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Magnitude Approximations

3.1 Introduction

Filters are generally classified in the frequency domain in terms of the amplitude and phase
response of their transfer function; though sometimes they are expressed in the time domain
as well. The typical characteristics of an ideal LPF (low pass filter) in terms of its variation of
attenuation with frequency shown in Figure 1.6(a) is redrawn in Figure 3.1. The transition of
the filter from being a pass band to being a stop band occurs abruptly at Q = 1.

It is well known that the transfer function of an ideal filter, in which transition between
pass band and stop band is instant, is physically realizable only by using an infinite number of
elements [3.1]. For a practically realizable filter, the transfer function is always expressed by a
real rational function H(s), which is a ratio of polynomials in complex variable, s = (0 + jo) as
already given in Section 1.2.1 and repeated here as equation (3.1).

(s)= NG) " +a, 5" +. +ays” +as+ay 3.1)
D(S) by +b, " by + s+ b '

In a real rational transfer function, coefficients 4; and bj are real numbers and the degree of
the numerator and the denominator is 72 and 7, respectively. Moreover, the degree of the
denominator, 7, should be more than or equal to the numerator degree, , for the physical
realization of the transfer function using finite number of elements to be feasible. The condition
n 2 m is necessary because ideal filters are non-causal and, therefore, cannot be implemented

practically.

To realize a practical form of an LPF, shown as approximated LPF characteristics using
a dotted line in Figure 3.1, values of the coefficients #; and 4; in equation (3.1) are to be
determined. The next step will be to find the topology of the filter and values of element to
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be used, applying the coefficients of equation (3.1). Not only are different methods available
for the realization of an arbitrary transfer function, but different forms of approximating
the magnitude or phase of the transfer function are also available. Some classical methods of
approximating the magnitude function are discussed in this chapter.
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Figure 3.1 Magnitude characteristics of an ideal normalized low pass filter shown by solid line, and
that of a practical or real filter shown by dotted line.

The procedure of magnitude approximation which begins by comparing an ideal LPF
mathematically, with that of an approximated response is discussed in Section 3.2. One of the
most commonly used approximations, namely the maximally flat Butterworth approximation
and the design of a Butterworth approximation based LPF is studied in Section 3.3. Also
included here is the utilization of a circuit structure in the form of a ladder, called a lossless
ladder, containing only inductors and capacitors. Equal-ripple approximation is another
very important class of magnitude approximation, whose sub-classifications — Chebyshev
approximation, inverse Chebyshev approximation and Cauer approximation — have been
found to realize filter sections rather economically. In the rest of the chapter, we will describe
the development of prototype LPFs using these approximations. Examples have been included
of filters of average level order (7 - 5,6) filters. An example of a maximally flat pass band with
finite zeros, the significance of which shall be seen later, is also included.

3.2 Magnitude Approximations

Response of the LPF shown by the dotted line in Figure 3.1 represents an approximation to
the ideal LPF in terms of the magnitude of the transfer function. In the pass band region,
gain of the transfer function is close to the ideal value at low frequencies; the gain reduces
to a low value in the stop band region with a finite slope. In practice, the dotted line of the
approximated response can take shapes other than the monotonic drop. Other important
types of gain variation are discussed in brief in the following sections. Approximation can also
be performed for the phase response of the ideal filter which shall be discussed in Chapter
4. In all the magnitude approximations of LPF, the transition band is finite instead of the
abrupt transition from the pass band to stop band of the ideal filter. This means that there
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will be some deviation from the ideal, and hence, some error in the response. However, the
amount of intentionally made error, shown in Figure 3.2, can be bounded, as the response
has to remain restricted within the shaded region. The maximum allowable attenuation in
the pass band is ¢, and the minimum allowable attenuation in the stop band is ¢ ;. The
transition band separating the pass and stop band extends from @, to @,. Depending on the
specifications of the LPF in terms of ¢, i, @ and @,, the next step is to find the topology
of a network and the element values which satisfy these specifications. It is important to note
the term normalized angular frequency Q = (0l ®,); by convention, this means normalized cut-

off frequency Q, = 1.

0dB
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W, @,

Angular frequency, © ——

Figure 3.2  Approximated low pass characteristics lie within the shaded region.

Initially, an LP prototype transfer function is considered with all transmission zeros (zeros
of the numerator) at infinity, that is, V(s) = 1; this is also commonly known as a// pole function.
A number of solutions can be obtained from the general amplitude function of the transfer

function. Let us consider the magnitude squared transfer function: |H(j)|*:

ot 2 VeI () |V (o)f

[# (jo) D(jo)D(-jw) | D(jo)|
-
pof B

2
A(“’z) (3.2)

forN(s) =1 (3.3)

Here, |H(j®)|? is an even rational function for which |H(j®)| must be close to |H(j0)| within
the frequency range 0 < @ < @, in the pass band and close to zero for @ > ®, in the stop
band. Using suitable frequency normalization with respect to pass band edge frequency @, the
normalized pass band edge frequency shall be € = (@/®,). Hence, the pass band range is up to
Q =1, and since NV(s) has been selected as unity, |H(j0)| = 1 for all values of 7. The function
|H(j®)| now modifies into a normalized function |H(jQ2)|. For a mathematical understanding,
it is preferable to express |H(jQ)|? in terms of another rational function |K (jQ)|, such that:
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| ()

1
= 3.4
1+ |K () G4

From equation (3.4), the following relation is obtained:
|K(iQ)|? = {1/|H(jQ)|?} - 1 = | DGQ)|>- 1 (3.5)

Expression for the nth order magnitude squared function modifies from equation (3.3) as
given in equation (3.6):

1
B, Q" +B, Q"%+, +BQ"+B,Q*+1

|, (jQ) = (3.6

Therefore, the nth order function, |X,, (jQ)|? of equation (3.5) will transform to the following:

|Kn(JQ)|2 = anQZ” + BZWZQZ”’% ....... + 8494 + BZQZ (3.7)

This means that the squared magnitude of the characteristic function is a polynomial in Q. It
is the nature of |K(jQ2)|? which give different forms of approximations for the ideal LPF (and
as a consequence for other types of filter sections also) like maximally flat, Chebyshev, inverse

Chebyshev or Cauer type.

3.3 Maximally Flat — Butterworth Approximation

A maximally flat response means that at = 0, not only is its slope (or its first derivative) zero,
but the maximum number of derivatives are also equal to zero [3.2]. This stated condition
requires that in equation (3.7), the maximum derivatives of K are zero, as shown in equation (3.8):

d* |k, (o
szozo fork=1,2,.....n—1 (3.8)
(@)
It means that we are required to make B,, ,=...... = B, = B, = 0, resulting in the following

expression, where € is a characteristic term (a significant term effecting approximation):
|K,(jQ)|? = B,, Q% = £2Q*" (3.9)
Hence, for a maximally flat response, the magnitude of the squared zth order transfer function

is expressed as:

‘Hn (/Q)’2 Zm_)’]_]" (]'Q)‘z(1+52§22”)_1/z (3.10)
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Response given by equation (3.10) is shown in Figure 3.3. Its magnitude decreases
monotonically, and at Q = 1, the loss becomes 10 log,,(1 + €?) dB, as its magnitude drops
from |H,(0) | to |H,(0) |/(1 + €2)°5. Therefore, the expression for the maximum specified loss
of ¢, in the pass band shall be as follows:

O = 10 logo(1 + €2) (3.11)

This gives an important relation for the characteristic term € as:

v
£= (100-1% - 1) (3.12)
In the normalized magnitude form of the LP function with maximum flatness at dc (Q = 0),

when €= 1, itis also called the Busterworth approximation; the characteristics being very similar,
the terms maximally flat and Butterworth approximation are sometimes used synonymously.
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Figure 3.3 Maximally flat normalized low pass response.

For the Butterworth approximation if € = 1, attenuation at the edge of the pass band,
obtained from equation (3.11), is simply:

O = 3 dB (3.13)

Substituting € = 1 in equation (3.10), the nth order frequency de-normalized Butterworth
response is obtained using the following relation, as mentioned here:

|, (f'“’)‘z (3.14)

- 1+ w*")

As all pole responses were selected in the beginning with /NV(s) = 1, the Butterworth response
has zeros only at @ = oo. The response, shown in Figure 3.4, has the following important
properties as well.
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i.  Magnitude of the transfer function at @ = 0 is unity for all values of 7.

ii. For all values of 7, magnitude |H,|= 1/42 at Q = 1(® = @), corresponding to the
attenuation of 3 dBs.

iii. In the stop band, for @ > @, (Q > 1), |H,| decreases at the rate of 207 dBs per decade.

1.0}

0707 f======—————mm ==

20 ndB/dec

|Hy (jo)|

|
|
|
|
|
|
|
|
|
|
[0

0,0

. 0 —
Figure 3.4  Butterworth response having loss of 3 dB at cutoff frequency w,.

The transfer function H(s) of equation (3.1) will have 7 poles. In order to find poles with the
Butterworth approximation @ is replaced by (s/7) in equation (3.14). Hence, the poles can
be obtained by the roots in the left half-plane of the following relation:

D()D(=s) = 1 + (=s2)” (3.15)

These poles have been found to be located on a semicircle in the s-plane whose value (location)
can be evaluated from the following:

S/e=—sin(2k_1)ﬂijcos(2k_l)n' (3.16)

n n

The pole locations for £ =1, 2, ..., n (up to n = 8) are shown in Table 3.1. Coefficients of
the Butterworth polynomial D(s) can be obtained from the following recursive relation, with
by =1.

oo ol o)

Table 3.2 shows the calculated values of the coefficient 4, up to 7 = 8. Coefficient values
in Table 3.2 and for any larger values of 7 can be calculated from equation (3.17).
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Table 3.1 Pole locations for the Butterworth responses

n=2 n=3 n=4 n=>5 n=>06 n=7 n=38
-0.7071068 —-0.5000000 -0.3826834 -0.8090170  —0.2588190  —0.900968  -0.1950903
+7.7071068 +j0.8660254  +j0.9238795 +j0.587785  1j0.9659258  +j.4338837  170.9807853
—1.0000000  -0.9238795  -0.3090170  —0.7071068 -0.2225209  -0.5555702
+/0.3826834  £j0.9510565  +j0.7071068 479649279  j0.8314696
-1.0000000 —0.9659258 -0.6234898  —0.8314696
£/0.2588190  +.7818315  £0.5555702
—1.0000000  —0.9807853
+0.1950903

n—1
Table 3.2 Coefficients of the Butterworth polynomial B, (5) ="+ Z/%fk
k=0

by by b, b by bs b b,
1.000 1.4142136

1.000 2.0000000  2.0000000

1.000 2.6131259  3.4142136  2.6131259

1.000 3.2360680  5.2360680  5.2360680  3.2360680

1.000 3.8637033  7.4641016  9.1416202  7.4641016  3.8637033

1.000 4.4939592 10.0978347 14.5917939 145917939 10.0978347  4.4939592

1.000 51258309 13.137071  21.846151  25.688355 21.846151 13.1370712 5.1258309

© NN WA W[y

3.3.1 Design of low pass Butterworth filter

For designing an LPF (low pass filter), specifications are given in different ways. For example,
along with the value of cutoff frequency @, (for which € = 1), o, is given beyond the stop
band corner frequency ®,. Alternatively, specification can also be given in terms of ¢, up to
the corner frequency of the pass band @, and ¢, ;,, beyond the stop band corner frequency ®,,
as shown in Figure 3.2. In order to get a suitable topology and the values of elements used in
it, pole locations for the Butterworth response or coefficients of the Butterworth polynomial
are to be obtained using Table 3.1 and 3.2, respectively. However, to get either of the values,
the order 7 is to be determined first; the other variable € has already been given a value of unity
for the Butterworth response — if € # 1 for the general maximally flat response, it has to be
calculated from the specifications.

At the pass band corner and stop band corner, respectively, we can write:

0. =10log;, (1 + ezwf”) (3.18)

a,, =10log;, (1 + eza)ﬁ”) (3.19)
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From equations (3.18) and (3.19), we get the following expressions:

Ewl = (100'1"‘m —1) (3.20)

02 =(100‘1"‘m‘" _1) (3.21)
Dividing equation (3.21) by equation (3.20), we get:

,  10%1%mn 1

T 10% % 1 (3.22)

(0, ©,)*

Taking log on both sides of equation (3.22), the expression for the degree 7 is obtained as
follows:

log[ (107 —1)/ (10" 1) |

- 3.23
! 2log(@, | @) (3.23)

Solution of equation (3.23) yields the value of 7z which should be able to satisfy the given filter
specifications. In almost all cases, it is not possible to obtain integers for the calculated value of
n — n then has to be rounded off to the next higher integer value for obvious reasons.

To utilize the large amount of data available for the Butterworth response, in terms of
pole locations and transfer function for any order 7 of the filter [1.2], it is useful to find the
normalized cutoff frequency @cp at which attenuation is 3 dB (Table 3.1 and Table 3.2 are
small subsets of such information). For ¢ = 3 dB, replacing @, by wcp in equation (3.18)
means:

3=10log(1+£’0%) (3.24)
or ¢ = [(1003 -1)/g]1/2n (3.25)
Equation (3.25) is an important relation between Butterworth and maximally flat responses.

3.3.2 Use of lossless ladder

In a large number of cases while realizing active filters, the starting point is a passive structure.
Though different passive structures are available, one of the most used structures is a doubly
terminated lossless ladder. Hence, the topic of lossless ladders and their utilization is important
and a matter of serious study. In this section, we will discuss the basics of lossless ladders in
order to understand their use in developing an all-pole LPF structure. In its most simple form,
a terminated lossless ladder is as shown in Figure 3.5(a). The ladder consists of only inductors
and capacitors connected in a ladder form with input and output terminating resistances. This
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ladder structure has been studied extensively for its utilization in realizing passive filters with
different magnitude approximations like Butterworth, Chebyshev, or Cauer. Element values
for the ladder structure for all the common approximation methods have been calculated
and made available for filter orders starting from 7 = 2 to higher 7 values. Figure 3.5(b) and
(c) show the structure of a lossless ladder. The element values for Butterworth approximated
filters of order 7 = 2 to 8 for the ladders shown in Figure 3.5 are presented in Table 3.3.
The last element in Figure 3.5(b) and (c) differs depending on if 7 is odd or even for all pole
LPFs. The ladder will be either minimum capacitor or minimum inductor when 7 is odd as
the number of inductors will be one more than a capacitor or vice versa. When 7 is even, the
number of inductors and capacitors will be equal and their total will be equal to 7 as a doubly
terminated ladder is a canonic structure using the minimum number of dynamic elements.

+
Loss less ladder Rout \Z
(@)
R,=1Q L,
— YUY ——----
+
Row=1Q
> C, Cs
(b)
1Q

(©)

Figure 3.5 (a) Basic structure of a doubly terminated lossless ladder; (b) and (c) Two normalized
forms of lossless ladders.

In the normalized low pass doubly terminated ladder, the terminating resistors R, = R, =
1 Q and the frequency normalization is assumed to be done with respect to its 3 dB frequency
o,. If o, is not at 3 dB frequency, a different de-normalizing frequency is to be used, which is
given by equation (3.25) as discussed earlier.
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Table 3.3 Element values for a doubly terminated lossless ladder for an all-pole LPF using Butterworth

approximation

n G L G L Cs L ol L

2 1414 1414

3 1.000 2000  1.000

4 07654 1.848  1.848  0.7654

5 06180 1618 2000 1618 0618

6 05176 1414 1932 1932 1414 05176

7 04450 1247  1.802  2.000 1.802  1.247 0.445

8 03902 1111 1663 1962 1962 1.663 1111 0.3902
n L G L, C L Cs L Gy

Example 3.1: Find the order of the maximally flat LPF which will satisfy the following
specifications. Also find the corresponding transfer function.

.. = 1dB, ¢,

‘min

= 40dB, ®, = 2000 rad/s, and @, = 6000 rad/s.

Solution: To find the order of the filter and its transfer function, equations (3.12) and (3.23)
are used for calculating € and 7, respectively.

€= (10%1-1) = 0.25892 — £ = 0.50884

log [(100.1x40 —1)/ 0% — 1)]

=4.807
21og(6000/2000)

which is rounded to the next integer, 7 = 5.

For the fifth-order Butterworth filter, the values of the pole locations from Table 3.1 gives
the following frequency-normalized transfer function.

(5)= MO _ 1
D(S)  (S+1)(S”+0.6180365 +1)(S” +1.61868 +1)

(3.26)

1
S 4 3 2 (3.27)
S° +3.2365" +5.2365° +5.2365° +3.236S +1

For using equations (3.24) and (3.25), which are valid for the Butterworth response (and not
for a maximally flat response), S shall be replaced by (jwg). Hence, using equation (3.25), the
normalized cutoff frequency is as follows.
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Ocp = {(1093-1)/0.25892}05 %5 = 1.144
The de-normalized cutoff frequency is given as:
@, = Wcpx 0 =1.144 x 2000 = 2288 rad/s

Hence, equations (3.26) and (3.27) can be modified to the following for the de-normalized
frequency

1
H(s)= 3.8
() (s+2288)(;2+1414s+28882)(52+3701.98s+22882) (3.28)

1
P 47.408%10%5% +2.741x107 8 +6.2714x10'°5% +9.11478 x 1035+ 6.27018 X 10"

(3.29)

Obviously, the next step is to find an active network topology containing the suitable
active devices and the values of the passive elements used. One of the most commonly used
architecture employs operational amplifiers (OAs) as the active device along with resistances
and capacitances (forming the active RC structure). A large variety of procedures are available
which lead to the active RC topology and the passive element values for the transfer function
given in the form of equations (3.26) to (3.29). These procedures will be discussed later after
studying other forms of approximations.

In this section, we make use of Table 3.3 and the lossless ladder of Figure 3.5. For 7 = 5,

if the minimum inductor configuration of Figure 3.5(b) is used, the structure’s normalized
element values from Table 3.3 will be as follows:

C,=Cs= 0.618F, C;=2.0Fand L, = L, = 1.618H

De-normalization of the elements is done by using a frequency scaling factor of 2288 rad/s and
an impedance scaling factor of 1 k€. The de-normalized element values are as follows:

C, = Cy= 0.2701 uF,C, = 0.8741 uF, L, = L, = 0.707 Hand R,, = R, = 1 kQ.

The passive ladder shown in Figure 3.6 is simulated and the magnitude response is shown
in Figure 3.7. At 318.018 Hz (1998.97 rad/s), attenuation was found to be 0.997 dB and
at 955.85 Hz (6008 rad/s), attenuation was 41.9 dBs — an excellent response. The cutoff
frequency was found to be at 364.15 Hz (2288.9 rad/s) against the theoretical value of 2288
rad/s. The phase response of the passive filter is also shown in Figure 3.7; it has a phase shift
of 180° at the cutoff frequency.
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1kQ 0.70717 H 0.70717 H
—A N TN o
+
Vin — _— — 1kQ Vout
0.2701 uF 0.8741 uF 0.2701 uF
o o

Figure 3.6 Fifth-order Butterworth doubly terminated de-normalized lossless ladder for Example 3.1.

Active realization of this passive fifth-order filter shall be taken up in Chapter 10 using the
cascade technique.

1500 mV A

250 mV
>> E E E
0OmV- -500d : : .
10 Hz 100 Hz 1.0 kHz 10 kHz
XV (4) 2] VVP(®4)
Frequency
Figure 3.7 Simulated response of the fifth-order low pass Butterwoth filter shown in Figure 3.6 for

Example 3.1.

3.4 Equal-ripple Approximations

It is often desirable to obtain a faster attenuation rate beyond the pass band corner frequency
— as fast as is practically and economically feasible with lesser number of elements. In the
maximally flat Butterworth response, the order of the filter is 7z and hence, the number of
elements used becomes large in order to achieve larger attenuation. Hence, to improve on
the value of 7, the condition of being maximally flat in the pass band can be dropped. The
magnitude characteristic is allowed to ripple between a series of maxima and minima. Ripples
can be obtained only in the pass band or stop band, or in both, resulting in following further
classifications.
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3.5 Chebyshev Approximation

The Chebyshev approximation of a magnitude function is obtained when ripples of equal
height appear in the pass band of the transfer function along with a sharp decrease in the gain
beyond it. To get such an approximation, the characterizing function of equation (3.5) is
selected in the normalized frequency range of 0 < Q < 1 as:

‘K(]Q)‘z = Ssz (Q) =¢cos h? {ncos h! (Q)} (3.30)

Once again, € is a real constant which is less than 1 and the Chebyshev polynomials are
evaluated from the following recursive relation:

C,(Q)=2QC, | (Q)-C,, (Q) (3.31)
where Cj(Q) = 1 and C}(Q) = Q and for Q > 1, Chebyshev polynomial is given as follows:

C () = cos h{n cos h~1(Q)} (3.32)
The amplitude response of the Chebyshev approximation can be obtained from equations
(3.2), (3.4), and (3.30). For example, Figure 3.8 shows such an approximation for 7z = 4 (not to

the scale), where ripples are shown for an even value of 7. For odd values of 7, the ripple height

remains the same depending on the value of & however, at Q = 0, the function magnitude
|H(0)| = 1 and for even value of 7, |H(0)| = (1 + €)7".

|H(0)| —_—r = — - ——1

For n-odd

|H(0)] — ==t N 12
For n-even

[HGR)

(0,0) Qo w;) e (wy/ @)

Figure 3.8 Magnitude function of a normalized Chebyshev approximation for order n = 4.

3.5.1 Low pass Chebyshev filter design

In order to design a low pass Chebyshev filter, we proceed like the Butterworth case, with @,
and ®, being the pass band corner frequency and stop band corner frequency, respectively.
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At the pass band corner frequency @, use of equations (3.4), (3.10), and (3.30) gives the
following expression for maximum attenuation:

Q.. =10log {1 +&°C2 (wy )} (3.33)
Since at w= @, (Q = 1), Ci (601) =1, from equation (3.33), we get:

el = (100'1amax -1 (3.34)

and at normalized @,, thatis, at (—2) or { : J, i, being the minimum attenuation reached

, ®,

in stop band, its expression is obtained in the same way as equation (3.33) was obtained: use
of equation (3.19) gives the expression for minimum attenuation in the stop band ¢, as:

Cpnin =1010g{1+£2C3 (o, /a)l)} (3.35)
Use of equation (3.32) modifies the expression for ¢, as follows:

0, ={10log{[1 + € cosh? {n cosh™!(@,/@,)}] (3.36)
Substituting € from equation (3.34) in equation (3.36), we get:

010 1\
cosh| 7 cosh™ D 1|2 10 =l (3.37)
o, 102 1% —1

which gives the expression for the order 7 for the Chebyshev case as follows:

cosh™ \/[(10°~1°‘mm —1)/ (10 % — 1)]

—~ (3.38)
cosh™ (@, / @,)

n

However, a more convenient form of expression is given in equation (3.39) if cosh function is
replaced with the natural log function:

A [4(10°~1“min —1)/ (10 max — 1)]'/2
(@, o)+ (@, /@) -1)* ]

n

N

(3.39)
The value of 7 obtained from equation (3.39) has to be rounded up to the next integer. For
order 7, analysis has given the location of the left half pole the required transfer function as:

Sp= O+ j8; (3.40)
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where,
6, =—sinh(a)sin (2k-1)m (3.41a)
n 2
Q, = jcos h(a)cos Qkﬂ‘”% k=0,1,22n—1) (3.41b)
a = (1/n) sinh (1/€) (3.42)

It is observed that the poles lie on an ellipse in the complex frequency s plane and substituting
€ and 7 in equation (3.42) and equation (3.41) gives the location (values) of poles. There are
extensive tables available that provide the location of poles for various combinations of € and

n. Table 3.4 is a subset of such a table for £ = 0.5dB, 1.0 dB, and 2.0 dB only up to 7 = 6.

In Table 3.4, the second-order factor for the Chebyshev function in terms of & and 3, that
is, (2 + 205 + 02 + B?) is given. It results in the pole frequency @, = (02 + $?)'/? and the pole
quality factor Q = (02 + A)V? /(20Y). However, in general, the pole frequency and the pole
quality factor in terms of the real and imaginary parts of the pole are given as follows:

%3
0=(07+01)" =0, 120, 049

Table 3.4 Pole locations for the Chebyshev approximation, s = (-0t + jf3)

N O = 0.5 dB o, =1dB =2 dB
o B o B o B
1 2.8628 0 1.9625 0 1.3076 0

2 0.7128 1.0040 0.5489 0.8951 0.4019 0.8133

3 0.3132 1.0219 0.2471 0.9660  0.1845 0.9231
0.6265 0 0.4942 0 0.3689 0

4 0.1754 1.0163 0.1395 0.9834  0.1049 0.9580
0.4233 0.4209 0.3369 0.4073  0.2532 0.3968

5 0.1120 1.0116 0.0895 0.9901 0.0675 0.9735
0.2931 0.6252 0.2342 0.6119  0.1766 0.6016
0.3623 0 0.2895 0 0.2183 0

6 0.0777 1.0085 0.0622 0.9934  0.0470 0.9817
0.2121 0.7382 0.1699 0.7272  0.1283 0.7187
0.2898 0.2702 0.2321 0.2662  0.1753 0.2630

Example 3.2: Determine the pole location for the Chebyshev response for 7 = 3 and ,,, =
0.5 dB.

Solution: From equation (3.34): €2 = (109 — 1) = 0.122, £ = 0.3493
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The value of the parameter 2 from equation (3.42) is obtained as follows:
a = (1/3) sinh~1(1/0.3493) = 0.5913

which gives sin (ha) = 0.6264 and cos (ha) = 1.18. The location of poles is obtained from
equation (3.40) and (3.41) as follows:

5; = —0.62064,5,,55 = —0.3132+ j1.0219 (3.44a)
Therefore, the denominator of the transfer function shall be as follows:
D(s) = (s + 0.6264)(s* + 0.6264s + 1.1424) (3.44b)

Example 3.3: Find the order of the Chebyshev LPF for the following specifications. Also find

the corresponding transfer function.

0. =0.5dB, . = 40dB,w, =2000"Land @, = 6000rad /s (3.45)
N

Solution: Using equation (3.39), order 7 is evaluated as follows:

Ya
, [4(104 ~1)7(10%% - 1)]
=36 (3.46)
, [(6000 /2000) + (6000 / 2000)? — 1)/2]

n=

This needs to be rounded up to the next integer as 4.

Pole locations can be found as in Example 3.3 or directly using Table 3.4, which are as
follows:

518 5 = -0.1754 + j1.0163 and s3,54 = -0.4233 + j0.4209 (3.47)
Hence, the normalized transfer function shall be given as follows:

0.3377

His)=
) (;2 +0.3508s +1.0636)(52 +0.84665+0.3563)

(3.48)

For an even-order transfer function H(0) = H(1) = &, = 0.5 dB or 0.944 (normalized), the
numerator in H(s) = (0.944 x 1.0636 x 0.3563) = 0.3577. The obtained transfer function can
be realized by direct form synthesis or as a cascade of two second-order non-interactive filter
sections. However, its frequency level needs to be de-normalized with respect to 2000 rad/s.
The de-normalized transfer function will be as follows:

0.3577%2000*

His)=
) (;2 +0.3508><20005+1.0636><20002)(32 +0.8466 % 20005 +0.3563 X 20007)

(3.49)
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As in the case of a Butterworth approximated filter, the doubly terminated lossless ladder is
also a starting point for active filters when the Chebyshev approximation is used. However, in
this case as the corner frequency depends on the ripple width, separate tables are needed for
element values for different values of ripple widths. With reference to the lossless ladders of
Figure 3.5(b) and (c), Table 3.5 is a small subset containing some commonly used data. For
filter requirements not appearing in Table 3.5, we can either consult literature [1.2] or element
values can be derived. It is important to note that normalized R, =1€2, but it is not equal to

R, for even 7; its expression is given as R, = {1 + 26" £2&((1 + 82)}Rm.

Table 3.5 LPF element values for Chebyshev approximated response

n G L, G Ly G Lg G Ly Roue
(a) Ripple width = 0.1 dB

2 0.84304 0.62201 0.73781
3 1.03156 1.14740 1.03156 1.00000
4 1.10879 1.30618 1.77035  0.81807 0.73781
5 1.14681 1.37121 1.97500  1.37121 1.14681 1.00000
6 1.16811 1.40397 2.05621 1.51709 1.90280 0.86184 0.73781
7 1.18118 1.42281 2.09667  1.57340 2.09667 1.42281 1.18118 1.00000
8 1.18975 1.43465 2.11990  1.60101 2.16995 1.58408 1.94447 0.87781  0.73781

(b) Ripple width = 0.5 dB

3 1.5963 1.0967 1.5963 1.0000
1.7058 1.2296 2.5408 1.2296 1.7058 1.0000
7 1.7373 1.2582 2.6383 1.3443 2.6383 1.2582 1.7373 1.0000
(c) Ripple width = 1 dB
3 2.0236 0.9941 2.0263 1.0000
2.1349 1.0911 3.0009 1.0911 2.1349 1.0000
7 2.1666 1.1115 3.0936 1.1735 3.0936 1.1115 2.1666 1.0000
L, G L G Ls Cs L

3.6 Inverse Chebyshev Approximations

Instead of a maximally flat response in the pass band, having equal ripples in it enables us to
realize an active filter having the same specification with a lesser order network; hence, an
equal ripple response is more economical than a flat response. It is expected that equal ripples
in the stop band structure may further improve response realization. Such an approximation
is known as an inverse Chebyshev approximation. Further, if there are equal ripples in both the
pass band and the stop band responses, it is known as an elliptic or Cauer approximation. First,
considering the inverse Chebyshev approximation, we can see that allowable attenuation at the
edge of the stop band is ¢;,. It is obvious that this may serve no useful purpose for further
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reduction in ¢, ;, with frequency, as shown in Figure 3.9. For this kind of approximation,
its magnitude function |H,(jQ)| is given by the following relation using equations (3.4) and

(3.30):
1
1+1/[ %6201/ Q)|

|H,(jQ)F=

where its stop band edge frequency €, is normalized to 1 as shown in Figure 3.9. The
significant difference between the inverse Chebyshev and the Chebyshev function is that the
frequency normalization in the inverse Chebyshev case is done with respect to the stop band
edge frequency (@, or ®,), whereas normalization was done with respect to the pass band edge
frequency (@, or @,) in the Chebyshev approximation. Since C,(1) = 1 for all values of », the

magnitude squared function at £2 = 1 is given as follows:

|H”(ﬂ)|2=m%|1ﬂ (|=e/(1+€)"
(1,0
T
H(jo)
el(1 + £2)05
©.0 Q=1 Q —

Figure 3.9 Magnitude function variation in a normalized inverse Chebyshev approximation.

The magnitude given by equation (3.51) is the upper limit of the inverse Chebyshev function in
the stop band extending from € = 1 to o, as shown in Figure 3.9. The nature of the magnitude
of the ripples in the stop band is the same as it was in the pass band of the Chebyshev function.
The number of maxima and minima are also equal to the order of the inverse Chebyshev
function as in the pass band. To find the nature of variation of magnitude in the pass band,

investigation has to be doneat Q =0 or Q«1.

As C,(1/Q)=2""1/Q)" for Q <1

IH/gz{(zn_l)(l/Qn)}z 1+Q% /(£2277)  1+(Q/ Q)Y
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where Q, = (£2%1)1/7 (3.54)

The nature of equation (3.53) is the same as that of the maximally flat function of equation
(3.10), which means that pass band of the inverse Chebyshev response is a maximally flat type
of response.

3.6.1 Design of an inverse Chebyshev filter

In the previous section, it was shown that for the inverse Chebyshev response, ripples in the
stop band extend from € = 1 to o, where £ = 1 corresponds to the edge of the stop band and
the function remains maximally flat in the pass band. This means that for an LPF, attenuation
specifications will be as shown in Figure 3.10, where o, is the allowable attenuation in the
pass band; the attenuation in the stop band has to be at least ¢ ;,. Hence, the attenuation (in
dB) given by the following equation (3.55) can be used.

A =-20 log| H(jQ)| (3.55)
_______________ (LY
®min
o(dB)
<— Pass band —>: <«<— Stop band ——>
Cmax p777777777777777777777,
I
Z
Qp Q=1 Q—>

Figure 3.10 Attenuation characteristics of a low pass inverse Chebyshev function.

The equation gives the minimum value of attenuation, o, as follows:

Opin = —10 log| H(jQ)|? = 10 log(1 + 1/€%) (3.56)
It gives the expression for the constant € as:

= (10%1%in — 1)’% (3.57)
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As in Figure 3.10, limit of the attenuation is @, at the edge of the pass band €2, Hence, using
equation (3.50), we get the expression for @, in terms of Q, and the de-normalized pass band
edge frequency as given here.

o =1olog[1+1/{ezcj (I/QP)}]—> £C2 (17, )= (10" 1) (3.58)
Substituting € from equation (3.57) in equation (3.58),

1 Oo'lamax — 1

109 % _1 (3.59)

C/Q,)=
As Q, < 1 and equation (3.59) is applicable for the pass band, use of equation (3.30) for the
value of C*(Q) gives:

(1 00. 10 1)1/2

7 3.60
(IOO.IO!maX _1) ( )

cosh[ncos hl(/ QP)] =
Solving for the order of the function 7,

Ya
cos h—l (loo.lamin _ 1)/(100.106nmx _1)
e [ : ] (3.61)
cosh™(1/ QP)

If the de-normalized pass band edge frequency is €, rad/s and the stop band edge frequency is

Q, rad/s, Q,= [%) , then and equation (3.61) can be modified as:
2

%)
cosh™ [(100-‘“'“1" —1) 7 (10%1%ms — 1)]
n= — (3.62)
cosh™(Q,/Q,)

Equation (3.62) is the same as that for the Chebyshev function given in equation (3.38); this
means that for the same specifications, the order of the inverse Chebyshev function will be
the same as that for the Chebyshev response. Value of the parameter € will also be the same;
however, a major difference between the two responses is that the frequency normalization
is done with respect to the stop band edge frequency € in the inverse Chebyshev function.

To find the transfer function of the inverse Chebyshev function, either an appropriate
Table like 3.4 can be used, or the location of poles and zeros needs to be determined as follows.

The magnitude squared function of equation (3.40) can be expressed as follows:

ECX11Q)  z(s)z(~s)]

1) p(y) P9 g

|, (jQ) (3.63)
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Hence, zeros are found in the stop band for Q > 1, when C(1/Q) is expressed through
trigonometric functions, and equalized to zero, that is, C}f (1 /1Q k) =0, or:

cos 7 cos™(1/Q,) =0 (3.64)

Equality in equation (3.64) is valid when £ is odd (it equals 1 when £ is even). Then, with ¢,
= n cos™! (1/Q)), we get:

cos n@, = 0 when n@, = k(1/2). (3.65)
Equation (3.65) gives

cos™! (1/2)) = @, = kn/2n (3.66)
Therefore, zero frequencies are obtained as follows:

Q, = sec(km/2n) for k=1, 3,5, ..., n (3.67)

We will now find the pole location of the inverse Chebyshev function. It can be observed
that the denominator of equation (3.63) is the same as that for the Chebyshev function, with
a difference that Q is now replaced by (1/€2). This means that to find the pole location for
the inverse Chebyshev function, we can first determine the Chebyshev poles using equations
(3.40)—(3.42) and then take its reciprocal. However, the value of € to be used shall be the one
obtained for the inverse Chebyshev function using equation (3.47). It is observed that the
pole quality factor, Q for the inverse Chebyshev remains the same as that for the Chebyshev
function.

Example 3.4: Find the order of the inverse Chebyshev filter for the following specifications.
Also find the corresponding transfer function.

O =1dB, o, =40dB,w, =2000rad/s and @, = 6000rad/s.

Solution: By calculation, the order 7 of the filter is 3.36; this can be approximated to 4.

Zeros of the transfer function shall be found using equation (3.67) with Q,, = sec(km/2 x
4). Hence, for £ =1,

Q,, = sec(n/8) = 1.08239 and for k = 3, Q,, = sec(37/8) = 2.6131 (3.68a)
The de-normalized value of the zeros is as follows:

2, =6000x Q,, =06494.34rad/s and z, =6000xQ , =15678.7rad/s (3.68b)
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The first step to finding the pole values is to find the pole of the Chebyshev function with €
obtained using equation (3.47) as follows:

£=(100-1x40 _ 1)-1/2 - 0.01 (3.69)
Using equation (3.42),
a= &)sin h™'(1/0.01)=1.32458 (3.70)

This yields sin h 2 = sin h 1.32458 = 1.74733 and cos h 2 = cos h 1.32458 = 2.0132

Hence, the real parts of the pole can be obtained as follows:

0, = —sin ha x {sin(1/4)(7/2)} = —1.74733 sin (7/8) = —0.66867 (3.71a)
0, = —sin ha x {sin(3/4)(7/2)} = -1.6143 (3.71b)
03 = — sin ha x {sin(5/4)(7/2)} = -1.6143 (3.71¢)
0, = — sin ha x {sin(7/4)(7/2)} = -0.66867 (3.71d)

The imaginary components can be obtained from equation (3.41b) as:
Q= jcos ha x cos(2k —1)(7t/2n)
Q, =2.0132 cos (1/8) = j1.8599, Q, = j2.0132 cos(371/8) = j0.7704
Q, = j2.0132 cos (57/8) = —j0.7704, Q= j2.0132cos(771/8) = —1.859 (3.72)

For the Chebyshev function, if we know the value of the real and imaginary parts of the pole,
its magnitude and the quality factor shall be given as follows:

%
Qe =(07 +Q}) and Quc =(Qu /20, (3.73)
Then, the pole location for the inverse Chebyshev response case, p, = x;, + jy, is given by:

(04 = /%) (3.74)

Pe= (07 +Q})

This gives the magnitude and quality factor for the inverse Chebyshev response as follows:

Ya
| 26| = (xi +}’/§) =(1/Qqc) and Quc = Qe (3.75)
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Using equations (3.73)—(3.75), we get the following parameters:

2 Y2 1
Q= (o7 +97) ={(—o.66867)2 +(1.8599)2} = (3.90646)” =1.9764 (3.76)
2 2 % 173
Q, ={(-1.6143)" +(0.77047} " =(3.19948)" =1.7887 (3.76b)
123
Q= {(—1.6143)2 + (—0.7704)2} = Qp, and Qpy = Qy, (3.76¢, d)
Q, 19764 Qy 17887
=2 =1.47786,Qyp = —2 = =0.554, 3.77a, b
Qe 20, 2x0.66867 Qc 20, 2x1.6143 (3772, b)
Q Q
Qsc = 2—;2: Qy¢c and Q4¢ = ﬁ =Qc (3.77¢,d)
1 2
n=2" fg; =_0'6686;2_ L8599 _ 017117 - jo.47611 (3.782)
Oy +34 01
- jQ, -1.6143— j0.7704
p= ‘;22 +]sz = 39 0770 __4.50455 - j0.2408 (3.78b)
2 2 02
- jQ, -1.6143+ j0.7704
Py = 6292] 2 sz 7792 _0.50455+ j0.2408 (3.780)
02 02
0. 1.
P 66867;“] 859 _ 017117+ jo.47611 (3.78d)
QOI
Qouc = (6 +910)" ={(17117)* + (47611)*}* = 0.5059 (3.79a)
Qo = 1(.50455)* +(.2408)*}”* = 0.55906 (3.79b)
Qoz1c = Loa1c> Losic = Loie (3.79¢, d)

Instead of following the steps from equations (3.74) to (3.79), the pole location for the
inverse Chebyshev function can also be found by taking the inverse of the pole locations of
the Chebyshev response obtained from equations (3.71)—(3.73), while using the value of €
obtained using equation (3.47); the quality factors remain the same.

To obtain the transfer function of the inverse Chebyshev response, the pole-pair is associated
with the zero nearer to it. Hence, the transfer function is obtained as follows:
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{52 + Qil}{sz + Q;}

Q Q
{32 4 2201C ¢ Qéuc}{sz + 7Q0331C s+ Q(%SIC

H(5)=

11C IC

(;2 + 1.1757)(;2 n 6.8283)
(s> +0.34235+0.2559) (s> +1.009 15+ 0.31255)

(3.80)

Since the calculation of poles and zero was done in the normalized form with normalization
done with respect to the stop band edge frequency, the transfer function is also to be de-
normalized with respect to it. Finally, the filter can be realized by using any of the cascade or
direct form synthesis procedures. If we wanted to realize the filter as two second-order sections,
it can be done by using two notch filters. Since notch filter realization shall be studied later,
this transfer function shall also be taken up later.

3.7 Cauer or Elliptic Approximation

The use of Chebyshev or inverse Chebyshev approximation result in an economical or optimal
filter section rather than a filter with maximally flat response. It was expected that equal ripples
in both the pass band and the stop band will further decrease the required order 7 of the filter
section for the same specification; this assumption was indeed shown to be correct by William
Cauer [3.1]. Such an approximation, shown in Figure 3.11, is called a Cauer approximation
or elliptic approximation. As the solutions for this approximation lead to elliptic functions that
are not easy to solve, exhaustive tables and design graphs are used instead of solving the elliptic
functions.

Lecmceeem o

Attenuation

O4p

g P

QZZ QZIQPZI QS QPI sz Q >

Figure 3.11 Variation of attenuation for a typical Cauer or elliptic response.
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In the previous magnitude approximations, different expressions were assigned to the
term |K (jQ)| of equation (3.4) so that the pass band would be maximally flat, or have equal
ripples in the stop band or pass band. To have equal ripples in both the frequency bands, the
characteristics function K{(S) is selected to be a ratio of polynomials whose poles and zero lie
on the imaginary axis of the s plane. For K(S) to be such a new function of E,(S) of order 7, let

E(S) = N(S)'ID(S)’. Then equation (3.4) can be written as:
|1, =11[1+€°E} (Q) ]

_ D'(jQ)D'(-;Q)
D'(jQ) D’ (- Q)+ N'(FQN'(-5Q)

(3.81)

In equation (3.81), € is multiplied with £,(S) as its value is not unity in maximally flat and
equal ripple approximations, instead of being unity in case of Butterworth approximation.

This means that the poles of E,(Q) will be the zeros of |H,(jQ)|. Analysis of the function
assumes that frequency is normalized at the edge of the pass band, thatis, Q,=land E,(Q
= 1) = 1. Then, maximum attenuation at the pass band edge from equation (3.81) shall be:

Gy =10l0g; (1+£7) (3.82)

This equation gives the same expression for € which was obtained for the maximally flat or
the Chebyshev approximation of equations (3.11) and (3.33), respectively. Further, in order
to have equal ripples in the stop band (including at the stop band edge frequency Q_ with
attenuation of o, it is required that |E,| = +F. Hence, in the stop band, the expression of the
minimum attenuation shall be:

Oy = 10 log, (1 + €2F2) (3.83)

Substitution of € from equation (3.82) in equation (3.83) results in the expression for Fwhich
is a familiar expression for the maximally flat as well as Chebyshev response vide equations
(3.23) and (3.39), respectively, in connection with the evaluation of the filter order 7.

3.7.1 Design of Cauer filters

The first step in the design of a Cauer filter is to find its order from the same four specifications:
o Olinin> €2, and Q. While finding 7 has been rather straightforward and simple in the
approximation methods discussed so far, for the Cauer approximation, is the calculations
become quite involved and requires solution of elliptic functions. One way out from this
complexity is by using the fact that, invariably, the value of 7 obtained through calculations
is not an integer and, therefore, the next higher integer value is selected. This approximation
amounts to a bit of over-designing; however, it is customary that the given values of the

specifications can be marginally changed. It allows using a lesser complex graphic process
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in which 7 is obtained from a set of curves drawn for the variation of £, with respect to Q..
However, the approximation also requires finding an expression for £, that needs to be a
rational function meeting the requirements of the given specifications. Alternatively, we can
use the following simpler method [3.3].

From the given specifications, a modulator constant q is calculated from the following

relation:
q=u+2u + 154 + 150413 (3.84a)
1—(1—£*)"
Here, u= % and the selectivity factor,
{2(1+(1—/e )“}
k=Q,1Q, (3.84b)

The next step is to find the discrimination factor D from the following relation:

D= (10" —1)/(10%% —1) (3.85)
Then, the order of the elliptic filter 7 is obtained from the following relation:

7 = {log 16D/log(1/9)} (3.86)
In equation (3.86), the obtained value may not be an integer; the value then has to be rounded

off to the next higher integer. Due to the change in the value of 7 to the next higher integer
value, the actual ¢, in the stop band is changed to the following:

0100, _
amin = 1010g I+ 10 1 (387)
164"

Obviously, we should ascertain that the value of ¢ ;, obtained from equation (3.87) satisfies
the specifications of the design.

Example 3.5: For the following specifications, find the order of an elliptic filter:
0= 1dB, o, =40 dB, w, = 2000 rad/s and @, = 6000 rad/s

Solution: Selectivity factor, £ = 2000 / 6000 = 1/3. Using equations (3.84)—(3.86) for g, u, D
and 7, we get the following:

_(1_ Y
u =0.5M=0.00736
1+1-1/9"
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4=0.00736+2(0.00736)’ +15(0.00736)’ +150(0.00736)"> = 0.00736
Value of the discrimination factor D is obtained as:

D = (100140 _ 1)/(109-1<2 —1) = 9999/0.2589 = 38621
Then, the order of the filter is obtained from the equation (3.86):

7 = log (16 x 38621)/log (1/0.00736) = 2.714

Hence, the selected value of # = 3.

It may be noted that for the same specifications, the required filter order was 5 for the
Butterworth approximation, 4 for equal-ripple filters. In practice, the difference becomes more
prominent when there is a narrower transition band or selectivity factor with a large value.

The actual minimum stop band attenuation with 7 = 3 from equation (3.87) will be as
follows:

10%! —1

— 1 =46.08dB
16(.00736)° }

Oin = 10log {1 +

In this expression, the obtained theoretical value of ¢, is well under control. After finding the
order of the filter, the normalized transfer function is to be obtained. Once again, the solution
requires elliptic functions, which are quite complex. Algorithms have been developed for the
purpose; however, the simpler option is to use the available design tables. In the vast literature
pertaining to filters, these tables and the data arranged in the tables have been presented in
different ways. Only the specific table corresponding to the stated specifications is to be used
to get the location of poles and zeros and the transfer function.

An alternate method for finding the order of the elliptic LPF is to use nomographs. Figure
3.12 is such a nomograph, wherein the attenuation at the pass band edge frequency is o,
(normalized to 1 rad/s) and ¢, is the attenuation at some (normalized) stop band edge
frequency Q. To use the nomograph in Figure 3.12, a straight line is drawn through the
specified o, and ¢,;,, shown as points 1 and 2 in Figure 3.13. Intersection of this line with
the ordinate of the nomograph determines point 3. A horizontal line is drawn from point 3
until it meets a vertical line drawn from point 4 which corresponds to the specified frequency
Q.. The resulting intersection at point 5 decides the order of the required elliptic filter. Almost
every time, point 5 lies between two curves corresponding to the loci of the filter orders; the
higher value of the filter order is selected for obvious reasons.

https://doi.org/10.1017/9781108762632.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.004

Continuous Time Active Analog Filters

Apg(dB)  Ag(dB) 1 1.5 2 2.5 3 35 4 45 5
N JAVAVARVA |4
[/ 7V 1 A ) 4 %
40 1+ o n:11/ /10/ / // pd
140 / / / ,/ //
130 10 [ [ /° A /
120 [[V /s A
L7 7T x
AT, 7 Bz
NIy AW |
ol 11717 7 Pk
EIE 1V T
M S U/ /1 A P I
, T MY "~ Pid
14 50 l[] / A ]
81461; 40 5[/// / // P
i - P
OOOé_EE_ 20 4 // / ’
E o, [ |
001 1 6 i 3// / ’/
0.005 + 2 // //
M/
[/
NIl
/

Figure 3.12 A nomograph for determining the order of an elliptic magnitude function.
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Figure 3.13 Method of using the nomograph in Figure 3.12.
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Normalized element values of a doubly terminated lossless ladder can be obtained from
other tables. Figure 3.14(a) and (b) show these ladders and Tables 3.6 and 3.7 show the values
of the elements for these ladders. Obviously, these ladders and tables are useful when some
direct form of filter synthesis is used instead of the cascade form. However, if it is preferred to
use the cascade form of synthesis, poles and zeros, and then the transfer function can be found
through analyzing the ladder itself.

L,-1 Ly
L,
—— >R, ----"" 1/R,
Cy
Cn—l_l_
- - —o0 ---—=e —o0
For n even For n odd
(a)
L1
L/
...... — -
— G p— Ry - Gl —=35g,
Ch1 Cr
----- —0  --- *+—o0
For n even For n odd
(b)

Figure 3.14 (a) Network configuration for Table 3.6 and Table 3.7. (b) Alternate configuration.

Example 3.6: Find a doubly terminated lossless ladder which gives an elliptic response while
satisfying the following specifications. Verify the response using PSpice.

O = 0.1 dB @, =54 dBs, @, = 100 krad/s and @, = 150 krad/s

Solution: Normalizing the frequency by 100 krad/s, we get Q= 1.5 rad/s. Using the nomograph
of Figure 3.12, intersection of the line from the given attenuations of 0.1 dB and 54 dB and
the vertical line for Q, = 1.5 rad/s falls between 7 = 5 and 6; hence, the required filter order will
be 6. For n = 6 and Q= 1.5 rad/s, Table 3.7 gives the normalized values of the elements as:

R,=R, =1Q, L =086595H, L,=0.18554 H, L, = 1.43106 H, L, =0.33007H,
Ls=1.28253 H, C, = 1.27403 F, C; = 1.27255 F, C; = 1.03317 F

Using frequency scaling, elements are de-normalized by a factor of 100 krad/s and an impedance
scaling factor of 10%. The de-normalized element values are as follows:

R, =R, =10kQ, L, =0.086595 H, L, = 0.018554 H, L, = 0.143106 H, L, =0.33007 H,
Ls=0.128253 H, C, = 1.27403 nF, C, = 1.27255nF, C; = 1.03317 nF
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Table 3.6 Element values of a doubly terminated ladder for elliptic filters with pass band ripples of | dB

o, K, L C L L C L L c, L L
3 1.05 8.134 1.05507 25223 3.28904 1.05507
1.10 11.480 1.22525 37471 1.94752  1.22525
1.20 16.209 1.42450 52544 1.11977  1.42450
1.50 25.176 1.69200 .73340 48592 1.69200
2.00 34.454 1.85199 .85903 22590  1.85199
4 1.05 11.322 .63708 35277 2.41039  1.11522  1.39953 1.0-dB pass band ripple
1.10 15.942 .80935 .54042 1.40015 1.18107 1.45001
1.20 22.293 1.00329 77733 79634 1.26621 1.49217
1.50 34.179 1.25675 1.11431 34362  1.38981 1.53225
2.00 46.481 1.40677 1.32367 15960  1.46762  1.55071
5 1.05 24.135 1.56191 .67560 .83449  1.55460 26584  3.31881 .88528
1.10 30.471 1.69691 77511 58827  1.79892 .39922 1.98907  1.12109
1.20 38.757 1.82812 .87005 38720  2.09095 .56347 1.16672  1.38094
1.50 53.875 1.97687 97694 .18824  2.49161 .79362 51950 1.71889
2.00 69.360  2.05594 1.03392 09152 2.73567 93561 24486  1.91939
6 1.05 29.133  1.07458 .80116 .81300 92735 51753 1.71498 92186  1.60511
1.10 36.680 1.22059 194235 57746  1.10900 75718 1.05819 1.01676  1.64682
1.20 46.571 1.37146 1.08633 .38284  1.32610 1.05110 .63354  1.12484  1.68498
1.50 64.661 1.55425 1.25876 18779 1.62529 1.46557 .28655 1.26961  1.72482
2.00 83.221 1.65661 1.35450 .09179  1.80860  1.72376 13586 1.35729  1.74424
7 1.05 40.926 1.82156 .86343 42668 1.67632 .34381 2.60271 1.23696 46779 1.63392 1.22362
1.10 49.816 1.91040 192662 .30705  1.93579 48016 1.68753  1.55276 59277 1.10699 1.41994
1.20 61.422 1.99168 98474 20446 2.22804 .64444 1.04856  1.92724 73012 70551 1.62539
1.50 82.588 2.07882 1.04761 .10016  2.61372 .87393 48973 2.44021 .90483 .33349 1.87717
2.00 104.268 2.12329 1.07993 .04884 2.84446  1.01638 23538 2.75306  1.00567 .16034 2.01924
n , K, G L c, G L G G L G o
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Table 3.7 Element values of a doubly terminated ladder for elliptic filters with pass band ripples of 0.1 dB

"o K, L G L L, G L Ls G L, L,
1.05 1.748 .35550 15374 5.39596 .35550
1.10 3.374 44626 .26993 2.70353 44626
1.20 6.691 .57336 .44980 1.30805 .57336
1.50 14.848 .77031 74561 47797 .77031
2.00 24.010 .89544 .93759 .20697 .89544
1.05 3.284 .00442 17221 4.93764 1.01224 .84445 0.1 dB pass band ripple
1.10 6.478 17279 .32758 2.30986 1.04894 .89415
1.20 12.085 37139 .56638 1.09294 1.11938 .92440
1.50 23.736 .62815 .94009 .40730 1.24711 93518
2.00 36.023 77554  1.17646 .17957  1.33473 .93382
1.05 13.841 .70813 .76630 73572 1.12761 .20138 4.38116 .04985
1.10 20.050 .81296 .92418 49338  1.22445 37193 2.13500 29125
1.20 28.303 91441 1.06516 .31628 1.38201 .60131 1.09329 52974
1.50 43.415 1.02789 1.21517 .15134  1.63179 193525 44083 .81549
2.00 58.901 1.08758 1.29322 07317 1.79387 1.14330 .20038 97720
1.05 18.727 44177 71651 .90905 .83142 .36274 2.44680 .80463 .99857
1.10 26.230 .57630 .88798 .61282 97304 .59060 1.35666 .94305 1.01381
1.20 36.113 .70984 1.06266 .39136  1.15974 .87407 .76185 1.09176 1.02462
1.50 54.202 .86595 1.27403 .18554 1.43106 1.27235 .33007 1.28253 1.03317
2.00 72.761 95131 1.39297 .08926 1.60132 1.51866 .15421 1.39521 1.03621
1.05 30.470 91937  1.07659 .34220 1.09623 40518 2.20850 .84335 50342 1.51827 41098
1.10 39.357 .98821 1.16726 24374 1.27743 59720 1.35681 1.04029 .67881 .96669 .58282
1.20 50.963 1.05029 1.24872 16124  1.48377 .82869 .81542 1.28723 .87428 58918 75395
1.50 72.129 1.11593  1.33554 .07857 1.75687 1.15174 .37160 1.63827  1.12502 .26822 .95588
2.00 93.809 1.14910 1.37979 .03822 1.92026 1.35221 17692 1.85664 1.27023 12694 1.06720
n , K, G L, G G Ly Gy (0 Lg G G
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Figure 3.15(a) shows the magnitude response of the passive ladder with ordinates on the linear
scale and Figure 3.15(b) shows the magnitude on the log scale (magnitude on the log scale is
shown to get a better view of both the pass band and the stop band). The simulated pass band
edge frequency is 15.92 kHz (100.06 krad/s) and the stop band edge frequency is 23.86 kHz
(149.977 krad/s) giving the normalized , = 1.5 rad/s. Maximum attenuation in the pass band
0.100 dB and the minimum attenuation in the stop band is 54.2 dB.

600 mV HE | H
o——+—o1 oo E
IR R
400 mV 4+—— ; ;
200 mV 4—i—1 E E
oV I H i
100 Hz 1.0 kHz 10 kHz 100 kHz
[elv (7) Frequency
(a)
0V . T
1.0 V—t—! : !
o———— O T ——0— i
N - I
10 mV4—t—4 i L
100 uV- — :
100 V. N : ‘
100 Hz 1.0 kHz 10 kHz 100 kHz
[e]V (7) Frequency
(b)

Figure 3.15 (a) Magnitude response of the elliptic filter of Example 3.6 with ordinates on the linear
scale. (b) with ordinates on the log scale.
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3.8 Maximally Flat Pass Band with Finite Zeros

It has been observed that in the maximally flat Butterworth response case, it takes a higher filter
order to satisfy the same specifications compared to other approximations. This limitation
caused by the slower transition from pass to stop band in the maximally flat Butterworth
response is minimized by the introduction of finite zeroes in the otherwise all-pole LPF, where
all the zeroes were at infinity.

If finite zeroes are introduced in the maximally flat response, instead of N(s) = 1, N(s) will
be a polynomial in terms of the complex frequency s in equation (3.3), and the degree of the
polynomial will depend on the number of the zeroes to be added. Equation (3.5) will become
modified while using equations (3.2) as:

. BOQ?) B(Qz)—A(Qz)
KGiQl = 1= 3.88
KGR 1 A7) (:88)

However, for the response to remain maximally flat, equation (3.88) has to remain satisfied
even when transmission zeroes are introduced. This condition implies that the following
relation is satisfied for as many derivatives as possible:

CxGor) o [B(e?)-ae)
QY 4HQY) AQ?)

=0 (3.89)

Application of chain rule, differentiation of equation (3.89) gives following relation:
B),=A4,,fori=0,1, ..., (n-1) (3.90)

Hence, in equation (3.2) or equation (3.88), A(€2?) is selected in such a way that the desired
zeroes are realized and the denominator is the sum of A(Q?) and B,,Q?". With a modified
transfer function, at Q = 1, and |H,(j1)|* with equation (3.10), we get:

A1
A(1)+BZn I+

|, (1) = — 5By, =€ A0) (3.91)

The transfer function can now be found by multiplying /,(jQ2) with H,(—j€2), and substituting
S =jQ:

A(=S?)
A(=8?)+ (1" " By,

H,(7Q)H,(-jQ)|,0-5= (3.92)
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It is important to note that in an all pole transfer function, the gain drops at a rate of 207 dB
per decade, but after the addition of finite zeroes, the rate of fall of gain in the transition band
increases but the rate of fall of gain at higher frequencies will be at the rate of 20(z — m) dB

per decade.

The following example is provided to help understand the design process while introducing
finite zeroes in a flat pass band transfer function.

Example 3.7: In a maximally flat LPF, it is desired that the dc gain of the filter remains as
unity and its gain drops by 1 dB at 20 krad/s. Introduce transmission zeroes at 40 krad/s and
50 krad/s to increase the rate of fall of attenuation in the transition band and find its transfer
function.

Solution: As gain is dropping by 1 dB at 20 krad/s, this is taken as the normalizing frequency.
Then the transmission zeroes will become Q = 2 and 2.5, respectively, and with the dc gain as
unity, the normalized transfer function is obtained using equation (3.92):

2 )? 2 )?
(5] {5
2 2.5
H,(jQ)*H,(-jQ)= 5 - (3.93)
Q,Y Q,Y
( ) -1 ( ) -1y +B, Q"
2 2.5
The numerator is of degree 4 and for a minimum rate of fall of attenuation of 40 dB at higher

frequencies, the denominator should have degree # = 6; hence, By, is to be determined for

equation (3.93).

The value of B,, can be found from equation (3.91), as at Q = 1, the gain drops by 1 dB,

and we can write:

2 B
Hg(j1) =1/q1+———12—— (3.94)
7s(7) (g)z(s.zs)z
4)\6.25
which is equal to 1 dB of attenuation or we can calculate that the output will drop by a
factor of 10~1/10) = 0.7943; hence, comparing this equation with equation (3.94), we get B,

= 0.102767. The value of By, is substituted in equation (3.94), and while § is replaced by jQ,
the transfer function is obtained from the following:

BRIGE!

- (3.95)

[CRERE—
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The numerator has four roots, which are easily identifiable; however, the root finder is used
to find 12 roots of the denominator. Along with a multiplying factor of 64.229, the following
roots are obtained:

£1.256 +0.41, £0.762 j0.932, and +0.238 j1.085 (3.96)

In equation (3.96), the roots are in all the quadrants. Selecting the roots on the left half of the
s plane, for a real rational function, the following factors (normalized) become available.

$2 4+ 25118 + 1.744, % + 1.524S + 1.449 and §? + 0.475S8 + 1.234 (3.97)

As result of the root multiplying factor of 64.229, the numerator coefficient will become 4 x
6.25/(64.229)” = 3.119. The resulting normalized transfer function will be as follows:

ol

- (8% +2.5115 +1.744)(8? +1.5245 +1.449) (2 +0.4755 +1.234)

(3.98)

Realization of the transfer function of equation (3.98) using cascade technique will be discussed
in Chapter 10.
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Practice Problems

3-1  (a) Find the pole location and the coefficients of the Butterworth polynomial for order n =5, 8 and 10.
Compare the answers for n =5 and 8 from Table 3.1 and 3.2.

(b) Plot the pole values calculated in part (a) on the s plane.
(c) Factorize the Butterworth polynomials found in part (a) using a root finder or any other method.
3-2  (a) Determine the transfer function for an LP filter having a maximally flat magnitude characteristic,
which is 2 dB down at 2 rad/s and 32 dBs down at 7.5 rad/s.
(b) Find a doubly terminated lossless ladder realization for the LP filter.
(c) Find the element values for the LP ladder filter with its 3 dB frequency at 3.4 kHz.
(d) Simulate the ladder structure used and verify the results.
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3-3

3-4

3-5

3-6

3-7

3-8

3-9

Continuous Time Active Analog Filters

Design an LP filter for the following specifications

Ay dB gy, dBsS o, rad/s @,, rad/s

[.0 40 2000 4500
(a) Determine the degree n of the required maximally flat magnitude response.
(b) Determine the location of poles on the s plane.

(c) Find the quality factor of each pole.

Determine the actual loss o, (®,) and ¢, (@,)at the pass band and the stop band edge frequencies.

Repeat problem 3-3 for the following specifications:

o =20dBs, o

max min

=50 dBs, @, = 2000 rad/s and @, = 6000 rad/s.
Repeat problem 3-3 for the following specifications:

o...=10dB, o

max min

=30 dBs, @, = 2000 rad/s and @, = 3600 rad/s.
Repeat problem 3-3 for the following specifications:
0. = 2.0 dBs, o, = 40 dBs, @, = 2000 rad/s and @, = 5000 rad/s.

Consider the following set of specifications:
() o =0.5dB, o, =32 dBs, @, = 1500 rad/s, m,=3600 rad/s

min
(i) tpax= 1.0 dB, e, = 25 dBs, @, = 2000 rad/s, @, =7000 rad/s

in
(a) Find the required value of order n of the LP filter with maximally flat response.
(b) Determine the actual attenuation at the edge of the pass band and stop band.

(c) Determine the attenuation at 2.5, and 5w,.
Determine the Chebyshev polynomial C,(€2), C5(€2) and C,(€2), using equation (3.31)

Determine the pole location for the Chebyshev response for:
=0.5dB,
=1.0dB,

(@) n=5and

max

(b) n=5and

‘max
(a) Determine the order n, the pole location and the transfer function of an LP filter having 1.0 dB ripple
width from 0 to 2.5 rad/s and a maximum of 30 dB attenuation beyond 5.0 rad/s.

(b) Find a resistance terminated lossless ladder for the filter realization in part (a).

Find the transfer function, @, and Q values for the following specifications with the help of Table 3.4.
(i) Oy=1dB n=6,

(i) Ofy=2dB, n=5,

(i) Ofx=0.5dB, n=4

A sixth-order LP Chebyshev filter was realized with three options -¢,, = 0.5 dB, | dB and 2 dBs.

Determine a relationship between ripple width and respective quality factor. Which option shall be
preferred and why? (Use Table 3.4)
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3-18
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In a Chebyshev filter of order 5, (de-normalized) @cz =1 Krad/s and o, = 1.0 dB. Determine: (a)
the value of &, (b) the value of the pass band edge frequency @,, (c) the value of |H(jw) |?mn, (d)
the frequencies of the peaks in pass band, and (e) the frequencies of the valleys in the pass band. (f)
Accurately sketch the magnitude response, using only a calculator for the necessary calculations. Use a

vertical scale in dBs and a linear radian frequency scale.

An anti-aliasing filter is needed for an A to D converter working at a sampling rate of 6000 samples/s.
Hence, the anti-aliasing filter is to have a minimum attenuation of 60 dBs at 3 kHz using a Chebyshev filter.
(@) If w,=5krad/s and o, = 1dB, what is the required minimum order?

(b) If Otye=dB and n =7, what is the maximum value of @,?

(c) If w, =5mkrad/s and n =7, what is the minimum value of ¢

max-

Determine the transfer function and give numerical values of poles for part (c) of Problem 3-14. What
shall be the value of center frequency and pole-Q of the second order sections?

(a) Find the required order for a maximally flat magnitude function which is down | dB at I rad/s and
down 34 dBs at 1.5 rad/s.

(b) Repeat part (a) for an equal-ripple pass band filter.

(c) Repeat part (a) for an equal-ripple stop band filter.

For the attenuation characteristics shown in Figure P3.1, find the attenuation ¢ at the frequency which is
2.5 times the pass band edge frequency.

0,0

Figure P3.1

Specifications of an inverse Chebyshev function as shown in Figure P3.2 are as follows:

O min

777777777777

a(dB)

O max

7777

e AL

y O—> W

Figure P3.2
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3-20

3-21

3-22

3-23

3-24

Continuous Time Active Analog Filters

Oy = 0.5 dB, = 20 dBs, , = 36 krad/s and @, = 80 krad/s

(a) Determine the order of the filter

(b) Determine the location of poles and zeros.

(c) Determine the frequency of the peaks and the valleys in the stop band.

(d) Find the transfer function satisfying the specifications in terms of the product of second-order

(a first-order also if needed) sections.

Repeat sections (a) to (d) of Problem 3-18 for the following specifications:
Oy = 0.5 dB, i, =30 dBs, @, =2 krad/s and w, = 3.45 krad/s

max min

Find order of an elliptic HP filter using two alternate methods for the following specifications:
(i) Oy = 1.0dB, oy, = 30 dBs. @, = 80 krad/s and @, = 50 krad/s

(i) Oy =0.1dB, oy, = 20 dBs, @, =30 krad/s and @, = 15 krad/s

max min

Find the passive ladder structures for the elliptic filters of Problem 3-20, with (a) inductors and capacitors
in series occurring in the shunt branches, and (b) inductor and capacitors in parallel occurring in the series
branches of the networks.

Find practically suitable values of the elements while integrating for the filters obtained in Problem 3-21
and test the circuits using PSpice.

Find order of an elliptic filter using two alternate methods for the following specifications:

o . =10dB, o

max min

=50 dBs, @, = 20 krad/s and @, = 24 krad/s.

Find passive ladder structures for the obtained filter with (a) inductors and capacitors in series occurring
in the shunt branches, and (b) inductor and capacitors in parallel occurring in the series branches of the
networks. Find the actual minimum attenuation in the stop band in both cases.

It is desired that the dc gain of the maximally flat LP filter with the specifications given in Problem 3-7(ii)
remains unity when a zero is introduced at 2750 rad/s. Find the modified transfer functions.
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