
2.1 Introduction

Circuit designers/users evaluate filters and the order of the filters needed is based on what are 
the given specifications. The filter order n can be small or large. There are techniques by which 
filters of order   n ≥ 2 can be realized directly. Filters with order one or two can be used as such 
depending on the requirement; they can also be combined to provide filters of higher-order. 
Therefore, it is necessary to study the basic principles underlying the behavior of first- and 
second-order filter sections and the important terms used for their parameters before studying 
realization of higher order filters.

A first-order section can easily be realized using RC components only; but such sections 
suffer from certain limitations as shall be shown in Section 2.2. Hence, it is advisable to 
use first-order active filters with inverting or non-inverting amplifiers. A comparative study 
of active first-order filters, along with a discussion on the non-ideal effect of operational 
amplifiers (OAs) on their frequency response is given in Section 2.3 and 2.4. Terminologies 
used for second-order active sections and characteristics associated with low pass (LP), high 
pass (HP), band pass (BP), band reject (BR), and all pass (AP) responses are included in 
Sections 2.5 to 2.11. Constraints of the finite bandwidth of the OA on second-order filters 
are briefly discussed in Section 2.12. Three application examples in Sections 2.3.2, 2.3.3, and 
2.7.1 are included to show the utility of these simple filter structures.  

2.2 First-order Filter Sections

The transfer function of a physically realizable filter using a finite number of elements has to 
be a real rational function [2.1]. The rational function is a ratio of polynomials in the complex 
frequency s. It is repeated here from Chapter 1.

First- and Second-order Filters 

Chapter 2
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In this equation, the order of the transfer function is n, with m ≤ n.
For m = n = 1, the transfer function of equation (2.1) reduces to the following.
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As H(s) in equation (2.2) is a ratio of two polynomials representing a straight line, it is also 
called a bilinear function. The transfer function H(s) of equation (2.2) can be modified into a 
desirable form in terms of pole p1 and zero z1 zero as follows:
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For the transfer function to be physically realizable in stable form, its pole must not be in the 
right-hand side of the s plane [2.1]. Hence, b0 and b1 will have to be positive and finite (or both 
negative and finite), though a0 and a1 can be positive, negative, or even zero (one of the two, 
either a0 or a1). The zero z1 can be located anywhere on the real axis. To realize the transfer 
function H(s) with passive elements, a simple arrangement as shown in Figure 2.1 can be used. 
Different variations are possible depending on the choice of impedances Z1 and Z2. Some of 
the combinations are as follows: 

For Z1 = R1 and Z2 = 1/sC1, as shown in Figure 2.2(a), the realized transfer function is H(s) 
= (1/R1C1)/(s +1/R1C1)

For Z1 = 1/sC2 and Z2 = R2, as shown in Figure 2.2(b), H(s) = s/(s + 1/R2C2)

For Z1 = (R1 + 1/sC1) and Z2 = (R2 + 1/sC2) as shown in Figure 2.2(c), the transfer function 
becomes:
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Figure 2.1 First-order bilinear transfer function realization using passive elements.
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Figure 2.2 Few first-order transfer function realizations using resistors and capacitors only.

The bilinear function of equation (2.4) has a pole p1 and a zero z1; their expressions are as 
follows:
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The gain of the transfer function of equation (2.4) is as follows:
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 (2.5b)

It is important to note that in this passive circuit, the voltage gain at any frequency will never 
be more than unity.

2.3 Active First-order Filters

In the previous section, it was shown that first-order transfer functions can easily be realized 
using passive elements. However, there are quite a few limitations in such networks. For 
example, all the values of pole (s) and zero (s) are not realizable. For example, an ideal integrator 
is not realizable. An important limitation is a resultant disturbance in the transfer function 
when the network gets loaded. Significant changes in the response take place because of the 
loading effect. Hence, it is preferable to realize the elements of the circuit in active form, which 
will additionally provide gain as well, which is generally needed. 

The following sections describe a few simple applications of OAs being used as first-order 
active filters.

2.3.1 Use of inverting amplifiers 

If the elements used in Figure 1.11(a) (lossy inverting integrator) are replaced by impedances 
Z1, Z2 (or admittances Y1, Y2), the transfer function of the circuit gets modified as shown in 
equation (2.6).
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H(s) = –(Z2/Z1) or –(Y1/Y2) (2.6)

The impedances Z1, Z2 (or Y1, Y2) can be any series/parallel combination of R1 and C1; R2 and 
C2 are as shown in Figure 2.3; the transfer function of the circuit is obtained as follows:
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Figure 2.3 Realization of active first-order section using an inverting amplifier.

Comparing this equation with equation (2.3), we can realize a first-order section with the 
following parameters:

= = =2
1 1

1 2 2 1 1

1 1
;  zero and pole 

R
k z p

R R C R C
 (2.8)

If the designer is aware of the location (value) of the pole and zero and the gain at s = 0  
(or s = ∞), element values can be easily calculated using equation (2.8). It is to be noted that 
equation (2.7) has three parameters, whereas element values to be found are four. Hence, one 
element value (or an element ratio) has to be assumed.

Example 2.1: Design a first-order active bilinear function having its zero at 1000 rad/s, pole 
at 2000 rad/s and gain of 20 dBs at very low frequencies.

Solution: Corresponding to 20 dBs, gain on linear scale is k = 1020/20 = 10 at very low 
frequencies (or s = 0). Using equation (2.7):

H(0) = –(C1/C2) = –10

If the OA is used in inverting mode, the gain will have a negative value of –10. Corresponding 
to the given pole and zero values, 1/R2C2 = 1000 and 1/R1C1 = 2000. Selecting C1 = 1 mF, 
we get C2 = 0.1 mF, R2 = 10 kW and R1 = 0.5 kW. The desired circuit with element values 
is shown in Figure 2.4(b). Figure 2.4(c) shows the circuit’s PSpice (Simulation Program for 
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Integrated Circuits Emphasis: a simulator program used to verify circuit designs and predict 
their behavior) simulation with an input voltage of 0.1 volt. At low frequencies, the output 
voltage is approximately 1.0 V with a maximum of 2.0 V or gain of (–20).
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Figure 2.4 (a) Using series form and (b) parallel form of impedances in the circuit for Example 2.1. 
(c) Magnitude response of the active bilinear circuit for the circuit in Example 2.1.

2.3.2 Bass cut/boost and treble cut/boost filters – application 
example

In audio systems, low frequencies, which are typically in the range of a few Hz to 100 Hz, 
are called bass notes. Mid-range frequency signals, typically ranging between 100 and 1000 
Hz, are called middle notes. High frequencies are called treble notes; they are typically above 
1000 Hz. Low frequencies are responsible for the deep sound of bass guitars and drums. Most 
instruments create sounds in the mid-range frequency; these include guitars, brass or string 
instruments, and even the human voice. High frequencies are responsible for the sparkle sound 
of cymbals and clarity of voices. Sound gets muffled if the treble note is missing or weak. All 
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the three types of notes are enhanced or boosted else weakened or cut to improve the quality. 
If no boost or cut is applied, the response is said to be flat. The following example is a simple 
practical illustration employing an inverting amplifier for audio systems.  

In equation (2.7), H(s) = –Z2/Z1. Hence, if Z1 = R1 and Z2 is a parallel combination of 
R2, with resistance R3 and capacitance C1 in series, as shown in Figure 2.5(a), we obtain the 
following relation:
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Figure 2.5 (a) A bass boost (and treble cut) circuit. (b) Response of the bass boost/cut and treble 
boost /cut by 10 dBs.
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The circuit in Figure 2.5(a) realizes a function which performs a bass boost action with the 
following expressions for gain at high and low frequencies:

Gain at dc = R2/R1 (2.10a)

32

1 2 3
Gain at high frequencies 

RR
R R R+

=  (2.10b)

For getting a boost of 10 dBs, if R2 is selected as 200 kW, we need an R1 of 63.2 kW, and for 
a high frequency gain of unity, equation (2.10b) gives R3 = 92.3 kW. Pole frequency fc of the 
bass boost circuit is decided by the choice of the capacitor C1, with its expression as follows:

1 2 3

1
2 ( )cf C R Rπ

=
+

 (2.11)

With C1 = 2 nF, fc will be 272 Hz for the selected resistances.
The circuit in Figure 2.5(a) can also be used to function as a treble cut. To get a –10 dB 

treble cut and 0 dB gain at dc with a pole frequency of 272 Hz, equation (2.10) and (2.11) 
gives the required values of elements as: R1 = 63.2 kW, R2 = 200 kW, R3 = 92.3 kW and C1 = 
2nF. Figure 2.5(b) shows the simulated responses of the designed bass boost and treble cut 
filter section.

If Z1 is a series combination of resistance R4, with resistance R5 and capacitance C2 in 
parallel, and Z2 = R6 as shown in Figure 2.6, its transfer function will be as follows:
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Figure 2.6 A treble boost (and bass cut) circuit.

While realizing a treble boost circuit, expressions of gain at higher frequency and at dc are as 
follows:
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Treble boost gain = R6/R4 (2.13a)

dc gain = R6/(R4 + R5) (2.13b)

For a treble boost of 10 dB, selecting R6 = 200 kW, we require an R4 = 63.2 kW, for unity dc 
gain, R5 = 136.8 kW from equation (2.13b).  The expression of the pole frequency is:

4 5

2 4 5

( )
2 ( )c

R R
f

C R Rπ
+

=  (2.14)

Hence, with C2 = 4 nF, fc will be 837 Hz.
The circuit in Figure 2.6 can also be used for bass cut function. To get a –10 dB bass cut, 0 

dB gain at higher frequencies and pole frequency of 837 Hz, equations (2.13) and (2.14) gives 
element values R4 = 63.2 kW, R5 = 136.8 kW, R6 = 63.2 kW and C2 = 4 nF. Figure 2.5(b) also 
shows the simulated responses of the treble boost and bass cut circuits, verifying the design.

2.3.3 Fluorescence spectroscopy: application example

Frequency domain fluorescence measurements in atomic and molecular physics can be modeled 
in terms of first-order low pass filters (LPFs). Hence, as fluorescence can be mathematically 
equated to analog filters, a unified treatment of the entire fluorescence chain is possible by 
cascading their transfer functions [2.2].

Without going into the theoretical background of the representation of fluorescence, let us 
see the utility of simple LPFs as a useful practical application. It is observed that fluorescence 
from a three-level system (Figure 2.7(a)) can be represented by a Laplace transform equation 
[2.2]. This Laplace representation has been realized using two first-order cascaded LPFs. The 
cascaded filter is simulated for (i) a very fast relaxation from level 2 to 3 in Figure 2.7(b) and 
(ii) for a slower relaxation from level 2 to 3. The life time of the first-stage LPF for both the 
cases was set at 1 second. For the second-stage LPF, values of the components were selected by 
the inspection of the transfer function of a near-practical fluorescence measurement case with 
a life time of 1011 s and 103 s. Values of the elements for both the first filter and the two cases 
of the second filter are obtained from the equation of life time = (1/2 π RC):

R1 = 159 kW, C1 = 1 mF for stage 1 and (a) R2 = 1.59 kW, C2 = 100 nF for case (i) and 
(b) R2 = 0.159W, C2 = 10 pF for case (ii) (2.15)

Simulated response of the two cases is shown in Figure 2.7(c), where curve ‘-Vp(51)’ represents 
the decay rate of 1011 and curve ‘-Vp(5)’ represents the decay rate of 103.

The equivalent circuit for the transfer function with two life time components is shown in 
Figure 2.8(a). The frequencies used for the slow and fast transition rates in the circuit were 
100 Hz and 1 MHz. For these frequencies, the design values of the components are as follows:

R1 = 15.9 kW, C1 = 1 μF R2 = 15.9 kW, C2 = 100 pF, R4 = R5 = 10 kW, R3  
varies from 10 kW to 11.11 kW, 12.5 kW, 16.66 kW, 25 kW, 50 kW and 100 kW (2.16)
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Figure 2.7 (a) Three-level representation of fluorescence. {With permission from R. Trainham et al. 
[2.2]} (b) Low pass filter realization of the transfer function for the three-level fluorescence. 
{With permission from R. Trainham et al. [2.2]} (c) Phase shifts corresponding to the two 
cases of fast and slow RC time constants for the cascaded low pass filter in Figure 2.7(b).

R3 was varied to change the weight age of the transition rate of the slow component. The 
signals from the two LPFs were added and the final response is shown for two different ratios 
of the intensity of the slow component to the intensity of the fast component in Figure 2.8(b). 
Responses given by the filters of Figures 2.7(b) and 2.8(a) match very well with calculated 
theoretical responses [2.2].
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Figure 2.8  (a) Realization of the transfer function for the two life time fluorescence. {With 
permission from R. Trainham et al. [2.2]} (b) The family of curves of phase shifts for 
different mixtures of two life times separated by four decades.
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2.3.4 Use of non-inverting amplifiers

A non-inverting amplifier using OA can also be used to realize a first-order bilinear function 
by replacing its resistors with general impedances Z1, Z2 (or Y1, Y2) as shown in Figure 2.9. 

–

+

Z1

Vin
Vout

Z2

Figure 2.9 Non-inverting amplifier for the realization of a first-order active bilinear transfer function.

The transfer function is as follows:

H(s) = 1 + (Z2/Z1) = 1 + (Y1/Y2)  (2.17)

Comparison of equation (2.17) with equation (2.3) gives the following relation.

( ) ( )
( )

1 1 1
2 1

1 1

( 1)( )
/ 1

( )
s z s k kz p

Z Z k
s p s p

+ − −= − =
+ +

 (2.18)  

As impedances Z1, and Z2 are positive entities, the following constraints are to be met to keep 
the numerator positive:

k ≥ 1 and (kz1 – p1)  ≥ 0 (2.19)

The designer needs to be careful about the strict constraint out of the two in equation (2.19). 
The absolute value is not important as it only adds to the gain which can also be controlled 
with a cascaded amplifier/ attenuator. Element values depend on the way the impedances Z1 
and Z2 are realized. For example, if Z1 is a series combination of R1 and C2 and Z2 is a parallel 
combination of R2 and C2 or vice versa, the circuit will realize a second-order transfer function. 
With Z1 and Z2 both having resistors and capacitors in series, the flow of biasing current in 
the inverting node of the OA is blocked (this needs to be overcome by connecting a high value 
resistor in parallel with the input capacitor C1).
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Example 2.2: Design a first-order bilinear transfer function using a non-inverting amplifier 
having the pole and zero of Example 2.1 with gain k = 5. 

Solution: As,  k > 1, the first constraint in equation (2.19) is valid for selecting Z1 as a parallel 
combination of R1 and C1 and Z2 as a parallel combination of R2 and C2 in the non-inverting 
amplifier of Figure 2.9. The obtained transfer function is as follows: 

( ) ( )( )
+ + + += =

+
out 1 2 1 2 1 2 1 2

in 2 2 2

( )  ( ) / ( )
  

1/
V C C s R R R R C C

H s
V C s R C

 (2.20)

Hence, H(0) = 1 + (R2/R1), and at high frequencies, say 

H(10kHz) = 1 + (C1/C2) (2.21)

Expression of its pole and zero are obtained as follows:

+= =
+

1 2
1 1

2 2 1 2 1 2

1 ( )
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( )
R R

p z
R C R R C C

 (2.22)

With k = H(10kHz) = 5, equation (2.21) gives  (C1/C2) = 4; hence, selecting C2 = 0.1 mF, we 
get C1 = 0.4 mF. For the pole at 2000 rad/s and the zero at 1000 rad/s, use of equation (2.22) 
gives the values of R1 and R2 as 5 kW and 1.25 kW, respectively.

All the values of the elements used are shown in Figure 2.10(a) and the PSpice simulated 
response is shown in Figure 2.10(b). For an input voltage of 1.0 V, the circuit has a minimum 
output voltage of 1.25 V at low frequencies and a maximum of 5.044 V at around 10 kHz. A 
gain of 5 can be verified at around 10 kHz, the circuit’s useful frequency range. The voltage 
peaks at nearly 81 kHz is due to the effect of the frequency-dependent gain of the OA; the 
peak voltage is controlled by the supply voltages of the OA. Additionally, if the input voltage 
is increased beyond nearly 1.0 volts, the output gets distorted due to the effect of the slew rate 
constraint. 
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Figure 2.10 (a) Circuit realizing the transfer function of Example 2.2 using a non-inverting amplifier.  
(b) Response of the first-order bilinear circuit of Figure 2.10(a).

2.4 Effect of Operational Amplifier’s Pole on Integrators

Analysis of the circuits done in the chapter so far assumed OAs as ideal. Finite values of the 
circuit’s input and output resistors do come in the picture but the most significant effect of the 
resistors is that of the finite and frequency-dependent open-loop gain. This non-idealness is 
mainly responsible for the use of OA (with the commonly used type, like 741) based circuits 
being restricted to low frequencies (in the audio frequency range) as was shown in Example 2.2.

This section will look into the performance variation of the first-order filters discussed 
in Section 2.3 when the OA is represented by its first-pole roll-off model given in equation 
(1.17). Effect of finite values of Ri and Ro is not considered here for two reasons. First, their 
values are not far from ideal; hence their effect is minimal and their introduction will only 
increase the complexity unnecessarily. Second, in critical cases, the effect of the finite values of 
the resistors can be absorbed in the components employed in the filter realizations.

For the realization of the inverting amplifier of the first-order section shown in Figure 2.3, 
the ratio of the output to the input voltage is as follows:

out 2

in 1 2 1

1
  

1 (1 / ) / ( )
V Z
V Z Z Z A s

= −
+ +

 (2.23)

With 2 1

1 1
 

Z s z
k

Z s p
+− = −
+

 from equation (2.7) and 2

1

R
k

R
=   from equation (2.10a), limitation 

of the use of OA can be observed by using the approximated model given by equation (1.17) 
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while neglecting its first-pole frequency of wa. The integrator model gives sufficiently accurate 
results at high frequencies; though at very low frequencies, wa cannot be neglected for correct 
results. Hence, equation (2.23) can be modified to the following:

( ) ( )
out 1 1

2 1 1in 1 1 1
1

( ) ( )
  

1/ [( ) ( )]  1

V s z s z
k k

k p kzV s p s B s p k s z s s p
B B

+ += − = −
+ ++ + + + +    + + +      

 (2.24) 

For an ideal OA, B being infinite, equation (2.24) will reduce to equation (2.7), and when 
B is finite, larger B or smaller values of z1 and p1 will lessen the parasitic effect. Frequency 
dependence of the OA gain has increased the denominator order by one, resulting in two 
poles. One of the poles will be near the original pole p1 as (p1 + Dp1) and a second pole, p2 will 
be far from p1, but the distance between the two (or the effect of non-ideality) will depend on 
the value of B (unfortunately, this is not the same for all OAs) and the value of the parameters 
p1, z1, and k.           

Example 2.3: Design a first-order circuit using an inverting amplifier which will have a pole 
at 2 ×105 rad/s, zero at 105 rad/s and a gain of 2 at low frequencies. Find the effect of the 
frequency-dependent open-loop gain of the OA with B as (i) 106 rad/s, (ii) 0.5 × 106 rad/s and 
(iii) 105 rad/s. Compare the results with the simulated responses of the circuit.

Solution: In a similar way as in Example 2.1, the structure of the circuit is similar to that in 
Figure 2.11(a) or 2.11(b) with the following values if OAs were taken as ideal during analysis.

R1 = 250W, R2 = 1000W, C1 = 2 × 10–8 F and C2 = 10–8 F

= Ω = Ω = × = ×′ ′ ′ ′–8 –8
1 2 1 2500 , 1000 , 2 10 and 0.5 10R R C F C F

With frequency-dependent gain, A(s) @ B/s, the expression of gain is obtained as follows:

5
out

5 5
in 2 5

( 10 )
2

1 2 2 10 2 101 2 10

V s
V

s s
B B

+= −
 + × + ×  + + + ×      

 (2.25a)

For further analysis and in order to determine the effect of the frequency dependence of the 
gain of the OA, three cases are taken with different values of the gain bandwidth product B.
i. For B = 106 rad/s, equation (2.25a) can be modified as follows:

5
out

6 2 5
in

( 10 )
2 

3 10 1.4 2 10
V s
V s s−

+= −
× + + ×

 (2.25b)

 When B = 106 rad/s, we get conjugate poles p1,2 = (–2.333 ± j 1.1055) ¥ 105 rad/s.
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In this case, the poles are not too far from the design pole value, and the characteristics 
show small deviation with peak gain having small reduction. The peak value is 3.9735 
(against a theoretical value of 4), that too only at a higher frequency of 250.55 kHz, nearly 
one-fourth of B.   

ii. For B = 0.5 ¥ 106 rad/s, we get conjugate poles p1,2 = (–1.5 ± j1.0408) ¥ 105 rad/s.
In this case, the characteristics gets deviated a bit more, with peak gain going down to 

3.95 at 159.3 kHz, still at a reasonably high frequency.
iii. For B = 105 rad/s, we get two real poles at –1.0 ¥ 105 rad/s and –0.666 ¥ 105 rad/s, and 

the characteristics get highly deviated with the gain doing down to 3.73, a deviation of 
6.75%, at 78.7 kHz, because of the second real pole positions.

20 nF
–

+

Vin

10 �3
10    F–8

250 �
Vout

500 �

10 �3

5 10    F� –9

2 10� F–8

Vin
–

+

Vout

(a) (b)

5.0 V

2.5 V

0 V

Bandwidth of the OA rad/s
Near ideal

10 E6

10 E5

0.5 10 E6�

V (51) V (52) V (53) V (5)
1.0 kHz 10 kHz 100 kHz 1.0 MHz

Frequency

(c)

Figure 2.11 (a) Series, and (b) parallel forms of circuits for Example 2.3. (c) Magnitude response of 
the circuit of Figure 2.11(a) with ideal OA and OA with bandwidth = 106, 0.5 × 106 and 
105 rad/s.
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It is clear from these observations and the response, when OA is ideal in Figure 2.11(c), that 
the higher the ratio of gain bandwidth product to the working pole frequency, the more the 
non-ideality effect gets reduced. It may be noted that the value of the dc gain k also plays an 
important role in the amount of non-ideal effect; the larger the value of k, the more deviation 
in pole location. In the example provided here, the pole value was intentionally selected high 
enough and close to B to highlight the non-ideality effect of OAs.

It is observed that when the first-order section is realized using a non-inverting amplifier, 
the non-ideality of the operational amplifier affects the filter in a similar way. Order of the 
filter is increased by one for each OA; the original pole deviates and the amount of deviation 
depends on the ratio of B with the pole value and on the gain value k.

Example 2.4: Design a first-order section using an ideal non-inverting amplifier with the same 
specifications as in Example 2.3. Evaluate the effect of the non-ideality of the OA through 
simulation results.

Solution: Using the non-inverting circuit of Figure 2.10 and taking OA as ideal, the obtained 
expression of the gain is as follows:

( )
( )

( )
( )

1 2

1 2 1 2 1 2out

in 2 2 21/

R R
s

C C R R C CV
V C s C R

+
+

+ +
=

+
 (2.26)

Values of the elements for the given specifications p1 = 2 × 105  rad /s, z1 =  105 rad/s  and dc 
gain of 2 from equation (2.26) are obtained as follows:

R1 = R2 = 0.5 kW, C1 = 0.03 mF and C2 = 0.01 mF

The circuit with the aforementioned element values is shown in Figure 2.12(a) and the 
simulated response of the ideal case is shown in Figure 2.12(b) having a dc gain of 2 and a 
high frequency gain of 4. 

For the non-inverting amplifier circuit of Figure 2.5, expression of the ratio of the output 
to input voltage with A(s) @ B/s is given as follows:

( )

out 2 1

2in 1 2
1 1

1

1
1  

1 11 1

V Z s z
k

k kV Z Z s z s p
B BA s Z

  += + =       + + ++ +      

 (2.27) 

Equation (2.27) results in two poles. Value of the poles will again depend on the value of B, its 
ratio with p1 and the value of the gain k.

For B = 106 rad/s, p1,2 = (–3 ± j1) ¥ 105 and peak gain of 3.8 occurs at 126.36 kHz.
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For B = 0.5 ¥ 106 rad/s, p1,2 = (–1.75 ± j1.39) ¥ 105 and response drops with peak gain, 
dropping to 3.7 at a frequency of 100 kHz.

For B = 105 rad/s, p1,2 = (–0.75 ± j0.661) ¥ 105, the response further worsens, having a peak 
gain of only 3.26, and an error of 18.5% at a much lower frequency, 62.28 kHz. 

All the three responses, along with the case when OA is almost ideal, are shown in Figure 
2.12(b). It is to be noted that distortion in the non-inverting amplifier case is comparatively 
much larger than the inverting amplifier case.

–

+ Vout

Vin

0.5 k�
0.03 mF

0.5 k�

0.01 mF

(a)

0.5 V

2.5 V

0 V

Bandwidth of the OA rad/s

V (3) V (31) V (311) V (3111)
1.0 kHz 10 kHz 100 kHz 1.0 MHz

Near ideal

10 E6

10 E5

0.5 10 E6�

Frequency

(b)

Figure 2.12 (a) Non-inverting amplifier circuit for Example 2.4. (b) Magnitude response of the circuit 
of Figure 2.12(a) with ideal OA and OA with bandwidth = 106 , 0.5×106 and  105 rps.
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2.5 Biquadratic Section: Parameters wo and Qo

Moving on from first-order sections to second-order ones, transfer functions of second-order 
sections can be easily obtained by cascading two first-order sections. The overall transfer 
function is simply the product of the individual transfer function of the first-order sections, 
provided they satisfy the condition of cascading, that is, they have very high input impedance 
and very low output impedance. However, such second-order sections realize poles only on 
the negative real axis (with OAs considered ideal), which can be realized even with only passive 
elements. This is where the following second-order section, given by equation (2.28), comes 
in.  The equation gives a basic module that is used in different ways to construct various 
higher-order filter sections, for example, in cascade or multiple feedback form.

( )
2

2 1 0
2

2 2 0

( )
 

( )
N s a s a s a

H s
D s b s b s b

+ += =
+ +

 (2.28)

It is, therefore, useful to concentrate first on such sections expressed in terms of poles and 
zeroes as follows:

( ) ( )
( )

1 22

2 1 2

( )
 

( )
s z s za

H s
b s p s p

+ +
=

+ +
 (2.29)

The importance of the aforementioned section, which is commonly known as a biquadratic 
section comes from the condition that the poles are complex conjugate; the zeroes may or may 
not be complex conjugate. With the condition that the poles are in conjugate pair form, the 
transfer function can be expressed in terms of real and imaginary parts of the zeros Re(z1) and 
Im(z1), and the real and imaginary parts of the poles, Re (p1) and Im (p1) as follows:

( ) ( )
( )

w w
w w

 + + + + + = =
 + + + + + 

2 2 2 2 2
e 1 e 1 m 1

2 2 2 2 2
e 1 e 1 m 1

2R R ( ) I ( ) ( / )
   

2R R ( ) I ( ) ( / )
z z z

o o o

s z s z z s Q s
H s k k

s p s p p s Q s
 (2.30) 

Here wo is the pole frequency, which is given in terms of its real and imaginary parts as follows:
  

2 2 2
e 1 m 1R ( ) I ( )o p pw = +  (2.31a)

At frequency wo, the gain function becomes approximately the highest. At the zero frequency 
wz, the gain function become approximately the least and its relation is given as follows:  

2 2 2
e 1 m 1R ( ) I ( )z z zw = +  (2.31b)

Conjugate zeros and poles, and their real and imaginary components are shown in Figure 2.13.
For the biquadratic function of equation (2.28) or equation (2.30), dc gain is given as 

follows:
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( ) ( )w w= 2 2
10 1020log  | 0 | 20log /z oH j k  (2.32) 

I   ( )p1

I    ( ) = (1–1/4 )p Qwom 1 o
2 1/2

z1 jw

Re( ) = /2p Qwo1 o

I z( )im 1

Re( )p1

p1

p1
*

z1
*

Re( )z1

–s

–jw

s

m

Figure 2.13  Conjugate zeroes and poles of a second-order section, located on the s plane and their 
relation with Qo.

And the asymptotic gain for w reaching infinity is as follows: 

( ) ( )10 1020log  | | 20logH j k∞ =  (2.33)

Another important parameter which defines the sharpness of the magnitude response near the 
maxima, |H(jwo)| is known as pole quality factor Qo, which is given as follows:

( )
2 2

e 1 m 1

e 1 e 1

R ( ) I ( )
2R ( ) 2R

o
o

p p
Q

p p
w  += =  

  
 (2.34)

Whereas the depth of |H(jwz)| is defined by the zero quality factor Qz, given as follows:

( )
2 2

e 1 im 1

e 1 e 1

R ( ) I ( )
2R ( ) 2R

z
z

z z
Q

z z
w  += =  

  
 (2.35) 

In most cases, Re(z1) = 0, which means Qz Æ •  and wz = Iim(z1). This results in infinite 
(ideally) attenuation at wz. From equation (2.34), Re(p1) can be expressed as follows, which is 
shown in Figure 2.13.

Re(p1) = wo/2Qo (2.36)
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Combining equations (2.34) and (2.31a), we get the following relation.

( ) ( )w= −
½2

m 1I 1 1/ 4o op Q  (2.37)

This is also shown in Figure 2.13, and from equations (2.36) and (2.37), we get:

{ } w+ =
½2 2

e 1 m 1R ( ) I ( ) op p   (2.38)

which means that for all values of Qo, the location of pole p1 will lie on a circle with radius wo. 
For Qo = 0.5, the poles became real; whereas for high Qo, the poles are close to the imaginary 
axis. 

2.6 Responses of Second-order Filter Sections

It is important to note that the zero wz can be anywhere on the s plane while deciding the 
nature of the filter, namely, low pass (LP), high pass (HP), and band pass (BP), and pole 
frequency wo and pole quality factor Qo are the main design parameters. It is the value of wo 
which differentiates between the pass band and stop band of the LP and HP filters or decides 
the center frequency of the BP or BR (band reject) filters. The value of Qo does have an effect 
on the gain response of the LP and HP sections at wo, but it is most significant in deciding the 
quality of BP or BR filters. Significance of wo and Qo will be illustrated in detail in the next 
sections. 

2.7 Second-order Low Pass Response

When a1 = a2 = 0, in equation (2.28), the expressions of the transfer function H(s) in equations 
(2.28)–(2.30) will change to that of a second-order LP transfer function. Since the constant k 
is only a magnitude multiplier and does not affect the frequency response, it can be scaled, and 
the LP transfer function can be written as follows:

( )
2

LP 2 2 
( / ) 

o

o o o

k
H s

s Q s
w

w w
=

+ +
 (2.39)

The network analysis is done assuming the input to be sinusoidal (or to be a combination of 
sinusoidal signals), sÆjw. Hence, the magnitude and phase of the LP transfer function shall 
be as follows:

( ) )
2

LP 2 2 2 2 ½
 

( ( / ) ]
o

o o o

k
H j

Q

ww
w w w w

=
 − +

 (2.40)
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 (2.41) 
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 1
2
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  tan
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n o

n

Qw
w

−= −
−

 (2.43) 

In equations (2.41) and (2.43), wn = (w/wο) is termed as a normalized  frequency. 
Magnitude and phase function of the LP are shown in Figure 2.14(a) and (b), respectively, 

where the magnitude function is as follows:

|HLP(j0)|= k, |HLP(jwo)| = kQo and |HLP(j•)| Æ 0 (2.44)

peakw

k

� �HLP

ow
w

w w= 1–1/(2 )Qo
2

opeak

H kQ Q= /  1–1/4peak o o
2

|H( )|w � 1
w 2 or

–40 db/decade

0,0

0°

–90°

–180°

0 ow w

(a) (b)

j

Figure 2.14 (a) Gain variation of a second-order low pass section, and (b) phase variation of the 
second-order low pass section for all values of Qo.

These are shown in Figure 2.14(a), where the peak value is obtained by differentiating the 
magnitude function. Peak value of the transfer function Hpeak, and the frequency at which it 
occurs wpeak, are respectively given as follows: 

{ }½2
peak / 1 1/ 4o o oH kQ Q kQ= − ≅  (2.45)

{ }½2
peak 1 1/ 2o o oQw w w= − ≅  (2.46)

Approximation in equations (2.45) and (2.46) are satisfactory only with large values of Qo. For 
ow w , rate of drop of the magnitude function is proportional to (1/w2)or –20 dB/dec. The 
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rate of drop for a second-order section is also known as two-pole roll-off, as compared to single-
pole roll-off for a first-order transfer function having only one pole.

For the LP filter, sometimes it is desirable not to have a significant peak in the pass band. 
However, it is shown in Figure 2.14(a) that relative to |HLP(j0)|, Hpeak is larger by Qo times, 
which implies that for avoiding significant peak, Qo should have a low value (say < 0.9) for the 
LP filters. For Qo = 0.707, equation (2.46) gives that the peak of the magnitude function shall 
occur at w = 0.

It is important to note that while designing LP filters, the usual specifications are given in 
terms of the half-power frequency wc, where |HLP(jwc)| is 0.707 times its value at dc |HLP(j0)| 
(for Qo < 0.9). Since the gain (vo/vin) falls by a factor of 0.707 at the half-power frequency wc, 
it is also called –3 dB frequency. Another required specification for the LP filter design is 
|HLP(j0)|, which decides the gain required by the filter at dc.

For the phase function shown in Figure 2.14(b), value of phase change with w is as follows:

ϕ(0) = 0, ϕ(wo) = –90∞, and ϕ(w  Æ •) Æ –180∞ (2.47)  

Example 2.5: Show that the circuit in Figure 2.15 behaves as a second-order LP function. 
Design it for wo = 10 krad/s and  = 1/ 2oQ  and  2 .

Solution: Taking OA as ideal, nodal equations at nodes 2 and 3, respectively, are as follows:

V1(G1 + G2 + G3 + sC2) – VoutG2 – VinG1 = 0 (2.48)       

V1G3 + Vout sC1 = 0  (2.49)

–

+

Vin Vout

G1 G31

G2

C1

C2

2 3
V1

Figure 2.15  Second-order low pass filter section for Example 2.5.

Combining equations (2.48) and (2.49), the transfer function is obtained as follows: 

( ){ }
1 3 1 2out

2
in 1 2 3 2 2 3 1 2

( / )
  / ( / )

G G C CV
V s s G G G C G G C C

= −
+ + + +

  (2.50a)
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It gives the expressions for wo and Qo as:

w
  

= = =   + +    

½
2 2 3 2 3 1 32

1 2 1 2 3 1 2 2 3
,  and 

  o o
G G G G G GC

Q k
C C G G G C C G G

  (2.50b)

Selecting R2 = R3 = 5 kW, with wo = 10 krad/s, we get the following from equation (2.50b): 

C1C2 = 0.04 ¥ 10–14  (2.51a)

Corresponding to = 2oQ , selecting R1 = 1 kW gives a dc gain of k = 5. Required values of 
the capacitors are obtained from equations (2.50b) and (2.51a) as follows:

C1 = 2.0206 nF and C2 = 0.1974 mF (2.51b)

Figure 2.16 shows the magnitude responses of the PSpice simulation of the LP filter having 
Qo value as 1 / 2  and 2 . Magnitude response for  = 1/ 2oQ  does not show any peak and 
its 3 dB frequency is 1.582 kHz (9.944 krad/s) with a dc gain of 5. However, the response 
for the corresponding LP filter with = 2oQ , for which, with the same resistance values, the 
capacitances required are C1 = 4.04 nF and C2 = 0.09899 µF, shows a peak gain of 7.526 at a 
frequency of 1.378 kHz (8.661 krad/s) in conformity with equations (2.46) and (2.45). Figure 
2.16 also shows the corresponding phase responses for the two cases. Though the rate of variation 
in phase differs, in both the cases, a phase shift of 90º occurs at 1.592 kHz (10.0068 krad/s). 

8.0 V

4.0 V

0 V

1 2 180 d

90 d

0 d
>>

10 Hz 100 Hz 1.0 kHz 10 kHz

1 V (4) V (41) 2 VP (4) VP (41)

Q = 1.414

Q = 1.414Q = 0.707

Q = 0.707

Frequency

Figure 2.16 Magnitude and phase response of the low pass filter of Figure 2.15 with Q  =  
2 and1/ 2 .
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2.7.1 Earthworm seismic data acquisition: application example

The Earthworm System is a seismic network data acquisition and processing system developed 
by the US Geological Survey in the 1990s [2.3]. The system contained a number of real time 
electronic seismic wave forms (may be more than 16) that were fed to a multichannel digitizer 
(consisting of one, two or four 64 channel multiplexer boards).

Like any other data acquisition system, this system also faced the problem of picking up 
noise. In the beginning, passive filters were used to eliminate/reduce noises. However, passive 
filters introduced a 24 kΩ impedance between the source and the input. To overcome this 
limitation, a two-pole LP active filter using a single non-inverting OA as shown in Figure 
2.17(a) was employed [2.4]. Quad OA Tl064 provided low impedance while consuming less 
power. Consumption of less power was an important parameter as a large number of such 
filters were used in the system.

–

+

Vout

Coa 0.22 Fm

Vin Roa Roa

13 � 24.3 �
Cob 0.11 Fm

(a)

100 mV

V (4)

50 mV

0 mV
1.0 Hz 10 Hz 100 Hz 1.0 kHz

Frequency

(b)
Figure 2.17 (a) Low pass filter used in the Earthworm System [2.3]. (b) Simulated response of the low 

pass filter of Figure 2.17(a).

https://doi.org/10.1017/9781108762632.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.003


  49First- and Second-order Filters 

Figure 2.17(b) shows the simulated response with the 3 dB frequency being 60.17 Hz. It may 
be noted that even a simple filter can be utilized for major projects.   

2.8 Second-order High Pass Response

A biquadratic function can be converted to an HP response when coefficients a0 = a1 = 0. 
Equation (2.30) is modified as follows:  

( )
2

HP 2 2 
( / )o o o

ks
H s

s Q sw w
=

+ +
 (2.52)

Here k is the high frequency gain. The gain function of the HP section is shown in Figure 
2.18, which is very similar in nature with the LP response, 

{ }½2
peak / 1 1/ 2o o oQw w w= − ≅  (2.53a)

{ }½2
peak 0/ 1 1/ 4o oH kQ Q kQ= − ≅  (2.53b)

� �HHP

k

w peak

H kQ�peak o

|H( )|w � 1
w 2

(0,0) wo w

Figure 2.18  Gain variation of a second-order high pass section.

Approximation in equations (2.53) and (2.46) are satisfactory with large values of Qo. Once 
again, its gain drops at a rate of –40 dB/dec in the pass band for cw w , and the gain is 3 dB 
below the high frequency gain, of |HHP (w Æ •)| = k at the half-power frequency wc (for  Qo 
< 0.9). The rate of gain drop is also known as two-pole roll-off, as compared to the single-pole 
roll-off for a transfer function having one pole only.

For the HP filter, it is desirable not to have a significant peak in the pass band. However, 
it is shown in Figure 2.18 that relative to |HHP (j•)|, Hpeak is larger by nearly Qo times, which 
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implies that to avoid significant peak, Qo should have a low value (say < 0.9). For Qo = 0.707, 
equation (2.53b) gives that the peak of the magnitude function shall occur at w = •.

It is important to note that while designing an HP filter, the usual specifications are given 
in terms of the half-power frequency wc, where the |HHP (jw)| is 0.707 times its value at infinity, 
|HHP (j•)| (for Qo < 0.9). Since the gain (vo/vin) falls by a factor of 0.707 at the half-power 
frequency wc, it is called –3 dB frequency. Another required specification for the HP filter 
design is |HHP (j•)|, which decides the gain required by the filter at very high frequencies.

Example 2.6: Show that the circuit in Figure 2.19(a) behaves as a second-order HP function. 
Design it for wo = 10krad/s and = 1/ 2oQ  and  2 .

Solution: Taking OA as ideal, the nodal equations at nodes 2 and 3, respectively, are as 
follows:

V1 (sC1 + G2 + sC3 + sC4) – Vout sC4 – Vin sC1 = 0 (2.54a)

V1 sC3 + Vout G5 = 0 (2.54b)

Combining equations (2.54a) and (2.54b), the transfer function is obtained as follows: 

( ){ }
2

out 1 4
2

in 5 1 3 4 3 4 2 5 3 4

( / )
  / ( / )

V s C C
V s s G C C C C C G G C C

= −
+ + + +

 (2.55a)

This gives the expressions for wo and Qo as

½
2 2 53 4

2 5 3 4 1 4
5 1 3 4 3 4

/ and ( / )
(   )

,o o
G GC C

G G C C Q k C C
G C C C C C

w
 

= = = + +  
 (2.55b)

Selecting C3 = C4 = 100 nF, we get the value of C1 = 500 nF for k = 5, and the following 
relation from equation (2.55b) with wo = 10 krad/s:

G2G5 = 10–6  (2.56)

Corresponding to = 2oQ , using equation (2.55b), and selecting R5 = 10 kW, the required 
values of the resistance R2 = 100 W is obtained from equation (2.56).

Figure 2.19(b) shows the magnitude responses of the PSpice simulation of the HP filter 
having = 1/ 2oQ  and 2 . Magnitude response for = 1/ 2oQ  does not show any peak and 
its 3 dB frequency is 1.602 kHz (10.069 krad/s) with a dc gain of 5.09. However, the response 
for the corresponding HP filter with = 2oQ , for which, with the same capacitance values, 
the required resistances are R2 = 202 W and R5 = 4.949 kW, shows a peak gain of 7.598 at a 
frequency of 1.8078 kHz (11.363 krad/s) in conformity with equations (2.53a) and (2.53b). 
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0 V
100 Hz 300 Hz 1.0 kHz 3.0 kHz 10 kHz

V (4) V (41) Frequency

Q = 1.414

Q = 0.707

(b)

Figure 2.19 (a) Second-order high pass filter circuit for Example 2.6. (b) Magnitude response of the 

high pass filter of Figure 2.19(a) with Q =  2 and1/ 2 . 

2.9 Second-order Band Pass Response

When a0 = a2 = 0, a biquadratic section become a BP section, whose transfer function is given 
as follows:

( ) 0
BP 2 2

( / )
( / )

o

o o o

k Q s
H s

s Q s
w

w w
=

+
 (2.57)
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 ( ) w ww
w w w w

=
 − + 

BP ½2 2 2 2 2

( / )
Hence,   

( ) ( / )
o o

o o o

ks Q
H j

Q
 (2.58)

( ) 1
2 2

( / )
and     90 tan

( )
o o

o

Q
j

wwϕ w
w w

° −= −
−

 (2.59)

Equations (2.58) and (2.59) are the magnitude and phase function of the BP section, which 
are sketched in Figure 2.20(a) and (b), respectively. Since HBP(s) has a zero at 0 and ∞, the 
magnitude function reduces to zero at dc and at infinite frequency; the peak occurs at w = wo.

� �HBP

k/  2

k

w /Qo o

|H( )|w � 1
w

= –10 dB/decade

0,0 wo w

�°

90°

45°

0°

–45°

–90°
w1 w o w 2 w

(a) (b)

Figure 2.20  (a) Magnitude and (b) phase variation of a second-order band pass section.

The magnitude function drops from the peaks on both sides at a rate of 10 dB/dec with its 
value becoming 3 dB less than the peak value of k at the half-power frequencies w1 and w2.

For designing a BP section, important specifications include the bandwidth (BW), the 
distance between w1 and w2, or the range of frequencies for which the power output remains 
more than half of the peak power. The BW, w1 and w2 are found by putting the square of the 
magnitude function |HBP (jw)|2 = (1/2).  It gives 

( ){ } ( )
½2

1 2, 1 1/ 2 1/ 2o o oQ Qw w w  = + ± 
 

 (2.60) 

The product and difference of the two frequencies are as follows:  

( ) ( )2
1 2 2 1 and / BWo o oQw w w w w w× = − = =  (2.61) 

which means that wo is the geometric mean of w1 and w2 and the BW is inversely proportional 
to the pole Q(Qo). Figure 2.21 shows the effect of the value of Qo on the BP response, which 
becomes thinner/ sharper as Q increases.
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Figure 2.21 Typical response of a band pass filter with varying Qo (Qo1< Qo2<Qo3).

Regarding the phase-function of equation (2.59), it is observed that it is similar to that for 
the LP case except with the addition of 90∞ at dc, which means that it asymptotes at –90∞ for  
w Æ •. Moreover, the values for both the frequencies w1 and w2 are 45o and –45o from 
equation (2.59).

Example 2.7: Figure 2.22 shows a single OA based BP filter. Derive its transfer function and 
compare the response for pole Q value of 2, 5 and 10 at a center frequency of 10 krad/s.

Solution: Considering OA as ideal, with its inverting terminal at virtual ground, the nodal 
equations at terminal 2 and 3, respectively, are obtained as follows:

V1 (G1 + G2 + sC1 + sC2) – Vout sC2 – Vin G1 = 0 (2.62)       

V1sC1 + Vout G3 = 0 (2.63)

–

+

Vout
1 2 3

Vin C1

C2

G3

G2

G1 V1

4

Figure 2.22 A second-order band pass filter section for Example 2.7.
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Combining equations (2.62) and (2.63), the transfer function is obtained as:

( ){ } { }= −
+ + + +

out 1 2
2

in 3 1 2 1 2 3 1 2 1 2

( / )
  / (  ) /

V s G C
V s sG C C C C G G G C C

  (2.64)

 It gives the expressions for wo and Qo as

( )

( )

½
1 2

1 2
32 3 1 2

1 2 1 2

(  )
ando o

C C G G
GG G G

Q
C C C C

w

   +   +   
+

= =  (2.65)

Selecting equal values for capacitors C1 = C2 = 0.005 µF, for wo = 10krad/s, equation (2.65) 
provides the following element values.

For Qo = 2, R1 = R2 = 10 kW and R3 = 80 kW.
For Qo = 5, R1 = R2 = 4 kW and R3 = 200 kW.
For Qo = 10, R1 = R2 = 2 kW and R3 = 400 kW.
Figures 2.23 and 2.24 show the magnitude and phase response for the aforementioned 

three cases; the respective center frequencies, bandwidth, and quality factor obtained through 
PSpice simulation is as follows:

fo = 1.587 kHz, bandwidth BW = 790 Hz, resulting in Qo = 2.008.    
fo = 1.578 kHz, bandwidth BW = 313.7 Hz, resulting in Qo = 5.033.    
fo = 1.567 kHz, bandwidth BW = 162.9 Hz, resulting in Qo = 10.1. 
As the responses and the resulting parameters show, the circuit works very well at this 

frequency range.    

10 V

5 V

0 V
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

V (4) V (41) V (42) Frequency

Figure 2.23  Magnitude response of the band pass filter of Figure 2.22 with Q = 2, 5 and 10.
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–0 d

–100 d

–200 d

–300 d
500 Hz 1.0 kHz 3.0 kHz 5.0 kHz

VP (4) VP (41) VP (42) Frequency

Figure 2.24 Phase response of the band pass filter of Figure 2.22 with Q = 2, 5 and 10.

2.10 Band Reject (BR) Response

A BR response, which passes all signals except those falling in certain band of frequencies, is 
obtained by putting a1 = 0 in the biquadratic function of equation (2.28). It results in the 
following:

( )
2

2 0
BR 2 2 

 ( / )o o o

a s a
H s

s Q sw w
+=

+ +
 (2.66)

  
2 2

2 2
( )

( / )
z

o o o

K s
s Q s

w
w w

+=
+ +

 (2.67) 

Here, K = |HBR (jw)| is the gain as w Æ • and the rejection band of frequencies is centered 
at w = wz as the numerator has a zero at wz. It is the value of Qo which determines the rate of 
change of the BR response beyond wz, as well as the amount of bump in the response.

The BR filter is also known as notch filter because of the shape of the magnitude characteristics. 
However, depending on the relative value of wz in comparison to wo, notch filter is called a 
symmetrical notch, high pass notch (HPN) or a low pass notch (LPN) for wo = wz, wo > wz and wo 
< wz, respectively. The three types of notch responses are shown in Figure 2.25(a), (b), and (c). 
Here the bump in HPN or LPN occurs at w = wpeak. Expressions for the frequency wpeak and 
the maxima of the transfer function for the LPN and HPN, which occurs at wpeak are given as:
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{ }peak 2 2

1

1 ( ) 2
1o

o z oQ
w w

w w

 
 + 
 

=
− 

 (2.68)

|HBR(jw)|max = KQo|{1 – (wz/wo )2}| (2.69)                      

H ( )jwBR

K

K/  2

0,0 w = wo z
w

BW = /w Qo o

(a)

H ( )jwBR

K

K/  2

0,0 w = wo z
w

BW = /w Qo o

(a)

HBR( )jw

K�/  2

0,0 zw ow peakw

K�

HBR( )jw
K�/  2

0,0 zwowpeakw

K�

(b)

w w
(c)

HBR( )jw

K�/  2

0,0 zw ow peakw

K�

HBR( )jw
K�/  2

0,0 zwowpeakw

K�

(b)

w w
(c)
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w 2
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w2
zKK

w 2
o

w2
z

Figure 2.25 (a) Gain response of a symmetrical notch, (b) high pass notch, and (c) low pass notch 
with K' = |HBR(jw)|max.

Bandwidth of the BR filter is same as that for the BP filter:

(BW)BR = wo/Qo (2.70)
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2.11 Second-order All Pass Response

An all pass (AP) filter has constant magnitude response for all frequencies. For this type of filter 
to be realized, coefficients of the biquadratic section are selected in such a way that the transfer 
function becomes: 

( )
2 2

AP 2 2
( / )

 
( / )

o o o

o o o

s Q s
H s K

s Q s
w w
w w

− +=
+ +

 (2.71)

Hence, for sinusoidal input

( )
2 2

AP 2 2
( ) ( / )
( ) ( / )

o o o

o o o

j Q
H j K

j Q
w w w ww
w w w w

− −=
− +

 (2.72) 

Here, HAP(jw) has to remain constant for all frequencies and the phase and delay of the AP 
filter are obtained as follows

( ) 1
AP 2 2

( / )
2 tan

( )
o o

o
o

Qw wϕ w
w w

−= −
−

 (2.73) 

( )
2 2

AP 2
2 2 2 2

( )
2

( )

o o
o

o o
o

o

D
Q

Q

w w ww
ww w w

  +=        − +     

 (2.74)

Figure 2.26 shows the variation of phase of the AP filter for a certain value of Qo along with its 
magnitude response and Figure 2.27 shows the variation of one-half delay for a few values of 
Qo. It is observed that for = 1/ 3oQ , the delay become maximally flat, whereas for > 1/ 3oQ ,  
the delay variations have a peak.

| ( )|H jw

0

180

360

0 dB

f( ) degreew

Phase

Gain

ow w

Figure 2.26  Variation of phase and gain response of a second-order all pass filter for a certain value of Qo.
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Figure 2.27 One-half delay of second-order all pass filter as a function of Qo.

In the second-order BR as well as AP filters, finite zeroes are to be realized for which realization 
methods are a bit different than LP, HP, and BP types. It is for this reason that simulation 
examples for notch and AP filters shall be taken up at a later stage.

2.12 Effect of Operational Amplifier’s Pole on Biquads

Finite frequency dependent gain of the OA, represented by the single-pole roll-off model of 
equation (1.17) introduces one extra pole for the first-order filter section. In fact, it introduces 
as many extra poles as the order of the filter section. It affects the filter characteristics by 
changing all its important parameters like gain, cut-off/ pole frequency and rate of fall of 
the signal in the stop band; each with varying degree. Amount of variation in the parameter 
depends on the filter specifications (values of the required gain, pole frequency and pole Q), 
finite value of the gain−bandwidth product of the OA, and on the method (structure) used for 
the realization of the filter, like generating biquads using the two-integrator loop method, or 
any single amplifier generating biquad method, and then cascading them using these biquads 
in a multiple feedback structure or using direct forms of realizations for higher-order filters. 
Hence, the effect of OA’s poles shall be taken up in later chapters along with different methods 
of filter realization and the corrective steps applied to overcome the deviations occurring in the 
filter parameters.
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Practice Problems 

2-1  Find the transfer function for the circuit shown in Figure P2-1. Calculate and verify the frequency at which 
its gain changes by 3 dBs from dc level using PSpice, with R1 = R2 = 10 kΩ and C = 1 nF. Consider the OA 
as near ideal.

–

+

Vin
Vout

R1
R2

C

Figure P2.1 Figure for  Problem 2-1 and 2-3.

2-2  Find the transfer function for the circuit shown in Figure P2-2 Calculate 3 dB frequency and test the circuit 
using PSpice with R1 = R2 = 10 kΩ and C = 1 nF. Consider the OA as near ideal.

2-3  Repeat the problem 2-1 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s, and (c) 25 krad/s. 
Find percentage error in the gain at the 3-dB frequency level for the three cases and compare with the case 
when OA was considered near ideal in the problem 2-1.

Vin
–

+

Vout

R1

R2

C

Figure P2.2 Figure for Problem 2-2 and 2-4.
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2-4  Repeat the problem 2-2 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s, and (c) 25 krad/s. 
Compare the gain at the 3-dB frequency for the three cases and find percentage error in it with the case 
when OA was considered near ideal in the problem 2-2.

2-5  Find the transfer function for the circuit shown in Figure P2-3 Calculate the peak magnitude and find the 
frequency at which it occurs using PSpice with R1 = R2 = 10 kΩ and C1 = C2 = 2 nF. Consider the OA as 
near ideal.

–

+

Vin
Vout

R1
C1

C2

C2

Figure P2.3 Figure for Problem 2-5 and 2-6.

2-6  Repeat the problem 2-5 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s, and (c) 25 krad/s. 
Compare the frequency at which peak gain occurs and obtain percentage error in the result for the three 
cases with the case when OA was considered near ideal in the problem 2-5.

2-7  Find the transfer function for the circuit shown in Figure P2-4. Test the circuit using PSpice with R1 = R2 
= 10 kΩ and C = 0.5 nF and find the frequency at which gain drops by 3 dBs. Consider the OA as near 
ideal.

–

+
Vin

Vout
A

C

R2
R1

Figure P2.4 Figure for Problem 2-6 and 2-7.

2-8  Repeat the problem 2-7 with the bandwidth of the OA as (a) 100 krad/s, (b) 50 krad/s and (c) 25 krad/s. 
Compare the result for the three cases with the case when OA was considered ideal in the problem 2-7 
while finding error in the frequency at which gain falls by 3 dBs.

2-9  Figure P2.5 shows a second-order passive RLC filter. (a) Derive its transfer function and mention the type 
of response given by the filter section. (b) Find the values of poles and zeroes when R = 500 W, L = 10 
mH and C = 0.04 mF. (c) Calculate the parameters wo, Qo and dc gain. (d) If the magnitude response has 
a peak, then what is the value of the voltage gain and at which frequency does it occur? 
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+

–

Vin

+

–

VoutC

R L

Figure P2.5 Figure for Problem 2-9.

2-10  For the circuit of Figure P2.5, calculate the value of Qo in each case if R changes from 500 W to 250 W,  
100 W and 50 W. Find the location of poles on the complex frequency variable plane and show that the 
poles lie on a semi-circle. What is the radius of the semi-circle?

2-11  Check whether peak in the magnitude response of the circuit in Problem 2-9 occurs at wo or not. Justify 
the location of the peak.

2-12  Repeat Problem 2-9 if location of inductor and the capacitor are interchanged.

2-13  Use the circuit of Figure 2.15 to design a second-order LP filter with the following specifications: cut-
off frequency fo= 15.9 kHz, Q = 2.5 and dc gain of zero dB. (b) Test the magnitude and phase with  
PSpice/EWB while using 741 type OA.

2-14  Calculate magnitude and phase of the LP filter with following specifications: fo = 1.59 kHz and Q = 2.5. 
for frequencies 0.25 ¥ fo, 0.5 ¥ fo, fo, 1.5 ¥ fo, 2 ¥ fo and compare it with the simulated response.

2-15  Verify equations (2.45) and (2.46) for the LP filter of Problem 2-13 by comparing the parameters by 
obtaining theoretically and from the simulated response.

2-16  Derive the voltage ratio transfer function for the circuit shown in Figure P2.6. What kind of response is 
available from it?

–

+
A

Vin

C1

Vout

R2

R5

C4

C3

Figure P2.6 Figure for Problem 2-16.

2-17  Design the circuit of Figure P2.6 for critical frequency of 7.95 kHz and Qo = 2.5 and test the magnitude 
and phase response. 
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2-18  Verify equations (2.55a) and (2.55b) for the filter section in Problem 2-17 theoretically and from the 
practical/simulated test results.

2-19  Repeat Problem 2-14 for the filter of Figure P2.6.

2-20 (a) Determine suitable element values for the realization of the BP filter shown in Figure 2.22 for realizing  
 pole Qo = 5 and a complex pole pair lying on a circle of radius = 50 krad/s.

 (b) Determine the peak gain.

 (c) Determine the spread in element values.

 (d) Determine error in complex pole radius and Qo when OA has B = 500 krad/s.

2-21  Redesign the circuit in Figure 2.22 for wo= 40 krad/s and Qo= 10.

 (a) Calculate and verify the simulated value of the filter bandwidth while using ideal OA.

 (b)  Repeat (a) for OA with B = 400 krad/s.

 (c)  Calculate and verify the phase shift of the filter at 3 dB frequencies.

2-22  Derive equations (2.73) and (2.74).
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