
Three-phase alternating
current circuits

5.1 Introduction
In chapters 3 and 4, circuits were considered in which the

alternating energy sources possess the same frequency but, in general,
different voltages and internal impedances, and arbitrary phase relation-
ships. Each voltage source in such circuits may be thought of as being
generated by the interaction between a stationary coil of wire and a
properly shaped rotating magnetic field, as shown schematically in fig.
5.1 (a).* Now, suppose that instead of a single coil (generally referred to as a
winding) there are n windings symmetrically disposed on the stator of the
machine. If the windings are identical, their impedances are equal and the
amplitudes of their induced voltages are equal. The voltages will all be of the
same frequency, determined by the angular speed of the rotating magnet,
and the phase relations among them will be fixed. The phase difference
between the voltages of two successive windings will be 2n/n radians or
360/H degrees. A machine constructed in this fashion is an rc-phase
generator.

The majority of power systems throughout the world utilize the three-
phase generator, shown schematically in fig. 5.1 (b). In fig. 5.2 are shown (a)
a phasor diagram for the three-phase generator, and (b) graphs of voltage v.
time for the three phases. The three voltages differ in phase by 360/3 = 120°.

The generators in a power system are connected to a series of step-up and
step-down transformers that provide voltage levels appropriate for the
efficient transmission, distribution and consumption of the power gene-
rated. The three-phase transformers used possess primary and secondary
circuits each consisting of three identical windings electrically (although

* A discussion of rotating a.c. machines is beyond the scope of this text; see
reference 12 for a general introduction to the theory and practice of electrical
machines and associated equipment.
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232 Three-phase alternating current circuits

not mechanically) similar to those in the three-phase generator. Generator
and transformer windings are connected phase-to-phase, the voltages
impressed across the phase windings of any transformer in the system being
of similar form to those shown in fig. 5.2.

An important feature of any polyphase generator is the fact that at any
instant the sum of the individual phase voltages is zero. An examination of
fig. 5.2 shows the validity of this statement for three phases. In fig. 5.2(a) the
resultant of the three phasors is obviously zero. In fig. 5.2(b), at any instant,
the sum of the three voltages is exactly zero.

Fig. 5.1. Schematic representation of an a.c. generator or alternator.

a
^—

Winding

Stator

Rotor

(a) Single-phase (b) Three-phase

Fig. 5.2. The phase voltages of a three-phase generator.

Phase L

voltage

(a) Phasor diagram (b) Instantaneous values
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Three-phase circuits 233

5.2 Advantages of three-phase systems
Among important advantages of three-phase systems for power

distribution may be numbered the following.
(1) Economy in energy conversion equipment.

The generation and utilization of electrical energy in a large-scale
power system depends on the efficient operation of large numbers
of rotating a.c. machines. Polyphase windings make better use of
the space available in a machine of a given physical size and
therefore capital costs are lower. The load capacity of a two-phase
machine is some 40% greater than that of a single-phase machine
while that of three-phase machines is 50% greater. Polyphase
machines with four or more phases offer a negligible increase in
load capacity over the three-phase case which, therefore, rep-
resents the optimum arrangement.

(2) Economy in transmission equipment.
The transmission of power in a single-phase system requires two
conductors, two- and three-phase systems both require three
conductors, and a four-phase system four conductors. The three-
phase system has only two-thirds of the transmission loss of the
single-phase system for the same power delivered to a load,
consequently it offers the greatest economy among the possible
polyphase systems.

(3) Provision of constant power and torque.
Polyphase systems provide constant instantaneous power to a
load, which implies that both generators and motors exhibit a
constant torque characteristic. By contrast, in a single-phase
system power goes to zero twice every cycle so that the torque of a
single-phase machine is pulsating.

This characteristic of polyphase systems, shared of course by the
three-phase system, is essential for large-scale power generation
since it allows the use of constant-torque prime movers such as the
steam and water turbine. The provision of constant torque is also
essential in many industrial applications of electric motors.

5.3 Three-phase circuits

5.3.1 Phase and line voltages
To begin our study of three-phase circuits consider the arrange-

ment shown in fig. 5.3 in which a three-phase generator or transformer is
represented by three identical, ideal voltage sources. Each source is joined
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234 Three-phase alternating current circuits

to a load impedance through two wires each of impedance Zt. It will be
apparent that nothing is lost if we form a common point by connecting
together the three ends x, y and z, of the individual sources. We may also
join points x\ y' and z'. Then we have reduced our circuit from a 6-wire to a
4-wire system (fig. 5.4), with the common points n and n' joined by a neutral
wire of impedance Zn.

Fig. 5.3. Source-to-load connection using 6 conductors.

Fig. 5.4. Source-to-load connection using 4 conductors.

Source Load
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Three-phase circuits 235

With the interconnections shown in fig. 5.4, the phasor diagram
representing the three source voltages is as shown in fig. 5.5(a). The three
phasors each have magnitude Vp; thus, a voltmeter connected between the
neutral point n and any of the points a, b or c, will read Vp volts. The voltages
Va, Vb and Vc are called the phase voltages. If Va is taken as the reference
phasor, we may write the phase voltages as

p

= VpLl2£>
L

(5.1)

Other voltages of significance in fig. 5.4 are the line-to-line (or simply line)
voltages Vah, Vbc and Vca. The relationships among line and phase voltages
are readily determined with the aid of fig. 5.5(fc). With Va as the reference
phasor we have

Fig. 5.5. Phasor diagrams for the source shown in fig. 5.4.

(a) Phase voltages (b) Line voltages

ab

(c) Line and phase voltage relationships
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236 Three-phase alternating current circuits

or

Similarly it may be shown that Vbc = ^ 3 F p / - 9 0 and Vca = ̂ 3 K/150. Let K,
be the magnitude of the line voltage, then we may write (with Va= ValQ_ as
phase reference)

(5.2)
KCfl=^/+150

where

A compact (and easily remembered) form of phasor diagram, showing the
relationships among the complete sets of line and phase voltages, is shown
in fig. 5.5(c).

5.3.2 Balanced load
We now assume that the three load impedances in fig. 5.4 are

identical so that

za=zb=zc=z
Such an arrangement is referred to as a balanced load.* In fig. 5.4, the line
currents are designated Ja, lb and Ic. By applying Kirchhoff's voltage law
around the appropriate loops we obtain

Jb+/ c)Zn (5.3)
rc=/czl+icz+(/a+/>+jc)zII

We have already shown that Va + Vb 4- Vc = 0. It follows then that the sum of
the terms on the right-hand side of equations (5.3) is zero. The result of this
summation is

Therefore,

la + Ib + lc=0 (5.4)

* Much of the electrical equipment used in industry (three-phase motors for
example) constitutes a balanced load, and it is possible in a large power
distribution system to maintain conditions where loads on generators and
transformers are essentially balanced.
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Three-phase circuits 237

So, for the balanced load, there is no current in the neutral wire and,
consequently, no voltage drop across the impedance Zn.

From (5.3) and (5.4) the line currents under balanced conditions are
given by

}

In practice it is not possible to maintain perfect balance among loads in a
power distribution system, particularly so at the local distribution level
where loads drawn by small commercial and domestic consumers, dis-
tributed between the three separate phases of the system, are continually
varying. A neutral wire is always provided in this case to carry the small
out-of-balance currents that arise. This neutral wire is connected to earth at
some point (usually at the sub-station transformer) and provides a
common reference for the whole of the local distribution network.

The provision of a neutral wire has the further advantage of providing
consumers with two alternative voltages: line voltage and phase voltage
differing, as shown above, by a factor of ^/3. In the UK these voltages are
415 V and 240 V respectively. The higher of these is more suitable for
commercial and industrial consumers operating, for example, machine
tools powered by three-phase induction motors. For a given installed load
the higher voltage results in a lower current, which reduces the capital costs
associated with wiring and switchgear. These considerations are of less
importance for the domestic consumer where a single-phase supply (one
phase of the three-phase supply) is adequate for low-power lighting and
heating purposes. The lower voltage is also safer in situations where
portable electrical apparatus is used extensively.

As mentioned previously, the average load on a large-scale power system
is always arranged to be as nearly as possible in balance. The generators in a
power station operate under essentially balanced conditions, as do the main
distribution transformers and overhead lines. In the case of long-distance
lines the neutral wire is dispensed with, although an additional wire is
necessary to connect the transmission towers together and to earth. (This
normally carries no current except in the event of a lightning strike.)

5.3.3 Worked example
For the three-phase system shown in fig. 5.4 the line voltage of the

source is 415 V, and the load consists of three equal impedances
Z = 20 +jlO( = 22.4/26,5)0. The line impedance Z, = 2+j4
( = 4.47/53.4)0. (Note that in this example the line impedance Zz

is chosen to be unrealistically high compared with Z so that its effect will
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238 Three-phase alternating current circuits

not be negligible in the calculations.) Find the line current, the voltage
across the load, the power delivered to the load, and the power lost in the
transmission line.
Solution. Because this is a balanced system, we may make calculations for
one phase alone and find all the required information from the results of
these computations.

The magnitude of the phase voltage is, from (5.2), Vp = 415/^3 = 240 V.
We may choose any phasor to be our reference, i.e. to have phase angle zero,
so letting Va = 24O/SL:

240/0 240Z0
/ = .

The load voltage is

22+J14 7.6 1/32.5"

-32.5)(7?4/26.5) = 206/Lzi.

Because the system is balanced, the three line currents all have magnitude
9.2 A and the three load voltages have magnitudes 206 V. Furthermore, the
angle between adjacent voltages and between adjacent currents is 120°. We
may therefore write

Ib = 0 7./-152.5 Vb, = 7 (W-126
7 =Q 7/87.5 Vc =2061114

The relationships among currents and voltages are shown in the phasor
diagram of fig. 5.6.

Fig. 5.6. Phasor diagram for worked example (section 5.4).

Va = 240 /HI

Vfl'=206/-6°

7fl=9.2/-32.5°
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The power factor for one element of the load is the cosine of the angle
between la and Va.. This is cos ( -6° - ( -32 .5° ) ) = cos26.5° =0.895. So, the
average power supplied to one element of the load is

pa = va,/acos26.5° = 206 x 9.2 x 0.895 = 1696 W

The total power to the load is P = 3Pa = 5O88W.
The power loss in one line is Ia

2RVine = 9.22 x 2 = 169 W.
Then the total line loss is 3 x 169 = 507 W.

As a check, let us calculate the power delivered by the source. For one
phase of the source, the phase of the angle is ( — 32.5°); so the power
delivered by phase a is

Pa = J/fl/flcos(-32.5°)
= 240 x 9.2 x 0.843 = 1861W

The total power supplied by the source is 3Pa = 3 x 1861 = 5583 W. The
total power absorbed is the sum of the line loss and the power delivered to
the load, that is, 5088 + 507 = 5595 W. Within the limits of error of our
calculations, this equals the power supplied by the source.

5.3.4 Star and delta connections
In general, for an rc-phase system the configuration in which one

end of each element (either source or load) is tied to a common point is
called a star connection. For a three-phase system this configuration is also
called a Y connection (sometimes spelled out as wye). In fig. 5.4 both the
source and the load are Y connected.

An alternative way of connecting the elements of the source or load is one
in which they are joined to form a closed path. In the case of the voltage
sources this connection is possible because, as we have seen, the sum of the
phase voltages is zero, consequently, such an interconnection will not result
in a circulating current through the sources. For a three-phase system this
interconnection is called a delta, often written A. It is represented in fig. 5.7.

It is usual for the alternators in a large power station to be connected in
Y, but transformers are connected in Y or A depending on their particular
function in the system. When sources are connected in A there is, of course,
no neutral point.

A three-phase load may be connected in either Y or A regardless of how
the source is connected. Indeed, in connecting a three-phase load one may
have no information concerning the source. The usual situation is that one
has three lines (plus, perhaps, a neutral wire) and information about the
phase sequence, that is information concerning the order in which the line
voltages (or phase voltages, if there is a neutral) reach their maximum
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240 Three-phase alternating current circuits

Fig. 5.7. Delta connection of three-phase voltage sources.

Fig. 5.8. Relationship among line and phase currents for a balanced
delta-connected load.

(a) A - connected
load

(b) Phase Currrents (c) Line Currents
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Three-phase circuits 241

values. One also knows, or can measure the magnitude of the line voltage
(or of the phase voltage, if appropriate). The consumer who connects a load
to the three-phase line usually is not concerned about losses in the
transmission line or voltages and currents at the source; it is rather the
authority responsible for supplying the power that is interested in these
quantities.

Fig. 5.8(a) shows a A-connected balanced load in which the load
impedances carry currents /a, lfi and Ir Because the load is balanced these
phase currents are of equal magnitude and mutually spaced on the phasor
diagram at 120°, as shown in fig. 5.8(ft). Let the magnitudes of the phase and
line currents be Ip and It respectively, and let /a be the phase reference. Then
at node a'

The three line currents must also be at mutual phase angles of 120°, hence,
we may write

Ia = IJ-30°; /» = / , / -150°; le = Ij9££_ (5.6)

where

The relationship among line and phase currents for the balanced A-
connected load is shown in fig. 5.8(c). This relationship is similar to that
which exists between line and phase voltages in a balanced Y-connected
system (see fig. 5.5).*

5.3.5 Worked example
For the balanced three-phase system shown in fig. 5.9 the line

voltage at the source is 415 V, the line impedance Z/ = (2+j4)Q, and the
load impedance Z = (20+jl0)Q. (These parameters are identical to those
in the previous worked example.) Find the line currents, the voltage across
the load, the power delivered to the load and the power lost in the
transmission line.
Solution. In fig. 5.9 we have defined three mesh currents Il912 and 73. The
currents that we wish to find; namely, the line currents Jfl, Ib and Ic and the
three load currents, Ja, Ip and Iy are readily expressed in terms of these mesh
currents. Before substituting numerical values, expressions for Iu I2 and /3

are found.

* The Y- and A-connected systems are duals.
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242 Three-phase alternating current circuits

Using mesh analysis we obtain:

-h
-I.

(2Z( + Z)
Zi

z
+/
-h

iZx
2(2Z, + Z)

z

- /

+h

3z =K-vl
3z =vc-vz
,(3Z)=0

Simultaneous solution of these equations yields

2(Va-K)+(Vc-va)
^1 =="

Zo

Zo

where

But

hence

h=(vab+vCttyz0

If Va is chosen to have zero phase angle then, by (5.1),

0 = 3Z,

(Va-Vb)=Vabzn&(Vc-Va)=Vca

h=(2Vtb+Va,)/Z0

(5.7)

Fig. 5.9. Wye-connected generator with balanced delta-connected load
(worked example, section 5.3.5).

Load
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0 = 415(0.866+j0.5)

Fcfl=415Z!5Q=415(-0.866+j0.5)

Also,

Substituting these numerical values in (5.7) gives

I, =21.1/12*2 A; I2 = 21Al79J_ A; Z3 = 12.2/49,7 A

From fig. 5.9:

Substituting values o f / l 5 l 2 and 73 in these equations gives

/fl = 21.l/--40.3A Ia= 12.2/ -10.3 A
ft = 71 1/-160.3 A Ifi= \rrl-130.3 A
/C = 21.1/22JA fy = 12.2/109.7 A

A considerable saving in the amount of calculation required to find the
line and phase currents may be achieved by utilizing (5.6) and the
relationship shown in fig. 5.8(c). Specifically, a knowledge of either lx or I2

makes it possible to write down line and load (phase) currents directly.
Thus, having solved (5.7) for current Iu then

lh=-h = - 21 .1 / I2 J=21 .1 / -160.3

and we may write

fJ = 7.1.i/-160.3 + 120 = 21.1/-40.3
r = ?1.i/ -160 .3-120 = 21 1/79.7

Furthermore, the phase current Ia is given by

/ t t=(/q/V3)/+30 = (21.1/V3)/-40.3 + 30=12.2/-10-3

from which it follows that

f ,= 12 7 7 - 1 0 . 3 - 1 2 0 = 17.2/-130.3
fy= 12.2/-10-3 + 120 = 17.7/109.7

Now that the load currents have been found, the load voltages are readily
obtained

) = 77V 16.2 V
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244 Three-phase alternating current circuits

Similarly,

-1O3.8V, and FrV = 7.7 V 136.2 V

Because the load is balanced, the total power delivered to the load is three
times the power in one load impedance. For example, the power delivered
by current /a is h2R\oad, where Rioad is the resistive part of the load
impedance, in this case 20 ohms. The total power delivered to the load is
then

îoad = 3 x 12.22 x 20 = 8930 W

The power loss is three times the loss in one line. Therefore

Pline = 3x21.12x 2 = 2671 W

Finally, we calculate the power supplied by the source. Again the fact that
we have a balanced load makes it possible to calculate for one phase and
multiply the result by three. Thus the total power supplied by the source is

3 x Fa/acos(-40.3) = 3 x 240 x 21.2 x 0.763 = 11 591W

This checks with the sum of the load power and line loss:
8930 + 2671 = 11601W (within the limits of error of the calculations).

5.3.6 Use of Y — A transformation

An alternative approach to the solution of the above example is to
use a Y-A transformation (section 2.9.2) of the load impedance. The result
of this transformation is shown in fig. 5.10. Because the system is balanced,
points n and ri are at the same potential and may, for purposes of
calculation, be connected by a conductor of zero impedance. Then from fig.
5.9,

Fig. 5.10. Load of fig. 5.9 after delta to wye transformation.

c o

a o

Load
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/„ =
240Z0 3x240/0

6+jl2 + 20+jl0

The remaining line currents and the three load currents are found, as
before, by invoking (5.6) and the relationship shown in fig. 5.8(c).

The Y-A transformation is especially useful when there are mixed Y- or
A-connected loads that must be combined to find the total line current. It is
convenient then to use the transformation so that the loads will be all A-
connected or all Y-connected. After line currents and line voltages at the
load have been calculated, the transformation may be used in the opposite
direction to permit calculation of individual load currents.

5.3.7 Unbalanced load

If the individual load impedances are not identical (that is, if the
load is unbalanced) then in general neither the line currents nor the line
voltages at the load will have equal magnitudes. Moreover, the phase
sequence will affect both the magnitudes and phase angles of currents and
voltages in the circuit.

The worked example that follows outlines a procedure for analyzing an
unbalanced Y-connected load. A similar procedure may be used for a A-
connected load if the load is first converted to a Y-configuration by means
of the Y-A transformation.

5.3.8 Worked example

Fig. 5.11 shows a Y-connected source, supplying a Y-connected
unbalanced load. The source has a phase voltage of 240 V, and the load and
line impedances have the following values:

Fig. 5.11. An unbalanced wye-connected load (worked example,
section 5.3.8).

Source Load
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Za = 20 +j 10 = 22.4^26,5 Z,

Zy = 15 - j 5 = 15.8^.18,5

Calculate the line currents (a) if the source has phase sequence abc; (b) if
the source has phase sequence acb.
Solution. Since the load is unbalanced there will be a current in the neutral
line and, consequently, the impedance Zn now appears in the calculations.
We may find the line currents directly using the method of mesh analysis,
but this involves the solution of three simultaneous equations with complex
coefficients. The use of nodal analysis to find the voltage at the node n'
provides a somewhat easier approach.

Let Vn> be the voltage of node n' with respect to the neutral point n, then
the nodal equation at n' is

V'-V Vn'-Vb ^ - K Vn.
Z + Z Z + Z Zn

or

" 1 1 1
Zx + Z, Zfi + Zt Zy + Zl

V. Vh Vr

Zy + Z,

Inserting numerical values for the impedances:

1 1 1

- + :

10+J6 17—jl 0+ j l

^ + ^22+J14 10+J6 17—jl

(a) With phase sequence abc* the source phase voltages are

Va = 240Z0 = 240 4-jO (reference)
-120= - 120-J208

Fc = 240/_12Q= - 120+J208

Note that the phase sequence specified refers to the cyclic order in which the
voltage phasors must appear in the stationary phasor diagram when moving
round the diagram in a clockwise direction. The rotating phasor diagram (see
section 3.5) will then cause phasors to sweep past a given reference direction in
the correct order.
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Inserting these values in (5.8) gives

The line currents are then given by

Zx+Z, 22+J14

The current in the neutral wire is simply

(b) With phase sequence acb the source phase voltages are

^ = 240ZQ=240+j0 (reference)
Vb = 240/JL2Q= - 1 2 0 + J208

/_=I2Q= - 120-J208

Inserting these values in (5.8) gives

Vn, = 3.29Zi4O6 = - 2.54 + J2.09

The line currents and the neutral current are found as in part (a):

We note that the different phase sequences produce different magnitudes
and phase angles for the line currents. Phasor diagrams for the two phase
sequences are shown in fig. 5.12. Fig. 5.12(6) and (d) demonstrate that in
each case the sum of the line currents is equal to the current in the neutral
wire. Such diagrams provide an approximate graphical check on the
calculations.

It may be remarked, finally, that calculations for three-phase circuits,
whether balanced or unbalanced, are considerably simplified if line
impedances, or the impedance in the neutral wire, can be assumed to be
zero. For instance, in the above example involving an unbalanced load, if
Zn in fig. 5.11 is zero, then the source phase voltages appear directly across
the series combinations of line and load impedances and expressions for the
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line currents can be written down directly, without recourse to nodal
analysis (see problem 5.2).

Similarly, in fig. 5.9, if the line impedances Z, are zero, then the source
line voltages are applied directly to the loads and, again, expressions for the
load currents can be written down directly without recourse to mesh
analysis. In this case, since the load is balanced, only one current need be
evaluated; all other currents can be deduced from the known relationships
between line and phase currents (see problem 5.1).

5.4 Power, reactive power and apparent power in
balanced loads
It has been shown in section 5.3 that for a balancedY-connected

load the voltage across one phase is equal to VJy/3, where Vt is the line
voltage. The apparent power in one phase is therefore (Vl/y/3)Ih where It is
the line current (equal to the phase current in a Y connection). If <j> is the
phase angle between the phase voltage and current, the average power in
one phase will be (Vl/j3)Ilcos<j)9 and the reactive power will be
(Vl/yj3)Ilsin(l). Multiplying by a factor of 3 gives totals for all three phases,
hence using the notation of section (4.3) we may write:

(5.9)
Power P =

Reactive power Q =
Apparent power S = y/3 VlIl

Fig. 5.12. Phasor diagrams for the circuit of fig. 5.11.

14
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These expressions apply also to a balanced A-connected load. In this case
the full line voltage is applied to one phase of the load, but the phase current
is Ii/y/3 consequently the product of voltage and current in one phase is the
same as for the Y-conneeted load.

It will be observed that the expressions (5.9) are, except for the factor of
yj3, the same as the expressions (4.3), (4.4) and (4.5) appertaining to the
single-phase case. The power diagram of fig. 4.4 is equally applicable to
balanced 3-phase systems provided the factor of ^/3 is taken into account.
Problems involving power factor correction may be solved using the
expressions (5.9) together with the power diagram.

5.5 Worked example: power factor correction
An industrial plant draws a balanced electrical load of 9.8 MW at a

lagging power factor of 0.8. The plant is supplied over a 3-phase, 50 Hz line
having a maximum rating (load carrying capacity) of 660 A at 11 kV (line
voltage).
(a) Calculate the apparent power and reactive power drawn by the load.
(b) Additional equipment drawing a load of 1.5 MW and 0.7MVAr
lagging is to be installed in the plant. Find the minimum rating in MVAr of
the power-factor correction capacitor that must be installed if the rating of
the line is not to be exceeded. What then is the system power factor?
(c) If the capacitor is to consist of three sections connected in delta across
the line, calculate the capacitance required in each section.

Solution
(a) The power diagram for the original load condition is shown in Fig.
5.13(a). The phase angle fa is cos"1 0.8 = 36.87°, therefore from (5.9)

Fig. 5.13. Power diagrams for worked example (section 5.5).

power factor = cos <j> = 0.8 r

(a) Original load conditions (b) Load including additional equipment
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Apparent power= — = -^-= 12.25 MVA
^ F cos0 0.8

Reactive power = (power) x (tan</>!) = 9.8 x 0.75 = 7.35 MVAr

(b) With the additional load installed

Total power = 9.8+ 1.5 = 11.3 MW
Total reactive power = 7.35 + 0.7 = 8.05 MVAr

Total apparent power = 7(11.32 + 8.052) = 13.874MVA

The maximum load that the line can carry is

^ = 73xllxl03x660=12.575MVA

The power diagram for the plant plus additional load is shown in Fig.
5.13(5). To bring the total apparent power within the load carrying capacity
of the line a capacitor must be installed drawing leading vars equivalent to
length BC on the diagram.

Now

hence, rating of capacitor = 2.53 MVAr.

System power factor = cos02=:pr-^rr=0.9.

(c) Since the capacitor is in three sections, each section will account for
2.53/3 =0.843 MVAr. The capacitor sections are connected in delta and so
will carry the full line voltage of 11 kV. If Xc is the reactance of each section,
then we have, using (4.7),

which gives Xc = 143.5 Q
The capacitance C is given by

whence
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5.6 Three-phase power measurement

5.6.1 Alternating current meters
A moving-coil instrument that is used frequently at standard

power frequencies (50-60 hertz) is the electrodynamometer. In this
instrument the magnetic field is supplied by the current that flows in a fixed
coil of a few turns of wire of large cross-sectional area. There is no magnetic
material. The moving coil, which carries a pointer and is held in the zero
position by a spring, is supported in the field of the fixed coil by jewelled
bearings so that it is free to rotate in response to any torque that it
experiences. Fig. 5.14 is a schematic representation of an electrodynamo-
meter type movement.

A meter movement of this type may be used as a voltmeter. The two coils
are connected in series and an external resistor is provided to limit the
current. Since the same current is in both coils the instantaneous torque will
be proportional to the square of the applied voltage. The mechanical
constants of the moving coil are such that it cannot follow variations of
torque for power frequencies. Instead, the coil assumes a deflection
proportional to the average torque and thus proportional to the average of
the square of the voltage. If therefore a square root scale is used, the pointer
will read effective voltage.

The electrodynamometer cannot be used directly as a high current
ammeter because the moving coil can carry only a small current. It is
possible by using shunts to accommodate large currents. Care must be
exercised to make sure that no phase shift is introduced by the use of shunts.

Fig. 5.14. Schematic diagram of electrodynamometer meter movement.
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When the electrodynamometer movement is adapted to power measure-
ment, the resulting instrument is called a wattmeter. The wattmeter has two
pairs of terminals, one for each coil. Fig. 5.15 shows the wattmeter
connected to measure power supplied to a single-phase load, ZL. The fixed
(current) coil (terminals labelled /, /') carries the load current, i, while the
moving (potential) coil (terminals V, V) carries a current proportional to
the potential difference, v, across the load. Thus the torque on the moving
coil is proportional at any instant to the product vi, which is equal to the
instantaneous power.

If v and i are exactly in phase, the torque is never negative. If there is a
phase difference between v and i, the torque will be negative for part of each
cycle. Because the coil cannot follow variations of torque at power
frequencies, the coil assumes a deflection proportional to the average
torque and so proportional to the average power in the load. It is possible,
therefore, to calibrate the meter directly in watts.

One terminal of each terminal pair is marked with the symbol ± . These
two terminals must be connected to the same side of the power line as
shown in fig. 5.15 so that the two coils will be at essentially the same
potential. If, in fig. 5.15, the connection of the potential coil is reversed then
the full line potential difference exists between the coils. Electrostatic forces
may then introduce errors in the meter reading. In addition, the high
potential difference may damage the coil insulation.

Ideally, the current coil has zero resistance and the potential coil has
infinite resistance. Then it makes no difference whether the voltage coil is
connected to the line or the load side of the current coil. In practice the
voltage coil is usually connected to the load side as shown in fig. 5.15. Then,
even with no load, the meter will indicate the power drawn by the potential
coil. This power is small and can usually be neglected. For the highest

Fig. 5.15. Wattmeter connected to single-phase load.

Potential coik
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accuracy it is possible to obtain a compensated meter so constructed that its
reading is corrected for meter loss.

5.6.2 Methods of power measurement
In a three-phase system where the load is Y-connected and there is

a neutral wire, three wattmeters are required to measure the load power. In
the special case of a balanced load the three load currents deliver identical
amounts of power and so it is necessary to measure power in only one phase
and multiply by 3 to get the total power delivered.

In the case of a three-phase system with no neutral, only two wattmeters
are required to measure the load power, regardless of whether or not the
load is balanced. We now justify this statement.

Wye-connected load
Fig. 5.16 shows a wye-connected three-phase load. Two wattmeters are
shown: wattmeter 1 carries line current ic in its current coil and has voltage
vC'a' across its potential terminals; wattmeter 2 has line current ib in its
current coil and has potential difference vb>a> across its potential terminals.
The total instantaneous power to the load is

At node n\ by Kirchhoff's current law,

Fig. 5.16. Two-wattmeter method for measurement of power in a wye-
connected load.
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P=-v a.Jh-va.n.ic + vh.n.ib+vc.n.ic

' ~ Va>n>)

so

then

Now,

and

therefore

But wattmeter 1 responds to vc>adc and wattmeter 2 responds to vb'aib, hence
the sum of the responses is equal to the instantaneous power.

If voltages and currents are sinusoidal then, by (4.3), the average power
measured by each wattmeter will be:

(5.10)

where 9i and 62 are the phase angles between voltages and currents. The
average power supplied to the load (balanced or unbalanced) is

P=Wl±W2

We now explain the reason for the + sign in the above equation.
In our study of the Y-connected source (section 5.3.1, figs. 5.4 and 5.5) it

was found that line and phase voltages differ in phase by 30°. It follows from
this that if the load is purely resistive, line currents will be out of phase with
line voltages at the load by 30°. This is shown in the phasor diagram of fig.
5.17. It is seen that current Ic lags Vc>a> by 30° and current Ib leads Vb>a> by
30°. Equations (5.10) are then

Suppose now that the loads are complex and balanced. Then equations
(5.10) become
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where 6 is the angle of the load impedance. No matter whether the load is
capacitive or inductive, if the magnitude of 6 exceeds 60° (corresponding to
a power factor of 0.5) one wattmeter will read negative. Then, if both
wattmeters are connected to read up-scale, the net power to the load will be
the arithmetic difference of the two wattmeter readings.

Delta-connected load
Fig. 5.18 shows a delta-connected load with two wattmeters connected in a
similar fashion to those shown in fig. 5.16. The total instantaneous power in
the load is

By Kirchhoffs voltage law

or

Fig. 5.17. Phasor diagram for a balanced wye-connected resistive load.
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Then

But

iy — ip = ic and ip — ^a==^b

so

The average power supplied to the load is, therefore

The choice of sign is made just as in the case of the Y-connected load.
The construction of a wattmeter is such that it deflects up-scale or down-

scale depending upon the direction of power flow. Since the meter reads in
only one direction, it is necessary to determine which direction of power
flow causes up-scale deflection. Such a determination may be made by
connecting the meter to a resistive load and recording the connections that
give an up-scale deflection. Now, if the two wattmeters are connected so
that they indicate, by up-scale deflections, power flow to the load and if
either the current connection or the voltage connection must be reversed for
one of them in order to get an up-scale reading, the wattmeter readings have
opposite signs.

Fig. 5.18. Two-wattmeter method for measurement of power in a
delta-connected load.

W2
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With regard to power measurement, two points should be emphasized.
First, in a three-phase, three-wire system two wattmeters will measure the
power to the load whether or not the load is balanced; however, as has
already been stated, care must be exercised to determine whether the
individual meter readings indicate power supplied to or drawn from the
load. The second significant fact is that in any polyphase system using n
conductors, the load power may be measured by the use of (n — 1)
wattmeters so arranged that all the potential coils are connected together to
the one conductor into which no wattmeter coil is introduced.

5.6.3 Worked example
In the circuit of fig. 5.9 two wattmeters are used to measure the

power delivered to the load. The wattmeter current coils are arranged to
carry the currents Ib and Ic while the potential coils share a common
connection at the node a'. Determine the readings of the two wattmeters,
and verify that the sum of these readings equals the total power in the load.
The voltages of the source and the load impedances are as given in the
worked example of section 5.3.5.

Solution
From (5.10) the wattmeters will read
in phase b

and in phase c

W2 = Vc,alccos62

where 6X and 62 are in each case the phase angles between voltage and
current.

From the results of the previous worked example we have

lh = 7\ 1/-160.3 and / =71 1/79.7

and for the line voltages at the load

Va.v = 273/162 and FcV = 273 /136.2 and

therefore

Vb,a,= - Va.h.= -2131162 = 213/ - 163 .8

and the angles 6X between Vh.a. and Ib is (163.8 -160.3) = 3.5°. The angle 62

between Vc>a. and Ic is (136.2-79.7) = 56.5°. (Note that it is the absolute

https://doi.org/10.1017/CBO9781139170093.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.007


258 Three-phase alternating current circuits

difference between phase angles that is required for evaluation of the power
factor in (5.10).)

The readings of the wattmeters are then

W, = 273 x 21.1 x cos3.5 = 5750;
W2 = 273 x 21.1 x cos56.5 = 3179

and

The current in each load is, from previous results, 12.2 A and the resistive
component of each load impedance is 20 Q. The total power in all three
phases of the load is, therefore (3 x 12.22 x 20) = 8930 W, which agrees with
the power measured by the two wattmeters.

5.7 Transformers for three-phase systems

5.7.1 Applications
Transformers are important components of all electric power

distribution systems. They make it possible to raise or lower the voltages at
various points in a system efficiently, thereby permitting economical
transmission over long distances and safe distribution to industrial and
residential users. The fact that transformers allow such control of
transmission and distribution voltages was responsible for the decision,
near the turn of the century, to use alternating rather than direct voltage for
power systems.

When electric power is to be transmitted over great distances it is
advantageous to use high voltage and low current. Heating loss in the line is
proportional to the square of the current. Thus, the conductor size that is
required to keep this loss to a desired fraction of total power transmitted
decreases with the square of the current. Small conductors require less
material. In addition, because they are lighter in weight, the cost of the
supporting structures for overhead lines is correspondingly reduced.

The output voltage of a generator in a large power system is typically
22 kV; transformers then raise this voltage to several hundreds of kilovolts
(fig. 5.19). In the U.K., power is transmitted over long distances using
overhead lines operating at 400kV; in North America, where greater
transmission distances are encountered, overhead lines operate at up to
735 kV. Such high voltages are not practicable for the distribution of power
in an urban area. Transformers are, therefore, again used to reduce the
voltage to values suitable for power distribution to various categories of
consumer. The voltage reduction is accomplished in several stages. Feeder
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circuits operate at tens of kilovolts, the final step being a reduction, in the
U.K., to 415/240 V. In most parts of North America the final distribution
voltage is 208/120 V. Industrial consumers are usually supplied at 33 or
22 kV, further stages of reduction being accomplished by transformers
situated within the industrial complex itself.

In a three-phase system one may use either three single-phase power
transformers (as described in chapter 4) or a single transformer having three
separate sets of primary and secondary windings. A single three-phase unit
has some advantages in size and initial cost. In addition, the windings of the
three phases may be connected internally, thus reducing the number of high
voltage leads that must be brought out. A disadvantage of the single unit is
that if one phase fails (and this is the way in which three-phase transformers
often do fail) then service is interrupted while the whole unit is replaced. If
single-phase units are used, then failure of one unit does not necessarily shut
down the service completely. Replacement of one single-phase transformer
is cheaper than replacement of a three-phase unit. Also, especially in small
systems, less capital is invested in the inventory of spares if single-phase
transformers are employed. The three single-phase units should be
identical, otherwise, the transformers may introduce unbalance even in a
system with balanced loads.

Regardless of the choice of transformers, there are four possible
interconnections of the three pairs of phase windings leading to various
combinations of primary and secondary voltages as shown in table 5.1.

Fig. 5.19. Schematic showing arrangement of transformers in a power
supply system.

Transmission line Sub-transmission lines
(long distance)

Generating
station

22:400kV 400:132kV

A-Y Y-A

132: 33-22 kV

A-Y

1 3 2 : l l k V

A-Y

Consumers

Large industrial

Small industrial

Commercial and
domestic

1 l k V : 415/240 V

A-Y
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Table 5.1

Connection Primary voltage Secondary voltage
Primary Secondary Line Phase Line Phase

N2/N1
v/3 N2/Nl

A
A
Y
Y

A 1
Y 1
Y 1
A 1

1A/3
Vx/3

(N2/Nl) = secondary/primary turns ratio.

Three phase transformers may be of the shell type, with the windings
surrounded by the iron, or of the core type, where the windings surround
the magnetic material. These two designs correspond to the two single-
phase designs illustrated in fig. 4.11. The shell design has the slight
advantage of providing more nearly identical flux paths for the three
phases. Furthermore, in the shell configuration the magnetic paths of the
three phases are more nearly independent than is the case with the core
design.

On occasion, one phase of a three-phase transformer connection may
develop a short circuit or an open circuit. If the connection consists of three
separate units, or if it is a single unit of the shell type, it is possible to operate
with only two phases and still supply 58% of the rated load. This
arrangement is called an open-delta or V-connection. (A core-type three-
phase unit may operate in open-delta if the fault is an open circuit.
However, if the fault is a short circuit the other two phases cannot operate
because the return paths for their fluxes are through the core of the
damaged winding. The short-circuit currents in the damaged winding
effectively block the fluxes of the other two phases.) Occasionally in the
United States when the initial demand for power from a new installation is
small, service will be provided by use of only two single-phase transformers
connected in open-delta. When demand increases, a third transformer is
installed.

When a Y-Y connection is used, certain constraints exist that do not
arise in single-phase operation. One constraint is that with the Y-Y
connection it is not possible, unless the primary neutral is connected to the
system ground, to obtain any significant amount of power if only one phase
of the secondary is loaded. With the Y-Y connection current for one phase
of the secondary is supplied by currents in all three phases of the primary. A
load on only one secondary phase leaves the other two phases with open
secondaries and therefore with high primary impedances. Since only the
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magnetizing current flows in the primary of these phases, no appreciable
primary current is available for the single phase from which it is desired to
draw power.

A second constraint upon operation with the Y-Y connection is related
to the requirement for third harmonic current to maintain a sinusoidal flux
in the core; this is discussed later in section 5.7.4.

5.7.2 Equivalent circuit parameters
Calculations on three-phase transformers are usually concerned

with balanced loads, and circuits are analyzed on a per-phase basis using a
transformer equivalent circuit essentially the same as that derived for the
single-phase case in section 4.9. The parameters of this equivalent circuit are
found similarly by open- and short-circuit tests. Values of series resistance
and leakage reactance per phase are derived from the short-circuit test, and
values of shunt resistance (or conductance) and reactance (or susceptance)
per phase, accounting for core losses and magnetizing current, are derived
from the open-circuit test. For the short-circuit test it is usual to short
circuit the low-voltage heavy-current windings of the transformer, measur-
ements being made on the high-voltage side of the transformer. Conversely,
for the open-circuit test it is usual to open circuit the high-voltage windings
and make measurements on the low-voltage side. These procedures
minimize the required current and voltage ratings of the test supplies and
measuring instruments used.

Parameters derived from these tests are referred to either side of the
transformer, as convenient, by multiplying by the square of the turns ratio.
Care must be exercised, however, when interpreting test data, particularly
where phases are connected differently on the two sides of the transformer
(for example A-Y) and where the open- and short-circuit tests are
performed on different sides. In such cases the ^/3 conversion factor
between line and phase values operates differently on the two sides of the
transformer.

5.7.3 Worked example
A 6600/22 000 V,* three-phase transformer, rated at 2500 kVA, has

its low-voltage windings connected in delta and its high-voltage windings
connected in wye. Open- and short-circuited tests conducted on the
transformer produced the following data.

Unless stated otherwise, voltages specified for three-phase systems are always
line voltages.
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Short-circuit test Open-circuit test
(LV side short circuit) (HV side open circuit)
Line voltage = 712 V Line voltage = 6600 V
Line current = 64 A Line current = 6.52 A
Total power = 38.34 kW Total power = 35.1 kW

(a) Deduce the per-phase values of equivalent series resistance and
reactance referred to the HV and LV sides.

(b) Deduce the per-phase values of the equivalent shunt conductance
and susceptance referred to the LV and HV sides.

(c) If the transformer supplies a load of 1500kW at 22000 V and
0.8 p.f. lagging, calculate the line voltage and line current on the LV
side.

(d) Calculate the efficiency and regulation at the above load.
(e) Estimate the unity power factor load for which the transformer

efficiency will be a maximum; compare the efficiency at this load
with the efficiency at full rated output.

Solution
(a) In the short-circuit test, the LV side is short circuited and measure-
ments are made on the HV side. Let subscripts 1 and 2 denote the LV side
and HV sides respectively. Since the HV side is connected in wye the phase
current Ip2 and line current Il2 are the same, but the phase voltage Vp2 will
be Vl2lyj2>. Therefore, from the short-circuit test data, we have

p 2 s - 12,- , P2s-^--^3-

Power per phase Pp2s =—^—=12.78 kW.

Using (4.23), with appropriate subscripts, the equivalent series resistance
and reactance referred to the HV side are given by

(Jp2s)2 6 4

and

whence
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Values of resistance and reactance referred to the LV side are found by
multiplying the above values by the square of the phase-to-phase (LV/HV)
turns ratio which is given by

_
Np2 Vp2 (22xlO3)/V3

Therefore R(LV) = 3.12 x0.51962 = 0.84Q; X(LV) = 5.61 xO.51962 = 1.51Q.
(b) Values for the equivalent conductance and susceptance are found from
the open circuit test. In this test the HV side is open circuit and
measurements are made on the A-connected LV side, for which the phase
and line voltages are the same but phase and line currents differ by a factor
of y/3. The test data give

Vplo=Vno = 6600 V; / p l o = ^ = ^ = 3.764A

Power per phase Pp l o=—-^=11.7kW.

Using (4.22), with the appropriate subscripts, the equivalent conductance
and susceptance referred to the LV side are given by

and

whence

b(LV) = 0.503 mS

Values of conductance and susceptance referred to the HV side are found by
dividing by the square of the (HV/LV) phase-to-phase turns ratio, which is
the same as multiplying by the square of the ratio {Npl/Np2) found above
(see section 4.9, fig. 4.17). Performing this operation gives

0(HV) = 0.0726 mS and 6(HV) = 0.136 mS

(c) The equivalent circuit for one phase of the system is shown in fig. 5.20(a)
(subscripts referring to phase values, and HV and LV sides are unnecessary
here and have been omitted for simplicity). The load is supplied at a line
voltage of 22 kV, hence, F2 = (22 x 103)/V3 = 12.7kV. For one phase the
load power is 1500/3 = 500 kW at 0.8 p.f. lagging, therefore,
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V2I2cos(j) = 12.7 x 103 x 12 x 0.8 = 500 kW

from which

/2=49.2A

The phasor diagram appropriate to the HV side is shown in fig. 5.20(b). It
is convenient in this type of problem to select I2 as the reference phasor.
Then the voltage E2 is given by

E2 = K2cos(/> +j F2sinc/> + RI2 +)XI2

where (/> is the angle between V2 and l2.

Fig. 5.20. Diagrams for worked example (section 5.7.3).

R X
3.1212 5.61X2

Load
(500kW at
0.8 p.f.
lagging)

LV HV

(a) Equivalent circuit for one phase; series
resistance and reactance referred to the HV side.

A

(b) HV side (c) LV side
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Inserting numerical values obtained from part (a) for the equivalent
resistance and reactance referred to the HV side, the above expression
becomes

£2 = (12.7xl03x0.8)+j(12.7xl03x0.6) + 49.2(3.12+j5.61)
= (10.16xl03)+j(7.62xl03)+153.5+j276

E2 = (10.313 +J7.896) x 103 = 12.99/ 37.44 kV

Now, the calculated LV/HV turns ratio is 0.5196, therefore, the line voltage
on the LV side is

V, = Ex = 12.99 x 0 SiQfi/37.44 = fi.7S/37.44kV

The magnitude of the line voltage is therefore 6.75 kV since the LV side is A-
connected and line and phase voltages are identical.

The phasor diagram for the LV side is shown in fig. 5.20(c). The current
11 is simply l2 divided by the (LV/HV) turns ratio: (see section 4.7 for
properties of the ideal transformer)

and the main phase current is

Inserting numerical values for conductance and susceptance referred to the
LV side, obtained from part (b), this expression becomes

h =94.69 + (6.75 x 103/Jl44)(0.269-j0.503)x 10"3

whence

/1 = 98.2-jl.59 = 98.2/-0.9

The magnitude of the line current is 98.2^/3 = 170 A.
In the above calculation we have used values of g and b derived in an

earlier part of the problem, however, it is possible to obtain the current /0,
and consequently Iu directly from the test data without finding g and b
specifically.

From the test data we have:

Magnitude of line (phase) voltage = 6600 V
f\ S9

Magnitude of phase current = -^j— = 3.764 A

Power per phase = —— =11.7 kW
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If 9 is the angle between line voltage and phase current, then

6.6 x 103 x 3.764 x cos0 = 11.7 x 103

and

0 = 61.9°

The current will lag the voltage by 61.9° since the system is inductive.
Now, the open-circuit test was carried out at an applied voltage of 6600 V

whereas our calculations have shown that, under the given load conditions,
the actual voltage on the LV side is 6750 V. The magnitude of the current /0

will, therefore, be 3.764 x (6750/6600) = 3.849 A. Its angle with respect to
the line voltage (i.e. with respect to Ex) is — 61.9° so, with Ex as the reference
phasor, we may write / 0 = 3.849/-61.9. Also the current / / , which lags E1

by angle 37.44°, may be expressed as / / = 94.69/-37.44. Hence,

Ix = I, + /0 = 94.69/-37.44 +1849/ -61 .9

or

/1=QR9/-38.3

which agrees with our previous calculation.
(Note that the phase angle of the current given here is with respect to Ex not
/x as before.)
(d) From the open-circuit test data the core loss is 35.1 kW at an applied
line voltage of 6600 V. The actual line voltage at the given load condition is,
from section (c), 6750 V. Since the power is proportional to the square of the
applied voltage we have

Total core loss = 35.1 x ( ^ ) = 36.7 kW
\6600/

Likewise, the copper loss, which is proportional to the square of the load
current, is

/49 2 \ 2

Total copper loss = 38.34x (——)-= 22.66kW

Therefore,

output 1500
== 962%Efficiency=

output + losses 1500 + 36.7 + 22.66

Note that the small change in the core loss between the no-load (test)
condition and the loaded condition has an insignificant effect on the
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calculation of efficiency; for most practical calculations the core loss can be
assumed constant.

From (4.25) the regulation is expressed by

Regulation = 12

where (in this problem) R and X are the per-phase values of the equivalent
series resistance and reactance of the transformer referred to the HV side. At
the specified load condition, I2 =49.2 A and, (with 6.75 kV on the LV side)
V2o = 12.99 kV. The values of R and X have been calculated in part (a)
above. Hence,

, . 49.2(3.12x0.8 + 5.61x0.
Regulation = —

12.99 x 103

(e) The transformer efficiency will be a maximum (according to (4.29)) when
the core losses and copper losses are equal. Assuming that the core losses
are constant at the value given by the open circuit test, namely, 35.1 kW, the
load current I2 for which the efficiency will be maximum is given by

3/2
2K = 3/2

2 x 3.12 = 35.1 x 103

whence,

/ 2 = 61.24 A.

If the load voltage is 22 kV, then the power delivered is

7 3 x 22 x l 0 3 x 61.24 = 2333 kW

At the full rated output of 2500 kVA at unity power factor, the load current
is given by

V 3 x 2 2 x l 0 3 x / 2 = 2 5 0 0 x l 0 3

whence

/2=65.6A

The total copper loss is then 3 x 65.62 x 3.12=40.29 kW and
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It is evident from these results that although the maximum efficiency occurs
at a load rather less than full rated load, the difference in efficiency is
insignificant. The efficiency of a transformer remains very nearly constant
over a wide range of load conditions.

The principle of conservation of watts and vars (see section 4.3) may be
used with advantage in this type of calculation. The method is particularly
rapid if it can be assumed that the core loss current and magnetizing
currents are constant under change of load conditions. In the following
calculations this assumption introduces a negligible error in the value for
the line current at the input terminals of the transformer.

The real power in the load is 1500kW at 0.8 p.f. lagging, from which it
may be deduced that the reactive power is 1125 kVAr. The load is supplied
at 22 kV, therefore the line current Il2 is, by (5.9)

V3 x 22 x 103 x Il2 x 0.8 = 1500 x 103

whence

Il2 = 49.2 A

The real and reactive powers in the referred series resistance and reactance
per phase are Ii2

2R and 112
2X respectively. The total real power Pt and the

total reactive power Qt are, therefore,

Pt = 1500 + 3(49.2* x3.12)/103 = 1523 kW

and

Qt=1125 + 3(49.22x5.61)/103 =

By (4.6), the apparent power is ^(^t 2 + Qt2) + 1918 kVA and since there is
no loss in the ideal transformer, this must be the apparent power on the LV
side of the transformer. But the line current on the LV side is
49.2 x (22/6.6) = 164 A, therefore the line voltage on the LV side is given (by
(5.9)) as

7 3 x F a x 164= 1918 +103

whence

F n =6.75kV

Also, from the open-circuit test data, the real and reactive powers
associated with the transformer core are 35.1 kW and 65.75 kVAr respect-
ively; adding these components to the values of Pt and Qt obtained above
we obtain
Total apparent power = V[(1523 + 35.1)2 + (1166 + 65.75)2] = 1986kVA.
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Therefore, ^ 3 x 6.75 x 103 x In = 1986 x 103 from which In = 170 A. It will
be noted that this method avoids the necessity of converting between line
and phase valves during the calculations.

f5.7.4 Harmonic currents
We recall from section 4.9, that when a sinusoidal voltage is

applied to an iron-cored transformer the resulting magnetic flux will be
sinusoidal, but, because of the non-linear character of the magnetic core
material, the magnetizing current is non-sinusoidal. It includes odd
harmonics of which the third has much the greatest amplitude (see fig.

Now consider the separate phase voltages of a three-phase generator. It is
quite likely that these output voltages will contain odd harmonics of the
fundamental frequency, but because of the symmetrical construction of the
alternator, even harmonics are not likely to appear. The three voltages of
fundamental frequency are mutually 120° apart in phase, as explained in
section 5.1. Except for the third harmonic and multiples thereof, all the odd
harmonics will likewise be 120° out of phase with one another, although the
phase sequence of some will be opposite to that of the fundamentals. It will
be readily appreciated that, because of the 120° phase differences among the
fundamentals, the third harmonic voltages (and the 9th, 15th and so on) will
be in phase.

Let the three lines from the generator be joined to Y-connected
transformer windings with no neutral connection, as shown in fig. 5.21.
Now suppose third harmonic currents exist in the three lines as shown in
the figure. These currents must add to zero at point JV. This, however, is
impossible for three currents that are in phase. It follows, therefore, that
third harmonic currents cannot exist in the transformer windings.

Fig. 5.21. Third harmonic currents.
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270 Three-phase alternating current circuits

Because no third harmonic current can exist in the connection of fig. 5.21,
the magnetizing currents in the three windings will be sinusoidal (if we
ignore the higher harmonics that are of very small amplitude). Then
because of non-linearity in the iron core, the flux will contain appreciable
third harmonic. This non-sinusoidal flux induces third harmonic voltages
in the transformer windings that are significantly greater in magnitude than
the fundamental voltages and these may damage the transformer
insulation.

It can be shown that if the transformer is a three-phase core-type then the
flux will be essentially sinusoidal even in the absence of third harmonic
currents. For other transformer configurations there are several ways to
provide the required third harmonic currents. One way is to supply the Y-
connected primary with a connection to the system neutral. Then there will
be return paths for the third harmonic currents in fig. 5.21. However, even if
the system neutral were available at the transformer, the third harmonic
currents that result from a neutral connection could be great enough to
interfere with nearby telephone circuits.

A second possibility is to connect the three secondary windings in delta,
thus providing a closed path for circulation of the third harmonic current.
As far as the iron is concerned, it is immaterial what path the third harmonic
current takes; it simply is necessary that a path for it exist. Of course, this
solution to the problem is not available if the transformer is arranged in a
Y-Y connection.

A common method of supplying a path for the third harmonic current is
that of including a third, delta-connected set of transformer windings. The
third harmonic currents induced in these windings will be in phase, and
there will be a short-circuit path for them in the delta connection. If each
component of the 'tertiary' winding has a number of turns equal to that of
its primary then the third harmonic currents in these windings will be just
equal to the current that would exist in the primary were it not suppressed
by the Y connection of the primary winding.

f5.8 Phase transformation
Transformers may be used to convert a set of polyphase voltages to

another set with a different number of phases. A practical application of this
property of transformers is in producing six-phase voltages for large
mercury or semiconductor rectifiers. Successive voltages of the six-phase set
differ in phase by 60°. Rectifiers supplied from such voltages show
significantly less ripple than exists when three-phase power is used. The
required connection is shown in fig. 5.22(a). The primaries of the three
transformers are connected in delta. Each secondary winding is centre
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tapped to provide a common node as shown. The output voltage phasors
are shown in fig. 522{b). By using transformers with more windings one
may get 12 output voltages equal in magnitude and having 30° phase
difference between successive voltages.

A second example of phase conversion is the Scott connection between
three-phase and two-phase systems. (Two-phase voltages are equal in
magnitude and differ in phase by 90°. Unlike other polyphase voltages, they
do not form a symmetrical pattern when represented as phasors. Sometimes
the designation 'quarter phase' is used for these voltages.) Two trans-
formers are required for the Scott connection, as shown in fig. 5.23.
Transformer A has primary and secondary windings A A' and aa'

Fig. 5.22. Transformer connection for three-phase to six-phase
conversion.

3-phase
input

6-phase supply to rectifiers
(a) Transformer connection

a •-«-

c -̂...
(b) Phasor diagram
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272 Three-phase alternating current circuits

respectively. Transformer B has primary winding BB\ which is centre
tapped at C, and secondary winding bb'. The tap C is connected to A\ and
the ends of the two secondary windings a' and b are also connected
together. The turns ratios of the two transformers are different and
provided these are correctly arranged a balanced three-phase set of voltages
applied to AB'B will result in a balanced two-phase voltage set at abb' or
vice versa. We now determine the two transformer ratios required. For the
purposes of the following argument it will be convenient to consider the
secondary side energized with balanced two-phase voltages, the phasor
diagram for which is shown in fig. 5.24(a). Phasors Vaa> and VhV have equal
magnitudes.

On the primary side the three voltages appearing at terminals AB'B are

(5.11)VBB=VBC+VCB=2VCB

These are shown in the phasor diagram of fig. 5.24(b); if they are to form a
balanced three-phase set, their magnitudes must be equal and angles </>
must be 30°. It follows that

AC AC (5.12)

We see from this expression that the voltages across the two primary
windings, VAC and VBB, must be in the ratio of ^/3/2=0.866. This implies
that if transformer B has a primary-to-secondary turns ratio of NXIN2,
transformer A must have a turns ratio of 0.866Ni/iV2 in order to produce

Fig. 5.23. Scott connection for three-phase to two-phase conversion.

A o a

Transformer A

Transformer B

Primary
3-phase

Secondary
2-phase
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balanced voltages on the three-phase side. It may be shown that for such an
arrangement, if the load is balanced on one side of the system, then it will be
balanced on the other.

A point properly chosen on the primary of transformer A provides a
neutral point JV for the three-phase side. To locate N we observe that the
magnitude of the voltage VAN must be equal to the phase voltage of the
three-phase balanced set, that is VAN=VAB>/yj3. Therefore, from (5.12),

So, the tap N must be located two-thirds of the way from A to A'.
The Scott connected transformer arrangement has found application in

the foundry industry where it is used in connection with certain types of
induction channel furnace.

t5.9 Instantaneous power to balanced load
In section 5.2 it was stated that an advantage of a three-phase

system is that power to a load is constant and therefore the torque produced
by, for example, a three-phase motor is uniform. It is for this reason, as well
as ones of efficiency, that almost all industrial machine tools are powered by
three-phase motors.

To show that the power in a balanced three-phase system is constant we

Fig. 5.24. Phasor diagrams relating to the Scott connection shown in
fig. 5.23.

V >v aa

90°

Vb'b

VB>B

(a) Secondary Phasors (b) Primary phasors
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274 Three-phase alternating current circuits

form the products of the instantaneous voltages and currents in the three
separate phases of the system.

Let the amplitudes of the phase voltages and currents be Vm and /m

respectively. Then the r.m.s. magnitudes will be Vp = Vm/j2 and
f P = ^m/\/2- Let the phase voltage in phase a be the phase reference. Then
the instantaneous power in phase a is given by:

Pa = ^mSincot x /msin(cof + </>)

where (j> is the phase angle.
Similarly in phases b and c

pb = Vmsin(a>t- 120) x Jmsin(cor + 0 -120)
pc = Vmsin(cot +120) x Imsin(o)t + 0 +120)

Now, using the identity sinAsinB = ̂ [cos(A — B) — cos(A + B)~]9 we may
obtain:

V I

= Fp/P[cos( - (j)) - cos(2cor + 0)]

Similarly,

Pb = *V P[cos( - (j>) - cos(2(Dt + 0 - 240)]
Pc= Fp/p[cos(-(/>)-cos(2cot + 0 + 240)]

Let 9 = (2cot + (/)) then, using the identity cos(A — B) = cosAcosB +
sin,4sin£, we have

cos(2cor + 0 - 2 4 0 ) = - | c o s 0 + ^ - s i

and

cos(2wt + 0 + 240) = - icos0 - — s i n 0

The total power pt may then be expressed as

Pt=Pa+Pb+Pc=VplA 3cos(-0)-cos0

Therefore, pt = 3Fp/pcos0 = constant (5.13)
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5.10 Summary
Three-phase systems possess important economic and technical

advantages over single-phase and other polyphase systems, and they are
employed universally for the generation, transmission and distribution of
electrical energy. The generators in a three-phase system produce a three-
component set of voltages, equal in magnitude and differing in phase by
120°. Two basic circuit configurations are encountered in three-phase
systems:
(a) the wye (or Y) connection in which generators (or loads) are connected
together at a common or neutral point;
(b) the delta (or A) connection in which generators (or loads) are
connected to form a closed path.

Generators, or transformer secondaries, connected in the wye configur-
ation provide a four-wire system (three lines plus neutral) which is widely
used for local power distribution because it offers the choice to consumers
of two voltages: line-to-line or line-to-neutral. These voltages differ by a
factor of yj3.

If the loads on the three phases of a system are equal, then the system is
said to be balanced. Under balanced conditions no current flows in the
neutral wire of a Y-connected system. Large-scale power distribution
systems are operated as closely as possible to balanced conditions, and
long-distance power transmission lines utilize only three-wires, a neutral
wire being unnecessary. The analysis of three-phase circuits is often
considerably simplified if loads are balanced since then it is necessary to
analyze only one phase of the complete circuit.

The power in a balanced three-phase system is governed by the relations:

Power P = ̂ /3 V^foscj) *\
Reactive power 6 = ^ 3 F^sin^ I (5.9)
Apparent power S = ^/3VlIl

where Vl and It are the magnitudes of the line voltages and line currents
respectively, and cos</> is the power factor. The relations (5.9) are
particularly useful for calculations concerning power factor correction.

The accurate measurement of power in a three-phase system is of
considerable importance. Wattmeters of the electrodynamometer type,
which read the time average of the product of the instantaneous voltage and
current applied to their terminals, are commonly employed for this
purpose. For a balanced Y-connected system a single wattmeter in one
phase of the system will suffice to measure total power, it being necessary
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only to multiply the wattmeter reading by a factor of 3. For an unbalanced
system with a neutral wire, three wattmeters, one in each phase, are
necessary to measure total power. In a system with no neutral, two
wattmeters only are required, regardless of whether the load is balanced or
unbalanced.

Transformers constitute essential elements in a three-phase power
system. A variety of technical and economic factors govern the choice of a
transformer for a given application in the system. An important consider-
ation concerns the requirement for a third-harmonic circulating current in
the windings of transformers used in the system. This is necessary in order
to maintain purity of the sinusoidal voltage waveforms throughout the
system.

Transformers are also employed in a variety of configurations to provide
three-phase to polyphase conversions, a technique used in power control
and in a.c.-to-d.c. converter systems.

5.11 Problems
1. In the circuit of fig. 5.9 the line impedance Zl is zero, and the

load impedance Z is (20+jl0)Q. The phase voltages are Va = 240lSl;
Vb = 7d0/ - 1 2 0 : Vc = 2401120.

Determine:
(a) the load currents /a, Ip and Iy;
(b) the line currents /a, Ib and /c;
(c) the load power factor;
(d) the power in the load;
(e) the impedance per phase of an equivalent Y-connected load that draws
the same power at the same power factor.
2. In the circuit of fig. 5.11 the impedance Zn is zero. Find the magnitude of
the current in the neutral wire. The phase voltage of the source is 240 V and
the phase sequence is abc. The line and load impedances are as given in the
example of section 5.3.8.
3. Three identical impedances form a Y-connected balanced load on a
415 V, 3-phase power line. By ammeter and wattmeter measurements it is
determined that the line current is 8 A and the total power taken by the load
is 3kW. Find the resistive and reactive components of the phase
impedances.
4. Three equal impedances, (2 — j 1) Q, are connected in delta across a 240 V,
3-phase circuit. At the same point, three other equal impedances,
(1.5+jl)Q, are connected in Y across the circuit.

Calculate:
(a) the line current;
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(b) the power factor of the two loads together;
(c) the total power supplied.
5. Three impedances are connected in delta to lines ABC of a 415 V, 3-
phase system. From A to B the impedance (ZAB) is 24 Q with p.f. 0.5 lagging;
from B to C the impedance (ZBc) is represented by (8N/3+j8)Q; and
between C and A there is a capacitor of 24Q reactance {ZCA)> The phase
sequence is ABC. Wattmeters are connected with their current coils in lines
A and B, their potential coils being connected from A to C and from B to C
respectively. Find the readings of the wattmeters.
(Liverpool University)
6. In the system shown in fig. 5.25 the line voltage is 440 V at 50 Hz.
(a) Determine the line and phase currents.
(b) Sketch a complete phasor diagram of currents and voltages.
(c) Determine the voltage across the inductor and its phase relationship to
Vab.
7. A wattmeter measuring power into a load containing some reactance is
connected as shown in fig. 5.26. It indicates power equal to W. The meter is
a type that can be switched also to be an ammeter or a voltmeter to measure

Fig. 5.25. Circuit for problem 6.

250 //F

0.5H
20*2

\on

Fig. 5.26. Circuit for problem 7.

Load
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the current and voltage respectively as / and V. How can the true power
taken by the load be determined if the internal resistance and reactance of
the wattmeter between the voltage measuring terminals is known?
(Cambridge University)
8. A 3-phase transmission line has impedance (3 + j 12) Q. It supplies a load
of 80MVA at 0.8p.f. lagging at 132kV. Calculate:
(a) the power loss in the line;
(b) the power input;
(c) the voltage required at the sending end.
(Liverpool University: Second year)
9. (a) Show that the total power flow from 3 power lines to a 3-phase load
may always be measured by using only two wattmeters.
(b) Explain why low power factors are objectionable in the operation of
high power plants.

A factory is supplied with 3-phase 50 Hz power at 11 kV. The factory
loading can be represented by the following balanced loads:

(i) 3.0 MW at 0.9 lagging p.f.
(ii) 0.7 MW at unity p.f.

(iii) 4.0 MVA at 0.9 lagging p.f.
(iv) 1.0 MVA at 0.8 leading p.f.

A star-connected capacitor bank is required to correct the overall p.f. to
0.98 lagging at full load. Find the capacitance per phase of the bank.
(Cambridge University: Second year)
10. Explain, briefly, the nature of the losses in a power transformer and
describe the steps taken in the design of transformers to minimize these
losses.

A 2 MVA 3-phase transformer, ratio 33/6.6 kV, delta/star, has a primary
resistance of 8.3 Q per phase and a secondary resistance of 0.08 Q per phase.
The regulation at full-load current, unity power factor, is 1.2%. If the
primary is supplied at 33 kV, estimate the secondary voltage at full-load
current, 0.75 power factor lagging. If the iron losses at rated voltage amount
to 18 kW, estimate the efficiency at full load, 0.75 power factor lagging.
(Cambridge University: Second year)
11. A transformer supplies a variable current to a load at constant voltage
and power factor. If the iron losses in the transformer remain substantially
constant show that the transformer is most efficient when the copper loss is
equal to the iron losses.

A 3-phase, 11000/415 V, 50 Hz, star/delta connected transformer gave
the following results for tests carried out on the high voltage winding.
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Open circuit test
Short circuit test

Line
voltage
11000V

650 V

Line
current

1.5A
26.3 A

3-phase
power
5000 W
8000 W

279

At what value of line current on the low voltage side will the efficiency be a
maximum? Calculate the secondary terminal voltage when supplying this
current at 0.8 p.f. lagging, the primary voltage being maintained at 11000 V.
(Cambridge University: Second year)
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