
R, is obtained from equation (9.125a) and the value of 4, remains constant in the next steps.
In case L is not present, then C; = 0 and the value of 4, shall will be decided by equation

(9.125a).
With C,, C; and C; chosen equal to C(C)), the remaining resistances are obtained from the
following:
C.V C: L R R L.f C.f
Ry 1Ry, 271/%2’ Ry Ry, = ?2/%2’ Ry Ryp = ?2% = % 9.120)
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Once again without losing generality, we can select:

R, =R, =R;and R, = Ry, = R’ for unity gain. (9.127)

z

Example 9.7: Compare the responses of the passive circuit shown in Figure 9.40(a) and its
active version as an illustration of the realization of shunt arm through operation simulation.

Solution: Impedance scaling factor K of 1 kQ and frequency scaling factor of 2 krad/s gives
the element values as:

Ry =1kQ, L, =0.2H, C, =0.05UF, L, = 0.1 Hand C,, = 0.1 uF (9.128)
Resistance R* = 1 kQ (= R,;) has been connected in series to find the response in the passive
case only.

1Q
g AN
CiLF
Vm Rl 1Q J— Vout
L,o2H
L{]4H
o— 11 -
(@
600 mV :
-.....Passive shuntlbranch __
400 mV
200 mV
T
100 Hz
01V (3)x V(22)
Frequency
(b)

Figure 9.40 (a) Prototype normalized shunt arm for Example 9.7. (b) Simulated response of the
passive and operationally simulated shunt arm of Figure 9.40(a).
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Design of the shunt arm begins with the application of equation (9.117), and selection of
scaling factor R’ as 1 kQ. As impedance scaling factor R was 1 kQ, factor /ep = 1. It results in
capacitor C'= C,; = 0.05 UF. With k, being unity, equation (9.116) gives R, = 1 kQ.

While selecting R;; = R,,, equations (9.118)—(9.120) give C, = C;= C; = 0.05 uF, R,; = R,,
- 2kQ, Ry = Ry, =\/2kQand Ry, = R, = 2kQ.

Input scaling resistance R, equals X" when voltage gain of unity is desired. In the present case,
for the passive circuit, gain magnitude is 0.5; hence, R, is doubled to 2 kQ.

Figure 9.40(b) shows the simulated frequency response of the de-normalized passive as
well as its active version which match well with a notch at 10 krad/s and peak at the same
frequencies of 19.92 krad/s and 0.823 krad/s.

Example 9.8: Compare responses of the passive circuit shown in Figure 9.41(a) and its active
version as an illustration of the realization of series arm through operation simulation.

Solution: In the normalized passive circuit, resistance R, = 1 k€ is connected as a load for
obtaining the circuit’s transfer function. Impedance scaling factor of R = 1 kQ and a frequency
scaling factor of 20 krad/s was employed, resulting in the value of elements as:

R =1kQ, R, =1kQ, L, =02H, C,=0.05uF, L, =0.1H, C,=0.1uF (9.129)

From equation (9.125b), selecting C, = 0.05uF, 4% = (Lf1 / Clz) = (0.2 /0.05 % 10_6) =4x10°.
Application of equations (9.125)—(9.127) and selecting R;; = R, gives the element values as:

Ry = 4kQ, Ry, = Ry, =2kQ, Ry, = Ry, = 22 kQ, Ry, = Ry, = 2kQ

C,=Cy=C,=0.05uF (9.130)

Since K was selected as 1 kQ, R” = 4 kQ. Hence, to bring the output voltage equal to half
at the input (same as in the case of the passive circuit), the value of the resistance R, = 2" =

8 kQ.

Frequency responses of the de-normalized passive circuit and the active circuit are shown in

Figure 9.41(b) with notch at 1.58 kHz and peaks at 1.123 kHz and 2.248 KHz.

1F 2112
Vin 1Q 4 H Lz Vout
o—/\/\/\,—| I_mm_o 3
R L :
1 o 1 | |
Gl [2F
1Q R;

(@)
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600 mV

400 mV

200 mV

Olperationally simulateld

ov t
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz
vV (3) YV(59)
Frequency
(b)

Figure 9.41 (a) Prototype normalized series arm for Example 9.8. (b) Simulated response of the
passive and operationally simulated series arm of Figure 9.41(a).

Example 9.8: Redesign the cighth-order BPF of Example 9.6 using the general ladder

realization approach.

Solution: Application of the frequency de-normalization by 10% rad/s and impedance scaling
by a factor of 103, elements of the BPF were made available in equations (9.87)—(9.90).
Now, its structure is shown in Figure 9.42(a), along with their values, which are calculated in
following paragraphs. Design for the complete circuit proceeds in terms of individual branches
and then they are properly interconnected.

Series branch number 1: Selecting scaling factor R” equal to the original impedance scaling
factor R(1 kQ) gives the coefficient 4> =10°. Assuming all capacitors to be equal for the
series branch, use of equations (9.125b), (9.125a), and (9.126), respectively, give the following
values of the elements:

L, 1529
=l = =1.529uF (9.131a)
11 /exz 10° [
Ry =k’ 1R =10°Q (9.131b)

6.54%107°

Ry =Ry, =k J(C,/Ch)=10
211 221 s ( it 21) (1.529*10—6

J=65.4Q (9.131¢)
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1K
NV
3
2K 2 lll:l | 6
Y, 23
1 1 2
=] I
/ S ° 2
o S 1K§::
[ NEK 3.696 UF < 27.05
eiin] A
1K 1K
500 mV ,
250 mV 4
ov i
1.2kHz 2.0kHz
10:V (321) Frequency

(b)
Figure 9.42 (a) Operational simulation circuit with element values for the eighth-order band pass filter
of Example 9.9. (b) Response of the eighth-order band pass filter using general ladder
realization approach for Example 9.9.

Assuming gain of the filter as unity, the input resistances are:

Ry =Ry =K = 1kQ 9.132)
Shunt branch number 2: With all capacitors for the shunt branch taken as equal to C;, and

/ep = (R/R’) = 1, application of equations (9.117), (9.116), and (9.118), respectively, gives the
following values:

Clz = Cpllkp = 3.696 “,F, and ROZ = o0 (9.1333)
E——— 2.705%107°
Ry=R,,, =k L,/IC,|= || ———1=27.05Q (9.133b)
212 222 » ( 2 12) (3.696><10_6J
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Input resistances R;, = Rz, = R’ = 1 kQ. In fact, for the rest of the two branches, input
resistances will be the same.
Series branch number 3: Similar to series branch number 1, all capacitors in the branch
remaining equal:

Ci3=3.696 UF, and R; = (9.134a)

2.705%107°

- [=27.05Q (9.134b)
3.696x10~

Ryj3=Ry3 = k, (Cya /Cza) =10’ (

Shunt branch number 4: Similar to the case of branch number 2, and capacitors remaining

equal:
Ci4= 1.529 UF and Ry = b, R4 = 1 kQ (9.135a)
6.54%107°
Ry, =R, =10° | —2—_|=65.4Q (9.135b)
214 = T2 [1.529><10‘6J

Figure 9.42(a) shows the combination of all the four branches connected in operational
simulation form, along with the element values. The simulated response of the filter is shown
in Figure 9.42(b). The simulated center frequency is 1.5878 kHz (9.945 krad/s) with a
bandwidth of 78.99 Hz, resulting in Q = 20.1. Value of the mid-band gain is 0.462 instead
of 0.5.
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Practice Problems

9-1

9-2

9-3

9-4

9-5

9-6

9-7

(a) Input impedance expression for the circuit in Figure 9.9(b) is obtained as Z;, = Z,Z,Z,/Z,Z, with OAs
considered ideal. Resulting expression of the simulated inductance is given as L, = R|R3RsCIR,. Show
that, when OAs are modeled by their first-order roll-off model as A; = B/s, following input impedance is
derived for the working frequency range @? << (B|B,) as:

(b) With s = jw, simulated impedance is Z;, jo = j@ (L, + AL) + R;. Find expressions for AL and R..
(c) What shall be the significance of selecting resistance R, = R;.

Design a lossless ladder for the following specifications:

o = Z%Hmax =1dB,w, = 4%andﬂmm =20dBs

Use equal-ripple approximation with double termination ladder and realize the filter using GIC based
inductor simulation. If possible, select a capacitor of 10 nF each.

Design an LC filter with Chebyshev approximation and minimum inductors and R, = R, = 600 €.
Replace the inductors by an OA RC circuit; specifications are:

fi=125kHz, A, =1 dB, f, =56.25 kHz, and A, = 35 dBs

Obtain an active RC version of the ladder shown in Figure P9.1 using a gyrator, with R;, =R, = | kQ, C,
= C,=20.94 nf, C,=3.306 nf and L, = 0.8347 H.

Ly
TN
Rin
+ | * 2
A I 1C,
Vm _— RL Vout
G C;
o _T_ o)

Figure P9.1

Design a GIC based third-order HP filter with Butterworth approximation having 3 dB frequency of 5 kHz.
Use a doubly terminated ladder and capacitors need to be of I nF, if possible.

Realize the ladder shown in Figure P9.1 using Bruton’s approach.

Design a fifth-order HP active RC filter using inductance simulation technique, having pass band ripples
less than | dB and corner frequency of 100 krad/s. Compare its response with that of the passive prototype
filter.
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Realize the ladder shown in Figure P9.2 using Bruton’s approach for a center frequency of 10 kHz and

Q=10.

Rin Ll | |C1 L3 | C3
T: VWA V00— | b T
Vin :: L2 RL Vout

i - i

Figure P9.2

Design and test an LPF using operational simulation from a normalized third-order Butterworth filter. Cut-
off frequency is | kHz and the terminating resistors are 2 k€ each.

Repeat Problem 9-9 for a fifth-order Butterworth filter with the other specifications remaining the same.

Design and test an LPF using operational simulation from a normalized fifth-order Chebysheyv filter. Pass
band ridge frequency is | kHz and the terminating resistors are 2 kQ each.

Specifications of a Butterworth LPF: range of pass band 0 < @ < 8000 rad/s and range of stop band 32000
rad/s < @ < e with o, = 16 dBs and o, = 0.5 dB. Design and test using the operational simulation
approach.

Note: For Problems 9-13 to 9-16, employ the technique in Section 9.11.

A BPF is to be designed using a third-order LP Butterworth filter. Its center frequency is to be 2 kHz and
quality factor Q =10. Test the circuit using practical element values.

Repeat Problem 9-13 if its prototype is a fourth-order Butterworth filter.

Design a BPF with @, = 5 krad/s and 3 dB bandwidth = 4500 rad/s. The prototype is to be a fourth-order
maximally flat band pass.

An active BPF is to be constructed from a passive structure shown in Figure P.9.2 (Problem 9.16). Center
frequency, lower and upper cut frequencies are 1265 Hz, 800 Hz and 2000 Hz, respectively. Employ
operational simulation method to obtain the filter and test it.

In Figure 9.35(a), series resonance is to be at 4 krad/s and shunt resonance at 8 krad/s. Verify the frequency
response with that of the passive structure. A resistance of | kohm is used in the de-normalized circuit.

Repeat Problem 9-17 for the circuit in Figure 9.35(b) with the shunt resistance in the de-normalized circuit
being | kohm.

Use impedance scaling of 103 and frequency scaling of 10° for the series branch of Figure P9.3
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5H
e -+ N
1Q 1H Y
o— AAN—TTT
[
1F | |
[ lo2F

Figure P9.3

and compare frequency response with its de-normalized passive version.

9-20  Repeat Problem 9-19 for the circuit shown in Figure P9.4.
] 1

—1F

05F

Figure P9.4
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