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Cascade Approach: Optimization
and Tuning

10.1 Introduction

In Chapter 2, a number of first-order active filters were realized along with the basic
configuration of bilinear functions. Chapters 7 and 8 were devoted to the development of
second-order filter sections using one or more than one OA (operational amplifier). However,
as mentioned earlier, all filter specifications are not achievable only through second-order
sections; higher-order filters become necessary. For the realization of higher-order filters, ladder
simulation techniques through element (inductor/frequency dependent negative resistor:
FDNR) substitution was discussed in Chapter 9. Ladder simulation using signal flow graph
technique, which is better known as the operationally simulated method was also discussed in
Chapter 9. The present chapter deals with another basic method of realizing higher-order filter
sections known as the cascade design method.

Section 10.2 will discuss the basics of cascade design and the conditions to be satisfied by
first- or second-order sections in order that these could be used for cascading and obtaining
higher-order filters. After taking up some examples of cascade design, the importance of cascade
optimization will be discussed in Section 10.3 through an example section. While cascading a
number of second-order sections, a proper combination of poles and zeroes (Section 10.3.1),
correct assignment of gain for each section (Section 10.3.2) and their proper order (Section
10.3.2) play a very crucial role. Hence, all the three aspects will be discussed in some details.

It is well-known that due to the tolerance associated with passive elements as well as with
the parameters of the active elements, and their possible variation due to the change in the
biasing voltage and operating temperature, filter parameters gets deviated. Therefore, it is
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imperative to provide on-chip tuning of the parameters, especially the pole frequency @, and
pole-Q of the individual second-order sections used in the cascade. This chapter introduces the
idea of filter parameter tuning. In Section 10.4, we get a better insight into the cascade design
method of filter design.

10.2 Cascade Design Basics

To realize higher-order filters, cascading of second-order sections finds considerable favour in
the eyes of a majority of filter designers; a first-order section is also cascaded in case of an odd-
order filter. It will be shown later that such a technique has few advantages like the ability to
tune filter parameters easily, and that it possess controlled tunability of the filter parameters
with respect to the elements used.

Lower-order building blocks are connected as shown in Figure 10.1. Over all, the transfer
function is simply the product of the transfer functions of the individual building blocks as
shown here.

H(s) = Hi(s) x Hy(s) x ....... x H(s) (10.1)
¥ + + e
v, Hy(s) v, Hy(s) Va Hy(s) Vsl

Figure 10.1 Cascading arrangement of n number of two-port networks.

Here, the transfer function Hj(s) = V;,,(s)/V(s) can be first-order; most often, second-order
sections are used. However, this relation and the relation in equation (10.1) will be valid only
when the individual sections are non-interactive, that is, the preceding sections do not load
the previous section. From the basic knowledge of two-port networks, we know that perfect
non-interactiveness will be achieved when the output impedance of each building block
(Z,) is zero and their input impedances (Z;) are infinity. In practice, due to the finiteness of
the input and output impedances of the individual sections, there will be some interaction
between the two-port networks; hence, some deviation in the overall transfer function from
the design is likely to occur. When two-port networks (second-order or first-order) are realized
using OAs, it is always desirable to get its output at the output terminal of the amplifier. The
output impedance of the OA being practically small, OAs are suitable for cascading. When
passive two-port networks or an output terminal with higher impedance is to be cascaded, it is
advisable to insert a buffer in between the networks as shown in Figure 10.2.

There are a number of advantages in cascade design method of higher-order filters. As the
pole-Q and the critical frequency ®, of each second-order section depends on one pole pair
and the nature of the second-order filter depends on one zero (pair), it becomes easier to tune
these parameters, which is very difficult in direct realization methods. Since individual second-
order sections can be tuned easily, the overall tuning of response also becomes easy. It is to be
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noted that as only second-order sections are needed for higher-order filters, the best possible
second-order section with all possible optimizations for that particular application can be used.

For example, the selected section may have minimum possible sensitivity, and variability, with
respect to the elements used.

o
Network
Vin (Z ] - Network Vi
2

Figure 10.2 Insertion of buffer between two interactive two-port networks.

When a transfer function of order 7, as given in equation (1.1) and repeated here, is to be
realized, it is known that 7 > m. For n being even, there shall be (7/2) pole pairs and (n/2)
second-order sections shall be connected in cascade.

m m—1
H(;)zvoutz b,s” +b,, 5" ... +h s+, (10.2)

-] 2
Vi  "+a, 5" +a, "

If » is odd, (z — 1)/2 second-order sections and one first-order section will be connected in
cascade. In general, the transfer function of each second-order function will be expressed as:

0, 5%+ 00,5 +00;
H. Zk' 2i 17 07
(5) ! 52+(a)0i/Qi)s+a)fl.

=y (s) (10.3)

Obviously, all second-order functions may not have the numerator coefficients o, ; and o
as finite. It will depend on the number of finite zeros and the type of response of that particular
section.

Let us go through the basics of the cascade approach with the help of some simple examples.

Example 10.1: Realize a Butterworth LPF (low pass filter) which will satisfy the following
specifications using the cascade form of synthesis.

O, = 1 dB, &, = 40 dBs, w; = 2000 rad/s, @, = 6000 rad/s

Solution: In Example 3.1, order of a filter in the form of a lossless passive ladder was found as
5 for the desired specification. For the fifth-order Butterworth filter, using the values of pole
locations from Table 3.1 and with the cut-off frequency (de-normalization) given as @, = @
x 0, = 1.144 x 2000 = 2288 rad/s, the following forms of transfer function were obtained:

H(s)= 1 (104)

(s+2288)(” + 14145+ 2288 )(s” +3701.985 +22887)
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1
P 47.408x10%5% +2.741x107 5 +6.2714x10'05% +9.11478 X105+ 6.27018 x10'¢

(10.5)

Obviously, the next step is to find an active network topology containing suitable active devices,
and values of the passive elements used. To realize higher-order filters using the cascade form,
the transfer function of equation (10.4) needs to be broken to form a product of three transfer
functions. Hence, a first-order function H,(s) and two second-order functions H,(s) and H;(s),
with respective dc gains of 4, £, and 4; will be used. The resulting overall transfer function

will be:
HG) = Hy(5) x Ho(s) x Hys) (10.6)

where expressions of the three transfer functions obtained from equation (10.4) will be:

2288k
H, (s)=—""L 10.7
1(5) 5+2288 (107)
22882k
H, (s)= 2 (108&)
2(9) & + 14145 +2288>
2
Hy(s)=— 2288 &y 5 (10.8b)
s°+37025+2288

Obviously, the dc gain of the product of the three transfer functions will become (4, x £, x £5),
which should be equal to 1; the overall dc gain of the transfer function H(s). Arbitrary values
can be assigned to the individual dc gains in order to get their product as 1. However, one easy
and convenient choice in the beginning is to make all three dc gains as unity (later, we shall see
that the choice of dc gains for individual sections is not arbitrary for good designs).

The first-order transfer function of equation (10.6) with 4, = 1 can be realized using an
active section, along the lines followed in Section 2.3.1, as shown in Figure 10.3(a). Its transfer
function is given as:

1/CR
H =— -1 10.9
u(s) s+1/CR, (10.9)

If the selected value of capacitor C = 0.1 UF, to get 4, = 1, R, = R, = 4.37 kQ in equation
(10.7).

The remaining two second-order sections are realized using the circuit shown in Figure
2.15, redrawn in Figure 10.3(b), for which the transfer function is repeated here:

Vour _ (GiG5 1 GiC) (10.10)

Va2 +5{(G+6,+G)1G1+(G)G 1GCy)
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It has the expressions for ®,, dc gain and Q as:

n

G,G GG

a)f = =23, dc gain=i, and Q = G 23 (10.11)
cC, G, G, +G, +G5\ CC,

For the transfer function H,(s) of equation (10.8a), it is compared with equation (10.10).
Selecting C} = 0.1 UF and with #, = 1, use of equation (10.11) gives the value of G, = G, = G;
= 0.1244 mA/V, C, = 0.0291 UF; so hence, R, = R, = R; = 8.101 kQ.

R, R,

1 — ik

NN
4 Ry
—"\W\— Vout —"NVWW——"VW\— Vout
—0 | —0

||p

(a) (b)
Figure 10.3 (a) An active first-order low pass circuit and (b) a second-order low pass filter circuit.

Similarly, for Hj(s), element values are C; = 0.1 uF, C, = 4.252 nF, R, = R, = R; = 21.196 kQ.

Three circuits are connected in cascade to get the overall transfer function. The complete
circuit, having a sequence of sections as H; followed with A and then H,, along with the
element values is shown in Figure 10.4(a). The simulated magnitude response is shown in
Figure 10.4(b). It is observed that the output to input voltage ratio at 2000 rad/s is 0.889 or
the attenuation is 1.012 dB, which is just above the design value of 1 dB. At 6000 rad/s, the
output to input voltage ratio is 0.008106 which is equivalent of 41.2 dB attenuation; more
than the design value of 40 dBs. However, there is a peak with a voltage of 1.28 volt at the
output of the second stage. If the final output is limited to 10 volts, then the maximum input
should not exceed 7.81 volts.

4.37kQ
N

21.19kQ
0.1 uF MWV
T e
O—AAN— 21.19kQ | 21.19kQ 4.25 nF —| }—‘
Vi — A A\N\——AN\— 8.101kQ | 8.101kQ
" 4 J::l>“’—/\/\/\l—“—’\/\/\/—‘ ._ng
0.1 uF 1
- —-I-_ - 0.1 MFT
(a)

8.101 kQ
29.1 nF
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12V - - -
Intermediate|stage 2
N0 N S—
4V :
............. o [Finaloutputt T\ N
oV :
10 Hz 100 Hz 1.0 kHz 10 kHz
AV(#4)+V () oV (42) Frequency
(b)

10V

ov

10

' .
Intermediate stage 1 |

............................

.........................

Hz

10
AV (4) +V (1) oV (42)

0 Hz

Frequency

()

Figure 10.4 (a) Fifth-order low pass Butterworth filter using the cascade process for Example 10.1 and
(b) the simulated response at intermediate and output nodes. (c) Response using cascade
process with different sequence of sections for the circuit of Example 10.1.
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If the sequence of sections is changed arbitrarily so that /j is followed by A, and then H,,
the simulated response is shown in Figure 10.4(c). The final output response is unaffected, but
an intermediate peak has a voltage level of 1.7 volts, which means that with this sequence of
sections, the allowable input reduces to 5.88 volts for a maximum output voltage of 10 volts.
The effect of selection of another sequence (correct) will be taken up later.

Example 10.2: Realize an LPF with the following specifications using Chebyshev approximation.
Obtain the frequency response while realizing it through the cascade process.

0. = 0.5dB, &, = 40 dBs, @, = 2000 rad/s, @, = 6000 rad/s (10.12)

Solution: In Example 3.3, the required filter order was obtained as 4 for the given specifications.
The following was the normalized transfer function.

0.3577
(;2 +0.35085 + 1.0636)(;2 +0.84665 +0.3563)

H(s)= (10.13)

Since for an even-order transfer function H(0) = ¢, = 0.5 dB or 0.944 (normalized), the
value of the numerator in H(s) becomes (0.944 x 1.0636 x 0.3563) = 0.3577 for maximum

pass band gain of unity.

As frequency de-normalization is to be done by 2000 rad/s, the de-normalized transfer
function is obtained as:

2
H(S)Z 0.3577 %2000 (10.14)

(52 +0.3508 X 20005 +1.0636 X 20002)(;2 +0.8466 % 20005 + 0.3563 X 2000%)

As in Example 10.1, the transfer function of equation (10.14) is broken into the following two
second-order LP functions:

1,5 1.0636 x 20002 (10.15)
S)|= .
1 (52 +0.3508*20005+1.0636><20002)

0.3563 X 0.944 x 2000°

= . (10.16)
(s* +0.8466 % 20005 + 0.3563 X 2000%)

Hz(s)

Both the transfer functions H,(s) and H,(s) are realized using the circuit shown in Figure
10.3(b) whose transfer function and expressions of parameters are given by equations (10.10)
and (10.11), respectively.

For transfer function H,(s), assuming G,; = 10~ mho (second subscript 1 corresponds to
the first biquad) as the dc gain is 1.0, we get:

(Gy,/G,y) = 1; hence, Ry; = Ry, = 10 kQ (10.17)
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Without losing generality, selecting R;; = 10 kQ as well, with (w,/Q) = 0.3508 x 2000
and wf =1.0636 % 20007, application of equation (10.11) gives Cy; = 0.4276 UF and C,; =
0.005498 LF.

For the transfer function H,(s) (with second subscript 2), assuming G,, = G5, = 10~* mho,
and with dc gain being 0.944, we get:
(G1y/Gyy) = 0.944 or Ry, = 10 kQ, Ry, = 10 kQ, R, = 10.593 kQ (10.18)

Similar to the function H,(s), application of equation (10.11) for H,(s) gives C;, = 0.17387
UF and Gy, = 0.04035 pF.

10 k

0.005498 MF| | |

10k

0.04035 UF |

v, 10k 10k
o—ANN\—e—ANN\— - 10.593 k 10 k
1 ,\/\/\/_‘ Vout
+
0.4276 UF —

()

1.2V

............................

04V
ov
10 Hz 100 Hz 1.0 kHz 10 kHz
10!V (42) Frequency
(b)

Figure 10.5 (a) Fourth-order low pass Chebyshey filter using cascade process for Example 10.2; (b) its
simulated magnitude response.

Combining the circuit implementation of the transfer functions A, (s) and H,(s) in cascade,
the overall circuit along with element values is shown in Figure 10.5(a). Its magnitude response
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through simulation is shown in Figure 10.5(b). The observed pass band edge frequency is
318.2 Hz or 2000.1 rad/s. Maximum output voltage at peaks being 1.002 V for input voltage
of 1 volt and at the pass band edge frequency, voltage level is 944 mV, corresponding to an
attenuation of 0.5 dB; the attenuation becomes 46.1 dBs at 6000 rad/s. DC gain of the filter is
also 0.944, which corresponds to 0.5 dB. The circuit satisfies attenuation requirements at pass
band and stop band edge frequencies with enough margin and shows maxima and minima as
expected.

10.3 Optimization in Cascade Process

With the help of Examples 10.1 and 10.2, it is clear that process of cascading is simple. The
main issue is to get an appropriate second-order section for each second-order function (and
a first-order section, if needed). Unfortunately, actual implementation while cascading even a
few second-order sections involves some serious considerations, which is important not only
for the optimization of the performance, but also the correct functioning of the overall higher-
order filter section.

For the simple fourth-order function of Example 10.2, two transfer functions H,(s) and
H,(s) were shown to be cascaded. While forming these transfer functions, pole pairs and
zeros were combined arbitrarily. Obviously, there is more than one possible combination that
will result in the fourth-order filter. While cascading three sections, there are six possible
combinations of pole pairs and zeros and many more for a larger number of sections to be
cascaded. It will be shown in the next section that assignment of zeros with a pole pair should
not be arbitrary as it affects the performance. A criterion has to be evolved for the proper
combination of pole pairs and zeros.

Once the proper combination of poles and zeros is accomplished, there is more than one
possibility in assigning the order in which the sections will be cascaded. Again, for the sixth-
order function, there are the following six possible combinations in which the blocks may be
cascaded.

H, H, H,, H, H, H,, H, H, H,, H, H, H,, H, H, H,, H, H, H, (10.19)

Unless specified, one may wonder why the order of cascading is important. In fact, along
with the third issue, which will be explained soon, proper ordering of second-order sections
significantly affects the working of the overall filter and may deviate its performance drastically.

The third important issue is the assignment of gain for individual two-port blocks. Since
the overall gain will be the product of the gain of the individual blocks, a designer might like
to assign it arbitrarily to each block. However as mentioned earlier, the assignment of gain to
individual blocks along with its ordering has to be done very carefully.

The reasons behind these considerations of pole-zero pairing, ordering of the sections and
assignment of gain to the sections are two-fold. The first consideration is to check that the
signal level at any internal or external node does not exceed or reach the saturation level of the
active device decided by the level of the supply voltage or due to the constraint of the slew rate.
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If this happens, harmonics will get generated and the resulting filter parameters will deviate
from the design parameters. The second consideration is to maximize the dynamic range: the
ratio of the undistorted signal to the noise level present in the system at each cascading stage.
The basic principle used for maximizing the dynamic range is to maximize the minimum level
of the signal in the pass band of each second-order filter section so that the effect of noise is
minimum on the signal. This action produces a flatter type of response in which the ratio of
maximum signal at any node to the minimum signal comes as close to unity as possible. In
addition to the aforementioned considerations, the maxima of the output voltage for individual
sections should also be made equal as will be shown later.

The idea explained here can be expressed mathematically as well, which forms the starting
point of developing algorithms and computer programs for the purpose. Let V, . be the level
of output voltage of the OAs used, which is the upper limit of the signal level set by the power
supply level or the slew rate at all frequencies including both the pass and stop band. Then the
maximum magnitude of the output signal for each individual biquad |V (je)| should satisfy

the following condition:

max |V, (j0)| < V, . for 0 < @< oo (10.20)
The condition imposed by equation (10.20) needs to remain valid for all signal frequencies
falling in the pass and stop band; the reason being that if any signal is overdriven even in the
stop band, it may generate harmonics, which may interfere with the valid output.

On the other hand, it is necessary to check that the signal does not become so small at the
intermediate stage or individual block output level that it gets corrupted by the circuit noise.
If the signal to noise ratio becomes small, the signal becomes indistinguishable from the noise.
Hence, another condition which is required to be fulfilled is that the smaller signals at all
outputs of the biquad should be enlarged in the pass band as much as practically possible.

min |V0](]a))| — maximize in the pass band (10.21)

The condition imposed by equation (10.21) needs to be valid only in the pass band; it is not
required in the stop band as the smallness of signal there will not do any harm.

The brief discussion in this section and the conditions given in equations (10.20) and
(10.21) imply that higher magnitude signals need to be pulled down to remain below V, ..
and smaller magnitude signals need to be amplified. This creates a kind of flatness in signals
at the output of the individual second-order section as mentioned earlier. In other words, we
need to make the ratio of maximum signal to minimum signal at all the intermediate levels and
the final output as small as possible. Later this point will be taken up in mathematical terms.

10.3.1 Pole-zero pairing

In order to explain the idea of flarness of signals at all cascaded stages, let V,, be the output
voltage at the kth stage. Normally, the output at any stage is taken as the output of the OA. If
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the biquad uses only one OA, then V,, shall will be its output; however, for a multi amplifier
biquad, V,, will be the largest output signal amongst all the amplifiers used. This implies
that for the 4th stage, there will be no signal greater than V. Therefore, as discussed in the
previous section, poles and zeros should be paired in such a way that the signal maximum
M), = max|V,,(jo)| is minimized below V, . for all the input signal frequency range of pass
and stop bands. At the same time, the signal minimum 2, = min |V, ,(jo)| is maximized in the
pass band. Maximization of 72, and minimization of M, means that |4,(j®)| in equation (10.3)
should be as flat as possible in the frequency range of interest. For a mathematical treatment,

measure of flatness of the signal can be expressed as:
dk:(Mk/mk)QIWlthk: 1, 2, ...... s n (1022)

Obviously, the intention is to minimize 4, and the assignment of zeros to a pole pair in
equation (10.3) should be such that it minimizes the maximum value of 4, or:

d,

m:

« = max[d] = minimum for k=1,2, ...... , 7 (10.23)

For comparatively smaller order filters say (4 or 5), evaluation of 4, though laborious, can be
done in a reasonable time period and then equation (10.23) satisfied. However, for higher-
order filters, manual evaluation of 4, becomes highly time consuming and requires use of
computer and an appropriate software. Fortunately, for quite a few cases, instead of taking
recourse to computer programs, decisions based on intuition and experience became helpful.
For example, when the transfer function has more than one zero at the origin, the type of
filter section can be of different types for the same final transfer function. For example, for
a numerator having a term 52, the possible combinations can be s? and 1, or s and s, which
will mean that realization can be in the form of a combination of a HP (high pass) and a LP
(low pass) or a combination of two BP (band pass) sections, respectively. However, a much
more important consideration comes in the form of a thumb rule of forming pole—zero pair
combinations which are closest to each other. This thumb rule gets its idea from the fact that
when the value of the combined pole and zero is close to each other, magnitude of the section
will be a minimum; which is our aim.

Example 10.3: To design a sixth-order filter in cascade form, find the optimum pole-zero pair
combination for the following transfer function:

s(s* +0.25)(s* +2.25)

H(s)= (s +0.095+0.83) (s> +0.15+1.18) (s> + 0.25 +1.01) (10243
Solution: Transfer function zeros and poles are:

2= 0,2, =405 and 7,5 = 415 (10.24b)

P12 = ~0.045 £0.9099, p; , =~0.05 + j1.0851 and p5 ¢ = 0.1 +;1.0 (10.24c)

Poles and zeros are shown in Figure 10.6, in the second quadrant of the complex frequency s
plane. Applying the thumb rule of combining the nearest poles with zeros, we get the following
combination of three second-order sections:
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(s> +2.25)
(> +0.1s+1.18)

2
I (s)z (s +0.25) % () s

H,(s)= CHo(s)=———* (10.25)
4(5) (s +0.095 +0.083)

(s +0.25+1.01)

Each transfer function in equation (10.25) will have to be assigned a gain 4, 4, and £, to get
the required overall gain.

1.5

pG.4) 1.0 T
x .
\ p(iN jo
>-0.5

-0.1 -0.05

-—

p(5,6)%

¢

Figure 10.6 Poles and zeroes for the transfer function in Example 10.3.

It is significant to note that when performance of the fifth-order LP of Example 10.1 is to
be optimized while using the cascade approach, the pole-zero pairing step is not required as
all the zeros are at infinity. In fact, for all pole functions, the optimization process starts from
the section ordering.

10.3.2 Section ordering

Once pole-zero assignment is made and 7 second-order sections are formed, it is required to
decide their order in the chain of cascade. Once again, the aim is to get maximum dynamic
range, and the procedure is very similar to that adopted for pole-zero pairing. We need to try
and keep the variation of the signal for any individual section as flat as possible so that the ratio
of the voltage at the output of the kth intermediate section to the input to the first section is
as flat as possible.

As the mathematical treatment is similar for all cases, useful algorithms and computer
programs have been developed. However, some simpler solutions, which do not require
computer programs, are also available. It is generally desirable to keep either a LP or a BP
section as the first in the cascade chain in order to suppress high frequency signal components
which would have been generated due to the slew rate limitation. Similarly, a high or a BP
section is put at the end of the cascade chain in order to suppress any low-frequency noise
including dc offset and power supply ripples. However, a much more significant factor which
decides the ordering of the sections is the value of the pole-Q of the biquads. Since a larger Q
value means a larger peak gain, it is advised to keep the lowest Q section at the beginning of
the cascade followed by sections with increasing values of the pole-Q. If Q; is pole-Q of the 7th
section in an 7 section cascade, sections are selected with the following condition:

Q<Qy<...... <Q,fori=1,2...... , 7 (10.26)
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Example 10.4: For the transfer function of Example 10.3, find the optimum order of the
second-order sections as derived in equation (10.25).

Solution: As suggested, a good choice is to put the sections governed by the condition given in
equation (10.26). Hence, the quality factor of the three sections are calculated as:

V1.18 V0.83 V1.01
=—=10.86,Q, =——==10.12,Q,- = ——=5.025 (10.27)
Q4 0.1 Qs 0.09 Q 0.2

This means that the most appropriate order of the sections given in equation (10.25) is H
followed by Hy and then H,,.

For illustration purposes, the transfer function H(s) of equation (10.24) is realized with two
different orders of second-order sections; one depending on equation (10.27) and the other a
different order. Presently, the gain assigned to each section is taken as unity.

Incidentally, the transfer functions H- and Hj have already been realized in Chapter 7 as
Examples 7.4 and 7.5, respectively, with filter circuits shown in Figures 7.14a and 7.15. In
order to realize the overall transfer function, H ; is also designed selecting the general differential

input single OA biquad of Section 7.4.2, which was used for H-and Hj as well.

For the general configuration of Figure 7.12, selecting the auxiliary polynomial Q(s) = 5 +

1, we get:
N 2422 2
) =¥=(.€+2.25)—3 > (10.28)
Q(s) s+1 s+1
This gives y, =5+2.25, y, = 3.255 (10.29)
s+1
D(s)- N ds—1. .
(s) (5) _0.15-1.07 2_1.07+1 17s (10.30)
Q(s) s+1 s+1
This gives 9, = 1175 , 9, =1.07 (10.31)
s+1
2
D(5)=(5 +0'h+1'18)=5+1.18—2'085 (10.32)
Q(s) s+1 s+1
This gives
gy =s 4118, 5, = 208 (10.33)
s+1

Here, y;, y, and y, are a series combination of resistance and capacitance, y, and y; are a parallel
combination of resistance and capacitance, whereas y, is only a resistor. Normalized element
values are:

R,=0.4444Q, C,=1F, R =0.30769 Q, C,=3.25F, R, = 0.8474 Q, C,; = 1 F,
R.=0.4807 Q, C.=2.08 F, R, = 0.8547 Q, C, = 1.17 Fand R, = 0.9345 Q
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Frequency de-normalization with 1.187%5 x 104, to get its peak value at 104 rad/s, and
impedance scaling of 104 gives the following element values, which are also shown in the filter
circuit of Figure 10.7(a). Expected notch frequency is 1.187%% x 10% x 2.25%5 rad/s = (2197 Hz).

3.0769 kQ |35,304 nF |
VYV

10.862 nF

8.474 kQ

9.345 kQ

Vout

}5.52 nF

4.807 kQ
8.547 kQ

12.059 nF

12V

Frequency

(b)

Figure 10.7 (a) Realization of the notch filter for Example 10.4. (b) Its magnitude response.
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R, = 4444 kQ, C,
C, = 12.079 nF, R,
R, = 9.345 kQ

10.862 nF, R, = 3.0769 kQ, C, = 35.304 nF, R, = 8.474 kQ,
4.807 kQ, C. = 22.52 nF, R, = 8.474 kQ, C, = 10.862 nF and

Element values are shown in the filter circuit of Figure 10.7(a). Magnitude response of the BR
(band reject) filter is shown in Figure 10.7(b). Its dc gain is 1.91, high frequency gain is unity,
peak gain of 11 occurs at 1.569 kHz and the notch frequency is at 2.204 kHz.

Example 10.5: Determine the correct order of the sections for the fifth-order LP Butterworth
filter of Example 10.1 and find the allowable input voltage for a maximum output of 10 volts.

Solution: In Example 10.1, out of the three sections, H,(s) is a first-order section which shall
be the first section in the cascade. For the functions /,(s) and H;(s), the respective pole-Q are
Q = 1.618 and Q = 0.618. Hence, as per equation (10.26), H;(s) will follow the first-order
section and H,(s) will be the last section.

With this sequence of sections (-, H3H,), the simulated response at all the outputs is shown
in Figure 10.8. It is observed that all the three responses are monotonically decreasing with no
peaking. The maximum voltage gain is unity at dc; hence, for the maximum output voltage of
10 volts, input can be 10 volts.

10V }

............................

\ Final output

.........................

............................

............................

10 kHz

10 Hz 100 Hz
AV (4)+V (1) oV (42)
Frequency

Figure 10.8 Fifth-order low pass active Butterwoth filter response using cascade process with correct
sequence of sections; example 10.5.

10.3.3 Gain assignment

After completing the two steps discussed previously, we know the level of output voltage after
every stage including that at the final output. Care was taken not to over-drive any output.
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The next step is to assign gain to each section. Assignment of gain follows the principle that all
internal output voltages become equal (as far as possible) in magnitude corresponding to the
specified final output voltage. It may be noted that the absolute value of the overall gain is not
to be obtained at all costs; a simple gain amplifier in cascade will be able to adjust the overall
gain if needed.

For the transfer function H(s) of equation (10.2) and using the notation of equation (10.3),
we can define a constant M as:

M, =14, withi=1,2,..., (n=1) (10.34)
7=l

The desired condition is that M, = M, that is, the final output after 7 stages. Even after the
first stage, that is,

i=1, ky M, = max |H,(s)| = k, |max h,(s)| = K M, (10.35)
where K=H/€]- (10.36)
j=1

It gives the relation for 4, as:
by = KM /M) (10.37)

The relation given by equation (10.37) is true for intermediate stages as well; hence, for any
consecutive stages,

ki= (M IM),j =2, oo (10.38)

Equation (10.38) is used for assigning gain to each stage. Assignment of gain to each second-
order section ensures near equal output at the final output, as well as at intermediate stages. It
ensures maximum possible input signal that can be applied without the signals going beyond
saturation in OAs. The statement is correct for a single OA second-order section, where output
is taken at the OA output used. For a second-order section using more than one OA, care has
to be taken as mentioned before.

Example 10.6: Realize the Butterworth filter of Example 10.5 with overall gain as 6 dBs.

Solution: With the correct order as in Example 10.5, unity gain was easily achieved with each
section having a gain of one. If a gain of 6 dBs is desired, it can be done without assigning
gains to individual sections as discussed in Section 10.3.3 for the all pole filters which were
cascaded in correct ordering. Hence, simply having a gain of 2 in the first-order section will
suffice; resistance R, in it is changed to 2.185 k{2, and the rest of the circuit of Example 10.5
remains the same.
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Example 10.7: Assign proper values of gain to the three second-order biquadratic sections of
Example 10.3, when they are in the sequence suggested in Example 10.4, such that the overall
gain is 40 and center frequency is 10 krad/s. Also find:

(a) Maximum allowable input signal if the maximum allowable output is 10 volts.

(b) What happens when the second-order sections are cascaded in correct order, but each
section has unity gain?

Solution: (a) Equation (10.34) relates the maximum amplitude at each output node after
the first, second and third section for given example. For individual sections, it can be found
mathematically (or using a computer program). However, sections H- and Hy have already
been simulated, and from Figures 7.14(b) and 7.16, max |H(j®)| = 5.0 and max |Hy(jo)|
= 7.14. Section H has been designed and simulated in Example 10.4, and its peak value is
almost 11. Hence, using the notations given in Section 10.3.3:

M, =5M,=5x7.14=357, My =357 x 11 =392.7

With the overall gain to be 40, KM, = 40, so K = 40/392.7

Gain to be assigned to the respective sections are as follows:

35.7
bh=—=8k =——=0.14, bk, =
! 2 7 339

——=0.0909 (10.39)
2.7
With these gain values, the overall transfer function will be:

Hs) = ley HAs) x by Hy(s) x ks H ()

0.14(s* +0.25 2
_ 8s " ( ) . 0-0909(s” +2.25) (10.40)

(2 4+0.25+1.01) (;2 +0_095+o,83) (s> +0.15+1.18)

Individual second-order sections are to be designed with the new assigned gain values. The
same circuit structure and methodology, which was used so far (though, any other circuit can
also be used), is used now.

For the general differential input single OA biquad, the auxiliary polynomial is again
assumed to be Q(s) = (s + 1); this gives the following relations for &, H(s):

NG) _ 8 __ 1 - 10.41
Qo Gy PTT, TN o
8 8

D(s) _s*+0.25+1.01 B _ 1.81s 10.42

Q(s)_ Gt —>y3—(s+1.01),y€—(s+1) (10.42)
D(s)=N(s) _s*—7.85+1.01 9.81s

- =(s+1.01), 5, = 10.4

o0 i) =y, =(s+1.01), 5, GeD (10.43)
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For k,Hj(s), the corresponding relations are:

2
N(;):O.14s +0.035_>y (0 14$+0035) 01755
Q(s) (s+1) C(s+))
D(s) _ s> +0.095+0.83 —(5+0.83). 5, = 1.74s
Q) (s+D) ’ ST
D(s)=N(s) _ 0.865> +0.095 + 0.795 = (0.86:+0.795), 7, _1.565s
Q) (s+1) C(s+)
For k3;H /(s), the corresponding relations are:
2
N(s) _ 0.0909(s" + 0.225) (0 09095 +0. 2045) 0 20455
Q(s) (s+1) (s+1)
2
ZQ)ES) _s +0.1s+1.18 N =(s+1.18),y€ _ 2.08s
5) (s+1) (s+1)

D(s)=N() _0.91915° +0.15+0.8755
Q) (s+1)

, =(0.91915+0.8755), 5,

1 .6946s
(s+1)

(10.44)

(10.45)

(10.46)

(10.47)

(10.48)

(10.49)

For the three sections, with an impedance scaling factor of 10%and a frequency de-normalization
factor of (1.01)™2 x 104, (0.83)™" x 104 and (1.18)~"> x 10 for the respective transfer functions,
leyHAs), kyHy(s) and k3 H 4(s) are used and the resulting structures are cascaded in the order as
decided in Example 10.4. Figure 10.9 shows the complete filter with de-normalized element

values.

Vinl.25 | 80.4

oAMA
i 5.529
10.049 1.019

98 58

Figure 10.9 Cascade realization of the sixth-order BP filter for Example 10.7. All resistors are in kQ and

capacitors are in nf.
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In Figure 10.10(a), the magnitude response of the sixth-order cascaded filter is shown with
the output voltage on the y-axis on linear scale, while the same is shown in Figure 10.10(b)
with the y-axis on log scale, depicting the notches clearly. Notch frequencies are 877.6 Hz and
2.314 kHz with 98.66 dBs and 59.3 dBs attenuation. Center frequency is 1.607 kHz (10.101
krad/s) with a gain of 40.65 against the design value of 40.

1.0V

05V

o At TN
ov O
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz
'8!V (103) © V (10) v V (102)
o Frequency
(a)
1.0V
v
100V
1.0uVv
500 Hz 1.0 kHz 3.0kHz 5.0 kHz
:0:V (103) © V (10) v V (102)
Frequency
(b)
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10V

1.0V

10 mV

100 uV

1.0 uv

100 nV
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

@1V (103) ¢V (10) v V (102)

Frequency

()

Figure 10.10 (a) Magnitude response of the sixth-order BP filter for Example 10.7. (b) Magnitude
response of the sixth-order BP filter with the ordinate on log scale. (c) Magnitude response
with order of the sections different from what is recommended.

In order to make the level of the output voltage as 10 V, the input level can be as high as
250 mV (theoretically), and practically, 246 mV as simulated. If the order of sequence is
changed with &,H(s) at first, followed by 43/ 4(s) and then 4, H(s), the responses at the
three outputs are shown in Figure 10.10(c). The final output level and the gain remains

the same but the intermediate levels have gains of approximately unity. Notches do appear
at 872.7 Hz and 2.31 kHz in the final output.

If the section is formed with correct pole-zero combination and cascaded in correct
sequence, but is assigned unity gain for each individual sections, instead of assigning
gains as calculated, the simulated response is as shown in Figure 10.11. The final output
amplitude becomes 10 V for an input voltage of 28.4 mV, compared to 250 mV for the
same design but with correct gain assignment, as shown earlier. For this input level, the
intermediate voltages are 142.53 mV and 1.015 V; obviously, all three voltage levels are
not nearly the same and the overall gain becomes 350.14.
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10V

1.0V

1.0 mV

10 uV
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz

“F: V (10) 0V (102) v V (103)
Frequency

Figure 10.11 Magnitude response of the sixth-order BP filter for Example 10.7 with correct order of the
sections but with unity gain assignment to the three sections.

Example 10.8: Discuss what happens with the response of the transfer function of equation
(10.24) if the closest pole and zeros are not paired.

Solution: Let a different pole-zero pairing be done; the resulting three sections obtained by
combining z, s with ps 4, 2, 3 with p, , and z; with ps ¢ from the zero and pole locations given
in equation (10.24b,c¢) are as follows:

s (s +225) #4025

e H(s  Hy(s) = —————— (10.50)
(2 +0.15+1.18) () (;2+0.09s+0.083) T (2 +025+1.01)

H, (5)

For the general differential input single OA biquad, the auxiliary polynomial is again assumed
to be Q(s) = (s + 1); this gives the following relations for H,(s):

N __ s - - 10.51
20) (5+1)_>yﬂ s/(s+1) » =0 (10.51)
D(s) s*+0.15+1.18 B _2.08s
00" 61 — 3 =(s+1.18),y, = 4D (10.52)
D(s)=N(s) _s*—-0.9s+1.18 3.08s 10
- =(s+1. = 53
Q) eyl LI8) = (1059
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For H,(s), the corresponding relations are:

N(s) _s*+225 _
20) _—(H—l) -9, —(5+2.25),y1

_3.25s
(s+1)

2
D(s) _S +0.095+0.83 . (5+0.83),)/£ _ 1.74s
Q(s) (s+1) (s+1)
D(s)—N(s) _0.095-1.42 = 1.33s =142
Q(s) (s+1) (s+1)
For H,(s), the corresponding relations are:
2
N(s) _s +0.25 N =(f+0-25),)/1 _ 1.25s
QL)  (s+1) (s+1)
2
D(s) _S +0.25+1.01 Sy =(5+1.01),)/[ _ 1.81s
Q) (s+1) (s+1)
D(s)— N
(s)=N(s) _ 0.2:+0.76 4 =076,y, = 0.565
Qs) (s+1) (s+1)

(10.54)

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

For the three sections, an impedance scaling factor of 10% and a frequency de-normalization
factor of (1.18)™2x 104, (0.83)">x 10%and (1.01)~"*x 10%are used for the transfer functions, /, (s),
H,(s) and H;(s). The resulting structures, with element values calculated from the respective
equations are shown in Figures 10.12(a), 10.13(a), and 10.14(a), respectively. Figure 10.12(b)

8.424 K

10.862 nF

Vin |10.862 nF
AN | I G

— 3.246 K
33.45 nF

10.862 nF|

https://doi.org/10.1017/9781108762632.011 Published online by Cambridge University Press

Vout
—O

> +


https://doi.org/10.1017/9781108762632.011

Cascade Approach: Optimization and Tuning

1.0V

05V

05V
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

101 V(10) Frequency

(b)

Figure 10.12 (a) Realization of the transfer function H,(s) for Example 10.8. (b) Magnitude response of
the band pass function with unity gain.

shows the simulated response of H,(s), a BP response with center frequency of 1.6035 kHz,
pole-Q of 10.46 and mid-band gain of 9.61. Figure 10.13(b) shows the simulated response
of the function H,(s), BR characteristic with a notch at 2.639 kHz, dc gain being 2.71, high
frequency gain being unity and peak gain of 30.79 at 1.607 kHz. Figure 10.14(b) shows a BR
response for function H;(s) with a notch at 791.7 Hz, dc gain of 0.247, high frequency gain of
unity and peak gain of 3.85 at 1.622 kHz.

12.048 K

M

| |
[29.6 nF | [9.11 nF

B Vout
—O
. | ol
4444 K L’\/\/\/—{ l—
7.51 K% 704K oony | [1585nF
12.11 nF
(a)
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40V :
3.0V :
20V
1.0V
oV .
500 Hz . 3.0kHz 5.0 kHz
Aiv (10) Frequency
(b)

Figure 10.13 (a) Circuit realization of the transfer function H,(s) for Example 0.8 with unity gain.
(b) Magnitude response of the transfer function H,(s) with unity gain.

99K

—\VW\—

| |
A | |12.56 nF | [10.05 nF
v, | L |

in _
o—e | [10.05 nF Vout
N
* > *— +
AR }_
40K
0 13.16 K 1785K 555K 18.19 nF
5.63 nF
L L
(a)
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400 mV ;
300 mV
200 mV
100 mV
ov 1
100 Hz 300 Hz 1.0 kHz 3.0kHz 10 kHz
141V (10) Frequency
(b)

Figure 10.14 (a) Circuit realization of the transfer function H,(s) for Example 10.8. (b) Magnitude
response of the transfer function H;(s) for Example 10.8 with unity gain.

The three sections are cascaded and Figures 10.15(a)—(b) show the response of the complete
filter. Overall gain is 139.4; hence, to get 10 V output, the input has to be less than 71.7 mV.

100 V

1.0V

100 uVv

Louv
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz
'0! V(10) +V (102) a V (103)

Frequency

()
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100 V

1.0V

100 uVv

1.0uV
500 Hz 1.0 kHz 3.0kHz 5.0 kHz
10! V(10) 4V (102) a V (103)
Frequency

(b)

Figure 10.15 (a) Response of the sixth-order filter for Example 10.8 with a pole-zero combination
other than the case when the nearest poles and zeros are combined. (b) Response of the
sixth-order filter while the sequence order is also different.

Example 10.9: Employing the cascade approach, realize an active RC filter for the following
specifications, with dc gain as unity:

0. = 1 dB, &, = 40 dBs, @, = 2000 rad/s, @, = 6000 rad/s

Solution: In Example 3.4, it was found that a fourth-order inverse Chebyshev filter will be
required for these specifications, for which the obtained transfer function is as given here:

{;2 + 1.1757}{;2 + 6.8283}
(s* +0.34235+0.2559) (s> +1.009 15+ 0.31255)

H(s)= (10.60)

For the transfer function in equation (10.60), poles and zeros are:
21, =% j1.0843, 7, , = £j2.6131, p, , =—0.17117 £ j0.47611, p; , = —0.50455 * j0.2408

Cascade optimization suggests a combination of z, , with p, , and z; 4 with p; 4, which results
in the following two second-order functions from equation (10.60).

[ +11757}

H(5) =
= 0342354 0.2559)

(10.61)

(s> +6.8283}

H,(s)=
2 (2 +1.00915 +0.31255)

(10.62)
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Parameters of the two second-order normalized functions are:
®,; = 0.50586, @,, = 0.55906, Q, = 1.4778 and Q, = 0.554

Both the transfer functions are LP notch, for which a number of circuits and approaches are
available; we select the modified summation method of Section 8.6.1.

With the required overall dc gain being unity, use of equations (10.36) to (10.38) gives the
value of gain coefficients as:

by = 0.2178 and k, = 0.04577

With these values of gain coefficients, the transfer functions modify as:

2
Hi(s)= 20.21785 +0.2559 (10.63)
(s°+0.34235+0.2559)

2
1, (5= 0045775 +0.31255 (10.64)

(5% +1.00915+0.31255)

To realize the aforementioned transfer functions, the Ackerberg—Mossberg biquadratic circuit
is used in the modified summation approach; the respective design values of elements after de-
normalization by 6000 rad/s and impedance scaling of 10 kQ, are as follows:

QR = 14778 KQ, Ry, = Ry = Ry = Rgy = 10kQ, Ry = 10 kQ, €, = Cy, = 32.94 nF and
Cpy =7.1743 nF

QR =554 kQ, Ryy = Ryy = Ry = Ry = 10kQ, Ry = 10 kQ, C, = Cy, = 29.811 nF and
C,, = 1.3644 nF

The cascaded fourth-order filter is shown in Figure 10.16(a) and its simulated magnitude
response is shown in Figure 10.16(b). The pass band is maximally flat, having unity gain at dc
with an attenuation of 0.422 dB at 2000 rad/s and attenuation of 40.1 dBs at 6000 rad/s; this
satisfies the specifications easily.

Example 10.10: Realize a maximally flat LPF in which it is desired that its dc gain remains
unity and its gain drops by 1 dB at 20 krad/s by introducing transmission zeroes at 40 krad/s
and 50 krad/s to increase rate of fall of attenuation.

Solution: For the given specifications, the desired transfer function was obtained in Example
3.7 of Chapter 3. The required sixth-order transfer function as obtained in Example 3.7 is as

i saof(S) ()

He(S)= (52 +z.5115+1.744)(52 +1.5248 +1.449)(52 +0.4758 +1.234) (10.69
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10 kQ
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Figure 10.16 (a) Fourth-order inverse Chebyshev filter circuit for Example 10.9. (b) Its magnitude
response.
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Transfer function in equation (10.65) is to be broken into second-order sections. As a first
step, the nearest poles and zeros are to be combined. Hence, the values of the poles and zeros
are:

21 ,=%]2, 75, = 2.5, p) 5 =—1.256 £j0.41, p; 4 = —0.762 £50.932, and p, 5 = —0.238 + j1.085

Based on the closeness between poles and zeros, the following second-order sections are formed.

{(: / 2)2 + 1}

fi(s)= (10.66)
1) (:2+2.5115+1.744)
3.119
H. =
2(5 (sz +1.5245+1.449) (10.67)
{(5/2.5)2 +1}
Hy(s)= (10.68)

- (s* +0.4755+1.234)

The next step is the selection of the sequence of the sections for which the mentioned thumb
rule in terms of pole-Q values can be applied. The respective values of the pole-Q for the
transfer functions H,, H, and Hj are:

Q, =0.5259, Q, = 0.7898 and Q, = 2.3386

Hence, in the proposed cascade H, will be followed with A, and H; will be at the end.
Otherwise, it will be preferred to have the LP section in the beginning.

Next, the assignment of gain is to be done for the individual sections so that dynamic range
is maximized and the responses at all intermediate section nodes become as flat as possible.
The voltage maxima at the output of each section are to be evaluated either by calculation or
by inspection. As the function /, is an LP section with Q, = 0.7899, its maxima will occur at
dc, which means 4, = 3.119/1.449 = 2.1525; similarly, A, which functions as an LP notch,
with Q) = 0.5259, has its maxima also at dc, which results in 4, = 1/1.744 = 0.5733. As we are
designing an LPF with gain unity at dc, for Hj, the value of /5 was also taken at dc, which is
hy =1/1.234 = 0.81. From these values, we can write:

Ml = |})1|max = 05733’M = |h1 b2|
1.234 x 0.81 = 1.0

= 2.1525 x 0.5733 = 1.234 and M, = |, by by |,y =

max max

As the final gain is to be unity, KMj = 1, and value of the gain coefficients of the three sections
are evaluated as:

ky =1/0.5733 = 1.744, k, = 0.5733/1.234 = 0.4640, k; = 1.234/1.0 = 1.234

Having obtained the gain coefficients, the biquadratic arrangement known as modified
summation method of Section 8.6.1 was selected for the realization of the three transfer
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functions. For the sake of reference, the expression of the biquad is repeated here as equation

(10.69).
|4 os® +s(k—B)/ CR+7v/C*R?
o O btk PICRAYIC (10.69)
Vin & +1s/(CRQ)}+1/ C*R
. . . . 1.744
Comparing equation (10.66) with equation (10.69), #= =0, @ =025 and y=———=LIf

1.744
normalized R = 1, we get C = 1/1.744% = 0.7572. As the frequency normalization was done

by a factor of 20 krad/s in Example 3.7, the same is used for de-normalization, and with an
impedance scaling factor of 10 k€2, the values of the elements for /,(s) are obtained as:

C, = 3.7861 nF, o C, = 0.9465 nF, R, = 10 kQ, Q, R, = 5.259 kQ, R,/7; = 10 kQ

10 kQ
- NN o
1| |3.786 nF
'>—| If AVAAY,
10kQ
C, Ay C - i
o
v 1|1 A4 .09 3.786 nF| | C1 3
o——4¢ | Ry +
+
0.9465 nF—I__ A 5 =
= Ri/n
10 kQ
AVAY
J |4.1538 nF 10 kQ
QR 10 kQ
2542 —/\ /\ /\,_1
t VVv—¢ 4.1538 nF| | C2 '
7.897 kQ
> R,
4 AYAYAY +
J_—‘f 10 kQ 5 =
ke
10 kQ
C 10 kQ
< 3 4.501 nF /\/\/\/
| 10kQ
C, et C - !
o
3C3 oy kO 4501 nF| |Cs 9
| h R, N +
0888|9 F 7 *
HJ_—+ Sy 10kQ 8 =
L Vout -
- R3/73 1
AVAAY, =
10kQ
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Figure 10.17 (a) Sixth-order cascaded low pass filter structure for Example 10.10. (b) Its magnitude
response.

With the same circuit configuration and frequency and impedance scaling factors, element
values for the remaining transfer functions /, and H, respectively, are as follows:

C,=4.1538 nF, 0y Cy = 0, R, = 10 kQ, Q, R, = 7.898 kQ, Ry/7, = 10 kQ
C, = 4.501 nF, o Cy = 0.8889 nF, Ry = 10 kQ, Q; R, = 23.386 kQ, Ry/Y, = 10 kQ

Figure 10.17(a) shows the complete sixth-order cascaded filter with element values and Figure
10.17(b) shows its simulated magnitude response. The filter’s dc gain is unity, attenuation at

20 krad/s is 1.09 dB and zeros occur at 40.14 krad/s and 49.82 krad/s; this is very close to the
design specifications.

10.4 Tuning of Filters

There has been a significant improvement in the fabrication processes and manufacturing
methods of electronic components and devices and it has resulted in considerable advances
in the performance capability of active filters. However, increasing complexities in various
application fields such as communication, instrumentation and control has necessitated in more
miniaturization. Fabrication processes of integrated circuits (ICs) have advanced from the thin
and thick film technology to the hybrid and to the monolithic form. Unfortunately, even with
tremendous advancements, both passive and active components suffer from manufacturing
tolerances of varying degrees, affecting the performance parameters of the filters. Deviation
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in the filter parameters depend on the amount of tolerance of the components. Therefore, it
becomes necessary to adopt correction methods such that the practically obtained performance
is within the prescribed limits of the design, and the circuit and the system works as desired.

It has been mentioned a number of times that for OA based continuous-time filter circuits,
parameters are set by RC products; this is barring OA-R and OA-C circuits where parameters
depend on gain bandwidth product as well. In OTA based circuits, the parameters depend
on the capacitance to the trans-conductance ratios. This means that not only the passive
components but also the active components should be realized with maximum accuracy and
their parameters should remain stable.

The presence of production tolerance in components requires that post-design adjustment is
an essential step in meeting tight specifications. While pre-distortion is also an important step
for compensating the effects of component imperfections, it is the post-fabrication parameter
tuning which is almost essential. Of course, the specific tuning employed depends upon the
function to be realized, the network configuration used and the technology of implementation.
Over the years, functional tuning [10.1], deterministic tuning[10.2] and automatic runings have
been developed and used; these are briefly discussed here.

Functional and Deterministic Tuning Functional tuning is performed by adjusting the
parameters. This is done by changing the components at a frequency of known phase shift
while the circuit is in operational mode. Selection of phase, instead of magnitude is done
because it was observed that change in phase is more pronounced than change in magnitude
of filter near the region of the critical frequency, ,.

| |c
I Gs

G,
mn
o—o—’\/\/\,—o—‘ ¢ - V%ut

= GD

—>| Phase - sensitive detector |—

Figure 10.18 Self-tuned signal-tracking multi-loop feedback filter configuration.

Ideally, the process of tuning proceeds by controlling the parameters of interest in a non-
interactive fashion through change in a single circuit element; which in almost all the cases,
is a resistor. Obviously, complete non-interactiveness is practically difficult to achieve, which
necessitates a tuning sequence. Without going into the details of the functional tuning, it
can be said that the trial and error process for precision is slow and suitable only for simpler
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circuits. Moreover, the process of change in the controlling resistor through laser trimming
is irreversible. Finally, this kind of tuning is possible in hybrid circuits and not in monolithic ICs.

In deterministic tuning, the time-consuming iterations of functional tuning are avoided
by introducing a predictive step of performing initial circuit analysis. Exact design equations
are formulated considering all known imperfections, like frequency dependent amplifier gain
and capacitor losses. However, once the analysis is done without making the circuit inter-
connections, final design equations become a set of non-linear expressions and demand a
computer solution. At the end, laser trimming is performed, making this approach unsuitable
for monolithic ICs.

10.4.1 Automatic tuning

In applications where the input signal frequency varies over a wide range, a wide bandwidth
filter is not suitable for effective rejection of noise. One solution for the problem is to use
a high Q BPF with its center frequency @, being continuously adjusted to a desired value.
In such a case, it is also required that the bandwidth BW = @,/Q and mid-band gain H,
remain constant and unaffected by the change in ®,. These conditions are achievable in OA-
RC circuits in which tuning of @, is possible by a single resistor, and this resistor does not
affect BW or H,. There are quite a few multi-OA circuits like state variable and GIC based
configurations satisfying the required conditions. The single OA multiple feedback circuit
discussed in Section 7.3 comes in that category, for which equal capacitance C:

w,=VGs(G, +G,)/ C, BW =2G; / C and H, =G, | 2G; (10.70)

It is clear from equation (10.70) that G, is present in the expression of @, only but not in the
expressions of BW and H,. Automatic tuning is implemented by means of a phase detector
as shown in Figure 10.18 [10.3]. The phase detector differentiates the input and output filter
waveforms before their comparison and necessary steps, such as gating, smoothing and feeding
to the FET acting as a voltage-variable resistor.

In practice, the arrangement of automatic tuning comprises the phase-locked loop (PLL),
which tracks a given signal while passing signals only in a small bandwidth [10.4]. Such a
system can be integrated in monolithic form. The method will be discussed later in connection
with the realization of active R and active C filters in Chapter 17.
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Practice Problems

[0-1

10-2

10-3

10-4

10-5

10-6

10-7

A LP filter has the following specifications:
®, = 10 krad/s, @, =36 krad/s, A,,, = | dB ripple and A, = 50 dBs

Design an active RC filter to satisfy the specifications using single amplifier second-order sections in
cascade approach and test it.

A HP filter has the pass band from 104 rad/s to infinity. The peak to peak ripple in the pass band has to
be less than 2 dBs. For @ < 2 krad/s, the loss must be greater than 50 dBs. Design and test an active RC
filter to satisfy the specifications using the cascade approach.

Design and test an equal-ripple BP filter to satisfy the specifications: (a) the pass band extends from 2000
to 8000 rad/s. The ripple width in the pass band does not exceed 0.5 dB. (b) The magnitude is at least 30
dB down at 24 krad/s from its peak value in the pass band.

Realize a fifth-order LP Chebyshev filter using cascade approach. Optimize its dynamic range. Ripple
width in the pass band is 2 dBs, and frequency is normalized by 25 krad/s. Use practical element values
and test the filter.

Realize the following transfer functions by cascading second-order sections using single amplifier biquads
while frequency de-normalization will be with 10 krad/s.

~ 4
@ Hls)= (57 +0.775+1)(s” +1.855+1)
2
(b) H(s)= (52+3s+3)($2+|-4145+')
. 2(s2 +1)
(c) H(s)= (52+3s+3)(sz+|.4145+')
(d) H(s)= l

(sz +0.775+ [)(52 +1 .85s+|)(s2 + .4[4s+|)

Repeat Problem 10-1 using multi amplifier biquads.

A fifth-order normalized LP filter can be realized by a cascade of first- and second-order functions as
shown here:

k xky X kg
(s+0)(s” +1.61803s +1)(s” +0.61803s +1)

H(s)=

A possible design for the system is suggested in Figure P10.1. Prove its adequacy or provide an alternate
design.
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| —
—
—

Figure P10.1

10-8 Specifications of an inverse Chebyshev function as shown in figure are:
Oax = 0.5dB, 0, = 20 dBs, @, = 36 krad/s and @, = 80 krad/s.

Determine the order of the filter and find transfer-function satisfying the specifications in terms of the
product of second-order (a first-order also if needed) sections. Optimize dynamic range of cascaded filter.

[0-9  Repeat problem 10-8 for the following specifications:

oy = 0.5 dB, &, =30 dBs, @, = | krad/s, and @, = 3.45 krad/s.
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