4

Power and transformers in
single-phase circuits

4.1 Introduction

For the sinusoidal steady state, one can calculate the total power
supplied to a circuit consisting of linear elements by adding directly the
power absorbed by each individual resistive element in the circuit.
However, it is often more convenient to express power in terms of the
voltage across and the current supplied to the input terminals of a circuit
whose detailed configuration is unknown or is of no interest.

In all electric power distribution networks voltage and frequency are
maintained substantially constant. A given load will draw a current whose
amplitude and phase (relative to the power line voltage) depend upon the
load impedance. On the other hand in electronic and telecommunication
networks, signal power rather than voltage is fixed and we are concerned
more with arranging source and load conditions to achieve maximum
power transfer from one part of a circuit to another.

For the above reasons the treatment of power in electrical circuits
depends to a marked extent on the type of circuit under consideration. In
this chapter we develop general methods for determining the power and
total energy supplied to, or dissipated within, a circuit. We also consider
one of the most important components involved in the utilization and
transmission of power; namely, the transformer.

4.2 Average power

Consider a network or load as shown in fig. 4.1, supplied at voltage
V (r.m.s. magnitude V) and drawing current I (r.m.s. magnitude I). If the
network contains reactive elements, voltage and current will differ in phase
by some angle ¢. It is convenient, particularly in power distribution
calculations, to take the voltage as phase reference. The instantaneous
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188 Power and transformers in single-phase circuits

current and voltage are then described by v = Vsinwt and i = I ,sin(wt + ¢),
and the instantaneous power to the load is

p =vi= VI sinwtsin(wt + ¢) “4.1)

In fig. 4.2, p, v, and i are shown as functions of time. Instantaneous power is
sinusoidal with a frequency double that of the supply voltage. By our
previously established sign convention (section 1.4) p is positive when
energy flows into the load.

The total energy W supplied during the interval ¢, to t is (see section 1.4)

t
W=f pdt
to

therefore the net area under one complete cycle of the instantaneous power
curve represents the energy supplied to the load during a time equal to this
period (equal to half the period of the supply frequency). When ¢=0
(corresponding to a pure resistive load), this area is everywhere positive. As
¢ increases in magnitude, the negative area increases until for | ¢ |=mn/2
(corresponding to a pure reactive load), positive and negative areas are
equal and there is no net transfer of energy to the load. For passive linear
elements ¢ is always within the range — /2 < ¢ <n/2, so that the net area
will never become negative.

The average power P supplied to the load is equal to the net area under
onecycle of pin fig. 4.2 divided by the period of p. Thus the average power is
maximum when ¢ =0 and zero when |¢|=n/2.

An expression for P in terms of conveniently measurable quantities may
be derived by expanding (4.1) using the appropriate trigonometrical
identities, viz.,

p=3Vauln(cosd —cos2wtcosd + sin2wtsing) 4.2)

Fig. 4.1. Instantaneous and phasor voltages and currents at the
terminals of a reactive network or ‘load’. Current leads voltage by
phase angle ¢.

I=12¢

i = Insin (0t + @)

I=1,N 2

V=V/0 Network
v= Vi sin ot or
V=V, /\Iz ‘Load
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Average power 189

If T is the period of p, the average power is
1 T
P=? f pdt=4V_ I cos¢=VIcos¢o 4.3)
0

In this expression V and I are the r.m.s. values. It is an important
convention that all power line voltages and all voltages and currents
marked on a.c. appliances such as a motor, for example, are r.m.s. values.
Thus the European standard voltage of 240V had a maximum value of
240,/2=364V, similarly the standard in many parts of the U.S.A.is 120V,
which rises to 120,/2=169 V. The same applies to the ratings of fuses and
circuit breakers; a fuse marked 5 A must carry a peak current of just over
7A. In all a.c. problems the data are assumed to refer to r.m.s. quantities
unless specifically stated otherwise.

Because, as noted above, — /2 < ¢ <r/2, cos¢ in (4.3) is always positive
or zero, so P is never negative. Note also that the expression (4.3) is
independent of the choice of the quantity taken as phase reference.

Fig. 4.2. Instantaneous values of voltage, current and power for the
circuit of fig. 4.1.

i=1, sin (@t +¢)

Period for p

'y

Pertod for v and i
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190 Power and transformers in single-phase circuits

4.3 Reactive power and apparent power

Further insight into the details of power flow comes from
examination of (4.2). The three terms on the right and their sum are shown
in fig. 4.3. The sum corresponds, of course, to the instantaneous power
curve in fig. 4.2.

The first two terms on the right can be written

1Vl n(cos¢ —cos2mtcosd) = VIcosp(l —cos2wt)

The sum of just these two terms represents the instantaneous real power; it

never becomes negative, oscillating in amplitude between 2VIcos¢ and

zero. The average value is VIcos¢, which we have identified as the average

power P. This quantity is often referred to as the real power or active power.
The third term on the right, namely,

1Vl nsin2wtsing = Visingsin2wt,

represents energy that oscillates between the power source and the purely
reactive elements in the load. Its average value is zero and its magnitude is
VIsing. This quantity is referred to as reactive power ; however, since it does

Fig. 4.3. The three components of instantaneous power (equation 4.2).
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Reactive power and apparent power 191

not represent energy actually absorbed by the load, the designation
volt-amperes reactive (abbreviated vars) is also commonly employed.

The sign of this term will depend on the sign of the phase angle ¢, which in
turn will depend on whether voltage or current is chosen as phase reference.
In this instance, with voltage as phase reference, a capacitive load will draw
a leading current, that is, ¢ will be positive and such a load is said to draw
positive vars. An inductive load will draw negative vars. This convention
has been adopted by the International Electrotechnical Convention, but
the reader should be aware that the alternative convention (capacitive vars:
negative; inductive vars: positive) is often used.

The symbol for reactive power or volt-amperes reactive is Q, thus

Reactive power Q =VIsing 4.4)

When a load on a power system has a phase angle other than zero, the
resulting reactive power represents a requirement in system current
capacity in addition to that necessary to supply the average power, that is,
the actual power used to produce work or heat. It is customary, therefore, to
specify the apparent power required by a load. This is simply the product of
the effective (r.m.s.) voltage and effective current at the terminals of the
load; it is usually designated by the symbol S. Thus,

Apparent power S=VI 4.5)

From the definitions of P, Q and S we see that the apparent power is given
by quadrature addition of real and reactive power, that is,
P? +Q?=(VIcos¢)? + (VIsing)* = (VI)* =S§?
S=J(P*+0? 4.6)

Fig. 4.4. Diagrams illustrating the relationships between real, apparent
and reactive powers.
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192 Power and transformers in single-phase circuits

The relationship of these quantities may be represented diagrammati-
cally by means of either the power diagram or power triangle as shown in
fig. 4.4. Observe that only the power P is properly expressed in watts. Re-
active power is expressed in vars (unit symbol VAr) and apparent power is
expressed in volt-amperes (unit symbol VA). In the following sections and
throughout the remainder of this book, when reference is made simply to
power (without qualification) we shall mean the average, real, or active
power.

Any two-terminal circuit containing resistive and reactive elements may,
according to Thévenin’s theorem, be reduced to a single equivalent complex
impedance or admittance. This implies that a load consuming energy may
be characterized by either of the elementary series or parallel circuits shown
in fig. 4.5. in which the R are pure resistances and the X are pure
reactances. For either circuit, values for the components can be found such
that any given impedance Z= VI is produced at the terminals.

For power distribution calculations the parallel equivalent circuit of fig.
4.5(a) is often convenient. The phasor diagram for this circuit is shown in
fig. 4.6(a). As before, the terminal voltage is chosen as reference, and ¢ is the
angle by which the current leads the voltage. We see that the current I may
be resolved into two components: (a) a current I, =Icos¢, called the in-
phase component, which flows through R,; (b) a current I, = Ising, called
the quadrature component, which flows through X,. The power diagram
fig. 4.6(c) may be derived directly from this phasor diagram simply by
multiplying the total current I and each of its components by the magnitude
of the terminal voltage V.

Since I,=V/R,, 1,=V/X,, and [ =V/Z, the real, reactive and apparent
powers may be expressed as:

V\ »?
Power P=VIcosp = V<—>=__

R

p

R

p

Fig. 4.5. Equivalent circuits representing a complex load Z.

(a) Parallel (b) Series
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V V2
Reactive power Q = Vising = V<———> =— 4.7
Xp Xp
A t er S=VI=V AWG
arent power S=VIi=V|—- |=—
pparent p ~ )=

We now turn to the series equivalent circuit of fig. 4.5(b). Since this circuit
presents the same complex impedance Z at its terminals as that of the
parallel circuit of fig. 4.5(a), the same terminal voltage will cause the same
current to flow; the power diagram of fig. 4.6(c) must therefore apply also to
this circuit.

Using a similar procedure to that adopted in relation to the current we
may resolve the voltage into two components (fig. 4.6(b)): that across R, (in
phase with I) is IR, =Vcos¢; and that across X, (in quadrature with I) is
IX,=Vsin¢. Expressions analogous to (4.7) are then

Power P=VIcos¢p=I(IR)=1I?R,
Reactive power Q= Vising =I1(IX,)=1’X, 4.8)
Apparent power S=VI=I1(1Z)=1*Z

Although the expressions (4.7) and (4.8) have been derived above in
relation to the parallel and series equivalent circuits of a general complex
two-terminal network, it will be readily apparent that they apply also to the
individual elements of which the network is composed if voltages and
currents are interpreted appropriately. For example, if a current I, flows
through a series branch within the network containing a resistance R and a
capacitance C, with reactance 1/wC, then the power in the resistance is I,2R
and the reactive power in the capacitance is I,2(1/wC). If the currents in

Fig. 4.6. Phasor and power diagrams for the circuits of fig. 4.5. (a) and
(b). Resolution of current and voltage into in-phase and quadrature
components. (c¢) Power diagram.,
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194 Power and transformers in single-phase circuits

every branch of a network are known, then the real and reactive powers
associated with every element of that network can be simply calculated
using the appropriate expressions.

Now we have seen that the real power at the terminals of a network is a
measure of the average rate of energy flow associated with the resistive
elements of the network, this energy being dissipated in the form of heat.
The reactive power is a measure of the average rate of energy flow
associated with the reactive elements, this energy oscillating between source
and network. It follows from the principle of conservation of energy that the
power, in watts, absorbed by all the resistive elements in a network must
equal the total power supplied at its terminals. Likewise, the reactive power,
in vars, associated with all of the reactive elements must equal the reactive
power supplied at the terminals. Symbolically we have for any network:

Total power (watts)=Z(I’R)yranch

Total reactive power (vars)=X(I?X)p;anch 49

The expressions (4.9), are sometimes loosely referred to as the principle of
conservation of watts and vars.* (The use of this principle is illustrated, in
relation to three-phase power systems, in the worked example of section 5.5.)

4.4 Power factor

The quantity cos¢ in (4.3)is the power factor. When energy is being
drawn from a distribution system, the most desirable condition is cos¢ =1,
because then the apparent power and the real power are identical and the
current requirement for a given amount of delivered power is a minimum.
The excess current requirement represented by cos¢ 1 means that the
power distribution lines must be capable of supplying the additional
current. It follows that there will be increased heating in the conductors and
a corresponding decrease in the efficiency of the overall system. It follows
further that an installation having a low power factor may reasonably be
required to pay more for each unit of energy delivered than would an
installation having a power factor close to unity.

Operators of establishments that use substantial amounts of power find
it worthwhile to ‘improve’ the power factor, that is, to install equipment that
will bring the power factor closer to unity. This improvement may be
accomplished by installing in parallel with the load a device that draws a

* The expressions (4.9) may be derived also from a more general theorem known
as Tellegen’s Theorem. This states that if v, and i, are the voltage across and
the current through the kth element of a network, then Zv,i, =0 where the sum
is taken over all elements of the network including sources. (For further details
see reference 4.)
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Power factor 195

quadrature current of a sign opposite to that drawn by the load. Most
industrial loads are predominantly inductive and draw a lagging current as
shown in the phasor diagram of fig. 4.7(a). Such a load is said to be a
lagging load and to possess a lagging power factor. The corrective measure
usually consists in adding capacitance at the terminals of the load; the
resulting arrangement being electrically similar to the parallel tuned circuit
discussed in section 3.13.3. In fig. 4.7(b), I, is the current drawn by the
capacitance, the new (reduced) line current is I’ and the new power factor is
cos¢’. Looked at in another way, the usual load draws negative vars;
therefore, one places in parallel a circuit element that draws positive vars.
The power diagram shown in fig. 4.7(c), corresponding to the phasor
diagram of fig. 4.7(b), illustrates power factor improvement from this
viewpoint. We see that the total apparent power is reduced; the actual load
power is, of course, unchanged. Usually one does not attempt to make the
overall power factor unity (the circuit is not quite tuned to resonance)
because, (1) the power factor of the load may vary as load conditions in a
large installation change, so such exact correction would require continual
adjustment, and (2) the cost of the added capacitance must be weighed
against the saving that may be expected as a result of its installation.

Where large values of capacitance are required the capacitors may be
rotating machines. An over-excited synchronous motor draws a leading
current and so has the electrical characteristics of a capacitor.

The following worked example is intended to illustrate the principles

Fig. 4.7. Power factor correction. (a) Phasor diagram for inductive
(lagging) load. (b) Modified phasor diagram showing the result of
power factor correction. (¢) Power diagram corresponding to (b).

Installed
I leading VAr
A

=3
<v

Original VA

(a) (h) (©
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196 Power and transformers in single-phase circuits

discussed above, but it should be remembered that power factor improve-
ment is usually applied to three-phase rather than single-phase systems.
Power factor and its improvement in relation to three-phase system is
discussed in sections 5.4 and 5.5.

4.5 Worked example

A factory draws 18 kW of power from a 240V, 50 Hz distribution
system. The power factor is 0.75 lagging. The feeder wires to the factory
have a total resistance of 0.35 Q. The factory operates 24 hours, every day.
(a) Calculate the current supplied to the factory. If energy costs 1p/kW hr,
determine the annual cost of the energy lost in heating the feeder wires.
(Note: It is still common practice in power systems analysis to measure
energy in units of kilowatt hours rather than joules.)
(b) If the power factor is improved to 0.95, how much money will be saved
annually by the reduction of feeder wire loss?
(c) Determine the size and nature of the unit required to correct the power
factor to 0.95.

Solution
(a)
Power P=VIcos¢
therefore
P 18 x 103
current ] = 8 100 A

Veosp 240x0.75
Power loss in feeder=I*R;=100% x 0.35=3.5kW

Annual cost=3.5kW x (24 hr/day) x (365 day/yr) x (1p/kW hr)
=£306

(b) With a new power factor of 0.95 the current becomes

18 x 103

=——_——=78.
240 x0.95 B9A

Power loss in feeder is then 78.9%2 x 0.35=2.18 kW.
New annual cost:

2.18
306 x 2~ =£190.7
*35

Saving:

£(306 —191)=£115 per annum
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(c) The line voltage and initial current are shown in the phasor diagram of
fig. 4.8(a). The in-phase current is 75 A and the quadrature current is 66.14
lagging. The initial phase angle is 41.4°. With the power factor improved to
0.95 the new phase angle is cos™! 0.95=18.2°. The new total current is
78.9 A and the new quadrature current is 78.9sin18.2=24.62 A. To achieve
this improvement a capacitor must be connected across the load terminals
which will draw a current of 66.14 —24.62=41.3 A. The reactance of the
capacitor will be X,=240/41.3=58Q. But X =1/(2nfC) hence

C=1/(2n x50 x 5.8) =550 uF

An alternative approach to this problem is shown in fig. 4.8(b). Here the
calculation is carried out in terms of real, apparent and reactive powers. We
see that the capacitor is required to draw 9.96 kVAr, hence, from (4.7),
X, =240%/9960=75.8Q as before.

Observe that addition of the capacitor does not reduce the reactive
current in the load. The inductive load still draws vars equal to 15.87kVAr.
However, with the capacitor in place most of the quadrature current flows
between the capacitor and the load. Power loss in the feeder wire
conductors is thus greatly reduced.

Fig. 4.8. Diagrams for worked example (section 4.5).

413, 2.96
kVAr4

. kW
v
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4.6 Complex power
For the purposes of calculation it is often convenient to express the

relationship between power, reactive power and apparent power in the
form of a complex number, as follows:

S=P+jQ=VIcosp+jVIsing = VIel® 4.10)

The power diagram of fig. 4.4(a) may then be interpreted in terms of the
Argand diagram as shown in fig. 4.9. Now suppose that the complex voltage
and current are known at the terminals of a load; these quantities having
been found by previous calculation. Let

V=vV/ia=Vel* and I=Ilatd=]eI*+®

If we form the product VI(=VIe!?**9) we fail to obtain the complex
power as defined in (4.10). However, if we form the product V*I, where V*
indicates the complex conjugate of ¥, namely, Ve i* we obtain

V* = Ve 14l = Vei* = § @.11)

Therefore, if we have the complex expressions for the voltage Vacross a
load and the current I drawn by the load and if we form the product V*I,the
real part of this product is the power P and the imaginary part is the reactive
power Q.

Note that (4.11) gives the correct sign for reactive power using the
convention adopted here, namely, that capacitive vars are positive,
inductive vars negative. If the alternative convention is used, (capacitive
vars negative, inductive vars positive), then the product VI* must be formed
to obtain the correct sign for the reactive power. The real part of either V*I
or VI* will give the power P.

Fig. 4.9. Apparent power expressed as a complex quantity.

S=P+jQ
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An alternative expression for P, which is sometimes useful, is obtained as

follows:
V*¥I=VIei?
and
VI* = Veitle~ i@+ ® = | [a— i
Adding
V*I+ VI* =VI(e!® +e 1) =2VIcos¢ =2P
Hence

P=3(V*I+ VI%) 4.12)

4.7 The ideal transformer
In section 1.10 we described inductively coupled circuits. A useful
application of inductive coupling is the transformer, a device that transfers
energy from one circuit to another without direct connection between the
two. A real transformer consists of two or more coils of wire wound on a
common core. The core usually is of ferromagnetic material in order to
achieve as nearly as possible a coefficient of coupling of unity. Such a device
has losses in the resistance of the windings and in the magnetic core
material. Real transformers will be considered in detail in a later section.
Useful information about transformer characteristics results from a
study of the ideal transformer which is assumed to have
(a) negligible energy loss in the windings and in the core material
(b) perfect coupling so that the coupling coefficient k=1
(c) very large self-inductance in each coil.
A transformer may have any number of independent windings. We shall
consider the two-winding device shown schematically in fig. 4.10.
Let the supply voltage be connected at terminals A4’ of winding number

Fig. 4.10. Schematic diagram for an ideal two-winding transformer.

A B S
o o
+ +
g 2
o (1) (2)
A N, N, z;
k=1
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200 Power and transformers in single-phase circuits

(1). It is customary to refer to the input windings as the primary winding (or
simply the primary) and to the other windings as secondary windings (or
secondaries). In general, energy may be supplied to any winding, so
‘primary’ may not always refer to the same winding of a particular
transformer.

In fig. 4.10 with switch S open, an applied voltage e, requires, according
to Faraday’s Law, a flux ¢, such that ¢, =N d¢,/dt, N,¢, being the flux
linkage in winding (1). But if the coupling coefficient is unity, the flux in
winding (2) will also be ¢,, and the induced voltage e, =N,d¢,/dt. It
follows then that:

ey N,y

%N, 4.13)
and the voltage ratio is just equal to the ratio of numbers of turns. Because
we have specified very large coil inductance, we may assume that with S
open a negligibly small amount of current is required to establish the flux
é1.

Now let the switch be closed. The secondary voltage e, will then give rise
to a current i, =¢,/R, in winding (2), which will establish a flux ¢,. We
recall, from Amperes circuital law of electromagnetic theory, that this flux
¢, is proportional to the product N,i, so that we may write ¢, =cN,i,
where ¢ is a constant of proportionality. Further, from Lenz’s law, the
current i, will be in such a direction as to oppose the change of magnetic
flux producing it, in other words, the direction of the flux ¢, will be opposite
to that of ¢,. Because e, is still applied to winding (1), the net flux in the
core must still be ¢,, consequently there must now be a current i; in
winding (1) of sufficient magnitude to produce a forward flux (that is, in the
direction of the initial flux ¢,) just equal in magnitude to ¢,. Therefore,
¢»=cN,i; and we have the relation:

¢2=cN,i; =cNi;
or
il NZ
LN, 4.14)

With the switch closed, the secondary current and voltage are related by
e,/i, =R, hence, from (4.13) and (4.14) we obtain for the primary:

2 2
$=(&) ‘i’—2=<&> R, (@.15)
3 N,/ iy 2

The ratio e, /i, is the effective resistance at the primary, thus a resistance R,
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in the secondary is reflected into the primary as a resistance whose value
depends upon R, and upon the square of the ratio of primary turns to
secondary turns.

Equation (4.15) describes the resistance-transforming property of the
transformer. Because the relation holds equally for reactive circuit ele-
ments, we may conclude that the transformer has impedance transforming
properties. This property is useful in applications such as the following.

4.8 Worked example

Loudspeakers have resistance of the order of 10 ohms. Neither
vacuum tube nor many simple transistor amplifier circuits operate
satisfactorily with such small values of load resistance. Therefore a
transformer is employed to raise the impedance level of the speaker to a
value compatible with the requirements of the amplifier circuit. What turns
ratio n is required to match a 16 Q speaker to a transistor circuit that is
designed to have a load resistance of 400 Q?
Solution: When the 16 Q resistanceis connected to the secondary, it should be
reflected into the primary as 400 Q, therefore,

(I\,l/l\lz)2 =R1/R2 or (IVI/IVZ)2 =400/16=25
and
n=(N /N, =25=5

4.9 Single-phase power transformers

Although some transmission lines operate at high (hundreds of
kilovolts) direct voltage, all power distribution systems use alternating
voltage. Power transformers are essential parts of these systems. Such
devices, which may operate at high voltage and carry large currents, cannot
be represented by the simple model of fig. 4.10. In this section we develop a
model for a power transformer. In succeeding sections we see how the
transformer is used in a real circuit and describe methods of determining
experimentally the characteristics of a power transformer.

In a power transformer, a core of high permeability ferromagnetic
material provides a path for magnetic flux. The separate circuits are wound
in such a fashion that practically all the flux produced by one winding links
with all the other windings. Sufficient ferromagnetic material is provided so
that it does not become saturated under normal operating conditions. Fig.
4.11 shows three frequently used transformer constructions. We shall
confine our discussion to transformers having two windings, although often
several independent secondary circuits may be supplied from a single
primary winding.
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202 Power and transformers in single-phase circuits

The simple ideal transformer model of fig, 4.10 is inappropriate for the
power transformer. We require a model that takes into account: (1) the
exciting current which is defined as the primary current when the secondary
current is zero; (2) the energy loss in the conductors that comprise the
windings; and (3) the presence of leakage flux (the magnetic flux from one
winding that does not link the other winding).

Let the transformer consist of a primary and secondary wound upon a
high permeability core as shown schematically in fig. 4.12. Let the
secondary be open circuit so that the secondary current is zero. If the flux in
the primary is sinusoidal, of the form ¢=®,sinwt, then the primary
induced voltage is

d d .
€ =N1 d—(f=N1a‘(q)mslnwt)
=N D ,cosmt (4.16)

Fig. 4.11. Transformer construction.

Primary and
Primary, Secondary
windings
Secondary

Core

(a) Shell type () Core type (c) Toroidal

Fig. 4.12. Two-winding transformer with ferromagnetic core. With the
secondary open circuit a small exciting current i, flows in the primary.
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and e, is, therefore, also of sinusoidal form leading ¢ by 90° (fig. 4.13(a)).
The r.m.s. magnitude of the induced voltage is

2

E,=2Y N @, = 444N 0, 4.17)

J2
Thus, an applied sinusoidal voltage of this magnitude will cause a
sinusoidal flux to be established whose maximum value (if the effects of
conductor resistance and leakage flux are negligible) will be given by

E,
(D =
™~ 4.44/N,

In order for the flux to exist, there must be an exciting current i,. For an
air-cored coil, flux is directly proportional to current, so with a sinusoidal
applied voltage, i, will be sinusoidal. In a closed ferromagnetic core, flux
density B and magnetizing force H are not linearly related and one must
describe the core’s magnetic properties by the familiar B-H curve. Now

¢ Ni

B_1—4— and H-7 (4.18)
where N is the number of turns in the winding, and 4 and ¢/ are, respectively,
the cross-sectional area and the length of the flux path in the magnetic
material. For a specific device, then, one may plot ¢ v. i, as shown in fig.
4.13(b). Then we may use a graphical method as shown in fig. 4.13(c) to
derive the graph of i, v. time. This current is the exciting current of the
transformer. Because of the non-linear magnetic characteristic of the
transformer core, i, is non-sinusoidal, consisting of a fundamental and a set
of odd harmonics (see section 7.8 for a discussion of harmonic (Fourier)
analysis). Thus a sinusoidal applied voltage results in a non-sinusoidal
exciting current.

In comparison with the rated load current of the transformer the exciting
current is small. Unless we are interested specifically in its harmonic
content, we may confine our attention to the fundamental, sinusoidal
frequency component of i, This fundamental may be resolved into two
components. One component, called the magnetizing current, is in phase
with ¢, and so in quadrature with e,. The other component, called the core
loss current, leads ¢ by 90° and so is in phase with e,. The core loss current
thus represents power supplied to the transformer. It accounts for the work
required periodically to magnetize the core first in one direction and thenin
the other. On the B-H plane, the area enclosed by the hysteresis loop is a
measure of the work required to carry the magnetic material through one
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204 Power and transformers in single-phase circuits

Fig. 4.13. Primary voltage e,, core flux ¢, and primary exciting
current i, for the transformer of fig. 4.12.
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complete cycle of magnetization. The core loss current also accounts for the
power loss due to eddy currents induced in the transformer core.

The phasor diagram of fig. 4.14(b) shows the applied voltage E, and the
exciting current I, along with its two components, I, and I.. The exciting
current may be accounted for in the transformer model by adding the
conductance g, and the susceptance b,, to the ideal transformer model as
shown in fig. 4.14(a), where

g.=1I./E, and bn=I1,/E; 4.19)

When an impedance is connected to the secondary, currents will flow in
secondary and primary circuits 4.15(a). The total current I, flowing in the
primary circuit will be the sum of the load current I, and the exciting
current I, as shownin the phasor diagram of fig. 4.15(b). In this diagram the
length of the I, phasor has been exaggerated in relation to that of the I,

Fig. 4.14. Circuit model of the transformer including elements g, and
bm to account for the exciting current I

E i

~
-

cA

Y. _ 2

Py

(a) Circuit model (b) Phasor diagram

Fig. 4.15. Tllustrating the effect of adding a load to the secondary
winding in the circuit model of fig. 4.14(a).

Eh

Sy

(a) Circuit model (b) Phasor diagram
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206 Power and transformers in single-phase circuits

phasor; the full load current may be twenty times the exciting current in a
power transformer.

To complete the circuit model of the transformer we must introduce
elements which account for the resistance of the windings and the leakage
flux. Consider first the primary leakage flux, that is, the flux which links
with the primary winding but not the secondary winding; let this flux be ¢.1.
The path which this flux takes lies partly in the core and partly in the air
space surrounding the core; the primary winding will, therefore, as far as
this flux is concerned, behave very nearly like an air-cored inductor, and the

Fig. 4.16. Transformer circuit model including elements X, X,, R,
R; to account for leakage reactances and winding resistances.

I xR, I o X, R, 12

MIRND ¢
I
£1R, -
’ P - vl
E | 1 7~ ~ e
B d
7/
v
90° ’
T
o P
) ./ 90
B
I v (b) Phasor diagram (inductive load);
IR, load power factor = cos 6
Power factor at ideal
1, X,AvE, transformer = cos f8
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flux linkage N, ¢, will be proportional to the primary current. (This is in
contradistinction to the mutual flux which, as we have seen, is independent
of the load currents flowing in the windings.) Hence, from the definition of
inductance given in section 1.9, we may write

N1¢/1=L1i1 (4.20)

where the constant of proportionality L, is called the primary leakage
inductance.

This inductance is represented in the circuit model of fig. 4.16(a) by the
series reactance X ; =wL,. Similarly a reactance X, in the secondary circuit
represents the secondary leakage inductance. Resistances R; and R,
account for the resistances of the windings. The complete phasor diagram,
drawn for an inductive load (lagging current) corresponding to this circuit
model is shown in fig. 4.16(b). Note that the lengths of the phasors
representing reactive and resistive voltage drops have been exaggerated, in
relation to the main voltage phasors, for the sake of clarity. The relative
phase of E; and E, can be either zero or 180°, depending on the relative
winding directions of the transformer; the latter has been chosen - again for
clarity in the diagram.

We may employ the impedance transforming property of the transformer
to simplify the circuit of fig. 4.16(a). Resistance and reactance parameters
are transferred across the ideal transformer by multiplying them by the
square of the turns ratio. Fig. 4.17(a) shows the simplified circuit model

Fig. 4.17. Alternative transformer circuit models.

I, X, R, n?X, n’R,

:In 27 (@) Quantities referred
LOAD {5 the primary

(b) Quantities referred
to the secondary
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208 Power and transformers in single-phase circuits

resulting when secondary quantities are ‘referred to the primary’. Fig.
4.17(b) is the circuit model with quantities ‘referred to the secondary’. Of
course, in any calculation, both models give the same final result; the choice
of model will depend on the particular problem in hand.

Calculations using the circuit models are simplified if the shunt elements
representing the exciting current are shifted to the left in fig. 4.17 so that
they are directly across the input voltage as shown in fig. 4.18. A small but
usually insignificant error is introduced by neglect of the voltage drops in
R, and X, caused by the exciting current.

410 Worked example

A single-phase transformer with turns ration=N;/N, =10 has an
output of 200 volts when supplying a load of 10kVA at 0.8 power factor
lagging. Resistance and leakage reactance are 4 Q and 7Q respectively for
the primary and 0.04 Q and 0.08 Q for the secondary. The exciting current is
0.5A at 0.2 power factor lagging. Calculate the input voltage and the
efficiency of the transformer with this load.

Solution: The appropriate circuit is found by calculating numerical values
for the elements shown in fig. 4.18, and combining resistances and
reactances in series.

R=R;+n*R,=4+(10)*(0.04)=8Q
X=X;+n*X,=7+(10)*(0.05)=15Q

The load current is
1,=10x10%/200=50 A
Then,
nV,=2000V and I,/n=5A

Fig. 4.18. Simplified transformer circuit model with quantities referred
to primary.
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Assume I/n=5+j0 (phase reference). Then, since the power factor of the
load is 0.8,

n 'V, =2000(0.8) +j2000(0.6) = 1600 +;1200 V
Hence,

V,=(I/n)(R+iX)+nV,=5(8+j5)+ (1600 +1200) = 1640 + 1275

and
V,=(1640% +1275%)*=2080 V

The efficiency of the transformer is found by dividing the output power by
the input power. Furthermore, the input power may be written as (output
power + losses). Now,

Output power = V,1,cos =10(0.8) =8 x 103 watts
Copper losses = (I,/n)?R=5% x § =200 W
Core loss=V,1.cosf’ = (2080)(0.5)(0.2) =208 W

Therefore,

Efficiency = (8000)/(8000 +408) =0.951 or 95.1%

4.11 Transformer tests

All the elements in the circuit model of fig. 4.18 may be determined
experimentally by performing two simple tests using voltmeters, an
ammeter and a wattmeter. Connections are shown in fig. 4.19.

Open circuit test: The appropriate circuit model for this test is shown in
fig. 4.20(a). Rated voltage V,, is applied at the primary terminals, and the
output voltage V,,, the input current I,,, and the input power P, are
measured.

Fig. 4.19. Connections for transformer tests.

Ammeter Wattmeter

I
—-

Transformer
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Since the secondary is open circuit, I,=0 and so I,’=0. Therefore
E,=V,, and E,=V,, and the turns ratio is, by (4.13),

Ny _Vio 4.21)
N2 V20
Since I, =0, the current I, is the exciting current. Therefore
P, I,
ge=75 and  —2=(g>+ba?) (4.22)
Vlo Vlo

from which b, may be calculated.

Short circuit test: The secondary winding is shorted (fig. 4.20(b)) and the
primary voltage raised carefully from a low value to give rated current. The
input voltage V,, the input current I, and the power P, are measured.
Because all impedances are referred to the primary in fig. 4.20, when V,=0
then E, =0 and E, =0. So the voltage V. is across the impedance R+jX.
For a typical short circuit test the input voltage may be only one-tenth the
rated value. Then the loss in the magnetizing circuit will be only
(0.1)>=0.01 of the loss at rated voltage and may be neglected in these
measurements. R and X may be determined from:

P, Vi
and !

=Ils2 Ils

R

=J(R*+X?) (4.23)

For most transformer calculations it is not necessary to subdivide R and
X to represent the separate contributions of the primary and the secondary
windings.

Fig. 4.20. Circuit models for open and short circuit tests on the
transformer. R and X are total resistance and reactance referred to the
primary, as in fig. 4.18.

—
<

oY

Vlo gc

Q

(a) Open circuit test (b) Short circuit test
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412 Voltage regulation
An important characteristic of a transformer is the voltage
regulation, defined as

Vie—V.
Regulation =—21—/——2— (4.24)
20

where V,, is the no-load output voltage and V, is the output voltage under
a specified load. We shall derive an expression for regulation in terms of the
transformer properties and the phase angle of the load. We use the circuit
model of fig. 4.21 where resistance and reactance are referred to the
secondary. In fig. 4.21

R'=R;+(N,/N,)*R, X'=X,+(N2/N,)’X,
If

I, =0,
then

Vae=(N,/N )V,

If there is a load current I, such that the phase angle for the secondary is ¢,
the appropriate phasor diagram is as shown in fig. 4.22. In fig. 4.22

a=1,R’cos¢ ; b=I,R’sing
c=I1,X'cos¢ ; d=1,X'sin¢g

Then

N,
— V| =(V,+a+d)P?+(c—b)?
N,y

Fig. 4.21. Circuit model for calculation of regulation.
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212 Power and transformers in single-phase circuits

In a well-designed transformer the losses are small (the voltage drops I, R’
and I, X" have been greatly exaggerated in relation to V, in fig. 4.22) and so
we neglect the difference term (c —b)?. Then

N
N—z Vi=V,+I1,(R'cosdp+ X 'sing)
1
therefore
N2 ' 1.
N Vi—V,=I,(R'cos¢+ X 'sin¢)
1

But
(N2/N )V, =V,,, hence from (4.24)

Iy (R'cos¢+ X 'si
Regulation =2 °°sﬁ+ sing) 4.25)
20

It is often convenient to express regulation in terms of quantities referred
to the primary. Multiplying numerator and denominator of (4.25) by

(N1/N,)* gives
NV N1>2 . :|N2
L| R'{— X'\ — —
2[ <N2> cosg + <N2 sing N,
N,
N,

Regulation=
V20

Now from (4.21), V, =(N,/N,)V,, and, if the exciting current is small, we
have Il = (Nz/Nl)Iz Furthermore, Rl,(Nl/Nz)z =Rand X ,(Nl/Nz)Z =X.
Hence,

Fig. 4.22. Phasor diagram, corresponding to fig. 4.21, for determining
regulation.

N,
N,

¢) v2|

I
|
|
I |
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Regulation= [,(Reos¢ + Xsing) (4.26)
Vi
For a lagging power factor, ¢ (as defined in fig. 4.22) is positive and so the
regulation is positive meaning that the voltage falls with increasing load
current. However, for a leading power factor ¢ is negative in (4.26). There is
then the possibility that the regulation may be negative, corresponding to
an increased output voltage under load.

413 Conditions for maximum efficiency
The efficiency of a transformer can be expressed as

_output power _input power —losses
" input power  input power

or

=1 losses 4.27)
input power

Losses are of two kinds: core losses (hysteresis and eddy current) and
copper losses. The core losses depend on the magnitude of the flux in the
core, which in turn depends on the applied voltage, and on the frequency.
For fixed voltage and frequency the core losses in a transformer will be
substantially constant irrespective of load conditions. The copper losses
depend on the current carried by the windings of the transformer and will
vary with the load.

Let the fixed core losses be Py, and the variable copper losses be I,%R,
where R is the total equivalent resistance referred to the primary and I, is
the primary current.

Then if the primary voltage is V; and the power factor is cos¢, (4.27)
becomes

Po+1,%R Py IR

=1- =1-— - 4.28
g Vil,cos¢ Vil,cos¢p Vicos¢ 4.28)

Clearly, when the transformer is unloaded, the input power will be P,
(neglecting the small copper loss due to the exciting current) and the
efficiency will be zero. As the load is increased from zero the efficiency
improves but copper losses become an increasingly large proportion of the
total losses. Eventually, the third term in (4.28) predominates and the
efficiency falls. The load current at which maximum efficiency occurs is
obtained by differentiating (4.28) and equating to zero:

dn Py R

= — =0
dI, V.l,%cos¢ Vicos¢
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214 Power and transformers in single-phase circuits

whence
P0=112R (429)

Therefore, at a given power factor, maximum efficiency is obtained when
the fixed core losses equal the variable copper losses. Under these
conditions the primary load current is, from (4.29), I, =./(Po/R) and the
efficiency is then

|2/ (PoR)

max = 4.30
1 Vicos¢ (4.30)

The maximum possible efficiency is attained when the power factor, cos¢,
becomes unity in the above expression.

In practice, transformer efficiencies range between 959 for small, single-
phase units to better than 989/ for large, three-phase units of the type
employed in power distribution systems.

414 The autotransformer
Figure 4.23(a) shows a conventional two-winding transformer,
with a primary/secondary turns ration of 2. We assume that the transformer
isideal. The primary is supplied from the 240V a.c. line. The voltage across
the secondary winding B'C’ is then 120V and a 10 ohm load resistor will
draw a secondary current of 12 A. The corresponding primary current is
6 A. The primary current is downward and the secondary current is upward
as indicated by the arrows.
Now let point C and C’ be connected together and let point B’ be
connected to point B, which is located midway between points 4 and B (so
that the number of turns between A and B is equal to the number of turns

Fig. 4.23. Currents in a two-winding transformer, and an
autotransformer with identical input and load conditions.

240V 240V
A
6al s 120 V
B
12A 10 2 10 £
C C

Ny N, (N|/Ny=2)

(a) Two-winding transformer (b) Autotransformer
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between B and C). These connections will cause no change in the circuit
because Ve= Vi and the two voltages are in phase. Let winding B'C’ be
removed. The new situation is shown in fig. 4.23(b) with currents as
indicated; the net upward current in BC is now 6A. By using the
connections of fig. 4.23(b), we have replaced two windings carrying,
respectively, 6 A and 12A by a single winding carrying 6 A. We have
eliminated the weight and cost of the secondary winding without affecting
the transfer of energy from primary to secondary. (In addition, we have
eliminated the loss of energy resulting from the resistance of the secondary
winding, although this was assumed to be negligibly small in this case.) The
transformer shown in fig. 4.23(b) is an autotransformer.

Because the currents are in opposite directions in the two halves of
winding AC, it is the traditional approach to call section AB the primary
and section BC the secondary. With these definitions it follows that for fig.
4.23(b)

Power in primary = (120 V)(6A)=720 W
Power in secondary=(120V)(6 A)=720 W
Load power=(120V)(12A)=1440W

Thus we may say that for this transformer ratio half the power is
transformed and half the power is supplied conductively from the input
directly to the load.

Let us now generalize our approach by considering the autotransformer
of fig. 4.24, where the two segments of the winding have, respectively, N,
and N, turns. Let N,/(N | + N;)=m. The two segments of the winding carry
the same flux, hence by the arguments leading to (4.13) the voltage ratio
will be

Va_ N,

Va_ N2 _ 4.
Vi N,+N, 431)

Fig. 4.24. Circuit model for an autotransformer with variable output
voltage.
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Also, from the arguments leading to (4.14) we have
I,N,=I,N,=(I,—1I))N,

or
I;(N;+Nz)=I.N,

Hence the current ratio is:

I} N;,+N, 1

S L 4.32

11 N2 m ( 3 )
The current I, in the N, turns may be written

L=I,-1,=1I,—ml,=(1—-m)I, (4.33)

As m—1 the current I, becomes smaller and is zero when m=1,
corresponding to a direct connection between terminals 4 and B. As m gets
smaller, I,—I;, and the saving resulting from the use of the auto-
transformer becomes negligible.

If the point B in fig. 4.24 is moveable, then the autotransformer is a
convenient source of variable alternating voltage. A common type of
autotransformer designed for use in electronics laboratories has the
winding configuration shown in fig. 4.25. By adjustment of the moveable
tap the user may obtain output voltages from zero to a few volts above the
line voltage.

Although the circuit diagram of the autotransformer resembles that of
the resistance-type voltage divider, the principles of operation of the two
circuits are quite different. In the voltage divider a substantial fraction of the
input power appears as heat in the resistor. Except for small losses all the
input power to the autotransformer appears in the load.

Care must be exercised in using the autotransformer because there is a
direct connection between input and output. When they are used in the

Fig. 4.25. Autotransformer connections to provide output voltage
greater than input voltage.

4——O

Vi
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laboratory, autotransformers often are supplied from a unity turns ratio
isolating transformer as a safety measure.

Autotransformers find applications in power systems where small
voltage changes are required. For example, if it is desired to get 2000 volts
from a 2400 volt line, one may use an autotransformer with
m=2000/2400=5/6. Such a transformer is considerably cheaper in first
cost and in operation than a conventional two-winding device. The lack of
isolation between primary and secondary is of no concern in this
application.

415 Maximum power transfer

The transmission of an a.c. signal through an electrical network is
accompanied inevitably by a loss of signal power, and it is often important
to ensure that the loss is as small as possible. We now consider the factors
affecting the transfer of power from one section of a network to another, and
derive the conditions for which the power transfer is a maximum.

In fig. 4.26 a practical voltage source is shown connected to a load. The
source may represent an actual signal source, for example, some form of
inductive or capacitive transducer, or it may be the Thévenin equivalent ofa
section of a complex network. Likewise, the load Z may be the equivalent
impedance at the terminals of a complex network to which the transducer
or first network is connected. It is shown below that the efficiency of power
transfer depends only on the relative values (magnitudes and angles) of the
source and load impedances.

For the circuit of fig. 4.26

o Vv o 14
" Zo+Z (Ro+R)+j(Xo+X)

Fig. 4.26. Basic circuit for derivation of the maximum power transfer
theorem.

Z,=Ry+iXo
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S0,

vV
1= R TR+ Ko+ X7

Therefore, power to the load is

P=I*R= V'R (4.34)
T T (Ro+RPF+(Xo+ X) ‘

We now assume that Z, is fixed while Z is variable. There are three cases
to consider appertaining to the way in which the load Z is constrained to
vary.

Case 1: R and X are independently variable.
In this case, since X appears only in the denominator of (4.34), the value
of X that maximizes P is

X=—-X, 4.35)

This means simply that the circuit must be brought to a state of
resonance to maximize power transfer.
The power is then

V2R

P=—
(Ro +R)?

To find the optimum value of R, we differentiate this expression, set
dP/dR =0 and solve for R. This gives

R=R, (4.36)

So, if both the resistance and reactance of the load are adjustable,
maximum power is delivered to the load when the load impedance Z is the
complex conjugate of the source impedance Z,, that is,

Z=1Z, 4.37)

The relationship (4.37) is referred to as the maximum power theorem, and
the load is said to be matched to the source. For this condition, equal
amounts of power are absorbed by the load and the internal resistance of
the source, and the efficiency of the system is at best only 50%,. It will be
obvious from (4.35) that, if the source contains reactance, matching can be
achieved only at one particular frequency.

Case 2: R is variable, X is fixed.

To find the optimum value of R we may differentiate the expression (4.34)
directly, however, it is somewhat easier to rearrange this expression so that
R appears in the denominator only; thus
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2
P= 4 (4.38)

%[(R0+R)2+(X0+X)2]

The value of R that maximizes the power is then found from

%[%+2RO+R+%(XO +X)2]=0
or
R=/[Ro*+(Xo+X)] 4.39)
In this case the efficiency of power transfer is less than 509/,

Case 3: magnitude of Z is variable, angle of Z is fixed.
The angle of Zis tan™ !(X/R)=constant, therefore X/R =constant =g, say,
or X =aR. Substitution in (4.38) gives

V2

pP=
[(Ro-+ R +(Xo-+aR)]

Setting the differential of the denominator of the above expression to zero
(as in Case 2 above) yields

R2 +X2=R02+X02
or, taking the square root of both sides of the expression,
Z=Z, (4.40)

For this case we see that we must set the magnitudes of the source and load
impedances equal to obtain maximum power transfer. Again the efficiency
is less than 509%,.

The impedance transforming property of the transformer (equation
(4.15)) may be utilized to achieve the condition specified by (4.40). For
example, if the generator impedanceis 8 + j6 so that Z =10, and if the load
is a pure resistance of 2100 Q, then maximum power will be delivered to the
load if a transformer is employed such that:

N,V 2100 N,
N2y et —2 - /210=14.49
<N1> o N

In practice the turns ratio must be a whole number so we choose a ratio of
either 14 or 15. The curve of P versus Z has a broad maximum rather than a
sharp peak, therefore, either ratio would be equally satisfactory. For the

same reason the assumption of an ideal transformer (implicit in the use of
(4.15)) will not in practice give rise to any significant error.
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220 Power and transformers in single-phase circuits

Matched conditions may also be achieved by inserting between source
and load a two-port network the elements of which are arranged to provide
the requisite impedance transformation. If the elements are purely reactive,
no power will be absorbed by the network itself. An ‘L-section’ combination
of inductance and capacitance may, for example, be used to match a
resistive load to a resistive source, as indicated in fig. 4.27. Values of Land C
may be found such that the impedance Z ,5 looking into terminals AB will
equal the source resistance R, when the two port is terminated by load

resistance R. For this matched condition we have

R(1/jC)

Z =R =1 L _
ap=Ro=JOL+ oo C

which gives
Ry +jooCRRy =R —w*LCR+jwL

Equating real and imaginary parts:

Ro=R—w?LCR or LC=—5—
and

L

wCRRy=wL or E=RR°

Combining these expressions we obtain
1 R—R,
C=—
wR < R )

- J55)

(4.41)

Fig. 4.27. Matching source and load by means of a reactive two-port

network.,

Vi sin @t T

Source Two-port Load
network
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Note that these expressions are functions of w; matching is achieved,
therefore, at one particular frequency only. A result identical to (4.41) is
obtained by putting Z.,=R.

t4.16 The transformer bridge

Impedances of like kind may be compared by means of a
conventional four-arm, a.c. bridge (section 3.10) using the circuit shown in
fig. 4.28(a). Resistances R, and R, form a voltage divider across the a.c.
source and the standard impedances Z; and the unknown impedance Z,
are placed in opposite arms. If the impedances can each be represented by a
series combination of resistance and reactance, the balance conditions are:

Ry _Z; R3+jX,
R, Z, R,+jX,

which gives

R, R X,

=_2-23 442
R, R, X, (442)

Two difficulties arise in connection with the use of such a bridge in
practice. Firstly, from (4.42) we see that in order to evaluate the unknown
reactance X, and resistance Ry, the ratio R /R, must be known accurately.
If, however, the bridge is to be used for comparing a wide range of values of
impedance against a single standard impedance this ratio must be
adjustable over a correspondingly large range. But it is technically difficult
and expensive to manufacture precision resistance ratio arms that can be
made variable over a wide range, and in practice the range of the bridge

Fig. 4.28. A.C. bridges using: (a) resistance ratio arms; (b) inductively
coupled ratio arms.

(a) (b)
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222 Power and transformers in single-phase circuits

must be extended by providing a large number of different standard
impedances.

The second difficulty that arises in connection with the circuit of fig.
4.28(a) is the presence of stray capacitances across the two resistance arms
(indicated by the dotted components) which will have the effect of altering
the balance conditions in an unpredictable way.

Both of these difficulties may, to a very large extent, be circumvented by
the arrangement shown in fig. 4.28(b) in which R, and R, have been
replaced by a pair of coupled coils. The coils are closely wound on a core of
high permeability so that the coupling coefficient closely approaches unity.
If for the moment we assume that the windings have negligible resistance,
the two coils will behave like an ideal transformer and the voltages E; and
E, across the coils will be in direct ratio to their turns, that is,

El_Nl

= 443
E, "N, (4.43)

Now with corresponding ends of the coils arranged as shown, and taking
E, and E, as phase reference, we may write

1,Zy+ (I, - L,)Rp=E,
4.44
(I ~1)Rp+1,Z,=E, @4
Where Rp is the resistance of the detector.
At balance the current in the detector is zero, that is, I, and I, must be
equal in magnitude and phase, hence from (4.44) and (4.43) we obtain

Z3_E1 _Nl
Z, E, N,
or
Ni_Ry X @.45)
N, R, X, ’

We see from this expression that the balance condition is dependent only
upon the ratio of the turns on the two coils, which can be fixed in
manufacture to very high precision and which, unlike resistance ratio arms,
is not subject to the influence of temperature changes or ageing of the
components. Moreover, by providing tapping on the two windings at
suitably arranged intervals the bridge ratio may be changed in precisely
defined steps over a very wide range.

Animpedance connected across either of the windings will draw current,
but because the ratio of the voltages across the two windings is fixed by the
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The transformer bridge 223

turns ratio, the bridge balance will remain unchanged. Stray capacitances
across the windings will, therefore, have no effect on the operation of the
bridge. Also, at balance, both points P and Q will be at the same potential so
if P is connected to earth, stray capacitances from these points to earth will
also have no effect.

So far we have assumed that the resistances of the two coils are zero and
that the coupling between them is perfect. In practice there will be resistance
and leakage reactance associated with both windings so that current drawn
by an additional impedance connected across one coil will produce a
voltage drop. This drop however will, by transformer action, cause a drop
in the other coil and by proper design the two can be made to compensate
so that the ratio of the voltages across the coils remains virtually
unchanged.

A practical form of the transformer ratio-arm bridge is shown in fig. 4.29.
In this circuit two transformers are used each having an additional winding,
to which source and detector are connected. This arrangement avoids earth
loops which might affect bridge balance, and allows the various sections of
the bridge to be more efficiently screened from one another.

At balance the two currents flowing through Z; and Z, create equal and
opposite ampere turns in the transformer on the detector side of the bridge.
Thus, by arranging a series of tappings on this transformer the bridge ratio
may be further multiplied, and an overall ratio ranging from 1 to 10° may be
readily achieved. A single adjustable standard usually suffices for this type
of bridge. A further advantage of this arrangement is that by connecting the
standard to the opposite side of the transformer on the detector side, as
indicated by the dotted line, it is possible to compare unlike impedances;
thus, an inductive impedance may be measured using a capacitance
standard. The parameters of three-terminal networks, both active and
passive, may also be conveniently measured with this type of bridge.

Fig. 4.29. Practical form of transformer bridge.

Z, standard

2 g

Z, unknown
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224 Power and transformers in single-phase circuits

The transformer bridge allows impedances to be compared in the
frequency range 1-10 kHz with a precision typically of 1 part in 104, and a
precision of better than 1in 10° is achievable. By the use of ferrite cores in
the construction of the transformer, measurements may be made at
frequencies of up to 250 MHz with a precision of a few per cent.

417 Summary

In a network containing reactive as well as resistive elements the
voltage V and the current I at a pair of terminals will, in general, differ in
phase by some angle ¢. The current may be resolved into two components:
a component Icos¢, called the in-phase current, and a component Ising,
called the quadrature current. The product of voltage and in-phase current,
gives the power at the terminals:

Power =VIcos¢ watts 4.3)

This quantity is called the real (or active) power to distinguish it from two
other related quantities:

Reactive power = Vising vars (4.4)
and
Apparent power=VI volt-amperes 4.5)

The real power is simply the apparent power multiplied by cos¢ - the
power factor. For a purely resistive network the power factor is unity while
for a purely reactive network it is zero. The relationship between real,
reactive and apparent powers may be shown diagramatically by means of
the power diagram or power triangle (fig. 4.4). It is also sometimes
convenient to express the relationship in complex form:

S=P+jQ (4.10)

where S is the apparent power, P the real power, and Q the reactive power.

The principle of conservation of energy applies to both real and reactive
powers, which implies that the total real power flowing into a network must
equal the sum of the powers dissipated in the individual resistances within
the network; likewise the total reactive power must equal the sum of the
reactive power associated with the reactances within the network. (Prin-
ciple of conservation of watts and vars, equation 4.9.) Reactive powers
associated with inductance and capacitance carry opposite sign for the
purposes of calculating total reactive power.

When energy is drawn from a distribution system, it is desirable to
operate at unity power factor because the current requirement for a given
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power delivered is then a minimum. Industrial loads are predominantly
inductive and, therefore, draw a lagging current. Connection of a capacitor,
drawing a leading current from the supply, will reduce the total reactive
power thereby improving the power factor. Such improvement is often
economically justifiable in the case of large industrial power consumers.

The transformer is of fundamental importance as a component in power
distribution systems; it is also used in electronic and communications
equipment of all kinds. The analysis of the transformer as a circuit element
is greatly simplified by reference to the loss-free ideal transformer in which
the voltage ratio is in direct proportion to the turns ratio between primary
and secondary windings and the current ratio is in indirect proportion to
the turns ratio (equations (4.13) and (4.14)). Real transformers may then be
characterized by circuit models based on the ideal transformer with
components added to account for winding resistances, leakage inductances
and an exciting current. By employing the impedance transforming
properties of the transformer, a simplified circuit model may be derived in
which all elements are referred to either the primary circuit or the secondary
circuit. This results in a circuit model consisting of just two series elements
and two shunt elements (fig. 4.18). These elements may be determined
experimentally from simple short-circuit and open-circuit tests.

In electrical and electronic circuits intended for signal transmission it is
important to ensure that the loss of signal power is as small as possible.
Optimum power transmission between a source of impedance Z, and a
load impedance Z is achieved by matching source to load according to the
maximum power theorem:

Z=2Z 4.37)

where Z," is the complex conjugate of Z,. For purely resistive circuits this
condition implies that source and load resistances should be the same. The
impedance transforming properties of the transformer or combinations of
reactive elements can be utilized to achieve matched conditions.

418 Problems

1. For the circuit of fig. 4.30 determine.
(a) the power dissipated in each branch of the circuit.
(b) the watts and vars to the whole circuit.
(c) the power factor of the circuit.
2. Find in the circuit of fig. 4.31 the pure reactance or reactances X that will
make the overall power factor 0.8.
3. A load which takes 3 MW at 0.6 power factor lagging is fed by a line
whose inductive reactance is five times its resistance. In order to provide a
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load voltage of 75kV it is found that the input to the line must be 90 kV.
Find the line current.

If a capacitor is connected in parallel with the load to bring the power

factor to 0.9 lagging, what must then be the input voltage to the line?
4. Two impedances, Z; and Z,, are connected in parallel. The resistive
component of the first branch is 5Q. When the parallel combination is
connected to a supply voltage of 240V, the first branch takes a lagging
current of 21.5 A and the second branch takes a leading current at power
factor 0.6. The total power supplied is 3.69 kW.

Determine:

(a) the branch and total currents.

(b) the impedances of the two branches.

(c) the impedance of the parallel combination.

(London University)

5. If the alternating voltage across a certain load is represented by the
complex number Vand the alternating current through the load is given by
I, demonstrate that the power is the real part of either VI* or V*I.

A voltage of (100sinwt + 20sin(2wt + 7/2)) is applied to a circuit consist-
ing of a resistor and a capacitor in series. The impedance of the circuit at
angular frequency w is (10—j20) ohms. Calculate the r.m.s. current, the
power dissipated and the reactive power.

(Oxford University)

Fig. 4.30. Circuit for problem 1.

10 2 45 Q

AN—TT
130Q 80
150vI§9
26 Q 20
) I

Fig. 4.31. Circuit for problem 2.

o—— X}
39% 1Q
40
|

10 Q2
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6. In the circuit shown in fig. 4.32 the transformer is to be assumed ideal
with turns ratio 1:2.

(a) Show that at angular frequency w=10%rad/s the current I, is in
phase with the voltage across the transformer secondary winding.

(b) Given that I,=2A at 100rad/s determine the magnitudes of the
currents I, I, and I; and their phase angles relative to the current 1.
(London University)

7. Describe briefly how an equivalent circuit for a power transformer can
be derived from measurements made in open- and short-circuit tests.

A 415/240V, 50 Hz, single-phase transformer has winding resistance
0.15Q and leakage reactance j1.0Q, both referred to the high-voltage
winding,

Estimate the terminal voltage on the low-voltage winding when the
transformer supplies the following load from a 415V source:

(a) a resistance of 6 Q.

(b) a resistance of 6 in parallel with a 500 uF capacitor.

(Cambridge University: First year)
8. The maximum efficiency for a single-phase, 50 Hz transformer rated at
1000k VA, 2000/250V is obtained when it is supplying, at the secondary
side, 709 of full load at unity power factor and 250 V. The following data
are available for the transformer:

Turns ratio, 8:1.

Primary winding resistance, 0.04 Q.

Secondary winding resistance, 0.001 Q.

Leakage reactance referred to the primary winding, 1.04 Q.

Estimate the maximum efficiency and calculate the magnitude of the in-
phase component of the current when the secondary winding is on open
circuit. Estimate also the readings on the measuring instruments used in a
test on the transformer with full-load current in the primary and secondary
short circuited.

(Cambridge University: Second year)

Fig. 4.32. Circuit for problem 6.
25Q 1, SH I

[
100 @ = §1kg
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9. How are the Thévenin and Norton equivalents of a two-terminal
network related to each other? Show that if a load is connected at the two
terminals, the calculated load current is the same, whichever equivalent
circuit is used.

In the circuit of fig. 4.33 the resistor R is adjusted until it dissipates
maximum power. Find:

(a) the ohmic value of R.

(b) the current and power in R.

(c) the total power drawn from the 8 V and 2 A sources.
(Newcastle University)
10. A vibration measuring instrument is equivalent to a 10 mV source in
series with an impedance of (900 +j1200) Q. What is the maximum power it
can supply to an amplifier whose input impedance is an adjustable resistor?

What would be the maximum power if a suitable capacitor were
connected in series with the input? What should be the value of this
capacitor if the vibration frequency is 1kHz?
11. A practical voltage source has an output voltage of E on open circuit
and an internal impedance of Z; =R, +jX,. It is connected to a load
impedance Z,=R,+jX,, whose magnitude may be changed without

Fig. 4.33. Circuit for problem 9.
4Q R

MV—r—"VW—r

8V+<P 120 5Q @TZA

Fig. 4.34. Circuit for problem 12.
Zr

IgT 10 Q ZL
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change of angle, i.e. #=tan™!(X,/R,)=constant. Show that maximum
power transfer from source to load occurs for the condition:

1Z2]=[Z4].

An electromechanical vibration transducer has an impedance of
(500 +j600)Q and an output of 0.2mV on open circuit. It is to be
transformer-coupled to an amplifier having an input resistance of 100 k<.
Determine the transformer turns ratio required to establish the maximum
voltage at the input of the amplifier. What is the magnitude of this voltage?
It may be assumed that the transformer is ideal.

(Cambridge University: Second year)

12. In the circuit shown in fig. 4.34, a variable load impedance Z, is
supplied through a transmission line Z;=(5+j12)Q from a voltage
generator ¥, =10/60° and a current generator I,=5/0.

(a) Determine the value of impedance Z; to absorb maximum power.

(b) Calculate the power absorbed by the load calculated in part (a).

(Sheffield University: First year)
13. A 1.0 MHz generator having an open-circuit voltage of 10V and an
output resistance of 50 Q supplies a variable impedance R +j X, as shown in
fig. 4.35(a). Derive an expression for the maximum power P,, which can be
supplied to the load, and find the corresponding values of R and X.

Fig. 4.35. Circuit for problem 13.
50 50 Q L

10V R +X 10V 5k

(@) G))

Fig. 4.36. Circuit for problem 14.

PR
Z
100 £2
Z, 10 2
-— |
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Show that the circuit shown in fig. 4.35(b) can be so designed that the
power delivered to the 5.0 kQ resistor has the same value P,,,, and determine
the appropriate values of L and C.

(London University)

14. In the circuit of fig. 4.36 the network of pure reactors Z, and Z, is to be
used to transfer maximum power from the signal generator of output
resistance 1002 on the load of resistance 10Q at an angular frequency of
10° rad/s. Find the components required for Z; and Z,.

In what ratio is the power supplied to the load reduced if the Z,, Z,

network is omitted?

(Cambridge University: Second year)

15. 1n the circuit of fig. 4.37 impedances are given in ohms at the operating
angular frequency w of the signal source S. Find the reactance of the
capacitor C which will give maximum power transfer to the 30Q load.
(Cambridge University: Second year)

Fig. 4.37. Circuit for problem 15.

c
e oL, =15
Al

10 Q ol ,=20

M
oM =16
Ll% él-z 30Q
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