
9.1 Introduction

In the previous chapters, we studied realization of first-order and second-order filter sections. 
Though these filter sections are used as such, they are also used to generate higher-order filters 
employing different processes including the cascade process. However, a common alternate 
process for realizing second- or higher-order filter section is the direct form of synthesis. There 
are two broad categories in the direct form of synthesis: (i) element substitution method and (ii) 
operational simulation method. Though the filter realization procedures in the aforementioned 
categories differ, the starting point is the same. Initially, a passive structure with element values 
(mostly frequency and impedance normalized) is obtained. It is then converted into its active 
form. Although they have the same starting point, the construction and characteristics of the 
active circuit obtained through the direct form and that obtained through the cascade form 
differ on many counts, as shall be illustrated later.

The most common passive structure that is used to realize passive filters is the doubly 
terminated lossless ladder. A typical lossless ladder is shown in Figure 9.1 where Rin and RL are 
the terminating resistors and the ladder contains only lossless elements, that is, inductors and 
capacitors; each series and shunt branch of the ladder can be any combination of inductors/
capacitors. 

We will first discuss the element substitution type of direct form synthesis procedure, which 
is mainly the avoidance of the use of inductors. Therefore, simulation of inductors forms an 
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important part of the chapter. Inductance simulation, configurations for inductance simulation 
and active filter realizations without using an inductor are discussed in Sections 9.2–9.5. 
Section 9.6 deals with the simulation of a floating inductance, mainly through using two circuit 
structures of grounded inductances. Another method in which the inductor can be eliminated 
from the general lossless ladder is through scaling of the structure by the complex frequency 
variable s. This method generates a new type of element called the frequency dependent negative 
resistance (FDNR). As simulation of inductors and FDNR requires impedance conversion 
configurations, it is important to study the basics of these concepts. The technique is included 
in Section 9.8.
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Figure 9.1 A typical doubly terminated lossless ladder structure with input resistance Rin and load 
resistance RL.

An alternate method applied on ladders is based on the modeling of circuit equations and 
current−voltage relations of the circuit elements instead of direct element substitution. The 
electronic circuit is represented by a signal flow graph containing directional branches and 
nodes where branching takes place. It can also be represented in block diagram form with 
branches comprising blocks representing current−voltage relations of passive elements. Often, 
the employed blocks are integrators (or differentiators) interpreting inductors and capacitors. 
These blocks also incorporate summation of voltages and will be discussed in Section 9.9.

Once the principle of operational simulation is explained in detail, it is first utilized to 
get an LP (low pass) ladder and then for a BP (band pass) ladder structure in Sections 9.10 
and 9.11, respectively. Since all networks may not be in as simple form as an LP or a BP, the 
scheme for realizing general ladders is studied in Section 9.12. 

At first, the operational simulation method appears to be solving the problem in a 
roundabout manner compared to the element substitution method. In fact, the procedure is 
a bit lengthy, but it is observed that the method has certain advantages. In general, it employs 
a lesser number of active devices and deals well especially with floating inductors/FDNRs 
realizations as it does not require back-to-back matching circuits. As shall be shown later, a 
proper selection of integrators helps in considerable reduction in the non-ideal effect of OAs 
used, making the circuit useful in a comparatively larger frequency range.

Lossless Ladders: The lossless ladder structure is very popular among filter circuit designers 
because of its excellent property of very low sensitivity to component tolerances [9.1]. When 
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such a ladder is converted to its active form, the property of low component tolerance 
sensitivity is transferred to it, which makes the structure attractive even at lower frequencies 
(audio or even up to a few hundred kHz; depending on the kind of active device used); whereas 
passive ladders continue to be used at higher frequency applications where active filtering is 
not suitable or where power supply is not available for active devices.

One important advantage in using lossless terminated ladders for active filters is that a large 
amount of literature is available in the form of filter structures, detailed description in terms of 
their transfer functions, pole locations and normalized element values from low to high-order 
filters [1.2]. Such available literature is of great help for active filter design. One of the main 
reasons for converting LC lossless ladders to their active forms is, as mentioned earlier, the 
non-availability of good quality inductors in most of the operating frequency range. 

9.2 Gyrator and Inductance Simulation

As seen in Figure 9.1, inductances used in the ladder can have one terminal connected to the 
ground, which are known as grounded inductors (GIs), or none of their terminals connected 
to the ground, which are known as floating inductors (FIs). First, let us look at the simulation 
of a GI as shown in Figure 9.2(a). The method will be later extended to realize an FI as shown 
in Figure 9.2(b). For simulating a GI, it is required to find a circuit which contains only 
resistors, capacitors and some active device(s); moreover, its driving point impedance should 
appear as that of an inductance. Such a configuration is known as impedance converter or 
gyrator. Symbol of a simplified gyrator is shown within the dotted box in Figure 9.3, which is 
defined by the following equation [9.2]. 

I1 = –(1/r)V2 and I2 = –(1/r)V1 (9.1)

Vin

L
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I1 I2
L

V1 V2
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Figure 9.2 (a) Grounded inductance, and (b) a floating inductor representation.

The important parameter of a gyrator r is known as a gyrator constant; the constant has the 
units of ohm. From equation (9.1), the input impedance of the gyrator will be:

Zin(s) = (V1/I1) = r2/(1/sC) = sr2C (9.2)
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Figure 9.3 Grounded inductance simulation using a gyrator terminated in a grounded capacitor.

Therefore, a gyrator terminated in a capacitor C simulates an equivalent inductor Leq given as:

Leq = r2C (9.3)

Obviously, instead of using a capacitor C, termination can be done using any general load 
impedance ZL(s) and in that case, the simulated input impedance will become:

Zin(s) = r2/{ZL(s)} (9.4)

As mentioned earlier, the current−voltage relation of a simplified gyrator is presented in equation 
(9.1). In a general gyrator, the admittances in equation (9.1) are not necessarily equal, that is

(I1/V2) = y12 = (–1/r2) = gm2 and (I2/V1) = y21 = (1/r1) = –gm1 (9.5)

The equivalent circuit of a general gyrator (Figure 9.4) can be obtained from equation (9.5). 
It is obvious that the practical realization of a gyrator is easy in terms of transconductance 
elements. Such a circuit, transconductance amplifier-based filter circuits, will be studied later 
in Chapter 15. Practical realization of gyrators using OAs will be discussed in the next section.

V1
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g Vm2 2

+

–

I1 I2

V2
g Vm1 1

Figure 9.4 Small signal equivalent circuit of a general gyrator.

In a general ladder structure, it is also important to simulate FIs depending on the selected 
passive structure. Simulation of FIs is rather difficult and requires a cascade of two grounded 
gyrators and an embedded capacitor, as shown in Figure 9.5 [9.3]. Practical realization of an 
FI will be discussed after obtaining the practical realization of a GI.
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Figure 9.5 (a) Floating inductance simulation using back-to-back gyrators and (b) equivalent circuit.

9.3 Impedance Converters Using Operational Amplifiers

The terms ‘gyrator’ and ‘impedance converter’ can be used interchangeably as both convert 
the nature of impedance connected as termination. A general configuration which has been 
employed for the development of the impedance converter is shown in Figure 9.6. This 
configuration is found suitable for developing impedance converter circuits using OAs. In 
Figure 9.6, the schematic consists of R1, a feedback resistor, and a two-port network, which has 
to be determined in order to make it an impedance converter. Assuming the two-port network 
has infinite input impedance and zero output impedance, it is desired to get the following 
voltage−current relation for simulating inductance at the input terminals.

(Vin/Iin) = Zin(s) = sL (9.5)

Two-port

network

+

–
Vin

Iin

+

R1

Io

–
Vout

Figure 9.6 A schematic for impedance conversion.

With no current flowing into the two-port, Iin = (Vin – Vout)/R1, so substituting Iin in equation 
(9.5):

in out out
in 1

1 in
 (1 / )

V V V
V sL R sL

R V
 −= → = −  

 (9.6)

The required transfer function for the network, as shown in equation (9.6) is obtained by 
subtracting the gain of an integrator from a unity gain amplifier. Figures 9.7(a) and (b) show 
simple and known circuits for the non-inverting gain of 2 and the inverting ideal integrator 
with additional non-inverting input. These circuits are joined in Figure 9.7(c) for which  
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V2 = 2Vin. With both the input terminals of OA2 being at the same potential Vin; the current−
voltage relations for OA2 and at the input terminal gives the following relations:

(V2 – Vin)/R Æ (Vin/R) = (Vin – Vout)sC (9.7)

Iin = (Vin – Vout)/R1 (9.8)

Elimination of Vout in equations (9.7) and (9.8) gives:

Zin = (Vin/R) = sCRR1 (9.9)

Hence, the circuit shown in Figure 9.7(c), which is known as the Riordan inductance 
simulation circuit [9.4] simulates an inductor with value L = CRR1 = CR2 for R = R1.
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Figure 9.7 (a) Non-inverting amplifier with gain = 2, (b) Ideal non-inverting integrator and (c) Riordan 
inductance simulator circuit, performing impedance conversion through a combination of 
(a) and (b).

9.4 Antoniou’s Inductance Realization

There are other possible configurations to realize the two-port network shown in Figure 
9.6. A well-known configuration employs a non-inverting amplifier of Figure 9.8(a) and the 
inverting integrator in a differential input mode as shown in Figure 9.8(b). Here the feedback 
resistor of a difference amplifier is replaced by a capacitor C and the non-inverting terminal gets 
a potentially divided input V2 = V1R5/(R4 + R5) = kV1. Applying KVL (Kirchhoff’s voltage law) 
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at the input terminal of the OA2 in Figure 9.8(b) and with the knowledge that the amplifier is 
an ideal OA with the inverting terminal voltage being equal to V2, we get:

(V1 – V2)/R3 = (V2 – Vout)sC2 (9.10)

or  (Vout/V1) = k + {(k – 1)/(sC2R3)} (9.11)
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R5

Figure 9.8 (a) A non-inverting amplifier with gain (1 + R4/R5), and (b) inverting integrator in 
differential mode.

To make the circuit compatible with the relation of equations (9.6), k is to be eliminated in 
equation (9.11). It is done using a non-inverting amplifier with gain, 1 + (R4/R5) = (1/k) as 
shown in Figure 9.8(a) at the input terminal V1 of Figure 9.8(b). However, connecting in this 
manner will result in a circuit containing five resistors (and one more resistor R1 as feedback 
resistor). Instead, two resistors in the non-inverting amplifier can be saved by connecting the 
amplifier’s inverting terminal directly to the inverting terminal of the OA2, whose voltage is 
also V2 = (kV1) and V1 = (Vin/k). The resulting circuit, in addition to the feedback resistor R1, 
is now shown in Figure 9.9(a). Analysis of the block inside the dotted line gives the following 
relation. 

 out 4

in 2 3 5
1

V R
V sC R R

 
= −  

 (9.12)

Comparing equation (9.12) with equation (9.6), the simulated inductance has the following 
expression 

Leq = (R1R3R5C2/R4) (9.13)

The circuit shown in Figure 9.9(a) is known as Antoniou’s generalized impedance converter 
[9.5] of type I. Though presently it is shown to be simulating inductance, we will see later that 
its generalized form can be that of a generalized impedance converter (GIC). Type II GIC 
is obtained by simply interchanging R4 with C2, as shown in Figure 9.9(b), for which, the 
simulated inductance is given as:
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Leq = (R1R3R5C4/R2) (9.14)

If all the resistances used are selected equal in both types of GICs, the simulated inductance 
becomes Leq = R2C; the same as obtained before in equation (9.9). It is to be noted that for 
the GIC, comparing the constant with the gyrator-based simulator, gyration constant r = R.
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Figure 9.9 (a) Antoniou’s general impedance convertor type I. (b) Antoniou’s generalized impedance 
converter type II.

GICs have been used extensively for element simulations. Because of their importance, GIC 
needs to be studied carefully. Hence, instead of restricting the study to the GICs of Figure 
9.9(a) and (b), the circuit configuration is redrawn in a form which is common in use and 
convenient for analysis. Figure 9.10 shows a general Antoniou’s GIC in dotted rectangles; it 
was briefly discussed in Chapter 8 as well. Assuming OAs as ideal, voltage V1, V3, and V5 shall 
be equal and the input impedance of the GIC is easily obtained as 

Zin(s) = {Z1(s)Z3(s)Z5(s)}/{Z2(s)Z4(s)} (9.15)

GICs of type I and II can easily be shown to be special cases of this general configuration. The 
general form is called the generalized impedance converter because of its ability to realize many 
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other types of impedances depending on the kind of elements (or combination of elements) 
used for Zi, i = 1 to 5. For example, selecting Zi = Ri, i = 1, 2, 3 and 5 and Z4 = 1/sC, the input 
impedance will be the same as for equation (9.14).

–+
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– +
2

Z1 Z2 Z3 Z4

Z5

+

–

Vin

V1 V2

I in

V3 V4 V5

GIC

Figure 9.10 Commonly used structure for a generalized impedance converter.

9.5 Filter Realization Using Inductance Simulation

Once inductance simulation through an active RC circuit becomes available, active simulation 
of the LC ladder becomes simple enough. The obvious starting point is obtaining the passive 
filter structure and the values of the elements used. Inductances are then replaced by suitable 
active RC structures and the rest of the capacitors and resistors remain connected in the same 
position/location. Hence, the resulting overall circuit becomes an active RC structure.

Figure 9.11(a) shows the structure of a third-order HP passive filter section. This passive 
structure is suitable for the inductance simulation technique as it employs a GI. Hence, the 
structure shown in Figure 9.10 is easily used to simulate the inductor. Once the inductor is 
replaced, an active RC version of the third-order HP filter is conveniently obtained. It may be 
noted that the passive HPF is shown to have normalized terminating resistors R1 and R2. The 
element values of C1, L2 and C3 are easily available from design tables [1.2]. Hence, for the given 
value of L2, element values of the inductance simulator are evaluated using equation (9.14).

Example 9.1: Design a third-order HP active filter using the inductance simulation technique, 
having pass band ripples less than 1 dB and corner frequency of 200 krad/s. Compare its 
response with that of the passive filter.

Solution: For the given specifications, the circuit shown in Figure 9.11(a) will satisfy the 
requirements with the following normalized element values:

R1 = R2 = 1W, C1 = C3 = 0.62645 F and L2 = 0.9118 H (9.16)
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Using an impedance scaling factor of 104 and a frequency scaling factor of 200 krad/s, the de-
normalized element values for the passive filter from equation (9.16) will be:

R1 = R2 = 104 W, C1 = C3 = 0.31322 nF and L2 = 0.04559 H (9.17)

For conversion of a passive filter to an active form, inductance L2 from equation (9.17) is 
simulated using the circuit shown in Figure 9.10 and equation (9.14).

L2 = 0.04559 H = CR2 Æ C = 0.4559 nF with R = 104 W (9.18)

The GI shown in Figure 9.10, having element values as in equation (9.18), is substituted in 
Figure 9.11(a), resulting in the circuit shown in Figure 9.11(b). The simulated response is 
shown in Figure 9.11(c) with the following important observations.

Voltage gain at high frequencies = 0.4626, peak voltage gain = 0.498, ripple width = 0.88 
dB and corner frequency = 28.63 kHz (179.96 krad/s). Obviously, there is a significant 
difference between simulated and design value of the corner frequency (–10.02%), and the 
high frequency gain is dropped by nearly 7.48%, though the shape of the characteristic 
remains intact. Deviations in parameters are due to the effect of the frequency-dependent gain
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Figure 9.11 (a) A third-order normalized passive high pass filter structure for Example 9.1. (b) The 
active RC version of Figure 9.11(a) through simulation of grounded inductance L2 with 
inductance simulation using GIC (c) Response of the active third-order high pass filter 
from Figure 9.11(b) at lower and higher corner frequencies, and the response of the 
passive filter of Figure 9.11(a).

of the OA model. The same active filter, which is simulated for a lower corner frequency of  
20 krad/s, had the following element values:

C1 = C2 = 3.132 nF, L2 = 0.4559 H Æ C24 = 4.554 nF (9.19)

The simulated response is also shown in Figure 9.11(c) with the following observations:
Voltage gain at higher frequencies = 0.496, corner frequency = 3.15 kHz and ripple width 

= 0.5376 dB. Error in the corner frequency is now only −1% and gain deviates only by 0.8%. 
Figure 9.11(c) also shows the PSpice simulated response of the passive filter which we can 

compare with that of the response of the active filter. The following are the observations.
Voltage gain = 0.5, ripple width = 0.5086 dB and corner frequency = 31.83 kHz (200.1 

krad/s). The filter’s voltage gain remains constant even at much higher frequencies, as it is not 
affected by the limitation of the OA.

9.6 Floating Inductance Simulation

In the last section, we saw an example of a GI simulation in a simple passive circuit. Quite 
often, a floating inductor (FI) also becomes a necessity and it has to be simulated as well. The 
FI shown in Figure 9.5(b) being a two-port structure is represented in terms of y parameters as:
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  (9.20)

For the simulation of an FI, two gyrators in back-to-back form are to be joined as shown in 
Figure 9.5(a). In order to obtain a circuit realization of an FI using two back-to-back gyrators, 
the well-known technique of lifting the element terminal from the ground [9.6] is used on a 
GI circuit like that used in the circuit in Figure 9.10. The resulting configuration is shown 
in Figure 9.12. It is important to note that while using any circuit involving OAs, care has 
to be taken that a path for the flow of bias current remains available. Hence, for the circuit 
realization of the FI shown in Figure 9.12, a resistance each may be connected in parallel with 
the capacitors to enable the flow of biasing current. However, these extra resistors have to be of 
high value so that the parasitic inductance introduced due to these resistances is not significant.

+ –

+

+ –

+

– –

+–

V1 V2

R11 R21

R31

C41
R�41

R5

R�42 R32

C42

+–

R22 R12

Figure 9.12 Floating inductance realization using back-to-back gyrator based grounded inductance 
simulators.

The major limitation of the process is that an FI simulator uses a large number of passive 
and active elements. Another significant issue crops up when the two gyrators are connected 
back-to-back. The gyrator constants need to be the same; otherwise, there will be a mismatch 
and the unity element in equation (9.20) will not be exactly unity, resulting in some parasitic 
elements. Obviously, it is not practically possible to exactly match the component values even 
in the IC form (mismatch can be minimized). This is a drawback in using such a configuration 
for FI. Hence, we need to look at other techniques of obtaining an FI circuit which do not 
require component matching. An alternative is to select a circuit which needs a lesser number 
of FIs. It is to be noted that Leq in equation (9.20) will have the same expression as Leq in 
equation (9.13) or (9.14) for GI.

Example 9.2: For the passive BPF shown in Figure 9.13(a), obtain an active RC filter using 
the inductance simulation method. Find the element values used with the center frequency of 
the filter as 20 kHz and bandwidth as 2 kHz.

Solution: The transfer function of the BPF of Figure 9.13(a) is obtained as:

(V2/V1) = (R/L)s/{s2 + (R/L)s + (1/LC)} (9.21)
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Figure 9.13  (a) Second-order prototype passive band pass filter, (b) its active RC version while 
simulating a floating inductor using the circuit shown in Figure 9.12. All resistances = 10 
kΩ, but R = 1 kΩ and R'

41 = R'
41 = 10 MegΩ, C41 = C42 = C = 0.795 nF. 

The important parameters of the filter are as follows:

½

½
1 1

, and mid-band gain 1.0
( )o

L
Q

R CLC
w  = = =  

 (9.22)

For wo =1 rad/s, the normalized element values from equation (9.22) are:

L = 1 H, C = 1 F and as Q = (20/2) = 10, R = 0.1 W (9.23)

For the passive filter, an impedance scale factor of 104 and a frequency scaling factor of 20(2π) 
krad/s is used; this gives the following de-normalized element values:

R = 1 kW, C = 0.7954 nF and L = 0.07954 H (9.24)

For the floating inductance, L = 0.07954 H, the circuit shown in Figure 9.12 is inserted in 
Figure 9.13(a) and application of equation (9.14) to find the element values for inductance 
gives an active filter circuit as shown in Figure 9.13(b). Resistances R1, R2 and R3 in both the 
gyrators are 10 kW, and capacitances C41 and C42 are equal to 0.7954 nF. It is important to 
note that R5 is 104 W and not the summation of two R5s while connecting two back-to-back 
circuits, as one resistor acts as the terminating resistor for both sides. Bypass resistors ′41R  and 
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′42R  are selected as 10 megW each, sufficient to allow the passage of bias current, and large 
enough so that their effect is minimal on the filter performance. The circuit is simulated and 
the response shown in Figure 9.14. 

1.2 V

0.8 V

0.4 V

0 V
2.0 kHz 3.0 kHz 10 kHz 30 kHz

V (16) V (162)
Frequency

fo = 5 kHz fo = 20 kHz

Figure 9.14  Magnitude response of the active band pass filter shown in Figure 9.13(b) at lower and 
higher center frequencies.

The simulated value of the mid-band gain is 1.017, center frequency is 18.889 kHz, upper 
and lower cut-off frequencies are 19.778 kHz and 18.027 kHz, respectively. Bandwidth being 
1.756 kHz, Q becomes 10.75. Obviously, the main reason for deviation in the parameters is 
due to the frequency dependence of the OAs gain.

The same BPF was simulated for a lower center frequency of 5 kHz. All the calculated 
resistances remain the same but all the capacitances are now 3.1818 nF. The simulated 
magnitude response in this case is also shown in Figure 9.14. Mid-band gain was found to be 
0.9987 at a center frequency of 4.927 kHz. The upper and lower cut-off frequencies of 5.177 
kHz and 4.690 kHz, respectively gave Q = 10.11; this is now, a much smaller deviation in filter 
parameters, because of lower working frequency.

9.7 Generalized Inductance Simulation

The inductance simulation method is more useful for the circuit having inductances in 
grounded forms. Whenever FI is to be simulated, it involves a large number of components 
and their matching as well. It becomes a little confusing when a circuit contains both GIs and 
FIs. However, a technique known as the Gorski-Popiel (GP) embedding technique [9.7] is 
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of great help in simulating a combination of GIs and FIs, which will require a lesser number 
of elements compared to the case of conventional direct simulation of GIs and FIs. In this 
technique, instead of simulating individual inductors, a complete sub-network comprising 
inductors (any number) is simulated through a GIC. This simulated network then simply 
replaces the original sub-network of the inductors.

To understand the generalized inductance simulation (GIS) technique, consider the GIC 
circuit shown in Figure 9.10 in the form of a two-port network, as shown in Figure 9.15(a). 
Assuming the OAs to be ideal means V2 = V1, and with R2 = R3 and Z5 of Figure 9.10 replaced 
by (V2/I1), we get the driving point impedance at port 1 as

(V2/I1) = (sC4R1)(V2/I2) (9.25)

Obviously, when the simplified block form of GIC shown in Figure 9.15(b) is terminated in a 
resistance R1, the input will be an inductance as before, with the inductor expression as:

Leq = (C4R1)R = L¢R (9.26)

The GIC in the block form, terminated in a resistance as shown in the dotted rectangle in 
Figure 9.15(b), yields the following from equation (9.25):

I2 = (sC4R1)I1 = (sL¢)I1 (9.27)

+ –
1

+–
2

+

– –

V1

+

V2

I1
R1 R2 R3 C4 I2

I1
G.I.C.

+

–

+

–

V1 V2

I2

R

sL : 1�

(a) (b)

Figure 9.15 (a) Generalized impedance convertor as a two-port network and (b) representation of the 
GIC in a block form.

The important conclusion of the exercise is that if a GIC is placed at the input branch of a 
resistor, the resistor gets converted into an inductor. According to the generalized inductor 
simulation scheme, any number of branches of a network can have a GIC at its input which 

https://doi.org/10.1017/9781108762632.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.010


  259Direct Form Synthesis: Element Substitution and Operational Simulation 

will convert all terminating resistors as inductors. In order to simulate an inductor Leq, the 
terminating resistor value will be:

(Leq/L¢) Æ (Leq/C4R1) (9.28)

From the point of view of IC fabrication of the active filter, it is preferable to use the same 
GICs with varying terminating resistors for the simulation of inductors with different values. 
However, if it results in a situation where the terminating resistor value becomes unsuitable for 
IC fabrication, a different GIC can be used.

Example 9.3: Realize a fifth-order Chebyshev LPF having a maximum of 1 dB ripples in the 
pass band. Let the corner frequency be 10 krad/s; use the GP technique.

Solution: Figure 9.16(a) shows the ladder structure and the normalized element values of the 
filter for the given specifications from Table 3.5. Cross points have also been shown in the 
figure for the application of the GP technique, where terminated GIC circuits will be inserted.
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500 mV

250 mV

0 V
10 Hz 100 Hz 1.0 kHz 10 kHz

V (21)
Frequency

(d)

Figure 9.16 (a) Fifth-order passive Chebyshev filter for Example 9.3 (b) GIC circuit, with elements 
values, which is to be terminated and (c) the active version of the filter using the Gorski-
Popiel ladder embedding technique. (d) Magnitude response of the filter in Figure 9.16(c).

Application of the frequency scaling factor of 10 krad/s and an impedance scaling factor of 103 

results in the following element values:

Rin = RL = 1 kW, L1 = L5 = 0.21349 H, L3 = 0.3 H, and C2 = C4 = 0.10911 mF (9.29)

Since for the realization of inductances, terminated GICs are to be used at the cross point, 
Figure 9.16(b) shows a GIC in which resistances R1 = R2 = R3 = 1 kW each. If ′4C  is selected 
as 0.1 mF, the terminating resistances for the inductors L1 and L5 of equation (9.29) will be 
calculated using equation (9.14) as:

3

1 5 3 3 7
10 0.21349

2.1349 k
10 10 10L LR R −

×= = = Ω
× ×

 and RL3 will be 3.0 kW

Figure 9.16(c) shows the structure of the active ladder, where the GIC circuit of Figure 9.16(b) 
will be substituted at the four places as indicated; for the rightmost GIC, the inverted direction 
needs to be noted. The circuit was simulated and the magnitude response is shown in Figure 
9.16(d), for which dc gain is 0.5, ripple width is 0.995 dB and pass band edge frequency are 
1.584 kHz (9.956 krad/s); very close to the design values.
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9.8 Filter Realization Using FDNR

Instead of replacing inductors through an active RC simulator, an alternate scheme was given 
by L. Bruton in 1969 [9.8]. In this scheme, all the elements are multiplied by a factor (1/s). 
Such a transformation converts an inductive impedance (sL) to a resistor element of value 
L ohms. At the same time, it converts a resistor (R) to a capacitive element (R/s), that is, a 
capacitor with value (1/R) farad. However, the capacitive impedance (1/sC) gets converted to 
(1/s2C); not a conventional element. For s = jw, this converted impedance is:

2 2(1/ )   1/c s jZ s C Cw w== = −′  (9.30)

Equation (9.30) shows that the impedance is negative, real and frequency dependent; hence, 
an appropriate name would be frequency dependent negative resistance (FDNR). Sometimes, it 
is also called a super capacitor as it is converted from a capacitor, and a usual symbol for it is 
three parallel lines. It is necessary to note that the transformation of element impedances by 
1/s does not affect the transfer function of the network as it is a ratio of two polynomials in s.

After the transformation, RLC circuit now comprises resistors, capacitors and FDNRs (an 
RCD network). Obviously, to convert an RLD network to an active RC form, the FDNRs 
have to be simulated in the same way as the inductances were simulated, be it in the grounded 
or in the floating form. Fortunately, a large number of active RC circuits are available in 
literature for simulating FDNRs. One such circuit is obtained through the use of the GIC 
shown in Figure 9.10, for which the input impedance is given as

Zin(s) = Z1Z3Z5/Z2Z4 (9.31)

Selecting Z1 = 1/sC1, Z5 = 1/sC5, Z3 = R3, Z2 = R2 and Z4 = R4, as shown in Figure 9.17(a), the 
circuit provides a grounded FDNR with the expression of its impedance as given here.

( ) 1 5 2 43
in 2 2

31 5 2 4

1
  with

C C R RR
Z s D

Rs C C R R s D
= = =  (9.32)

Figure 9.17(b) shows the capacitor’s symbolic representation of three parallel lines. Different 
values for the capacitors C1 and C5 and R2 and R3 can be chosen, but it does not give any 
specific advantage. Since equal value capacitors are desirable in integration, we prefer to select 
C1 = C5 = C. It has been shown that for a GIC, it is better to use R2 = R3 = R, hence, a simplified 
expression of input impedance from equation (9.32) will be as follows:

( ) 2
in 42 2

4

1
or  Z s D C R

s C R
= =  (9.33)

Application of the FDNR technique is obviously preferred for those networks which use more 
grounded capacitors, as such networks will have FDNRs in the grounded mode. At the same 
time, the floating inductance gets converted to resistors. For simulating FDNR in floating 
form, the method of realization and limitations are exactly the same as those in the case of FIs.
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Figure 9.17 (a) Circuit diagram of a grounded FDNR obtained through GIC and (b) its symbolic 
representation.

While using the FDNR technique of converting passive RLC circuits to an active RC, there 
are certain practical glitches that need to be removed. For a doubly resistor-terminated ladder, 
the source resistor and the load resistor also get transformed to capacitors. The following 
example will help in designing an FDNR based filter and also illustrate the conversion of the 
two aforementioned resistors. The method of overcoming the practical glitches mentioned 
here will be discussed after the example.

Example 9.4: Obtain an active RC filter structure using FDNRs from a passive fifth-order 
Chebyshev LP filter having a cut-off frequency of 100 krad/s, a ripple width of 1 dB with 
source and load terminating resistors of 10 kW.

Solution: The structure and element values of a normalized fifth-order LP passive filter 
obtained from the standard design table or through the method described in Chapter 3 is 
shown in Figure 9.16(a). It is a minimum inductance configuration, and its normalized 
element values are already given in equation (9.29) and repeated here:

Rin = Rout = 1 W, L1 = L5 = 2.1349 H, L3 = 3 H and C2 = C4 = 1.0911 F

Application of (1/s) transformation on the elements converts it to the circuit elements as shown 
in Figure 9.18(a).

If we use a normalizing frequency of 100 krad/s, the normalized pass band edge frequency 
will be at w = 1.

Once the passive filter structure and its element values are obtained/designed and (1/s) 
transformation has been performed, the following are the next steps to design the converted 
FDNR(s).

Using equations (9.33), we get the element values for both FDNRs as:

D = 1.0911 × R4 C2 Æ C = 1.04455 F for R4 = 1 W
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Inductances converted as resistances will have normalized values as:

RL1 = RL2 = 2.135 W and RL1 = 3.0 W.

Active FDNRs are then put in place of D1, D2 shown in Figure 9.18(a). The values of the 
resistor R2 and R3 are not selected so far; they are arbitrary and can also be selected after 
frequency and impedance de-normalization. The frequency de-normalization factor being 100 
krad/s, we select an impedance normalization factor of 10 kW. The final circuitry of the active 
RC fourth-order LPF is shown in Figure 9.18(b) with the de-normalized value of the elements 
as follows:

C11 = C51 = C12 = C52 = 1.04455 nF, R41 = R42 = 10 kW

RL1 = RL3 = 21.349 kW and RL2 = 30 kW

Resistors R2 and R3 in each FDNR are selected as 10 kW, an arbitrary value; this equals resistor 
values already used in the circuit.
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500 mV

250 mV

0 V
100 Hz 1.0 kHz 10 kHz 100 kHz

V ( )17
Frequency

fo = 15.36 kHz

(c)

Figure 9.18 (a) Fifth-order passive doubly terminated low pass filter structure after (1/s) transformation 
and (b) active RC configuration using FDNRs after de-normalization of elements.  
(c) Response of the filter shown in Figure 9.18(b) while using grounded FDNRs.

Due to the conversion of terminating resistors as capacitors, it can be seen from Figure 
9.18(b) that the input biasing current cannot flow in the non-inverting terminal of OA1 and 
3 in the same way as in the case of inductance simulation. Using the same remedy in this case 
as well, the terminating capacitors Cin and CL (1 nF each) are bypassed by large value resistors 

′inR  and ′out R , as shown linked through dotted lines in Figure 9.18(b). Obviously, the bypass 
resistors (which are equivalent to inductors in the original passive RLC circuit) have to be high 
enough, so as not to significantly affect the response of the filters.

Another issue to be resolved for the practical implementation of the filter is that the 
termination resistors which have been transformed as capacitors, have to be re-inserted in the 
circuit as these were not part of the lossless filter structure. The problem is solved through the 
use of non-inverting buffers at the input and output terminals as shown in Figure 9.18(b).

Figure 9.18(c) shows the PSpice simulated response of the active filter of Figure 9.18(b). 
Voltage gain at low frequencies is 0.4984, corner frequency is 15.368 kHz (96.6 krad/s) and 
ripple width is 0.947 dB, with gain at 40 kHz dropping by 62 dBs; a sufficiently good response. 

9.9 Principle of Operational Simulation

To begin our discussion on the operational simulation technique, a ladder structure is selected 
for its simplicity and due to the fact that it is a common structure for filter realizations.  
Figure 9.19 shows a sixth-order ladder structure in block form along with the currents in the 
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branches and voltage levels across branch immittances. The block diagram is valid for single 
or doubly terminated ladders. The circuit can be described in terms of the following currents 
and voltages.

V1 = Vs – V2, V3 = V2 – V4, V5 = V4 – V6  (9.34)  

I2 = I1 – I3, I4 = I3 – I5, I6 = I5 as I7 is zero (9.35)  

+ –V1

Z1+

I1 I3 I5 I7

+ –V3 + –V5

Z3 Z5

–

I2 I4

Z2 Z4 Z6

I6

Vs
+

–

V2

+

–

V4

+

–

V6

Figure 9.19 Block form representation of a sixth-order doubly terminated ladder. Vs is the source 
voltage and Z1 contains the source resistance R1. Z6 contains the terminating resistor R2.

In addition, the current−voltage relation for the series and shunt branches can be written as:

I1 = (V1/Z1) = V1Y1, I3 = (V3/Z3) = V3Y3, I5 = (V5/Z5) = V5Y5 (9.36)  

V2 = I2Z2 = (I2/Y2), V4 = I4Z4 = (I4/Y4), V6 = I6Z6 = (I5/Y6) (9.37)  

For the development of the procedure in which current−voltage relations of the branches 
can be simulated operationally, the aforementioned four equations can be combined in the 
following form.

I1 = Y1(Vs – V2), V2 = Z2(I1 – I3) (9.38a, b)

I3 = Y3(V2 – V4), V4 = Z4(I3 – I5) (9.39a, b)

I5 = Y5(V4 – V6), V6 = Z6I5 (9.40a, b)

Apart from the realization of the elements Zi(or Yi), which will be taken up later in the chapter, 
operational simulation faces the following two problems if the circuit is to be realized using 
OAs.

The first problem is that in equations (9.38) to (9.40), if the output side is in terms of 
voltage, the input is current or vice versa, whereas in the OAs, both input and output are in 
terms of voltages. The second problem is that summation of voltages is easier while using OAs, 
but differencing them is a bit involved. Both the problems are solved step by step.
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The first of the two problems is solved by scaling equations (9.38) to (9.40) by a resistor R¢ 
and changing their way of representation. Hence, for equation (9.38a), we can write:

R¢I1 = R¢Y1 (Vs – V2)  (9.41a)

In equation (9.41a), R¢I1 becomes a voltage, which we will denote using a lower case voltage 
symbol with a subscript I as vI1. Use of the lower case symbol is to identify that it was obtained 
after normalization through R¢ and subscript I denotes that, initially, this voltage was in the 
form of current. Another important point is that the term R¢Y1, which becomes dimensionless 
and is the ratio of two voltages as vI1/(vs – v2), will also become a transfer function hY1. Hence, 
in the modified form, equation (9.41a) is written as: 

vI1 = hY1(vs – v2) (9.41b)

In equation (9.41b), subscript y1 on the transfer function indicates that it was obtained from 
admittance Y1. 

Following the same notation, equations (9.38) to (9.40) are written as follows, where both 
sides of the equation are in terms of voltages.

V2 = (Z2/R¢)(R¢I1 – R¢I3) Æ v2 = hz2 (vI1 – vI3) (9.42)

R¢I3 = R¢Y3(V2 – V4) Æ vI3 = hY3(v2 – v4) (9.43)

V4 = (Z4/R¢)(R¢I3 – R¢I5) Æ v4 = hz4(vI3 – vI5) (9.44)

R¢I5 = R¢Y5(R¢V4 – R¢V6) Æ vI5 = hY5(v4 – v6) (9.45)

V6 = (Z6/R¢)(R¢I5) Æ –v6 = hz6(–vI5) (9.46)

In the transformed equations (9.41b) to (9.46), only vI1 is positive, v6 has a negative sign and 
the rest of the voltages v2, vI3, v4, and vI5 appear in both inverting and non-inverting form 
and in the voltage differencing form. Since differencing of the voltage is a bit involved, this 
differencing in voltages is to be avoided; in its place, voltage summation is used. In this case, 
at least four inverters are needed to get both inverting and non-inverting voltages v2, vI3, v4, 
and vI5. Use of these extra inverters will make the circuit complex and uneconomical. A better 
alternative is to make those transfer functions, which became available in these equations from 
the impedances Z2, Z4 and Z6, inverting; hzi is replaced by –hzi. Under such a condition, the 
transformed equations (9.41b) to (9.46) will modify to the following:

vI1 = hy1{vs + (–v2)}, (–v2) = –hz2{vI1 + (–vI3)} (9.47a, b)

–vI3 = hy3{(–v2) + v4}, v4 = –hz4{(–vI3) + vI5} (9.47c, d)
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vI5 = hy5 {v4 + (–v6)}, –v6 = –hz6(vI5) (9.47e, f)

Equation (9.47) can be implemented operationally using the symbolic notations shown in 
Figure 9.20. Now inverters are not required since v2, vI3, and v6 are only negative, whereas 
voltages vI1, v4 and vI5 are only positive. The operational representation of equation (9.47) 
is shown in Figure 9.21, where only summers are needed. According to convention, signals 
originating due to current are placed on the upper line in the diagram and signals originating 
from voltages are placed in the bottom line. Figure 9.21 can be re-drawn as shown in Figure 
9.22. It may be noted that every loop in both Figures 9.21 and 9.22 comprise one positive and 
one negative transfer function; this is important from the stability point of view.

Operation Block diagram

V hV= io

V V V= +3 1 2

Connector

+

V2
V3V1

h

Vi Vo

V

Figure 9.20 Block diagram symbols for the operational equations.

Use of alternate inverting and non-inverting transfer functions in the loop avoid the use of 
extra inverters, but it creates the possibility of the output being out of phase by 180o; this is 
not of much significance. 

vI1
+ +

+

hy1 –hz2

+ +

hy3 –hz4 hy5 –hz6

–vI3 vI5

vs –v2 v4 –v6

Figure 9.21 Operational representation of equation (9.47).

Avoidance of inverters is achieved by selecting the impedance-based transfer function as 
negative, resulting in equation (9.47) and its circuit representation in block form is shown in 
Figures 9.21 and 9.22. Alternatively, in the same way, admittance-based transfer functions 
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vs

+ + + + +hy1 –hz2 hy3 –hz4 hy5 –hz6
–v2 v4 –v6

vI1 –vI3 vI5

Figure 9.22 An alternate form of presentation of Figure 9.21.

may be made negative. Keeping in mind the negative sign, the transformed parts of equations 
(9.41) to (9.46) will modify as equations (9.48): 

–vI1 = –hy1{vs + (v2)}, –v2 = hz2{(–vI1) + vI3} (9.48a, b)

vI3 = –hy3{(–v2) + v4}, v4 = hz4{vI3 + (–vI5)} (9.48c, d)

–vI5 = –hy5{v4 + (–v6)}, –v6 = hz6 (–vI5) (9.48e, f)

Like in the previous case, equation (9.48) is represented in block form in Figures 9.23 and 
9.24. Once the block form of the equations is available, each of the transfer functions is to 
be realized, which will depend on the element(s) used in a particular series and shunt branch. 

–vI1
+ +

+

–hy1 +hz2

+ +

–hy3 +hz4 –hy5 +hz6

+vI3 –vI5

vs –v2 v4 –v6

Figure 9.23 Operational block diagram or relationship for equation (9.48).

vs

+ + + + +–hy1 +hz2 –hy3 +hz4 –hy5 +hz6
–v2 v4 –v6

vI1 –vI3 vI5

Figure 9.24 An alternate form of Figure 9.23.

The operational simulation method of particular types of ladders will now be discussed 
while applying the procedure just described.
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9.10 Operational Simulation of a Low Pass Ladder

Even when a high pass (HP), band pass (BP) or band stop active or passive filter is to be 
realized, the procedure begins with a low pass (LP) structure. Later, it is transformed to the 
desired characteristics. Hence, the general block form structure shown in Figure 9.19 is now 
taken up to develop a procedure for an operationally simulated LP ladder. Figure 9.25 shows 
the structure of a sixth-order doubly terminated LPF, for which equations (9.36) and (9.37) 
will become the branch equations as shown here:

531
1 3 5

1 1 3 5
, ,  

VVV
I I I

sL R sL sL
= = =

+
 (9.49)

52 4
2 4 6
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Figure 9.25 A sixth-order doubly terminated low pass ladder structure.

In order to convert the passive ladder into the form of operational representation shown in 
Figure 9.21 (or 9.22), we need to find the transfer functions hY1, hY3, hY5, hZ2, hZ4 and hZ6. 
To get these transfer functions, all branch immittances are scaled by a resistor R¢, as it was 
done in the previous section, and the transfer functions based on impedances, hZ2, hZ4, hZ6 are 
multiplied by (−1) in conformity with equation (9.47) and the block figures in Figure 9.21 or 
9.22. Hence, we get:

1 1
1 1 1 1 1 1

1 1
( )   

Y
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h R Y
sL R sL R s r
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= = = =
+ 
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5
55

1 1

/
Yh

ssL R t
= =

′
 (9.55)

6
6 6

1 1

( 1/ )
Z

L L

h
sC R G R s rt

− = − = −
+ +′ ′ ′

 (9.56)

In equations (9.51) to (9.56), ti is the time constant as CiR¢ or Li/R¢, and /i ir R R=′ ′. It is 
observed that the realization requires a non-ideal non-inverting integrator for equation (9.51), 
two lossless inverting integrators for equations (9.52) and (9.54), two lossless non-inverting 
integrators for equations (9.53) and (9.55) and a finite gain inverting integrator for equation 
(9.56). It may be noted that had it been a case of fifth-order filter without C6, an inverter 
would have sufficed for operationally simulating the resistor RL for equation (9.56).

Hence, the problem boils down to the selection of proper, ideal and non-ideal, inverting 
integrators and non-inverting integrators. For the integrators, each integrator should have 
two inputs so that along with integration, it sums two voltages like vs and (–v2) and vI1 and 
(–vI3). In Chapter 8, a number of inverting and non-inverting integrators have been discussed. 
Figures 8.5 and 8.6 show inverting integrators, with and without active compensation, and 
Figure 8.7(a) shows a non-inverting integrator using an inverter. However, all the circuits have 
one input. We know from the circuit of an OA summer that addition of another resistor at 
the inverting input will do the job. Another important point is that all these integrators are 
lossless, and to make them non-ideal, a resistor (like QR) is to be connected in parallel with the 
feedback capacitor as in the Ackerberg–Mossberg biquadratic circuit shown in Figure 8.7(a). 
Based on this brief discussion, Figure 9.26(a) shows a two input non-ideal inverting integrator 
without any compensation and Figure 9.26(b) shows a two input inverting integrator with 
active compensation. Though any configuration can be used, the choice of this combination 
has the advantage that in any of the loops, the negative quality of the inverting integrator 
almost cancels the positive quality of the non-inverting integrator, making the combination 
better for an extended frequency range. Feedback resistance Rf has to be made open to realize 
ideal inverting and non-inverting integrators, as shown in Figures 9.26(a) and (b), respectively. 
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(a) (b)

Figure 9.26 (a) A two input non-ideal inverting integrator without compensation and (b) a two input 
non-ideal non-inverting integrator with active compensation.
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For Figure 9.26(a), with OA assumed as ideal:

1
 

 
A B

o
f A B

V R
V

sC G R R
 

= − + +  
 (9.57)

For the active integrator, a scaling factor Rs is used, which is independent of other branch 
constraints and values in order to provide flexibility in selecting proper component values. 
Hence, equation (9.57) modifies for the non-ideal integrator as: 

1 2
1 1

(  )
 

s s
o A B A B

s f s A B s

R R
V V V a V a V

sCR G R R R s rt
 

= − + = − + + + 
 (9.58)

With Gf = 0, equation (9.58) will reduce to the following for an ideal integrator:

1 2
1 1

 (  )s s
o A B A B

s A B

R R
V V V a V a V

sCR R R st
 

= − + = − +  
 (9.59)

Analysis of the circuit in Figure 9.26(b), taking OAs as ideal gives:

1
 

 
A B

o
f A B

V V
V

sC G R R
 

= + + +  
 (9.60)

Once again scaling it by resistor Rs, equation (9.60) modifies as:

1 2
1 1

 (  )
 

s s
o A B A B

s f s A B s

R R
V V V a V a V

sCR G R R R s rt
 

= + + = + + + + 
 (9.61)

With Rf = •, expression for a two-input ideal non-inverting integrator will become:

1 2
1

(  )o A BV a V a V
st

= + +  (9.62)

Now the results of the aforementioned equations for non-ideal and ideal cases can be applied 
on equations (9.51) to (9.56) along with equation (9.47). First, those three equations are taken 
which are based on admittance-based transfer functions, as these will be realized using the non-
inverting integrator shown in Figure 9.26(b) with (or without feedback) resistor Rf.

( ){ } 2
1 2

1 in 1 in

1 ( )

 

s
I s

v v
v v vsL R s r

R R
t

+ −= + − =
+

′
+ ′

′

 (9.63a)

( ){ } ( )2 4
3 2 4

33

 1
 

/
I

v v
v v v

ssL R t
− +

− = − + =
′

 (9.63b)
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( ){ } 4 6
5 4 6

55

1 ( )

/
I

v v
v v v

ssL R t
+ −= + − =

′
 (9.63c) 

Next, two equations involving impedance-based transfer functions are taken up, which shall be 
realized using the inverting integrators shown in Figure 9.26(a) without Rf .

( ) ( ){ } 1 3
2 1 3

22

( )1 I I
I I

v v
v v v

ssC R t
+ −

− = − + = −
′

−  (9.64a)

( ){ } 1 3
4 1 3

44

( )1 I I
I I

v v
v v v

ssC R t
+ −

−
′

= − + = −  (9.64b)

The last factor corresponds to equation (9.56), which will be realized using an inverting 
integrator.

( ) { }5
6

6 65/{(1 }
+

1
/ )I I

L

v v v
G R

r L + sC R
sC R

− = − = − ′ ′
′′

 (9.65a)

whereas, if C6 is absent, it becomes a fifth-order LP filter. Then, the last factor corresponding 
to equation (9.56) will be realized using an inverter as:

( ) { }6 5 5
1

( )I I L
L

v v v r
G R

− = − = ′
′

−  (9.65b)

Combining the results of the aforementioned equations, the realized circuit for the fifth-order 
LP active filter through operational simulation is given in Figure 9.27. In this realization, three non-
inverting, two inverting integrators and one inverter will be used; hence, a total of nine OAs 
were needed. If the block forms of Figure 9.23 or 9.24 are used, it will require three inverting 
and two non-inverting integrators and an inverter, which would need a total of eight OAs.
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Figure 9.27 Realization of the fifth-order low pass ladder through operational simulation employing 
integrators of Figure 9.26.
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In brief, operational simulation of an LPF can be completed in the following steps.

i. After choosing an approximation method, a lossless LC ladder along with its element 
values and terminating resistances is obtained.

ii. All the branch elements are scaled by a resistor to convert the immittances to transfer 
functions.

iii. Either of the signal flow diagrams of Figure 9.22 or 9.24 can be selected; generally, the 
block diagram requiring lesser number of non-inverting integrators is chosen as it saves 
one OA.

iv. Blocks of integrating transfer functions are then replaced by active integrators, with 
each block having an independent impedance scaling factor for additional flexibility in 
selecting element values suitable for IC fabrication.

The following example will illustrate the procedure.

Example 9.5: For the given specifications, it was calculated that a fifth-order LP Chebyshev 
filter with pass band ripples of 0.5 dB will be suitable. Find an active filter using the operational 
simulation method which will have an LP cut-off frequency of wo = 105 rad/s and a source 
resistance of 1 kW.

Solution: Figure 9.28 shows the structure and element values for a passive LP fifth-order 
Chebyshev filter having 0.5 dB ripples. The normalized element values, with cut-off frequency 
wo = 1 rad/s and normalized input terminating resistance Rin = 1 W are as follows:

L1 = L5 = 1.7058 H, C2 = C4 = 1.2296 F, L3 = 2.5408 H and RL = 1 W

Vin Vout
RL

1 �

L1 L3 L5

1 �

Rin

C2 C4

1.2296 F

+

–

1.7058 H 2.5408 H 1.7058 H+

–

Figure 9.28 Fifth-order low pass filter with normalized element values having 0.5 dB ripples in the 
pass band.

Equations (9.51) to (9.56) can be written for these element values, wherein R¢ is the scaling 
resistance:

1 2
1.7058 1

1/  ,   1/1.2296Y Z
s

h h sR
R R

 
= + − = −  ′ ′ 

′  (9.66a, b)

hY3 = 1/(2.5408s/R¢), –hZ4 = –1/1.2296sR¢ (9.67a, b)

hY5 = 1/(1.7058s/R¢), –hZ6 = –1/R¢ (9.68a, b)
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Transfer functions of the equations (9.66)–(9.68) are now compared with equations (9.63)–
(9.65) and depending upon which transfer function is to be realized with an inverting or 
a non-inverting integrator or an inverter (or buffer), element values for each circuit will be 
obtained. 

For the first transfer function hY1 from equations (9.63a) and (9.66a):

( ) ( ){ }1 2
1

1.7058 / (1/ )
I sv v v

s R R′ ′
= + −

+
 (9.69)

When it is compared with equation (9.61), it gives the following relation for a non-inverting 
integrator:

1 2
1

1
  ( )

(  )
s s

I s
s f s A B

R R
v v v

sCR G R R R
 

= + − +  
 (9.70)

Since in the block diagram of Figure 9.21, vs and (–v2) are added with equal weightage, the 
selection can be made such that RA = RB = Rs. Comparison of equations (9.69) and (9.70) gives:

1/(1.7058s/R’) + (1/R’) = 1/(sCRs + Gf1 Rs) (9.71)

Individual terms on the right-hand side of equation (9.71) are compared with respective terms 
on the left-hand, and application of the block impedance scaling factor R1 and the frequency 
normalization factor wo results in:

1 1

1

1.7058( / )
ando s

s
f

R R R
CR

RR R

w= =
′ ′

 (9.72)

In equation (9.72), there are two scaling factors, R¢ and R1 which give enough flexibility in 
selecting practical values for the passive components. Selecting the value for capacitor C = 1 
nF, and R1 = 2.5 kW, equation (9.72) gives:

6 21 0
9 5

1.7058( / ) 1.7058 2.5 k
42.645 10

1 10 10s
R

R R
C

w
−
× Ω= = = × Ω

× ×
′

×= = =
′

Ω
×

6

1 3
1

42.645 10
17.058 k

2.5 10
s

f
R R

R
R

If we select Rs = 5 kW = RA1 = RB1, the aforementioned equations give R¢ = 8.529 kW and with 
this, all the components of the non-inverting integrator have been obtained.

For the next integrator, which is inverting and ideal, equation (9.64a) will be used.

( ) ( ){ }2 1 3
1

1.2296
I Iv v v

sR
− = − + −

′
 (9.73a)
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Equation (9.73a) is compared with equation (9.59) (with Gf = 0).

( ) ( )2 1 3
1

  s s
I I

s A B

R R
V V V

sCR R R
 

− = − + − 
 

 (9.73b)

Since the scale factor of the two summing voltages VI1 and –VI3 is unity, we select Rs = RA = 
RB. Then, the same impedance scaling and frequency de-normalization used in the first case is 
applied, which gives:

CRs = 1.2296 R¢/R1wo

For a selected value of C = 1 nF as before:

3 5
1

1.2296 1.2296
4.9184

 2.5 10 1nF 10
s

o

R
R CR w

=
× × ×′

= =

It is important to note that since all integrators are independent of each other, the active 
scaling factor Rs in each case may be different, whereas the rest of the ladder will be scaled by 
the same factor R¢ = 8.529 kW which was obtained while designing the first integrator.

Hence, for the inverting integrator Rs = RA2 = RB2 = (4.918 × 8.529) = 41.94 kW.
For the third integrator, from equation (9.63b): 

( ) ( )3 2 4
1

{   }
2.5408 /

Iv v v
s R ′

− = − + .

Comparing this with equation (9.61), with Gf = 0:

( ) ( )3 2 4
1

  s s
I

s A B

R R
V V V

sCR R R
 

= − + 
 

 (9.74)

This provides the following relation after impedance and frequency scaling:

12.5408( / )o
s

R
CR

R

w=
′

If C is selected as 1 nF, 
3

3 5 9
2.5408 2.5 10

7.447 k
8.529 10 10 10sR −

× ×= = Ω
× × ×

. 

Hence, having unity gain for (–V2) and (V4), Rs = RA3 = RB3 = 7.447 kW.
For the fourth integrator from equation (9.64a), selecting the value of C2 = C4, the inverting 

integrator will be exactly the same as the second inverter.
For the fifth integrator, which is non-inverting, from equation (9.63c) L5 = 1.7058 H, 

the same as L1; hence, its circuit realization will be the same as that of the first non-inverting 
integrator; with Rf open since it needs a lossless integrator.
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The last unit being an inverter, equation (9.61) reduces to the following:

( ) ( )6 5
2

1 s
I

f s A

R
v v

G R R
 

− = −  
 

 (9.75)

Using equations (9.65b) and comparing 1
6 5( )I

R
v v

R ′
− = −  with equation (9.75):

For RA6 = 5 kW, RL = Rin = 2.5 kW, Rf2 = 5 k × 2.5 k/8.529 k = 1.465 kW
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Figure 9.29 (a) Circuit realization for the low pass filter of Example 9.5. (b) Frequency response of the 
operationally simulated filter shown in Figure 9.29(a) and the passive filter shown in Figure 9.28.
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Figure 9.27 is redrawn as Figure 9.29(a) with all calculated element values and Figure 9.29(b) 
shows the simulated magnitude response of the operationally simulated filter. Its corner 
frequency is 15.6 kHz (98.05 krad/s), voltage gain is 0.4998 and the ripple width is 0.555dB. 
At 200.8 krad/s (31.953 kHz), attenuation is 43.8 dBs. For comparison sake, the passive filter 
shown in Figure 9.28 was also simulated and its response is also shown in Figure 9.29(b). Its 
corner frequency is 15.902 kHz (99.95 krad/s), ripple width is 0.5061 dB and an attenuation 
of 42.53 dBs is at 31.888 kHz (200.4 krad/s). It can be easily observed that the operationally 
simulated response almost overlaps the passive response except that the ripple width is slightly 
more.

9.11  Operational Simulation of the Band Pass Ladder

In many cases, a BPF is designed using an initial design of a prototype LPF and then 
transforming it as discussed in Section 5.4 of Chapter 5. The effect of such a transformation 
is that the lossless inductance and capacitances get converted as series LC and parallel LC 
branches, respectively. Figure 9.30(a) shows a simple LP ladder and its converted BP form in 
Figure 9.30(b); the series resistor with the inductor gets converted into an RLC branch whose 
impedance is given as: 

Z1 = (Rin + SL1) Æ Rin + L1Q(s + 1/s) = Rin + sQL1 + L1 Q/s

= Rin + sL1BP + 1/sC1BP (9.76)

R in

C2

Vin

L1 L3

VoutRL

C4

+

–

+

–

R1

Vin

L1BP

VoutRL

+

–

+

–

C1BP
L3BP

C3BP

C2BP

L2BP
C4BP L

4
B

P

(a)

(b)

Figure 9.30 (a) Doubly terminated fourth-order lossless low pass ladder and (b) the band pass ladder 
obtained from (a) through low pass to band pass transformation.
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The lossy capacitance at the output end gets converted into a shunt RLC branch having 
admittance as:

Y4 = GL + SC4 Æ GL + C4Q(s + 1/s) = GL + sC4Q + C4Q/s

= GL + sC4BP + 1/sL4BP (9.77) 

whereas the lossless branches have been shown to be, respectively:

Y2 = sC2BP + 1/sL2BP and Z3 = sL3BP + 1/sC3BP (9.78)  

In equations (9.76) and (9.77), elements of the normalized BP section are: 

L1BP = QL1, C1BP = 1/QL1, L4BP = 1/QC4, and C4BP = QC4 (9.79) 

Admittance of the series arm of equation (9.76) and the impedance of the shunt arm of 
equation (9.77) can be written as:

( )
1BP

1BP 2
in 1BP 1BP 1BP

(1/ )
 

/ 1 / ( )
L s

Y
s R L s L C

=
+ +

  (9.80) 

( )
( )

4BP
4BP 2

4BP 4BP 4BP

1/
 

/ (1/ )L

C s
Z

s G C s L C
=

+ +
 (9.81)  

For the operational simulation of the BPF shown in Figure 9.30(b) in the form of the block 
diagram shown in Figure 9.23 or 9.24, equations (9.80) and (9.81) are scaled by R¢, in order 
to convert them into the form of the following voltage ratio transfer functions

( ) ( )
1BP

1BP 1 2
in 1BP 1BP 1BP

( / )
/ 1 / ( )Y

R L s
Y R h s

s R L s L C

′
′− = − = −

+ +
 (9.82) 

( )
( )

4BP
4BP 4 2

4BP 4BP 4BP

/
 ( )

/ (1/ )Z
L

G C s
Z G h s

s G C s L C

′
′ = =

+ +
 (9.83) 

Expressions in equations (9.82) and (9.83) represent inverting and non-inverting BP functions 
with a finite value of pole-Q.

For the internal branches, which do not contain resistors, scaling by the resistor R¢ gives the 
respective transfer functions shown here, which are inverting and non-inverting BP functions 
with infinite pole-Q.

( ) ( )
′

′
= =

+
2BP 2BP

2 2
2BP 2BP

( / )
( 1 / )Z

Z s G C s
h s

R s L C
 (9.84) 
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( ) ( )′
′− = − = −

+
3BP

3BP 3 2
3BP 3BP

/

( 1 / )Y

R L s
Y R h s

s L C
 (9.85) 

It is obvious from the aforementioned equations that a doubly terminated BPF obtained 
from an LPF through frequency transformation can be realized using only second-order filter 
sections which are able to realize finite as well as infinite Q. Such filter sections should be 
capable of adding two inputs, and these will be connected alternately inverting and non-
inverting form; in exactly the same way as in the LPF case. 

There are a number of active circuits for the realization of second-order BP functions 
employing one or more than one active device. Obviously, the advantages and limitations of 
the applied second-order section will be reflected in the overall functioning of the operationally 
simulated realization. Use of one OA BPF section will be economical but usually such 
realizations have high sensitivities, whereas multi amplifier sections may not be economical 
but are less sensitive. The following example will help in understanding the procedure for 
operationally simulating a BPF. 

Example 9.6: A doubly terminated LP Butterworth approximated filter structure is shown 
in Figure 9.31. Using frequency transformation, convert the filter to a BPF having center 
frequency wo = 104 rad/s, and Q = 5. Find a suitable active realization using the operational 
simulation method.

Solution: From equation (9.79), normalized value of the elements of the BPF are:

L1BP = 5 × 0.7645 = 3.8225 H, C1BP = 1/5 × 0.7645 = 0.2616 F

L2BP = 1/5 × 1.848 = 0.1082 H, C2BP = 5 × 1.848 = 9.24 F

L3BP = 5 × 1.848 = 9.24 H, C3BP = 1/5 × 1.848 = 0.1082 F

L4BP = 1/5 × 0.7645 = 0.2616 H, C4BP = 5 × 0.7645 = 3.8225 F (9.86) 

R = 1 �in

Vin VoutR = 1 �L

+

–

+

–

0.7645 H 1.848 F

1.848 F 0.7645 F

Figure 9.31 Fourth-order Butterworth filter structure with normalized elements values for Example 9.6.

After frequency normalization by wo = 104 rad/s and impedance normalization by a factor of 
103, element values become:
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Rin = 1 kW, L1BP = 382.25 mH, C1BP = 26.16 nF (9.87) 

L2BP = 10.82 mH, C2BP = 924 nF (9.88) 

L3BP = 924 mH, C3BP = 10.82 nF (9.89) 

L4BP = 26.16 mH, C4BP = 382.25 nF, RL = 1 kW  (9.90) 

Figure 9.32 shows the transformed passive eighth-order BPF structure with de-normalized 
element values. 

Vin Vout

+

–

+

–

10 �3
382.25 mH
(1.529 H)

26.16 nF
(6.54 nF)

924 mH
(3.696 H)

10.82 nF
(2.705 nF)

924 nF
(3.696 F)�

10.82 mH
(2.705 )mH

382.2 nF
(1.529 F)�

26.16 mH
(6.54 )mH

10 �3

Figure 9.32 Eighth-order band pass filter with de-normalized element values from Figure 9.31 for 
Example 9.6.

Series and shunt branches comprising the elements in equations (9.87) and (9.90), 
respectively, are written like equations (9.80) and (9.81), and scaled by R¢(kW) in order to be 
represented by transfer functions of equations (9.82) and (9.83). The resulting equations will 
be as follows:

( ) ( )
( )1 2 3 9

/ 0.38225

10 / 0.38225 (0.38225 26.16 10 )
y

R s
h s

s s

′

−
− = −

+ + × ×
 (9.91) 

( ) ( )
( )

6

4 2 3 6 6

/ 0.38225 10

10 / 0.38225 10 (0.02616 * 0.38225 10 )
z

G s
h s

s s

−

−

′

− −

×
=

+ × + ×
 (9.92) 

Taking the same steps, equations (9.88) and (9.89) will transform into the following equations:

( ) ( )
( )

12

2 2 12

/ 924 10

1 / 0.1082 924 10
z

G s
h s

s

−

−

′ ×
=

+ × ×
 (9.93) 

( ) ( )
( )3 2 12

/ 0.924

1 / 0.924 10.82 10
y

R s
h s

s

′

−
=

+ × ×
 (9.94)
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There are some choices available for the realization of the four transfer functions, equations 
(9.91)–(9.94). Separate configurations can be chosen for the inverting and non-inverting 
second-order BP sections, with finite and infinite Q. In the present example, a modified Tow–
Thomas biquad with two inputs as shown in Figure 9.33 is used. The important feature of the 
modified circuit is that both inverting and non-inverting BP responses are available at the OA 
outputs and infinite Q is obtained simply by open circuiting the resistor R*. Therefore, the 
design of all the four transfer functions becomes modular; an attractive feature for integration. 
Assuming ideal OAs, analysis of the circuit of Figure 9.33 gives its transfer function as:

( )
( )

1
BP 2 *

1 1 2 1 2

1/
 

1/ (1/ )
A B

A B

C sV V
V

R R s C R s C C R R

 
= +   + +

 (9.95) 

–

+

–

+ –

+

VB

C1

R*
R

VBP

R1

RB

VA
RA

R

C2

R2

–VLP

Figure 9.33 Modified Tow–Thomas biquad with two inputs.

From equation (9.95), parameters are

wo = 1/(C1 C2 R1 R2)0.5 (9.96) 

* 1
*

1 2 21

1 1
   o C

Q R
Q R R CC R
w  

= → =   
 (9.97) 

Normally, C1 = C2 = C, then the parameters are:

½
1 21/ ( )o C R Rw =  and *

BP
1 2

1
Q R

R R
 

=   
 (9.98) 

To get infinite QBP, R* is made open, which does not affect the expression for wo. Without 
affecting generality, R1 = R2 = R, and as the two voltages VA and VB is to be added with equal 
weightage, we select RA = RB. In the finite Q case, the simplified form of equation (9.95) 
becomes:

( )
( )BP 2 * 2

(  ) 1/

1/ 1/ ( )
A B AV V CR s

V
s CR s CR

+
=

+ +
 (9.99)
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Selecting C = 10–7 F, in all the four branches, from equation (9.98), it gives:

R = 1/104 × 10–7 = 1 kW (9.100) 

For evaluation of the rest of the elements of branch 1, comparing the parameters of equation 
(9.99) with equation (9.82), we get:

in
*

1BP 1BP

1 1
and

A

R R
L L CRCR

′
= =  (9.101)

R* = L1BP/CRin = 0.38225/10–7 × 103 = 3.8225 kW (9.102) 

With R¢ = 1 kW, we get from equation (9.101):

RA1 = L1BP/CR¢ = 3.8225 kW = RB1 (9.103) 

In equation (9.103), subscript 1 indicates elements for the first branch for which all elements 
have been calculated. For shunt arm 2, equation (9.99) (with R* open) is compared with 
equation (9.84). It gives: 

RA2 = C2BP/G¢ C = 9.24 kW = RB2 (9.104) 

For the third (series) branch, R* is open and comparison between equations (9.99) and (9.85) 
gives:

RA3 = L3BP/CR¢ = 9.24 kW = RB3 (9.105) 

For the fourth (shunt) arm, comparison between equations (9.99) and (9.83), we get:

R* = 3.8225 kW, RA4 = 3.8225 kW (9.106)   

Figure 9.34(a) shows the operationally simulated eighth-order BPF. Care is taken to keep 
alternate inverting and non-inverting blocks.

Figure 9.34(b) shows the simulated response of the active filter of Figure 9.34(a), having 
a center frequency of 1.5969 kHz (10.037 krad/s) with a mid-band gain of 0.547, instead of 
0.5. With a bandwidth of 320.8 Hz, obtained Q = 4.977. It is observed that the pass band is 
also flat as it should be. Figure 9.34(b) also shows the simulated response at the same center 
frequency, with Q = 5, for the passive structure. With the mid-band gain as 0.5, the pass band 
is still flatter with Q = 5.02.

Figure 9.34(c) shows the simulated response at the same center frequency with Q = 20, for 
the operationally simulated as well as passive structure. De-normalized element values for the 
filter with Q = 20 are also shown in Figure 9.34(a) within brackets. The response is not flat 
and the mid-band gain is also increased to 0.713 instead of 0.5. The realized value of Q = 19.6.                                               
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1.0 V

0.5 V

0 V
1.4 kHz

V (84) V (666)

Active filter

Passive filter

Frequency
1.8 kHz

(c)

Figure 9.34 (a) Operationally simulated eight-order band pass filter for Example 9.6. (b) Simulated 
response of the filter with Q = 5, and passive filter (c) Response of the operationally 
simulated eighth-order band pass filter with Q = 20.

9.12 General Ladder Realization

LP and BP lossless ladders are very important from the point of view of filter design. From the 
discussion so far, it can be observed that the procedure for their realization through operation 
simulation is a bit long but follows a set pattern. Of course, the design depends on the kind 
of structure used for realizing a particular second-order transfer function for the inverting 
or non-inverting mode branch. However, there are many ladder configurations other than 
an all pole LP and BP in which the branches (series or shunt) are in a most general form. A 
branch can comprise inductors and capacitors in both series and parallel form and resistors as 
well. Figures 9.35(a) and (b) show one such general structure each in series and parallel form. 
Herein, in Figure 9.35(a), subscript s indicates an element in the series branch and in Figure 
9.35(b), p indicates parallel (or shunt) branch elements. While operationally simulating, the 
series branches are expressed in admittance form and the shunt branch in impedance form, and 
both are scaled by the same value resistance R¢. Following the same procedure and expressing 
them in continued expansion form, first for the series branch, we get the following expression. 

( )
1 1

1 2
2

1
1 1     1  

s s

s s
s

R Y s R L s
R R sC R sC R L s

R

=
+ + +

+

′

′ ′ ′ ′

′

 (9.107)  
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Rs1 Ls1 Cs1

Ls2

Cs2

Rp1 Lp1

Cp1

Cp2

Lp2

(a) (b)

Figure 9.35 (a) Series and (b) shunt branch of a ladder with arbitrary combination of elements.

Since R¢Y(s) can be written as hY(s) and the scaled elements can be written in lower case 
symbols, equation (9.107) modifies as:

( )
1 1

1
2

2

1
1 1      1  

Y

s s
s

s
s

h s
r sl

sC sC
sl

=
+ + +

+

 (9.108)  

Similarly, for the shunt branch, the impedance function divided by R¢ and the resultant 
transfer function with negative sign are:

( )
1 1

1 2

2

1
1 1    

1     
p p

p p

p

Z s
R R G sC R L L

s s
R R sC R

′

′ ′ ′

′ ′
− = −

+ + +
+

 (9.109) 

Since Z(s)/R¢ can be written as hZ(s) and the scaled elements can be written in lower 
case symbols, equation (9.109) modifies as:

( )
1 1

1
2

2

1
1 1     1  

Z

p p
p

p
p

h s
g sc

sl sl
sc

− = −
+ + +

+

 (9.110) 

Note that series branches result in a current, like I1 = Y1{Vs + (–V2)} in Figure 9.19, which gets 
converted to a voltage after resistance scaling, and the shunt branches result in voltages like V2 
= Z2 (I1 – I3); scaled as well.

A suggested approach for the realization of the kind of transfer function of equations (9.108) 
and (9.110) uses a two-input summing inverter with an arbitrary transfer function H(s) = (Vi/
Vout) and admittance Y(s) in its feedback path as shown in Figure 9.36(a) and (b). Assuming 
OA as ideal, a simple analysis of Figure 9.36(a) shows that:

( ) ( ) ( ) ( ) ( )out
1

 
;

A B
A A B B A B

G G G
V V G V G V V

Y s H s Y s H s GG

 
= − + = − +

′

 ′



  (9.111) 
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Figure 9.36 (a) A schematic realizing the transfer function for equation (9.111), with H(s) = (Vi/Vout) 
and (b) its dual for realization of the inverting transfer function.

Equation (9.111) shows the summation of two input voltages resulting in a voltage ratio transfer 
function which is inverting and proportional to the inverse of Y(s) × H(s), with R¢ = 1/G¢ as 
the scaling resistor. Obviously, this arrangement is valid for the inverting transfer function 
blocks in operational simulation as represented by equation (9.110). In a dual scheme, shown 
in Figure 9.36(b), with two voltages connected to the non-inverting input of the OA and 
the inverting terminal grounded, and with transfer function (–H(s)), exactly the same output 
as in equation (9.111) results in a non-inverting transfer function, which is used for the non-
inverting blocks in operational simulation as represented by equation (9.108). It is to be noted 
that, in each version, with the help of negative feedback, one inverting and one non-inverting 
combination of OA and H(s) is maintained for the stability of the arrangement. 

As mentioned earlier, H(s) is an arbitrary function in s; hence, one can realize not only the 
transfer function of equation (9.108) and (9.110), but anything simpler or more complex than 
that. Presently, we will limit our discussion to the circuit realization of Figure 9.35, but it can 
be extended to other circuits or simplified to the LP and BP circuits, which are nothing but 
special simpler cases of the circuit in Figure 9.35.

9.12.1 Realization of shunt arm

To realize the inverting transfer function of equation (9.110), four feedback branches need to 
be connected between terminals P and Q of the circuit in Figure 9.36(a) corresponding to each 
branch of the circuit in Figure 9.35(b). For the realization of single elements, Rp1, Lp1 and Cp1,  
the structures shown in Figure 9.37(a) will be connected between terminals P and Q, whereas, 
for realizing the parallel combination of Lp2 and Cp2, the circuit shown in Figure 9.37(b) will 
be connected between terminals P and Q. Assuming both OAs as ideal, a routine analysis gives 
the following relations in Figures 9.37(a) and (b), respectively. 

Vc0 = H0 Vout, Vc1= H1 Vout and Vc2= H2 Vout (9.112) 

G31 Vout + {Y3 (–H3) + Y4 (–H4)} Vc3 = 0 or Vc3 = G31 Vout/(Y3 H3 + Y4 H4) (9.113)  
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Figure 9.37 Expanded configuration for realizing (a) Rp1, Lp1 and Cp1 and (b) Lp2 and Cp2 of a ladder 
like that shown in Figure 9.35(b).

Substitution of Figures 9.37(a), (b) in Figure 9.36(a), yields the following relation: 

GA VA + GB VB + Vc0 Y0 + Vc1 Y1 + Vc2 Y2 + Vc3 G32 = 0 (9.114) 

Substituting Vc0, Vc1, Vc2 and Vc3 from equations (9.112) and (9.113) in equation (9.114) and 
scaling by resistor R≤, the following output voltage is obtained. 

out

0 0 1 1 2 2
3 3 4 4

31 32 31 32

1
1 
  

A B
A B

R R
V V V

R R Y H R Y H R Y H R Y H Y H

G G R G G R

  = − + 
  + + +

′′


+

′′

′′ ′′ ′′

′′ ′′

 (9.115) 

Equation (9.115) shows the output voltage as a function of two voltages VA and VB, which are 
being added. If these voltages are to be added directly without any weightage, then RA and RB  
will be equal to R¢¢. If the voltage levels are to be changed, which is sometimes required for 
changing the dynamic range of the filter section, then it is done by opting for a proper ratio 
between R¢¢ and RA and RB. Components of the transfer function of equation (9.115) can be 
compared with the inverting transfer function of equation (9.110) and a procedure can be 
developed for finding the nature of the transfer function Hi(s) and the value (expression) of 
elements to be used in it in terms of the elements of the circuit shown in Figure 9.35(b).

For the shunt arm of the ladder, to realize the element Rp1, we select Y0 = G0 and H0 = 1, 
which means:

gp1 = Y0 H0 R≤ Æ Gp1 R¢ = G0 R≤  or R0 = (R≤/R¢) Rp = kp Rp, where kp = R≤/R¢ (9.116)  

For the realization of the capacitance Cp1, we select Y1 = sC1 and H1 = 1, which results in:

scp1 = Y1 H1 R≤ Æ sCp1 R¢ = sC1 R≤ or C1 = (R¢/R≤) Cp1 = Cp1/kp (9.117) 

It is better to fix the value of kp from equation (9.117) and use equation (9.116) to get the 
value of R0. If Rp is not present in the shunt branch of the original ladder, then R0 shall be 
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open circuited, and similarly, if Cp1 is absent, C1 shall will also be absent, and kp can be selected 
using equation (9.116).

For the realization of inductor Lp1, we select H2 = (1/sC2R21), a non-inverting integrator, 
and Y2 = G22, which means that:

122
2 2 21 22 1 2

1 1 2 21

1 1
  for 

/
p

p
p p

LG
Y H R R R R k C C C

sl sL R sC R C
= → = → = = =′′ ′′

′
 (9.118) 

Circuit structure for the realization of Rp1, Lp1 and Cp1, corresponding to equations (9.116), 
(9.117) and (9.118) are shown in Figure 9.38(a).

(a)
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Figure 9.38 Circuit realization for (a) Rp1, Lp1 and Cp1 and (b) Lp2 and Cp2 of the shunt branch of a 
ladder like that shown in Figure 9.35(b).
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For the branch containing a series combination of Lp2 and Cp2, first to find the relations for 
Lp2, we select H3 = 1 and Y3 = sC3; this gives the following relations:

2 2 23 3 3 31 32
2 31 32 3

31 32 3
  for p p p

p p
L L LY H C R R R

sl s s R R k C C
G G R R R C R C

′′= → = → = = =
′′ ′ ′′ ′

 (9.119) 

For the realization of the capacitor Cp2, we select, Y4 = G41 and H4 = (1/sC4R42) a non-inverting 
integrator, and we get:

41 31 324 4

2 31 32 2 4 42

1 1 1
  

p p

G R RY H
sc G G R sC R s C R R

= → =
′′ ′ ′′

 

Substituting for R31 R32 from equation (9.119), we get: 

2 2 2 2
41 42 42

4
 for p p p p

p
C L C LR

R R k C C
C R C C

′= × = =
′′

 (9.120) 

The circuit structures for the realization of Lp2 and Cp2, corresponding to equations (9.119) 
and (9.120) are shown in Figure 9.38(b), which are to be combined with Figure 9.37(a).

Equations (9.116) to (9.120) serve as the design equations for the structure and the element 
values. Once kp is fixed, and C1 = C2 = C3 = C4 = C are selected, the products R21R22, R31R32 
and R41R42, are found out. There is no constraint and we can select:

Ri1 = Ri2 (9.121) 

The remaining input resistances RA and RB are decided depending on the voltage gain given to 
the two voltages VA and VB. For the usual case of summing the voltages directly,

RA = RB = R≤ (9.122) 

9.12.2 Realization of series arm

Admittance of a series arm, which is shown in Figure 9.35(a), is converted to a transfer function 
of equations (9.107) and (9.108). Its non-inverting expression is realized by similar structures 
as of Figure 9.37, shown in Figure 9.39, where input voltages are applied at the non-inverting 
terminal of OA, A0 of Figure 9.36(a); the rest of the inputs are given to the inverting terminal. 
Analysis results in exactly the same output voltage expression as in equation (9.115) without 
the inverting sign as desired.

Using the same procedure as was adopted for the shunt branch, the following selections 
were made for the elements Rs1, Ls1 and Cs1.

0 1 2
2 21

1
1,  H H H

sC R
= = − − = −  (9.123a)
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Figure 9.39 Circuit realization for (a) RS1, LS1 and CS1 and (b) LS2 and CS2 of the series branch of a 
ladder like that of Figure 9.35(a).

Corresponding to equation (9.123a), the circuit structures to be connected between terminals 
P and Q of Figure 9.36(a) are shown in Figure 9.39(a). Selected components will be as:

Y0 = G0, Y1 = sC1, Y2 = sC2, (9.123b)

The following selections were made for the elements Ls2 and Cs2.

3 4
4 41

1
1,  H H

sC R
= =  (9.124a)

Corresponding to equation (9.124a), the circuit structures to be connected between terminals 
P and Q of Figure 9.36(b) are shown in Figure 9.39(b). Selected components will be as:

Y3 = sC3, Y4 = G4 (9.124b)

Component values are obtained as: 

2
0 0 1 0 1 1/ ( ) / ( ) /s s s sY H R R R R R R R k R= → = =′′ ′ ′ ′′  (9.125a) 

( ) 2
1 1 1 1 1 1/ / /s s s sY H R sL R C L R R L k= → = =′′ ′ ′ ′′  (9.125b) 

As before, after selecting a suitable value of C1 = C, ks is fixed from equations (9.125b); then, 
R0 is obtained from equation (9.125a) and the value of ks remains constant in the next steps. 
In case Ls1 is not present, then C1 = 0 and the value of ks shall will be decided by equation 
(9.125a).

With C2, C3 and C4 chosen equal to C(C1), the remaining resistances are obtained from the 
following:

2 2 31 321 2 2 2 2
21 22 31 32 41 42 2 2  ,   ,s s s s s

s s
s

R RC C L L C
R R k R R k R R

C C C k C
= = = =  (9.126)
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Once again without losing generality, we can select:

Ri1 = Ri2 = Ri and RAi = RBi = R≤ for unity gain. (9.127) 

Example 9.7: Compare the responses of the passive circuit shown in Figure 9.40(a) and its 
active version as an illustration of the realization of shunt arm through operation simulation.

Solution: Impedance scaling factor R¢ of 1 kW and frequency scaling factor of 2 krad/s gives 
the element values as:

Rp1 = 1 kW, Lp1 = 0.2 H, Cp1 = 0.05 mF, Lp2 = 0.1 H and Cp2 = 0.1 mF (9.128)   

Resistance R* = 1 kW (= Rp1) has been connected in series to find the response in the passive 
case only.
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Figure 9.40 (a) Prototype normalized shunt arm for Example 9.7. (b) Simulated response of the 
passive and operationally simulated shunt arm of Figure 9.40(a).

https://doi.org/10.1017/9781108762632.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.010


292 Continuous Time Active Analog Filters

Design of the shunt arm begins with the application of equation (9.117), and selection of 
scaling factor R≤ as 1 kW. As impedance scaling factor R¢ was 1 kW, factor kp = 1. It results in 
capacitor C = Cp1 = 0.05 mF. With kp being unity, equation (9.116) gives R0 = 1 kW.

While selecting Ri1 = Ri2, equations (9.118)–(9.120) give C2 = C3 = C4 = 0.05 mF, R21 = R22 
= 2 kW, R31 = 32 41 42 2  k  and 2 k .R R R= Ω = = Ω
Input scaling resistance RA equals R≤ when voltage gain of unity is desired. In the present case, 
for the passive circuit, gain magnitude is 0.5; hence, RA is doubled to 2 kW.

Figure 9.40(b) shows the simulated frequency response of the de-normalized passive as 
well as its active version which match well with a notch at 10 krad/s and peak at the same 
frequencies of 19.92 krad/s and 0.823 krad/s.

Example 9.8: Compare responses of the passive circuit shown in Figure 9.41(a) and its active 
version as an illustration of the realization of series arm through operation simulation. 

Solution: In the normalized passive circuit, resistance RL = 1 kW is connected as a load for 
obtaining the circuit’s transfer function. Impedance scaling factor of R¢ = 1 kW and a frequency 
scaling factor of 20 krad/s was employed, resulting in the value of elements as:

RL = 1 kW, Rs1 = 1 kW, Ls1 = 0.2 H, Cs1 = 0.05 mF, Ls2 = 0.1 H, Cs2 = 0.1 mF (9.129)  

From equation (9.125b), selecting ( ) ( )2 2 6 6
1 1 10.05 µF, / 0.2 / 0.05 10 4 10s sC k L C −= = = × = × . 

Application of equations (9.125)–(9.127) and selecting Ri1 = Ri2 gives the element values as:

0 21 22 31 32 41 424 k , 2 k , 2 2 k , 2 kR R R R R R R= Ω = = Ω = = Ω = = Ω

C2 = C3 = C4 = 0.05 mF (9.130) 

Since R¢ was selected as 1 kW, R≤ = 4 kW. Hence, to bring the output voltage equal to half 
at the input (same as in the case of the passive circuit), the value of the resistance RA = 2R≤ =  
8 kW.

Frequency responses of the de-normalized passive circuit and the active circuit are shown in 
Figure 9.41(b) with notch at 1.58 kHz and peaks at 1.123 kHz and 2.248 KHz. 

2 H

Vin 1 � 1 F

C1
R1

L1

4 H L2

C2 2 F

Vout

1 � R L

(a)
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600 mV

400 mV

200 mV

0 V
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz

V (3) V (59)
Frequency

Passive series branch

Operationally simulated

(b)

Figure 9.41 (a) Prototype normalized series arm for Example 9.8. (b) Simulated response of the 
passive and operationally simulated series arm of Figure 9.41(a).

Example 9.8: Redesign the eighth-order BPF of Example 9.6 using the general ladder 
realization approach.

Solution: Application of the frequency de-normalization by 104 rad/s and impedance scaling 
by a factor of 103, elements of the BPF were made available in equations (9.87)–(9.90). 
Now, its structure is shown in Figure 9.42(a), along with their values, which are calculated in 
following paragraphs. Design for the complete circuit proceeds in terms of individual branches 
and then they are properly interconnected.

Series branch number 1: Selecting scaling factor R≤ equal to the original impedance scaling 
factor R¢(1 kW) gives the coefficient 2 610sk = . Assuming all capacitors to be equal for the 
series branch, use of equations (9.125b), (9.125a), and (9.126), respectively, give the following 
values of the elements:

1
11 2 6

1.529
1.529 µF

10
s

s

L
C

k
= = =  (9.131a)

2 3
01 / 10s sR k R= = Ω  (9.131b) 

( )
9

3
211 221 1 21 6

6.54 *10
/ 10 65.4 

1.529 *10s sR R k C C
−

−

 
= = = = Ω  

 (9.131c)
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Figure 9.42 (a) Operational simulation circuit with element values for the eighth-order band pass filter 
of Example 9.9. (b) Response of the eighth-order band pass filter using general ladder 
realization approach for Example 9.9.

Assuming gain of the filter as unity, the input resistances are:

RA1 = RB1 = R≤ = 1 kW (9.132) 

Shunt branch number 2: With all capacitors for the shunt branch taken as equal to C12 and 
kp = (R¢/R≤) = 1, application of equations (9.117), (9.116), and (9.118), respectively, gives the 
following values:

C12 = Cp1/kp = 3.696 mF, and R02 = • (9.133a)

( )
3

212 222 2 12 6
2.705 10

/ 27.05 
3.696 10p pR R k L C

−

−

 ×= = = = Ω × 
 (9.133b)  
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Input resistances RA2 = RB2 = R≤ = 1 kW. In fact, for the rest of the two branches, input 
resistances will be the same.

Series branch number 3: Similar to series branch number 1, all capacitors in the branch 
remaining equal:

C13 = 3.696 mF, and R03 = • (9.134a)

( )
9

3
213 223 3 23 6

2.705 10
/ 10 27.05 

3.696 10s sR R k C C
−

−

 ×= = = = Ω × 
 (9.134b) 

Shunt branch number 4: Similar to the case of branch number 2, and capacitors remaining 
equal:

C14 = 1.529 mF and R04 = kp Rp4 = 1 kW (9.135a)

9
3

214 224 6
6.54 10

10 65.4  
1.529 10

R R
−

−

 ×= = = Ω × 
 (9.135b) 

Figure 9.42(a) shows the combination of all the four branches connected in operational 
simulation form, along with the element values. The simulated response of the filter is shown 
in Figure 9.42(b). The simulated center frequency is 1.5878 kHz (9.945 krad/s) with a 
bandwidth of 78.99 Hz, resulting in Q = 20.1. Value of the mid-band gain is 0.462 instead 
of 0.5.  
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Practice Problems 

9-1 (a) Input impedance expression for the circuit in Figure 9.9(b) is obtained as Zin = Z1Z3Z5/Z2Z4 with OAs 
considered ideal. Resulting expression of the simulated inductance is given as Leq = R1R3R5C/R2. Show 
that, when OAs are modeled by their first-order roll-off model as Ai = Bi/s, following input impedance is 
derived for the working frequency range w2 << (B1B2) as:

 

( )
( )

  
+ + +     

 
+ + +  



2

3 2 1 4 5
in

3
4 5

2 2 1

1 1 1
1     1  

1 1
1    1  

 

R
R A A sC R

Z s sLeq
R

sC R
A R A

 (b) With s = jw, simulated impedance is Zin jw = jw (Leq + ΔL) + Rs. Find expressions for ΔL and Rs.

 (c) What shall be the significance of selecting resistance R2 = R3.

9-2 Design a lossless ladder for the following specifications:

 
w w= = = =1 max 2 min

krad krad
2 , 1 dB, 4 and 20 dBs

s
A A

s

 Use equal-ripple approximation with double termination ladder and realize the filter using GIC based 
inductor simulation. If possible, select a capacitor of 10 nF each.

9-3 Design an LC filter with Chebyshev approximation and minimum inductors and Rin = Rout = 600 W. 
Replace the inductors by an OA RC circuit; specifications are:

 f1 = 12.5 kHz, Amax = 1 dB, f2 = 56.25 kHz, and Amin = 35 dBs

9-4 Obtain an active RC version of the ladder shown in Figure P9.1 using a gyrator, with Rin = Rout = 1 kW, C1 
= C3 = 20.94 nF, C2 = 3.306 nF and L2 = 0.8347 H.

+

Vin

+

– –

VoutRL

C3C1

C2

L2

Rin

Figure P9.1

9-5 Design a GIC based third-order HP filter with Butterworth approximation having 3 dB frequency of 5 kHz. 
Use a doubly terminated ladder and capacitors need to be of 1 nF, if possible.

9-6 Realize the ladder shown in Figure P9.1 using Bruton’s approach.

9-7 Design a fifth-order HP active RC filter using inductance simulation technique, having pass band ripples 
less than 1 dB and corner frequency of 100 krad/s. Compare its response with that of the passive prototype 
filter.  
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9-8 Realize the ladder shown in Figure P9.2 using Bruton’s approach for a center frequency of 10 kHz and  
Q = 10.

VoutVin

C1

C2

L2

L3 C3
L1Rin

RL

Figure P9.2

9-9 Design and test an LPF using operational simulation from a normalized third-order Butterworth filter. Cut-
off frequency is 1 kHz and the terminating resistors are 2 kW each.

9-10 Repeat Problem 9-9 for a fifth-order Butterworth filter with the other specifications remaining the same.

9-11 Design and test an LPF using operational simulation from a normalized fifth-order Chebyshev filter. Pass 
band ridge frequency is 1 kHz and the terminating resistors are 2 kW each.

9-12 Specifications of a Butterworth LPF: range of pass band 0 ≤ w ≤ 8000 rad/s and range of stop band 32000  
rad/s ≤ w ≤ ∞ with αmin = 16 dBs and αmax = 0.5 dB. Design and test using the operational simulation 
approach.

 Note: For Problems 9-13 to 9-16, employ the technique in Section 9.11.

9-13 A BPF is to be designed using a third-order LP Butterworth filter. Its center frequency is to be 2 kHz and 
quality factor Q =10. Test the circuit using practical element values.

9-14 Repeat Problem 9-13 if its prototype is a fourth-order Butterworth filter.

9-15 Design a BPF with wo = 5 krad/s and 3 dB bandwidth = 4500 rad/s. The prototype is to be a fourth-order 
maximally flat band pass.

9-16 An active BPF is to be constructed from a passive structure shown in Figure P.9.2 (Problem 9.16). Center 
frequency, lower and upper cut frequencies are 1265 Hz, 800 Hz and 2000 Hz, respectively. Employ 
operational simulation method to obtain the filter and test it.

9-17 In Figure 9.35(a), series resonance is to be at 4 krad/s and shunt resonance at 8 krad/s. Verify the frequency 
response with that of the passive structure. A resistance of 1 kohm is used in the de-normalized circuit.

9-18 Repeat Problem 9-17 for the circuit in Figure 9.35(b) with the shunt resistance in the de-normalized circuit 
being 1 kohm.

9-19 Use impedance scaling of 103 and frequency scaling of 105 for the series branch of Figure P9.3
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1 � 1 H

1 F

5 H

0.2 F

Figure P9.3

 and compare frequency response with its de-normalized passive version.

9-20 Repeat Problem 9-19 for the circuit shown in Figure P9.4.

1 � 1 F
2 H

0.5 F

Figure P9.4
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