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Basic concepts, units, and
laws of circuit theory

1.1 Properties of the electrical circuit
An electrical circuit comprises an arrangement of elements for the

conversion, transmission and storage of energy. Energy enters a circuit via
one or more sources and leaves via one or more sinks. In the sources energy
is converted from mechanical, thermal, chemical or electromagnetic form
into electrical form; in the sinks the reverse process takes place. Sources and
sinks are linked by elements capable of transmitting and storing electrical
energy. The familiar battery-operated flashlamp serves as a reminder of the
energy flow processes in a circuit. In this device, energy is converted from
chemical to electrical form in the battery and transmitted along wires to the
lamp where most of the energy is converted into heat. A small but useful
portion is emitted in the form of electromagnetic radiation in the visible
part of the spectrum.

In an electrical circuit energy is conveyed through the agency of electrical
charge and through the medium of electric and magnetic fields. An essential
feature of any circuit, therefore, is the provision of conducting paths for the
conveyance of charge. As indicated in fig. 1.1, sources and sinks are
operative only when charge flows through them. The rate at which charge
flows is referred to as the current; the greater the current the greater the
energy transmitted between sources and sinks.

Charge is set in motion by the action of the electric field established
throughout the circuit by the sources. This field provides the electromotive
force (e.m.f.) which drives charge round the conducting paths in the circuit.
Accompanying this flow of charge is the establishment of a magnetic field.
Transmission of electrical energy is, therefore, manifest in a circuit by the
presence of both electric and magnetic fields in addition to the movement of
charge. The establishment of a field in a circuit is accompanied by an
expenditure of energy, and this energy is stored within the region of space
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2 Basic concepts, units, and laws of circuit theory

occupied by the field. On subsequent decay of the field, energy is released to
the circuit and is eventually absorbed by the sinks. Thus energy can be both
stored and conveyed through the medium of a field. However, for the latter
process to occur the field must vary with time. Referring again to fig. 1.1, if
the sources produce a constant e.m.f., the resulting currents and fields will all
be constant and, in this case, there must be a continuous conducting path
between sources and sinks along which charge can flow (indicated by the
dashed lines in the figure). If, on the other hand, the sources produce a time-
varying e.m.f., currents and fields will be time-varying and the conducting
path need not be continuous.

This distinction leads to two of the major classes of circuits dealt with in
this book: (1) direct current (d.c.) circuits in which fields are static and
currents are constant and unidirectional: (2) alternating current (a.c.)
circuits in which the directions of currents and fields alternate in a regular,
periodic fashion.

It will be apparent from the above discussion that the electrical
behaviour of a circuit is characterized by the strength and distribution of
the currents and fields which arise when it is connected to an electrical
energy source. The electrical characteristics of a circuit may, therefore, be
described generally by means of three elemental properties: resistance,
capacitance and inductance (including mutual inductance). Resistance is a
property associated with the current-carrying paths in a circuit. Capacit-
ance and inductance are properties associated respectively with the parts of
a circuit in which electric and magnetic fields arise. Capacitive and
inductive elements are often referred to as storage elements because of the
energy storage properties of a field. A knowledge of the three elemental
properties, for a particular circuit, allows us to specify, at least in principle,

Fig. 1.1. Elements of the electrical circuit.
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The lumped circuit model 3

the magnitudes and directions of the currents which will flow as a result of
the application of a given distribution of e.m.f.

Circuits containing only the three basic elements, resistance, capacitance
and inductance, are termed passive circuits. (Active circuits contain also
devices such as transistors which, unlike passive elements, are capable of
energy amplification.)

If the elemental properties of a passive circuit depend only on its
geometry and the materials of which it is made, the circuit is described as
being linear. If, however, these properties depend additionally on the
current or e.m.f. existing in the circuit at any instant, the circuit is described
as being non-linear. Special techniques are required for the analysis of non-
linear circuits; these are dealt with in chapter 7.

Finally, it should be noted that as an inevitable consequence of the
movement of charge along a conductor, electrical energy is converted into
heat (we are here excluding the superconducting type of circuit), thus the
circuit itself acts inherently as an energy sink.

1.2 The lumped circuit model
Practical circuits consist of interconnected assemblies of com-

ponents : resistors, capacitors and inductors, each designed to exhibit one
elemental property to the exclusion of the others.* It is, however, impossible
to manufacture a component exhibiting a single property in pure form.
Furthermore, all of the interconnections between components will themsel-
ves possess each of the three elemental properties to some degree.
Consequently, the way in which the elemental properties are distributed in
a circuit is often ill defined and, in order to render the circuit amenable to
analysis, it is usually necessary to make certain simplifying assumptions
and approximations. The most basic of these consists in treating the circuit
as if it were composed of pure, discrete elements connected together by
conductors possessing no significant properties in themselves. This ap-
proach results in the so-called lumped circuit model.

Consider again the flashlamp the component parts of which are depicted
in fig. l.2(a). Each part, comprising battery, connecting wires, and lamp,
possesses resistance which is distributed in some fashion round the closed
path forming the circuit. The circuit also contains distributed capacitance
and inductance, but only a cursory knowledge of the principles upon which
this device operates tells us that these properties can be safely neglected.
The circuit model, therefore, need include only resistance as shown in fig.

). In this model the battery is represented by an energy source together

Note that the circuit component is distinguished from the circuit property by
the terminators -or and -ance respectively.
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4 Basic concepts, units, and laws of circuit theory

with a concentrated or lumped resistance which accounts for all distributed
resistance within the battery. The distributed resistance of the connecting
wires and the resistance of the lamp are similarly represented by separate
lumped resistances. These lumped elements are joined by conductors which
are assumed to be perfect, that is, by conductors having zero resistance.

The flashlamp exemplifies the simplest possible type of modelling in
which there is a close correspondence between the component parts of the
real circuit and the lumped elements of the model. Most of the circuits in
this book fall into this category. It should be mentioned, however, that the
process of devising suitable models for the type of circuit encountered in, for
example, telecommunications systems which operate at high frequencies, is

Fig. 1.2. Circuit modelling.
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Charge and current

often extremely difficult. Each component and interconnection may have to
be represented by a combination of elemental properties and the designer
may eventually have to select for analysis one among perhaps several
possible lumped models, testing each against past experience or by means of
actual circuit measurement.

The lumped circuit modelling technique is directly applicable only when
the dimensions of the circuit under consideration are small compared with
the wavelength corresponding to the frequency of the source excitation.
Circuits not falling into this category, such as high-frequency transmission
lines (characterized also by a continuous distribution of elemental pro-
perties), require special methods of analysis. The lumped modelling
technique provides only a starting point for the development of the theory
applicable to such circuits.

1.3 Charge and current
We have stated previously that current in a conductor is equal to

the rate of flow of charge. If i is the instantaneous current, and a small
quantity of charge dq flows in time dt, then

dq
1 =

dt
(1.1)

The instantaneous current will in general vary with time (fig. 1.3(a)). We
can calculate the total amount of charge q which flows during a time
interval tl<t<t2 by integrating (1.1).

= q= idt

Fig. 1.3. Relationship between charge and current.
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6 Basic concepts, units, and laws of circuit theory

The graphical interpretation of this integral is also shown in the figure.
If the time interval commences at the origin, tx =0 and t2 = t, and the

above integral becomes

q=\ idt (1.2)
o

For a direct current of magnitude / (fig. 1.3(b)), the charge Q which flows
in a time interval tl<t<t2 is

= I\ dr = / ( t 2 - t i ) =
Jtl

(1.3)

where te = t2 — t1 is the elapsed time.
The units of charge and current are respectively the coulomb and the

ampere*.
Although the concept of charge is basic to our understanding of the way

in which energy flows in an electrical circuit, the ampere is chosen as the
fundamental electrical unit in the SI system rather than the coulomb. The
reason for this is that it is easier to detect and measure charge in motion
than at rest. The former gives rise to a magnetic field which in turn can be
detected by utilizing forces resulting from interaction with other magnetic
fields. (See definition of the ampere, appendix A.) This is discussed more
fully in reference 6.

So far we have not considered the physical nature and origin of electrical
charge and indeed for the purposes of the theory contained in this book it is
unnecessary to do so. The established physical picture (according to the
Rutherford-Bohr model of the atom) conceives of charge as being carried
by atomic particles each bearing a discrete amount of charge. But, even in
the smallest currents encountered in practice, the number of charge carriers
involved in the transport process is very great and the discrete nature of the
flow is not normally detectable. A concept of current as consisting of a
smooth fluid-like flow is, therefore, adequate for nearly all practical
purposes.

Detailed experimental observation reveals that charge carriers can
possess two kinds of charge: positive and negative. Under the action of the
same electric field, charges of different kind move in opposite directions. A
given amount of positive charge moving along a conductor in one direction
is indistinguishable, so far as any observable external effect is concerned,

Appendix A contains information on the International System of Units (SI),
and an explanation of the symbols, abbreviations and nomenclature used
throughout the text.
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Potential difference, energy and power 1

from the same quantity of negative charge moving in the opposite direction.
By an internationally accepted convention, the direction of current flow is
chosen to be that of the direction of motion of positive charge.

In metallic conductors the carriers are electrons which possess negative
charge and move in a direction opposite to that of the defined direction of
positive current. In semiconductors and electrolytes charge of both kinds
exist (carried by electrons and positively charged holes, or ions) and the
current is the net result of the movement of positive and negative charge in
opposite directions. It must be emphasized, however, that in circuit analysis
we are not normally concerned with the nature of charge flow from this
microscopic point of view, and we, therefore, talk freely about positive
charge moving in metallic conductors even though the charge is in reality
carried by electrons.

The reference direction of positive charge flow or current in part of a
circuit is indicated diagrammatically by means of an arrow placed on or
alongside the conducting path in question. The direction of current between
two points A and B in a circuit may also be indicated without ambiguity by
means of a double subscript notation. Thus we may write IAB, which is
understood to mean a current of magnitude / amperes flowing in a
conventional positive sense from A to B. A positive current flowing from B
to A would be written IBA; it follows therefore that IBA=—IAB- This
notation will be valuable in our development of techniques for circuit
analysis.

1.4 Potential difference, energy and power
Consider a current of constant magnitude flowing through a

section of a metallic conductor AB as shown in fig. 1.4. It is observed
experimentally that the passage of current through a conductor is
accompanied by the release of energy in the form of heat. It follows that the
potential energy of the charge entering the conductor at A must be greater
than that of the charge leaving at B since the evolution of heat implies that
work is done by the charge during its passage from A to B. A potential
energy difference therefore exists between the points A and B. The SI unit of
potential energy difference (or simply potential difference (p.d.)) is the volt,
and we say that a voltage exists between A and B. The end of the conductor
at the higher potential is indicated conventionally by a (+ ) sign and that at
the lower potential by a (—) sign. A double subscript notation may also be
used with advantage to express the magnitude and direction (or polarity) of
a voltage existing between two points A and B in a circuit. We may write
VAB which is understood to mean a p.d. of constant magnitude V volts, A
being positive with respect to B.
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8 Basic concepts, units, and laws of circuit theory

Referring again to fig. 1.4, if a potential difference of one volt exists
between A and B, then one coulomb of charge passing between A and B will
produce one joule of heat energy. Generalizing this statement; if between
two points on a metallic conductor there exists a constant potential
difference of V volts, and a total of Q coulombs of charge passes between
them, the heat output J, in joules, is given by

J=VQ

In terms of current this becomes, using (1.3),

J=VIte

(1.4)

(1.5)

where / is a current of constant magnitude and te is the elapsed time.
From (1.5) the power P (watts) is given by the energy dissipated in the

conductor per unit time, that is,

P=-=VI (1.6)

For the general case where both voltage and current vary with time, the
energy is, at any instant of time t,

(1.7)

(1.8)

J= vidt
Jo

and the instantaneous power is

p = vi

Fig. 1.4. Potential difference. The potential energy lost by the charge
as it flows from A to B is recovered as it flows from C to D.
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Potential difference, energy and power

It follows from the principle of conservation of energy that if heat is to be
dissipated continuously in the section AB, the potential energy lost by the
charge in passing from A to B must be made up by a corresponding gain in
potential energy elsewhere. In the system shown in fig. 1.4 this occurs as the
charge passes through a section CD of a source. The magnitude of the
potential difference across CD is, of course, identical to that across AB. For
obvious reasons, the latter is often referred to as a voltage drop (or fall), and
the former as a voltage rise.

Although the relationships shown in (1.7) and (1.8) have been established
by considering the particular case of a metallic conductor, they apply
generally to any sink in which electrical energy is converted to some other
form. Consider the circuit shown in fig. 1.5. Source and sink are joined by
perfect conductors so that the p.d. across both is the same and equal to v.
The polarity of this voltage is, according to our convention, indicated by the
(+ ) and (—) signs. Unit positive charge, on passing through the sink from
the positive terminal to the negative terminal, loses a total potential energy
oft; volts, and on passing through the source from the negative terminal to
the positive terminal this potential energy is completely regained. The
instantaneous power flow from source to sink is given by the product vi.

For circuits containing a multiplicity of elements the magnitude and
direction of power flow at any particular element or in any part of the circuit
may be ascertained by considering the associated directions of the voltage
and current at the terminals concerned. In fig. 1.6, P is any element or part
of a circuit at which the instantaneous values of voltage and current are
defined. If the product vi is positive, power is being delivered to P while if the
product is negative, P is supplying power to the external circuit. In terms of
our double subscript notation, power is delivered to P if the product VABIAB

is positive. (Note carefully the order of the subscripts in this product.)

Fig. 1.5. Energy flow between source and sink. Instantaneous power
p — vi watts.

Current / amperes
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10 Basic concepts, units, and laws of circuit theory

If we apply this convention to fig. 1.5, we see that the direction of power
flow is in accordance with the meaning which has so far been attached to the
terms source and sink. That this is not always the case may be seen by
comparing the two circuits shown in fig. 1.7.

In these circuits we assume that the voltage of source P is greater than
that of Q and that, as a consequence, there will be a net e.m.f. acting in such a
direction as to cause current to flow clockwise round the circuit as shown.
Examination of the direction of this current in relation to the polarities of
the two sources connected as in fig. 1.7(a), confirms that both sources are
delivering power to the sink. However, if the polarity of Q is reversed, as in
fig. 1.7(ft), current enters its positive terminal, the product vi is positive, and
we conclude that energy is being delivered to Q. In other words, what has
hitherto been called a source is now effectively acting as a sink.

Many practical sources exhibit this property of reversibility. One
common example is the battery which can be recharged by connecting it to

Fig. 1.6. Power in a circuit element: P receives power if product vi is
positive; P delivers power if product vi is negative.

+ o-

Fig. 1.7. (a) Sources P and Q deliver energy to sink, (b) Polarity of Q
reversed: Q receives energy from P.
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Ideal voltage and current sources 11

a supply capable of forcing current through it in a reverse direction.
Electrical energy is thereby converted and stored in chemical form. In a
resistive conductor the energy conversion is, of course, irreversible.

1.5 Ideal voltage and current sources
The function of a source is to deliver energy to the circuit to which

it is connected. It does this, as we have seen, by imparting potential energy
to the charges which pass through it, the energy gained by each unit of
charge being equal to the p.d. across its terminals. Many practical
engineering applications require a source capable of maintaining a
substantially constant p.d. across its terminals irrespective of the current
which flows through it. No source can be made which does this perfectly
and usually, with a source such as a battery for example, the terminal
voltage falls as the load current increases. This leads us to the concept of the
ideal voltage source (also referred to as an ideal voltage generator) defined
as one for which the terminal p.d. is independent of the load current. The
utility of this concept lies in the fact that the electrical behaviour of a great
many practical sources can be described by means of an ideal source in
combination with one or more passive circuit elements. This will be
discussed more fully in later chapters.

The relationship between terminal voltage and load current (called
variously the voltage-current, volt-ampere, or load characteristic) for an
ideal voltage source is shown in fig. 1.8(a). This is simply a straight line
parallel to the current axis. If we are dealing with a source whose terminal
voltage varies with time, then the voltage axis on this graph must be
interpreted as indicating instantaneous values. Fig. 1.8(fc) shows the
conventional graphical symbol for the ideal voltage source.

Fig. 1.8. The ideal voltage source.
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12 Basic concepts, units, and laws of circuit theory

Another type of source, of theoretical and practical importance, par-
ticularly in electronic circuits, is the current source (or current generator).
An ideal current source may be defined as a source which delivers a specific
current to a circuit irrespective of the voltage across its terminals. The
voltage-current characteristic for such a source is shown in fig. 1.9. As with
the ideal voltage source, the ideal current source can be used in combi-
nation with other circuit elements to describe the electrical characteristics
of practical current sources.

While there is a universally accepted symbol for the ideal voltage source,
there is no such corresponding symbol for an ideal current source. A
selection of some of the more commonly used symbols is presented in fig.
1.10; in this book we shall adopt that shown in fig. 1.10(d). In all cases the
direction of conventional positive current is specified by an arrow.

We should mention, finally, that the ideal sources which we have
considered here are termed independent sources because the voltage or
current, as the case may be, is maintained at its specified value in-

Fig. 1.9. The ideal current source: voltage-current characteristic.

I Current
I
I

Fig. 1.10. Graphical symbols for the ideal current source.
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Kirchhoff's laws 13

dependently of any constraints imposed by the external circuit. Later
(section 2.13) we shall discuss another type of ideal source the output of
which is controlled by a voltage or current parameter elsewhere in the
circuit. This type of source is termed a dependent or controlled source.

1.6 Kirchhoff's laws
Kirchhoff's current and voltage laws are particular expressions of

two of Maxwell's general electromagnetic equations; they apply only to
circuits which can be represented by a lumped model. (Their derivation
from Maxwell's equations can be found in many books on electromagnet-
ism (see for example reference 7). Within the constraints and limitations
mentioned in section 1.2 concerning the lumped circuit model, these two
laws provide the basis for all circuit analysis.

Kirchhoff's laws are basically conservation laws: the current law
expresses the conservation of charge (or more explicitly the continuity of
current), and the voltage law expresses the conservation of energy.
Although the principles underlying Kirchhoff's laws present little con-
ceptual difficulty, the application of the laws in circuit analysis requires a
thorough appreciation of the sign conventions and rules which govern the
algebraic combination of currents and voltages. In the two following
sections, attention is given to these related aspects of Kirchhoff's laws as
well as to the laws themselves.

1.6.1 The current law
The current law in its simplest form may be derived by considering

the flow of current between two lumped elements connected together by a
perfect conductor (fig. 1.11 (a)). A junction such as this, between two or
more elements, is called a node. (Kirchhoff's current law is also known as
the node law because it relates to the currents at a node.)

Two currents are shown in fig. 1.11 (a), both flowing in the conductor
from left to right. Since there is no reservoir at the node in which charge can
accumulate, it is obvious that the currents must be continuous through the
node and we can write

h=i2 (1.9)

This states simply that the currents flowing into and out of the node are
equal. This relationship may, however, be expressed in another way. By
transposing (1.9) we obtain

il + (-i2)=0 (1.10)

Diagrammatically this is equivalent to changing the reference direction of i2
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14 Basic concepts, units, and laws of circuit theory

as shown in fig. 1.11 (ft). The law now states that the sum of the two currents
flowing into the node, taking into account their algebraic signs, is zero.

Finally, a third expression of the law is obtained by reversing the
direction of ix to give

i2 + ( - i i ) = 0 (1.11)

The reference directions corresponding to this equation are shown in fig.
l.ll(c), and we see that the sum of the currents flowing out of the node is
zero.

The above arguments, based essentially on the principle of continuity of
current, can be extended to include any number of elements connected
together at a node, and in its general form Kirchhoff's current law can be
summarized by the following relationships:

I*in = I W (L12)

or

(1.13)

where the sums are taken over all i.
Equation (1.12) expresses the continuity relationship in its most direct

form. Equation (1.13) states that the algebraic sum of the currents flowing
into (or out of) a node is zero. These equations express precisely the same
relationship between the currents at a node, but they each lead to a slightly
different formulation of the complete circuit equations and it is a matter of
convenience which of them one chooses. We consider this further in chapter
2.

Fig. 1.11. Alternative expressions of Kirchhoff's current law at a node.
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Kirchhoff's laws 15

Returning for a moment to the circuit of fig. 1.11 (a), and to the directions
assigned to the currents i^ and i2, it will be clear from the intervening
discussion that these directions were chosen quite arbitrarily, we could
equally well have shown them flowing from right to left, both flowing into
or both flowing out of the node. In general, it does not matter how the
currents at a node are assigned since their purpose is simply to provide a
frame of reference on which to base an explicit expression of the current law.
The following example will help to make this clear.

1.6.2 Worked example on the current law
Fig. 1.12(a) shows part of a circuit containing six elements. The

magnitudes and directions of the currents (referred to conventional positive
current) through five of the elements are indicated. Find the two currents in
the conductors at A and B.

To apply KirchhofTs current law one must first identify the nodes that
are relevant to the problem. It may appear at first sight that we have to
apply the law at each of the nodes a, b, c, and d separately, but if we recall
that the connections between elements of our lumped circuit are perfect,
and that there is no potential difference between any two points on a perfect
conductor, we see immediately that the connections in the central region of
this circuit can be rearranged as shown in fig. 1.12(b). There are now two
clearly identifiable nodes, P and Q.

Let the two required currents be ix and i2 and assign their reference
directions outward from the circuit as indicated. For this problem it is
immaterial which of the forms of the current law is used, so choosing (1.13),

Fig. 1.12. (a) Circuit for worked example on the current law. (b)
Rearrangement to identify node at P.

(a)

L_8A_ _ _ _ _ _ _ _ _

(b)

|_8A_ _ _ _

https://doi.org/10.1017/CBO9781139170093.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.003


16 Basic concepts, units, and laws of circuit theory

and equating the algebraic sum of the currents flowing out of the node to
zero, we obtain:

At node P
whence
At node Q
whence

- 4 - 6 H 1-8-1-3-1-1 + 1*1=0

— 3 — 1 -h i2 = 0

i 2 = 4 A

We see that the current it is negative. This simply means that our original
choice of reference direction for the current was (as it transpires) opposite to
the direction of conventional positive current.

This example may be used to illustrate a further consequence of the
current law. If we calculate the algebraic sum of all the currents entering (or
leaving) the complete circuit inside the boundary indicated by the dashed
line, we find that this sum also is zero. Thus currents flowing inwards across
the boundary are:

4 + 6 - 8 - ( - 2 ) - 4 = 0

As may be readily ascertained, a similar result is obtained for any part of
the circuit defined by a closed boundary cutting through two or more of its
conducting paths. KirchhofFs current law, therefore, applies in its most
general form to any region of a circuit defined by a closed boundary. This
follows immediately from the fact that, within such a boundary, charge can
neither be created nor destroyed, neither can it be stored. (A more complete
discussion of this aspect of KirchhofFs current law will be found in reference
4.)

1.6.3 The voltage law
The potential difference across an element has been defined in

section (1.4) as the energy gained or lost by unit charge as it passes through
the element. It was also shown with reference to fig. 1.5 that the potential
energy gained by the charge passing through the source was equal to the
potential energy lost in passing through the sink. These ideas may be
expressed formally by writing vx=v2 where vx is the potential rise and v2 is
the potential fall.

Following the same line of argument as used in our approach to the
current law, the above equation can be rearranged to give either
v1 + ( — v2)=0orv2 + ( — v1)=09 and we can interpret these as equivalent to
stating that the algebraic sum of the potential differences in the circuit is
zero. The two alternative forms arise because we can choose to define
positive potential difference acting in either a clockwise sense or a
counterclockwise sense round the circuit.
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The same arguments can be applied to circuits containing any number of
elements and conducting paths if we take the voltage Vi to mean the sum of
all contributions to the potential rise and v2 the sum of all contributions to
the potential fall as any closed path in the circuit is traversed. Thus
Kirchhoff's voltage law may be stated in either of two forms:

5>ri.e=$>f.U (1.14)

or

(1.15)

where the sums are taken over all v and, in the latter equation, the algebraic
sum is intended. The interpretation of these equations is made clear in the
example given below.

1.6.4 Worked example on the voltage law
In the circuit of fig. 1.13(a), find the magnitudes and directions of

the voltages across the elements P and Q.
Since there are two unknown voltages in this problem, the application of

Kirchhoff's voltage law consists in choosing two paths or loops in the
circuit from which two equations can be set up; these can then be solved for
the two unknowns. Three possible loops are indicated in fig. 1.13(6) any two
of which are sufficient to set up the required equations. For this problem we
choose loops (1) and (3).

Let the magnitudes of the required voltages be VP and FQ, and assign

Fig. 1.13. Circuit for worked example on the voltage law.

r

Loop 3

(a)
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18 Basic concepts, units, and laws of circuit theory

their directions (arbitrarily) as indicated by the ( +) and ( —) signs in fig.

Method (1): using equation (1.14)
Starting at point A, and traversing loop (1) in a clockwise direction, we
obtain a voltage rise in the 3 volt source, a fall in P, and a fall in the 6 volt
source. Hence

VP=-3V

Similarly for loop (3) we obtain a rise in the 3 volt source, a fall in P, a fall in
Q, and a rise in the 9 volt source. Hence,

but

therefore

Method (2): using equation (1.15).
Taking voltages acting in a clockwise sense we obtain:
for loop (1)

hence,

VP=-3V

and for loop (3)

hence,

The application of KirchhofTs Laws in practical circuit analysis is
considered in greater detail in chapter 2.

1.7 Resistance

1.7.1 Ohm's Law
The relationship between p.d. across a conductor and the current

flowing through it depends on the shape of the conductor and the materials
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Resistance 19

of which it is made. For some materials, for instance semi-conducting
compounds, this relationship may be of the general non-linear form shown
in fig. 1.14(a). For metals, carbon, and many other materials the vol-
tage-current relationship is linear, as shown in fig. 1.14(ft). The ratio of
voltage to current is constant, and the relationship takes the simple form
known as Ohm's Law viz:

(1.16)

where JR is the resistance in ohms.
It is often convenient for the purpose of circuit analysis to express Ohm's

law in the alternative form:

(1.17)

where G is the conductance in Siemens.
A conducting element for which Ohm's law is obeyed is called a linear

resistance. Two commonly used graphical symbols for a linear resistance
are shown in fig. 1.15. In this book the symbol of fig. l.lS(a) is preferred.*

Also indicated in this figure are the associated directions of voltage and
current according to the sign conventions described previously. With
conventional positive current flowing in the direction shown, and with v a
positive number, the polarity of the voltage is as indicated by the (+ ) and
( - ) signs.

Materials which obey Ohm's law are called ohmic materials. The
resistance of a bar of such material, if it is homogeneous and has a uniform

Fig. 1.14. Voltage-current relationships for resistance.

I

(a) Non-linear
Voltage

(b) Linear
Voltage

* The British and European standard symbol for resistance is that shown in fig.
1.15(6); in this book it is used, for pedagogical reasons, to denote immitance.
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20 Basic concepts, units, and laws of circuit theory

cross section, is found to be proportional to the length of the bar / and
inversely proportional to its cross-sectional area A. Thus we may write

(1.18)

where p is a constant of the material known as the resistivity. The unit of
resistivity is the ohm metre. The relationship (1.18) may also be written in
terms of the conductance:

(1.19)

where a = 1/p is a constant known as the conductivity of the material; this is
expressed in Siemens per metre

1.7.2 Power dissipation in resistance
We have mentioned previously that current flowing through a

resistance results in the irreversible conversion of electrical energy into
heat. The power dissipated is given, according to (1.8), by the product vi9

and this is always positive. This expression for the power dissipation is true
whether the resistance is linear or non-linear. For the linear case, however,
alternative and often more convenient expressions may be obtained by
eliminating either v or i from (1.8) using Ohm's law. Thus, using v = iR gives:

power = vi = i2R

and using i = v/R gives:

(1.20)

power = vi=—
R

(1.21)

Fig. 1.15. Graphical symbols used for resistance.

(a) (b)
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The energy converted into heat in a conductor as a result of the passage of a
current through it is often referred to as the 'i2/T loss or, when the conductor
is of copper, the copper loss.

1.7.3 Resistances in combination
(a) Series connection. With reference to fig. 1.16(a), if the single

linear resistance Rs is to be equivalent to the series combination of the two
linear resistances Ri and R2, a voltage vAB applied to either circuit must
cause the same current to flow. Let this current be i then, by Ohm's law, the
voltage across Rx is Vi=iRl9 and the voltage across R2 is v2 = iR2.
Therefore, by KirchhofTs voltage law,

VAB = Vl+V2=i(R1+R2)

But vAB = iRs, hence

The equivalent resistance of two resistances connected in series is, therefore,
given by

n n i n (\ *yj\
Ks = Ki~\- K2 \1.Z.A)

Now consider the series combination of any number of resistances
RUR2 . . . Rn. The equivalent resistance R can be found by repeated
application of (1.22), taking resistances two at a time, to give

R = RX+R2 + . . . + Rn (1.23)

In terms of conductances G=\/R, Gx = l/R^ etc., (1.23) becomes

1_J_ _L J_
G Gx G2 Gn

(1.24)

Fig. 1.16. Equivalent resistance for series and parallel combinations of
resistances.

6 B 6 B

(a) Series (b) Parallel
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22 Basic concepts, units, and laws of circuit theory

(b) Parallel connection. As for the series connection, the criterion for
equivalence between the two circuits shown in fig. 1.16(b) is that, under the
action of the same applied voltage, the resulting currents must be identical.
Thus:

VABCurrent through Ri=ii = —
#1

VAB
Current through #2 = *2=-£—

Therefore the total current i is, by Kirchhoff's current law,

But

i = vAB/Rp

hence

/ i 1

or

The parallel combination of two resistances is encountered very frequently
in circuit analysis and it is often denoted symbolically by Ri//R2.

Equation (1.25) is then often more conveniently expressed as

(1.26)

We refer to this expression as the 'product over sum rule'. Note that this rule
is not applicable to combinations of more than two resistances in parallel.

By repeated application of (1.25) we obtain the equivalent resistance of
any number of resistances connected in parallel viz.:

In terms of conductances G= 1/R, Gj = 1/Ri, etc., (1.27) becomes:

(1.28)
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This formula is useful for calculating the resistance of many paths in
parallel.

1.8 Capacitance
Capacitance is that property of the circuit which defines the

distribution of the electric field within the circuit when it is energized. In the
following sections we establish the voltage-current relationships for a
linear capacitance and from this an expression for the energy stored in
terms of the voltage across the plates of the capacitance. Relationships are
also derived which allow us to represent any arrangement of interconnected
lumped capacitances as a single lumped capacitance.

1.8.1 The voltage-current relationship for capacitance
When a source of voltage is applied to two conductors forming the

plates of a capacitance, positive charge is transferred from the conductor
connected to the negative terminal of the source to the conductor connected
to the positive terminal. The quantity of charge transferred is found to
depend on the size and shape of the conductors and on the dielectric
medium between them. For vacuum, air and many other dielectric
materials the charge transferred is proportional to the applied voltage.
Thus we may write

q = Cv (1.29)

where q is the instantaneous value of the charge, and C is a constant of
proportionality known as the capacitance. The unit of capacitance is the
farad, and the graphical symbol for a linear capacitance used in this book is
shown in fig. 1.17(a).

The relationship (1.29) defines a linear capacitance, and it is true only if
the applied voltage is not so high as to cause breakdown (electrical
conduction) or other changes in the dielectric.

Fig. 1.17. Graphical symbols used for capacitance.

i; =r= C ^ C

(a) (b)
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24 Basic concepts, units, and laws of circuit theory

The current i which flows as a result of the application of a voltage is
found by differentiating (1.29):

. dq d
l=Tt=dt{Cv)

Provided we are dealing with a conductor-dielectric system of fixed
geometry, this relationship becomes:

.-<£ 0.30,

By integrating (1.30) we obtain an explicit expression for the voltage in
terms of current. Thus,

(1.31)

in which v0 is the voltage across the capacitance at t=0.

1.8.2 Energy storage in capacitance
Consider a capacitance through which a current i flows as a result

of an applied voltage v. The instantaneous power flow to the capacitance is
given by the product vi which becomes, using (1.30), vCdv/dt. During the
interval dt the flow of energy to the capacitance is, therefore,

v(c—)dt = Cvdv
\ dt)

and the total energy delivered to the capacitance when its voltage is v is
given by:

P! = C vdv = iCv
Jo

Energy = C i>dt? = ±Ct>2 (1.32)
Jo

This stored energy is released by the capacitance when the voltage is
reduced to zero. (During the release of energy the product vi will be negative
according to the sign convention established in section 1.4.) Because the
energy of any closed system cannot change instantaneously (instantaneous
change of energy implying infinite power), it follows that the voltage across
a capacitance cannot change instantaneously.

1.8.3 Capacitances in combination
(a) Series connection. Referring to fig. 1.18(a), the two circuits

between A and B are equivalent if, when the same voltage is applied to each,
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the resulting currents are equal. Let the current be i and the voltage be vAB. If
we assume zero initial voltage, then the voltage vx across Cx will be, from
(1.31),

and the voltage across C2 will be

=^r\ idt
Jo

Therefore, using Kirchhoff's voltage law, we have

(i i \ r ,
=\—- + —-)\ idt

i C2/Jo
but

hence

idt

1 _ 1 1

Cs Ci C2
(1.33)

An expression for the equivalent capacitance of any number of capacit-
ances in series may be found by repeated application of (1.33), viz.:

1 1 1 1
(1.34)

Fig. 1.18. Equivalent capacitance for series and parallel combinations
of capacitances.

c, 4=

'T T 4= cD

(a) Series (b) Parallel
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26 Basic concepts, units, and laws of circuit theory

(b) Parallel connection. For the parallel circuit of fig. 1.18(6), the current
through Ci is, from (1.30),

and the current through C2 is

The total current is given by

But, for the equivalent capacitance Cp,

hence

CV = CX+C2 (1.35)

By repeated application of (1.35), we may extend this result to include
any number of capacitances connected in parallel, thus,

C = C1 + C2 + ... + CH (1.36)

1.9 Inductance
Inductance is that elemental property of a circuit which defines the

magnetic field distribution when the circuit is energized. In the following
sections we derive voltage-current and other relationships for inductance
corresponding to those derived for capacitance.

1.9.1 The voltage-current relationship for inductance
Fig. 1.19(a) shows part of a current carrying circuit. The magnetic

flux created by the current links with the circuit itself, the amount of flux
linkage being a function of the circuit geometry. By forming the circuit into
a coil, as represented schematically in fig. 1.19(6) the flux linkage is
enhanced. Provided there is no iron or other magnetic material present, the
flux, and therefore the flux linkage, is found to be proportional to the
current. If we denote the flux linkage by </>, then

4 = Li (1.37)
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where L is a constant of proportionality, dependent upon the circuit
geometry, which is called the self-inductance (or simply inductance). The
unit of inductance is the henry, and the graphical symbol preferred in this
book is shown in fig. 1.20(a).

The relationship between voltage and current is derived using Faraday's
law of induced e.m.f. This states that the e.m.f. induced in a circuit is equal to
the rate of change of flux linkage, that is,

e.m.f. = - - ( (1.38)

In this equation the negative sign indicates that the induced e.m.f. acts in
a direction such as to oppose the cause of the change of flux linkage (Lenz's
law).

Fig. 1.19. Flux linkage.

Flux

(a)

Flux

(b)

Fig. 1.20. Graphical symbols used for inductance.

+
v

(a) (b)

https://doi.org/10.1017/CBO9781139170093.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.003


28 Basic concepts, units, and laws of circuit theory

Combining (1.37) and (1.38) we have

e.m.f. = - — (Li)
Qt

which becomes, for a conductor system of fixed geometry,

e.m.f. = — L—-
dr

(1.39)

Now consider the situation shown in fig. 1.21 in which a time varying
voltage v is applied to part of a circuit which has no properties other than
pure inductance. This will cause a current i to flow whose rate of change is
such that the induced e.m.f. will exactly counterbalance the applied voltage,
hence we may write

d!
—
dt

(1.40)

The current i which flows as a result of applying v is found explicitly by
integrating (1.40), thus,

i=- I vdt + io
LJo

where i0 is the current flowing through the inductance at f = 0.

(1.41)

1.9.2 Energy storage in inductance
Referring to fig. 1.21, the instantaneous power flow to the

inductance is vi and the energy in the time interval dt is given by

di
iL—dt = Lidi

dt

Fig. 1.21. Voltage-current relationship for inductance.
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hence, the total energy storage at any current i is:

Energy = L (1.42)

Remarks similar to those made in connection with the storage and release
of energy in a capacitance (section 1.8.2) apply also in the case of
inductance. During the acquisition of energy the product vi is positive.
During the release of energy the current diminishes, the polarity of the
voltage reverses and the product vi becomes negative. The energy, and
therefore the current, cannot change instantaneously.

1.9.3 Inductances in combination
(a) Series connection. The circuits shown in fig. \22{a) are

equivalent if, upon application of identical voltages, the resulting currents
are equal. From (1.40) the voltage across Lx will be v1=L1di/dt9 and that
across L2 will be v2 = L2di/dt. The total voltage will, therefore, be (v1 + v2),
and this must be equal to vAB. Hence,

di_ di
'•dTLsdt

or

(1.43)

Extending this to any number of elements by repeated application we
have

(1.44)

Fig. 1.22. Equivalent inductance for series and parallel combinations
of inductances.

B 6 B
(a) Series

B 6 B

(b) Parallel
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30 Basic concepts, units, and laws of circuit theory

(b) Parallel connection. Adopting the same criterion for equivalence for the
circuits of fig. 1.22(b), we have for the sum of the currents ii and i2 flowing
in Lj and L2 respectively (assuming zero initial currents),

i = i1 + i 2 = — vABdt+—\ vABdt
M Jo ^2 Jo

But this sum must be equal to the current through Lp, hence,

— vABdt=-—\ vABdt+--\ vABdt
Lp Jo Li Jo L2 Jo

or

h-bh <••«»
jLp 1^! 1̂ 2

Again, by repeated application we may extend this result to include any
number of elements:

z-bb-4 ^
1.10 Inductively coupled circuits

When two circuits are brought into close proximity, the flux
produced by current flowing in one circuit can link with the other circuit as
shown schematically in fig. 1.23. Faraday's law applies regardless of the
source of flux linkage so that if the current varies so will the flux linkage, and
an e.m.f. will be induced in the second circuit. We say that the two circuits
are inductively coupled.

The inductive coupling effect can be enhanced by shaping the two circuits
in the form of coils wound closely together (fig. 1.24), as in the transformer.
Sometimes the inductive coupling effect is the cause of unwanted inter-
ference between adjacent circuits, and steps have to be taken to reduce the
coupling by the provision of magnetic screens.

Fig. 1.23. Inductive coupling between two circuits.

i i

Flux
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In this section the concept of mutual inductance is introduced, and from
this the voltage-current relationships are established for inductively
coupled circuits.

1.10.1 Mutual inductance
The amount of flux linked with the second circuit in fig. 1.23 (or fig.

1.24) depends on the geometry of the two circuits and, in the absence of any
non-linear magnetic materials, it will be proportional to the current in the
first circuit. Let us designate the flux linkage by (j)21 (read as flux linkage in
circuit (2) resulting from a current in circuit (1)), and let the current be iV
We may then write

02i = Af2iii (1.47)

where M2l is a constant known as the mutual inductance of the two
circuits. As for self-inductance, this is expressed in units of the henry. The
mutual inductance is conventionally taken as being always positive.

By the same arguments we can derive a similar equation for the situation
where circuit 2 carries a current i2, that is,

4>i2 = M12i2 (1.48)

Applying Faraday's law to (1.47) and (1.48) we obtain for the voltage
induced in (2), M2ldii/dt; and for the voltage induced in (1), M12di2/dt. (It
is assumed here that the two circuits are fixed geometrically.)

It may be shown that for iron-free circuits, M21 = Ml2 (see for example
reference 6). Therefore, in what follows the mutual inductance will be
designated simply as M.

We can now establish the complete voltage-current relationships for
mutual inductance with reference to fig. 1.25, which shows the circuit model
for the inductively coupled coil arrangement of fig. 1.24. The coils possess
pure self-inductances Lt and L2, and the mutual inductance between them

Fig. 1.24. Inductive coupling between two coils: fluxes reinforce with
currents and winding directions shown.

Flux
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32 Basic concepts, units, and laws of circuit theory

is M; resistance is assumed to be negligible. Both coils are wound in the
same direction so that, with the currents ix and i2 assigned as shown (both
flowing clockwise when viewed from above in fig. 1.24), the fluxes produced
are in the same direction through the two coils. The self-induced voltage in
coil (1) will be, from (1.40), L^AiJAt and to this we must add the voltage
induced in coil (1) due to current in coil (2), namely, Mdi2/dt. Hence, the
total voltage across AB is

v>=L?t+M% (L49)

The two voltages are in the same sense and therefore add because the fluxes
are in the same direction.

Similarly, for the second coil, the voltage across CD is

--!.£+"£ (..50,
If the direction of either current were reversed, the signs of the second terms
in these equations would be negative.

It is sometimes important in circuit diagrams (and on the coils
themselves) to indicate the relative directions of the windings. This is done
by polarity markings. The conventional scheme is as follows: place a dot on
one terminal of coil (1) and imagine the current ^ to enter the dotted
terminal. Now determine the direction of current i2 in coil (2) that will give
flux in the same direction as that produced by ix. Place a dot on the terminal
of coil (2) that i2 enters. (If there are more than two coils, then any one of
them is used as reference and the dots are placed on all others with respect
to the reference coil.) According to this convention, the top terminal of each
coil of fig. 1.24, and each inductance in fig. 1.25, should have a dot.
(Alternatively, of course, the bottom terminal of each coil may be marked.)
The ends of the coils so marked are called corresponding ends.

Fig. 1.25. Circuit model of the inductively coupled coil arrangement
shown in fig. 1.24. Dots indicate 'corresponding ends'.

A o

B o 1 I oD
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Note that with assigned currents both entering (or both leaving)
corresponding ends, the terms containing M in the circuit equations (1.49)
and (1.50) are positive. If currents are assigned such that one current enters
and the other leaves a corresponding end, the terms containing M are
negative. If no information is provided concerning corresponding ends in a
particular circuit containing inductively coupled coils, the mutual induct-
ance terms must be written: ±Mdi/dt.

The scheme described above implies that the corresponding ends of coils
will all move in potential together when a voltage is applied to one of them.
This provides a simple method of identifying, by means of a voltage
measurement, the corresponding ends of a system of inductively coupled
coils.

Sometimes, a circuit model, by separating out effects that cannot actually
be separated physically, provides help in understanding how the circuit
works. Fig. 1.26 is an alternative circuit model for the inductively coupled
coil arrangement shown in fig. 1.24 in which the induced voltages due to
mutual inductance have been represented by ideal sources. These sources
cannot be isolated from Lx and L2, and so this model is not physically
realizable, however, the circuit equations are the same as those for fig. 1.25
and as far as external connections are concerned, the circuits of figs. 1.25
and 1.26 exhibit identical behaviour. It will be noted that the two sources in
fig. 1.26 are examples of dependent sources, that is, their values depend on
currents flowing in the circuit itself.

1.10.2 The coefficient of coupling
Consider the circuit of fig. 1.26 with its terminals AB connected to a

voltage source and terminals CD short circuited. The circuit for this
situation is shown in fig. 1.27. Applying Kirchhoff's voltage law to the
circuits (1) and (2) we obtain

Fig. 1.26. Alternative circuit model of Fig. 1.24. Lt and L2 are
separate inductances with no mutual inductance between them.

A o

dt

B o ' ' oD
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dix di2
t ) l = L ldT+ MdT

and

0 = M ^
dt

since v2=0.
Upon rearrangement and elimination of di2/dt9 these equations yield

dii vlL2

dt LXL2-M
2

The equivalent input inductance (that is, the effective inductance between
the terminals AB) is

Vl _L,L2-M
2

AB dijdt~ L2

We can now calculate the energy stored in the system using (1.42), thus,

Energy = \L ABi\ = \ -^- (1.51)

The stored energy must be positive, otherwise, the inductance could act as a
source of energy indefinitely, and this is not possible for a passive circuit
element. Therefore, (LiL2 — M2) must be greater than or equal to zero and
so

We usually write

M = k{L^L2f (0<fc<l) (1.52)

where k is the coefficient of coupling. When k has a value near unity, the

Fig. 1.27. Circuit for deriving the relationship: M = k(LlL2)
i.

A Q
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coupling is said to be close, or tight. For k= 1, all the flux produced by a
current in one coil links all the turns of the other coil.

1.10.3 The effective inductance of two series-connected coupled coils
In the circuit of fig. 1.28 the two coils each have self-inductances Lx

and L2 and mutual inductance M. Since there are two possible ways of
arranging the series connection we have two possible circuit models
(derived from fig. 1.26) as shown in fig. 1.29. In both arrangements the same
current exists in both coils, however, in fig. 1.29(a) the coils are connected in
series aiding while in fig. 1.29(b) they are connected in series opposing. The
effective inductance in each case may be found by applying Kirchhoff's
voltage law. For fig. \29{a) we have

di

dt

di
—
dt

di
—
dt

di
—
dt

or

at

and so the effective inductance for circuit (a) is

(1.53)

Fig. 1.28. Series connected coupled coils.

Fig. 1.29. Circuit models for series connected coupled coils.

/ i

(a) Fluxes aiding (b) Fluxes opposing
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When the same procedure is applied to circuit (b) the result is

(1.54)

1.11 Passive circuit components
Passive circuits are made up of components - resistors, capacitors,

inductors and mutual inductors - each designed, ideally, to exhibit one of
the elemental properties to the exclusion of the others. These components
are usually, although not always, required to be time-invariant and linear,
that is, their properties should not be affected by changes in operating
conditions, nor should their values depend in any way on the applied
currents and voltages.

Real components fall short of these ideal requirements in several respects.
Generally, all three elemental properties will be associated with any given
component so that it will exhibit its named property over a limited range of
frequencies only. A resistor, for example, is often constructed from a length
of high-resistivity wire wound upon a suitable former to form a compact
coil. Such a coil will possess inductance; there will also be capacitance
between the turns of the coil.* It is sometimes necessary, therefore, to devise
circuit models like those shown in fig. 1.30, which will represent the
characteristic behaviour of the component over a particular range of
operating frequencies.

The 'purity' of a component refers to the extent to which it is free from
extraneous (or stray or parasitic) elements. Most modern components
possess a high degree of purity, and it is usually permissible - for example, in
the case of a resistor - to neglect stray inductance and capacitance and to
represent it simply by a resistance in the circuit model, but the designer
must always take care to ensure that the model accurately reflects the
properties of the circuit.

The properties of real components also vary, to some extent, with time

Fig. 1.30. Models for passive circuit components.

Resistor Capacitor Inductor

By folding back the length of wire on itself before winding it into a coil, the self
flux linkage and therefore the inductance may be greatly reduced - a technique
known as bifilar winding.

https://doi.org/10.1017/CBO9781139170093.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.003


Problems 37

and temperature, the latter effect being dependent both on the ambient
temperature and on the power dissipated in the component itself, that is,
upon applied voltages and currents. Components also suffer from long-
term changes in the values of their properties - an effect known as 'ageing'.

1.12 Summary of basic circuit relations
Table 1.1 contains a summary of the basic equations and laws of

circuit theory. In this table v and i denote, respectively, the voltage and
current across and through the circuit element concerned at a particular
instant of time.

The reader will observe that there exists a striking symmetry in these
circuit relations. Kirchhoff's two laws, for instance, are of identical
mathematical form with v in one replacing i in the other: the same applies to
Ohm's law expressed in its resistive and conductive forms. We see also that
the formula for the series combinations of resistances is of the same form as
the parallel combination of conductances. The complete sets of equations
applying to capacitance and inductance evince this underlying symmetry
also, i interchanging with v and C interchanging with L. The equations
relating to combinations of L and combinations of C reveal a reciprocal
relationship of the same type as that existing between R and G.

These symmetries are a manifestation of a general principle of circuit
theory which we call duality. Expressed in general terms this principle states
that, for any linear circuit whose behaviour is described by a certain set of
equations, a dual circuit can be found for which the circuit equations are of
the same mathematical form. However, in the equations for the dual circuit,
current and voltage are interchanged and each element is replaced by its
dual element: JR for G, L for C, etc. For example, a circuit comprising two
resistances connected in series to an ideal voltage source would have as its
dual two conductances connected in parallel to an ideal current source.
This principle sometimes provides alternative and illuminating ways of
approaching circuit analysis and synthesis; we refer to it at several points
throughout this text. (There are certain restrictions to this general
principle: for instance, it cannot be applied directly to circuits containing
mutual inductance. See for example references 1 and 4.)

1.13 Problems
1. A circuit element is shown in fig. 1.31 for which the reference

directions of voltage and current are defined.
(a) If v = — 3 V and i = — 2 A (both constant), is the element acting as a

source or as a sink? What is the power delivered or received by the element?
(b) If v = 3V (constant) and i = (2f+l)A, what is the total amount of
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Table 1.1. Summary of basic equations and laws of circuit theory

Description Law or relationship Unit Equation

Charge and current

Energy

Power

KirchhojjTs laws
Current

Voltage

Resistance (linear)
Ohm's law

Power

Series combination

Parallel combination

Capacitance (linear)
Charge and voltage

Current and voltage

Stored energy

Series combination

= idt
Jo

r
J = vidt

Jo
p — vi

Z-o

or

V

1 1 1

1 1 1 1

K Kx K2 Kn

q — Cv

1 f\
C Jo

iCv2

1 1 1

ampere

coulomb

joule

watt

1.1

1.2

1.7

1.8

1.12

1.13

1.14

1.15

ohm 1.16

siemen

watt

ohm

ohm

siemen

siemen

coulomb

ampere

volt

joule

1.17

1.20, 1.21

1.23

1.24

1.27

1.28

1.29

1.30

1.31

1.32

- = — + — + . . . + — farad" 1.34
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Table 1.1. (cont.)

Description

Parallel combination

Inductance (linear)
Flux linkage and current

Voltage and current

Stored energy
Series combination

Parallel combination

Mutual inductance (linear)
Flux linkage and current

Voltage and current

Coefficient of coupling

Law or relationship

c = C i + c 2 + . . . + c n

(j) = Li
di

v = L—
dt

1 f A •i=— vdt + io
LJo

t = L l + L2 + ... + Ln

1 1 1 1
— = 1 I - . . . H
L L, L2 Ln

dii di2

Vl~ l~dt~ ~dt

v M
— i

Unit

farad

weber

volt

ampere

joule
henry

henry"1

weber

volt

Equation

1.36

1.37

1.40

1.41

1.42
1.44

1.46

1.47

1.49

1.52

charge that flows during the interval 0 ̂  t ̂  10 seconds? Calculate the total
energy delivered or received by the element during this interval.
2. State which of the elements A, B, C, D and E in the circuit of fig. 1.32 are
sources and which are sinks. Find the total power transfer from sources to
sinks.
3. What is the resistance looking into the terminals AB of the circuit shown
in fig. 1.33? If the terminals AB are connected together, what is the
conductance between points C and Dl
4. In the circuit of fig. 1.34, find the voltages VAE, VBE and VCE, and the
currents IAB and ICB-

Fig. 1.31. Circuit for problem 1.
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Fig. 1.32. Circuit for problem 2.

+ 4 V -

+ IV -

Fig. 1.33. Circuit for problem 3.

C
A o-

B o-

•AAAr
2Q

4Q

-AMr

\Q

6Q'

-AAAr

12X2

D

Fig. 1.34. Circuit for problem 4.

A C

Fig. 1.35. Circuit for problem 6.

o D
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5. A 1 MQ resistor and a 2/iF capacitor are connected in series across an
ideal current source which delivers a current i = 5e~2t mA. The capacitor is
uncharged at t=0. Determine the energy stored in the capacitor and the
voltage across the current source at the instant t=O.5s.
6. Find the change in the capacitance measured at AB in fig. 1.35 when
terminals CD are connected together (capacitance in /iF).
7. The mutual inductor in the circuit of fig. 1.36 has a coupling coefficient of
0.5; what is its mutual inductance? Determine the current i, the voltage v,
and the total energy stored in the circuit at an instant 4 seconds after closure
of the switch.

Fig. 1.36. Circuit for problem 7.

2V
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