Frequency and Impedance

Transformations

5.1 Introduction

In Chapter 3, magnitude approximations were studied for the low pass (LP) response.
Specifications for the LP response contained maximum attenuation in the pass band ¢,
minimum attenuation in the stop band @,;,, and corner frequencies of the pass band €,
and stop band €2, (or the selectivity factor = (Q,/€)); for a normalized LP filter, the value of
the selectivity factor becomes €. Such approximation methods are not commonly available
for other types of filter responses like high pass (HP), band pass (BP), or band reject (BR).
However, this is not too much of an issue as frequency transformations are available, which
can convert all the important characteristics of an LP filter to that of any other type of filter
response and vice-versa. This process of using frequency transformations is a longer procedure
compared to direct approximation of other types of responses, but it has some basic advantages.
Instead of using different approximation procedures for the different types of filters, extensively
available charts and tables for the LP response are used for the maximally flat-Butterworth,
Chebyshev, inverse Chebyshev, and the elliptic forms of approximations. The values of poles
and zeros, the expression of the transfer function and structure in ladder form with element
values are available for small and large order 7 of the LP filter. The procedure of frequency
transformation is lengthy because it involves conversion of the specifications of the filter to be
designed (FTD) in terms of a corresponding low pass prototype (LPP). After designing the LPP,
its transfer function is then converted back to that of the FTD.

Transformation of an LPP to the prototype HP, BP, and BR is described in Sections 5.3 to
5.5; the respective transformation factors are also described. Besides these transformations, the
level of impedance has to be changed to control the values of the passive components that are
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allowed to be used in a practical circuit. Impedance scaling and conversion of an LPP to an LP
filter of some other frequency is studied in Section 5.2.

For convenience and to avoid confusion between the frequency axes of the FTD and LPP,
different symbols are used. For the LPP, the complex frequency variable is expressed in capital
letters § = 2 + jQ; small letters s = 0 + j@ are used for the FTD. To transform the transfer
function of the LPP, H|(S) in terms of the transfer function of either HP: 7},(s), BP: Hyp(s),
or band elimination (stop): Hyg(S) functions, we need to find an appropriate functional
relation as follows:

Q=fw) (5.1)

The function f{w) has to be selected in such a way that the approximated magnitude function
of LPP, |H, p(jQ)| = |H ppiflj®)}| = |Hyp(j®)| (say) for HPF.

It is important to note that transformation through equation (5.1) affects only the frequency
axis. The magnitude on the y-axis is not affected; therefore, the amount of variation of gain in
the pass and stop band will remain the same.

There is an alternate method of converting the LPP magnitude response to other responses
known as the nerwork transformation method. It will be shown that this method is more
convenient as it can use the available extensive networks and element values of doubly
terminated LPP ladders for any arbitrary specifications.

5.2 Frequency and Impedance Scaling

We have discussed normalized and de-normalized frequency earlier. Study of approximation
can be in both forms, but doing it in normalized form is comparatively easy. Changing from
one frequency level to another is called frequency scaling; changing the frequency level from
unit frequency to another frequency (usually higher) is called frequency de-normalization. In
this section, we will express frequency and impedance scaling in a formal way and also observe
their effect on the location of poles and zeros of the transfer function of the prototype filter.

5.2.1 Frequency scaling

The simplest form of frequency transformation is a frequency scaling operation which is given
in terms of the frequency scaling parameter @, as follows:

S=(lw,) —>s=0,S (5.2)

The transformation in equation (5.2) converts an LPP response to another LP response at
a different frequency level: from normalized to de-normalized, with § being considered as a
normalized frequency.

Use of the transformation equation (5.2) changes a numerator factor (§ — z)) to (s — @)
and a denominator factor (S — p].) o (s -, Pj) in the factorized form of an LPP transfer
function. This means that poles and zeros for the new LPF are simply multiplied by the
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frequency transformation factor ®@,. Hence, expressions for the new zeros and poles will be as
follows:

@), = (@,2)5 (), = (@, p)s (5.3)

While transforming an LPP to another LP, the normalization frequency and its mirror image
in the negative x-axis, +£2 converts to the frequency +®,Q2. However, the transfer function
retains the same magnitude. Hence, as shown in Figure 5.1(a) and (b), magnitude of the LPP
and LP are equal, that is, |71 pp(jQ)| = | H} p(j®)| and the pass band edge frequency sz 1 rad/s
and stop band edge frequency Qgrad/s gets converted to @, = @, rad/s and ®,= @, rad/s,

respectively.
|Hppp (GQR)] \/ |Hyp (jo) \/

() (b)
Figure 5.1 Transformation of frequency level from (a) low pass prototype to (b) another low pass.

A filter section is realized either using only passive elements or including active elements. It is
only the inductors and capacitors which are frequency dependent; hence, only the values of these
elements are affected during frequency transformations. Use of the frequency transformation
equation (5.2) converts the inductor impedance of LPP, Z; = jQL ohms to Z] =(jQL/ w,)
ohms and the capacitor impedance of LPP, Z,=1/jQC ohms to Z{ =(w, / jQC) ohms. Thus,
the value of the inductance and the capacitance are divided by the factor @,, as illustrated in

Figure 5.2(a) and (b).

5.2.2 Impedance scaling

After designing a filter, the circuit configuration is to be selected. Element values of the selected
circuit depend on the selected architecture, specifications of the filter and the frequency range
of operation. The resulting circuit has to be realized in either discrete form or in an integrated
circuit (IC) form. For either form of practical realization, element values should be in a practical
range. For example, in IC form, capacitance values should be as small as possible, preferably
below the nF range and the resistances should be of the order of or less than a few kilo ohms
range. To convert the element values of the designed circuit to within the practically desirable
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range, impedance scaling is almost essential, where all impedances of the network are scaled by
a common factor say 4. It is important to note that while performing impedance scaling the
voltage ratio transfer function of the circuit is not affected because it is dimensionless.

Z, =jQL 77 =jQLl®,
o—TII+—o0 = o—SVIS—oLl'=(I/w,)H
L L
(a)
Z.=1/jQC 7! = 0,/jQC
o—| I—o = o—| l—oc’:C/wo
C c’
(b)

Figure 5.2 Changein the value of (a) inductor and (b) capacitor, due to the frequency transformation.

Similar to the frequency scaling, during impedance scaling also, the initial circuit whose
impedance level is to be changed is called the normalized impedance circuit (NIC) and the
circuit after the impedance scaling is called the de-normalized impedance circuit (DIC). Hence,
impedance scaling operation is expressed as:

z(DIC) = £ x Z(NIC) (5.4)

Application of equation (5.4) changes the impedance level of resistor (R), inductance (L),
capacitance (C), transconductance gain coefficient (G,) and transresistance gain coefficient
(R,). The respective changed expressions for the DIC are as follows.

kR, Z (wkL), Z(l / w%) Z(%], and ZkR, (5.5)

These changed expressions result in a change in the respective circuit element values:

r=kRQ,[=kL H,c=C/kF, g,= G, /k mho, and r, = kR, Q (5.6)

Example 5.1: Apply frequency scaling by a facto @, =10 krad/s and impedance scaling factor
k =103 to the LPP passive ladder structure of a seventh-order Chebyshev filter with a 1 dB
pass band ripple width (shown in Figure 5.3(a)), and find the element values after the scaling.

Solution: In the original ladder structure, values of the elements are:
R =R, =1Q,C, =C, =2.1666F, C; = Cs = 3.0936F,

* * * (5-73)
L, =L =1.1115H, L;=1.735H

Application of frequency scaling will not change the resistor values, but inductances and
capacitances will be divided by 10% hence, the frequency scaled elements are as follows:
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R =R,=1Q, C =C,=0.21666 mF, C; = C; = 0.30936 mF,

L,=L;=0.11115mH, L,;=0.1735 mH (5.7b)
1.0Q 1.11154 H 1.735H 1.11154 H
AN\ SR 2L SR °
+ Ri‘ L}‘ LZ Lg T
p— p— p— —— 2R v,
~ 2.1666 F C’l’ 3.0936 F C; 3.0936 F C; 2.1666 F C7 1,0Q¢
* o)
=
(a)
500 mV ,
{Ripple with|= 1dB | :
250 mV PP W : :
ov
10 Hz 100 Hz 1.0 kHz
[OlV(5) aV(51)
Frequency
(b)

Figure 5.3

(a) Seventh-order passive low pass ladder structure with | dB pass band ripple.

(b) Transformation from low pass prototype to low pass responses at higher frequencies.

Impedance scaling by a factor of 10° will increase the values of the resistors and inductors but
decrease the values of the capacitances. Hence, the final element values will be:

R, =R,=100kQ, C, = C,=2.1666 nF, C; = C; = 3.0936 nF,
L,=Lg=11.115H, L,=17.35 H

(5.7¢)

The original passive ladder had a pass band edge frequency @, of 1.0 rad/s. After the frequency
transformation, the design value of @, becomes 10 krad/s. The PSpice simulated value of
o, from the response shown in Figure 5.3(b) is 9.995 krad/s (1.59 kHz). The ladder was
frequency transformed again by a factor of 50 krad/s; the response in this case is also shown in

Figure 5.3(b). W, is 49.78 krad/s (7.92 kHz).

https://doi.org/10.1017/9781108762632.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.006

Continuous Time Active Analog Filters

5.3 Low Pass to High Pass Transformations

Most of the time, the magnitude function of a filter |H(jw)| is sketched in the first quadrant,
that is, where the frequency remains positive, though the function |H(j®)|? spreads on to both
quadrants. As the magnitude function H(jQ) is an even function |H(jQ)| = |H(—Q)|, it gets
reflected on the negative x-axis. For example, Figure 5.4 shows a sketch for a maximally flat
response for the complete range of frequency, that is, from —co to +eo. For the normalized
frequency response of an LP filter, pass band extends in the range |Q2| < 1 and the stop band
ranges from . to e and from —Q to —eo. To convert the normalized LPP of Figure 5.4 to
an HP response, the pass band should range from @ =1 to e and ® = -1 to —eo, and the
stop band from —@, to + ®, respectively, as shown in Figure 5.5. Study of the two figures
suggests the form of frequency transformation from an LPP to an HP F7D. Zeros of the LPP at
€ = oo and —oo are to be converted so that they are at @ = 0 for the HP filter. Comparison
between Figures 5.4 and 5.5 suggests that the pass band of the LP (-1 < Q < +1) needs to be
converted to a pass band of HP as (+1 <€ <-1). Such a transformation is obtained by selecting:

s=1/SorS=1/s (5.8)

|Hppp ()]
1 1/(1 + €212

Figure 5.4 Even function response of a maximally flat low pass function.

While working on a transfer function in terms of the complex frequency variable s, it is needed
to replace jQ by S and j@ by s. Hence, from equation (5.8),

jO=1/jQ > 0=~ (1/Q) or jQ = 1/jo=- (jlo) - Q= (1/w) (5.9)
Let us consider a normalized second-order LPP with quality factor Q and dc gain K, and

corresponding frequency de-normalized transfer function, as given by equation (5.10) below:

2
Hypp(S)=K ! - K @ (5.10a)

Sz+(1) S+1 Sz+(w"J S+o?
Q Q

Application of the transformation equation (5.8) shall lead to the following corresponding HP
transfer functions:

2 2
K K

Hyp(s)=K =K (5.10b)
s2+(1)5+1 2+ 1 5+L
Q ,Q o’
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|Hup GO 1/(1 + e2)1/2

-1 - 0 +;

Figure 5.5 Even function response of a maximally flat normalized high pass function.

Obviously, it will retain the same quality factor Q but pass band edge frequency @, shall
become (1/w,) for the HP filter.

Based on the aforementioned discussion, to obtain a network for a normalized HP filter
(HPF) section, the following steps are to be taken.

1. Normalize the specifications of the given HPF by dividing the frequency axis by the pass
band edge frequency @, so that its pass band is in the normalized frequency range @ > 1.
Find the normalized stop band edge frequency of the HPF (w/ wp).

3. Using the transformation relation of equation (5.9) (neglecting the negative sign), obtain
the selectivity factor for the LPP (€2,/€Q).

4. Use any type of magnitude approximation for obtaining the Hjpp(s) for the calculated
selectivity factor and the given attenuation (or ripples) in pass and stop band.

5. Apply the LP to HP frequency transformation of equation (5.8).

Example 5.2: Design an HPF using LP to HP transformation, with a maximally flat response
having the following specifications:

max

o, =40 dB, ¢, = 1dB, ®,= 1000 rad/s and w,= 4000 rad/s
Also determine the attenuation at 1500 rad/s and 750 rad/s.

Solution: In the first step, specifications of the HPF are normalized by dividing the frequency
range by @,, so the stop band edge normalized frequency becomes 0.25 rad/s.

Next, the selectivity factor of the normalized LPP = 1/Q = 1/0.25 = 4.

Design of the LPP requires calculation of the factor € and order of the filter #. Application
of equations (3.12) and (3.23), respectively, gives:

e =(10%1%= _1)=(10%! —1)=0.258 (5.11)

. log{(10% —1)/ (10*" - 1)}

=3.79 (5.12)
2log4

Therefore, order of the LPP will be 4. Use of Table 3.1 gives the location of pole for 7 =4 as:
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P12 = 03826836 + j0.9238795 and p, , = ~0.9238795 + 0.3826836
The normalized transfer function of the LPP is obtained as shown here:

1
(S* +0.7653668 S+1)(S* +1.847749 S +1)

Hipp ()= (5.13)

Applying LP to HP transformation of equation (5.8) on the transfer function Hjpp(S), the
transfer function of the fourth-order normalized HP becomes:

4
s

(52 +0.7653668s +1)(s* +1.8477495 +1)

Hyp (s)= (5.14)

There are several options to synthesize equation (5.14). In one option, the section is broken
into two second-order sections with transfer functions /4, and H, (given in the following
equations), which will be cascaded and then frequency and impedance scaling shall be applied.

2

H (s)= a 5.15

(0 (2 +0.76536685 +1) -1
2

H,(s) d (5.16)

T (2 +1.8477495+1)

A single amplifier second-order filter section shown in Figure 5.6 has the following expression
in equation (5.17). It is used to realize the transfer functions /4, and H,.

[€2
| G,

Vin C | Cs
| - Vout

%Gl +

Figure 5.6 A single amplifier, second-order high pass filter.

Vour _ _ (G Cy)s?
Vi, 2 4G, (C1+C2+C3)H_GIG2 (5.17)
C2C3 CZCS

To maintain high frequency gain as unity, comparing equations (5.15) and (5.17), and
assuming

C,=GC3=1, we get:
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G, =(1/G,), and with G, Z—g =0.7653 — R, =3.919Q, and R, = 0.2551Q (5.18a)

Frequency normalization is to be done with respect to the 3 dB frequency. To convert the pass
band edge frequency of 4000 rad/s to 3 dB frequency, from equation (3.25):

Ocp = {(10%13 —1)/0.2589} /24 = 1.183 (5.18b)

Hence, the frequency scaling factor will be 4000/1.183 = 3381.2 rad/s. If all the three capacitors
are selected as 0.1 WF, which is a convenient practical value, the impedance scaling factor shall be
107/3381 =2957. Using this impedance scaling factor, we get R;; =754 Q and R;, = 11.588 kQ.

In the same way, comparing equation (5.17) with the transfer function H, of equation
(5.16), element values are C}, = C,, = C5, =0.1 uF, R, =1.797 kQ and R,, = 4.803 kQ. The
cascaded fourth-order HP circuits with the element values used are shown in Figure 5.7(a);
their PSpice simulation is shown in Figure 5.7(b).

| [Ca e
[ |0'1“FR 22
! b | IO'1 MF RZZ
11.306 kQ —\A—¢
4.803 kQ
| [Cu | [Ca

. | [o1uE | [o1pF - ._i |_<C12 ._| ’_<C32 Vout
Ry, + 0.1 uF 0.1 uF O

0.736 Q Ry,
= 1 = 0.797 kQ

12V

08V

04V

10 Hz 100 Hz 1.0 kHz 10 kHz
[*] V (42) Frequency

(b)
Figure 5.7 (a) Fourth-order high pass maximally flat filter for Example 5.2. (b) Magnitude response
of the fourth-order high pass filter of Figure 5.7(a) for Example 5.2.
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Simulated 3 dB frequency is 539.6 Hzor 3391 rad/s, high frequency gain is unity, pass band
edge frequency (4000 rad/s) attenuation is 42.6 dB, and stop band edge frequency (1000
rad/s) attenuation is 0.972 dB. Attenuation at 1500 rad/s and 750 rad/s is 28.2 dB and 52.4
dB, respectively. The observed parameters are very close to the design values as specifications
are very well satisfied.

Low Pass to High Pass Network transformation: LP to HP frequency transformation can also
be applied directly on a network of a LPP. For a network which contains, resistors, inductors,
capacitors and active device, frequency trans-formation shall affect only the inductors and
capacitors. Use of equation (5.8) shall transform these components as shown in figure 5.8.
Impedance of inductance (SL) gets changed to capacitive impedance having capacitor value of
(1/L) and correspondingly capacitive impedance (1/SC) changes to inductive impedance with
inductance value (1/C). This conversion process is often used instead of dealing in pole/zero
reciprocation. While performing network transformation it is important to note that such a
conversion shall be done on the elements, when the LP transfer function is normalized to get
a normalized HPF with the pass band edge frequency €2p = 1. Later, frequency scaling shall be
performed on the normalized HPF for a desired pass band edge frequency; pole-Q shall remain

unchanged from the LPF.
SL L/s
o—SYII+—o0 = o o
1/SC

—— - ——

Figure 5.8 Application of an LP to HP frequency transformation on inductive and capacitive
impedances.

5.4 Low Pass to Band Pass Transformation

Figure 5.9(a) shows the frequency response of a normalized LP function, approximated in
maximally flat form with its 3 dB frequency at 2 = 1 and normalized stop band edge frequency
Q.. Application of a suitable frequency transformation should give a band pass (BP) response
as shown in Figure 5.9(b) converting the 3 dB frequency of the LPF to the lower and upper
cut-off frequencies and the stop band frequency gets converted to the two stop band frequencies
o, and @, of the BPF. The pole frequency at Q = 0 is converted to the normalized center
frequency @, = 1. The LP response in Figure 5.9(a) was shown only in the first quadrant;
whereas for the rational transfer function spread over the whole frequency range of —eo to
+oo, Figure 5.10(a) shows the LP response in inverse Chebyshev form. Its pass band ranges
from Q = -1 to +1, which is to be transformed to the pass band of the BPF, extending from
frequency @, to w, for positive frequencies. Obviously, the center frequency of the BPF where
its magnitude is maximum will lie within the frequency range @, < @ < w,; this equals 1.0
for the normalized frequency BPF with @, < 1 and @, > 1. For the LPP, there will be a pole at
Q =0 and zero at Q = +oo, whereas for the transformed BP, there will be zeros at @ = £1 and
a pole at @= 0 and teo. For such a conversion, the following function will be sufficient.
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1 (0-1)(@+D) 1 (0*-1)
~ (BW) 1) " BW  w

(5.19)

In equation (5.19), the term BW has been included to normalize and adjust the slope of the
function as explained in the following text. For the LPP, its pass band edge frequency Q = 1.
Hence, from equation (5.19), we get:

2_
Qo1- L@ =D
BW o

S0 -w*BW-1=0 (5.20)

It has been shown that the pass band edge frequency of the LPP (€2 = 1) has been transformed
as the pass band edge frequencies of the transformed BPF: —®, and ®,. As these frequencies
—o, and ®, should be the solution of equation (5.20), we can express the following.

(w+ 0)(0-m,)=0—> - o(0,- 0) - ©0,0,=0 (5.21)

It is important to note that the scheme is more useful in passive structures employing both
inductors and capacitors. In active-RC circuits it is not preferable as such, because it will
convert capacitors as inductors, which shall have to be simulated using active-RC circuits.

1.0 1.0
|Hyp(i€)] |Hpp(GQ)|
G,0 0,0

Figure 5.9  Application of a normalized low pass magnitude response transformation to convert it to
a normalized band pass response.

Comparing equations (5.20) and (5.21), we get the following expression:
BW = w, — w,, and the product of the normalized pass band edge frequencies,

0oxX0,=1 (5.22)

Hence, BW = (w, — @,), introduced in equation (5.19), is the bandwidth of the BPF and its
normalized center frequency @ = 1 is the geometric mean of the pass band edge frequencies,
o, and ®,.

Now, multiplying equation (5.19) by j
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. 2 2
) J o -1 1 o -1
/ BW(a)] BYW o 62

With § =/Q and s = j®, we can write equation (5.23) as follows:

1 2+1
BW Q(S S)

Hence, Q, referred to as the quality factor is defined as the center frequency (w= 1) of the BPF
divided by the bandwidth (BW).

For a normalized BPF with center frequency as @, instead of 1.0, equations (5.19), (5.22)
and (5.23) will be modified as follows:

2 2
Q:ﬁw —, (5.25)
»
)
@ X 0, =, (5.26)
|Hyp(j€)] 1.0

1/(1 + g2)l/2

............................

Wy -0 -1 -0 -0, 0 W O 1 0 Op
O —>

(b)

Figure 5.10 (a) A normalized low pass response in inverse Chebyshev approximated form transformed
to (b) a normalized band pass response.

%) (5.27)

S=Q(——+
w

A s
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With quality factor Q as:
Q=o/(w, - w) (5.28)

Either equation (5.19) representing the normalized transformation factor or the de-normalized
transformation factor of equation (5.25) can be used to convert LPP to BP functions. However,
with transformation, the order of the BP function becomes double of the order of the LPP.
For example, a third-order LPP became a sixth-order BP, and so on. Hence, the application of
the frequency transformation will change the transfer function. Denominator of the transfer
function can be expressed as before, either in a polynomial form or in terms of second-order
factors. When the denominator is expressed in polynomial form, any direct form of synthesis
procedure can be adopted. Alternatively, when the denominator is in the factorized form,
a variety of methods employing second-order sections, including a cascade of second-order
networks can be used. However, for the factorization, location of poles of the transformed BP
function has to be found out as will be discussed here.

A first-order LP function with a real pole at § = —X results in two complex poles in the
normalized BP functions as follows:

P12=—(2,/2Q) H{1 - (Z,/2Q)%}'" (5.29)

While arriving at the result in equation (5.29), it is assumed that 2Q > X, so that the poles p,
and p, are complex.

With the pole of the first-order LPP being at =X, its transfer function Hj pp(S) =1/(S+ Z))
will be converted to a second-order transfer function for which the transformed BP section
will be as follows:

Hpp(s) = 1/(s—py) s—py) =112 + (Z,/Q)s + 1} (5.30)

Somewhat more complex is the case when the LPP has complex conjugate poles (-2 * j€),
which are converted to four poles for the BP function. These four roots appear in the following
conjugate complex pair form.

{:2 +(w, /ql)+wfl}{:2+(w02 /q2)+w022} (5.31)

Here, @,; ®,,are the pole frequencies and ¢,, ¢, are the pole quality factors of the two second-
order BP sections. Because of the nature of the complex conjugate poles of the LPP function
and the transformation factor, equation (5.31) possess the following properties:

W, X Wy =land g, =q,=¢ (5.32)

This means that the two normalized pole frequencies are reciprocal of each other and
symmetrical about @, = 1; the pole quality factor are equal in value.

If the LPP has the following second-order transfer function

Hipp (8)=1/{8" +(Q, 1Q)+ 2]} (5.33)
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Utilization of the properties in equation (5.32) helps in finding the expression for the pole
frequencies @,, and ®,; which have been shown to be:

0 Qz 1/2
_ 1 _4 o+l( o_L} (5.34)

@,, = =
2 a)ol 2Q2 2 Q2 qz

From equation (5.34), @,; and ®,, can be found once value of ¢ is known, which can be
obtained from the following:

1/2
:_ Q|22 9, ﬁﬁlozl 535
T"allae "2 la "2/ 63

0 o 0

Restriction in equation (5.35) is that only the plus sign of the square root is taken to obtain
the positive value of @,,.

Example 5.4: An LPP has pole pairs at §= X * jQ = —1.0 * j1.0. Find the location of poles
and values of the pole-Q for a transformed BPF.

Solution: For the given pole location, transfer function of the LPP shall be:

Hipp () =1/(S$ +25+2) (5.36)

Hence, the normalized pole frequency and the pole-Q of the LPP are +/2 and 1/+/2,
respectively. Using the LPP to BP transformation factor of equation (5.24), the transfer
function of the normalized BPF shall be obtained as follows (for (Q = 1/,/2 )):

1 252

= (5.37)
(2+1) 241 s +2V2P 4657 +2V2s5+1
Q +2Q +

Typ (S) =
2

s $

To find the location of the four poles of the BPF, equation (5.35) is used to find ¢ (for (Q =
1/2)) as:

%

2
o 1 (2 V22 Ve L _
A~ (2ﬁ+ ; )i ((2)\E+ 2] 1t |=0.51+1/+2)=0.85355

The equation gives ¢ = 0.9293; hence, from equation (5.34):

_ 092932 ><2+l(2><2—
2 2 0.85355

02

v
) =2.155, and @, =;=0.464 (5.38)
2.155
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Location of the poles for the BP section are given as:

%)
1 . 1
S0 =0, Zi][l —?J

%3
- 0.464]— 1 4 1—% = —0.2496 % j0.3901 (5.39)
2%0.9293 4q
554=—1.159 +j1.8121 (5.39b)

Obviously, roots of the denominator in equation (5,37) shall yield the pole values as obtained
in equation (5.39).

5.4.1 Design steps for transformation to BPF

To design a BPF with the requisite specifications, the following steps are to be taken if an LPP
to BP frequency transformation is used.

i.

il.

iif.

iv.

vi.

vii.

Calculate the pole frequency @, of the BPFE. If it is not given in direct form, it may be
obtained from the pass band edge frequencies as @, = (@, x a)pz)“ 2

Next, the stop band frequencies of the BPF are made geometrically symmetric with respect
to the pole frequency obtained in step (i) through altering @,; or @,,.

However, this choice of alteration in either @,; or @,, has to be such that one of these becomes
more constrained; the stop band becomes narrow, making the design specification a little

S 51 =

more severe. For @ < (a)f /wxz), o,; is to be assigned a new value as @4 > (a)f /wsz)-

Otherwise, a new value assigned to ®,, shall will be calculated from o , = (wf / a)ﬂ) .
Using the modified stop band of the BPF, selectivity factor of the LPP is calculated as
Q= (0, — 0,)/(0,; - @,).
Parameter @, becomes modified due to the changed value in @, or @, as @, = (0, %
)12

s2 .
Change in the value of ®, creates asymmetry in o, and @, with respect to it. Hence,
either @,; or @, is to be constrained similar to the case for stop band. If @, < (6002 lo,, ),

then @,, is assigned a new value from @, > (a)az /wpl)' Otherwise, ®,, is assigned a new

value from @, = (0)02 /wpl).
The modified selectivity factor of the LPP is now calculated due to the change in the pass
band frequency range.

Out of the two selectivity factors obtained in step (iii) and step (vi), the larger one is
selected; transformation parameters @, and BW are evaluated corresponding to the steps
(1)—(iii) or (iv)—(vi), whichever leads to the larger value of the LPP selectivity, as it leads to
the lowest order 7 for the LPP(S).
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viii. Any method of approximation can be used and the LPP transfer function H; pp(S) is then
obtained using the calculated value of the order 7 and ripple factor €.

ix. A transformation factor is used to obtain a BP transfer function by replacing S with {Q

(2 + 1)/st in Hy pp(S).

x.  The BP is now realized selecting any suitable synthesis process.

Example 5.5: Using the given unsymmetrical frequency specification of a BPF, calculate the
selectivity factor for an LPP from which BPF is to be obtained; pass band frequencies, 0, =
5(2m) krad/s and W, = 7.2(2m) krad/s, stop band frequencies, ®,; = 4(27) krad/s and @, =
10(27) krad/s.

Solution: Center frequency of the BPF, o, =(@, X a)pz)l/2 =(10m x14.47)" = 6x (27)

krad/s. With (a)f /a)jz) =36Xx (27r)2 /207 =7.2 krad/s being less than @,, the new value of
®,, shall be < 36(27)%/8n = 187 krad/s. As (@0,0,)"* = (9 x 4)'/? 2= 127, equals the center
frequency @,, there shall be no change in the pass band edge frequency. Since BW = (7.2-5)2n
= 4.47 krad/s, selectivity factor will be = (9-4)/(7.2-5) = 2.27.

Example 5.6: Find the transfer function of a BPF with the following specifications using LP

to BP transformation: maximum attenuation of 1 dB between 4 and 9 kHz and minimum
attenuation of 40 dBs below 1.5 kHz and beyond 22.5 kHz.

Solution: With the pass band edge frequencies being 4 and 9 kHz, center frequency
f,=(4 x 9)1/2 = 6 kHz, and bandwidth = 5 kHz; hence, pole-Q = 1.2.

First, an LPP is to be obtained. Therefore, the specifications of the BPF are to be
transformed for the LPP. All the frequencies are normalized with respect to f;. It gives lower
cut-off frequency @, = 0.6667, upper cut-off frequency @, = 1.5; and their product is unity.
Normalized lower stop band edge frequency @, = (1.5/6) = 0.25 and upper stop band edge
frequency , = (22.5/6) = 3.75. Since product of @, and ®,, is not unity but less than ®,?, a
new value has to be given to ®,;, which is equal to ®,>/ @, = 0.26667 as mentioned in step (ii)
of the design process. With the modified stop band, selectivity of the LPP will become:

Q= (0, - wﬂ)/(a)pz— a)],l) =(3.75-0.26667)/(1.5 - 0.6667) = 4.18 (5.40)

Required order of the LPP with Chebyshev approximation (from Chapter 4) will be:

_ 1“{4(104'0' ~1)/(10”! ‘1)}1/2 59738 oo
ln{4.18+(4_182 _1)'/2} 2.1088 (5.41)

Since it is to be rounded to the next integer, 7 = 3. Pole location of the third-order Chebyshev
filter obtained from Table 3.4 is as follows:

S5, =-0.4942, S, ,=-0.2471 %j0.966 (5.42)

Normalized transfer function of the third-order LPP will become:
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0.4942
(8+0.4942)(S” +0.49425 +1)

Hypp (5) = (5.43)

| H} pp(7Q = 4.18)| from equation (5.43) shows that attenuation is little over 40 dBs, satisfying
the requirement.

Numerator of the equation (5.43) is 0.4942 as that will result in /] pp(0) being unity for the
third-order Chebyshev filter. Next, equation (5.27) will be applied on equation (5.43) to get
the normalized transfer function of the BPF.

0.49425°

Hpp (s)= - - - 3 = (5.44)
1.7285° +1.42365” + 6.6772s" +3.34109s” + 6.67725" +1.4236s+1.728
The root finder is used to find roots in equation (5.44) which are as follows:
515 =-0.206 1 0.979, 55, = ~0.142 £/ 1.478 and s;_, = 0.064 £/ 0.67 (5.45)

Hence, equation (5.44) is broken into three second-order sections for which factorization of
the denominator gives:

1.728 (s + 0.4125 + 1) (s2 + 0.284s + 2.204) (s> + 0.129s + 0.454) (5.46)

Equation (5.46) along with the numerator in equation (5.44) can be broken into three second-
order sections and realized using the cascade method or equation (5.44) can be used for any
direct form of synthesis.

5.4.2 Low pass to band pass network transformation

Similar to the LP to HP transformation case, the LP to BP transformation can also be applied
directly to the LPP network. An inductor in the LPP having impedance Z,(S) = SL, gets

converted to a series combination of an inductor and a capacitor as shown in Figures 5.11(a).

= o—W—i |—o
(a) (b)
Cp=(Cp/BW)
Yp(S) = SCp
=
L= (BW/C))
(c) (d)

Figure 5.11 Element transformation from low pass prototype to a band pass network.
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2 L
Zun(5) = 1 (s2+1 L, - r o, 1
BW| s BW (BW] (5.47)
— 1 S

Expressions of the resulting series combination of inductor and capacitor, respectively, are:
inductor Z,/BW and capacitor Cz=BW/L, as shown in Figure 5.11(b). Likewise, a capacitor
in the LPP having an admittance Y,(s) = SC,, shown in Figure 5.11(c), gets transformed as
follows:

yoo L&) G, 1
PUBW( s )7 BW BW (5.48)

Equation (5.48) represents a parallel combination of a capacitor (Cp/BW) and an inductor
(BW/C,) as shown in Figure 5.11(d). Resistance being frequency independent, it is not affected
by the frequency transformation. Hence, conversion of an LPP network to a BP network can
easily be done by using the aforementioned transformations of the inductors and capacitors. It
is important to note that the transformed BP network will be a frequency normalized network
with center frequency ,= 1, which will be applied to passive structures.

Example: 5.7: A third-order Chebyshev approximated normalized LPP ladder structure as
shown in Figure 5.12(a) is to be transformed to a BPF through network transformation.
Obtain the resulting network and element values of a frequency normalized BP network
having normalized BW = 0.1. Also obtain the element values for center frequency ®, = 103
rad/s with an impedance scaling factor of 10%.

1Q 22036 H 2.2036 H
ANN—TT I —9— o
* * +
Rin Ll L3
:: 1 Q§ Rout Vout
C;l0.9941 F
» o
<
10kQ 202361 004238nF 2.0236 1 0-04238 nF
o— ANA—TT—| | A | °
+ N [ +
0.010059 H 10 k9§ Vout
~ 9.941 nF
o * . ’o)
L

Figure 5.12 (a) Third-order Chebyshev approximated normalized low pass filter. (b) Network
transformed de-normalized band pass filter from part (a).
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Solution: For the LPP, which is to have a pass band ripple width of 1 dB, element values are
as follows:

R, =R, =1Q,[ =L, =2.0236Hand C, =0.9941 F

With BW = 0.1, using equations (5.47) and (5.48), LI = 1; changes to a series combination
of /; ;=20.236 H and ¢, ; = 0.04941 F, and C, transforms to a parallel combination of ¢, =
9.941 F and /, = 0.10059 H.

Application of frequency translation from @, =1 to 10° rad/s and impedance scaling by 10*
converts elements to the following:

L, =L;=2.0236 H, C, = C, = 0.04438 nF, L, = 10.059 mH, C, = 9.941 nF,
andR =R, =10k

Figure 5.12(b) shows the transformed BP network with element values. Figure 5.13 shows
its PSpice simulated response. The response keeps the nature of variation of output voltage
very well with the simulated center frequency being 15.917 kHz; the ripple width in the pass
band is 1.15 dB. The lower and upper 3 dB cut-off frequencies are 15.104 kHz and 16.771
kHz, giving BW = 1.667 kHz, and resulting in a pole Q of 9.548.

600 mV

.....................................................................................

400 mV

.....................................................................................

....................................................................................

200 mV

...................................................................................

...................................................................................

ov :
10 kHz 25 kHz
O]V (6) Frequency

Figure 5.13 Simulated response of the band pass filter of Figure 5.12(b) obtained through network
transformation for Example 5.7.

5.5 Low Pass to Band Reject Transformation

Band reject (BR) response being similar in nature to a BP response, it can be transformed from
an LPP using a transformation factor similar to the one used for BP transformation:
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s

§=BW—
(s +1)

(5.49)

Transformation through equation (5.49) can also be explained in terms of two transformations,
one from LPP to HPP and one from HPP to a BP transformation as mentioned in the following
two steps, resulting in a BR function.

S is replaced by (1/S"), then (5.50)

s

2
S'is replaced by B;V(j +1) (5.51)

The BR magnitude response has the following constraints and conditions.

O X 0y = Wy X 0y =1 (5.52)

0, -0, =BWQ =BW/Q, (5.53)

To realize a BRF, specifications are given in terms of pass band and stop edge frequencies, @,
@5, @y and @, and the pass band and stop band attenuations A,,,, and A,;,, respectively.
Using similar procedure as that for the BP case, selectivity factor of the LPP is found from
the expression €25 = (@, — @,1)/ (@, — @). In the same way, frequency specification must be
symmetrized with respect to @,= 1.

Band reject network transformation: Application of the transformation factor of equation
(5.49) with an inductor of the LPP network having admittance Y(S) = 1/ (Slp) becomes an
admittance Ygp(s) =sCp+ 1/sL s here Cp=1/BW1/, and Lp=BWI,. A capacitor ¢, in the LPP with
impedance z,(S) = 1/(Sc,) gets transformed to an impedance function Zyy (s)=sLz +1/ (sCp)

with Ly =1/ (CPBW) and Cj = (fch\Wj. This means that like the BP case, inductances and
capacitances of the LPP are transformed to a parallel and series combination, respectively, of
an inductor and a capacitor in the BR network. Figure 5.14 shows such a transformation of an
inductor and a capacitor.

BWI,

1/BWI,
» 1/c,BW pBW
o—‘ I—o = o—m\—| I—o

Figure 5.14 Transformation of low pass prototype network elements to normalized network elements
of band reject filter.
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Practice Problems

5-1

5-2

5-3

5-4

5-5

5-6

5-7

The circuit shown in Figure P5.1 is a prototype filter at | rad/s level. Scale the circuit so that it will have a
load resistance value of | kQ and the parallel LC branch will resonate at 10 kHz.

What will be the value of resistance scaling factor k and frequency scaling factor k,, for the circuit shown
in Figure P5.1, so that the load capacitance will become 10 pF and the inductor will have a value of 5 mH.

| [0.19F
1Q | |

L
0.84 H
CVD - _ ;1 Qv
1F

Figure P5.1

|
—
o]
«—

The network shown in Figure P5.2 is to be scaled by increasing the level of impedance by 100 and the
level of frequency from | rad/s to 10° rad/s. Find the element values in the scaled network.

5/3 H

3/5F

8/3 H

3/25F

Figure P5.2
Design an HPF having maximally flat response and the following specifications, using LP to HP
transformation:

o, =30dBs, o,

=1dB, o, = | krad/s and @, = 2.6 krad/s

Redesign the HPF having the specifications of Problem 5-4 using Chebyshev approximation. Also find the
filter attenuation at 1.2 krad/s and test the design.

(a) Design an HPF with a maximally flat response for which specifications are shown in Figure P5.3
employing LP to HP transformation.

(b) Determine the actual attenuation of the filter at 1800 rad/s and 2200 rad/s.

An HPF with equal ripples in the pass band is to be designed, employing LP to HP transformation, for
which specifications are shown in Figure P5.3.

Design the filter using either a single OA filter circuit of Figure 5.6 or the Sallen—Key section and test the
circuit.

Modify the circuit which provides a 10 dB increase in the gain at high frequencies, without employing
addition OA.
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44 dB

o(dB)

) dB

0,0 2000 4000 6000 8000
o(rad/s) —

Figure P5.3

5-8  Apply the LP to HP transformation to the following network function H(s), and compare the critical
frequencies for both the network functions. What is the inference while comparing the critical frequencies
of the LP and the HP functions?

25 +1

H(S :257

S"+4s+6

5-9  Find the transfer function of the Sallen—Key circuit shown in Figure P5.4. Apply the LP to HP transformation
s — I/s and obtain the transfer function and structure of the transformed circuit. Apply impedance scaling
factor of 103 and frequency scaling factor of 104and simulate the circuit.

| [C2
[|1F
Vin Ry R, Vout
—A\\W\ NWWN—¢—fk=2>—4—0
1/3Q 1Q C,

Figure P5.4

5-10  Apply the LP to BP transformation on the LP circuit of Figure P5.5. Find the transfer function of the LP prototype
and the transformed network. Determine the value of the pole-Q for the BPF. Use suitable impedance scaling
on the BP network such that its center frequency is 10 kHz and test the circuit using PSpice.

1H

o SR o
+ +
Vi IQ§ Vi
o 5

Figure P5.5
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5-14
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Design a BPF which satisfies the specification shown in Figure P5.6, with attenuation being 0 dB at
@ = 2700 rad/s. Construct the circuit with suitable second- (and first-) order sections; maximally flat
approximation is to be usedfor the LP prototype.

o 36 dB
590700 0 1 ettt (URTRTRTRTRTRTRRRRRRTT T
30 dB
amin 2
a(dB)
Omax oo 4. ... E 2.0dB R
0,0 1000 2400 3000 5400

w(rad/s) ——
Figure P5.6

Repeat Problem 5-1 | with the equal-ripple approximation used for the LP prototype.

With a maximally flat response for a BPF, it is desired that the maximum allowable attenuation is | dB in
the frequency band of 1000 rad/s to 2000 rad/s. Design the BPF with the constraint that only two OAs
can be used in the final realization. What shall be the largest obtainable attenuation at a frequency of
6000 rad/s?

Design a filter with a maximally flat response for which the specifications are: attenuation = 30 dB for
0 < <500 rad/s and 4000 rad/s < @ < oo, attenuation = 2 dB for 1000 rps < @< 2000 rps. The mid-band
gain is to be 0 dB, and only 0.1 WUF capacitors can be used in the final realization.

Redesign the filter in Problem 5-14 with a pass band having equal ripples.

The LP prototype shown in Figure P5.7 has a 3dB frequency of | rad/s.

(a) Apply an LP to BP transform so that the BP filter has Q= 10 and center frequency f, = | kHz. Verify
the response using a computer method.

(b) Convert the LPF to a BRF with band stop width of 0.25 kHz and maximum attenuation at | kHz.

1Q 2H
A 531 —
Vi _ _— 1 W
1F 2F
o ’e)

Figure P5.7
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5-17  Third-order Chebyshev approximated normalized LP prototype structure of Figure 5.12(a) is to be
transformed to a BS filter through network transformation. Obtain resulting network and element values
for normalized bandwidth of 0.1 for the BS filter. Also obtain element values for center frequency of 10°
rad/s and after using impedance scaling factor of 104
Verify the response for the passive BS filter.

5-18 Repeat Problem 5-13 but employ Chebyshev approximation.
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