Multi Amplifier Second-order

Filter Sections

8.1 Introduction

In Chapter 7, the basics of realizing second- (or third-) order filter sections using only one
active device (OA) were explained. Such circuits are capable of providing any arbitrary second-
order function; they are also economical from the point of view of the use of active devices.
However, depending on the filter specifications and the configuration chosen, the resulting
circuit may not fulfil all the requirements like small number of passive components used
and specific spread, sensitivity and variability. It is for this reason that many second-order
filter sections use two, three or more OAs: multi amplifier biquads (MABs). Obviously, the
intention is to overcome the mentioned limitations of the single amplifier biquad (SAB). In
addition, a significant feature of multi amplifier biquadratic sections is their versatility in terms
of providing more than one kind of response (like LP and BP) at the output terminals leading
to general biquadratic structures.

Almost all MABs use two integrators in a loop, a technique known as the state-variable
approach. Based on this technique, an important practical circuit known as the KHN (Kerwin-
Huelsman-Newcomb) biquad can be assembled. The scheme explained in detail in Section
8.2 realizes three types of output responses. A direct modification of the scheme, known as
Tow-Thomas biquad is studied in Section 8.3. The schemes, being interesting and useful, are
further studied while employing active compensation to inverting or non-inverting integrators
used in the loop. Active compensation leads to another well-known biquad, the Ackerberg—
Mossberg filter, which is studied in Section 8.5. Many schemes have been implemented to
utilize these structures and obtain other types of responses as explained in Section 8.6. Another
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scheme for obtaining a multi-response configuration using a generalized impedance convertor

(GIC) is explained at the end of the chapter.

While designing a SAB, it was observed that a frequency-dependent finite gain of the OA
results in a deviation in the performance parameters @, and pole-Q. To compensate for these
deviations, biquads using composite amplifiers are also used, in which instead of using only a
passive negative feedback, an active feedback network is used. These amplifiers increase the
number of OAs used, making it a MAB, though the design itself remains a SAB type.

8.2 State Variable Multi Amplifier Biquad

There are a number of two, three or more amplifier biquad circuits. Almost all of these circuits
are based on the state variable form of realization technique, first introduced by Kerwin,
Huelsman and Newcomb (popularly known as the KHN biquad) [8.1]. The scheme, in its
generality uses 7 integrators for an #th order transfer function, which are then appropriately
connected the way integrators are connected in the analog computation method. To realize a
second-order section, only two integrators are required along with a summer. Hence, in its basic
form, a state variable biquad uses three amplifiers, with three outputs as shown in Figure 8.1.
The configuration includes an integrator (—4,/s) with feedback 4, making it a lossy integrator,
a lossless integrator (—a,/s) with feed back factor —¢, and two summers S, and S,. Here, S, is
used to convert a lossless integrator into a lossy one by combining the lossless integrator with
feedback; the summer S is used to complete the feedback loop for the integrators. As there
is no element in between the two summers, the summers are generally combined. It is to be
noted that both integrators are in inverting mode and use negative loop feedback to ensure
stability. With the transfer function of the integrators as (~#,/s) and (—a,/s), the three available
transfer functions of the section in Figure 8.1 are obtained from the following equations:

Vo =kVig+ (k) Vs + bV, (8.1a)

Vi ==LV, and Vy ==V, (8.1b)

The obtained transfer functions are:

(Vﬂ)z ks? ’(Voz)z_ kﬂls’(vﬁ):kﬂlﬂZ (8.1¢)
v ) o0\ )" o6\ ) D0)

where D(s) = 5> + a,kys + ayak, (8.1d)

The three outputs given in equations (8.1a)—(8.1c) are HP (high pass), BP (band pass), and
LP (low pass), respectively, with their center frequency and pole-Q being decided by equation
(8.1d).
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Figure 8.1  Basic two-integrator loop realizing a second-order filter in which summers $, and S, can
be combined.

For the block diagram shown in Figure 8.1, three OAs are to be used, one each for the
integrators and one for the combined summer. Another modification can be done by merging
the summer in the lossy integrator. However, use of this modification requires the use of
differential inputs for the summing of V, and feedbacks for the lossy integrator and the loop.
It also makes the adjustment of summing coefficients a bit difficult. To avoid this requirement,
all the inputs at the summing integrator II | can become inverting signals. The filter will need a
further modification by the addition of an inverter after |7, as shown in Figure 8.2. It is to be
noted that this configuration gives only BP and LP functions; HP is not available.

ky
ky
l_ OA1 OA2 | OA3 v
p) 1, ’ -1 o
oo ! -
Val VoZ

Figure 8.2 Two-integrator loop in modified form from Figure 8.1.

8.3 Tow-Thomas Biquad

A practical implementation of Figure 8.2, given in Figure 8.3, is known as the Tow and
Thomas (TT) configuration [8.2,8.3]. Here, OALI realizes a lossy integrator, OA2 realizes
a lossless integrator and OA3 works as an inverter. Initially, considering OAs as ideal with
infinite open-loop gain, the realized transfer function can be obtained through application of
the Kirchhoff current law (KCL) at the inverting input terminals of OA1 and OA2.

(Vi = 0)/Ry + (=V,/Ry) = (0 - V. )I{R/(1 + sC\R))} (8.2)

(V;l - O)/Rz =(0- sz)fcz (8.3)

From equations (8.2)—(8.3), the following transfer functions are obtained:
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Vo (s (CR))(R | Ry) o by, (@,1Q)s -
Vie S 4s/(CQR)+1/(CCRER) s +(w,/Q)s+w? '
Vo _ 1/C,CyRRs . by, (8.5)
Vio S +s/(CR)+1/(CCRR,) s> +(w,Q)s+?
R
AAYAY,
QR Ry
" NMN\—
Rl

‘ ' C ’
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Figure 8.3 Tow-Thomas biquad. A practical implementation of Figure 8.2.

For the BP function of equation (8.4) and the LP function of equation (8.5), the important
performance parameters @,, pole-Q, mid-band gain /,,at @,, and gain at low frequencies or at
dc for the LP case 4, are as follows:

w,=1/(C,C,R,R,)" (8.6)
Cl Rl
_ & (8.7)
¢ (CzJ VR Ry)
by, = (Ri/Ry) and by, = (Ry/R;) (8.8)

Six passive components have been used in the biquad and there are only three design
parameters. These multiple components give some choice in the selection of component values
and flexibility in obtaining the desired parameters. As R; appears only in the gain factor terms
of equation (8.8), it is used for fixing the dc gain of the LPF (low pass filter) and the mid-band
gain of the BPF (band pass filter). Since it is always preferable to have equal valued capacitors,
C, = C, = C. Pole-Q can be easily controlled by R, even when R; and R, are equalized; the
component spread for resistors normally equals Q. The two resistors R used with the inverter
can be of some arbitrary value close to any one of the other resistors used.
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One attractive feature of the T'T configuration is its passive sensitivities, which are at their
theoretical minimum. If x is a passive component, sensitivity expressions are
<1. (8.9)

§% =—(1/2)and |S%

Example 8.1: Design a BPF using a Tow—Thomas biquad having a center frequency of 3.4
kHz and pole-Q of 5. The filter’s mid-band gain needs to be 20 dBs. Also discuss the obtained

LP response.

Solution: With a normalized center frequency of 1 and Q = 5, (®,/Q) = 0.2. Hence, we can
begin with designing a normalized BP response as shown in equation (8.10).

0.2;,S

. (8.10)
S7+0.25+1

prn (S) =

The required mid-band gain being 20 dB or /,, = 10, means (R,/R;) = 10 from equation
(8.8). Selecting the normalized capacitors as C; = C, = 1, R, and R, will also be nominally 1
from equation (8.6). Hence, from equation (8.7), we get R, = 5 for Q = 5. De-normalizing
the capacitors with @ = 27 x 3.4 krad/s and using an impedance scaling factor of 103 gives the
following element values:

C,=C,=0.0468 UF, R, =5k, R, = 0.5k, Ry = R, = R=1kQ (8.11)

Figure 8.4 shows the PSpice simulated magnitude response of the BPF with a mid-band gain
of 10.828, center frequency of 3.382 kHz. Its bandwidth = 0.62 kHz resulting in a pole-Q of
5.45. The LP response is also available as V,, as shown in the figure, having a dc gain of 2 and
a peak at 3.352 kHz, with peak gain being 10.915.

In another set of responses, the desired center frequency of a BPF was 300 krad/s. Q =
10, and mid-band gain was unity. Using the same steps as in the first set, the obtained de-
normalized element values are:

C =Cy=0.01 UF, R, = R, =3.333 kQ, R, = R, = 0.3333 kQ, R'= 5 kQ

The simulated BP response is also shown in Figure 8.4 with @, = 27 (44.027) = 276.74
krad/s, bandwidth of 5.07 kHz which results in Q = 8.67 and a mid-band gain of 8.404. The
corresponding LP response has a peak gain of 8.76 at 43.78 kHz (275.18 krad/s), and its
voltage gain at dc is 1. While obtaining the transfer functions for the TT biquad in equations
(8.4) and (8.5), OA were assumed to be ideal with an infinite open-loop gain. It is now well-
known that the frequency-dependent gain creates deviations in performance. For example, in
the first case, while using 741 type of OAs at £, = 3.4 kHz and Q = 5, the simulated values show
respective percent errors as 5.87 and 9; error in the mid-band gain was 8.28 percent. In the
second case, at f, = 47.72 kHz and Q = 10, the respective percent errors were 7.9, 13.3 and 16;
a significant amount of error which increases with frequency. If suitable correction is not done,
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the performance will become impracticable. Hence, passive as well as active compensations are
used. In this configuration as well as in many other cases, integrators have often been used, so
before moving on to other biquads, it is suggested that we find the deviations caused in @, and
pole-Q and the methods employed in integrators for the compensation of errors.

12V

8V

4V

ov }
1.0 kHz 3.0 kHz 10 kHz 100 kHz
XV@B)oV((5) vV(32)aV(52)

Frequency

Figure 8.4 Band pass and low pass responses using a Tow—Thomas circuit at low and higher
frequency levels for Example 8.1.

8.4 Active Compensation for Inverting Integrators

In Chapter 1, Section 1.8, integrators using OAs were briefly discussed. Figure 1.11(a) showed
a lossy inverting integrator using an OA. The same integrator is now drawn in lossless form
in Figure 8.5(a), without a feedback resistor. Using the single-pole roll-off model of equation
(1.17) for the OA, the ideal integrator gets converted into a lossy integrator as expressed by
equation (1.22) and rewritten as equation (8.12).

Vou _ 1 I (8.12)

Vi o ORI
A sCR

With A = (B/s), B being the gain bandwidth product, and with the condition that (BXx CR) > 1.

Vow .1 __ 1 fors = jo (8.13)
Vi sCRU+s/B)  joCR—(wCR/B)
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Equation (8.13) gives the quality factor of the inverting integrator as a ratio of imaginary parts
to real parts as:

Q=K (-BIw)=—| Ao (8.14)

(a)zCR / B)

The integrator quality factor Q, is negative and depends on the magnitude of the gain. A larger
value of A(jw) is better, but as working frequency becomes large, Q; becomes smaller. This
introduces a frequency-dependent loss in the ideal integrator and therefore, error is introduced
in the parameters of such filters which employ the integrator. To overcome the problem,
passive or active compensation is used in integrators.

=~

n

o ,\/\/\l - Vout
——O

O

L e
1

(b)
Figure 8.5 (a) Inverting integrator. (b) Active compensation for an inverting integrator.

Passive compensation has the advantage of using only one extra passive element; the
compensation becomes near ideal. However, the compensation may not be accurate and will
be variable with frequency.

An alternate solution is in the form of active compensation, shown in Figure 8.5(b), for
which the transfer function is obtained as:

v, 1
V. - sCR +1+5CR (8.15)

(1+1/4) A
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Using simplified single-pole roll-off models for the OAs, A, = (B,/s) and A, = (B,/s). Applying

truncation of Taylor’s series expansion after the second-order term for [4]>1, as we get:

LT N (8.16)
1+1/ A A 4
For s = jw, equation (8.15) yields:
Ve _ 1 (8.17)
Vi, Re(®)+ jIm(o)
2 2
Re(w)= 2812 O (8.18)
BZ Bl BZ
1 @
Im(w)=wCR|1- -— (8.19)
BCR B

For the matched OAs with B, = B,, quality factor of the integrator Q; = {Im(w)/Re(w)} is

obtained as follows:

Q;=—(B,/w)? = -|AGw)|? (8.20)

8.4.1 Compensation for a non-inverting integrator

In its simplest form, a non-inverting integration is obtained by cascading an inverting integrator
and an inverter as shown in Figure 8.6(a). However, there are some other configurations for
the non-inverting integrator as well. One such circuit is shown in Figure 8.6(b), for which the
transfer function is obtained as:

4 == ! ! (8.21)
V. SCR
1 + 1 + 1
A (s) sCRA| (s) 1+
4 (s)
For matched OAs, the quality of the integrator is simplified as:
Qui = +(Blw) = +|A(jo)| (8.22)

It is significant to note that here Qyy is positive, whereas for the inverting integrator, Q; was
negative. This opposite nature of change in quality factor has been found to be useful while
designing filters.
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Figure 8.6 (a) A simple method to obtain a non-inverting integrator, and (b) an alternate non-
inverting integrator with positive quality factor Q.

It is not only the quality of integrators that change; the phase shift also changes. Therefore,
compensating circuits of different configurations give different multi-amplifier biquadratic
circuits with varied phase responses. Without going into a detailed study of the amount of
affected performance due to the frequency-dependent finite open-loop gain of the OAs, let us
discuss one prominent circuit which employs active compensation.

8.5 Ackerberg-Mossberg Biquad

Figure 8.7(a) shows the modification of the two-integrator loop of Figure 8.2 using the active
compensation circuit of Figure 8.6(b), which was given by Ackerberg and Mossberg (AM)
[8.4]. As the basic structure remains the same, the center frequency depends on the same RC
product.

The circuit provides an LP response and a BP response. Assuming ideal OAs with A—>oo,
the obtained transfer functions are as following:

Vip k| R*C? (8.23)
Vio  s2+(s/ CRQ)+1/ R*C? '

1% ks CR
BP — _ d (8.24)

Vi £ +(s/CRQ)+1/ R’C?
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The quality factor, and the mid-band gain of the BPF = £ are controlled by the resistance ratios
shown in Figure 8.7(a). For the inverter OA3, equal valued resistances R* are used; expression
of the center frequency is as follows.

®, = 1/RC (8.25)

Using the expressions of equation (8.22) and (8.21), deviations in the quality factor and pole
frequency can be obtained in the AM structure.

R

NV

R*

V.. Rk "_| |C_" —{ < .

15V

1.0V

05V

ov
100 Hz

ATV (3) oV (32) +V(33) Frequency
(b)

100 kHz

Figure 8.7  (a) Ackerberg—Mossberg biquadratic structure. (b) Band pass filter responses with @, = 2
krad/s, 20 krad/s and 200 krad/s using the Ackerberg—Mossberg structure.

The coefficient matching technique described in Chapter 7 will be used to find element
values, which will be shown in Example 8.2. Once the value of R or C'is selected, the rest of
the element values are evaluated from equation (8.25).
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Example 8.2: Obtain a BP response using the AM structure of Figure 8.7(a) having a center
frequency of 2 krad/s (3.1818 kHz), with Q = 12 and a mid-band gain of 12. Also obtain
responses for center frequencies of 20 krad/s (3.181 kHz) and 200 krad/s (31.818 kHz) and

comment on the obtained parameters.

Solution: Case (i) From equation (8.25), center frequency @, = 1/RC, so we select C= 0.1 UF,
R =5 kQ. Therefore, resistance QR = 60 k€2, and for mid-band gain of 12, £ = 1, hence, (R/k)
= 5 kQ). R* is arbitrarily selected as 10 k€2; a value in-between values of other resistors. The
circuit is simulated through PSpice and its response is shown in Figure 8.7(b). The measured
center frequency is 317.75 Hz (1997.2 rad/s), mid-band gain is 11.926 and with a bandwidth
of 26.61 Hz, Q = 11.94.

Case (ii) With all resistors remaining the same, the required value of C' = 0.01 UF for @, =

20 krad/s. The simulated response is also shown in Figure 8.7(b). The measured parameters
are @, = 19.793 krad/s (3.149 kHz), mid-band gain = 11.738 and bandwidth of 264.3 Hz
resulting in Q = 11.92.

Case (iii) For @, = 200 krad/s, the required capacitor C = 1 nF. The simulated response is

also shown in Figure 8.7(b). The measured parameters are @, = 192.15 krad/s (30.57 kHz),
mid-band gain = 12.139 and bandwidth of 2.464 kHz, which results in Q = 12.36. Table 8.1

shows the percent error in the simulated parameters for the three cases at different frequencies.

Table 8.1 Percent error in the parameters of filters realized using AM configuration for Example 8.2

@, Q mid-band gain
Case (i), @, = 2 krad/s 0.135 0.5 0.616
Case (ii), @, = 20krad/s 0.375 0.66 0.516
Case (iii), @, = 200krad/s 3.92 -3.0 “1.158

A comparison of percent errors in the parameters of the filters designed using Tow—Thomas
and AM configurations show a marked improvement in the latter case, especially at higher
frequencies. This confirms the utility of the active compensation employed in the AM circuitry.

8.6 Multi-output Biquad Using Summing Amplifier

As mentioned earlier, one of the advantages of using more than one amplifier in a circuit
is its versatility in obtaining more than one kind of response simultaneously. For example,
in one method, using a summing amplifier, a circuit which has already generated LP and
BP responses, can also generate other kind of responses by adding the specific input. The
process is illustrated by using structure of Figure 8.2 which shows a two-integrator second-
order generating circuit. When the circuit’s two outputs are summed with an input using
an additional summing amplifier as shown in Figure 8.8, three responses are simultaneously
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available as V,;, V/ Employing the relations of equation (8.1), the obtained transfer

0.

,and V,

function is as follows:

ut®

s +ays(ouky — PR)+ ayay (ok, —vk)

2 (8.26)
Vi "t aks+aak,

Selection of summing coefficients ¢, 3 and Y decides the type of available response at the
output V,

out*

ka

Vol Voz

>
Vin —AANN—
o—¢ ; R/IB
NN— Vour

Rla

NV

Figure 8.8 Generation of a general biquad using a two-integrator network and a summer.

If the AM circuit shown in Figure 8.7(a) is used to generate a general biquadratic circuit
with a summing amplifier and inputs coming from the original input V;,, +V}p output at the
output terminal of OA3, and Vjp, the arrangement will look as shown in Figure 8.9. The
output voltage shall be as follows using equations (8.23) and (8.24); obviously any other two-
integrator loop circuit can also be used.

ko kw?
I/out = Od/in +ﬁVBP +,}/VLP = aI/in _ﬁ D(;) 'd/in _y D(;) l/in
Vouw _ 05> +(a—kQB) (@, 1Q)s+ (o — vk, 8.27)
V., s*+(0,/1Q)s+w] '

From equations (8.23)—(8.24) and from Figure 8.9, the concerned relations are as follows:

R R R
W, =—:, 06=—f,ﬁ=—fand y=—f

8.28
RC R, Ry R, (8.28)

Selection of coefficients o, ﬁ and Y will decide the numerator terms; this will then decide
the type of response at the output. The following examples will illustrate the generation of
responses other than BP and LP using the coefficient matching technique.
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Rg Ry

Figure 8.9 Summing amplifier used for obtaining a general biquad.

Example 8.3: Design a notch filter employing an AM circuit and a summing amplifier which

should have a notch at 20 krad/s and Q = 5.

Solution: In equation (8.27), we select & = 1. Hence, for normalized @, = 1, (1 — #Qp) has to
be zero, which gives the coefficients as:

(1-5kB)=0—>B=02ifk=1 (8.29)
1-Yx1=-1>7=0 (8.30)

The selected value of C = 0.01 UF gives the value of R from equation (8.28) as 5 kQ) for @, =
20 krad/s. Hence, R, = (R/k) =5k, R, = QR=25kQ, R, =R =R =R, = sz Ry =5kQ,
Rﬁ =25 k€ and Ryis open as shown in Figure 8.10(a).

Figure 8.10(b) shows the PSpice simulated response of the notch filter having a notch at
3.168 kHz (19.913 krad/s). The cut off frequencies of the filter are 3.5 kHz and 2.866 kHz,

resulting a bandwidth of 634 Hz and Q = 4.996. The input voltage being 100 mV, the voltage
level at the notch drops to 0.98 mV or an attenuation of 40.17 dBs.

R*

A R,

C 5kQ
AN —

q 3 | C ’_/\/\/\/_
Vin Ry 25 kQ }—‘ 5kQ
e AAN R, | {o.01 uE
5kQ —\\N\——+ 1 Vip
5kQ 2 = 0o
o—e _
= Vip

Ry
R/j 25 kQ =
—ANN— 5kQ

Vout
NN 3
Ry 5kQ

(@
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Figure 8.10 (a) Second-order notch filter circuit using an Ackerberg—Mossberg circuit and a summing
amplifier. (b) Magnitude response of the notch filter of Figure 8.10(a).

Example 8.4: Design a second-order APF (all pass filter) which has a pole-Q = 2 and a 0° phase
delay at 2 krad/s using an AM circuit and a summing amplifier.

Solution: The first consideration in getting an APF is to fix o = 1; then, using equation (8.27):

2

, =(1—yk)a)f — Yk =0and 7 is taken as0 (8.31)

For ,=1, Q=2, and assuming k= 1; (1 - #QBw,) =-1 - f=1 (8.32)

Critical frequency being 2 krad/s, the selected value of capacitor C'= 0.1 pF, which requires R
= 5 kQ. Having obtained the coefficients in equations (8.31)—(8.32), the remaining element
values are:

Cy=0.1 UF, C3=0, R, = 5kQ, R, = 10 kQ, R, = Ry = R* = 5 kQ and R,= R, = Ry = 5 kQ.

The circuit diagram of the designed second-order APF with element values is shown in
Figure 8.11(a). Figure 8.11(b) shows the magnitude response of the filter: there is a very small
variation in magnitude; a dip of 0.13 mV and a rise of 0.042 mV from an average constant
value of 100 mV. The figure also shows the phase variation in the APF from 180° to -180°
with a zero-degree phase shift at 317.68 Hz (1996.8 rad/s). Figure 8.11(c) shows variation in
group delay; at 310.6 Hz, peak group delay D = 4.065 ms. This is a near perfect response due
to the active compensation employed in the AM circuit.
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Figure 8.11 (a) Second-order all pass filter circuit using the Ackerberg—Mossberg circuit and a
summing amplifier. (b) Magnitude and phase responses of the all pass filter shown in
Figure 8.11(a). (c) Group delay response of the all pass filter shown in Figure 8.11(a).

8.6.1 Biquad using modified summation method

In a slightly modified but efficient approach, the additional summing amplifier can be avoided
by the application of a weighted input signal at the virtual ground terminals of the two
integrators. The advantage of connecting V; in such a way is that the poles given by equation
(8.206) are not affected. If this scheme is applied to the AM circuit shown in Figure 8.7(a), the
resulting biquad becomes as shown in Figure 8.12. With the OAs considered ideal, the transfer
function of the circuit is given as:

Vo 05" +{s(k=P)/CR}+y I C’R® (8.33)
Vi 2 +{s/(CRQ)}+1/C*R? '

All types of responses are easily obtainable by selecting different weighting coefficients:

ForLP, k= 3= =0,and for HP, k= B=7y=0 (8.34a-b)

For BP, y= = o= 0, and for notch, k= =0, x< ¥y (8.34c-d)
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For HP notch, £= =0, ot> % and for LP notch, #= =0, a <y (8.34e-1)
Lastly for the AP, = y=Fk=1, = (1 + 1/Q) (8.34g)
R
AAAY z
| |C AW
R
A A\ | |c T 1T VvV
Vin /k QR 3
o—¢ R | I +
+ —
4‘ oC S ) 2 —
= Vout
Rly =
AAAY B

Figure 8.12 Generation of a general biquadratic circuit through the application of a weighted input at
the virtual ground terminals of the operational amplifiers using an AM biquad.

The general biquad has many desirable characteristics apart from providing all types of second-
order responses. Active and passive sensitivities are found to be low and since pole locations are
not changed while connecting the input at the virtual ground terminals, sensitivities remain
the same as that for the AM circuit. Center frequency ®, and pole-Q are independently
tuneable with the help of the input resistance connected to the second integrator and the
resistor QR, respectively. Component spread is also small as will become obvious from the
following examples. Additionally, when parameters are set for deciding the location of zeros or
the type of response, it does not affect the pole location.

Example 8.5: Design an HPF having a 3dB cut-off frequency of 20 krad/s and Q = 2 using the
generalized biquad shown in Figure 8.12.

Solution: From equation (8.33), as @, = (1/RC) = 20 krad/s for the general biquadratic filter
circuit shown in Figure 8.12, selection of C = 0.01 pF gives R = 5 k€. To find the other
component values, we use the condition # = 8 = = 0 from equation (8.34b); it gives, R, =
(RIE) = o = Ry = (RIB) = R, = (RIY), R, = QR = 10 kQ and R, = R; = 5 kQ. Sclection of R,
and Ry is intentionally done to keep as many resistances equal as possible; a good choice in
integrated circuits. Capacitor C, = C=0.01 uF and C; = «C = 0.01 UF for o= 1. The resulting
circuit is shown in Figure 8.13(a) and the simulated response in Figure 8.13(b).

A peak occurs at 3.386 kHz where its voltage gain is 2.073 against the ideal value of 2.0.
Voltage gain at high frequencies is unity. The evaluated value of the simulated w, = 3.386(1 —
1/2 x 2912 = 3,167 kHz = 19.908 krad/s.
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R
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Cy| [0.01 pF 5kQ
R, ||1()kg 5kQ R, |
| |c NIRERAATR
Vin aC QR R | [ooruF 3 + 5k0
0.01 uF AA A h
3 5kQ ) 2
— Vout
(a)

300 mV

200 mV

100 mV

100 Hz 1.0 kHz 10 kHz 100 kHz
1ALV (3) Frequency

(b)

Figure 8.13 (a) High pass filter using the Ackerberg—Mossberg biquad and applying the
modified summation method for Example 8.5. (b) Response of the HPF shown in
Figure 8.13(a).

Example 8.6: Design a HP notch filter having a pole frequency of 2 krad/s, a zero at 1 krad/s
and Q = 2 using the modified summation method.

Solution: From equation (8.33) for @, = 2krad/s, the selected capacitor C = 0.01 UF gives
R =5 kQ. For a zero at 1 krad/s, y"/? = (1/2), hence, (R/)) = (R/0.25) = 20 k€. Since o has
to be more than ¥ for a HP notch, it is taken as 1; therefore, ¢C = C'= 0.01 UF, and C, = C.
With Q = 2, other elements will be the same as in Example 8.5, with £ = ﬁ = 0. The circuit
with element values is shown in Figure 8.14(a) and its PSpice simulated response is shown in

Figure 8.14(b).
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Rg
c AAAY T
2| 0.01 uF 5kQ /\/\/\,
[
R, 10 kQ 5kQ Ry
v —"V\V\—s 0.01 uF| |c - "ng\/ v—1
in ’_| }ﬂ‘ QR R | I 5
o—4¢ 3 +
0.01 uF h
2 -
P 5kQ B
_ R/)/ Vout
NV =
20 kQ
(a)
20V ;
L0V :

_DCgain=025
AR ,——He@\

ov ‘ ' '
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(b)

Figure 8.14 (a) Generation of a high pass notch circuit through application of the modified summation
method using the Ackerberg—Mossberg biquad. (b) Magnitude response of the high pass
notch filter shown in Figure 8.14(a).

The notch occurs at 1.588 kHz with a low frequency gain of 0.25; the peak occurs at 3.565
kHz where due to Q = 2, voltage gain is 1.636. At high frequencies, the output voltage levels
at unity gain; this verifies all the specifications.

8.6.2 Active noise control: application example

Feedback control systems are used in active noise and vibration control. Such systems can
be realized using either digital signal processing or analog signal methodology. Each process
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has advantages and limitations. There are certain applications where analog feedback control
systems are preferred, such as active control of earmuffs [8.5] and similar applications, where
the process delay must be small.

In practice, analog control systems include a filter or a bank of filters [8.6]. Parameters of
the analog filter are usually adjusted with variable resistance and/or changing capacitor values
employing switching arrangements. The switching arrangement is normally done manually. In
the application case presented here, microprocessor driven, real-time control of the parameters
of the filter bank has already been developed. This circuit discussed here helps in noise control.
Without going into the development process, the basic arrangement of the biquadratic filter
bank system is shown in Figure 8.15 in block form.

Signal
Input —e—Filter #1 Filter #2 Output
Host PC \
|—> u Controller Potentiometer Potentiometer
switch board #1 switch board #2
Synch. Synch.
serial serial

Figure 8.15 The block diagram of a system for active noise control {with permission from M. Antila
etal.} [8.6].

As a specific example, equation (8.35) shows a transfer function, which was obtained as a
useful transfer function for a feedback control system.

_1.01s* = 705 + 2226065

L (835)
57 +2725+ 319092

H(s)

To implement the aforementioned transfer function, a general biquadratic circuit, as shown in
Figure 8.12, applying the modified summation method was used. Comparing equation (8.35)
with equation (8.33) gives:

@; =319092,a =1.01,y =(2226065/319092) = 6.976, Q = (w,/272) = 2.076,
and if £ is selected as 0.5, = (70/560.88)+0.5 = 0.6239 (8.36)

Applying an impedance scaling factor of 10 kQ and a frequency scaling factor of @, = 564.88
rad/s, element values for the circuit in Figure 8.12 are obtained as:

R=10kQ, Rk =20kQ, QR =20.76 kQ, RIB = 16.028 kQ, Riy=1.433 kQ C=0.177 UF
and oC = 0.1788 UF
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The simulated response of the biquadratic filter section is shown in Figure 8.16. Its low
frequency gain is 16.87 dB, the high frequency gain is 0.158 dB, the notch frequency is 234.4
Hz and the peak gain of 22.3 dB occurs at 512.4 rad/s (81.5 Hz).

L 409 , 180d
o 0d
>> : L : :
-40- -200d
1.0 Hz 10 Hz 100 Hz 1.0 kHz 10 kHz
x DB (V(3))[Z] ¢ VP (3)

Frequency

Figure 8.16 Simulated response of a biquadratic filter modeling noise control (equation (8.35)).

8.7 Generalized Impedance Converter Based Biquad

A significant alternative to obtain a multi amplifier biquad is a technique which is based on
the use of a generalized impedance converter (GIC) [8.7]. In its basic form, this improvised
biquad starts with a passive structure and its grounded inductor is replaced with a GIC.
Presently, without going into a detailed description of a GIC, observe a second-order passive
BPF structure in Figure 8.17(a) and its conversion to a second-order active filter circuit in
Figure 8.17(b). GIC is shown in a dotted rectangle replacing the inductor in Figure 8.17(a).
The transfer function of the passive BP filter is:

Vi {1/ RC)s (8.37)
Vi s*+(1/RC)s+1/(LC)

Here center frequency @), and pole-Q (Q,) are:
®, = (1/LC)"? and Q, = R(CIL)V/? (8.38)
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Vin R l R, v, I Ry I, R, Vs }
A MG A AN
|
Vi I ’_| C|Vs vy I, i
|
C I Rs :
_ : |
| |
| = |
o _____ |
(b)

Figure 8.17 (a) A second-order passive band pass passive filter; (b) inductor in part (a) replaced with
a generalized impedance convertor shown inside the dotted line.

For the circuit in Figure 8.17(b), with the OAs assumed to be ideal and A—oo, V; = V; = V5,
the following are the current-voltage relations:

I =1, (Vy= VIR, = (Vs — V)IRy = ViR (R,Rs) = (V, — V;)sC, (8.40)
I, = (V, = VIR, or (Vi/1,) = s(C,R, R;RS)/ R, (8.41)

Equation (8.41) confirms that the circuit within the dotted rectangle in Figure 8.17(a) realizes
an inductance with its expression given as:

L =GR R;R/R, (8.42)

Therefore, substituting the expression of L from equation (8.42) into equation (8.37) and V}
from equation (8.39), the transfer function of the active second-order section of Figure 8.17(b)
is obtained as:

Viur _ (1/ RC)(1+ Ry | R)s

Ve  s2+(/RC)s+ (R, CC,R R;R)

(8.43)
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If output voltage is V;, transfer function is same as in equation (8.43) but numerator will not
have the term (1 + R,/Rs). So the mid-band gain will be unity in this case. Here, @, and Q,
are given by the following relations:

®, = (R CC,R, R,R)!2 (8.44)
Q, = R(CIC)"? (R/R,R,R;)"? (8.45)

For @, and Q,, the passive sensitivities with respect to the elements x are calculated as:

=2 |s%|= 2 and|s

2

,
S,

1 , =1 (8.46)
2

Clearly, all passive sensitivities are very low; hence, the proposed circuit employing a GIC
enjoys excellent sensitivity figures, provided its active sensitivities are also low. A detailed
discussion on GIC sensitivities will be taken up later with the description of the GIC structure.
In addition to the very low sensitivities, the GIC based active second-order filter structure has
the following advantages, which makes the circuit very attractive.

(a) Component spread is small; most of the passive elements can be made equal.

(b) Parameters @, and Q,and mid-band gain of the BP can be independently tuned.

(c) The circuit is suitable for cascading as it has nfinite input impedance at the frequency @,.

Example 8.7: Design a BPF for a center frequency of 20 krad/s and Q = 5 using the GIC based
configuration of inductance shown in Figure 8.17(b).

Solution: Selecting equal valued capacitors Cand C, as 0.01 UF, equation (8.44) gives R, = R;
= R, = Rs = 5kQ. For Q = 5, equation (8.45) gives R = 25 kQ. Using these element values, the
filter structure is shown in Figure 8.18(a). The response is simulated using PSpice and shown
in Figure 8.18(b).

|
: —© Vgp
| |
| |
| |
! I
Vin R [ R, G, R Ry :
e ip i b |
25kQ I 5kQ 5kQ 5kQ !
0.01 uF [
0.01 uF[C 5kQ < Rs)
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100 mV
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10:V (5) AV (52)

Frequency

(b)

Figure 8.18 (a) Second-order active band pass filter with inductor replaced using a generalized
impedance convertor for Example 8.7; (b) responses of the band pass filter in part (a).

The obtained BP response realizes a center frequency as 3.177 kHz (19.969 krad/s) with a
voltage gain of 1.991. The bandwidth of the filter is 635 Hz resulting in Q = 5.003.

Another BP response was obtained for a higher center frequency of 50 krad/s. The circuit
requires capacitors C and C, each of 0.004 uF, with all resistors remaining the same, for same
values of Q. The simulated response is also shown in Figure 8.18(b) with a center frequency of
7.821 kHz (491.6 krad/s) and a voltage gain of 1.984. Bandwidth of the filter is 1.563 kHz,
resulting in the value of Q as 5.004.

8.7.1 General biquad using generalized impedance converter

In addition to the discussed BPFs in the previous section, other types of transfer functions can
be realized using the well-known process of lifting grounded elements completely or partially from
the ground while using GICs. Inclusion of resistance R, and splitting of input resistance R and
capacitance C are used to provide feedback. Such a configuration is shown in Figure 8.19, with
its transfer function obtained as:

Vi Lo =7 (H 1)) +[BH —y (H -1)]s] QRC+(y 1 B*C?)

V.

(8.47)
' s +1/QRC)s+(H —1)/ R*C*

In equation (8.47), H is the mid-band filter gain, and an appropriate choice of the weighting
coefficients, &, Band ¥, determines the type of obtained filter response. At this stage, it may be
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noted that getting a pure LP response is very difficult in this scheme; it is advised to use some
other configuration of a GIC.

Ry
AN
Ry 0 Vot
| lec
Vin QR/B R c R (H-1)R
AN —— A [S4AM—AAN
R* 0 R, R; Ry
(I-)C_— Rg 1—R Rs <~ R/(1-7)
C** _ﬁ

Figure 8.19 Biquadratic circuit obtained using the technique of lifting some elements from the ground
partially using GIC circuit of Figure 8.17(b).

Example 8.8: Design a notch filter which should have a notch at 20 krad/s and Q = 4 using a
GIC based general biquad.

Solution: A convenient choice of a notch filter from equation (8.47) is to assume H = 2
and y = 1, with which @, = (1/RC). For notch frequency @, = 20 krad/s, an easy choice of

components is C, = 0.01 uF and R = 5 kQ. With A =2 and y= 1, from equation (4.49), we
need to have the following:

oH-YH-1)=1>a=1and BH-YH-1)=0— B=0.5 (8.48)

Application of equation (8.48) gives the following element values:

R*=@=40k§z,R6 =LR=401<Q,R7 ~F 5o, Rszizopen
B 1-p) Y I-y

R =Ry=R,=5kQ, C* = aC=0.01 tFand C* = (1 - @)C=0
Figure 8.20(a) shows the circuit structure of the notch filter with element values and Figure
8.20(b) shows the PSpice simulated magnitude response. For the simulated notch which

occurs at 3.169 kHz (19.91 krad/s), the output voltage level is 2.396 mV for an input voltage
of 100 mV; an attenuation of 32.4 dBs. Its 3 dB bandwidth is 799.8 Hz, resulting in Q = 3.96.
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40kQ 5kQ 5kQ Ry 5kQ
Q 0.01 uF
40 kQ ﬁ R

100 mV +

50 mV
ov :
1.0 kHz 3.0 kHz 50kHz  7.0kHz 9.0kHz
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(b)

Figure 8.20 (a) Notch filter circuit obtained from the GIC circuit of Figure 8.17(b), while lifting some
elements from ground partially. (b) Notch filter response for the circuit in Figure 8.20(a).

Example 8.9: Design an APF which has a phase shift of 180° at 40 krad/s and Q = 2 using
GIC.

Solution: For the multifunctional configuration of Figure 8.19, to give an AP response, we
need to have the following conditions from equation (8.47):
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OH-YH-1)=1,H-1=1->H=2and BH-y(H-1)=-1 (8.49)

In equation (8.49), if Y= 1, B=0and & = 1. For center frequency of 40 krad/s, if C, is selected
as 5 nF, R = 5 k€2, and with Q = 2:

R=2wr=-%_1m Ry =(H-1)R=5kQ, Rs =1i=oo,R7 R ska,
-Y

=
B 1-B Y
R =Ry=5kQandC =C, =5nF,C" =(1-a)C, =0 (8.50)
Rly
WA
Sk'Q o Vout
Vi, ac 5k R, (H-1)R
o—— M AN
1 0.005 uF 5kQ 5kQ
10 kQ
()

L102mvVy 5, o0d

101 mV -

-200d

100 mV A

>>
99mvV-  -400d : : '
100 Hz 1.0 kHz 10 kHz 100 kHz

Ve[ +VPG)

Frequency

(b)

Figure 8.21 (a) All pass circuit obtained using GIC circuit of Figure 8.17(b). (b) Magnitude and phase
responses of the all pass shown in Figure 8.21(a).
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Figure 8.21(a) shows the circuit structure of the APF with element values and Figure 8.21(b)
shows the PSpice simulated magnitude response. Gain is almost unity; there is a bit of rise
having maximum gain of 1.0148 and a small drop for a minimum gain of 0.9943. Figure
8.21(b) also shows the phase response of the APF, having a phase shift of ~-180°at 6.3 kHz
(39.6 krad/s).
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Practice Problems

8-1  Figure P8.1 shows the circuit diagram of a KHN biquad which was shown in Figure 8.1 as a block diagram
form. Obtain all the three voltage ratio transfers functions available from the circuit. What kinds of
responses are available?

C
| 2

Figure P8.1

8-2  Design and test a second-order BP filter using a KHN circuit having center frequency of 3.4 kHz, Q,=3
and mid-band gain of 5.

8-3  Design and test a HP filter using KHN circuit for which attenuation falls by 2 dB at 10 krad/s.
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8-8

Multi Amplifier Second-order Filter Sections
Design a KHN based second-order LP filter for cut-off frequency of 10 krad/s and Q= 5. Use equal value
capacitors C, and C, and equal valued resistors R, and R,. What is the gain of the filter at dc?
Design and test the second-order Tow-Thomas (TT) BP circuit of Figure 8.3 for the following specifications.
@, =20 krad/s, Q, = 10 and peak gain of 10.

Derive the transfer function (V,/Vi,) for the circuit shown in Figure P8.2. Design a filter, using equal
value capacitors for the following transfer function:

Vot 5% +0.25

Vii 240254121

[ R,

- Vout
—O

Figure P8.2

(a) Derive expressions for the three transfer functions for the Tow-Thomas structure shown in Figure P8.3,
with OAs considered ideal.

(b) Find the incremental sensitivity of the parameters @), and Q, with respect to the passive elements.

R

in Ry R, —{ }Cz—o

ol

V02

Figure P8.3

If the OAs are represented by the model A(s) = Bls, even lossless integrators become lossy. Figure P8.4
shows the representation of the two-integrator loop biquad in such a case. Show that the normalized
transfer function with @, = 1 and k = H(@,/Q), where H is the mid-band gain:

(57, +43)
Vout Q77;

ot
" 52+(q'+qz+|)s+(l+qlqz+qz)

T] Tz Q T| Q T| TZ

https://doi.org/10.1017/9781108762632.009 Published online by Cambridge University Press


https://doi.org/10.1017/9781108762632.009

8-9

8-10

8-14

8-15

Continuous Time Active Analog Filters

1/Q

Vin g -1 1 Vip
ST+ q; STyt 4o

o
Vup Vgp
Figure P8.4

Compare the transfer function in Problem 8-8 with a standard form of BP transfer function and (a) show
that the resultant equivalent parameters will be:

Y2
|
Wpe = (|+qlq2+q_2)—
Q)17

—o— Pl oy '

Qe =0 Hy=H—————
B Eol (Y VR 2 N B (s e R 2

(b) What is the magnitude of a parasitic zero in the transfer function?

Design a TT BP filter shown in Figure 8.3 for @, = 60 krad/s and @Q, = |5 with mid-band gain H being
unity. Estimate the deviation in the parameters of the filter if OAs have bandwidth = 0.5 x 106rad/s. Verify
the results using PSpice simulation.

Repeat Problem 8-10 for @, = 120 krad/s, Q=20 and mid band gain H = 1.
Repeat Problems 8-10 and 8-11 using the Ackerberg—Mossberg (AM) circuit shown in Figure 8.7(a).

Design LP filters using the AM circuit shown in Figure 8.7(a) for the following specifications using 741
OAs.
(@) @,=3.4x2mkrad/s, Q=1 and gain at dc hy, = 5.

(b) @, =60 krad/s, Q=2.5 and gain at dc hy, = 2.
(c) @,=200krad/s, Q= 2 and gain at dc hy =3.

Using 741 OAs, design BP filters using the AM circuit shown in Figure 8.7(a) for the following specifications.
(@) @,=1.59x2rkrad/s, Q=10 and mid-band gain h,, = 2.

(b) @, =50krad/s, Q=5 and mid-band gain hy, = 5.

(c) @,=250krad/s, Q=12 and mid-band gain hy, = I.

Design and test a notch filter for the following transfer function using a two-integrator network and a
summer configuration shown in Figures 8.8 and 8.9. The two-integrator loop filter needs to be a KHN

type. Also find the sensitivity of the parameters @, and Q, and @, and Q, with respect to the passive
elements used.
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s2+10'°
Tis)=— 7 0
S“+5%107s+10

Repeat Problem 8-15 employing a TT circuit in place of a AM circuit.

Repeat Problem 8-15 using the modified summation method shown in Figure 8.12, where AM biquad is
employed.

Repeat Problem 8-15 using the GIC based biquadratic circuit shown in Figure 8.19.

Design and test a notch filter for the following transfer function using a two-integrator network and a
summer configuration shown in Figures 8.8 and 8.9. The two-integrator loop filter needs to be a KHN
type. Also find the sensitivity of the parameters @, and Q, and @, and Q, with respect to the passive
elements used.

s2+0.25x10®
H(s)=— 7 5
s°+0.35%10754+0.49%10
Repeat Problem 8-19 employing a TT circuit in place of a KHN circuit.

Repeat Problem 8-19 using the modified summation method shown in Figure 8.12, where AM biquad is
employed.

Repeat Problem 8- 19 using the GIC based biquadratic circuit shown in Figure 8.19.

Design and test a LP notch filter for the following transfer function using a two-integrator network and the
summer configuration shown in Figures 8.8-8.9. The two-integrator loop filter needs to be a KHN type.

s +1.44%108
His)=— 4 8
s2+0.35%10%s+0.49%10

Repeat Problem 8-23 using the modified summation method shown in Figure 8.12, where AM biquad is
employed.
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