
Appendix B

The general mesh equations
and proofs of the network
theorems

Mesh equations
The mesh equations for a general M-mesh network are:

Z2J1+Z22I2 ' ' •

(B.I)
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where Vmm is the net e.m.f. in the mth mesh, lx . . . IM are the M dependent
mesh currents, and the coefficients Z are the network self and mutual
impedances (all quantities complex).

The network determinant is then
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and the solution for the current Im in the mth mesh is
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(B.2)

(B.3)
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The network theorems may be deduced directly from this solution.
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The Superposition theorem
For a discussion of this theorem see section 2.6.1. Expanding the

numerator of (B.3) about the mth column we obtain

(B.4)

where Alm denotes the determinant remaining when the first row and mth
column are deleted from (B.2). All the determinants in this expression are
functions only of the complex impedances in the network and, for a given
linear network, are therefore constants. Furthermore, each term contains
only a single net e.m.f. (there are, for example, no squared or cross-product
terms). The superposition theorem is therefore proved.

The Reciprocity theorem
For a discussion of this theorem see section 2.6.2. Consider two

branches in the general network and let us choose our meshes such that one
branch occurs only in one mesh which we may label mesh (1) and the other
only in some other mesh which we may label mesh (2). (A little thought will
show that this is always possible.) Under these conditions the current in
branch (1) will be Jx only, and that in branch (2) will be I2 only.
Furthermore, an e.m.f. Vx in branch (1) will form part of the F n only, and
an e.m.f. F2 in branch (2) will form part of F22 only. The superposition
theorem tells us that currents caused by one e.m.f. are independent of all
other e.m.f.s, so that without loss of generality we may set all e.m.f.s except
V1 and F2 to zero. Using (B.4) the solutions for the mesh current Ix and I2

are then:

Now consider identical e.m.f.s, Fsay, acting in each of the branches. The
current in branch (1) due to Facting alone in branch (2) will be

A

and the current in branch (2) due to Facting alone in branch (1) will be
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Now, in the general mesh equations, for any pair of subscript values p
and q, we have Zpq = Zqp9 and recalling (from the theory of determinants)
that rows and columns of a determinant may be interchanged without
affecting its value, it may be readily seen that Apq = Aqp, hence / / = I2'. Since
this same result may be obtained for any two meshes chosen arbitrarily, the
theorem is proved.

Thevenin's theorem
For a statement and discussion of this theorem see section 2.7. Let

the open circuit e.m.f. between the terminals of the network be FT, and let
the impedance measured between these terminals with all internal voltage
sources short circuited be ZT. (We assume that any current sources will
have been transformed to voltage sources.) To prove the theorem we have
to find expressions for VT, ZT and the current that will flow in an external
load impedance Z connected between the terminals.

We first connect an impedance Z in series with a source of e.m.f. E
between the terminals. This operation will create an additional mesh in the
network, which we take as mesh (1), the total number of meshes in the
network then being M. The current in Z is then Ix which, by (B.3), is

1
= A

'12 '
K22 ^ 2 2 ^ 2 3 A'

= A"
(B.5)

In the present case, E will form part of V1 x only, and Z a part of Zx l only.
Let

Ao' be the value of A' when E is zero;
Ao be the value of A when Z is zero;
A n ' be the minor of A'

then,

and

A = A0 + Z A n

The voltage between the terminals of the network is now:

(B.6)

(B.7)
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-+E

The open circuit e.m.f. between the terminals is the value of this expression
when Z becomes infinite and E is zero, so that

VT = ^ - (B.8)

The impedance between the terminals with all internal voltage sources
short-circuited is the value of E/ll with Z equal to zero. Under these
conditions Ao' is zero and from (B.6) we obtain

•-£
Also, from (B.5),

hence,

Z x = r = ^ ~ (B*9)

Considering again the solution (B.5) for the current, we have

'•4
which, from (B.6) and (B.7), becomes

_A0 ' + EA11 _A0 ' /A1 1+E
A0 + Z A n A 0 / A n + Z

Substituting (B.8) and (B.9) in this expression yields

(B.IO)

But (B.IO) is precisely the equation which applies to a single-mesh network
containing total impedance ZT + Z and total e.m.f. VT + E. The theorem is
therefore proved.
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