2

Theorems and techniques of
linear circuit analysis

2.1 Introduction

By making the assumption that all of the elements in a circuit are
linear, the analysis is greatly simplified. Although all real circuits are non-
linear to some degree, in most cases a linear treatment gives sufficiently
accurate results, and even for circuits containing highly non-linear
elements, methods can often be devised for dealing with them on a linear
basis. It is for these reasons that the study of linear circuit theory is of
paramount importance in electrical engineering science.

The theorems and techniques of linear circuit analysis presented in this
chapter, while being of general usefulness and validity, are developed in the
context of d.c. circuits. The advantages of this approach are twofold: firstly,
the theory can be developed on the simplest possible basis and in terms
which will be familiar to most students. Secondly, the study of d.c. circuit
theory is of great practical importance in its own right since it arises in many
branches of power and electronic systems analysis.

D.C. linear circuits comprise assemblies of linear lumped resistances
together with ideal direct voltage and current sources. The theory
appertaining to such idealized circuits is concerned with real situations
since many types of source found in practice, a battery for example, can be
represented to a good approximation by an ideal source in combination
with a lumped resistance.

A typical voltage-current characteristic, or load characteristic, for a
practical voltage source is shown in fig. 2.1(b). The terminal voltage V falls
with increasing load current I, but over a certain part of the working range,
between points AB, the characteristic can be represented by a straight line.
Over this region the voltage-current relationship is of the form

V=Vo—IR, 2.1)

where R, is the negative of the slope of the straight line.
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The circuit model which gives precisely this relationship is shown in fig,
2.1(c). On open circuit (I =0) there is no voltage drop across Ry, and the
terminal voltage is V. When a load current is drawn, the internal voltage
drop is IR, and the terminal voltage falls by this amount. R, is called the
internal resistance, or output resistance, of the practical voltage source. It
must be stressed that the model of fig. 2.1(c), sometimes referred to as a
linear voltage source, is applicable only to practical sources that exhibit a
straight-line load characteristic.

Before proceeding it is necessary to define some of the terms used in
connection with the analysis described in this and subsequent chapters. A
number of these have already been introduced in chapter 1 but are included
here for the sake of completeness. The definitions given below are
illustrated with reference to fig. 2.2,

Node: An equipotential junction, formed by perfect conductors,
between two or more elements. A junction between three or
more elements, for example node B, is termed a principal node.

Branch: A path containing one or more series-connected elements

Fig. 2.1. Practical voltage source (battery). The linear lumped model is
valid for region AB of the load characteristic.

Load Current /

< %

1
(a) Battery (b ) Load characteristic (¢ ) Lumped model

Fig. 2.2. Illustrating network terminology.

Node A Node B Node C

Node E

Interior branch
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joining two principal nodes; for example, path BCDE. Path BE
is an interior branch.

Loop: Any connected, closed path in a circuit. The closed path
ABCDEA forms a loop.

Mesh: A loop which cannot be subdivided into smaller loops by
interior branches. The distinction between a mesh and aloopisa
rather fine one. Simply by redrawing a circuit it is possible for a
mesh to become a loop and vice versa. The loop shown in the
figure is divided into two meshes by interior branch BE. This
branch and branch BCDE may be interchanged, in which case
what was formerly mesh 1 becomes a loop.

Port: A pair of terminals, or nodes, in a network, through which
connections are made to external sources or other networks.
Network or circuit: Used in this text interchangeably. In more
advanced analysis, a distinction is sometimes made (see for

example reference 2).

2.2 Voltage and current dividers
Voltage and current dividers form two of the most common

building blocks of electrical circuits. The basic voltage divider (also called a
potential divider) is shown in fig. 2.3(a). With voltage V across terminals
PQ, voltages V, and V,, are established across resistances R, and R,. These
voltages may be related to V by the methods discussed in section 1.7.

The combined resistance of R, and R, in series is R, + R, therefore, the
current is V/(R,+ R,) and the voltage across R, is given by

Fig. 2.3. Divider circuits.

+ oP

Vv
+
Ry § Vi
o0 ©Q
(a ) Voltage divider (b ) Current divider
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R
V,= . 2.2
“ R,+R, 22)
Likewise,
R,
V= Vv .
"=R TR, (2.3)

We see that in each of these expressions the voltage V is divided in the
ratio of the particular resistance concerned to the total resistance.

The current divider is shown in fig. 2.3(b). To establish the relationships
between the main current I and the branch currents I, and I,, we observe
that the voltage across PQ is the product I(R,//R,)=IR,R,/(R,+ R;) (see
section 1.7.3 for ‘product-over-sum’ rule). Therefore, the current through R,
is given by

IR,R, 1 R,

““R,+R, R, R,+R,

(24)

Likewise the current through R, is

_IRR, 1 R,
»“R,+R, R, R,+R,

In this case each branch current is found by taking the fraction of the total
current equal to the resistance in the opposite branch divided by the sum of
the branch resistances.

The divider circuits shown in fig. 2.3, one a series circuit the other a
parallel circuit, are duals (see section 1.12). This will be readily apparent if
(2.4) is expressed in terms of the conductances G,=1/R, and G,=1/R;:

1/G,

— I= G"
“~1/G,+1/G,

T G,+G,

1 (2.5)

Comparing (2.2) and (2.5) we see that these expressions are of similar form
with voltage and current interchanged and resistance and conductance
interchanged.

Voltage dividers are used extensively in electronic and power circuits.
One common application, illustrated in fig. 2.4, is to provide a fixed or
variable degree of voltage control (or attenuation). An input voltage V, is
applied at the terminals 4 B (the input port) and a proportion of this voltage
V, is extracted at terminals CD (the output port). We might use the circuit
of fig. 2.4(a) for example, to measure a very high voltage utilizing a
voltmeter capable of measuring only a relatively low voltage.
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According to (2.3) the voltages at the input and output ports (fig. 2.4(a))
are related by

Rz

Vy=—2
2TR,+R,

v, (2.6)
R, and R, may be adjusted to provide the requisite division or attenuation.

In practical circuits the resistances R; and R, forming the two ‘arms’ of
the divider may each consist of combinations of separate series or parallel
elements, in which case, before applying (2.6) the appropriate reduction
formulae (section 1.7.3) must be used to find the two equivalent resistances.
In cases where the two arms of the divider contain elements connected
simply in parallel (see problem 3 at the end of this chapter) it is convenient
to express the divider relationship (2.6) in terms of conductances rather
than resistances. Let R, =1/G, and R, =1/G,, where G, and G, are the
total conductances in the two arms of the divider, then substituting in (2.6)
gives

1/G, G,

= = V
V2 1/G,+1/G, ' G,+G; '

2.7)

Note that G, now replaces R, in the numerator of the divider ratio.
It must be emphasized that (2.6) and (2.7) are true only if the terminals

Fig. 2.4. Two-port voltage divider circuits.

A C
o—— AW 5
+ 1 +
R (==
=)
1
vV, R, (= (—;;) g V,
o 0 o ’ o}
B D
(a) Fixed (b) Stepped variable
O- ¢ -0

(c) Continuously variable (potentiometer)
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CD are open circuit. Generally, the output port will be connected to some
other circuit which will draw current, and this must be taken into account
when calculating the attenuation. If R is the effective resistance presented by
the external circuit to the output port, then (2.7) becomes
(R,//R)
Vio=r—"———V 2.8
"R+ Ry//R) %)
The circuits shown in fig. 2.4 fall into the general category known as two-
port networks; these are discussed in chapter 8.

2.3 Mesh analysis

The general objective in circuit analysis is the establishment of a set
of equations relating the circuit variables, voltages and currents, in terms of
the circuit elements. This is achieved using Kirchhoff’s two laws. The
solution of these equations yields specific expressions for each of the circuit
variables. In mesh analysis source voltages are specified and are treated in
the equations as the independent variables; solutions are found for the
currents in every branch, these being treated as the dependent variables.

The principles involved in mesh analysis may be illustrated with
reference to the single-mesh circuit shown in fig. 2.5 in which source
voltages V, and V, and elements R; and R, are specified.

First, the current [ is assigned (fig. 2.5(b)) and then Kirchhoff’s voltage
law (KVL) is used in either of the forms (1.14) or (1.15) to write down the
circuit equation. Choosing the latter, and traversing the circuit in a
clockwise direction starting at point A, we have:

Zv=0 (1.15)

Fig. 2.5. (a) Single-mesh circuit. (b) Circuit with assigned current and
resulting voltage drops.

Rl R1
A A=
+(IR,)

+ + +
e Ov, vt (1N G,
R2 R2
AV Al 1A\ e

(UR,)
(a) b)
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that is
+ VI—IRI—VZ—IRZ =0

In this equation a rise in potential is indicated by a positive sign, a fall by a

negative sign. (Strict adherence to the conventions discussed in section 1.3

and 1.4 is necessary when setting up circuit equations of the above form.)
On rearrangement of this equation we obtain:

V=V
j=1= "2

29
R.TR, (29)

If, in (2.9) V, is numerically greater than V|, the current is negative; this
simply means that the direction of the conventional positive current in the
circuit will be in the opposite sense to that assigned.

The above procedure for the analysis of a single-mesh circuit may be
readily extended to circuits containing two or more meshes. Fig. 2.6 shows
an example of a two-mesh circuit in which R; is common, or mutual, to
meshes (1) and (2).

Two possible ways of assigning currents are shown in figs. 2.6(b) and
2.6(c). In the first and perhaps most obvious, a current is assigned to every
branch in the circuit; in the second currents are assigned to meshes.

Considering first fig. 2.6(b) and applying KVL in the form (1.15), we have
for mesh (1), traversing the path ABCD,

Vl—IpRl—IrR:;:O (2.10)
and for mesh (2), traversing DCEF, we have
IrR3—IqR2—V2=0 (2.11)

In the above equations there are three current variables but these are not
independent since, by application of Kirchhoff’s current law (KCL) at node
C, we can see that I,=1,+1, or

L=I,—-1, (2.12)
Substituting (2.12) in (2.10) and (2.11) we obtain

LRi+(Up,~1)R3=V, (2.13)

IR, —(I,—I,)R3=—-V, (2.14)

Thus, in reality, there are only two independent variables and these may
be evaluated from (2.13) and (2.14). Having found I, and I, we may
determine the current in the mutual resistance R, using (2.12).

The two paths we have chosen here, to set up the two independent
equations necessary to achieve a solution, are not the only possible ones; for

https://doi.org/10.1017/CBO9781139170093.004 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139170093.004

Mesh analysis 49

example, we might have chosen instead of the mesh DCEF, the loop ABEF.
(Itisimportant to note that the paths chosen must be such that every circuit
element is traversed at least once.) The method we are discussing here is,
therefore, more generally termed loop analysis, but for circuits that can be
drawn on a flat surface to form a series of ‘windows’ (as in this example) a
more convenient and systematic solution is achieved by choosing meshes
rather than loops.

It will be evident from the foregoing argument that it is unnecessary to
specify every branch current when setting up the mesh equations; it is
sufficient to assign a current to each mesh as in fig. 2.6(c). The mesh currents
I, and I, are identical with the branch currents I, and I, in fig. 2.6(b), but in
the mutual element R; the actual current flowing from C to D, correspond-
ing to I, is (I, —I,). The relationship (2.12) is automatically satisfied and
the mesh equations may be written down directly in terms of the mesh
currents. This approach to mesh analysis was originally due to James Clerk
Maxwell and is sometimes referred to as Maxwell’s cyclic current method.

We now repeat the analysis using this method. In applying KVL in the
form (1.15) to any particular mesh we traverse the mesh in the direction of
the assigned current; where mesh currents meet in a mutual resistance such
as Rj, the appropriate current difference is taken to calculate the voltage
drop.

Fig. 2.6. (a) Two-mesh circuit; (b) with branch currents assigned; (c)
with mesh current assigned.

Rl C RZ E

MW

R,
+ + 5 +
Vi C) m(ll‘lz)Rs ilz—ll)RSQ <>‘/2 ©

A 3 F

https://doi.org/10.1017/CBO9781139170093.004 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139170093.004

50 Theorems and techniques of circuit analysis

Traversing mesh (1), path ABCD,
Vi—I1R,—(I;—1)R;=0 (2.15)
and traversing mesh (2), path DCEF,
—({I;—=1})R;—1,R,-V,=0 (2.16)

Note carefully the polarity of the voltage drops in fig. 2.6(c), and the order
in which the mesh currents appear in the difference terms. In (2.15), relating
to mesh (1), the first member of the term representing the difference current
in Rs is I; in (2.16), relating to mesh (2), the first member is I,. It may be
remarked also that, according to (2.16), there is no rise of potential in mesh
(2); this, however, is simply a consequence of the particular choices made
concerning direction of assigned current and direction of traverse.

The above procedures demonstrate the principles underlying mesh
analysis using either branch currents or mesh currents. In practical circuit
analysis it is useful to be able to write down the mesh equations in a
consistent fashion, and in a form requiring a minimum of algebraic
manipulation to reach a solution. This can be accomplished, using
Maxwell’s cyclic current method, by adopting two working rules:

Rule 1. Place all resistive voltage drops (products of current and
resistance) on one side of the mesh equation. These terms are
always positive.

Rule 2. Place all source voltages on the other side of the equation
attaching the appropriate () sign as follows: source voltages
acting in the same sense as the direction of the assigned mesh
current take a (+) sign otherwise they take a (—) sign.

Using these working rules (2.15) and (2.16) are written down directly as:

LiRi+(I,—1)R3=V,
Uz =I1)R3+ 1R, =—V,

Equations of this form, in which voltage drops appear on one side and
source voltages on the other, are sometimes referred to as balance
equations.

2.4 Worked example

Two batteries of nominal voltage 12 V are connected to a charger
as shown in fig. 2.7(a). The charger has an open-circuit voltage of 14V and
an internal resistance of 1.2 Q. Before being placed on charge one battery
(A)has ane.m.f. (open circuit voltage) of 12.1 V and an internal resistance of
0.1 Q; the other battery (B) has an e.m.f. of 11.9 V and an internal resistance
of 0.15Q. At the end of the charging period the e.m.f. of battery (4) rises to
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12.6 V, and the e.m.f. of battery (B) rises to 12.5V. Assuming that the
internal resistances of the batteries do not change during charging, and that
batteries and charger can be represented by linear voltage sources,
determine: (a) the initial charging currents; (b) the final charging currents;
(c) the circulating current through the batteries when the charger is
disconnected.

Solution: The linear circuit model of the practical circuit is shown in fig.
2.7(b). Mesh currents I, and I, are assigned in a clockwise direction as
shown. Using the working rules presented above the mesh equations may
be written immediately as:

121, +0.1(I, - 1,)=14—-V,4
and

0.1(I,—-1,)+015I,=V,—Vp
Rearranging we obtain

(120+0.1)[, —0.1I,=14—V,
—0.111 +(0.1 +0.15)12= VA— VB

(a) Initial charging currents. Substituting the initial values of V4 and Vp
gives

1.31,-0.11,=1.9
—0.11; +0.251,=0.2

Fig. 2.7. Circuits for worked example. For battery (4): V4
(initial)=12.1V; V4 (final)=12.6 V. For battery (B): V3
(initial)=11.9V; Vp (final)=12.5V.

120 010
J:, L 0.15 2
Charger Battery Batte + m + m +
® —_—[L A % g uvOl 1 vy, Of 1, v,

(a) )

0102

(1

(c)

0.15Q

+ +
126V 125V
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Solving these for I; and I, (for example by Gaussian elimination and back
substitution) we obtain: I, =1.57A and I, =143A.

Therefore, the initial charging current in battery (4)is (I, —I,)=0.14 A,
and initial charging current in battery (B) is I,=143A.
(b) Final charging currents. Substituting the final values of V, and V;y we
obtain

1.31,—-0.11,=1.4

giving: I, =1.14 A, and I,=0.86 A.

Therefore, the final charging current in (4) is (I, —1,)=0.28 A, and final
charging current in (B) is I, =0.86 A.

(c) Circulating current. With the charger disconnected, the circuit reduces to
that shown in fig. 2.7(c) for which the mesh equation is

0.1+0.15)I=126—-125=0.1

giving: I=04A.
Note that this last result implies that energy is being transferred from
battery (A4) to battery (B).

2.5 The general mesh equations
When analysing a network containing a large number of meshes, it
is advantageous to adopt a systematic approach to the formulation and
solution of the mesh equations. These formal procedures will now be
considered with reference to the three-mesh network shown in fig. 2.8.
With mesh currents assigned as shown and using the working rules
enunciated previously we obtain:

for mesh (1)

LRy + (I —I3)R3+ (I —)Ry =V, -V,
for mesh (2)

LRy+ U2 — IR+ (I —I3)Rs=—V3+ 7V,
for mesh (3)

(Is—I3)Rs+(Is=1))R3=—V,
Upon rearrangement these equations become:

(Rl +R2 +R3)11—R212—R3I3=V1— V2
—Rzll+(R2+R4+R5)12—R5I3=V2—V3
—R3I ~Rsl;+(R3+Rs)l3=—V,
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These mesh equations conform to a standard pattern and it is often
convenient to use a formal notation for their description and manipulation.
Let

Rll =R1 +R2+R3
Riz=-R,
R;3=—R; and so forth.

Then we obtain:

Ry li+ R +R =V, - V,=V),
Ry + Ry I, + Rys3l3=V, = V=V, (2.17)
R3 11+ Rl +Ryzl3=—Vy=V3;

The coefficients Ry;, R,,, R33, lying along the leading diagonal of the
array formed by the terms on the left-hand side of the equations, are called
the self resistances; each is the sum of the separate resistances contained in
the mesh indicated by the relevant subscripts. The coefficients R,,(=R3;),
R,3(=Rj,)etc., are symmetrically disposed about the leading diagonal and
are called the mutual resistances since each is the resistance in the branch
shared by the meshes indicated by the relevant subscripts. The mutual
resistance terms are all negative if all cyclic currents are assigned in the same
direction. Finally, notice that V,, V,,, and V33, are the net e.m.f.s acting
round each of the meshes indicated by the attached subscripts. The
extension of this formal notation to networks containing meshes of higher
number than three will be obvious.

Various techniques are available for solving linear simultaneous equ-
ations of the form represented by (2.17). For only a small number of

Fig. 2.8. Example of a three-mesh network.
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equations, a numerical solution would generally be obtained by means of
Gaussian elimination and back substitution. A large number of numerical
equations would be solved by standard routines available on most digital
computers.* For the present purposes the method of determinants will be
used. This will enable us to deduce the solution of (2.17) in symbolic form,
and at the same time will allow us to introduce the notation and methods
required to develop several important circuit theorems.

The solution for I, may be written as the ratio of two determinants, thus,

Vi1 Ryz Rys
Va2 Rya Ry3
V33 Rz Rj3
Ri1 Ryz Rys
R31 Ry; Rys
R3; R3; Rj;

I, (2.18)

Putting the determinant in the denominator equal to A and expanding
using Cramer’s rule we obtain

I _YL R22 R23 _KZi R12 R13 Eﬁi R12 R13
"7 A [Rsz Rss| A [RyzRss| A Ry Ry
All A21 A31
=V ———Viy—+Vis— 2.19
11 A 22 A 33 A ( )
R,, R
where A;; = 22 R 231 is the minor of A, that is, the determinant remaining
32 fh33

when the first row and first column are deleted from A. Similar meanings
may be attached to A,; and A;;.

Now if the determinants in (2.19) are expanded, it will be seen that A has
the dimensions of (resistance)® whereas A,,, etc., have dimensions of
(resistance)?. Thus, we may write (2.19) as

Vir Va2 Vas (2.20)
ryg Tz Ty
where ry;, 114, r3; are coefficients having dimensions of resistance.

Solutions for currents I, and I; are found in a similar fashion. The
general equations and solutions for a network containing any number of
meshes are presented in Appendix B.

* A program, written in BASIC, for solving simultaneous equations is listed in
Appendix C.
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2.6 The superposition and reciprocity theorems

2.6.1  Superposition
Returning again to the single mesh circuit of fig. 2.5 and its solution
(2.9) we see that the current may be written

W 23
"R,+R, R,+R,

I

The term V /(R + R;) represents a current due to V, acting alone and
which flows in a clockwise direction, while the term V,/(R; + R, ) represents
a current due to V, acting alone and flowing in a counter-clockwise
direction (indicated by the negative sign). The actual current [ is formed by
the superposition of these individual currents.

The same superposition principle is evident in the solution (2.20) for the
current I, in the three-mesh network. This may be written in full as

Vi Vs Ve,V Ve

Fin Ty T2y T Ty

ri rie ray a1 T3y

We see that I, is composed of four individual currents, each due to one of
the voltage sources acting in the circuit alone. Each of the individual
currents depends only on the value of the relevant voltage source, and is
independent of the values of the other voltage sources acting in the circuit.
The general proposition demonstrated by these two examples is embodied
in the superposition theorem which may be stated as follows:

The total current flowing in any branch of a network containing ideal
voltage sources is equal to the algebraic sum of the currents which would flow
in that branch if each of the ideal voltage sources in turn acted alone, the other
sources being reduced to zero. (A formal proof of this theorem is contained in
Appendix B.)

It follows from this theorem and Ohm’s Law that the voltage between
any two nodes in a network is equal to the algebraic sum of the voltages
arising between those nodes due to each of the voltage sources in the
network acting alone.

The superposition theorem is of considerable importance in the theory of
linear network analysis since it provides a starting point for the develop-
ment of several other useful theorems and techniques. It is also sometimes
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used as a practical alternative to the method of mesh analysis for finding the
current in a specified branch of a network. To illustrate this we consider
again the circuit of fig. 2.6 (repeated in fig. 2.9(a)). To find the current in, say,
the branch CD containing R; we determine the current in this branch due to
each of the sources V', and V, acting alone. Let I, be the current due to V,
with V, reduced to zero as in fig. 2.9(b). (Note that V, is reduced to zero by
replacing it with a short circuit not by open circuiting the branch EF.) In
this modified circuit we see that R, and R; form a parallel combination
whose resistance is given by R, R3/(R, + R3). The total resistance across V,
is therefore R, + R, R3/(R, + R3) and the current delivered by the source ¥,
is given by
Vi
Ry +R3R3/(Ry +R3)

Now R, and R; together form a current divider hence, by (2.4), the current
I, is given by the fraction of the total current equal to R,/(R, + R3), that is

I vy ._Rs

"“Ry+R,R;/(R,+R3) R,+R;
or

I R,V,

1_R1(R2+R3)+R2R3

Fig. 2.9. Tllustrating the superposition theorem.
R, C R,

E B K, c K E
AMNV—— AW AMN—— MWW
11
+ + +
C) R3 C>v2 Vl% R3 " V2=0
F A D
2

=]

A 5 D F
(a) )
R R
B 1 C 2 E
AW
I
| +
v,=0]" R, Ov,
A D F
(c)
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Similarly, with V, acting alone as shown in fig. 2.9(c), the current I, is given
by
RV,
R2(R; +R3)+RR;

12=

The total current when both sources act together is, according to the
superposition theorem, (I, + I, ) directed from C to D. The same result may,
of course, be obtained by solving (2.15) and (2.16) for the two mesh currents
and taking the appropriate difference. Generally speaking, the use of the
superposition principle in practical problems is of advantage only when it is
desired to find one particular branch current in a network involving not
more than two or three meshes.

The superposition principle is a direct consequence of the properties of a
linear network. Consider the situation depicted in fig. 2.10 in which I and
I, are the contributions to the total current I which flow in one branch of a
network as a result of sources V', and V, acting together in that network. In
the linear case (fig. 2.10(a)) we see that each individual contribution is
unaffected by the value of the source voltage producing the other. In other

Fig. 2.10. Voltage—current characteristics of linear and non-linear
circuits. (a) Linear: voltages V, and V, produce currents I, and I,. (b)
V, reduced to zero, V, still produces I,. (c) Non-linear: response I, to
V, depends on value of V.
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words, V; could take any value including zero (fig. 2.10(b)) without
affecting the contribution I, due to V,. In the non-linear case, however, (fig.
2.10(c)) it is clear that the contribution I, to the total current is dependent
not only on V, but also on the particular value of V,. The current due to
each source acting alone cannot, therefore, be superposed to find the total
current when both act together.

2.6.2  Reciprocity
The reciprocity theorem states that:

The current produced in any one branch of a network by an e.m.f. acting in a
second branch, is equal to the current which would be produced in the second
branch if the e.mf. were transferred to the first branch.

Alternatively, we may state: the voltage produced at any one node of a
network by a current source acting at another node, is equal to the voltage at
the first node if the current source were transferred to the second node. A proof
of this theorem is presented in Appendix B.

Like the superposition theorem the reciprocity theorem can occasionally
save work in practical problems but it is mainly of value for the theoretical
insights which it can provide. An example of this will be encountered in the
theory of bridge circuits contained in section 3.10.

2.7 Thévenin’s theorem
According to Thévenin’s theorem any network consisting of linear
resistances and ideal sources, having two terminals 4B (fig. 2.11) may be
replaced by an equivalent network consisting of a single resistance Ry in
series with a single ideal voltage source Vr; in other words the network may
be replaced by a practical voltage source of the form shown in fig. 2.11(b).
The theorem asserts that: so far as any external network connected across
AB is concerned, the given network and its equivalent are indistinguishable if
Vryis made equal to the e.m.f. that would appear across AB on open circuit, and

Fig. 2.11. Thévenin’s theorem.

—1—0A
Network @
—1OB
B Z A
(a ) General linear network (b ) Thévenin equivalent network
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if Rt is made equal to the resistance that would exist between AB when all
sources internal to the given network are rendered inoperative. By ‘inoperat-
ive’ we mean that voltage sources must be replaced by short circuits and
current sources must be replaced by open circuits.

If the detailed configuration of a circuit is known, the Thévenin
equivalent may be found theoretically. For example, the circuit shown in
fig. 2.12(a) contains one current source and two resistances, the values of
which are given. We may deduce by inspection that the voltage across AB
on open circuit is 4 V, the terminal A being positive with respect to B. (No
current flows through the 2 Q resistance when AB are open circuit so that
under these conditions the open circuit voltage must be identical to that
across the current source.) The resistance across AB when the current
source is made inoperative is, by inspection, 3 Q. The Thévenin equivalent
network is, therefore, as shown in fig. 2.12(b).

Frequently the internal details of a practical two-terminal circuit may not
be known with exactitude because of limitations of the lumped modelling
technique, variations associated with manufacturing tolerances of com-
ponents, etc. In such cases the circuit in question can be completely
characterized by its Thévenin equivalent, the elements of which can be
determined by measurements made external to the circuit.

One method of finding the Thévenin equivalent of a network is illustrated
in fig. 2.13(a). A variable resistor R is connected to the terminals AB, and
the current drawn by this resistor is measured by means of an ammeter. The
terminal voltage is measured by a voltmeter the resistance of which must be
sufficiently high that the current flowing through it does not affect the
measurement of the current through R;.

A series of measurements of voltage and current are made for various
settings of the resistor, and the results plotted in the form of a graph of
voltage versus current. Provided the network under test is linear, the graph
will be of straight-line form similar to that shown in fig. 2.13(b). The slope of
the line gives Rt and the intercept on the voltage axis gives Vr.

Fig. 2.12. Application of Thévenin’s theorem.
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To prove Thévenin’s theorem we consider the arrangement shown in fig.
2.14. P represents the given linear network with terminals AB, and Q is an
external linear network to be connected to P. Let V1 be the open circuit
e.m.f. across 4B, and let Ry be the resistance between AB when all sources
inside P are made inoperative. We may assume, without loss of generality,
that Q does not contain any sources since, by the superposition theorem,
the effects of these would be independent of any currents caused by the
sourcesin P. Let the resistance across CD be Ry. We wish to show that when
Q is connected to P, the resulting current that flows between the two
networks is precisely the same as that which would flow if P were replaced
by the series combination of V1 and Ry.

We now consider the situation when an ideal voltage source V is
connected between 4 and C, as indicated by the dashed lines in fig. 2.14, the
circuit being completed by joining B to D. The resulting current that flows

Fig. 2.13. Determination of the Thévenin equivalent circuit by

measurement.
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Fig. 2.14. Circuit for proof of Thévenin’s theorem.
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round the path ACDB can, according to the superposition theorem, be
regarded as being made up of two components: (1) a current due to the
combined action of all the sources in P; (2) a current due to the additional
source V. Now let V be adjusted so that it is equal to Vy; with the polarities
shown the current must fall to zero since there is then no net e.m.f. acting
round the path ACDB. Thus, since the total resistance round this path is
(Rt+ Rg), the current (2) must be V1/(R1r+ Rg) flowing counterclockwise,
and this must be equal to the current (1) flowing in the opposite direction.
But V1/(R1+ Rg)is precisely the current that would flow between P and Q if
P were replaced by an ideal voltage source V1 in series with a resistance Rr.
This proves the theorem. A formal, mathematical proof of this theorem is
presented in Appendix B.

2.8 Worked example

A temperature sensitive resistor (thermistor) is used in a Wheat-
stone Bridge circuit for the measurement of the temperature of a water bath
as shown in fig. 2.15(a). The temperature is indicated on the meter M, which
has a sensitivity of 50 uA at full-scale deflection and a resistance of 300 Q. A
4V battery, of negligible internal resistance, is used to energize the bridge.
The thermistor has a resistance of 1000Q at a water temperature of 50 °C
and its resistance decreases by 5% for each degree increase in temperature.
(a) Find the value of the resistance to which R, must be set to give zero
reading on the meter when the temperature of the bath is 50 °C.

(b) With R, set as in (a) above, find the temperature of the bath
corresponding to full-scale deflection on the meter.

Solution. (a) We first label the nodes of the circuit ABCD as shown. The
required condition of zero current through the meter is obtained when the
potential of node 4 is the same as that of B, that is, (referring potentials to
the node D) when V 4p=Vpp. These two voltages are most easily found by
recognizing that the bridge, under the given zero current condition,
constitutes two separate voltage divider circuits as shown in fig. 2.15(b). To
emphasize this the circuit has been split into two parts with a separate
source for each part; it will be appreciated that this makes no essential
difference to the operation of the circuit.

The required expressions for V 4p and Vpp may be found using (2.3).
Thus, for zero meter current:

Vap=Vep

R R
Z _y=—"1_y,
R, +R, R;+R,
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which upon rearrangement becomes
RiRy4=R;3R; (2.21)

This relationship expresses the so-called balance condition for the Wheat-
stone bridge. Note that (2.21) is independent of the source voltage V..

At a temperature of 50 °C the thermistor has a resistance of Ry =1000Q
hence, substituting into (2.21) the given resistance values for R, and R, we
obtain

_R,R; 750 % 1000

= = =750Q
*7 R, 1000

(b) We are required to find a relationship between the current flowing
through the meter and the resistance R; of the thermistor from which the
temperature for full-scale deflection may be deduced. Thévenin’s theorem
may be used to find such a relationship.

The general approach in applying Thévenin’s theorem to a problem of
this kind consists in removing from the circuit in question the branch
through which it is desired to find the current. The Thévenin equivalent is
then found of the remaining network that exists across the two terminals

Fig. 2.15. Circuits for worked example.
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exposed as a result of removing the branch. Finally, the branch is
reconnected to the equivalent circuit, thus forming a single mesh circuit
from which the current is easily found.

In this example the branch of interest is that containing the meter; on its
removal, terminals 4B are exposed and we see that the circuit remaining is
essentially that of fig. 2.15(c).

Since the Thévenin equivalent voltage Vr is, by definition, that voltage
which exists across 4B under open circuit conditions, we may again (as in
part (a) of this example) use the voltage divider principle to determine the
voltage across AB. Thus, V7 is given by

R, Ry

Vi=Vap—Vip= V- Ve
T AD BD R1+R2 R3+R4

Substituting actual values gives:

_ 750x4  750x4
T 1000x 750  R;+750

T

To find the Thévenin equivalent resistance Ry across AB we render the
internal source V, inoperative by replacing it by a short circuit. The circuit
of fig. 2.15(c) then reduces to that shown in fig. 2.15(d). It is seen that R, and
R, now form a parallel combination; likewise R; and R, form a paraliel
combination. Ry is therefore given by (using the ‘product-over-sum’ rule):

ro_ RiR2 RiR,
T"R,+R, R;+R,

substituting actual values:

1000 x 750 R x 750

Rr=1000+750 T R, +750

The simplified circuit with the meter branch reconnected is shown in fig.
2.15(e). Since the current for full-scale deflection is 50 uA we obtain the
following relationship for the circuit:

Vr

-6 __
50 x 10 =R 7300

Substituting the expressions for V; and Ry into this equation and
performing some algebraic manipulation we find that R; =1062Q.

Now the relationship between the temperature T and the resistance of the
thermistor is R3=0.957~5% x 103, hence the temperature corresponding
to a resistance of R;=1062Q is given by
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log 1062
1000 o
T=_——log0.95 +50=48.8°C

An alternative approach to this problem would be to use mesh analysis,
but this involves setting up and solving three mesh equations - a somewhat
tedious procedure. The power of the Thévenin approach lies in the fact that
removal of one branch from a circuit often renders the remaining part of the
circuit amenable to a simple form of analysis from which the equivalent
circuit can be found. In this example, removing the branch containing the
meter reduces the number of meshes from three to two; furthermore, by
employing the artifice of the voltage divider, mesh analysis is avoided
altogether.

2.9 Network transformations

If two networks have the same Thévenin equivalent circuit at
corresponding pairs of terminals or ports, then, so far as any external
connections are concerned, the two networks are indistinguishable. This
corollary of Thévenin’s theorem allows us to establish the conditions for
which two or more networks are electrically equivalent. We are thus able to
replace a network or part of a network with a different but electrically
equivalent network, and this is of considerable practical significance in the
analysis of circuits. Such a procedure is known as network transformation.
Two important examples of network transformation will now be
considered.

29.1 The Thévenin-Norton transformation
The circuit shown in fig. 2.16(a) is a practical voltage source of the

type introduced in section 2.1. Another type of source, called a practical
current source, is shown in fig. 2.16(b). This consists of an ideal current
source in parallel with a linear resistance. According to Thévenin’s theorem
the two circuits are electrically equivalent if they both present the same
open circuit voltage at their terminals, and if they both present the same
terminal resistance when their sources are made inoperative; in other
words, if they both possess the same Thévenin equivalent circuit. The circuit
of fig. 2.16(a) is, of course, its own Thévenin equivalent.

The open circuit voltage of the practical current source is IR,, and its
resistance when the ideal current source is replaced by an open circuit is R,.
Therefore, the two circuits are equivalent if

IR,=V and R, =R, (2.22)
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They are, of course, equivalent only so far as external connections are
concerned; internally the two circuits are fundamentally dissimilar since
the practical current source dissipates power continually in its own
resistance even when its terminals are open circuit. Note that the
equivalence holds only if the direction of I in fig. 2.16(b) is such that the
same voltage polarity is produced at the terminals of the two circuits.

We conclude, therefore, that an ideal voltage source of magnitude V in
series with a resistance R is equivalent to an ideal current source of
magnitude V/R in parallel with a resistance R (or a conductance G=1/R).
The two circuits are duals of one another. Thévenin’s theorem may
therefore be restated in the following form:

Any network with two accessible terminals AB may, so far as external
circuits are concerned, be replaced by an ideal current source I in parallel with
a conductance G, where I is the current that would flow if the terminals AB
were short-circuited, and G is the conductance across AB if the current source
were open-~circuited.

The theorem in this form was first stated by E.L. Norton, and it is
consequently known as Norton’s theorem, although it should be realized
that it is not fundamentally different from Thévenin’s theorem. The
procedure of replacing the circuits of fig. 2.16, one by the other, using the
relationships (2.22), is known as the Thévenin-Norton transformation.

Many practical voltage sources exhibit near ideal characteristics over
part of their working range, and it is permissible to represent them by an
ideal voltage source without series resistance. In this case the Thévenin-
Norton transformation cannot be applied since the parameters of the
Norton circuit are indeterminate.

Fig. 2.16. The Thévenin-Norton transformation. By Thévenin’s
theorem the circuits are equivalent at AB if I =V/R; and R, =R,.

A oA
R 1
8 Ew
+
1%
B O B
(a ) Practical voltage source (b) Practical current source
(Thévenin circuit) (Norton circuit)
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29.2  The star-delta transformation

The use of Thévenin’s theorem for establishing the relationships
expressing equivalence between networks is not confined to those posses-
sing a single accessible pair of terminals. The same principle may be applied
to multi-terminal, or multi-port networks, by considering each correspond-
ing pair of ports in turn, all other ports being open-circuited. This procedure
may be illustrated with reference to the two circuits shown in fig. 2.17; one a
star-connected arrangement of three resistances, the other a delta-
connected arrangement. Since there are no current or voltage sources
included in these circuits, we need consider only the resistances presented at
each of the corresponding ports.

Considering first port(1l) (terminals AC), with terminal B open-circuit,
the resistance at this port is (R,+ R,). At the corresponding port(1’)
(terminals A'C’), with the terminal B’ open-circuit, the resistance is
R,//(R;+ R;). The condition for equivalence is, therefore,

R,+R.= R{(R,+R3)
R, +R,+R,

Similarly, by comparing the resistances at the two remaining ports, we
obtain

R3(R{ +R;)

R ="
R;+R;+R,

+R;

<

and

Fig. 2.17. The star-delta transformation.

Port (1)

A’ R
(a) Star (b ) Delta
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R,(R3+R,)
R+ R, =237 )
b R,+R;+R,

After algebraic manipulation the following sets of relations are

established:
R1=R,,+RC+RI‘§”; Ra=__—le;::iR3
R2=R,,+R.,+R;Ij“; bzﬁ% (2.23)
R3=Rc+Rb+R1;Ijb; R6=R—l%

The procedure of conversion between the two circuits shown in fig. 2.17,
using the relations (2.23), has come to be variously known as the star—delta,
Y-A, Y-mesh transformation, and it finds application particularly in the
analysis of power systems. The same transformation occurs in the theory of
two-port networks and is there known as the Tee—Pi(T—r) transformation,
so-called because in this context the circuits of fig. 2.17 are drawn rather
differently and they resemble the shapes from which the name derives (see
section 8.8).

The star-delta transformation is a particular case of a more general
theory relating to multi-port networks, which has become established as
Rosen’s theorem (see ref. 1).

2.10 Nodal analysis

It will be recalled that in mesh analysis, currents are assigned to
each of the meshes in the circuit under consideration, and the mesh
equations are formulated by applying Kirchhoff’s voltage law to each mesh
in turn. In nodal analysis the ‘dual’ of this procedure is adopted: voltages
are assigned to each node and the nodal equations are formulated by
applying Kirchhoff’s current law.

Node voltages are specified by choosing one node in the circuit as the
reference with respect to which voltages at all other nodes are defined. Thus,
in fig. 2.18, node O is chosen as the reference and V 4 signifies the voltage of
node A with respect to that of node O; similarly Vpis the voltage of node B
with respect to node O. (It is not usual to employ a double-subscript
notation (such as V 0, Vo) for this purpose since the second subscript
would merely be repeated.) Any node may, in principle, be chosen as the
reference but the nodal equations take their simplest form if the node to
which the greatest number of elements is attached is selected. In many
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practical circuits this node will be the common (ground) terminal and will
constitute an obvious choice.

In the circuit of fig. 2.18, the voltage at node C is specified and has the
value V; V, and Vp are the two unknown voltages that have to be
determined by setting up and solving two independent nodal equations. We
say that such a circuit contains two independent nodes.

In applying Kirchhoff’s current law at a node it is convenient to use the
form (1.13) (section 1.6.1)

Yi=0 (1.13)

where Y i is interpreted as the algebraic sum of the currents flowing away
from the node. Thus, at the node A in fig. 2.18, we have

Lio+1Tap+14c=0

Now the current I 4o flowing through R, is clearly V 4/R,; the current I 4gis
Vap/Ry=(V,4—Vp)/R;y, and the current [, =V ,/R,=(V,~V)/R,.
Hence, the nodal equation at A is

Vi Vu=Vg V=V

_i_’_ A B+ A

R, R, R,

=0 (2.24)

Notice that the first member of each of the terms in this equation is the
assigned voltage of node A itself. This is a consequence of choosing the
positive direction of current as that flowing away from a node.

At node B we have a current source feeding current into the node; this
may be treated as a current (— I') flowing away from the node. As before, the
current through each resistance attached to node B is found by taking the

Fig. 2.18. Nodal analysis: assignment of node voltages.

Node C
N

Node A (voltage V,) Node B (voltage V)

Node O (reference)
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difference voltage divided by the value of the resistance. Thus, at B the nodal
equation is

=0 (2.25)

Rearranging the above equations we obtain

<1+1+1>V Ly.-Y 2.26

R, R, R,) “ Ry ® R, (2.26)
1 11

eVt =1 227
R, "+(R2+R3> B 227)

Solving these two equations will yield specific expressions for V4, and V.
If the currents in the various branches are required, these may be found by
substitution in the appropriate difference terms in the nodal equations; for
example, the current I, through Rj; is given by (Vg—V 4)/R;.

In the above nodal equations we observe that the coefficient of V4 in
(2.26) is simply the sum of the conductances attached to node A; this is
termed the self-conductance at A. Likewise the self-conductance at node B
appears as the coefficient of Vin (2.27). The coefficient of Vin (2.26) and
of V4in (2.27), namely (1/R3), is the mutual-conductance between nodes A
and B. The mutual-conductance terms in the nodal equations are always
negative.

On the right-hand side of each nodal equation we have a term
representing the current injected into the node concerned from the source
attached to that particular node. In the case of node 4 (equation 2.26) the
ideal voltage source V together with R, constitute the effective current
source, as will be readily apparent if a Thévenin-Norton transformation is
carried out according to the principles discussed in section 2.9.1. When this
is done, we may redraw the circuit of fig. 2.18 as shown in fig, 2.19, replacing
the practical voltage source by an equivalent practical current source. It is
now immediately obvious that the current injected into node A has a
magnitude V/R,.

The equations obtained in nodal analysis possess a formal similarity to
those obtained in mesh analysis (equations 2.17), and a similar subscript
notation is employed when it is required to express them in a general form.
Thus, for a circuit such as that in fig. 2.18 in which there are two
independent nodes we may write

GuV1+Gle2=111} (2.28)

G2 Vi+Ga V=1,
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where Gy;, G,, are the self-conductances at the first and second in-
dependent nodes; G,, = G, is the mutual-conductance between them; and
I, and I,, are the net currents injected into the first and second nodes from
the ideal current sources attached to them.

It will be appreciated that by carrying out the transformation shown in
fig. 2.19, (which may be done mentally), and by using the concept of self-
and mutual-conductances, the nodal equations for the circuit of fig. 2.18
could have been written directly in the form (2.26)/(2.27). The reader
unfamiliar with network analysis is, however, advised to set up the
equations initially in the form (2.24)/(2.25) as in this way there is less
likelihood of error.

In general a circuit containing N independent nodes will give rise to N
independent nodal equations, the equation at the kth node being of the
form

N

Y GinVa=Iu (2.29)

n=1
This is a balance equation which expresses the continuity of current at a
node and which corresponds to Kirchhoff’s current law in the form (1.12).
As a final point of general interest in connection with the nodal
equations, we may observe that each nodal equation is an expression of the
superposition principle. Consider, for example, the first equation in (2.28).
The first term represents the current flowing away from node (1) through all
the conductances attached to that node, and with the second node voltage
set to zero. The second term represents the current flowing from node (2) to
node (1) with the first node voltage set to zero. The superposition of these
two currents gives the net current flowing away from node (1), and this
equals the current injected into this node from the attached current sources.

Fig. 2.19. The Thévenin-Norton transformation applied to the circuit
of fig. 2.18.

A ANV _B
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211 Comparison of mesh and nodal analysis

For circuits containing current sources, mesh analysis using the
cyclic current method is generally less straightforward than nodal analysis.
The voltage across a current source is constrained by the circuit in which it
resides; it is necessary, therefore, to assign voltage drops to all current
sources within the circuit before KVL can be applied to the loops in which
they are contained. These unknown voltage drops must then be eliminated
by combining the appropriate number of equations. Such complication can
sometimes be avoided by assigning branch currents, rather than mesh
currents, and by making a judicious choice of loops so as to avoid branches
containing current sources. An alternative approach is to first transform
practical current sources to practical voltage sources using the inverse
Thévenin-Norton transformation, but rarely does this result in a more
concise and labour saving solution than can be attained by other means.

Nodal analysis, on the other hand, suffers from no such constraints. It
may be used freely for circuits containing both voltage and current sources,
as we have seen in the case of the circuit of fig. 2.18, and it more often than
not affords a method of solution involving fewer simultaneous equations
than mesh analysis. Exceptions to this general rule include the symmetrical
ladder type of circuit discussed in section 2.15.3.

We have seen that a network containing M independent meshes, that is,
one in which there are essentially M unknown mesh currents to be found,
requires the solution of M simultaneous equations. A network possessing N
independent nodes leads to N nodal equations. By determining M and N
for a particular circuit we are often able to make a rational choice as to
which of the two methods of analysis to use. Unless we are dealing with a
very large and complex circuit, it is an easy matter to determine N: count
the total number of nodes Nt and the number of voltage sources Ny, then N
is given by

N=Nr—Ny—1 (2.30)

The reason why one must subtract Ny nodes from the total Ny in this
expression stems from the fact that each voltage source is connected to the
circuit at two nodes; the voltage of one of these is, therefore, defined with
respect to the other and only one can be counted as an independent node.
The total N1 also contains the reference node and this must be subtracted as
well.

The determination of M often presents considerably greater difficulties,
particularly if the circuit is drawn with branches crossing one another. Two
ways of drawing the Wheatstone bridge circuit are illustrated in fig. 2.20.
We have no difficulty in distinguishing three independent meshes in fig.
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2.20(a) but these are not nearly as apparent in fig. 2.20(b). Some circuit
configurations are not mappable onto a plane surface without the necessity
for crossing branches, so that it is not possible to get round this difficulty (as
in this case) simply be redrawing the circuit.

For such circuits it is often easier to determine M indirectly by first
counting the total number of nodes Ny, and then applying the following
relation (derived from a theorem of mathematical topology):

M=E~Nr+1 (231)

where E is the number of elements in the circuit including sources.
Thus, considering fig. 2.20(b), we see that Nt=5, E=7 whence from
(2.31), M=3. Also applying (2.30) with Ny =1, we deduce that N=3. For
this circuit, the number of simultaneous equations required is the same;
however, the reader may care to check that if the source internal resistance
Rgs is negligibly small, then nodal analysis confers an immediate advantage.

Fig. 2.20. The Wheatstone Bridge circuit drawn in alternative ways.

R

Source

(a ) Diamond

Detector

(b ) Lattice
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The worked example of section 2.4 is also slightly easier using nodal rather
than mesh analysis because the circuit possesses essentially a single
independent node.

Judicious choice of the reference node can sometimes lead to a simpler
and more direct solution using nodal analysis even when N and M are the
same. For example in fig. 2.20, if we were interested only in finding the
voltage across the detector, we could choose B as the reference node and
solve for the voltage V4 to give the detector voltage directly. Using mesh
analysis on the other hand two cyclic currents would have to be found, their
differences calculated and finally Ohm’s law applied.

212 Worked example

In the circuit of Fig. 2.21 find the magnitude and direction of the
current through the 2V source, and the magnitude and polarity of the
voltage across the 6 A current source.

Solution:
The circuit contains a total of five nodes; these are identified and labelled in
the figure, Since there are nine elements the number of independent meshes
is, from (2.31), M=9—-541=35. Note, however, that one mesh contains a
current source so that a solution by cyclic current mesh analysis would have
to be preceded by an inverse Thévenin-Norton transformation. Alternat-
ively, branch currents could be assigned. In either case the minimum
number of simultaneous equations would be four.

There are two voltage sources in the circuit so that the number of

Fig. 2.21. Circuit for worked example on nodal analysis; A and B are
the two independent nodes.

2

Node O (reference)
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independent nodes is, from (2.30), N=5—2—1=2. Thus nodal analysis
involves only two simultaneous equations.

Node O is chosen as the reference because, (a) it has the greatest number
of elements attached, (b) by solving for the node voltage Vp, the voltage
across the current source can be found directly. Of the remaining nodes, D is
specified (—2 V), and C is specified with respect to B (+4 V). Hence, nodes
A and B are identified as the two independent nodes.

At A the nodal equation is

Tig+140+14p=0

Va—Vg Vi Vai—(-2
4 B+_A+A( )=

6 5 3 0

At B the nodal equation is
Ipa+1Ipc+1po—6=0

To find the current 3¢ we note that this is equal to the current flowing
away from node C through the 4Q and 7Q resistances. The voltage of C
with respect to O is (V+4), hence,

VB+4+(VB+4)—(—2)
7 4

Ipc=Ico+1cp=

The complete nodal equation at B is then

VB— VA

v
+(VB+4)(%+i)+%+?B—6=O

After algebraic manipulation the two nodal equations become:
G+i+HVa—2Ve=-3
—$Vat@G+i+3+35)Vp=6-1-1-3
Solving we obtain V=047V and Vp=597V.
The voltage across the current source is therefore 5.97 V, B positive with

respect to O.
The current through the 2V source Ipo is given by

(VB+4)_(_2)+VA_(_2)
4 3

Ipo=Icp+14p=
Substituting the values for V4 and Vg found above we obtain Ipo=3.82A,

this is, the current flows through the source from D to O and has a
magnitude of 3.82A.
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213 Analysis of networks containing dependent

sources

The theory presented in this chapter so far has been concerned with
networks containing only independent ideal current and voltage sources. If
dependent sources are present (see section 1.5) then the general mesh and
nodal equations take a slightly different form, but the techniques of analysis
remain essentially the same. The four possible types of dependent or
controlled source are depicted in fig. 2.22. In each case the value of the source,
voltage or current, is proportional to the value of acurrent or voltageinsome
other part of the network.

As an example of the analysis of such a circuit we consider the
configuration shown in fig. 2.23. This type of circuit arises in the theory of
bipolar transistors and is there termed the hybrid-n model (ref. 5). In this
circuit the current source is controlled by the voltage established across the
resistance R. V, is the voltage applied to the input port, and V, the voltage
at the output port. Apart from the presence of the dependent current source,
this circuit is similar in all respects to that shown in fig. 2.18, and the nodal
analysis proceeds in a similar fashion. Voltages V and V,, measured with
respect to the reference node O, are assigned to the two independent nodes
A and B.

The nodal equations are:

1 1 1 1 V,
e — V-V =— 2.32
<R1+R3+R4> Ry *"R, (232)

Fig. 2.22. Dependent (controlled) sources; «, f, 7, é are control

constants.
j i
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1 11
——V+<R—2+R—3> V,=—gV (2.33)

These equations will be seen to be of similar form to (2.26) and (2.27),
appertaining to the circuit of fig. 2.18. However, in this case we may
transpose (2.33) to obtain

1 1 1
— 2 Wiy, =0 234
<g R3>V+<R2+R3> 2 (2.34)

We now observe that the coefficients in (2.32) and (2.34) taken together no
longer possess the symmetry about the leading diagonal, which is a
characteristic of the equations for networks containing only independent
sources. Solutions for V and V, are easily found since, from (2.34)

el o)

Hence, substitution in (2.32) gives an explicit expression for V,.

It is frequently of interest to determine the Thévenin equivalent of a
circuit containing a dependent source; in such a case however, the
techniques that have been described so far in relation to circuits containing
only independent sources are inadequate. In particular, the Thévenin
equivalent resistance cannot be found simply by rendering all sources
within the circuit inoperative and then determining the resistance of the
network remaining. This is because for a circuit containing a dependent
source the value of the Thévenin resistance, as well as the e.m.f. depends
critically on the dependent source and its controlling parameters.

Two methods are commonly used for finding, analytically, the Thévenin
equivalents of circuits containing dependent sources. These methods are
applicable also to circuits containing only independent sources, but would
not normally be used in such cases since they are rather more cumbersome
than the techniques already described. However, the underlying principles

Fig. 2.23. Circuit containing a voltage-controlled current source with
control constant g.
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of the methods may be understood by reference to the circuits and
techniques previously considered.

The first method to be described is conceptually similar to the practical
method of finding the Thévenin equivalent of a circuit illustrated in fig. 2.13.
If in this test circuit we make the load R, infinite, the current will be zero
and the voltmeter then registers the open-circuit voltage, which is identical
to the Thévenin e.m.f. Let this voltage be V, . If next the load is made zero,
the ammeter will register the short-circuit current; let this be I, .. Now
since the short-circuit current is that which results from the application of
the full Thévenin e.m.f. across the Thévenin resistance, we have the
following relations:

Vi=V,.. (open-circuit voltage) (2.35)

R V,.c. (open-circuit voltage)
"™ I, (short-circuit current)

(2.36)

Note that placing a short circuit across the terminals of a circuit may, from a
practical standpoint, result in damage. It must be stressed that the relation
(2.36) provides the basis for an analytical approach to the determination of
the Thévenin resistance, it does not represent a practical means of
measuring this parameter.

The principles underlying the second method of finding the Thévenin
equivalent of a circuit containing a dependent source may also be
understood with reference to fig. 2.13. Suppose the load Ry is replaced by a
voltage source of magnitude V,, and suppose all internal sources in the
circuit with the exception of dependent sources are made inoperative, then
the ammeter will register a current I, the magnitude of which will be

determined by the effective Thévenin resistance according to
V.

I,=—-"

Ry

that is

Ry= V., (apph‘ed voltage) (237)
I, (resulting current)

The Thévenin e.m.f. is found by determining the open-circuit voltage, but
this is not, as was the case for the first method, a prerequisite for finding R.
The relation (2.37) is sometimes used as a basis for the practical
determination of Rt; here we are concerned only with its utility as a method
of analysis.

Both of the methods described are illustrated in the following example.
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214 Worked example

The characteristics of an operational amplifier may be modelled by
the circuit shown in fig. 2.24(a). Resistances R, and R, are, respectively, the
input and output resistances of the amplifier, and 4V is a dependent source
with control constant 4.*

Figure 2.24(b) shows the circuit of a common type of electronic d.c.
amplifier incorporating an operational amplifier modelled in accordance
with fig. 2.24(a). The input signal to the amplifier is provided by the source
V, at terminals AB, the output signal appears at terminals CD.

Find expressions for the Thévenin equivalent e.m.f. and the Thévenin
equivalent resistance at the output terminals of the amplifier. Explain how
these are related to the overall gain V,/V, and the output resistance of the
amplifier.

Solution: method 1
First we establish by means of a nodal analysis an expression for
the open-circuit voltage V, which, according to (2.35), represents the
Thévenin e.m.f. Note that for the purposes of this analysis the signal source
V| must be regarded as an internal independent source.
Let V be the voltage at the node X, then, at node X
V-V, + V-v, V

A 2.38
R R +Ri 0 (2.38)

and at node C

Vz—V+V2—(—AV)_
R, R, -

0 (2.39)

Eliminating V from these equations we find

. _[ R,— AR, ]V
"L AR, +R,R,/R;+ R Ry/Ri+ R, +R; +R, | '

The resistance R; is, in practice, large in relation to the other resistances in
the circuit in which case the above expression reduces to the simpler form:

R,— AR,
= Vv 2.
€ [Ro+(1+A)R1+R2] ! (240)

* In the context of the theory of operational amplifiers the constant 4 is
normally referred to as the gain. A full treatment of operational amplifiers and
their application will be found in reference 5. The derivation of the model of
fig. 2.24(a) is considered in section 8.3.
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This expression gives the Thévenin equivalent circuit emf. Vy. The
quantity in square brackets gives the overall gain V,/V, of the amplifier. If
A is very large, the gain becomes, to a good approximation, —R,/R;.

To determine the Thévenin resistance we first find the current at the
output port when terminals CD are short circuited. This current will be the
sum of the currents flowing in R, and R,, that is,

vV (—AV) RO—ARZJ
= = 14 241

he=g+ g [ RR (241)
But from (2.38) with ¥, =0, and again assuming that R; is very large, V is
given by

s 1 _ ViR,

"R, <L+ 1 )_R1+R2
Rl RZ

Substituting for V in (2.41) we then obtain

. _ ViR ,(RO—ARZ)_[ R.— AR, ]V
**“(Ri+Ry) RR,  |RJ(R;+Ry) |’

(2.42)

Now by (2.36) the Thévenin resistance is given by the ratio of open-circuit
voltage to short-circuit current, therefore, combining (2.40) and (2.42) gives

Fig. 2.24. Operational amplifier circuits for worked example.

(a ) Model

(b ) Amplifier
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Vo.c. (RO‘ARZ)VI Ro(Rl +R2)

Ry= = .
" Ie R,+(1+AR;+R, (R,—AR,)V;
or
Ry(R;+R5)
= 243
T"R,+(1+A)R,+R, (243)

The Thévenin resistance, in the context of amplifier theory, is termed the
output resistance of the overall amplifier.

Method 2

The Thévenin e.m.f. is found as in method 1. In order to determine
Ry by means of the relation (2.37), terminals AB are short-circuited, thus
removing the signal source, and a voltage source V, is connected to the
terminals CD. Note, however, that the dependent source is still active since
the controlling voltage V is now derived from the applied voltage V, via
resistances R; and R,. Let the polarity of V, be such that the terminal C is
positive with respect to D, and let the reference direction of the resulting
current I, beinto the terminal C. For the reasons given above the effect of R;
will be ignored. The nodal equation at C is then

V,  V.—(—AV)
R, +R, R,

I,=0 (2.44)

An expression for V is most easily obtained by observing that Ry and R,
form a voltage divider, hence we may write:

R,
V= V, 245
(Rl +R2> (243)

Substituting (2.45) in (2.44) gives

—_ V“ +.‘i+io____l_(1—oV
"Ry+R, R, R, (R{+Ry) °

Therefore, by (2.37)

1,

R Va_[ 1 1. AR, ]“
"1, LRi+R; R, R,(R;+R;)

which upon rearrangement becomes

Ro(Rl +R2)
R,+(1+A)R;+R,

RT=

This method for determining Ry is more direct and involves less work
than method 1 because it is not necessary to first find the Thévenin e.m.f.
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The amplifier circuit shown in fig. 2.24(b) contains only linear, bilateral
elements and one may, as we have demonstrated, apply standard tech-
niques of linear circuit analysis. However, the circuit contains also an active
element, here represented by the dependent source AV, which gives it the
properties of voltage and power gain. The consequence of this is that the
reciprocity theorem does not apply to this circuit. We may easily check that
this is so by considering the short-circuit currents that arise at the input and
output ports as a result of the same voltage applied, in turn, at opposite
ports. Consider first terminals A B short-circuited, and a voltage V, applied
at terminals CD. Making the assumption that R, is infinite, the current in
the short circuit at AB is V,/(R; + R;). Now consider CD short-circuited
and V, applied at AB; the current in this case is from (2.42)

Va . (RO_ARZ)
(Ry+R) R,

Clearly, the two short-circuit currents are not the same, as would be the case
if the reciprocity theorem were true. Circuits of this description, for which
the reciprocity theorem does not hold, are said to be non-reciprocal. This is
the subject of further discussion in chapter 8. It should be noted that the
superposition theorem is applicable to such circuits.

2.15 Miscellaneous theorems and techniques

12.15.1 The substitution and compensation theorems

We have seen that the analysis of a circuit can often be facilitated
by judicious use of the appropriate linear network theorem; two useful
additions to those theorems already discussed are presented below.

The substitution theorem is useful if it is required to change the values of
the elements in one branch of a circuit, or substitute alternative kinds of
elements, without changing voltages and currents elsewhere in the circuit.

Fig. 2.25(a) shows one branch of a circuit containing a resistance R and
ideal voltage source V. The branch voltage is V 45 and the branch current
I 45, these being fixed values. The substitution theorem states that: this
branch may be replaced by another branch without anywhere changing
voltages and currents provided the substitute branch also has voltage V 4p
when carrying current I, This condition can be satisfied by various
combinations of R and V which satisfy the branch equation V g=1 43R+ V.
The maximum possible values are given by:

VAB= IABRmax (V=0), VAB= Vmax (R =0)
Thus, either a resistance R,.., alone or a source V,, alone may be

substituted for the original elements (figs. 2.25(b) and (c)). Two other
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combinations of elements that may be substituted are shown in figs. 2.25(d)
and (e). With these combinations the voltage across the current source
adjusts automatically to the value required to satisfy the branch equation.

The compensation theorem may be employed when it is required to
evaluate the effect which a modification in the resistance of one branch of a
network has on the currents and voltages at any part of that network. For
example we may wish to know how the insertion of an ammeter, possessing
some small but finite resistance, will affect the operation of a circuit.

Let AB in fig. 2.26(a) be the branch that is to undergo modification. The
sources in the remainder of the network will drive a current I through this
branch. When the resistance of the branch is changed by an amount AR the
current will change by some increment Al as shown in fig. 2.26(b). Note that
if the resistance of the branch is increased then the current will be reduced,
that is, AI will be negative.

The compensation theorem states that: if the current in a branch of a
network before modification is I, and the resistance in that branch is changed
by an amount AR, the incremental change of current and voltage in any part of
the network is that produced by an ideal voltage source of value I(AR) acting
in the modified branch and directed in the opposite sense to I.

The theorem may be proved by considering the change of e.m.f.
necessary in AB to reduce Al to zero, that is, to restore the current to its
original value I. This is accomplished by introducing an additional voltage
source of magnitude I(AR), acting in the same sense as I (fig. 2.26(c)); this
source voltage exactly compensates for the voltage drop across AR thereby
effectively restoring the network to its original condition. Now, if the effect

Fig. 2.25. Illustrating the substitution theorem.
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of introducing this source is to reduce Al to zero, we can say, according to
the superposition theorem, that this source acting alone in the network
must produce a current Al in AB flowing in the opposite direction to
(I + AI). Correspondingly, an increase in current from I to (I + AI) must be
that effected by a source of magnitude I (AR) acting in the opposite sense to
1. The incremental current in AB, and all other incremental currents and
voltages in the network, may therefore be found from the circuit of fig.
2.26(d) in which all sources other than the added source are made
inoperative.

The compensation theorem cannot be applied to the situation where a
branch is open-circuited since under such circumstances voltages and
currents are indeterminate.

An illustration of the compensation theorem is provided by the circuit
shown in fig. 2.27. The elements R, and ¥, represent a piecewise-linear
circuit model of a Zener diode. (See chapter 7 for piecewise-linear circuit
theory.) The circuit is designed to supply (ideally) a constant voltage to the
load R,. What is the change in load voltage if R, is decreased by 10%,? This
problem could, of course, be solved using the standard methods of analysis
already presented in this chapter, however, the nature of the circuit renders
it amenable to an approximate solution that is sufficiently-accurate for most
design purposes. We note that R;is small compared with both R, and R,;
the voltage V will therefore be very nearly equal to the Zener voltage V.
Thus, the current in R, (before branch modification) will be, to a good
approximation, 5.6/103 A. Since R, is reduced, AR, will be negative and
the compensation voltage is — 100 x 5.6/10*= —0.56 V.

Fig. 2.26. Illustrating the compensation theorem.
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The incremental change of voltage AV is then found from the circuit
shown in fig. 2.27(b). The modified branch resistance is now 900Q and,
because we are concerned only with the incremental change in load voltage,
the other voltage sources in the circuit have been replaced by short circuits.
The resulting combination of R, and Rzin parallel is approximately equal
to Rzsince R > Rz We now recognize that the circuit is reduced to a simple
potential divider from which

22

AV= 22+900

—-0.56 —13.4mV

2.152 Circuit reduction

Circuits can often be rendered more tractable for purposes of
analysis by first reducing them to a simpler form. A typical situation is
depicted in fig. 2.28, in which the effect of varying parameters in one part of a
network configuration is to be investigated whilst keeping the remainder
fixed. In such a situation it is often convenient to reduce the fixed part of the
network to its simplest possible form, usually its Thévenin equivalent,
before proceeding with the analysis proper, since the subsequent analytical

Fig. 2.27. Application of the compensation theorem to a Zener diode
voltage-stabiliser circuit.
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relations are thereby simplified and it becomes easier to investigate the
effect of parameter changes.

Circuit reduction may be effected by the direct application of Thévenin’s
theorem to a complete part of a circuit (asillustrated in section 2.8) or by the
use of mesh or nodal analysis. Alternatively, individual nodes and meshes
may be eliminated as desired by repeated application of the Thévenin-Nor-
ton transformation or the star-delta transformation. The basis of the
Thévenin-Norton transformation method is indicated in fig. 2.29. We
suppose that the nodes AB are connected to some other part of a network
and it is desired to simplify the portion between A and B.

First, the three practical voltage sources are transformed to their
equivalent current sources (fig. 2.24(b)), which results in the elimination of
nodes O, P, and Q. Current sources are then added together and resistances
combined in parallel to produce a single practical current source (fig.
2.29(c)). Finally, if convenient, the current source may be transformed to a
voltage source (fig. 2.29(d)).

Although the above step-by-step transformation procedure, making use
of diagrams, can be useful and informative, the same process can be

Fig. 2.29. Circuit reduction by application of the Thévenin-Norton
transformation.

| <
@
_2:
oS
—_—
=}
™D
| <
-
o
W
AW

)
A
R
=
4+
Va
1=1+1+1 v, =IR
R, B
@)

https://doi.org/10.1017/CBO9781139170093.004 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139170093.004

86 Theorems and techniques of circuit analysis

performed analytically by means of nodal analysis. Taking B as the
reference node and solving for the node voltage V4 we obtain:

Via—V, Va=V, V=V
A 1+A 2+A 3=

0

R, R, R,
or

1 1 1 V., V, Vs

BN | U S B 2.46

<R1+R2+R3> ‘"R, "R, 'R, (246)
Putting

1 1 1 1 V. V, Vi

—=—+—+—  and I=—r+4—+—

Ya_,;

R

The above relations may be interpreted in terms of figs. 2.29(c) and (d).

Equation (2.46) in its general form, relating to any number of parallel
sources, is sometimes referred to as Millman’s theorem.

The process of circuit reduction using the star-delta transformation (or
its inverse) may be illustrated with reference to the circuit of fig. 2.30(a). It
will be appreciated that reduction of this circuit cannot be effected by
simple series and parallel additions of resistances because of the bridging
resistance Rj. This difficulty is overcome by recognizing that the three
resistances within the shaded box form a delta configuration. Using the
relations 2.23 the delta comprising, R;, R,, Rj is transformed to the star

Fig. 2.30. Circuit reduction using the inverse star-delta transformation.
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comprising R,, R,, R, (fig. 2.30(b)), after which series and parallel
combination lead to a single resistance (fig. 2.30(c)).

+2.15.3 Ladder networks

There are certain types of network that do not lend themselves
readily to the standard methods of analysis so far discussed in this chapter,
and for which special techniques are used. The ladder network falls into this
category.

Suppose we wished to find the node voltages Vg and Vo at the end and
mid-points of the ladder network shown in fig. 2.31(a). A mesh-node count
at once indicates that a standard method of analysis would involve setting
up and solving four simultaneous equations. The following step-by-step
procedure is rather simpler and is particularly convenient to carry out
numerically using a small calculator.

We start by assuming that the voltage across the end of the ladder Vo is
1V. The current Igp in the end 2 Q resistance is then 1/2 A, and the voltage
Vpo is 3V (terminals EQO assumed open circuit). The calculation then
proceeds as follows:

IDO=%A
Icp=Ipo+Ipr=3+%=2A

Fig. 2.31. Ladder networks.
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Vep=4Icp=8V
Veco=Vpo+Vcp=3+8=11V
Ico=Veol2=3 A
IBC=Ico+ICD=%+2=lTSA
VBC=4IBC=30V

V30= VCO+ VBC= 11 +30=41 V
Ino=Vio2=%LA
Lip=Ipo+1Ipc=%+B2=%A
V=41 ,45=112V
Vio=Vpo+Va=41+112=153V

This last figure is the voltage of the source assuming 1V at the end of the
ladder. But the actual value of V 4o is 100 V hence the true value of Vo must
be 1x(100/153)V. Likewise all voltages and currents in the above
calculation must be scaled in similar proportion to obtain true values. The
voltage at the mid-point of the ladder is therefore Vco=11 x (100/153) V.

A similar procedure may be adopted in the case of a symmetrical ladder
of the form shown in fig. 2.31(b). As far as the calculation of voltages across
the rungs of a ladder network is concerned it is immaterial how the total
resistance between rungs is distributed on the two sides of the ladder. It is
convenient, therefore, in the analysis of a symmetrical ladder to first lump
together the resistances between rungs and then proceed as for the analysis
of an asymmetrical ladder. For the particular resistance values given in fig.
2.31 the voltages across each of the two forms of ladder are identical.

To determine node voltages with respect to ground (node K in fig.
2.31(b)) for the symmetrical ladder it is necessary only to apply the
symmetry principle, once having found voltages across the ladder. For
example, suppose the voltage Vi is required. Using the procedure detailed
above we first find that Vg (corresponding to Vo in fig. 2.31(a))is equal to
11 x (100/153)V. We may then deduce, by symmetry, that Vg is
3(100—11 x (100/153)) V.

The ladder method described above is of value mainly for numerical
calculation; extremely unwieldy expressions result if one attempts to apply
the method in symbolic form. Other methods of dealing with ladder
networks are discussed in chapter 8.

12.15.4 Ring mains

Ring mains are employed extensively in power distribution
systems. A number of loads are connected to a single distribution point via
parallel conductors which form a closed loop or ring, as indicated
schematically in fig. 2.32(a). This type of connection results in better
utilization of the distribution conductors compared with a straight parallel
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connection. Calculations on ring mains are performed with the aim of
determining voltages at loads and currents in ring conductors so that the
correct conductor cross sections may be specified.

The lumped circuit model of a ring main with three loads is shown in fig,
2.32(b). Ry, R,, R and R, represent conductor resistances between points
on the ring. By opening out the ring and treating the resulting circuit as if it
were fed by identical sources, one at each end, the analysis is considerably
simplified. The circuit in this form resembles somewhat the symmetrical
ladder of fig. 2.31(b).

If the loads are specified as fixed resistances, and an exact analysis is
required, then the ladder method described above can be used. Normally,
however, the loads are specified in terms of the maximum currents to be
drawn at particular points on the ring, in which case a mesh analysis is
appropriate. In the following worked example both methods of analysis are
illustrated.

Fig. 2.32. Ring main.

Load (1)
+
1% Load (2)
Power
distribution
point
Load (3)

{a ) Schematic diagram

(b ) Lumped circuit model
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12.15.5 Worked example

A ring main is supplied from a power point at 240 V and has three
loads. The total length of the ring is 12 m and the loads and the power point
are spaced at equal intervals of 3m. Each of the ring conductors has a
resistance of 0.067 Q/m. Find the currents in the ring conductors and the
voltages at each of the loads: (a) if the loads are specified as three
consecutive resistances of 24 Q, 16 Q, and 12 Q; (b) if the loads are specified
as three consecutive currents of 10A; 15A and 20A.

Solution

(a) Each of the conductors in the ring main has a resistance of 0.067 Q/m,
therefore, the total resistance of two conductors (in series) over a 3 m length
is 2x 3x0.067=0.402 Q. The circuit model is shown in fig. 2.33(a).

We first find the contributions to the current I, due to each of the two
voltage sources acting alone. The total current is then found from the
superposition of the two separate contributions. To find the contribution
due to the left-hand source, replace the right-hand source by a short-circuit
and assume a current of 1 A to flow in this short-circuit (fig. 2.33(b)). Using
the ladder method the calculation proceeds as follows:

Igo=1A (assumed)
Vbo=1x0402=0402V
Ipo=0.402/12=0.0335A
Vep=1.0335x0.042=0.4155

Veo=Vep+ Vpo=0.4155+0.402=0.8175
Ico=0.8175/16 =0.0511
Isc=Ico+1cp=0.051141.0335=1.0846
Vc=1.0846 x 0.402 =0.4360
Ipo=1.2535/24=0.05223
I4g=1Ipo+Ipc=0.05 223+ 1.0846 =1.1368
V.5=1.1368 x 0.402 =0.4570
Vaio=Vap+Vpo=04570+1.2535=1.7105

But the actual value of V 40 1s 240V, therefore the true value of the current
I,5=1.1368 x (240/1.7105)=159.50 A and the true value of the current
Ipo=1x(240/1.7105)=140.31 A.

Now the right-hand source is restored and the left-hand source replaced
by a short-circuit. The contribution to I, due to this source acting alone
must, according to the reciprocity theorem, be — 140.31 A. Therefore, when
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the two sources act together I, =159.50—140.31=19.19 A. Having found
the current I, we now employ a step-by-step procedure, working from left
to right, in the circuit of fig. 2.33(a).

I,=19.19 A (calculated)
V.p=19.19 x0.402=7.7144V
Veo=240—7.7144=23229V
Ip0=232.29/24=9.6785A

1,=19.19-9.6785=9.5115A
Vec=9.5115x0.402=3.8236 V
Vco=232.29—-3.8236=22846V
Ic0=228.46/16=14279 A

13=9.5115-14.279=—4.7676 A
Vep=—4.7676 x0.402= —1.9166 V
Vpo=228.46—(—1.9166)=230.37V
Ipo=230.37/12=19.198 A

I,=—4.7676—-19.198 = —23.965 A
Vpe= —23.965x0.402=—9.6342V
Veo=230.37—(—9.6342)=240V

Fig. 2.33. Ladder circuits for worked example.

0.402 D 0.402 E

0.402

0.402

B C

240V 240V
Node O'/‘
(a)
A B C D E
. l 1 A (assumed)
240 V ]
Node O-/‘
)
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This last figure, of course, provides a check on the accuracy of the
calculations.

(b) With currents of 10A, I5A, and 20A specified, the circuit model
becomes that shown in fig. 2.33(c). Branch current I, is assigned and KCL is
used to write down the other currents in the ring conductors as indicated.
Then, using KVL round the loop AEO, we obtain

0.402[ 1, + (I, — 10)+ (I; —25)+ (I, — 45)] = 240— 240
or

41, -80=0
11=2OA

(This is simply the average current drawn by the three loads.) Therefore

Veo=240—-20x0.402=231.96
Vco=231.96—(20—10) x 0.402=227.94
Vpo=227.94—(20—25) x 0.402 =229.95
VEo=229.95—(20—45) x 0.402 =240 (check)

It should be noted that the load currents specified here are those obtained
by dividing the power point voltage, 240V, by each of the three resistances
specified in part (a) of the problem. The actual load currents calculated in
part (a) are the same as these to within about 5%. We may, therefore, obtain
an approximate solution to the ring main problem, when load resistances
are specified, by first calculating approximate load currents (using the
power point voltage) and then employing the method of solution outlined
in part (b). Comparing the load voltages obtained in parts (a) and (b), we
see that these are in agreement to within 19.

2.16 Summary
Two standard methods of analyzing linear circuits are available:
mesh analysis and nodal analysis.

In mesh analysis currents are assigned to every branch in the circuit or,
alternatively, currents are assigned to every mesh (Maxwell’s cyclic current
method). Kirchhoff’s voltage law is then applied to set up the requisite
number of simultaneous mesh equations, there being as many equations as
assigned currents.

In nodal analysis, the dual of mesh analysis, voltages are assigned to
nodes, one node being chosen as a reference. Kirchhoff’s current law is then
applied to set up the requisite number of nodal equations. Of the two
methods, nodal analysis is usually easier to apply, and often results in fewer
equations. Mesh analysis is generally unsuitable for circuits containing
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ideal current sources whereas nodal analysis may be used for circuits
containing both voltage and current sources.

The labour of circuit analysis can sometimes be reduced by employing
linear circuit theorems: superposition, reciprocity and Thévenin. The last
mentioned, often used in conjunction with the potential divider circuit, is
particularly useful for reducing parts of a circuit to a simpler form. Other
methods of circuit reduction include Thévenin-Norton and star-delta
transformations. The recognition of standard circuit building blocks -
potential and current dividers, bridge circuits etc. — forms an important
part of the art of circuit analysis.

For some circuits, the ladder circuit for example, special step-by-step
methods are available which obviate the necessity of solving a large number
of simultaneous equations.

217 Problems

1. A d.c. power supply has an output voltage of 5V at its terminals
on open circuit. A 2Q resistor connected across its terminals causes the
output to fall by 0.1V. Derive a linear circuit model for the supply.

2. A certain d.c. power supply has output potential differences of 600 V and
650V when the output current is 0.4 A and 0.2 A respectively. What simple
arrangement (a) of an ideal current generator in parallel with a resistance
and (b) of anideal current generator in parallel with a conductance will give
the same relation between output p.d. and current?

3. For the voltage divider network shown in fig. 2.34, determine the output
voltage V.. If the output terminals are connected to a circuit having an
input resistance of 10k, what then is the output voltage?

4. A device draws a constant current through a divider network as shown
in fig. 2.35. A multi-range voltmeter V,, which draws a current of 1 mA at
full-scale deflection, is used to measure the voltage supplying the device.
When set to its 300 V range, it reads 90 V. What is the device voltage with
the voltmeter removed?

Fig. 2.34. Circuit for problem 3.

33kQ
* ¢ ' -0
47xQ :
+
ivQO 22kQ Z 33kQ J4TkQ v,
. ‘ . o
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5. Show, by means of mesh analysis, that each of the mesh currents in the
circuit of fig. 2.36 results from the superposition of two independent
components, one proportional to V, the other proportional to V. If ¥,
equals 1V and V, is short-circuited, what will be the currents in the 3 Q and
4 Q resistances?

Apply this last result together with the reciprocity theorem to write down
the new current in the 4 Q resistance if V; equals 1 V and V, is made equal to
3v.

Deduce, from the above results, the Thévenin equivalent circuit of the
network across AB, as seen by the voltage source V, when V, equals 2'V.
{(Hint: to find the Thévenin e.m.f. consider the voltage V; required to reduce
I, to zero; to find the equivalent resistance consider the current I, when AB
is short circuit.)

6. In the circuit shown in fig. 2.37, additional generators are to be inserted
into branches AB and BC so that the currents then flowing in the existing
generators are each increased by 1 A from their original values. By means of

Fig. 2.35. Circuit for problem 4.
+240 V

Device
100 kQ
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the superposition and reciprocity theorems or otherwise, find the e.m.f.s of
the additional generators.

{Cambridge University: First year)

7. In the circuit of fig. 2.38 each resistance is 0.5Q. How many current
unknowns are involved in a mesh analysis? How many voltage unknowns
are involved in a nodal analysis? Find the potential of the node P with
respect to the node O.

8. Find the current flowing in the 4 Q resistor in the circuit of fig. 2.39 giving
reasons for the choice of method for conducting this calculation. Describe
and compare at least two other methods which might have been used
instead.

(Newcastle University: First year)

9. Determine the current I shown in the network represented by fig. 2.40.
Also calculate the voltage of the point C with respect to ground.
(Cambridge University: Second year)

10. The resistance of each arm and of the detector of a Wheatstone Bridge
is 1kQ. The bridge is driven by a 10V battery of negligible internal

Fig. 2.37. Circuit for problem 6.

D
§4Q 1Q 20
B -
+
22V9> 40 >0 1v
- +
8 Q
b AW o

Fig. 2.38. Circuit for problem 7.
P

10V

v O b3 )

+

1oV

(o
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resistance. Use Thévenin’s theorem to find an expression for the detector
current, accurate to within 1%, if the resistance of one arm of the bridge is
increased by r ohms (r<5).

11. Figure 2.41 shows a circuit which may be used for temperature
measurement. Ry is a thermistor whose resistance is 20 kQ at 0 °C and 2 kQ
at 100°C. M is a sensitive ammeter whose internal resistance is SkQ and
gives full-scale deflection at a current of 25 uA.

Calculate the ohmic values to which R; and R, must be set so that M
gives zero deflection at 0°C and full-scale deflection at 100 °C.
(Newcastle University: First year)

12. In the circuit of fig. 2.42 each resistor has the ohmic value stated. Show
that when viewed from the output terminals AB, the circuit is equivalent to
a generator having an e.m.f. of 20V and an internal resistance of 3Q.

What are the two possible ohmic values of resistor R which when
connected across the output terminals, will absorb a power of 32 W?
{Newcastle University: Second year)

13. Twelve identical pieces of wire each of resistance 1 ohm are connected
together to form a skeleton cube. Find the resistance between opposite ends
of a diagonal of the cube.

14. Two 240V generators of low internal resistance are connected together

Fig. 2.39. Circuit for problem 8.
3Q 4Q 50

AMW——W——WW

9V+<> 60 20 @TSA

Fig. 2.40. Circuit for problem 9.

40 I
° IVV\IP‘
4 o
g a2 Bl
20
aS M
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in opposition by a cable 15m long, and two loads are connected; one of
24 Q at a distance of 6 m from one end of the cable, and one of 16Q at a
distance of 4 m from the other end. If the voltage across the 24 Q load is
found to be 2%, below the generator voltage, what is the resistance per unit
length of each conductor of the cable?

If the voltage of one generator changes by 2%, what will be the current in
the part of the cable between the loads?
(Cambridge University: Second year)
15. A ring main of total length 1km has five load points distributed as
shown in the Table. Find the point at which the voltage is minimum. If the
voltage drop is nowhere to exceed 1V plus 29 of the nominal supply
voltage of 240V, calculate the minimum cross-sectional area of copper
required in each cable (resistivity of copper =1.6 x 10~ 8 Qm).

Distance (m) 200 300 400 600 800
Load (A) 30 20 40 20 40

Fig. 2.41. Circuit for problem 11.

10kQ2

Fig. 2.42. Circuit for problem 12.
2 2 3 12

200V
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