
6.1 Introduction

In the previous chapters, comparatively simple methods have been discussed for the 
realization of active OA (operational amplifier) RC filters. Many more methods of filter 
synthesis will be discussed later, providing many more filter circuit configurations. Among 
this large number of available circuits, the choice of a ‘best’ filter circuit may depend on the 
specific user’s requirements. However, every application ideally requires a practical filter for 
which performance parameters, like wo (center frequency or cut-off frequency) and quality 
(pole-Q), are needed exactly as designed, and expected to remain invariant with use in varying 
environment. However, in practice, the user is satisfied if the parameters remain within such 
limits that do not make the filter impractical. Though there are different reasons during 
fabrication which cause deviations in the performance parameters, there is one factor which 
is common to all circuits at design stage. This factor can be termed as the first consideration 
in connection with these deviations. It is studied under sensitivity and is due to the following 
reasons.

i. Design of a filter circuit assumes active and passive elements to be ideal, whereas in every 
practical fabrication process, the nominal value of the passive element has statistical 
variations around its mean value. In general, sophisticated, higher level fabrication 
processes reduce the parameter variations; elements are said to have smaller tolerance. 
However, for such advanced processes, filter fabrication cost will go up.

ii. The values of both active and passive components change with change in operating 
conditions like change in temperature, humidity and supply voltage. Some chemical 
changes due to aging also affect the element values.
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Whatever be the reason for the difference between the practical element value(s) and the original 
design value(s), performance of the filter gets affected, and it is said that the filter performance 
parameters are sensitive to the elements used. Sensitivity studies of filter circuit parameters 
provide the information whether a particular circuit will meet the given specifications under 
likely tolerances of the elements or not. The studies also help in establishing filter stability and 
hence the filter’s utility in the long term.

Study of sensitivity begins with single-element (incremental) sensitivity, that is, the effect of 
change in a single-element on a certain filter parameter. Evaluation of incremental sensitivity 
is very important as it gives significant information about the filter. Additionally, it is also 
widely used for finding other advanced form of sensitivities. Hence, study of single-element 
sensitivity is taken up first in Section 6.2 in detail. For most applications, this study suffices 
the requirements for filter design. However, other significant sensitivity factors like transfer 
function sensitivity and sensitivity of second-order, which are important because of the greater 
utility of second-order filter sections, is taken up in Sections 6.3 and 6.4. Further, sensitivity 
of higher-order filters and advanced topics such as multi-parameter sensitivity are discussed in 
brief towards the end of the chapter.

6.2 Single-element (Incremental) Sensitivity

Every single parameter of a filter, say pole frequency, quality factor, poles and zeros of the 
transfer function depend on the parameters of the active devices and the values of the passive 
components and their tolerances. Let P be a performance parameter of a filter, and x be one 
of the elements (a passive component or parameter of an active device) which may cause 
change in the parameter P; we can express this relation as P = f(x, s). s has been added as P is 
also a function of the complex frequency. However, we shall restrict our study to P = f(x) only 
(for the sake of keeping the expressions simple); this means that we are operating at a fixed 
frequency or over a small band of frequency, where a small frequency change has little or no 
effect on the value of the element x.

Generally, the process of finding a change in P due to a change Dx = x – xo in the element 
x is done through Taylor’s series expansion of P around the nominal value xo of the element x, 
as shown in Figure 6.1:
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If it is assumed that the change Dx in Figure 6.1 is small and at the nominal point xo, the 
curvature showing the variation of P due to the variation in x is also not very large, then the 
second- and higher-order derivative terms in equation (6.1) can be neglected. This omission 
leads to the following expression for absolute change in the parameter P:
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Figure 6.1 Small change in the parameter P, shown as ΔP, due to a small change Δx in x at the 
nominal value of the element as xo.

In many cases, it is not very useful to find the absolute change in the parameter DP given by 
equation (6.2); instead, the useful term is the relative change in P, which is given as:
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Part of the right-hand side of equation (6.3), which is given in equation (6.4), and expressed as  
P
xS , is known as sensitivity of the parameter P with respect to the element x at its nominal value 

xo. Sensitivity can also be expressed in the natural log form of the same equation.
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This expression of single-element sensitivity in equation (6.4), in which the amount of 
deviation in x has been assumed to be small, also known as incremental sensitivity, is extremely 
useful while analyzing the sensitivity of electronic circuits including filter circuits. Once the 
value of the sensitivity P

xS  is known, the relative change or variability of the parameter P can 
be determined from the relative change in an element x, as follows. 

∆ ≅  P
x

P dx
S

P x
 (6.5)

As we know, the parameter P can be the pole frequency wo, pole-Q, transfer function H(s) or 
its poles and zeros. Hence, if one wants to express the parameters’ sensitivities with respect to 
(say) a resistor R, then the expression for the sensitivities will simply be:
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It is obvious from equation (6.5) that it is always desirable to have the sensitivity as small as 
possible in order to have a better option of a smaller relative change in the parameter P. At 
the same time, it is important to note that a larger sensitivity is acceptable with respect to 
those elements which are very stable. This is because the product of a larger sensitivity and 
components of smaller variability will result in an allowable smaller variability in the 
parameter P.

In general, evaluation of sensitivity is not difficult, especially for lower-order filter circuits. 
Though the obtained sensitivity figures with respect to a single-element do provide a fair 
assessment of the stability of the filter, evaluation of sensitivity figures with respect to all the 
active and passive individual elements (with the remaining elements considered as constants) 
do not give a complete picture; the reason being that in each case, sensitivity evaluation is done 
at the nominal value of that element, whereas the parameter P depends on other elements also. 
Hence, if the nominal values of other elements change, then the simple incremental sensitivity 
evaluation will not remain correct. Of course, the amount of incorrectness will depend upon 
the changes in the nominal values of the other elements. An accurate evaluation is done under 
the topic of multi-parameter (or multi-element) sensitivity evaluation, where account is taken 
of the fact that a network parameter depends on many elements which can simultaneously 
change by varying amounts. At this stage, consideration of simultaneous change in the 
parameters can also be done in a simplistic way. For example, if parameter P = f(x1, x2, ….., 
xn), then the likely total change in P is found as:
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The relative change in the parameter P can be written as:
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which means that the total relative change is the sum of individual sensitivities multiplied with 
the relative change in the elements.

It was mentioned earlier that performance parameters are functions of the complex frequency 
s; hence, the sensitivity expression is also a function of s. While finding the sensitivity for a 
filter section, the proper frequency range should be kept in mind, as the sensitivity value may 
get changed at different frequency levels.
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Example 6.1: Find the incremental sensitivity of the pole frequency and the quality factor for 
the RLC filter section shown in Figure 6.2. Also find the total relative change in wo and Q if 
the inductor and capacitor change by –5% and the resistors change by 8%.

+

R1

+
C

– –

Vin VoutR2

L

Figure 6.2 A simple RLC filter section for Example 6.1.

Solution: The transfer function of the filter section of Figure 6.2 is obtained as follows
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Expression of the pole frequency wo and the quality factor Q are as follows

w =1 / ( )o LC , and = +1 2(   ) ( / )Q R R C L  (6.10)

Use of equations (6.6) and (6.7) on equation (6.10) gives the incremental or single-element 
sensitivity figures as:
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It means that any change in the value of R1 and R2 does not make any difference in the value of 
wo but it affects Q, which depends on the relative values of R1 and R2. For example, if R1 = 2R2 

= 2R, =
1

2
 
3

Q
RS  and =

2

1
  

3
Q
RS ; ±1% change in R1 will cause a change of 

2
  % 
3

±  in Q, whereas a 

change of ±1% in R2 will cause a change of 1
 %

3
±  in Q.

Similarly, a change of 1% in L or C will cause a change of –0.5% in wo, whereas a 1% 
change in C will change Q by 0.5%, but a 1% change in L will change Q by –0.5%

The total relative change in wo, and Q are computed using equation (6.8) as follows:

https://doi.org/10.1017/9781108762632.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108762632.007


154 Continuous Time Active Analog Filters
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It can easily be observed for this example that if relative change in L and C are in the same 
direction, then their effects add in the case of wo but cancels each other in the case of Q; the 
opposite happens if the relative change in L and C occur in the opposite direction. For the 
given changes in elements, the following will be the values of the important relative changes:

5% and 0 8%o

o

Q
Q

w
w

∆ ∆= = +

Example 6.2: Figure 6.3 shows a single amplifier biquad. Its transfer function is as shown in 
equation (6.11) while OA is considered as ideal. (a) Find all the incremental sensitivities for 
the important parameters of the biquad and (b) find the variability in Q for small changes in 
the active parameter.
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 (6.11)
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Figure 6.3 Delyiannis–Friend single amplifier biquad with Q-enhancement.

Solution: If there was no positive feedback in the circuit, the non-inverting terminal of the 
OA would have been connected to the ground and the value of K would have become zero. If 
in the beginning it is assumed that C1 = C2 = C, the transfer function in equation (6.11) will 
be modified as:
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( ) ( )
1

2 2
2 1 2

(1/ )
  

2/ 1 /
mH aR C s

H s
s R C s C R R

= −
+ +

 (6.12)

which can be written in the standard format of a second-order filter having parameters wo, Q 
and mid-band gain Hm as:
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Comparison of equations (6.12) and (6.13) gives expressions for the important parameters: 
Center frequency wo:

w = 1 21 / ( )o C R R  (6.14a)

Quality factor without positive feedback Qo, and mid-band Hm are as follows:

w= =2 2 1/ 2 0.5 ( / )o oQ CR R R  (6.14b)

2
2 1/2 2 /m oH R aR Q a= =  (6.14c)

For the given circuit with positive feedback expression, wo remains unchanged, but Q is 
enhanced to Qo, and its expression is obtained from the following equations:
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(a) Using equations (6.6) and (6.14), we get the sensitivities as
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Sensitivity w = 1o
CS  is a little misleading because capacitors C1 and C2 were assumed equal. 

It is important to note that while doing the sensitivity calculations, the general expression 
should be used without any specific ratio between element values as it was done in this case. 
Hence, the correct value will be obtained from the general expression of 2

1 2 1 21/o R R C Cw =  as

1 2,
1

 
2

o
C CSw = − .

All the passive sensitivities are (−1/2), which is a theoretical minimum for an active filter 
based on the product of two RC time constants. Designers try to design filters with wo 
sensitivities as close to these minimum values as possible. As far as active sensitivity of wo is 
concerned, in this case,  0,o

KSw =  which is highly desirable.
Before finding Q – sensitivities, it is desirable to note that the second-order filter section 

employs R1, R2, C1, C2, and a potential divider involving resistor R for deciding the value of K, 
whereas there are only two filter parameters, wo, and Q; HB can be controlled independently 
by the factor a. Therefore, some assumptions have to be taken for the element values. One 
such assumption has already been taken in the form of having the capacitors C1 and C2 as 
equal; this is very attractive from the point of view of integrated circuit fabrication. Let another 
assumption be that 2 1( / ) ;R R r=  then, the expression for Q will become:
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Q
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= = =
− −− − −

 (6.18a) 

With C1 = C2 = C, Q is independent of C1 and C2; hence, the sensitivity of Q with respect to 
these capacitors is zero. Sensitivity of Q with respect to C1 and C2 can separately be obtained 
from the general expression of Q obtained from equation (6.11). 

Sensitivity of Q with respect to K is obtained now as:
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 (6.18b)

Alternatively, expressing Q from equation (6.18a) in terms of the ratio of polynomials as Q = 
N(s)/D(s) will give:
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( ) ( )

Q
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K r K KrK K
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N s K D s K
∂ − ∂ − −

= −
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( ) ( )
2
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Kr Kr

Q
K K Kr K

= =
− − − −

 (6.19)

Obviously, Q sensitivity with respect to K will depend on the selected value K (or r) and the 
value of K (or r) will be dependent on the specified value of Q. It is obvious that sensitivity will 
shoot to very high values with the value of K nearing unity.
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(b) Calculation of variability in Q: For a selected value r = 1, the obtained value of K for  
Q = 10 is (19/29) from equation (6.19). Hence, from equation (6.19):  55.1Q

KS = .
This is rather a large value for active Q sensitivity. A small 0.5% of change in the value 

of K means a large −27.55% change in the value of Q. Worse, if K becomes (2/3), for a 
mere increase of (1/57), Q Æ infinity and the network become unstable. Practically, it is very 
difficult, with this choice of element (or the value of K) to set K accurately; the circuit becomes 
almost non-workable.

 Instead of using equation (6.19), the percentage change in Q can also be calculated directly 
from the expression of Q in equation (6.18a); for the same value of r = 1, we get:

Q = (1 – K)/(2 – 3K) (6.20)

Equation (6.20) shows that for a change of +0.5% in K (from 19/29), the change in the value 
of Q will be +38.5%, and if K changes by −0.5%, Q will change by −21.4%.

It is significant to note that variations in Q obtained through different methods of 
calculations have big differences. The reason behind this is the fact that while deriving the 
sensitivity definition in equation (6.4), it is assumed that at the nominal point, change in the 
element with respect to which sensitivity is being calculated is small, whereas in this example, 
it is not so. This tells us that accuracy of calculating the variability of a performance parameter 
depend on the smallness, or otherwise of the rate of change of the element x at the nominal 
point xo.

6.2.1 Semi-relative sensitivity 

In Example 6.1, calculation of the single-element incremental sensitivity was not involved 
because the expressions of wo and Q were simple, and the parameters were in simple relations 
with the elements. In reality, all the cases are not so simple and even evaluation of single-
element sensitivity becomes involved and cumbersome, or the value of sensitivity becomes 
infinite. Instead of a direct application of equation (6.4) using the involved expressions of the 
parameters, alternatives are available, which are in fact derived from the definition of equation 
(6.3) and (6.4). Some of such relations are as follows:

1 2 1 2P P P P
x x xS S S= +  (6.22a)

1 2 1 2/P P P P
x x xS S S= −  (6.22b)

With P being a function of y as P(y) and y being a function of x as y(x), then:

P P y
x y xS S S= ×  (6.22c)

Additionally, when k and n are constant, the following relations are useful:

= = − =1/
1/   and  P P P kP P

x x x x xS S S S S  (6.23a, b)
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  and 
n nP P kx

x x xS nS S n= =  (6.24a, b)

( )1
   and i iP Pk P P

x x x i x
i

k
S S S P S

k P P
+ = =

+
∑ ∑∑  (6.25a, b)

There are some cases where it is the absolute change in P, rather than the relative value which 
is desired; hence, the value of sensitivity itself is not important. For example, if P

xS  is to be 
evaluated near (or at) a nominal point P Æ 0, then its value will tend to infinity. This result is 
not very useful for practical purposes. Hence, in such cases, instead of finding P

xS  directly, the 
following semi-relative sensitivity measure is evaluated:

( )P x
x

dP
Q x

dx
=  (6.26)

It will be observed that ( )P x
xQ  is very useful in many cases as will be shown soon.

6.3 Transfer Function Sensitivity

Expression of a general transfer function introduced in Chapter1 is repeated here:

( )
1

1 1 0
1

1 1 0

( ) ..
( ) ..

m m
m m

n n
n n

N s a s a s a s a
H s

D s b s b s b s b

−
−

−
−

+ +…… + += =
+ +…… + +

 (6.27)

Both the numerator and the denominator in equation (6.27) are functions of the elements 
used in the construction of the circuit for which the transfer function is obtained. Hence, their 
coefficients are also functions of these elements. Use of equation (6.22b) on equation (6.27) 
gives the following relation for the transfer function sensitivity which simplifies its evaluation 
considerably:

( )
( )

( )
( )

( )( ) ( ) 1 1D sH s N s
x x x

N s D s
S S S x

N s x D s x
 ∂ ∂

= − = − ∂ ∂ 
 (6.28)

Most of the time, more than one coefficient in N(s) as well as in D(s) depends on an element 
x. It results in the modification of equation (6.28) as:

( )

( ) ( )
H s i ii i
x

x a x b
S s s

N s x D s x
∂ ∂= −
∂ ∂∑ ∑   (6.29)

Obviously, the two summations in equation (6.29) will comprise only those terms for which 
ai or bi, respectively, depend on element x; this leads to the understanding of the transfer 
function sensitivity from a different angle. When the numerator and denominator of the 
transfer function are factorized, zeros and poles also deviate from their nominal positions when 
any element gets changed. A relation between the amount of shift in any pole or zero location 
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and the resultant behavior of the transfer function can be obtained and studied. If H(s) given in 
equation (6.27) is factorized in terms of poles and zeros and its natural log is obtained, we get:  

( ) ( )
1 1

ln ln ln ln( )
m n

i i
i i

H s k s z s p
= =

= + − − −∑ ∑  (6.30)

Here, along with the poles and zeros, the coefficient k = (am/bn) as well may be a function of 
active parameters and the passive elements. A derivative of equation (6.30) is taken and then 
both sides of the equation are multiplied with x, which results in the following important 
relation in terms of semi-relative sensitivity expressions of equation (6.26):

( )

1 1( ) ( )

i im nz p
H s k x x
x x

i ii i

Q Q
S S

s z s p= =

= − +
− −∑ ∑  (6.31)

Equation (6.31) clearly shows that any shift in the location of a single pole or zero will affect 
the transfer function and its sensitivity becomes high at frequencies close to a pole or zero of 
H(s). But for physical frequencies, with s = jw, the transfer function sensitivity tends towards 
infinity when the transmission zero is on the jw-axis. In addition, for s = jw, with larger Q 
values, complex pole pairs are very near to the jw – axis, resulting in |(jw – pi)| becoming small 
and the sensitivity of H(s) becoming high. It is illustrated in Figure 6.4 with the help of the 
location of poles of an eighth-order Chebyshev filter with αmax = 0.5 dB.
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Figure 6.4 Pole location in the second ordinate for an eighth-order Chebyshev filter with αmax =  
0.5 dB. 
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Use of equation (6.31) is not very desirable as factorization of a polynomial of even order 4 
(and more) is extremely difficult (without a root finder).

Significant relations are obtained in the context of the transfer function sensitivity if H(s) is 
expressed in terms of its magnitude and phase as:

( ) ( ) ( , ), , j xH j x H j x e ϕ ww w=  (6.32)

Using the relation (6.22a), and later equation (6.26) for the phase part, we get

( ) | ( )| ( )H j H j
x x xS S jQw w ϕ w= +  (6.33)

A significant inference from equation (6.33) is that the real part of the transfer function is the 
magnitude sensitivity:

( ){ } | ( )|Re H j H j
x xS Sw w=  (6.34)

and the imaginary part of the transfer function sensitivity is the semi-relative phase sensitivity:

( ){ } ( )Im H j j
x xS Qw ϕ w=  (6.35)

The right-hand side of equation (6.31) is the partial fraction expansion of ( ) H s
xS  in equation 

(6.28); hence, and i iz p
x xQ Q  are the residues. Hence, equalizing the mentioned equations for s 

Æ pi, the last term in equation (6.32) will dominate, resulting in the following relation:

( )
( )

( )
( )1 1

lim lim
( )

i

i i

p
x

s p s p i

N s D s Q
x

N s x D s x s p→ →

 ∂ ∂
− = ∂ ∂ − 

 (6.36)

Since pi is the pole of H(s), which is obtained through factorizing the denominator, the term 
1 ( )
( )

D s
D s x

∂
∂

dominates 1 ( )
( )

N s
N s x

∂
∂

; an important inference.

6.4 Second-order Filter Sensitivities

The sensitivity expressions developed so far are valid for both active and passive filters of any 
order. Values of the sensitivities obtained depend on the type of structure used, and these 
values helps in comparing the circuits from the point of view of sensitivity. However, there are 
certain relations which allow us to get useful information about second-order filters (with Q 
> 0.5). Since second-order active filters form an important entity in the design of any higher- 
order filter, this area of sensitivity study forms an useful and important topic.

Transfer function of a general biquadratic function is written as:
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( )
2

2 1 2 2 1 0
2 2 2 2

( )( )
( / ) ( / )o o o o o o

a s z s z a s a s a
H s

s Q s s Q sw w w w
− − + += =

+ + + +
 (6.37)

Since for all practical purposes, active filters are used with Q > 0.5, poles are complex conjugate 
and their expression, from equation (6.37), is obtained as:

w
w= − ± −

1
* 2 2

1 1,  (1 1/ 4 )
2

o
o o

o
p p j Q

Q
 (6.38)

In order to determine an important relation for the sensitivities of biquadratic sections with 
respect to an element x, we first proceed with the conjugate poles considering wo and Qo to be 
functions of x by taking the derivative of p1 as:

1 1
1 2 2

2 2
1 1 1 1

(1 ) (1 )
2 24 4

o
o

p
j j

x x Q x QQ Q
w w

   ∂ ∂ ∂   = − − − − − −   ∂ ∂ ∂      
 (6.39a)

We first multiply both sides of equation (6.39a) with x. Then, multiplying and dividing the 
first term on the right-hand side by wo, and taking the derivative of the second term with 
respect to x, the following relation is obtained:

w
w w

w

 
 
  ∂∂ ∂   = − − − − − −   ∂ ∂ ∂       −    

1 3
1 2

2 2 1
2

2

1 1 1 1/ 2
 (1 )

2 4 2
12 1

4

o
o o

p x Q Q
x j j x

x o x Q xQ Q

Q

 (6.39b)

Dividing equation (6.39b) by p1 of equation (6.38), and after a bit of manipulation, we get:

1

1
21 2

1
/ (4 1)op Q

x x x
x p

S S jS Q
p x

w∂ = = − −
∂

 (6.40)

Following the same procedure, it is shown that, with *
1 p , we get:

*
1

1*
21 2

*
1

/ (4 1)op Q
x x x

x p
S S jS Q

xp
w∂ = = + −

∂
 (6.41)

Equations (6.40) and (6.41) show that pole-sensitivity depends on both the sensitivities of wo 
and Q but an important observation is that pole-sensitivity is more dependent on wo sensitivity 
than that of Q. In fact, the position of pole p1 is (4Q2 – 1)1/2 @ 2Q times more sensitive to the 
deviations in wo than the deviations in the Q value. It is for this reason that the filter designer 
needs to care more for the wo sensitivity than the Q sensitivity. For a second-order active RC 
filter, for which wo depends on the product of two RC time constants (R1C1 and R2C2), 
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designers try to get equal to or as close to the ideal wo sensitivities of (−1/2) with respect to all 
the mentioned elements. 

From equation (6.36), an important observation was made that while finding the transfer 
function sensitivity, the dominant term is the one which depends on the denominator D(s), or 
poles of H(s), and the remaining terms can be neglected. The reason for finding this expression 
is that the poles lie mostly in the pass band and the zeros of the transfer function lie in the 
stop band and it does not affect the filter output. Therefore, for most of our discussion on the 
sensitivity of a biquad, the following modified form of the equation (6.28) is used for finding 
the sensitivity of the transfer function. Later, for specific cases, the effect of the contribution 
due to the zeros can be added.

2
( )

2 2

 2   
( )

( )
  

o o
o

H s
x

o
o

s s Q
Q x xx D s QS x

D s x
s s

Q

w ww

w w

  ∂ ∂+ −  ∂ ∂ ∂= − = −
∂  

+ +  

 (6.42)

Multiplying and dividing the first term in the numerator of the right-hand side term by wo in 
equation (6.42), simplifies it to the following expression:

( ) 22 / ( )oH s Qo o
x o x xS s S s S D s

Q Q
ww ww

   = − + −     
 (6.43)

In order to find the magnitude sensitivity and semi-relative phase sensitivity of the biquad as 
given in equation (6.43), s is replaced by jw in equation (6.43), and the expression is multiplied 
and divided with the conjugate of the denominator D(jw).

( )
( )
( )

2 2 2

( )

2 2 2 2

2 o Qo o o
o x x o

H j
x

o o
o o

j S j S j
Q Q Q

S
j j

Q Q

w

w

w w www w w w w

ww www w w w

     + − − −         = −
   

− + − −   
   

( )
( )

( )
( )

2 2 2 2
2 2 2 2 2 2 2

2 2

2 22 2 2 2 2 2 2 2 2 2

2  ( )

/ /

o o
Qo o Qo oo o x x o x o x

o o o o

S S S SQ Q Q Qj
Q Q

w ww w w w ww www w w w w w w

w w w w w w w w

  − + −  + + −
  = − +

− + − +

 (6.44)

The right-hand side is divided in the numerator and denominator by 4
ow , equation (6.44) is 

now modified in terms of wn = (w/wo).
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( )

( )
( )

( )

2 2
2

2 22 2
( )

2 22 22 2
2 2

2 1    1   (1  ) 

1   1   

o
o

n

Qn n
Qn x x

n x n xH j n
x

n n
n n

S S S SQ Q
S j

Q

Q Q

w
w

w

w ww w ww
w ww w

  − + −  + + −  = − +
      − + − +   
      

 (6.45)

The real part of equation (6.45) may be written as:

w ww w
w= +| ( )| | ( )|| ( )|  n nn o

o

H j H jH j Q
x x xQS S S S S  (6.46)

where,
( )

( ) ( )
w w

w

w ww

w ww w

  − + 
  = =
      − + − +   
      

2 2
2

2 2
| ( )| | ( )|

2 22 22 2
2 2

2 1   

  and 

1   1   

n
o

n

n n
n

H j H j
Q

n n
n n

Q QS S

Q Q

 (6.47)

The imaginary part of equation (6.45) may be written as:

ϕ wϕ w ϕ w w
w= + ( )( ) ( )  nn n o Q

x x xQoQ Q S Q S  (6.48)

where,
( )

( ) ( )

2 2
( ) ( )

2 22 22 2
2 2

1  (1  )
 and 

1   1   

n n
o

nn n n
Q

n n
n n

Q Q
Q Q

Q Q

ϕ w ϕ w
w

ww w w
w ww w

+ −= =
      − + − +   
      

 (6.49)

For a given value of Q, the determination of the terms given in equation (6.47) provides 
information about the overall magnitude sensitivity of a biquad using equation (6.46); 
sensitivity of wo and Q should have been calculated for the biquad with respect to the element 
x. Such calculations are very important since for most of the filters, specifications are given in 
terms of the required magnitude in the pass and stop bands. Moreover, the functions given in 
equation (6.47) also provide useful information if these terms are plotted as shown in Figures 
6.5(a) and (b), respectively, for a few different values of Q.

For example, it can be observed from Figure 6.5(a) that the maximum of the Q magnitude 
sensitivities of |H(jw)| is unity for any value of w =| ( )|. 1nH j

QQ S  and it occurs at wn = 1; its 
variation with frequency is very similar to the response of a band pass (BP) filter having mid-
band gain equal to unity.

However, the shape of the term w
w
| ( )|n

o

H jS  is a bit complicated, as shown in Figure 6.5(b). 
For large values of Q, it is given as:

( ){ } ( )w
w w

 
≅ − ≅ +  2

1
max 1 at  1

2
n

o

H j
nS Q

Q
 (6.50a)
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( ) ( )w
w w

 
≅ − − ≅ −  1

1
min{ } 1 at 1

2
n

o

H j
nS Q

Q
 (6.50b)
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Figure 6.5 Sensitivity of the magnitude and phase function of the second-order transfer function for 
a few values of Q: (a) w| ( )|

Q
nH jS ; (b) w

w
| ( )|n

o

H jS .

From Figure 6.5(b) and equation (6.50), it is clear that the magnitude maxima (and the 
minima) directly depend on the value of Q and these are located close to wn = 1 (in the pass 
band and close to its edge). Comparison of the maxima in the two figures, Figures 6.5(a) 
and (b) confirms that the effect of the first term in equation (6.46) is more pronounced, 
nearly (4Q2 – 1)1/2 or around (2Q) times. It again shows that wo sensitivities are to be kept at 
minimum and nearly Q times less than Q sensitivities if their effect is to be made comparable. 
The peaks occur as shown by equation (6.50a, b) at a distance of (wn/2Q) from wn, which 
means approximately at 3 dB frequencies.

The phase sensitivity of the transfer function is also important. Not only does it evaluate 
deviation in phase output in a filter whose specification is given in terms of magnitude 
attenuation, but it is the phase in terms of which specifications are mentioned while designing 
phase equalizers or all pass filters. Hence, for observation of phase deviation, equation (6.48) 
needs to be studied.

Other than keeping o
xSw  small, it is observed that error in both magnitude and phase 

increases with increase in the design value of Q. This implies that filter design is easy with 
smaller values of Q. 

6.5 Sensitivity Considerations for High-order Active Filters

In the last section, sensitivity considerations for a general second-order section were discussed. 
The study has its own importance, as the information obtained is not only for a standalone 
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second-order section, but is also useful while designing higher-order filters employing a few 
section-order sections. Before taking up the sensitivity consideration of higher-order filters 
employing section-order sections, an important issue needs to be considered. 

In Section 6.3, it was observable from equation (6.31) that the transfer function sensitivity is 
very high in the vicinity of either a pole or a zero of a transfer function. This means that for any 
higher-order transfer function, with high selectivity (having complex−conjugate poles close to 
the jw-axis), its sensitivity will be high throughout the pass and stop band. Hence, designing a 
high-order filter will result, in general, in a high transfer function sensitivity. This means that 
in fabricated elements with practically obtained variability, deviations in the transfer function 
are likely to go beyond acceptable limits, making the design impractical. 

The problem has been overcome in different ways as will be seen in the following sections.

6.5.1 Simulation of LC ladder method

Equation (6.28) shows that the overall sensitivity of a transfer function depends on the 

difference term 
( )

( )
( )

( )1 1N s D s
N s x D s x

 ∂ ∂ − ∂ ∂  
. If a circuit topology is such that the two terms 

here are equal or near equal, it will result in a zero or very small transfer function sensitivity. 
Such a methodology has been employed using a doubly terminated lossless ladder structure as 
shown in Figure 6.6 in a block form. It has been shown mathematically that for such a lossless 
ladder structure, the magnitude sensitivity | ( )|H j

xS w  of equation (6.34) becomes zero, if it is 
designed for maximum power transfer condition. However, in some other studies, the transfer 
function sensitivities are shown to be not exactly zero but small in the pass band region.

Vin

R in

Vout

+

–

RL

Only

L and C

elements

Figure 6.6 A doubly terminated lossless ladder structure in block form.

It needs to be kept in mind that though the sensitivities remain small in the pass band 
while using doubly terminated lossless ladders, the sensitivities with respect to inductors and 
capacitors can be large in the transition and stop bands. 

 After it was proved mathematically that a doubly terminated lossless ladder designed for 
maximum power transfer possesses low sensitivities in the pass band, they have been extensively 
used in the passive RLC filter design. Their modified versions in active forms have also been 
used in large numbers. Such methods include either active simulation of active components or 
operational simulation of passive components (Chapter 9).
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6.5.2 Sensitivity in cascade design

The direct realization of higher-order filters means that all poles and zeros are functions of 
almost all the elements used, which means that each of the term iz

xS  and ip
xS  is finite. Instead of 

using the doubly terminated ladder structure, an alternate method of reduction in the transfer 
function sensitivities comes in the form of cascade realization (Chapter 10) of higher-order 
filters. In this method, any element x affects only one pole pair and corresponding zero(s). 
Sensitivity of other pole pairs and zero(s) is zero with respect to this particular element x. 
Under such a condition, equation (6.31) reduces to the following for a second-order section:

( )
1 1 1 1* *

( )
* *

1 11 1

( ) ( )
( )( ) ( )

p p z z
H s K x x x x
x x

Q Q Q Q
S S

s p s zs p s z
= + + − −

− −− −
 (6.51)

If the second-order function represented by poles and zeros of equation (6.51) is an all pole 
function (or the effect of sensitivity of zeros and the gain constant K is not affective in the pass 
band), equation (6.51) reduces to the following.

1 1*
( )

*
11

( )
( )( )

p p
H s x x
x

Q Q
S

s ps p
= +

−−
 (6.52)

Equation (6.52) informs that the transfer function sensitivity with respect to the element x 
near pole pair *

1 1,p p  depends only on this particular second-order function in the cascade 
formation. For the rest of the second-order functions in the cascade, their sensitivity with 
respect to x is zero. This result has led to the useful cascade design methodology of higher 
filter design discussed in Chapter 10. Of course, each second-order section to be connected in 
cascade needs to be non-interactive with its transfer function.

Since the overall sensitivity of the transfer function H(s) depends on the sensitivity of each 
one of the constituent second-order sections, it is important that each section is designed with 
optimum sensitivities with respect to the elements used in that section so that variability of 
H(s) is minimum.

6.6 Multi-parameter Sensitivity

Incremental sensitivity (or single-parameter sensitivity) has been found to be very useful as 
a large amount of information becomes available through it. Most of the sensitivity studies 
discussed so far is sufficient for comparing filter circuits. However, incremental sensitivity-
based comparison has to be applied with caution, remembering the assumptions made, which 
include that effective change in elements is small, the nominal point of the element x is fixed 
and the rest of the components remain unchanged. In practice, these assumptions might not 
be true. Element tolerances are different and almost all elements may vary simultaneously, 
either by the same amount or differently. Under such conditions, single-element sensitivity 
measures will not give precise information; they may even mislead by providing incorrect 
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information depending on the amount of the magnitude of approximations. Therefore, it 
becomes important to study multi-parameter sensitivity measures. Unfortunately, because of 
the large number of varying elements, many of them inter-dependent as well, finding multi-
parameter sensitivity becomes very involved and a high amount of computations are required, 
which necessitates the use of computers and related software.

Practice Problems 

6-1 Derive the voltage ratio transfer function for the circuit shown in Figure P6.1, and show that it s realizes 
a BP response. Determine the incremental sensitivity of the parameters wo, Q and the mid-band gain H 
with respect to the elements used.

Vout

+

– –

+

Vin

R in

RL

C1

L

Figure P6.1

 (a) Also find the changes in the parameters wo, Q and H, when the inductor changes by +5%, the   
 capacitance changes by – 6% and resistors change by +10%.

 (b) If all the elements are likely to change in the positive or negative direction by the same amount as   
 in part (a), then calculate the worst case percent deviation in the filter parameters.

6-2 Repeat Problem 6-1 for the circuit displayed in Figure P6.2 after showing that it realizes a band stop 
response. The concerned filter parameters are wo, Q and attenuation α in the stop band. 

Vout

+

– –

+

Vin

R in

RL

C

L

Figure P6.2

6-3 (a) Design a BP filter using the circuit diagram shown in Figure 6.3 with no positive feedback, while   

 assuming that ( ) =2 1/ 1R R 0, for wo = 104 rad/s, and Q = 5. What shall be the value of mid-band  
 gain Hm for C1 = C2. Find the sensitivities of the parameters wo, Q and Hm with respect to the  
 elements R1, R2, C1 and C2.
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 (b) What are the changes in the parameters when positive feedback is introduced with (i) K = 1/10,   
 (ii) K = 1/20.

 (c) Find the sensitivities for the parameters wo, Q and Hm with respect to the passive elements and K.

 (d) With the given values of K in part (b), find the variability in Q using two approaches. Which one   
 out of the two processes is more accurate?

6-4 Repeat Problem 6-3 for wo = 104 rad/s, Q = 2 and Hm = 12.5, with the assumption that ( ) =2 1/ 5.R R

6-5 Prove the relations in equations (6.22)–(6.25) using equation (6.4), with Pi being a function of x, and n 
and k being constant.

6-6 Find the transfer function H(s) for the circuit shown in Figure P6.3 and determine the expressions for the 
parameter wo and Q.

C1
Vin

Vout–

+

R1

C2

R2

R

R K( – 1)

A

Figure P6.3

 Find the sensitivities of wo, Q and H(jw) with respect to all the passive and active elements. It would  
be better if the sensitivity expressions are given in terms of wo and Q.

6-7 For the circuit shown in Figure P6.3, wo = 5 × 103 rad/s and Q = 20. 

 (a) Show by calculation that the maximum of the sensitivity of |H(jw)| with respect to Q is unity.

 (b) Find the maximum and minimum sensitivity of |H(jw)| with respect to wo.

 (c) Find the magnitude and phase sensitivities of |H(jwn)| at wn = 0.25, 0.5, 1.0, 1.25 and 1.5.

6-8 Obtain the voltage ratio transfer function for the circuit shown in Figure P6.4, and find the sensitivity of 
Q with respect to all the passive and active elements for:

R1Vin
Vout+

–

R2

C2

C1

R
R K( – 1)

Figure P6.4
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 (i) R1 = 1W, R2 = 1W, C1 = 4Q, C2 = 1/4Q, K = 1.

 (ii) R1 = 1W, R2 = 2Q W, C1 = 1, C2 = 1/2Q, K = 2.5. 

 (iii) R1 = 1W, R2 = 1W, C1 = 1, C2 = 1, K = 3 – 1/Q.

 Evaluate the sensitivity values found for Q = 20 and discuss the results.

6-9 Derive the transfer function for the circuit shown in Figure P6.5, while considering the OA as ideal and 
find the sensitivity expression for wo and Q with respect the resistors R1 and R2.

R1Vin
Vout–

+

C3

R2

R5

C4

Figure P6.5

6-10 Design the filter in Figure P6.5 for wo = 10 krad/s and Q = 10, and determine the displacement in the 
pole location if (a) all resistors and capacitors increase by 5%, and (b) all resistor values increase and all 
capacitor values decrease by 5%. 

6-11 For the filter circuit of Figure 6.3, (a) discus the effect of selecting the parameter r = 4 and (b) design the 
circuit for wo = (3.4 × 2π) krad/s.

6-12 Find the transfer function sensitivity for the Tow−Thomas biquadratic filter circuit shown in Figure P6.6 
with respect to the passive components R1 and C1.

R1

–

+
–

+
–

+

R4

R2
R5

R6

R3Vin

VBP VLP

–VLP

C1 C2

 Figure P6.6 Tow–Thomas biquad.
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