
8.1 Introduction

In Chapter 7, the basics of realizing second- (or third-) order filter sections using only one 
active device (OA) were explained. Such circuits are capable of providing any arbitrary second-
order function; they are also economical from the point of view of the use of active devices. 
However, depending on the filter specifications and the configuration chosen, the resulting 
circuit may not fulfil all the requirements like small number of passive components used 
and specific spread, sensitivity and variability. It is for this reason that many second-order 
filter sections use two, three or more OAs: multi amplifier biquads (MABs). Obviously, the 
intention is to overcome the mentioned limitations of the single amplifier biquad (SAB). In 
addition, a significant feature of multi amplifier biquadratic sections is their versatility in terms 
of providing more than one kind of response (like LP and BP) at the output terminals leading 
to general biquadratic structures. 

Almost all MABs use two integrators in a loop, a technique known as the state-variable 
approach. Based on this technique, an important practical circuit known as the KHN (Kerwin-
Huelsman−Newcomb) biquad can be assembled. The scheme explained in detail in Section 
8.2 realizes three types of output responses. A direct modification of the scheme, known as 
Tow–Thomas biquad is studied in Section 8.3. The schemes, being interesting and useful, are 
further studied while employing active compensation to inverting or non-inverting integrators 
used in the loop. Active compensation leads to another well-known biquad, the Ackerberg–
Mossberg filter, which is studied in Section 8.5. Many schemes have been implemented to 
utilize these structures and obtain other types of responses as explained in Section 8.6. Another 
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214 Continuous Time Active Analog Filters

scheme for obtaining a multi-response configuration using a generalized impedance convertor 
(GIC) is explained at the end of the chapter.

While designing a SAB, it was observed that a frequency-dependent finite gain of the OA 
results in a deviation in the performance parameters wo and pole-Q. To compensate for these 
deviations, biquads using composite amplifiers are also used, in which instead of using only a 
passive negative feedback, an active feedback network is used. These amplifiers increase the 
number of OAs used, making it a MAB, though the design itself remains a SAB type.

8.2 State Variable Multi Amplifier Biquad

There are a number of two, three or more amplifier biquad circuits. Almost all of these circuits 
are based on the state variable form of realization technique, first introduced by Kerwin, 
Huelsman and Newcomb (popularly known as the KHN biquad) [8.1]. The scheme, in its 
generality uses n integrators for an nth order transfer function, which are then appropriately 
connected the way integrators are connected in the analog computation method. To realize a 
second-order section, only two integrators are required along with a summer. Hence, in its basic 
form, a state variable biquad uses three amplifiers, with three outputs as shown in Figure 8.1. 
The configuration includes an integrator (–a1/s) with feedback k1 making it a lossy integrator, 
a lossless integrator (–a2/s) with feed back factor –k2 and two summers S1 and S2. Here, S2 is 
used to convert a lossless integrator into a lossy one by combining the lossless integrator with 
feedback; the summer S1 is used to complete the feedback loop for the integrators. As there 
is no element in between the two summers, the summers are generally combined. It is to be 
noted that both integrators are in inverting mode and use negative loop feedback to ensure 
stability. With the transfer function of the integrators as (–a1/s) and (–a2/s), the three available 
transfer functions of the section in Figure 8.1 are obtained from the following equations:

Vo1 = kVin + (–k2)Vo3 + k1Vo2 (8.1a)

1 2
2 1 3 2 and o o o o

a a
V V V V

s s
= − = −  (8.1b)

The obtained transfer functions are:
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     

= = − =          
 (8.1c)

where D(s) = s2 + a1k1s + a1a2k2 (8.1d)

The three outputs given in equations (8.1a)–(8.1c) are HP (high pass), BP (band pass), and 
LP (low pass), respectively, with their center frequency and pole-Q being decided by equation 
(8.1d).
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Figure 8.1 Basic two-integrator loop realizing a second-order filter in which summers S1 and S2 can 
be combined.

For the block diagram shown in Figure 8.1, three OAs are to be used, one each for the 
integrators and one for the combined summer. Another modification can be done by merging 
the summer in the lossy integrator. However, use of this modification requires the use of 
differential inputs for the summing of Vin and feedbacks for the lossy integrator and the loop. 
It also makes the adjustment of summing coefficients a bit difficult. To avoid this requirement, 
all the inputs at the summing integrator ÚI1 can become inverting signals. The filter will need a 
further modification by the addition of an inverter after ÚI2 as shown in Figure 8.2. It is to be 
noted that this configuration gives only BP and LP functions; HP is not available. 

�I1 �I2

k2

–1

Vo1 Vo2

–Vo2

k1

k

Vin

�
OA1 OA OA2 3

Figure 8.2 Two-integrator loop in modified form from Figure 8.1.

8.3 Tow−Thomas Biquad

A practical implementation of Figure 8.2, given in Figure 8.3, is known as the Tow and 
Thomas (TT) configuration [8.2,8.3]. Here, OA1 realizes a lossy integrator, OA2 realizes 
a lossless integrator and OA3 works as an inverter. Initially, considering OAs as ideal with 
infinite open-loop gain, the realized transfer function can be obtained through application of 
the Kirchhoff current law (KCL) at the inverting input terminals of OA1 and OA2.

(Vin – 0)/R3 + (–Vo2/R4) = (0 – Vo1)/{R1/(1 + sC1R1)} (8.2)

(Vo1 – 0)/R2 = (0 – Vo2)sC2 (8.3)

From equations (8.2)–(8.3), the following transfer functions are obtained:
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Figure 8.3 Tow–Thomas biquad. A practical implementation of Figure 8.2.

For the BP function of equation (8.4) and the LP function of equation (8.5), the important 
performance parameters wo, pole-Q, mid-band gain hbp at wo, and gain at low frequencies or at 
dc for the LP case hlp are as follows:

½
1 2 2 41/ ( )o C C R Rw =  (8.6)

1 1

2 2 4( )
C R

Q
C R R

 
=   

 (8.7)

hbp = (R1/R3) and hlp = (R4/R3) (8.8)

Six passive components have been used in the biquad and there are only three design 
parameters. These multiple components give some choice in the selection of component values 
and flexibility in obtaining the desired parameters. As R3 appears only in the gain factor terms 
of equation (8.8), it is used for fixing the dc gain of the LPF (low pass filter) and the mid-band 
gain of the BPF (band pass filter). Since it is always preferable to have equal valued capacitors, 
C1 = C2 = C. Pole-Q can be easily controlled by R1 even when R3 and R4 are equalized; the 
component spread for resistors normally equals Q. The two resistors R¢ used with the inverter 
can be of some arbitrary value close to any one of the other resistors used.
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One attractive feature of the TT configuration is its passive sensitivities, which are at their 
theoretical minimum. If x is a passive component, sensitivity expressions are 

(1/ 2) and 1o Q
x xS Sw = − ≤ . (8.9)

Example 8.1: Design a BPF using a Tow–Thomas biquad having a center frequency of 3.4 
kHz and pole-Q of 5. The filter’s mid-band gain needs to be 20 dBs. Also discuss the obtained 
LP response.

Solution: With a normalized center frequency of 1 and Q = 5, (wo/Q) = 0.2. Hence, we can 
begin with designing a normalized BP response as shown in equation (8.10).

( ) 2

0.2

0.2 1
bp

bpn
h S

H S
S S

=
+ +

 (8.10)

The required mid-band gain being 20 dB or hbp = 10, means (R1/R3) = 10 from equation 
(8.8). Selecting the normalized capacitors as C1 = C2 = 1, R2 and R4 will also be nominally 1 
from equation (8.6). Hence, from equation (8.7), we get R1 = 5 for Q = 5. De-normalizing 
the capacitors with w = 2π × 3.4 krad/s and using an impedance scaling factor of 103 gives the 
following element values:

C1 = C2 = 0.0468 mF, R1 = 5 kW, R3 = 0.5 kW, R2 = R4 = R = 1 kW (8.11)

Figure 8.4 shows the PSpice simulated magnitude response of the BPF with a mid-band gain 
of 10.828, center frequency of 3.382 kHz. Its bandwidth = 0.62 kHz resulting in a pole-Q of 
5.45. The LP response is also available as Vo2, as shown in the figure, having a dc gain of 2 and 
a peak at 3.352 kHz, with peak gain being 10.915.

In another set of responses, the desired center frequency of a BPF was 300 krad/s. Q = 
10, and mid-band gain was unity. Using the same steps as in the first set, the obtained de-
normalized element values are:

C1 = C2 = 0.01 mF, R1 = R3 = 3.333 kW, R2 = R4 = 0.3333 kW, R' = 5 kW

The simulated BP response is also shown in Figure 8.4 with wo = 2π (44.027) = 276.74 
krad/s, bandwidth of 5.07 kHz which results in Q = 8.67 and a mid-band gain of 8.404. The 
corresponding LP response has a peak gain of 8.76 at 43.78 kHz (275.18 krad/s), and its 
voltage gain at dc is 1. While obtaining the transfer functions for the TT biquad in equations 
(8.4) and (8.5), OA were assumed to be ideal with an infinite open-loop gain. It is now well-
known that the frequency-dependent gain creates deviations in performance. For example, in 
the first case, while using 741 type of OAs at fo = 3.4 kHz and Q = 5, the simulated values show 
respective percent errors as 5.87 and 9; error in the mid-band gain was 8.28 percent. In the 
second case, at fo = 47.72 kHz and Q = 10, the respective percent errors were 7.9, 13.3 and 16; 
a significant amount of error which increases with frequency. If suitable correction is not done, 
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the performance will become impracticable. Hence, passive as well as active compensations are 
used. In this configuration as well as in many other cases, integrators have often been used, so 
before moving on to other biquads, it is suggested that we find the deviations caused in wo and 
pole-Q and the methods employed in integrators for the compensation of errors.

12 V

8 V

4 V

0 V
1.0 kHz 3.0 kHz 10 kHz 30 kHz 100 kHz

V (3) V (5) V (32) V (52)
Frequency

LP Q = 5

fo = 3.4 kHz
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BPLP

Q = 10

fo = 47.72 kHz

Figure 8.4 Band pass and low pass responses using a Tow–Thomas circuit at low and higher 
frequency levels for Example 8.1.

8.4 Active Compensation for Inverting Integrators

In Chapter 1, Section 1.8, integrators using OAs were briefly discussed. Figure 1.11(a) showed 
a lossy inverting integrator using an OA. The same integrator is now drawn in lossless form 
in Figure 8.5(a), without a feedback resistor. Using the single-pole roll-off model of equation 
(1.17) for the OA, the ideal integrator gets converted into a lossy integrator as expressed by 
equation (1.22) and rewritten as equation (8.12).

out

in

1 1
1 11 1

V
V sCR

A sCR

= −
 + +  

 (8.12)

With A @ (B/s), B being the gain bandwidth product, and with the condition that  ( ) 1B CR×  .

( )
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Equation (8.13) gives the quality factor of the inverting integrator as a ratio of imaginary parts 
to real parts as:

( ) ( )2
/ | ( ) |

/
I

CR
Q B A j

CR B

w w w
w

= − = − = −  (8.14)

The integrator quality factor Q1 is negative and depends on the magnitude of the gain. A larger 
value of A(jw) is better, but as working frequency becomes large, Q1 becomes smaller. This 
introduces a frequency-dependent loss in the ideal integrator and therefore, error is introduced 
in the parameters of such filters which employ the integrator. To overcome the problem, 
passive or active compensation is used in integrators.
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Figure 8.5 (a) Inverting integrator. (b) Active compensation for an inverting integrator.

Passive compensation has the advantage of using only one extra passive element; the 
compensation becomes near ideal. However, the compensation may not be accurate and will 
be variable with frequency. 

An alternate solution is in the form of active compensation, shown in Figure 8.5(b), for 
which the transfer function is obtained as:

in

2 1

1
1    

(1 1 / )

oV
sCR sCRV

A A

= − ++
+

 (8.15)

https://doi.org/10.1017/9781108762632.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.009


220 Continuous Time Active Analog Filters

Using simplified single-pole roll-off models for the OAs, A1 = (B1/s) and A2 = (B2/s). Applying 
truncation of Taylor’s series expansion after the second-order term for 1, A   as we get:

2
1 1 1

1
1 1/ A A A

≅ − +
+

 (8.16) 

For s = jw, equation (8.15) yields:

( )in

1
Re Im( )

oV
V jw w
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+

 (8.17)
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 (8.18)
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 (8.19)

For the matched OAs with B1 = B2, quality factor of the integrator QI = {Im(w)/Re(w)} is 
obtained as follows:

QI = –(B1/w)3 = –|A(jw)|3 (8.20)

8.4.1 Compensation for a non-inverting integrator

In its simplest form, a non-inverting integration is obtained by cascading an inverting integrator 
and an inverter as shown in Figure 8.6(a). However, there are some other configurations for 
the non-inverting integrator as well. One such circuit is shown in Figure 8.6(b), for which the 
transfer function is obtained as:

( ) ( )
( )

in

1 1

2

1 1

1 1 1    21  

oV
V sCR

A s sCRA s
A s

= −
 
  + + 
 +
  

 (8.21)

For matched OAs, the quality of the integrator is simplified as:

QNI = +(B/w) = +|A(jw)| (8.22)

It is significant to note that here QNI is positive, whereas for the inverting integrator, QI was 
negative. This opposite nature of change in quality factor has been found to be useful while 
designing filters.
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Figure 8.6 (a) A simple method to obtain a non-inverting integrator, and (b) an alternate non-
inverting integrator with positive quality factor QNI.

It is not only the quality of integrators that change; the phase shift also changes. Therefore, 
compensating circuits of different configurations give different multi-amplifier biquadratic 
circuits with varied phase responses. Without going into a detailed study of the amount of 
affected performance due to the frequency-dependent finite open-loop gain of the OAs, let us 
discuss one prominent circuit which employs active compensation.

8.5 Ackerberg–Mossberg Biquad

Figure 8.7(a) shows the modification of the two-integrator loop of Figure 8.2 using the active 
compensation circuit of Figure 8.6(b), which was given by Ackerberg and Mossberg (AM) 
[8.4]. As the basic structure remains the same, the center frequency depends on the same RC 
product. 

The circuit provides an LP response and a BP response. Assuming ideal OAs with AÆ∞, 
the obtained transfer functions are as following:

( )
2 2

LP
2 2 2

in

/
  /  1 /

V k R C
V s s CRQ R C

− =
+ +

 (8.23)

( )
BP

2 2 2
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/  1 /
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 (8.24)
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The quality factor, and the mid-band gain of the BPF = k are controlled by the resistance ratios 
shown in Figure 8.7(a). For the inverter OA3, equal valued resistances R* are used; expression 
of the center frequency is as follows. 

wo = 1/RC (8.25)

Using the expressions of equation (8.22) and (8.21), deviations in the quality factor and pole 
frequency can be obtained in the AM structure.
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Figure 8.7 (a) Ackerberg–Mossberg biquadratic structure. (b) Band pass filter responses with wo = 2 
krad/s, 20 krad/s and 200 krad/s using the Ackerberg–Mossberg structure.

The coefficient matching technique described in Chapter 7 will be used to find element 
values, which will be shown in Example 8.2. Once the value of R or C is selected, the rest of 
the element values are evaluated from equation (8.25). 
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Example 8.2: Obtain a BP response using the AM structure of Figure 8.7(a) having a center 
frequency of 2 krad/s (3.1818 kHz), with Q = 12 and a mid-band gain of 12. Also obtain 
responses for center frequencies of 20 krad/s (3.181 kHz) and 200 krad/s (31.818 kHz) and 
comment on the obtained parameters.

Solution: Case (i) From equation (8.25), center frequency wo = 1/RC, so we select C = 0.1 mF, 
R = 5 kW. Therefore, resistance QR = 60 kW, and for mid-band gain of 12, k = 1, hence, (R/k) 
= 5 kW. R* is arbitrarily selected as 10 kW; a value in-between values of other resistors. The 
circuit is simulated through PSpice and its response is shown in Figure 8.7(b). The measured 
center frequency is 317.75 Hz (1997.2 rad/s), mid-band gain is 11.926 and with a bandwidth 
of 26.61 Hz, Q = 11.94.
Case (ii) With all resistors remaining the same, the required value of C = 0.01 mF for wo = 
20 krad/s. The simulated response is also shown in Figure 8.7(b). The measured parameters 
are wo = 19.793 krad/s (3.149 kHz), mid-band gain = 11.738 and bandwidth of 264.3 Hz 
resulting in Q = 11.92.
Case (iii) For wo = 200 krad/s, the required capacitor C = 1 nF. The simulated response is 
also shown in Figure 8.7(b). The measured parameters are wo = 192.15 krad/s (30.57 kHz), 
mid-band gain = 12.139 and bandwidth of 2.464 kHz, which results in Q = 12.36. Table 8.1 
shows the percent error in the simulated parameters for the three cases at different frequencies.

Table 8.1 Percent error in the parameters of filters realized using AM configuration for Example 8.2 

wo Q mid-band gain

Case (i), wo = 2 krad/s 0.135 0.5 0.616

Case (ii), wo = 20krad/s 0.375 0.66 0.516

Case (iii), wo = 200krad/s 3.92 −3.0 −1.158

A comparison of percent errors in the parameters of the filters designed using Tow–Thomas 
and AM configurations show a marked improvement in the latter case, especially at higher 
frequencies. This confirms the utility of the active compensation employed in the AM circuitry.  

8.6 Multi-output Biquad Using Summing Amplifier

As mentioned earlier, one of the advantages of using more than one amplifier in a circuit 
is its versatility in obtaining more than one kind of response simultaneously. For example, 
in one method, using a summing amplifier, a circuit which has already generated LP and 
BP responses, can also generate other kind of responses by adding the specific input. The 
process is illustrated by using structure of Figure 8.2 which shows a two-integrator second-
order generating circuit. When the circuit’s two outputs are summed with an input using 
an additional summing amplifier as shown in Figure 8.8, three responses are simultaneously 
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available as Vo1, Vo2 and Vout. Employing the relations of equation (8.1), the obtained transfer 
function is as follows:

( )2
1 1 1 2 2out

2
in 1 1 1 2 2

    ( )
    

s a s k k a a k kV
V s a k s a a k

α α b α γ+ − + −
= −

+ +
 (8.26)

Selection of summing coefficients α, b and γ decides the type of available response at the 
output Vout.
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Figure 8.8 Generation of a general biquad using a two-integrator network and a summer.

If the AM circuit shown in Figure 8.7(a) is used to generate a general biquadratic circuit 
with a summing amplifier and inputs coming from the original input Vin, +VLP output at the 
output terminal of OA3, and VBP, the arrangement will look as shown in Figure 8.9. The 
output voltage shall be as follows using equations (8.23) and (8.24); obviously any other two- 
integrator loop circuit can also be used.
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 (8.27)

From equations (8.23)–(8.24) and from Figure 8.9, the concerned relations are as follows:

2 1
, ,  and  f f f

o
R R R

RC R R Rα b γ
w α b γ= = = =  (8.28)

Selection of coefficients α, b and γ will decide the numerator terms; this will then decide 
the type of response at the output. The following examples will illustrate the generation of 
responses other than BP and LP using the coefficient matching technique.
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Figure 8.9 Summing amplifier used for obtaining a general biquad.

Example 8.3: Design a notch filter employing an AM circuit and a summing amplifier which 
should have a notch at 20 krad/s and Q = 5.

Solution: In equation (8.27), we select α = 1. Hence, for normalized wo = 1, (1 – kQb) has to 
be zero, which gives the coefficients as:

(1 – 5kb) = 0 Æ b = 0.2 if k = 1 (8.29)

1 – γ × 1 = –1 Æ γ = 0 (8.30)

The selected value of C = 0.01 mF gives the value of R from equation (8.28) as 5 kΩ for wo = 
20 krad/s. Hence, R1 = (R/k) = 5 kW, R2 = QR = 25 kW, R3 = R* = R1 = Rα = Rf = R4 = 5 kW, 
Rb = 25 kW and Rγ is open as shown in Figure 8.10(a).

Figure 8.10(b) shows the PSpice simulated response of the notch filter having a notch at 
3.168 kHz (19.913 krad/s). The cut off frequencies of the filter are 3.5 kHz and 2.866 kHz, 
resulting a bandwidth of 634 Hz and Q = 4.996. The input voltage being 100 mV, the voltage 
level at the notch drops to 0.98 mV or an attenuation of 40.17 dBs.
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Figure 8.10 (a) Second-order notch filter circuit using an Ackerberg–Mossberg circuit and a summing 
amplifier. (b) Magnitude response of the notch filter of Figure 8.10(a).

Example 8.4: Design a second-order APF (all pass filter) which has a pole-Q = 2 and a 0o phase 
delay at 2 krad/s using an AM circuit and a summing amplifier.

Solution: The first consideration in getting an APF is to fix α = 1; then, using equation (8.27):

( )2 21   0 and   is taken as 0o ok kw γ w γ γ= − → =  (8.31)

For wo = 1, Q = 2, and assuming k = 1; (1 – kQbwo) = –1 Æ b = 1 (8.32)

Critical frequency being 2 krad/s, the selected value of capacitor C = 0.1 mF, which requires R 
= 5 kΩ. Having obtained the coefficients in equations (8.31)–(8.32), the remaining element 
values are: 

C2 = 0.1 mF, C3 = 0, R1 = 5 kW, R2 = 10 kW, R4 = R5 = R* = 5 kW and Rf = Rα = Rb = 5 kW.

The circuit diagram of the designed second-order APF with element values is shown in 
Figure 8.11(a). Figure 8.11(b) shows the magnitude response of the filter: there is a very small 
variation in magnitude; a dip of 0.13 mV and a rise of 0.042 mV from an average constant 
value of 100 mV. The figure also shows the phase variation in the APF from 180o to −180o 
with a zero-degree phase shift at 317.68 Hz (1996.8 rad/s). Figure 8.11(c) shows variation in 
group delay; at 310.6 Hz, peak group delay D = 4.065 ms. This is a near perfect response due 
to the active compensation employed in the AM circuit.
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Figure 8.11 (a) Second-order all pass filter circuit using the Ackerberg–Mossberg circuit and a 
summing amplifier. (b) Magnitude and phase responses of the all pass filter shown in 
Figure 8.11(a). (c) Group delay response of the all pass filter shown in Figure 8.11(a).

8.6.1 Biquad using modified summation method 

In a slightly modified but efficient approach, the additional summing amplifier can be avoided 
by the application of a weighted input signal at the virtual ground terminals of the two 
integrators. The advantage of connecting Vin in such a way is that the poles given by equation 
(8.26) are not affected. If this scheme is applied to the AM circuit shown in Figure 8.7(a), the 
resulting biquad becomes as shown in Figure 8.12. With the OAs considered ideal, the transfer 
function of the circuit is given as:

( ){ }
{ }

2 2 2
out

2 2 2
in

/ /

/ ( ) 1/

s s k CR C RV
V s s CRQ C R

α b γ+ − +
= −

+ +
 (8.33)

All types of responses are easily obtainable by selecting different weighting coefficients: 

For LP, k = b = α = 0, and for HP, k = b = γ = 0 (8.34a-b)

For BP, γ = b = α = 0, and for notch, k = b = 0, α < γ (8.34c-d)
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For HP notch, k = b = 0, α > γ, and for LP notch, k = b = 0, α < γ  (8.34e-f)

Lastly for the AP, α = γ = k = 1, b = (1 + 1/Q) (8.34g)
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R

R

R

C

Vout

aC

R/g

R/b

Figure 8.12 Generation of a general biquadratic circuit through the application of a weighted input at 
the virtual ground terminals of the operational amplifiers using an AM biquad.

The general biquad has many desirable characteristics apart from providing all types of second-
order responses. Active and passive sensitivities are found to be low and since pole locations are 
not changed while connecting the input at the virtual ground terminals, sensitivities remain 
the same as that for the AM circuit. Center frequency wo and pole-Q are independently 
tuneable with the help of the input resistance connected to the second integrator and the 
resistor QR, respectively. Component spread is also small as will become obvious from the 
following examples. Additionally, when parameters are set for deciding the location of zeros or 
the type of response, it does not affect the pole location.

Example 8.5: Design an HPF having a 3dB cut-off frequency of 20 krad/s and Q = 2 using the 
generalized biquad shown in Figure 8.12.

Solution: From equation (8.33), as wo = (1/RC) = 20 krad/s for the general biquadratic filter 
circuit shown in Figure 8.12, selection of C = 0.01 mF gives R = 5 kW. To find the other 
component values, we use the condition k = b = γ = 0 from equation (8.34b); it gives, R1 = 
(R/k) = • = Rb = (R/b) = Rγ = (R/γ), R2 = QR = 10 kW and R3 = R4 = 5 kW. Selection of R3 
and R4 is intentionally done to keep as many resistances equal as possible; a good choice in 
integrated circuits. Capacitor C2 = C = 0.01 mF and C3 = αC = 0.01 mF for α = 1. The resulting 
circuit is shown in Figure 8.13(a) and the simulated response in Figure 8.13(b).

A peak occurs at 3.386 kHz where its voltage gain is 2.073 against the ideal value of 2.0. 
Voltage gain at high frequencies is unity. The evaluated value of the simulated wo = 3.386(1 – 
1/2 × 22)1/2 = 3.167 kHz = 19.908 krad/s.
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Figure 8.13 (a) High pass filter using the Ackerberg–Mossberg biquad and applying the 
modified summation method for Example 8.5. (b) Response of the HPF shown in 
Figure 8.13(a).

Example 8.6: Design a HP notch filter having a pole frequency of 2 krad/s, a zero at 1 krad/s 
and Q = 2 using the modified summation method.

Solution: From equation (8.33) for wo = 2krad/s, the selected capacitor C = 0.01 mF gives 
R = 5 kΩ. For a zero at 1 krad/s, γ1/2 = (1/2), hence, (R/γ) = (R/0.25) = 20 kW. Since α has 
to be more than γ for a HP notch, it is taken as 1; therefore, αC = C = 0.01 mF, and C2 = C. 
With Q = 2, other elements will be the same as in Example 8.5, with k = b = 0. The circuit 
with element values is shown in Figure 8.14(a) and its PSpice simulated response is shown in 
Figure 8.14(b).
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Figure 8.14 (a) Generation of a high pass notch circuit through application of the modified summation 
method using the Ackerberg–Mossberg biquad. (b) Magnitude response of the high pass 
notch filter shown in Figure 8.14(a).

The notch occurs at 1.588 kHz with a low frequency gain of 0.25; the peak occurs at 3.565 
kHz where due to Q = 2, voltage gain is 1.636. At high frequencies, the output voltage levels 
at unity gain; this verifies all the specifications. 

8.6.2 Active noise control: application example

Feedback control systems are used in active noise and vibration control. Such systems can 
be realized using either digital signal processing or analog signal methodology. Each process 
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has advantages and limitations. There are certain applications where analog feedback control 
systems are preferred, such as active control of earmuffs [8.5] and similar applications, where 
the process delay must be small.

In practice, analog control systems include a filter or a bank of filters [8.6]. Parameters of 
the analog filter are usually adjusted with variable resistance and/or changing capacitor values 
employing switching arrangements. The switching arrangement is normally done manually. In 
the application case presented here, microprocessor driven, real-time control of the parameters 
of the filter bank has already been developed. This circuit discussed here helps in noise control. 
Without going into the development process, the basic arrangement of the biquadratic filter 
bank system is shown in Figure 8.15 in block form. 

Host PC

Input

Signal

Filter #1 Filter #2 Output

� Controller
Potentiometer

switch board #1
Potentiometer

switch board #2

Synch.
serial

Synch.
serial

Figure 8.15 The block diagram of a system for active noise control {with permission from M. Antila 
et al.} [8.6].

As a specific example, equation (8.35) shows a transfer function, which was obtained as a 
useful transfer function for a feedback control system. 

( )
2

2
1.01 70 2226065

272 319092
s s

H s
s s

− +=
+ +

 (8.35)

To implement the aforementioned transfer function, a general biquadratic circuit, as shown in 
Figure 8.12, applying the modified summation method was used. Comparing equation (8.35) 
with equation (8.33) gives:

( )2 319092, 1.01, 2226065 / 319092 6.976,ow α γ= = = = Q = (wo/272) = 2.076,  
and if k is selected as 0.5, b = (70/560.88)+0.5 = 0.6239 (8.36)

Applying an impedance scaling factor of 10 kΩ and a frequency scaling factor of wo = 564.88 
rad/s, element values for the circuit in Figure 8.12 are obtained as:

R = 10 kW, R/k = 20 kW, QR = 20.76 kW, R/b = 16.028 kW, R/γ = 1.433 kW C = 0.177 mF 
and αC = 0.1788 mF 
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The simulated response of the biquadratic filter section is shown in Figure 8.16. Its low 
frequency gain is 16.87 dB, the high frequency gain is 0.158 dB, the notch frequency is 234.4 
Hz and the peak gain of 22.3 dB occurs at 512.4 rad/s (81.5 Hz). 

180 d

0 d

>>
–200 d

1 240

0

–40
1.0 Hz 10 Hz 100 Hz 1.0 kHz 10 kHz

DB (V(3)) 21 VP (3)
Frequency

Figure 8.16 Simulated response of a biquadratic filter modeling noise control (equation (8.35)).

8.7 Generalized Impedance Converter Based Biquad

A significant alternative to obtain a multi amplifier biquad is a technique which is based on 
the use of a generalized impedance converter (GIC) [8.7]. In its basic form, this improvised 
biquad starts with a passive structure and its grounded inductor is replaced with a GIC. 
Presently, without going into a detailed description of a GIC, observe a second-order passive 
BPF structure in Figure 8.17(a) and its conversion to a second-order active filter circuit in 
Figure 8.17(b). GIC is shown in a dotted rectangle replacing the inductor in Figure 8.17(a). 
The transfer function of the passive BP filter is:

2
n

1

i

(1/ )
(1/ ) 1/ ( )

V RC s
V s RC s LC

=
+ +

 (8.37)

Here center frequency wo and pole-Q (Qo) are:

wo = (1/LC)1/2 and Qo = R(C/L)1/2 (8.38)
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Figure 8.17 (a) A second-order passive band pass passive filter; (b) inductor in part (a) replaced with 
a generalized impedance convertor shown inside the dotted line.

For the circuit in Figure 8.17(b), with the OAs assumed to be ideal and AÆ∞, V1 = V3 = V5, 
the following are the current−voltage relations:

I4 = (V5/R5), V4 = V5 + I4R4 = V5(1 + R4/R5) (8.39)

I3 = I2 Æ (V3 – V4)/R3 = (V5 – V4)/R3 = –V5R4/(R3R5) = (V2 – V3)sC2 (8.40)

I1 = (V1 – V2)/R1 or (V1/I1) = s(C2R1R3R5)/R4 (8.41)

Equation (8.41) confirms that the circuit within the dotted rectangle in Figure 8.17(a) realizes 
an inductance with its expression given as:

L = C2R1R3R5/R4 (8.42)

Therefore, substituting the expression of L from equation (8.42) into equation (8.37) and V4 
from equation (8.39), the transfer function of the active second-order section of Figure 8.17(b) 
is obtained as:

4 5out
2

in 4 2 1 3 5

(1/ )(1 )
 

(1/ ) ( / )
/RC R R sV

V s RC s R CC R R R
+

=
+ +

 (8.43)
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If output voltage is V1, transfer function is same as in equation (8.43) but numerator will not 
have the term (1 + R4/R5). So the mid-band gain will be unity in this case. Here, wo and Qo 
are given by the following relations:

wo = (R4/CC2R1R3R5)1/2 (8.44)

Qo = R(C/C2)1/2 (R4/R1R3R5)1/2 (8.45)

For wo and Qo, the passive sensitivities with respect to the elements x are calculated as:

1 1
,  and 1

2 2
o QoQo

x x RS S Sw = = =  (8.46)

Clearly, all passive sensitivities are very low; hence, the proposed circuit employing a GIC 
enjoys excellent sensitivity figures, provided its active sensitivities are also low. A detailed 
discussion on GIC sensitivities will be taken up later with the description of the GIC structure. 
In addition to the very low sensitivities, the GIC based active second-order filter structure has 
the following advantages, which makes the circuit very attractive.

(a) Component spread is small; most of the passive elements can be made equal.
(b) Parameters wo and Qo and mid-band gain of the BP can be independently tuned.
(c) The circuit is suitable for cascading as it has infinite input impedance at the frequency wo.

Example 8.7: Design a BPF for a center frequency of 20 krad/s and Q = 5 using the GIC based 
configuration of inductance shown in Figure 8.17(b).

Solution: Selecting equal valued capacitors C and C2 as 0.01 mF, equation (8.44) gives R1 = R3 
= R4 = R5 = 5 kW. For Q = 5, equation (8.45) gives R = 25 kW. Using these element values, the 
filter structure is shown in Figure 8.18(a). The response is simulated using PSpice and shown 
in Figure 8.18(b).
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Figure 8.18 (a) Second-order active band pass filter with inductor replaced using a generalized 
impedance convertor for Example 8.7; (b) responses of the band pass filter in part (a).

The obtained BP response realizes a center frequency as 3.177 kHz (19.969 krad/s) with a 
voltage gain of 1.991. The bandwidth of the filter is 635 Hz resulting in Q = 5.003.

Another BP response was obtained for a higher center frequency of 50 krad/s. The circuit 
requires capacitors C and C2 each of 0.004 µF, with all resistors remaining the same, for same 
values of Q. The simulated response is also shown in Figure 8.18(b) with a center frequency of 
7.821 kHz (491.6 krad/s) and a voltage gain of 1.984. Bandwidth of the filter is 1.563 kHz, 
resulting in the value of Q as 5.004. 

8.7.1 General biquad using generalized impedance converter

In addition to the discussed BPFs in the previous section, other types of transfer functions can 
be realized using the well-known process of lifting grounded elements completely or partially from 
the ground while using GICs. Inclusion of resistance R7 and splitting of input resistance R and 
capacitance C are used to provide feedback. Such a configuration is shown in Figure 8.19, with 
its transfer function obtained as:

( ) ( ) ( )2 2 2
out

2 2 2
in

1 1 / /
 

(1/ ) ( 1) /

H H s H H s QRC R CV
V s QRC s H R C

α γ b γ γ   − − + − − +   =
+ + −

 (8.47)

In equation (8.47), H is the mid-band filter gain, and an appropriate choice of the weighting 
coefficients, α, b and γ, determines the type of obtained filter response. At this stage, it may be 
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noted that getting a pure LP response is very difficult in this scheme; it is advised to use some 
other configuration of a GIC.
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Figure 8.19 Biquadratic circuit obtained using the technique of lifting some elements from the ground 
partially using GIC circuit of Figure 8.17(b).

Example 8.8: Design a notch filter which should have a notch at 20 krad/s and Q = 4 using a 
GIC based general biquad.

Solution: A convenient choice of a notch filter from equation (8.47) is to assume H = 2 
and γ = 1, with which wo = (1/RC). For notch frequency wo = 20 krad/s, an easy choice of 
components is C2 = 0.01 mF and R = 5 kW. With H = 2 and γ = 1, from equation (4.49), we 
need to have the following:

αH – γ(H – 1) = 1 Æ α = 1 and bH – γ(H – 1) = 0 Æ b = 0.5 (8.48)

Application of equation (8.48) gives the following element values: 

*
6 7 540 k , 40 k , 5 k ,  open

(1 ) 1
QR Q R R

R R R R R
b b γ γ

= = Ω = = Ω = = Ω = =
− −

R1 = R3 = R4 = 5 kW, C* = αC = 0.01 mF and C** = (1 – α)C = 0

Figure 8.20(a) shows the circuit structure of the notch filter with element values and Figure 
8.20(b) shows the PSpice simulated magnitude response. For the simulated notch which 
occurs at 3.169 kHz (19.91 krad/s), the output voltage level is 2.396 mV for an input voltage 
of 100 mV; an attenuation of 32.4 dBs. Its 3 dB bandwidth is 799.8 Hz, resulting in Q = 3.96.
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Figure 8.20 (a) Notch filter circuit obtained from the GIC circuit of Figure 8.17(b), while lifting some 
elements from ground partially. (b) Notch filter response for the circuit in Figure 8.20(a). 

Example 8.9: Design an APF which has a phase shift of 180o at 40 krad/s and Q = 2 using 
GIC.

Solution: For the multifunctional configuration of Figure 8.19, to give an AP response, we 
need to have the following conditions from equation (8.47):
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αH – γ (H – 1) = 1, H – 1 = 1 Æ H = 2 and bH – γ (H – 1) = –1 (8.49)

In equation (8.49), if γ = 1, b = 0 and α = 1. For center frequency of 40 krad/s, if C2 is selected 
as 5 nF, R = 5 kW, and with Q = 2:

( )*
6 4 5 7, 1 0 k , 1 5 k ,  ,   5 k ,

1 1
QR QR R R

R R R H R R R
b b γ γ

= = ∞ = = Ω = − = Ω = = ∞ = = Ω
− −

( )* **
1 3 2 25 k  and 5 nF, 1 0R R C C C Cα= = Ω = = = − =  (8.50)
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Figure 8.21 (a) All pass circuit obtained using GIC circuit of Figure 8.17(b). (b) Magnitude and phase 
responses of the all pass shown in Figure 8.21(a).
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Figure 8.21(a) shows the circuit structure of the APF with element values and Figure 8.21(b) 
shows the PSpice simulated magnitude response. Gain is almost unity; there is a bit of rise 
having maximum gain of 1.0148 and a small drop for a minimum gain of 0.9943. Figure 
8.21(b) also shows the phase response of the APF, having a phase shift of −180o at 6.3 kHz 
(39.6 krad/s).
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Practice Problems 

8-1 Figure P8.1 shows the circuit diagram of a KHN biquad which was shown in Figure 8.1 as a block diagram 
form. Obtain all the three voltage ratio transfers functions available from the circuit. What kinds of 
responses are available?
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Figure P8.1

8-2 Design and test a second-order BP filter using a KHN circuit having center frequency of 3.4 kHz, Qo = 3 
and mid-band gain of 5.

8-3 Design and test a HP filter using KHN circuit for which attenuation falls by 2 dB at 10 krad/s.
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8-4 Design a KHN based second-order LP filter for cut-off frequency of 10 krad/s and Q = 5. Use equal value 
capacitors C1 and C2 and equal valued resistors R1 and R2. What is the gain of the filter at dc?

8-5 Design and test the second-order Tow−Thomas (TT) BP circuit of Figure 8.3 for the following specifications.

 wo = 20 krad/s, Qo = 10 and peak gain of 10.

8-6 Derive the transfer function (Vout/Vin) for the circuit shown in Figure P8.2. Design a filter, using equal 
value capacitors for the following transfer function:
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Figure P8.2

8-7 (a) Derive expressions for the three transfer functions for the Tow−Thomas structure shown in Figure P8.3, 
 with OAs considered ideal.

 (b) Find the incremental sensitivity of the parameters wo and Qo with respect to the passive elements.
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Figure P8.3

8-8 If the OAs are represented by the model A(s) = B/s, even lossless integrators become lossy. Figure P8.4 
shows the representation of the two-integrator loop biquad in such a case. Show that the normalized 
transfer function with wo = 1 and k = H(wo/Q), where H is the mid-band gain:
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8-9 Compare the transfer function in Problem 8-8 with a standard form of BP transfer function and (a) show 
that the resultant equivalent parameters will be:
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 (b) What is the magnitude of a parasitic zero in the transfer function?

8-10 Design a TT BP filter shown in Figure 8.3 for wo = 60 krad/s and Qo = 15 with mid-band gain H being 
unity. Estimate the deviation in the parameters of the filter if OAs have bandwidth = 0.5 × 106 rad/s. Verify 
the results using PSpice simulation.

8-11 Repeat Problem 8-10 for wo = 120 krad/s, Q = 20 and mid band gain H = 1.

8-12 Repeat Problems 8-10 and 8-11 using the Ackerberg–Mossberg (AM) circuit shown in Figure 8.7(a).

8-13 Design LP filters using the AM circuit shown in Figure 8.7(a) for the following specifications using 741 
OAs.

 (a) wo = 3.4 × 2π krad/s, Q = 1 and gain at dc hlp = 5.

 (b) wo = 60 krad/s, Q = 2.5 and gain at dc hlp = 2.

 (c) wo = 200 krad/s, Q = √2 and gain at dc hlp = 3.

8-14 Using 741 OAs, design BP filters using the AM circuit shown in Figure 8.7(a) for the following specifications.

 (a) wo = 1.59 × 2π krad/s, Q = 10 and mid-band gain hbp = 2. 

 (b) wo = 50 krad/s, Q = 5 and mid-band gain hbp = 5.

 (c) wo = 250 krad/s, Q = 12 and mid-band gain hbp = 1.

8-15 Design and test a notch filter for the following transfer function using a two-integrator network and a 
summer configuration shown in Figures 8.8 and 8.9. The two-integrator loop filter needs to be a KHN 
type. Also find the sensitivity of the parameters wo and Qo, and wz and Qz with respect to the passive 
elements used.
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8-16 Repeat Problem 8-15 employing a TT circuit in place of a AM circuit.

8-17 Repeat Problem 8-15 using the modified summation method shown in Figure 8.12, where AM biquad is 
employed.

8-18 Repeat Problem 8-15 using the GIC based biquadratic circuit shown in Figure 8.19.

8-19 Design and test a notch filter for the following transfer function using a two-integrator network and a 
summer configuration shown in Figures 8.8 and 8.9. The two-integrator loop filter needs to be a KHN 
type. Also find the sensitivity of the parameters wo and Qo, and wz and Qz with respect to the passive 
elements used.
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8-20 Repeat Problem 8-19 employing a TT circuit in place of a KHN circuit.

8-21 Repeat Problem 8-19 using the modified summation method shown in Figure 8.12, where AM biquad is 
employed.

8-22 Repeat Problem 8-19 using the GIC based biquadratic circuit shown in Figure 8.19.

8-23 Design and test a LP notch filter for the following transfer function using a two-integrator network and the 
summer configuration shown in Figures 8.8–8.9. The two-integrator loop filter needs to be a KHN type. 
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8-24 Repeat Problem 8-23 using the modified summation method shown in Figure 8.12, where AM biquad is 
employed.
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