Appendix B

The general mesh equations
and proofs of the network
theorems

Mesh equations
The mesh equations for a general M-mesh network are:

lell+zlzlz ... +ZlMIM=Vll
oyl +Zyl, .. . +Z5dy=V;,

Zmlll +Zm212 e s +ZmMIM=me (B.l)

ZMlIl +ZM212 « e +ZMMIM= VMM
where V,,, is the net e.m.f. in the mth mesh, I, ... I,, are the M dependent
mesh currents, and the coefficients Z are the network self and mutual

impedances (all quantities complex).
The network determinant is then

lezlz .« e o ZlM
Zlezz ¢ .o ZZM
A=| . . . (B.2)

ZMIZMZ- . . ZMM
and the solution for the current I,, in the mth mesh is
Z,Zy; .. 2y ViuZipsy - 2y

1 Z3Zy, .. 2y Var Zopsy - 23y

l=x (8.3)

ZMIZMZ e ZMm—lVMMZMm+l e ZMM

The network theorems may be deduced directly from this solution.
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The Superposition theorem
For a discussion of this theorem see section 2.6.1. Expanding the
numerator of (B.3) about the mth column we obtain
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(B.4)

where A,,, denotes the determinant remaining when the first row and mth
column are deleted from (B.2). All the determinants in this expression are
functions only of the complex impedances in the network and, for a given
linear network, are therefore constants. Furthermore, each term contains
only a single net e.m.f. (there are, for example, no squared or cross-product
terms). The superposition theorem is therefore proved.

The Reciprocity theorem

For a discussion of this theorem see section 2.6.2. Consider two
branches in the general network and let us choose our meshes such that one
branch occurs only in one mesh which we may label mesh (1) and the other
only in some other mesh which we may label mesh (2). (A little thought will
show that this is always possible.) Under these conditions the current in
branch (1) will be I, only, and that in branch (2) will be I, only.
Furthermore, an e.m.f. ¥, in branch (1) will form part of the V;, only, and
an e.m.f. V, in branch (2) will form part of V,, only. The superposition
theorem tells us that currents caused by one e.m.f. are independent of all
other e.m.f.s, so that without loss of generality we may set all e.m.f.s except
V, and V, to zero. Using (B.4) the solutions for the mesh current I, and I,

are then:
A A,y
=V, —
Il 1 A A V2 A
A A
L=—V, 2+

Now consider identical e.m.f.s, ¥V say, acting in each of the branches. The
current in branch (1) due to V acting alone in branch (2) will be

8z

IL'=-V
! A
and the current in branch (2) due to Vacting alone in branch (1) will be

A,
I,=—y—12
2 A
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Now, in the general mesh equations, for any pair of subscript values p
and q, we have Z,,=Z,,, and recalling (from the theory of determinants)
that rows and columns of a determinant may be interchanged without
affecting its value, it may be readily seen that A,, = A, henceI,"=1,’. Since
this same result may be obtained for any two meshes chosen arbitrarily, the
theorem is proved.

Thévenin’s theorem

For a statement and discussion of this theorem see section 2.7. Let
the open circuit e.m.f. between the terminals of the network be Vi, and let
the impedance measured between these terminals with all internal voltage
sources short circuited be Z;. (We assume that any current sources will
have been transformed to voltage sources.) To prove the theorem we have
to find expressions for V;, Z; and the current that will flow in an external
load impedance Z connected between the terminals.

We first connect an impedance Z in series with a source of e.m.f. E
between the terminals. This operation will create an additional mesh in the
network, which we take as mesh (1), the total number of meshes in the
network then being M. The current in Z is then I, which, by (B.3), is

Vll ZIZZI3 R ZlM

1 V22 ZZZ ZZ3 L ZZM
I‘=K (B.5)

AI
A

VMMZMZZM3 s ZMM

In the present case, E will form part of V;, only, and Z a part of Z,, only.

Let

Ay’ be the value of A’ when E is zero;

A, be the value of A when Z is zero;

A, be the minor of A’
then,

AN=Ay+EA /'=Ay+EA;, (B.6)
and

A=Ay +ZA (B.7)
The voltage between the terminals of the network is now:

IIZ+E=%Z+E=[—AA‘:;T+§§—:—:—]Z+E
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_AJ+EA,,

e B LY
Ao/Z+Ay,y

The open circuit e.m.f. between the terminals is the value of this expression
when Z becomes infinite and E is zero, so that
Ay
Vp=1— (B.8)
Ay
The impedance between the terminals with all internal voltage sources
short-circuited is the value of E/I, with Z equal to zero. Under these
conditions A,' is zero and from (B.6) we obtain
A/
E=—
11

Also, from (B.5),

Al
"=z
hence,
E A,
Zi=—=—9 B.9
T I1 All ( )

which, from (B.6) and (B.7), becomes

_AJ+EA,, _Ag/AL+E

I, =
VT A+ ZA,, AgA L +2Z

Substituting (B.8) and (B.9) in this expression yields

_Vi+E

I.=
VU Z+Z

(B.10)

But (B.10) is precisely the equation which applies to a single-mesh network
containing total impedance Z;+ Z and total e.m.f. V3 + E. The theorem is
therefore proved.
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