
Transient and steady-state
analysis

6.1 Introduction
In chapters 2 and 3 we found the steady-state response of linear

circuits when they are driven by direct (d.c.) or sinusoidal (a.c.) voltages or
currents. In this chapter we shall look at the conditions arising in a circuit
during the time required for it to reach the steady state. What occurs is
called the transient behaviour of the circuit.

Consider the simple series circuits of fig. 6.1, and assume that the switches
have been closed for a long time so that the circuits have reached steady-
state conditions. For the d.c. circuit (fig. 6.1 (a)) the voltage across the
inductance is zero; therefore, the steady state current is iss = V/R. For the
a.c. circuit (fig. 6.1(b)) the inductive reactance is coL and the steady-state
current is

(6.1)

Fig. 6.1. Inductive (RL) circuits with direct and alternating voltage
driving sources.

R R

(a) Direct (b) Alternating
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Qualitative analysis of the RL circuit 281

Now consider again the circuits of fig. 6.1, but this time assume that the
switches are initially open so there is no current in either circuit. At time
t = 0 let the switches be closed. What will be the current in each circuit the
instant after the switch is closed? The answer is zero for both circuits. We
have seen in section 1.9 that the energy stored in an inductance cannot
change instantaneously. Since the initial stored energy is zero in both
circuits, and since the stored energy depends upon the current in the
inductance, it follows that for both circuits the current immediately after the
switch is closed must be zero. It will be convenient to use t=0+ to designate
the time immediately after a switching operation has been completed and
before there has been any change in energy storage in any circuit element.

6.2 Qualitative analysis of the RL circuit
Let us examine in detail how the current in the circuit of fig. 6.1 (a)

rises from zero to its final steady-state value. At t>0,

di
VR + VL=V or iR + L—=V

dt

But at t = 0 + , i = 0, and so vR = iR = 0, hence

di T/ di V
L—=V or —=—

dt dt L

and i is increasing. As i increases, vR is no longer zero, so for f > 0

di_V .R

dt~T~lT

We see then that the rate of change of current depends upon the current
already in the circuit. When i = V/R, di/dt = 0 and the current is no longer
changing, having reached its steady-state value. Thus there is an interval of
time during which the current rises at a decreasing rate toward its final
value. Because di/dt depend upon i, the current cannot reach the final value
in a finite length of time; therefore, i approaches the value V/R
asymptotically.

The information that we now have enables us to sketch qualitatively the
curve i v. t. This is shown in fig. 6.2(a). The voltage across the resistance has
exactly the same time dependence as i. At every instant vL=V—iR.
Therefore, the voltage across the inductance starts at V and approaches
zero asymptotically as shown in fig. 6.2(fc).

The currents in and the voltages across the circuit elements during the
interval while the current rises from zero to V/R are referred to collectively
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282 Transient and steady-state analysis

as the transient response of the circuit. It represents the smooth transition
from the initial state (i =0) to the final state (i = V/R). In some circuits, for
example the lights in a building, or motors operating household appli-
ances, the transient response is probably of no interest; in other circuits the
transient response is the only feature of interest. Transient voltages and
currents may, for example, generate useful waveforms or they may be used
to provide precisely known time delays in circuits.

There is also a transient response if, after the steady state is reached, the
switch in fig. 6.1 (a) is opened. When the conducting path is completely
broken, i must be zero. However, at f = 0 + , i = V/R because current in the
inductance cannot change instantaneously. When L is large, the rapid
decrease in current as the switch contacts part results in a large induced
voltage in the coil, a voltage that may be high enough to make the air
between the contacts become conducting. Thus, the current path is not
broken in zero time, but in a time determined by the rate at which energy
initially stored in the coil is dissipated in the resistance and in the
conducting arc established between the switch contacts. Again, the
transient response provides a smooth transition from the initial state of
i= V/R to the final state i = 0.

Fig. 6.2. Qualitative analysis of the circuit of fig. 6.1 (a).

(a) Current through inductance (b) Voltage across inductance
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6.3 Mathematical analysis of the RL circuit
Now let us find an explicit expression for the current in the circuit

of fig. 6.1 (a). Assume that the switch is initially open and is closed when
t = 0. Then for £>0,

^ + iR V (6.2)
at

Obviously, the steady state current, iss = V/R is a solution of (6.2). The
complete solution, however, contains another term that goes to zero as t
increases. The complete solution describes the transient and reduces to the
steady state solution as £->oo.

It is easy to write the solution of (6.2) by separating the variables,
integrating, and using the initial condition i=0 at t=0+. The result is

• - " ( 6 3 >

The current then is the sum of two terms. The first term is the steady state
current that is independent of time. The second term represents an
exponentially decaying current. The two terms and their sum are shown in
fig. 6.3. We see that the total current has the type of time dependence that
was predicted in the qualitative analysis of the circuit.

When there is a sinusoidal driving voltage as shown in fig. 6.1(6), the
differential equation is

di
L— + iR = Vmsincot (6.4)

at

Before finding a solution for (6.4) we add a phase angle to the driving
voltage. This is convenient because the solution will depend upon the value
of the driving voltage at the instant the switch is closed. With the phase
angle included in the voltage, switching can always occur at t = 0. The phase
angle X may then be used to specify the value of the applied voltage at t = 0.
With this addition, and putting R/L = a, (6.4) becomes

^ + o u s i n ( o ) f + A) (6.5)
at L

To solve this equation we multiply by the integrating factor
Jadr <xr
c — c
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284 Transient and steady-state analysis

Then,

e + e
At

Integration gives

L

The right-hand side of the equation may be integrated by parts or by
consulting tables.

V ear

- [asin(a>£ + X) - cocos(a>t + A)] + K

Now multiply through by e a'and simplify the trigonometric expression
in brackets by using the identity

B
-0 ) where e^tan"1 —

Then

Fig. 6.3. Quantitative analysis of the circuit of fig. 6.1 (a): equation
(6.3). The current is the sum of a steady-state term V/R and a
transient term - ( f o / L

i

V_

R

V_
R

— t
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To evaluate K, use the condition i = 0 at t = 0 + . Then

and

1-6) (6.6)

As in the case with d.c. driving voltage, i is the sum of a steady-state term
and a transient term that decreases exponentially and eventually becomes
zero. The two terms on the right of (6.6) and their sum are shown in fig. 6.4.
Except for the arbitrary phase angle X the first of these terms is identical to
(6.1).

As the circuits under consideration become more complex it is useful to
take advantage of the fact that the complete solution of the differential
equation for a linear circuit is the sum of two responses. That is,

* = *ss + *n (6.7)

where iss is the steady-state response or forced response, which we know how
to find for d.c. and sinusoidal driving sources, and in is the transient response
or natural response of the circuit. (The steady-state response and the natural
response correspond respectively to the particular integral and the
complementary function in the mathematical solution of the circuit

Fig. 6.4. Response of an RL circuit to a sinusoidal driving source: plot
of equation 6.6 with 2 = 90°, 0 = 45°.

1 ' - • \ \ ' ' ;

\ \.V"-'ian A
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286 Transient and steady-state analysis

differential equation.) The natural response describes the behaviour of the
circuit as energy initially stored in one or more elements is dissipated in the
resistive elements of the circuit. To find the natural response one simply
finds the solution to the differential equation for the circuit when the driving
force is set equal to zero. For linear circuit elements the forced response has
the same time dependence as the forcing function, and its amplitude (and in
the case of a.c, its phase) is completely determined by the circuit
parameters. In contrast, the time dependence of the natural response is
independent of the forcing function; all currents and voltages have the same
time dependence, which is always of the form rn = Aest. In this expression, s
is determined by the circuit configuration and the values of the circuit
elements; the constant A depends upon the conditions obtaining at the
instant the change occurs (e.g. the throwing of a switch) that initiates the
transient behaviour.

Our procedure will be first to find the natural response of some simple
circuits. The natural response will then be added to the forced response to
obtain the total response. Initial conditions are applied to the total response
in order to evaluate the constants that appear in the natural response. For
any circuit, then, the natural response provides the smooth transition
between the initial state of the circuit and the steady state response to a time
dependent driving function.

6.4 Time constant
Consider time dependence of the form

y = AQ~at (6.8)

Here, y has value A at t=0 and decreases exponentially approaching zero
asymptotically as t-»oo. The constant a is a measure of how rapidly y
decreases from its initial value. When t= l /a , y = Ae~1=036&A. I/a is
called the time constant and represents the time required for y to fall to
36.8 % of its initial value, A. The time constant usually is designated by T and
is commonly expressed in seconds. (There are however some systems for
which the time constant is more appropriately expressed in minutes or
hours.) If for (6.8) we plot the ratio y/A against time, expressed as multiples
of T, we have a relation between two dimensionless quantities that is
applicable to any equation of the form of (6.8). This is shown in fig. 6.5(a).

The concept of time constant is applicable also to

u = B(l-Q-t/z) (6.9)

when t=T, u = B(l -0.368)=0.632£. So for this time dependence, the time
constant represents the time required for u to reach 63.2% of its final value.
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Fig. 6.5. Illustrating the time constant T: dimensionless plots of
exponential waveforms.

slope = —

(a) Exponential decay

u

B

(b) Exponential rise
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The curve ofu/B v. t/z is shown in fig. 6.5(b).
The initial slope of the curve represented by (6.8) is

dt = — ae

Ify/A continued to decrease linearly at the initial rate it would reach zero in
time equal to T. This is shown in fig. 6.5(a) where the tangent drawn at t =0
is extended to intersect the t-axis. Similarly, in fig. 6.5(b) the initial slope is
+ 1/T. Then the tangent drawn at t = 0 intersects the line u/B = 1 at time
t = T.

For both (6.8) and (6.9), when t = 5T, the dependent variable is within less
than 1 % of its final value. Therefore for practical purposes one may assume
the final value has been achieved when £>5T .

6.5 Natural response of some basic series circuits

6.5.1 RL circuit
In fig. 6.6 switch Sx has been closed for a long time and S2 is open.

The current through R and L in series is, therefore, Jo = V/(Ri+R).
At t = 0, S2 is closed and, simultaneously, St is opened. Current now flows

in the part of the circuit completed by S2, and the energy initially stored in
the inductance ( = ^L/0

2) is dissipated over a period of time in the
resistance. Since the driving source voltage V is disconnected, the forced
response in the part of the circuit which is active for t>0 must be zero.

For f>0, Kirchhoff's voltage law gives

or

^ + Ri 0 (6.10)
dt

The solution must be such that i and di/dt have the same time dependence;
the only appropriate function is the exponential.

Let i = Aest\ substitution in (6.10) then gives:

or

sL + R=0 (6.11)

(In the mathematical theory of differential equations this equation is
referred to as the auxiliary equation.)
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From (6.11) we obtain

s = — R/L, hence

The current therefore decays exponentially with time constant L/R.
The constant A is evaluated from the initial condition

i=-/o= — att=O +

Note that the negative sign appearing, in this expression, arises because of
the assignment of current in a clockwise direction in fig. 6.6.

The solution is then

i— — -
_e-Ri/L (6.12)

Rt+R

This equation is represented by the dimensionless plot of fig. 6.5(a) with

Equation (6.12) gives the natural current response of the circuit. The
natural voltage response across either R or L may be written immediately
using (6.12). For the voltage across R we have

VR _Q-Rt/L

Rt+R

and for the voltage across L we have

Vdi [R V ^ / 7 1 VR
vL=L—=L\ e"*/L =L dt [_L (Ri+R) J Rt+R

(6.13)

(6.14)

This expression also follows from the fact that vL= —vR.

Fig. 6.6. Circuit for calculating natural RL response. /0 is the
magnitude of the initial current through L (Sx closed, S2 open).
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290 Transient and steady-state analysis

6.5.2 RC circuit
Referring to fig. 6.7, the voltage source Vo is connected to the

capacitance C and S2 is open. At t=0, S2 is closed and Si is opened. At this
instant the voltage across the capacitance remains unchanged at Vo since
the stored energy cannot change instantaneously. If we assign current i in a
clockwise direction, then vc will have the polarity indicated and initially (at
t = 0+)vc=-Vo.

From Kirchhoff's voltage law,

or

- \idt + Ri=0 (6.15)

Note that, after Sl is opened, there is no driving source in the circuit so the
right-hand side of this equation is zero. (The initial voltage Vo on the
capacitor is not to be confused with a driving source voltage.)

Differentiating (6.15) we obtain

di 1 . A

Following a procedure similar to that in the previous section for the RL
circuit, the solution of this equation is found to be:

i = AQ-t/Rc ( 6 1 6 )

Now, referring to the directions of current and voltage shown in fig. 6.7, it is
seen that

giving A = Vo/R. The natural current response is therefore

Fig. 6.7. Circuit for calculating natural RC response. Vo is the
magnitude of the initial voltage on C (Sx closed, S2 open).

S, .R
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(6.17)

This equation is also represented by the dimensionless plot of fig. 6.5(a)
with the time constant T = RC.

The natural voltage response is given by

VR=-vc = iR = Voe-t/RC (6.18)

The RL circuit and the RC circuit each contain one energy storage
element and, for this reason, are called single-energy circuits. They are also
referred to as first-order circuits because their behaviour can be described
by a first-order differential equation.

Commencing at t=0+ there is in each circuit a unidirectional current
which continues, decreasing exponentially in amplitude, until all the energy
that was initially stored is transformed into heat in the resistance. In the RC
circuit, for example, the energy dissipated in the resistance is

WR = PRdt^^-
Jo R Jo R

which is just equal to the energy initially stored in the capacitance.

6.5.3 RLC circuit
The circuit shown in fig. 6.8 has two energy storage elements and is

referred to as a double-energy or second-order circuit; a second-order
differential equation is required to describe its behaviour.

Initially the switch is open and we assume that the capacitance is charged
(by means of a circuit similar to that shown in fig. 6.7) to some voltage Vo.
For the polarity of Vo indicated, vc= — Vo initially.

At t=0 the switch is closed, then for t>0

Fig. 6.8. RLC circuit; Vo is the magnitude of the initial voltage on C.
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or

LfA\idt+Ri=0 (619)

Differentiating removes the integral sign and produces a second-order
differential equation of homogeneous form (RHS of equation identically
zero):

d2i R di 1

Assume, as before, a solution of the form i = AQst; then the auxiliary
equation becomes

( 6-2 0 )

Solving this quadratic equation gives

R

In general, there will be two distinct values of s so

S2t (6.22)

giving the two arbitrary constants required by the original second-order
differential equation. (The special case where Si=s2 will be considered
later.)

Two initial conditions are required for the evaluation of these constants.
Appropriate conditions are:

(1) at t = 0 + , i = 0 .
This follows from the fact that current through the inductance
cannot change instantaneously.

(2) at t=Q+,di/dt = V0/L.
This follows from the fact that when i = 0, then vR = 0 and vL= — vc.
But vL = Ldi/dt and vc= — Vo, so di/dt = V0/L.

Use of these conditions in (6.22) enables us to evaluate A x and A2. Then the
solution of (6.19) is

^ i - e S 2 < ) (6.23)
L (Si-82)

Now, referring to (6.21), the quantity

R\2

2LI UC ( " 4 )

https://doi.org/10.1017/CBO9781139170093.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.008


Natural response of some basic series circuits 293

called the discriminant, determines which of three particular forms the
solution (6.23) takes.

If the discriminant is positive, that is, if (R/2L)2 > l/LC,s1 and s2 are real,
negative and unequal. (Remember that R, L and C are intrinsically
positive.)

Let sx = — m, s2= — n, and let |rc|>|m|. Then (6.23) becomes

I (6.25)
L |n — m|

The solution is then the sum of two decaying exponentials, as shown in fig.

If the discriminant is negative ((R/2L)2 < 1/LC), sx and s2 are complex
conjugate numbers.

Let

R

then,

and, using Euler's identity, (6.23) takes the form:

T/ a, ~ <xt J/ ^ - at

-sincont

which is an exponentially damped sine wave as shown in fig. 6.

(6.26)

(6.27)

(6.28)

Fig. 6.9. Natural current response for the RLC circuit of fig. 6.8.

«'4

-M-

-Me-

M=
L\n-m\

(a) Overdamped response: equation (6.25) (b) Underdamped response: equation (6.28)

T u
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When 5! and s2 are real, the current starts at zero, increases in magnitude,
and then decreases to zero, but it is always in the same direction.

With complex values of s the current is oscillatory at a frequency

where a>0
2 = l/LC.

con is called the damped natural frequency and it represents the frequency
of the periodic transfer of energy between the two storage elements. coo is the
resonant frequency of the circuit (discussed in section 3.13.2). The damping
constant a governs the rate at which the amplitude of the oscillations
approaches zero as the initial stored energy is dissipated as heat in the
resistance. For small values of a, con~a)o and the oscillations last for many
cycles. A circuit that has an oscillatory natural response is said to be
underdamped.

When Si and s2 are real, the circuit is said to be overdamped. The
condition sl=s2 ((R/2L)2 = 1/LC) represents the transition between the
overdamped and the underdamped states, and it is called the condition of
critical damping. To get a complete solution of (6.19) for this case one must
use

i = (Al+tA2)e
st (6.30)

in order to have the required two constants of integration. Although it
represents the condition for which the current reaches zero in minimum
time, critical damping is of no special practical significance in electrical
circuits. It usually is not worthwhile to select circuit components carefully
enough to achieve exact critical damping. Moreover, there is the distinct
possibility that ageing of carefully chosen circuit components may cause
their values to change in such a way as to make the circuit oscillatory.

6.5.4 Q-factor and logarithmic decrement
For the oscillatory RLC circuit whose current is given by (6.28) it is

useful to have a number that relates the damping to the natural frequency
con of the circuit. We denote this number by Qn (the g-factor) and we define
it as*

This quantity is different from Qo the Q-factor defined in the discussion of
resonance in section 3.13.2. There we defined Q0=a>0L/R where (oQ = l/(LC)*.
Since large values of Qn are associated with small values of R, it follows from
(6.29) that when Qn is large a is small, a>n^co0, and Gn —Go-
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where T is the period of the natural response as indicated on fig. 6.9. Then,
putting /0 = Vo/conL, (6.28) becomes

i = I0e-{n/Q"T)tsmcont (6.33)

We see from (6.33) that when t increases by one period, the amplitude
decreases by the factor e~ n/Qn. So Qn is a measure of the damping per cycle.
Furthermore, the time required for i to decrease by a factor 1/e is equal to
QnT/n. Since Qn is inversely proportional to R we expect that a large value
of Qn is characteristic of a circuit that requires a long time for the
oscillations to die out.

We can determine the Q of the circuit by examining the oscillatory decay
and measuring the amplitude of two successive peaks. In fig. 6.9

and

! i = e<«/Gn7)(*2-ti> (6.34)
k

If (r2 —r1) = r , then i1/i2 = ew/Qn

and

The quantity 7r/Qn is the logarithmic decrement.

6.6 Total response
The natural responses of the circuits that we have considered so far

are examples of transient behaviour for the special situation where the
steady-state response is zero because there are no driving currents or
voltages present. When such energy sources are part of the circuit the
constants that appear in the natural response must be evaluated by
applying the initial conditions to the complete solution. Depending upon
the driving function and upon conditions that exist immediately after the
switching operation (that is, at t = 0+) the constants assume the values
necessary to provide a smooth transition from the initial to the final state of
the circuit.
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6.6.1 RL circuit with sinusoidal driving voltage
The usefulness of writing

i = iss + l'n

is well illustrated by a reconsideration of the circuit of fig. 6.1(b). The
differential equation is (6.5)

—+— i = —-sin((ot + l)
dt L L

The steady state solution is

The natural response is

in = Ae~Rt/L (6.36)

The total response then is the sum of (6.35) and (6.36)

( 6 3 7 )

Applying the initial condition (i = 0 at t = 0 + ),

and

(6.38)

This is identical to (6.6). It is apparent that the approach just employed is
more direct than that followed in deriving (6.6).

Fig. 6.10. RC circuit with constant voltage driving source.

R
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6.6.2 RC circuit with constant voltage source
In the circuit of fig. 6.10 we are interested in the voltage vc on the

capacitance after the switch is closed at f=0.
The natural response will, from the theory given in section 6.5.2, be of the

form:

vCn = AQ-tlRC (6.39)

For the steady state,

vCss = V (6.40)

The total response is the sum of (6.39) and (6.40).

vc = Ae-t/RC+V

Assuming no initial charge on the capacitance, the constant A is evaluated
from the initial condition:

Vc=0 at t = 0 + ,

hence,

A=~V

and

vc=V(l-Q-t/RC) (6.41)

This expression is represented by the dimensionless plot of fig. 6.5(b) with

The current is given by

6.6.3 Worked example
A circuit designed to fire a laser flash tube consists of the following

(see fig. 6.11): a 12 V battery of internal resistance 10Q is connected via a
switch S! to a resistance of 80 Q in series with a relay coil of resistance 10 Q
and inductance 2 H. The relay operates when the current in the circuit
reaches 50 mA. The operation of the relay closes a switch s2 in another
circuit so that a capacitor bank of 100 fiF is charged up via a resistor of 1 kQ
in series with a 2 kV supply.

If the laser fires when the capacitor bank is charged up to 1 kV, find the
time taken from the closing of sx to firing of the laser. Neglect the time
required for the relay to operate.
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Solution.
The diagrams for the two parts of the circuit are shown in fig. 6.11.

Relay circuit (fig. 6.11 (a)): let R be the total resistance in the circuit and L
be the inductance of the relay coil. The natural current response of the
circuit is then, from section 6.5.1,

The steady state, or forced response, is obviously

_V

Hence, the total response is

V
i = Ac~ '/ + -

At t=0 +, i = 0 therefore A = - V/R so the current in the relay circuit is given
by

* = ( l e )

Inserting numerical values (R = 100Q; L = 2H) we find the time tx for the
current to reach 50 mA

giving e"50'1 =0.583 or rx = 10.8 ms.

Fig. 6.11. Circuits for worked example (section 6.6.3).

10

12

a

V

.—-
80X2

o V\Ar

l

2

0

H

Q

J

? Q2kV

Battery Relay coil

(a)
ib)
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Capacitor circuit (fig. 6.11 (£>)): after the switch s2 closes, the voltage on
the capacitor is, from (6.41),

vc=V(l-Q-t/RC)

If t2 is the time for the voltage to reach 1 kV, then

l x l 0 3 = (2xl0 3 ) ( l -e - 1 0 ' 2 )

giving e~10'2=0.5 or r2=69.3ms.

So the total time from closing the first switch to the firing of the laser is
10.8 + 69.3 = 80.1 ms.

6.6.4 RLC circuit with constant voltage source

In the circuit of fig. 6.12(a) the capacitor is initially uncharged. At
t = 0, S is closed. We require an expression for the current for f>0. The
steady-state current iss is zero and the natural response is, from (6.22),

The initial conditions are:

i = 0 and vc = vR = 0, so vL = Y, or di/dt=V/L

When these conditions are used to evaluate Ax and A2, we obtain

i ( ^ S 2 ' )
L Si —s2

(6.43)

This is identical with the expression contained in section 6.5.3 for the
natural response of the circuit; a result which is to be expected since the
forced response is zero in the present case.

As discussed previously in section 6.5.3, the current will be either the sum
of two decreasing exponentials or oscillatory with exponentially decreasing
amplitude, depending upon the relative magnitudes of (R/2L)2 and 1/LC.

Fig. 6.12. RLC circuit with constant and sinusoidal driving voltages.

i R i

jC 0

_j\/vV—
+ 1 ) D -

L L
(a) Constant (d.c.) driving voltage (b) Sinusoidal driving voltage
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6.6.5 RLC circuit with sinusoidal driving voltage
When the RLC circuit is driven by a sinusoidal voltage, as in fig.

6.12(6), the forced response is (from our a.c. theory)

0) (6.44)

where

Z = J[R2 + (XL — Xc)2] and tan# = — -

R
Because the natural response can have different forms depending upon
circuit constants, the transient response may exhibit wide variations. In
every case, however, the form of the transient is determined by the circuit,
and the amplitude is whatever is required to satisfy the initial conditions.
These conditions depend upon the initial energy stored (if any) and upon
the instant in the cycle of the applied voltage at which the switch is closed.

If the RLC circuit is overdamped, the natural response is given by (6.22)

in = A1Q-mt + A2e~nt (6.45)

where — m and — n are the two appropriate values of s in (6.22). The
complete solution is then

^ -nt (6.46)

Two initial conditions are required for evaluation of the constants Ax and

A2.
For the underdamped case the natural response is, from (6.22), (6.26) and

(6.27),

-j^] (6.47)

Using Euler's identity this can be written

or

in = e~atMsm(cont + (/>) (6.48)

where
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The complete solution is then

/ = -^-sin(cor + A-0) + e-afMsin(cont + 0) (6.49)

Note that the evaluation of the constants Bx and B2 is often easier than the
direct evaluation of constants M and (j>.

6.6.6. RLC circuit with sinusoidal drive and coo ~ con

Referring to fig. 6.12(6), if 1/LC>(R/2L)2, the circuit is lightly
damped, and the damped natural frequency con and the resonant frequency
co0 are very nearly equal. If there is no initial stored energy in the circuit, the
transient response depends upon the phase angle X of the applied voltage
and also upon how the applied frequency co compares with con.
Case 1. Let A=0. The initial conditions are then:
(1) j = 0 (current in inductor cannot change instantaneously);
(2) di/dt=O (v = vR + Vc+vL, but v = 0 and also vR = 0 and vc = 0, therefore
vL = Ldi/dt=0).
Case la:co = (jon. The circuit is resonant, therefore in (6.44) XL = Xc, Z = R9

and 6 = 0.
So, (6.44) becomes

iss=—sma>t

and (6.49) becomes

i i + -sincot+eMsin(cof + </>) (6.50)
R

Differentiating (6.50) gives

(6.51)
dt R

The first initial condition gives, by (6.50),

Msincj) = 0

If M = 0, there is no transient, so we take this condition to mean sin</> = 0.
Hence, sin(/> = 0 and so (/> = 0.

The second initial conditions gives, by (6.51),

0 = co — +Mco, hence M = - —
R R
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302 Transient and steady-state analysis

Then

l~ R
(6.52)

The current is sinusoidal inside an envelope that starts at zero and
approaches asymptotically the values ±Vm/R (see fig. 6.13).

Case lb: co >con. The circuit is predominantly inductive and so to a close
approximation we may write Z = coL and 9 = n/2 rad. So (6.44) becomes,

Then

and

, = coscof
CDL

i= -coscot+e
(JOL

di V
—=—^
at L

Substitution of the initial conditions yields

= —-, and since con

CDL

Fig. 6.13. Response of RLC circuit driven at its natural frequency.

R
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Therefore,

y
i= ^(coscot-e"arcoscon0 (6.53)

coL

Case lc: co <con. In the steady state this circuit is capacitive with current
leading the voltage by 90°. So (6.44) becomes:

iss=coCVmcoscot

Following the same procedure as that used for Case lb, we obtain

i = coCVm(coscot-Q~atcoscont) (6.54)

In neither Case lb nor Case lc does the current reach exceptionally high

values; under no circumstances will it be greater than twice the steady-state
value.
Case 2. Let X = n/2 radians. Now the driving voltage has maximum value at
t = 0+ . Initial conditions are:

(1) i=0
(2) di/dt = VJL

These lead to the following expressions for the current
Case 2a: co = con.

i^^{l-Q-at)cosojt + p^Q-atsmcot (6.55)

Case 2b: co$>con.

V (D
i=—(sincot ^e-a'sinconr) (6.56)

coL co

The transient term is negligibly small because of the multiplying factor
(cojco).
Case 2c:

i= -(oCVJsincot-—e~a'sincon0 (6.57)
CO

Now the ratio (cojco) is large and so the amplitude of the transient
component may be many times the steady-state amplitude.

6.7 The D-operator
In our study of transient analysis so far we have considered circuits

mainly of a simple series form containing not more than two storage
elements, and driven by constant (d.c.) or sinusoidal (a.c.) driving sources.
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304 Transient and steady-state analysis

For more complicated circuits with arbitrary driving sources, the circuit
integro-differential equations can be complex, and their solution cor-
respondingly difficult. For this reason 'operational' methods have been
devised which greatly simplify the process of formulating the circuit
equations and which, for some important practical cases, provide elegant
methods of solution. One such operational method is presented in this
section. Our procedure will be to describe the method and illustrate its use
with examples. A more complete description and mathematical justifi-
cation of the method will be found in ref. 15.

6.7.1 The operators D and D" l

We define the 'differential operator' D by

D=A (6.58)

so that we may write

Dx=^- (6.59)
at

and we interpret Dnx to mean dnx/dt", that is the symbol Dn operating on x
signifies the process of differentiating n times.

Extending the notation further we interpret 1/D = D " 1 as signifying the
process of integration, that is,

— x = D " 1 x = h c\xdt (6.60)

so that

D—x=— \xdt =
D dtj

Using this notation the voltage-current relationships for inductance and
capacitance,

become,

Similarly, the circuit equation appertaining to the general branch with a

= LDi vc = £^i (6.61)
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sinusoidal driving voltage (fig. 6.12(fo)), namely,

L(-

becomes

LDi + _ j + /« = Vmsin(cot + k) (6.62)

The use of D and D " 1 to indicate respectively differentiation and
integration, would appear to be but a modest extension of the process of
symbolic representation, however, it can be shown that for linear differen-
tial equations with constant coefficients the D-operator can be treated like a
coefficient in an algebraic equation. Specifically, the operator obeys the
distributive, commutative and associative laws of algebra. This implies, for
example, that

D(x+y) =

and

(D-m1)(D-m2) = (D-m2)(D-m1) = D 2 -

Functions of D also obey the laws of algebra; for example,

These algebraic properties allow us to multiply both sides of (6.62) by D
(corresponding to differentiation term by term) to obtain

or

D2 + £ D + ̂ \ i = ° Vmsin((ot + X) (6.63)

6.7.2 Solution of differential equations by D-operator
In general, the differential equations that characterize linear

circuits are of the form:

F(D)y = X (6.64)

where the function F(D) is a polynomial, y represents voltage or current,
and X represents a time-dependent driving source (voltage or current). We
have already seen that such an equation may be solved in two stages: first,
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306 Transient and steady-state analysis

the complementary function (natural response of the circuit) is found from
the homogeneous equation

F(D)j/=0 (6.65)

Substitution of y = Aest leads directly to the auxiliary equation F(s)=0. For
example, putting i — Atst in (6.63) and using (6.65) we obtain

^ 0 (6.66)

RA

or

s2+Ts+Ic=0 (6-67)

Comparing (6.66) and (6.67) we see that the auxiliary equation may be
written directly merely by substitution of s for D.

The second stage in the solution of (6.64) is to find the particular integral
(forced or steady-state response of the circuit). Now it can be shown that the
D-operator method enables one to obtain the particular integral from

k i6M)

A variety of methods exist for solving this equation, depending upon the
particular form of X; we consider three important cases.
Case 1. X = xn (n = positive integer)

In this case

y = [F(D)Y1xn (6.69)

and [F(D)] "1 is expressed as a polynomial in rising powers of D as far as
D". (Any higher powers of D will yield zero.)
Example: (D2-4D+4)y=x2

The P.I. is

1 2 ^ 1 2

D 2 -4D + 4* 4 ( l - D + D2/4)

Expanding by the binomial theorem:
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y=i °4>KT •>

Case 2. AT = eflX

We have Deax = aeax; D2eax = a2eax; Dncax = anQax hence, if F(D) is a
polynomial,

= F(a)eflx (6.70)

Now

but

1

F(D)

therefore

( F ( a ) # 0 ) ( 6 7 1 )

Example: (3D2-2D+4)y =
The P.I. is

36e"x 36e~x

Case 3. X = eaxV(x) where V(x) is a function of x only.
For this case it can be shown that

Example: (D2 + D-2)>;=xex

The P.I. is

Using theorem (6.72), the exponential is shifted to the left of the operator
and D becomes D + 1 :
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= x = .
D(D + 3)

D \

T"7

The D in the denominator means that the expression to its right is
integrated once, thus

ex (x1 x

Theorem (6.72) allows us to deal with situations for which theorem (6.71)
of Case 2 breaks down, for example

y=
y D 2 + 4 D + 4

Simply replacing D by —2 as required by (6.71), gives zero in the
denominator of this expression. However, if we take V(x)= 1 in (6.72) we
obtain:

Returning now to (6.62), appertaining to the general branch with
sinusoidal excitation, we may use theorem (6.71) of Case 2 to derive the
particular integral. Representing the RHS of (6.62) by the imaginary part of
the complex exponential we may write

Now, according to (6.68), the particular integral is given by

i= ^ Imej(wr + A) (6.73)
LD+1/CD + R l ;

and, by (6.71), D may be replaced by jco to give

I V f
jcoL+1/jcoC + K

(6.74)

The denominator of this expression is recognized as the complex impe-
dance, which may be written Zeje where Z = [R2

 + (QJL— 1/COC)2]* and
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= tSin~1(coL-l/(joC)/R, hence

or

i=—

The derivation of this result should be compared with the methods used in
section 3.4.

6.7.3 D-impedance
The concepts of complex exponential and complex impedance

were introduced in sections 3.3 and 3.4 in connection with steady-state a.c.
circuit analysis. A related concept which is useful in the context of transient
analysis will now be considered.

We observe that the 'jco' in the denominator of (6.74), which is the
complex impedance, arise directly as a result of the 'D' in (6.73). This result
follows whatever the combination of circuit elements under consideration,
and by analogy we call the function of D appearing in the denominator of
equations such as (6.73) the D-impedance. This concept offers a convenient
approach to the setting up of circuit differential equations, which is exactly
analogous to that used for setting up the steady-state a.c. circuit equations.

First, write down the a.c. impedance (or reactance) of each circuit
element but with D in place of jco. Then combine the impedances and derive
the circuit equations in the usual way. The ratio of voltage v(t) to current i(t)
at any terminal pair of a network will be the D-impedance at that terminal
pair. For pure inductive and capacitive elements the relations analogous to
](oL and 1/jcoC are LD and I/CD. Notice that we place the operator D after
the constant since in the full equations in which they occur, for instance
(6.62), the D or 1/D will be operating upon a variable, either i or v, situated
to the right-hand side of the operator. This convention need not be strictly
adhered to in the course of algebraic manipulation but it makes for clarity
in the interpretation of the end formulation of the circuit differential
equations. This point will become apparent in the following worked
example.

6.7.4 Worked example
For the circuit of fig. 6.14 derive differential (D-operator) equ-

ations for the current i(t) and the voltage v(t). If Rl=R2=2MQ and
C=0.5/zF, find explicit expressions for the steady state components of i(t)
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310 Transient and steady-state analysis

and v(t) given that the driving function v^t) is: (a) F0(constant); (b) r; (c)
e"'; (d) re"'.

Solution:
Let Z(D) be the impedance of R2//(l/CD) then

Z(D) =
R2(\/CD)

HI/CD 1+K2CD

and Z(D) form a voltage divider, hence,

Z(D) K2

(l+R2CD)R1+^2

or

v=-R1K2CD + R1+/?2

A differential equation for t; is then

or

Current i and voltage t; are related by v = (l/CD)i, hence substituting in
the above expression gives a differential equation for i:

If Rx = R2 = 2 MQ and C =0.5 /xF, the above equations for / and v reduce to:

10"6

vx and

Fig. 6.14. Circuit for worked example (section 6.7.4).
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The steady state responses are then given by

1 10~6

(a) Vl = V0

1

10~6

DF0 =0 [Alternatively iss = CDt;ss = 0]

(b) »,=t

D

10"6 10"6 10"6

(c) » , = e - '

1(T6 / D \ 1(T6 __ 10"6

=-4— I 1—j • • r~4~ [Alternatively iss

1 . 1
*"'=——— e~'=e~'

D+2 - 1 + 2

10-6 _, 10-6 _ 10"6

10~6 10

10- 6

2 -
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312 Transient and steady-state analysis

Case (b) in this example may be used to illustrate an important point in
connection with the response of circuits containing storage elements. For
the component values given, the time constant of the circuit is \ second, and
the complete solution for the voltage is

The initial condition is v = 0 at f =0 + , therefore A = \ giving

1 -2, , f 1
4 2 4

(6.75)

The curve of v versus t, shown in fig. 6.15, is asymptotic to the line j — J
which is, of course, the steady state solution.

Without the capacitance the response of the circuit would simply be ^
since Ri = #2- We see then that the addition of the capacitance has the effect
of shifting the steady-state response bodily to the right by one time
constant. This result is true in general; a circuit containing a single storage
element will introduce a time delay between excitation and response equal

(volts)

Fig. 6.15. Illustrating delay in the response of a circuit containing a
single storage element.

Delay = time constant

(2 second)

Natural response / Total

- 1 - - Steady state response (2 ~ 4 )

t (seconds)
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to the time constant of the circuit. Circuits containing multiple storage
elements will introduce time delays of magnitude depending on the number
and type of storage elements and on the circuit configuration.

6.7.5 Thevenin's theorem in transient analysis
We have seen that in the solution of the circuit differential

equations the superposition theorem plays a central role; it allows us to find
the natural and forced response separately which can be then added
together to give the complete solution. The other linear circuit theorems
discussed in chapter 2 are occasionally useful in the transient analysis of
circuits, particularly Thevenin's theorem. The circuit of fig. 6.16(a)
illustrates how this theorem can be used to simplify a circuit problem. In
this circuit the capacitance is charged fully to the source voltage
Vo (constant); the switch is then closed at t = 0. We wish to find the current i{t)
through R2.

To apply Thevenin's theorem the circuit is broken at AA' in fig. 6.16(a)
and the equivalent circuit to the left of A A' is found. The Thevenin
equivalent e.m.f. (equal to the open-circuit voltage across AA') will be
^0^2/(^1+^2), and the resistance looking into A A' (with Vo reduced to a
short circuit) is R1R2/(Ri + #2)- Hence, for the component values shown,
the circuit of fig. 6A6(b) is obtained. The circuit is now reduced to a simple
series form and it will be obvious that the steady-state value of v (voltage
across AA') is Vo/2. With a circuit time constant of 0.5 seconds the voltage v
is given by

Fig. 6.16. The application of Thevenin's theorem to a transient
problem.

(a) Original circuit (b) Thevenin circuit
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We have not changed the circuit to the right of terminals A A' so the initial
condition is still v = V0 at t=0+, which gives A = Vo/29 hence

Now the voltage v, which is that across C, is unchanged between circuits (a)
and (b) in fig. 6.16 so that the current through R2 will be v/R2 giving finally,

The circuits of fig. 6.14 and fig. 6.16 are similar; the reader should compare
the above approach with that adopted in section 6.14.

Thevenin's theorem is also useful if we wish to determine the effect of
some modification to a circuit upon which an analysis has already been
carried out. For example, suppose an additional resistance R3 is switched
into the circuit of fig. 6.14 at some instant t = tu as shown in fig. 6.17(a). We
wish to find the voltage v across the circuit for t^tx. With both switches
closed, the circuit becomes as shown in fig. 6.17(fc). To apply Thevenin's
theorem the circuit is broken at A A' and the equivalent circuit to the left of
AA' is found. The Thevenin equivalent e.m.f. eT, that is, the open circuit
voltage, is given by the solution (6.75) previously obtained for the
unmodified circuit:

1 -a l 1

eT=7e
 2t+^-~r

4 2 4
The equivalent impedance, in terms of the D-operator notation, is

= R(l/CD) = R
T R+l/CD RCD+l

where R = R1//R2.

The circuit is thus reduced to the form shown in fig. 6.17(c) and the voltage
is given by

fl3 RCD+l
V~R3+ZT

 eT~RCD+l+R/R3
er

For the component values shown the differential equation for v is

(6.76)
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Performing the operation on the RHS we obtain

The steady-state solution is given by

or

t 1

315

We are here interested in the transient conditions after closing the switch S2,
that is, for t > tx. Clearly, from the LHS of (6.76), the effective time constant
is 3- second so the complete solution may be written

Fig. 6.17. Application of Thevenin's theorem to a double switching
problem.

(a)

o-\

+
±v R,

\A

(b)

(c)
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The constant A is found from the condition of v at the instant

hence

and

For this particular example the use of Thevenin's theorem does not effect
a great saving in the amount of algebraic manipulation involved. This is
because it would be particularly simple in this instance to incorporate the
additional resistance R3 within the formulation of the original circuit
equation. However, for more complicated situations the Thevenin ap-
proach can offer significant advantages.

It may be remarked, finally, that for the simple circuits discussed in this
and previous sections containing a single source, mesh analysis is not an
efficient approach to the formulation of the circuit differential equations.
The reader may care to consider, for example, the use of mesh analysis
(rather than the 'voltage divider' approach) for the worked example of
section 6.7.4 (fig. 6.14).

6.7.6 Differentiating and integrating circuits
The RC circuits of fig. 6.18 are frequently used to perform simple

signal differentiation and integration. Consider the circuit of fig. 6.18(a);
with voltage vi applied at its input. The output v2 is

R RCD

1/CD Vl RCD+l

or

(KCD+ l)v2=RCDvl

For RC sufficiently small (RCDv2 <v2) we may write:

d
nRC—

at
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Thus, the output is approximately equal to the derivative of the input. Note
that the accuracy of differentiation will depend both on the magnitude of
RC and upon vx and its rate of change, which implies that the accuracy is
signal dependent.

For the circuit of fig. 6.18(6) we may show that, if RC is sufficiently large,

Because of the requirement in the integrating circuit that CR should be
large, the output is generally small, and for this reason the circuit is usually
used in conjunction with an active device which amplifies the signal and
improves the accuracy of integration by ensuring that the capacitance
receives, effectively, a constant charging current through the resistance (see
page 131 of reference 5).

6.8 The unit step and related driving functions
In this section we introduce the concept of the step function and its

relatives, the impulse function and the ramp function. These are members of
a class of functions, called singularity functions, that are of fundamental
importance to the development of more advanced aspects of circuit theory.
The singularity functions allow us to describe the behaviour of circuits
subject to driving waveforms of arbitrary shape and of a discontinuous
nature. Examples of the latter have already been encountered in which the
action of a switch impresses a driving voltage on a circuit at the instant t = 0.
It is convenient to introduce the step function as a mathematical
description of this discontinuous process although, as will be seen later, the
concepts embodied in the step and its related functions extend far beyond
this simple application.

Fig. 6.18. RC circuits used for signal differentiation and integration.

C M RC«\ R RC1
+° vw

v2(t) vAt) c 4=

(a) Differentiating circuit (b) Integrating circuit
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6.8.1 Step function
The unit step function (fig. 6.19) is defined by

=0 J (6.77)

It should be noted that according to this definition the function is zero at
£=0~ and unity at both t=0 and t=0+.

Fig. 6.20 illustrates the way in which the step function may be used to
describe the action of a switch. The voltage source V and switch S of fig.
6.20(a) are replaced by an ideal voltage source, permanently connected to
the circuit as shown in fig. 6.20(b), producing a driving voltage:

v(t)=Vu(t) (6.78)

This expression signifies that for t < 0 the voltage impressed on the circuit
is zero, for r > 0 the voltage is V. It will be appreciated that the
representation shown in fig. 6.20 refers to an ideal switch; that is, one which
has infinite resistance before closure, zero resistance after closure, and for
which the transition between these states is of infinitesimally short
duration. An absence of inductive and capacitive effects is also implied.

Fig. 6.19. The unit step function.

u(t)

Fig. 6.20. Representation of switching action by means of the step
function, (a) Original circuit with voltage source and switch, (b)
Representation of circuit (a) by step-function source.

V=o

Vu(t)

(b)
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The representation of fig. 6.20 also assumes that the circuit is in the zero
energy state at t=0; otherwise the voltage across the terminals to which Kis
applied may not be zero at r = 0 " , thus invalidating the definition (6.77).

A current source switched into a circuit at t=0 can be represented in like
manner by the unit step function. If / is the amplitude of the constant
current source, then the switching action may be represented by:

) = Iu(t) (6.79)

Voltages or currents which arise in a circuit subject to a unit step driving
function are called the step response.

6.8.2 Impulse function
The unit impulse function (also known as the Dime or delta

function) is the derivative of the step function, and is defined by

S(t)=-Lu(t)-]=u'(t) (6.80)

Now the slope of the step function is infinite at t=0, in other words the
function is not, in the usual mathematical sense, differentiable at this point
and is therefore singular. However, the meaning of (6.80) will become clear
if we consider the approximate step function g(t) shown in fig. 6.21 (a). This
is zero at t = 0 and rises linearly to unit amplitude at t = A. The derivative of
g(t) is the rectangular pulse shown in fig. 6.2 l(b). We see that as A is made
smaller and allowed to approach zero, g(t)^u(t) (fig. 6.21 (c)) while the

Fig. 6.21. Illustrating relationship between unit step and unit impulse
functions.

(a) Approximate
step

(b) Derivative of
approximate step

0 A

0 A

(c) Step
u(t) = Lim g(t)

A—0

(d) Impulse

S(t) = Lim g\t)
A — 0

u(t)k

(1)
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amplitude of its derivative l/A->oo (fig. 6.21(d)). However, although g'(t)
becomes infinite for A->0, the area under the derivative curve remains finite
and independent of A since

- x A = l
A

So, the unit impulse function is infinite at t = 0 and zero elsewhere, while its
area is unity. The symbolism of fig. 6.2\(d) is used to indicate these
properties of the unit impulse.

Since the impulse is the derivative of the step, the step must be the integral
of the impulse. That this is so will be appreciated if we consider the area
under the impulse function shown in fig. 6.21(d). To the left of the origin the
function is zero so there is no contribution to the area. As we pass from
f = 0" through to t = 0+ we include unit area and the integral jumps to
unity. There is no further contribution to the right of the origin so the value
of the integral remains at unity. From this point of view the unit impulse
may be defined by:

<5(f)df = l

<5(r)=0,t#0 (6.81)

It follows from the definitions of the unit step and unit impulse functions,
that the derivative of a step of amplitude E is an impulse of area £; that is

[Eu(t)] ES(t) (6.82)
at

The impulse function of voltage has dimensions of volt seconds; the impulse
function of current has dimensions of amp seconds (coulombs). Voltages
or currents which arise in a circuit subject to a unit impulse driving function
are called the impulse response.

The importance of the impulse function lies in the fact that it can be used
to represent functions and transforms of widely differing form. This will
emerge fully when we deal with the theory of the convolution integral in the
final section of this chapter. For the present we establish the circumstances
under which the impulse function may be used to represent a single, short
pulse of arbitrary shape. We begin by considering the response of a simple
RC circuit (fig. 6.22) to: {a) a rectangular pulse, of duration A and unit area;
(b) a unit impulse.

To find the response to the pulse we make use of the results obtained in
section 6.6.2. There we found that the response of an RC circuit to an
impressed voltage V was
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v2(t)=V(l-e-t/RC)

321

(6.41)

For the case considered here the pulse has amplitude I/A so, putting
V= I/A in (6.41) we obtain

_ 1
pulse ^ 0<f<A (6.83)

where x = RC.
We may make use of (6.41) also to find the response to the unit impulse

(see also section 6.9.6). This equation, with V = u{t\ gives the response to
unit step; by differentiating this we obtain the response to unit impulse since
the impulse is the derivative of the step. We have

hence,

^(Oimpulse— ~Tl\.U

(6.84)

= 8(t)-u(t)
_e.-t/t

Fig. 6.22. Response of an RC circuit to: (a) pulse input; (b) impulse
input.

OA

Pulse
response

t

Impulse
response
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But d(t) is zero for all r#0 , and at t = 0 the coefficient of 5(t) is zero, so the
first term in the expression vanishes to give

i;2(r)impulse=-e"r/Tw(r) (6.85)

In this expression u(t) is to be regarded as a multiplying factor indicating
that the response is zero for t<0 and (l/i)e~r/T for t >0.

Now let us compare the response of the circuit to the two inputs for times
equal to or greater than the duration of the pulse, that is for t> A. For the
pulse input the value of the output voltage at t = A will, according to (6.83),
be

pulse ^

If it is assumed that the duration of the pulse is small in relation to the time
constant of the circuit, this expression may be approximated by

M A U . - - f 1 - T - + ' • ) (686)

T\ 2T )
For the impulse input the output at t = A is, by (6.85),

which may be approximated by

impulse — ~

Comparing (6.86) and (6.87), and neglecting second and higher order
terms, we see that the difference s between the impulse response and the
pulse response (at r = A) is

e = ~ (6.88)
2 T
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If, for example, the time constant of the circuit is a factor often greater than
the pulse duration, then e = 0.05. For t > A the difference between pulse and
impulse responses will be less than that given by (6.88) since both response
curves decay exponentially, with the same time constant, to zero and will
therefore converge.

We may conclude that it is possible to predict the response of a simple RC
circuit to a rectangular pulse of unit area (for times greater than the pulse
duration) by determining the response to the unit impulse function. The
shorter the pulse duration in relation to the circuit time constant the better
the accuracy of prediction. It also follows that the response to a pulse of area
A may be found from the response to an impulse of magnitude A. Provided
the condition T > A is fulfilled, the ratio of pulse height to pulse width is
immaterial. Indeed, the pulse may be of any shape since the magnitude of
the equivalent impulse function depends only upon the area of the pulse.
Consequently, we are able to determine the response of a circuit to a pulse of
arbitrary shape (including pulses which cannot be expressed analytically)
simply by finding the area enclosed by the pulse, and then determining the
response of the circuit to the equivalent impulse function.

The foregoing argument has been developed on the basis of the simple
RC circuit, but the same general conclusions are found to be true for any
first order circuit. The conclusions are also valid for higher order circuits,
but in such cases it is the shortest effective time constant of the particular
circuit which must be used as the criterion.

6.8.3 Worked example
A photomultiplier tube, used in a scintillation counting system,

produces at its output pulses of current of the form shown in fig. 6.23(a). The
photomultiplier is connected to an amplifier whose input circuit can be
modelled by a resistance of 1 MQ in parallel with a capacitance of 30 pF.
Estimate the form of the voltage response at the input of the amplifier
subsequent to the arrival of a single pulse.

Solution: The photomultiplier can be regarded as having an infinite output
resistance so that it behaves essentially as an ideal current source. The circuit
model is therefore as shown in fig. 6.23(b) where i(t) is of the form shown in
fig. 6.23(a).

The time constant of the circuit is RC = 106 x 30 x 10"12 = 30/zs whereas
the pulse duration is approximately one microsecond; consequently the
pulse may be replaced by an impulse function at the origin.

The differential equation relating v(t) and i(t) is
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^ R(1/CD) ^
or

Putting i(t) equal to the unit step function of current u(t),

1 \ 1 . ,

where t;step is the step response.
The steady state response to unit constant current will clearly be vss = R,

and the natural response will be vn = Ae~t/RC, hence

The initial condition is v = 0 at t = 0+ giving A= — R, so;

The impulse response is obtained by differentiating the step response. Using
a procedure similar to that leading to (6.85) we find

1
impulse ^

This is the response to unit impulse; the response to an impulse of
magnitude Q will be (Q/C)e~t/RC. With Q = 2.3 x 10" n coulomb, the form
of the voltage response at the input of the amplifier is

tf = 0.76e~' /3Oxlo~6

Physically, we may interpret the result in the following way. During the
pulse, lasting for about 1/zs, a charge of 2.3 x 10" n C is delivered to the
capacitance causing the voltage to rise to 0.76 V. The capacitance then
discharges and the voltage decays with a time constant of 30 /zs.

Fig. 6.23. Diagrams for worked example (section 6.8.3).

Area = 2.3x10 C

Amplifier

(a) Input pulse (b) Circuit model
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6.8.4 Ramp and other singularity functions

The ramp function is the integral of the step function and is defined
by:

= u(t)dt= dt
J - oo Jo

or

p(t) = t t>0

=0 t<0

(6.89)

(6.90)

The integral of a step function of amplitude E corresponds to a ramp
function of slope E, that is,

r. Eu(t)dt = (6.91)

Other singularity functions, useful in more advanced network analysis, are
obtained by further differentiation or integration of the basic impulse,
step, and ramp functions. For example, differentiation of the unit impulse
function produces the unit doublet consisting of positive and negative going
unit impulses at the origin. Integration of the ramp function produces the
unit parabola.

The relationships among all of the functions mentioned in this section
are shown in fig. 6.24. In this book only the impulse, step and ramp
functions will be considered further.

Fig. 6.24. Relationships among the unit singularity functions.

(1)
(a) Doublet

(1)

(1)
Impulse 8(0=J[u«]

0 1

(c) Step u(r)

(e) Parabola p(t)^op{t}dt
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6.8.5 Delayed functions
The singularity functions considered so far have a point of

discontinuity at time zero; however, for some purposes it is useful to extend
the concept to embrace functions having a discontinuity at some other,
positive, value of time. This may be accomplished simply by changing the
argument of the function. Thus, if the unit step function is defined by

(6.92)
u(t-a) = 0 (£-

= 1 (t-a)>0)

Fig. 6.25. Delayed singularity functions.

3 (t-c

(a) Delayed impulse

0

u (t-

0

p(t-a)

(b) Delayed step

(c) Delayed ramp

Fig. 6.26. Use of delayed step function to provide time sectioning and
time delay of a signal waveform.

i

0

u (t -a) ym

a

sin

/

1/

co(t + t

t

(a) Continuous function (c) Function sectioned dXt-a

u(t - a) Vm sin co (t - a + r,

(b) Function sectioned at t = 0 (d) Function delayed by t = a
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the step will be delayed until t = a. The impulse and ramp functions may be
treated similarly, as shown in fig. 6.25.

The delayed unit step function allows one to specify analytically the time
at which a function commences; a process which is sometimes called
sectioning of the function. For example, the sinusoid v^VmSincoit + ti)
shown in fig. 6.26(a) is continuous for all negative and positive time.
Multiplication by u(t) sections the function at the origin (fig. 6.26(b)) while
multiplication by u(t — a) sections the function at t = a (fig. 6.86(c)).

Changing the argument of a function/(t) to f(t —a) and multiplying by
u(t — a) shifts the original function bodily along the time axis so that it
commences at t = a with the same value v0 that it had at the origin. The
result of this operation on the sinusoid is illustrated in fig. 6.26(d).

6.9 The Laplace transform
The method of analysis now to be described employs the Laplace

transform by means of which functions of time are transformed into
functions of a new variable s in such a way that what was initially a
differential equation becomes an algebraic equation. For the functions of
time normally encountered in linear circuit applications, these transform-
ations are unique so that to each function of t there corresponds a function
of 5 and, conversely, to each function of s there corresponds a function oft.
Therefore, from the algebraic equation(s) we obtain a function of s that
may, by the inverse Laplace transform, be converted to a function of t. This
new function is the solution of the original differential equation.

The Laplace transform has applications to situations such as we have
considered in this chapter where a known driving function is applied at t=0
to a circuit and it is desired to find the response of the circuit for all f >0,
having given the conditions in the circuit at t=0 (the initial conditions).
The method has several features in common with the D-operator approach
to circuit analysis, in particular the method by which the circuit equations
are set up and manipulated is essentially the same, however, the greater
mathematical generality of the Laplace transform allows it to be used for a
wider variety and range of problems. An important advantage of the
method is that initial conditions are included automatically in the
transformed circuit equations; a disadvantage is that it can involve a
formidable amount of algebraic manipulation, and it sometimes tends to
obscure the underlying physics of the problem under consideration.

The theory of the Laplace transform may be developed in relation to the
Fourier series and Fourier integral which are used, respectively, in the
representation of non-sinusoidal periodic functions and of pulses and other
functions of finite duration. In our approach we shall simply define the
Laplace transform; calculate the transforms for some functions of time that
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are commonly encountered, and show how the results may be applied to the
solution of some specific problems. We shall not go into the question of the
conditions that a function must satisfy in order that a transform should
exist; we assume (with justification) that all the functions we use meet these
criteria.

6.9.1 Definition of the Laplace transform
The Laplace transform F(s) of a function/(r) is defined by*

F(s)=&{f(t)}=\ /(r)e-^dr (6.93)
Jo

The symbol &{f(t)} is to be read: 4the Laplace transform of/(t)\ The
variable s, which has dimensions of angular frequency, may be real or
complex and is usually expressed by

s = G+i(o (6.94)

G must be positive and sufficiently large to ensure that the integral
converges. For the functions of t that we shall be concerned with, this
condition is satisfied.

The inverse Laplace transform is defined by

j{t)=&-l{F(s)}= — F(s)estds (6.95)
l n ) J<T-}O0

where the symbol £¥~l indicates the process of finding the inverse of the
function F(s).

In the application of the Laplace transform to practical circuit problems,
the integrals (6.93) and (6.95) are rarely used directly. The integral (6.93) has
been evaluated for a large number of functions and one refers to tables of
Laplace transform pairs to effect the appropriate transforms, both forward
and inverse. We shall not, therefore, concern ourselves further with (6.95). A
short table of transform pairs is given in Appendix D; we indicate below
how some of the more useful of the entries in this table are derived.

6.9.2 Laplace transforms for some functions of time
Note that pair numbers given below refer to the table of Laplace

transform pairs in Appendix D.

(1)/(*) = '"

* The lower limit in the integral (6.93) is zero, and the definition used here is
called the one-sided Laplace transform, which is applicable to functions that are
zero for t < 0. The two-sided Laplace transform, which we do not deal with in
this book, is defined by a similar integral but with lower limit — oo.
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Consider first f(t) = t then using (6.93)

J» 00

te~stdt
o

Integrate by parts: let t = u and e stdt=dv, so du=dt and v=—e st,
s

then

So,

f f r t °° r ° ° i i
\udv = uv- \vdu = \ —c~s t + -e" s rdr=O+-T

J J L 5 Jo Jo S S2

Repeated application of integration by parts gives the general result:

&{t"}=-£nj (6-96)
[Pair No. 1]

(2)/(r)=e"
/ • 00 / • C

F(s)= eflfe"sfdt =
Jo Jo

For the integral to converge, s > a. In the applications considered here, a is
negative, so this inequality obtains. Then

iT(e")=- l

s — a

and

(6.97)
[Pair No. 2]

(3) f(t) = sincDt.
This is calculated conveniently by using the identity

sincof=— (e jwf-e" j(>t)

together with the result (6.97)

1 | -e-(s-jc)rdr_e-(5 + jco)rdr-j

2jJo

ir_L u
2j L5"]^ s+j^J
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So,

(6.98)
[Pair No. 6]

(4) /(r)=
Again express the function as the sum of exponentials and use the result

(6.97)

^{coscut} = ~2 2 (6.99)
5 + c ° [Pair No. 8]

(5) f(t) = c (constant)

c

Jo L s Jo s

So,

^{c}=- (6.100)
5 [Pair No. 15]

(6) /(t) = u(t) (unit step)
Since u(t) = l for t>0 we may use the result (6.100)

&{u{t)}=- (6.101)
5 [Pair No. 16]

(7) Transforms of—fit); ~rj^)l ~A~n^

So far we have simply shown how, by a mathematical manipulation, it is
possible to obtain a function of 5 that corresponds to some given function of
t. The use of the transform in circuit problems requires that we also obtain
transforms of derivatives of functions of t. To find these we must know the
values of/(t) and its derivatives at t=0+. Let

/(0+)=/0; —f(0+)=fl; —/(0+)=/2 . . .etc.

Again using (6.93)

d/
Integrate by parts: e st = u and — dt = dv; hence,

at

du= —se~st dt and v=f.
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The first term on the right is (— /0) and the second term is just 5 times the
Laplace transform of/(t), therefore,

sF(s)-f0 (6.102)
[Pair No. 24]

So, to write the transform of the derivative of a function we write s times the
transform of the function and subtract the value of the function at t = 0+.

The voltage-current relationship for inductance provides an important
example of the use of this operational transform pair. We have

v = L—
At

which, upon transforming both sides, becomes

V(s) = L(sI(s)-i0) (6.103)

where io( = i(0+)) is the initial value of the current in the inductance.
The transform of the second derivative of a function is also found by

d2/
integrating by parts. With e st = u and —j dt = dv9 then

When limits are substituted, the first term becomes = —fl. The
Qt

second term is s times the transform of—, which we have just found. So,
at

(6.104)
[Pair No. 25]

Generalizing the above results we obtain:

sn-2f1-. . . - / „ _ , (6.105)
[Pair No. 26]

\f(t)dt and(8) Transforms of \f(t)dt and f(t)dt

Integrating by parts with J/dt = w and e~stdt = dv we obtain
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The second term is simply (l/s)F(s), and when limits are substituted in the
first term we have

But this is just (1/s) times the value of the integral at the moment of the
switching operation and therefore represents the initial condition. The
transform is often written

±-F(s)+-rl(0 + ) (6.106)
S S [Pair No. 27]

where f~l(0 + ) represents the value of the integral at t = 0+.
The above expression gives the transform of the indefinite integral; the

transform of the definite integral is obtained as follows:

Transforming term by term we have

J/dt|-

The first term is the transform of the indefinite integral, which is given by
(6.106). The second term represents the transform of a constant which is
obtained from (6.100). Hence,

So the transform of the definite integral is given by:

<?{[ /(t)dt[=-F(s) (6.107)
U o J S [Pair No. 28]

Using this expression we may find the transform of the voltage-current
relationship for capacitance with an initial voltage v0 (Table 1.1 equation
(1.31)),

v=— idt + v0

Transforming term by term we obtain

V(s)=— — + — (6.108)

C s s
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The same result may be obtained directly from (6.106) by noting that the
initial value of the integral, /~ 1 (0+ ) , is just the charge on the capacitance
(qo = Cvo).

As an example of the use of the transform relationships derived above, let
us again consider the RL circuit of fig. 6.1. With the switch closed at t = 0 the
circuit equation for fig. 6.1 (a) is

di
L— + Ri = Vu(t)

at

where u(t) indicates that the constant voltage V is switched into the circuit
at t=0. Using (6.102) we find that the first term transforms to
L(sI{s) — io) = LsI(s) since i0, the initial current, is zero. The second term
transforms to RI(s); and the term on the right, using (6.101), transforms to
V/s. The complete transform equation is then

LsI(s) + RI(s)=—
s

or

/(s)=— — - — = — (6.109)
1 ; s Ls + R Lls(s + R/L)j '

Now referring to our table of transform pairs (Appendix D), we see that
transform pair number 3 allows us to find the inverse of the expression in
brackets directly, that is,

This result is identical to (6.3).
In the case of the sinusoidal driving voltage (fig. 6.1(b)), the circuit

equation is

di
L— + Ri = Vmsina)tu(t)

at

which upon transformation becomes

V co

Here we have used (6.98) to transform the sinusoidal driving voltage.
Proceeding as before:

(6.110)
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Now we refer to our table of transform pairs but we discover that in this
case the appropriate form of the function in brackets does not appear. More
extensive tables are available (see for example reference 9), and such tables
would include the function we require. However, it will be instructive to
consider how a table containing a relatively small number of transform
pairs may be extended to allow the inversion of functions such as (6.110);
this is the subject of the following section.

6.9.3 Partial fractions
Because we are dealing with linear circuit elements we may use the

following property of the Laplace transform in our calculations.

This equation means that if we have a function F(s) for which the
corresponding f(t) is required, we may express F(s) as the sum of several
terms, find the inverse transform of each separately, and add the resulting
functions of time to get the complete solution of the original differential
equation. In order to express F(s) as the sum of several terms we can often
make use of the method of partial fractions.

The functions of s that we are concerned with in this text are in general
rational functions, that is, they can be expressed as the ratio of two
polynomials:

We assume that F(s) is a proper fraction (numerator of a lower order in s
than denominator).*

Now the fundamental theorem of algebra states that any polynomial in s
with real coefficients may be expressed as the product of factors of one or
both of the following types:

(a) linear factors of the form, as + b
(b) irreducible quadratic factors of the form ex2 + dx + e, which does

not have real, linear factors.
The coefficients a, b, c, d, e are real. If, therefore, F(s) is the ratio of two
polynomials, one may factorise the denominator. By the method of partial

* An improper fraction may be reduced by division to a form consisting of a
polynomial plus a proper fraction. For example,

X2-2X X2-2X

However, for all the problems that will concern us, F(s) is a proper fraction.
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fractions the original expression for F(s) may then be replaced by the sum of
a series of fractions whose denominators are found from the factors of the
denominator of F(s). The appropriate method of determining the numer-
ators of the partial fractions depends upon the factors that appear in the
denominator of F(s). We consider three different cases.

Case A. If the denominator of F(s) contains only linear factors none of
which is repeated, then,

N(s) A B M

( s — a)(s — b)(s — c ) . . . ( s — m) (s — a) (s — b) '"' (s — m)

(6.113)

To find the coefficient A, multiply through by (s — a) and let s=a. Then

N(s)(s-a) B(s-a)^ , M(s-a)
A + + +

When s = a, all terms on the right are zero except A. So,

A = [(s-a)F(s)]s=a

B = l(s-b)F(s)-]s=b

and so on.

Example. Let

ls-2 ls-2 AB
s3-s2-2s~s(s+l)(s-2)~7

_1 = - 3 C = [ (s -2)F(s) ] s = 2 =2

and

5 (5+1) (5-2)

The reader may care to derive the corresponding function of t, that is the
inverse transform, using the table of transform pairs in Appendix D.
(Answer: l - 3 e " r + 2e2r)

Case B. If a linear factor (s — b) is repeated p times in the denominator,
then the partial fraction expansion must include p terms of the form:
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The coefficient Ap is then found from

P s=b (6.116)

The other coefficients are found by repeated differentiation

(6.117)

_ 1 d3

3! dsJ

and so on.

Example.

s2+4s-15 s2-f45-15 A B
V-3s2+4 (s+l)(s-2)2 (s+1) (s-2) (s-2)2

- 3
s=2

Therefore,

- 2

Again the reader may care to find the inverse of this function (Answer:

Case C. Suppose there is an irreducible quadratic term of the form
s2 -has + fe2 in the denominator of F(s). Because a and b are real numbers,
this term gives two complex values of 5 that are complex conjugates of one
another. That is

s2 + as + b2 = [5 + (a+jco)][s + (a~jco)] (6.118)

where a and co are real and a = a/2, o)2=b2 — (a/2)2.
The partial fraction expansion then contains the following two terms:
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,Al . ,+ t
Al . , (6.119)

s + (a+jco) s-h(a-jco)

where A1 and A2 are, in general, complex. Then

Ai = [

Because F(s) is a rational function in s with real coefficients, Ax and
must be complex conjugates, that is, A2 = A1*. In polar form:

and

/l2=A2ej</)2 = y41e-j<'1 (6.121)

Now the inverse transform of the sum of the two terms in (6.119) is

or

/(r) = 2A1e"atos(cot-01) (6.122)

Example.

Then

X = [(5+1)F(5)]S=_1=|=1.25

(— 1 —J2+1)(— 1 — J2+1 —J2) 8 J4

In polar form, B1 =0.28/1161
The inverse transform of the last two terms is from (6.122)

and the complete function of t is

/(0 = 1.25e-r + 0.56e-'cos(2f-116°)

We may use the foregoing theory to derive two useful transform pairs.
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(1) L 1 k
a)2+co2

where a = a/2 and a>2=b2- (a/2)2.
By (6.118) and (6.119) we may write F(s) as

s + (a+jco) s + (a-jco)

then,

-=-L/90°
-j2co 2co

and, using (6.122), we obtain

1

CO

or

/(£)=—e"atsincot
CO

We then have

^ { e ' atsincot} = / , ^ L 2
 ( 6 ' 1 2 3 )

[Pair No. 10]

(2) Let
(s + a)2+co2

By an argument similar to that given above

j2co

where 0 = tan~1(co/a).
So, by (6.122),

CO

i ? i e " at(sin0coscot - sincofcosfl)
CO
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But sin0 = (o/y/((x.2-\-a>2) and cos0 = a/N/(a2+co2) hence

f(t)=Q-°Lt[ coscot sincot

V CO J
Hence

&h-*{coscot--sincot)\ = - J r (6.124)
IV /J (* + a ) 2 W [Pair No. 12]

Let us now return to the problem of finding the inverse of (6.110), namely,

The term in brackets may be expanded using the procedures detailed under
Case C above. With a = 0 in (6.119), and letting R/L = a, we have

1 _ A Bx B2

(5 + a)(s2+co2) s + a s-hjco s-jco

By (6.114)

and the inverse of the first term is Q~at/(a2 +co2).
By (6.120)

^

where (/>! = tan"1 —

Therefore, the inverse of the last two terms is, from (6.122),

1
-cos(co

and the complete expression for the inverse of (6.110) becomes

i(t) = —— - | T 77~2 2TCOS((Of + 4>l)

L \JD + a cOyJ (co H- a ) J

Putting a = R/L

VmcoL _p, /r Vm

Now referring to (6.1), the phase angle for the circuit of fig. 6.1 (b) is given by
= caL/R, hence, sin6 = a>L/yf[(a>L)2 +R2]. Also, t a n ^ =R/coL, hence,
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(j)1=90-e. So, puttingcoL/j[(coL)2 + K2] = sinflin the first term of (6.125),
and (j)x =90 — 9 in the second term of (6.125) gives

V e~Rt/L

which is identical to (6.38) with 2 = 0.
If one compares the above method of solving the circuit of fig. 6.1 (b) with

that given in section 6.6.1, it will be seen that it is algebraically more
complicated. In general, the Laplace transform method is not to be
recommended for solving first order circuits with constant voltage or
sinusoidal driving sources. However, as will become apparent in the
following sections, the method has advantages when dealing with circuits of
second or higher order and having finite initial energy states. The Laplace
transform method can also be advantageous for first order circuits
containing driving sources other than constant voltage or sinusoidal.

6.9.4 Network analysis by Laplace transform
In applying the Laplace transform method to circuit problems two

approaches are possible. The first is to set up the complete circuit integro-
differential equations and then transform these into algebraic equations in
s. With this approach difficulties can arise when taking into account initial
energy states of the circuit, particularly if the differential equations contain
second or higher order derivatives. The second approach, which we adopt
here, is to transform the voltage-current relationships for each circuit
element before setting up the circuit equations. Using this approach it is
often helpful to reconstruct the original time-domain circuit in the s-
domain. This new circuit will contain complete information concerning the
initial energy states of the original circuit.

We have already found in section 6.9.2 (equation (6.103)) the transform
corresponding to the voltage-current relationships for an inductance
carrying initial current i0:

V(s) = sLI(s)-Li0 (6.126)v(t) ^>V(s) sLI(s)Li0
at

The corresponding current-voltage relationship is

- (6.127)
S

The circuit interpretation of these relationships is shown in fig. 6.27. In
(6.126) we see that the voltage V(s) is the sum of two terms: (1) a voltage
drop, sL x 7(s), where sL is interpreted as a reactance (dimensions of ohms);
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(2) a constant voltage Li0. The s-domain circuit consists, therefore, of an
inductance L in series with a constant voltage source, as shown in fig.
6.27(6). Likewise in (6.127) the current I(s) is the sum of two terms: V(s)/sL
and io/s. The s-domain circuit consists, therefore, of an inductance L in
parallel with a constant current source (fig. 6.27(c)).

It will be appreciated that the relationships (6.126) and (6.127) in the s-
domain are mathematically identical; one can be derived from the other by
simple algebraic manipulation. From the circuit point of view this
manipulation corresponds to the Thevenin-Norton transformation (dis-
cussed in section 2.9.1). Fig. 6.21 (b) is a Thevenin circuit (inductance in
series with an ideal voltage source), while fig. 6.27(c) is a Norton circuit
consisting of the same inductance in parallel with a current source the
magnitude of which is given by Lio/sL = io/s. It is of interest to note that the
source Li0 in the s-domain circuit of fig. 6.21 (b) corresponds to an impulse in
the time-domain circuit since the inverse transform of a constant is an impulse
(transform pair No. 18). Likewise, the source io/s in fig. 6.27(c) corresponds to
a step function in the time-domain circuit (transform pair No. 16).

The transform corresponding to the voltage-current relationship for
capacitance, charged to an initial voltage v0, was also derived in section
6.9.2 (equation 6.108):

Fig. 6.27. Time- and s-domain circuits for inductance and capacitance.
i0 and v0 are initial values of current and voltage.

V(s)\

c

V(s) sC

Time-domain .s-domain
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v ' sC s

The corresponding current-voltage relationship is:

P
at

(6.128)

(6.129)

Figures 6.27(d\ (e) and (/) show the circuit interpretation of these
relationships; again it will be evident that the circuits of figs. 6.27(e) and if)
are related through the Thevenin-Norton transformation.

The relationships shown in fig. 6.27 enable one to transform any circuit
into the s-domain. Once the s-domain circuit is established any of the
formal procedures and techniques of steady-state circuit analysis may be
applied. For the inexperienced reader it is recommended that inductive and
capacitive elements with initial current and voltages be transformed using
the series forms given in figs. 621(b) and (e). The Thevenin-Norton
transformation can always be applied subsequently according to the
demands of a particular problem.

As an example of how the relationships shown in fig. 6.27 are applied to
derive the transform of a circuit, consider the time-domain circuit of fig.
6.28(a). The switch has been closed for an appreciable time so that C is
charged to the source voltage Vo, and a constant current io( = VQ/R^) flows
through L. At t=0 the switch is opened. We wish to find an expression for
the current i(t) in the circuit for t>0.

To derive the s-domain circuit of fig. 6.28(b) we consider each of the
storage elements in turn. The inductance with its initial current i0 is,
according to fig. 6.27(b), transformed to an inductance connected in series

Fig. 6.28. Example of circuit transformation using the relationships
shown in figs. 6.2.7 (a), (b) and (d\ (e).

7(5)

(a) time-domain (b) s-domain

https://doi.org/10.1017/CBO9781139170093.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.008


The Laplace transform 343

with an ideal voltage source. The capacitance with its initial voltage Vo also
transforms to a series combination of capacitance and ideal voltage source.
We choose the series (Thevenin) circuit transformations in each case
because this leads to the simplest possible single-mesh circuit in the s-
domain. Note that care must be exercised to ensure that the correct
polarities are assigned to the voltage sources in the s-domain. For the
inductance, the polarity of its associated source must be such as to drive
current in the same direction as that of the initial current in the time-domain
circuit. For the capacitance the polarity of the s-domain source must be
identical to that of the initial voltage in the time-domain. These observ-
ations apply irrespective of the directions of the assigned currents i(t) or
7(5).

Applying Kirchhoff's voltage law to the s-domain circuit we have

or

Inversion of this expression yields the required function of current in the
time domain.

A further example of the application of the Laplace transform method is
shown in fig. 6.29. In fig. 6.29(a) C is charged to an initial voltage
vo( = IoRi). The switch is closed at t=0; we wish to find the voltage v(t) for
f>0.

In this case it is slightly more convenient to use the parallel transform-
ation of fig. 621 if) since this leads directly to an s-domain circuit with one

Fig. 6.29. Example of circuit transformation using (for the capacitance)
the relationship shown in figs. 6.27 (d), (/).

- ( F Q / S + LJQ)

'sL+l/sC + Rt

(a) time-domain (b) s-domain
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independent node for which a nodal analysis, to find K(s), is clearly
appropriate. (The choice of the series transformation of fig. 6.27(e) would
have led, albeit indirectly, to precisely the same nodal analysis.) Note that
the ideal current generator of magnitude 70 in the f-domain circuit
transforms to I0/s in the s-domain (transform pair no. 15).

Applying nodal analysis to the s-domain circuit we obtain:

V(s) = -

— L - K(s)-^-C»o=0
sL + R2j s

I0/s + Cv0

or

Inversion of this function yields v(t).
The transform relationships for inductance expressed by (6.126), and

illustrated in figs. 6.27(a) and (b), may be readily extended to the case of
mutual inductance. We have seen that an initial current i0 in an inductance
gives rise to a constant voltage source Li0 in the s-domain. Referring to the
circuit of fig. 6.30(a), in which there are two coils of inductances Lx and L2

coupled by mutual inductance M, if the first coil carries initial current i01,
then in the s-domain circuit this will give rise to a voltage source of
magnitude L^oi in series with L1# In addition, a source of magnitude Mi01

will arise in series with L2. This follows from the theory of mutual
inductance presented in section 1.10. The polarity of this source will depend
upon the way in which the two coils are wound with respect to one another.
This information is provided by the dot convention (see sections 1.10 and
3.12). Notice that in fig. 6.30(fo), the polarities of the two sources Li0l and
Mioi bear precisely the same relationship with the corresponding ends of

Fig. 6.30. Time- and s-domain circuits for mutual inductance.

Us)

V2(s)

(a) time-domain (b) s-domain
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the two coils; that is, the negative side of the Li0l source is joined to the non-
dotted end of Li, and the negative side of the Mi0l is joined to the non-
dotted end of L2. (Of course, the same end result would be obtained if the
positive sides of either or both sources were connected to the dotted ends of
the coils.)

Finally, it follows that if there is an initial current i02 in L2, this will
produce in the s-domain circuit a source L2i02 in series with L2 and,
additionally, a source Mi02 in series with Lx.

6.9.5 Worked example
The circuit of fig. 6.3 \(a) is in equilibrium with the switch open. At

t = 0 the switch is closed. Find the current i2(t) for r>0.
Solution: Since the circuit is in equilibrium for £<0, the current through Lx

at the instant of closing the switch must be i0 = Vo/Ri = 5 A for the given
circuit values. The direction of i0 is from left to right in the circuit diagram.
In the s-domain circuit (fig. 6.31(6)) this current gives rise to the voltage
source LJQ with its polarity such that it drives current from left to right
(into the dotted end of Lx). In addition, i0 gives rise to the source M/o, with
polarity such that it also drives current into the dotted end of L2.

The procedure for solving circuits containing mutual inductance is
outlined in section 3.12. Currents Ix(s) and I2(s) are assigned to the two
meshes in the s-domain circuit. (In practical problems it is sufficient to
denote currents by Iu I2 etc.)

Applying KVL to mesh (1) we obtain

and for mesh (2)

Note that the terms due to mutual inductance, sMI2 and sMIu are both
positive because both assigned currents enter corresponding (dotted) ends
of coils.

Substituting numerical values and rearranging the above two equations
we obtain

- + 5

and
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Solution of these equations yields, after some algebraic manipulation,

/ -
2 s

s(s + 0.2)

By (6.113) we may write

, A B

and by (6.114)

1
=02:

Fig. 6.31. Circuits for worked example (section 6.9.5).

^ — M -

•»4:
".b >/?! ' '2

(a) time-domain

! = L 2 = M =1H; /?, = /?2 = 112; Vo = 5 V)

L/

(b) s-domain
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Therefore,

347

zv ' s 5 + 0.2

The first term of this expression is inverted using transform pair No. 15, and
the second term using transform pair No. 2. So,

If the simultaneous equations above are solved for lu a similar procedure
shows that the current in the first mesh is il(t)=l0 — 6e~02t.

It may be remarked that the current i2(t) at the instant t = 0+ is,
according to the expression above, equal to 1 A, while the current i^t) is
4 A. Before closing the switch, that is, at t = 0~, the currents were 0 and 5 A
respectively; evidently the currents in the inductances are changing
instantaneously, which might be taken to imply that the energies are doing
likewise. The reason for this apparent anomaly is that, if energy is to be
conserved, the total flux linkage (inductance x current) must be conserved
at the instant of switching. Both currents contribute to the total flux
linkage. Thus, at t = 0~: L1i0 = (l)(5) = 5. At t = 0+: L1i1+Mi'2 = (l)(4) +
(1)(1) = 5. The product (Lxi) is often referred to as the electrokinetic
momentum (see reference 2).

6.9.6 Generalized impedance, network function and impulse response
Consider the general branch driven by a voltage source v(t) as

shown in fig. 6.32(a). The circuit is initially dead so that the circuit
transforms into that shown in fig. 6.32(b). In the s-domain the circuit
equation is

Fig. 6.32. Time- and s-domain circuits for the general RLC branch
driven by an ideal voltage source.

R L
I VW « ^

R sL
I V W ^$Ur

v(t)

(a) time-domain

V(s)

(b) s-domain

J_
sC
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or

1

s~C

The ratio V(s)/I(s) may be interpreted as an impedance and we can write

Z(s)=^l = R + sL + — (6.130)
I(s) sC

Now in the detailed theory of the Laplace transform it is shown that s is
complex with dimensions of angular frequency. (It has already been
indicated in section 6.5.3 how the concept of complex frequency can arise in
circuit theory.) The complex frequency is usually written

(6.131)

If we let cj = O, then

^ (6.132)
jcoC

which is recognized as the steady-state a.c. circuit impedance. We conclude
that (6.132) is merely a special case of (6.130), and indeed, from this
viewpoint the a.c. theory developed in chapter 3 can be regarded as a special
case of the more general approach afforded by the Laplace transform.

In the s-domain the ratio of voltage to current at any terminal pair or
port of a network is denoted by Z(s) and is referred to as the generalized
impedance (or sometimes the generalized driving point impedance).
Likewise the ratio of current to voltage is called the generalized admit-
tance* (The word 'generalized' is often omitted when the context is clear.)

For example, the generalized admittance of a combination of R, L and C
connected in parallel may be written

K S

It will be apparent, therefore, that the analytical techniques and
terminology developed in chapter 3 for a.c. quantities may be translated
directly in terms of these generalized concepts. In particular, the important

* The term immittance is often used when referring in a non-specific way to either
impedance or admittance.
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ideas concerning the transfer function of a network, introduced in section
3.9, may be extended to the s-domain, as indicated in fig. 6.33.

If e(t) is a driving function or excitation in the time-domain network and
r(t) is the response to this excitation, and if E{s) and R(s) are the
corresponding Laplace transforms, then we may define a network function
H(s) by

H(s) =
R(s)
E(s)

or

) = H(s)E(s) (6.134)

E(s) and R(s) are called the excitation function and response function
respectively.

If R(s) and £(s), which may be voltage or current functions in s, refer to
the same port, then H(s) is a driving point immittance (impedance or
admittance). If they refer to different ports, then H(s) is termed a transfer
function.

As an example serving to illustrate some of the points discussed above, let
us find the transfer function for the circuit shown in fig. 6.34, and its
response to a ramp function input. The circuit forms a two-arm divider with
parallel elements in each arm; the admittance divider formulation is
therefore the most appropriate way of finding the transfer function. The
admittances of the two arms are:

Fig. 6.33. Definition of the network function.

Time - domain e(t

1
Laplace

transform
111 1s - domain E(s

)o Network

Network
H(s)

Network function H(s) =
R(s)
E(s)

°/f

°R{s)
Response
function

Time - dor

s - domain
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and

Therefore, the transfer function is

v2{s) y,(s)
H(s) =

V1(s) Y1(s)+Y2(s)

+sClRl)/R1
(6.135)*

If the input e(t) is a ramp function, then the excitation function E(s) is (from
transform pair No. 20) 1/s2. Thus, the response in the s-domain will be

) = H(s)E(s) = -
1

+ sClR1)/Rl + (l +sC2R2)/R2

This example illustrates the way in which one can utilize the techniques of
a.c. circuit analysis in the s-domain to obtain the response of a network not
only to sinusoidal input waveforms but to any waveform whose Laplace
transform can be found.

An important special case arises when the excitation e(t) is the unit

Fig. 6.34. s-domain circuit for a voltage divider.

Y,(s)

J_
sC-,

V2(s)

* If the time constants in the two arms are equal, that is, if CiRy =C2/?2» then
(6.135) reduces to H(s) = R2/(Ri +R2), which is independent of frequency.
Waveforms of arbitrary shape will, therefore, be transferred without distortion,
(except for a scaling factor). For this reason the circuit with equal time
constants is known as a frequency compensated divider. (This forms the basis
of the well-known 'oscilloscope probe'.)
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impulse function. In this case the response r(t) is, by definition, equal to the
impulse response h(t) (see section 6.8.2). Now the transform of the unit
impulse function is equal to unity, consequently the response in the s-
domain is given by

R(s) = H(s)E(s) = H(s) x 1 = H(s)

This means that the response function in the s-domain for unit impulse
excitation in the time domain, is simply the network function itself. It
follows from this that the impulse response h(t) must be the inverse
transform of the network function H(s). The time and s-domain relation-
ships for this particular case are depicted in fig. 6.35.

This relationship between impulse response and network function
provides a relatively simple way of determining the impulse response of a
network: first find the network function using the 'a.c. steady-state'
approach described above; then find the inverse transform of the network
function using tables of transform pairs. For example, let us find the impulse
response of the simple RC circuit of fig. 6.36. For this circuit, the network
(transfer) function is given by

V2(s) 1/sC 1

1/sC + R T(S+1/T)

where T = CR. Hence, the impulse response is

1 _.,.

Fig. 6.35. Illustrating the relationships between the network function
and impulse response.

, x , , . (Impulse
° r ( 0 = l ( 0 response)

Laplace
transform

E(s)=V

Time - domain

Network
H(s)

s - domain

-oR(s)=H(s)

https://doi.org/10.1017/CBO9781139170093.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.008


352 Transient and steady-state analysis

The reader should compare this procedure with that used earlier to obtain
(6.85).

6.9.7 Third and higher order networks

We have observed in preceding sections that a circuit containing a
single energy storage element leads to a first order differential equation,
while a circuit containing two independent storage elements leads to a
second order differential equation. For example, the equation for the
general series branch, containing two storage elements is

df if,
L— + K/+-— \idt = v

dt C J

which upon differentiation gives the second order equation

We now consider in a more general way the relationship between the
number and types of storage element in a network, and the form of the
network equation and its solution. Generalizing the above result for the
RLC series branch, the equation relating the response r(t) at any port in a
network to the excitation e(t) at the same or a different port of that network
may be written in differential form as:

dnr dn~lr dr

dme dm~1e de
= 6 « d r + 6 « - 1 d r = r + - " '+bldi+bo (6'136)

where the at and b{ are functions of the network elements only, and n is
equal to the number of independent storage elements.

Fig. 6.36. Simple RC circuit in the s-domain.

R
+ o

V2(s)
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Setting the RHS of (6.136) to zero results in an equation that
characterizes the natural behaviour of the network. Its solution gives the
natural response which contains n terms of the form

r(t) = Ale
Slt + A2e

S2t + . . . + AnQ
Snt (6.137)

in which Ax . . . An are arbitrary constants (governed by the initial energy
states of the network and by the form of the excitation function), and
s1 ... sn are the roots of the auxiliary equation:

5« + ̂ i 5 " - i + . . . + ^ 5 + ^ = 0 (6.138)
a a a

a polynomial of degree n.
The corresponding network equation may be formulated in the s-domain

by transforming both sides of (6.136)

= (bmsm + bm-ls
m-l+. . . + blSl+b0)E(s)

or

(6.139)

To find the response r(t) from this expression requires the inverse transform
to be found, and this in turn necessitates finding the roots of the
denominator polynomial, which is of degree n and identical to (6.138).

Thus, whether the network equation is formulated in the time-domain or
the s-domain, its solution entails finding the roots of a polynomial of degree
n where n is the number of independent storage elements in the network.
(Exceptions to this general rule are provided by certain network configur-
ations containing elements of identical value, in which case the network
equation may be of lower order than n.)

Before attempting to solve a network problem it is good practice to count
the number of independent storage elements and to note their type. The
following rules can then offer a general (although not infallible) guide to the
form of the network equation and its solution. The polynomial referred to
below is that given by (6.138) or the denominator of (6.139).
Rule 1 If M is the number of independent storage elements in a network,

then the following parameters are numerically equal to n:
(a) order of circuit differential equation
(b) degrees of polynomial
(c) number of roots
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354 Transient and steady-state analysis

(d) number of exponential terms in the solution
(e) number of arbitrary constants.

Rule 2 If storage elements are all of one type, then the roots of the
polynomial will be real and there will be no oscillatory terms in the
natural response. If they are not of one type, the roots may be
complex leading to oscillatory terms in the natural response.

Rule 3 Coefficients of the polynomial must be real and positive in all cases.
It must be emphasized that the number of independent storage elements

in a network is not necessarily the same as the number of separate,
identifiable elements. Two inductances in the same branch, for instance,
combine to form a single independent storage element. Both circuits in fig.
6.37 contain four separate storage elements yet lead to a third order
equation; in each case elements can be combined by series or parallel
addition. In fig. 6.37(fe) a Thevenin-Norton transformation is required to
allow the two leftmost inductances to be combined in parallel.

Finding the roots of third and higher degree polynomials can constitute a
major proportion of the work involved in solving complex networks. An
algebraic formula is available for finding the roots of a cubic, but it is
distinctly more difficult to apply than the quadratic formula. For quartic
and polynomials of higher degree, resort has to be made to algebraic
methods aimed at reduction of the polynomial in question into cubic,
quadratic or linear components (Lin's method). Iterative methods also exist
for finding the real roots of a polynomial to any desired degree of accuracy
(for example, Horner's method) but the amount of repetitive manipulation
involved is considerable.

For these reasons it has become commonplace to use numerical methods
to find the roots of third and higher order polynomials. Program C4 in
Appendix C, allows one to compute the real and complex roots of higher
order polynomials.

Fig. 6.37. Circuits containing four storage elements: (a) reduces to
third order by combining Cx and C2 in series, (b) reduces to third
order by combining L1 and L2 in parallel.

-AA/V—I

6

(a) (b)
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Although the amount of work involved in evaluating the network
polynomial is the same irrespective of whether the network equation is
formulated in the time domain or the s-domain, the latter has advantages
when dealing with third and higher order networks. This stems from the fact
that initial energy states can be incorporated quite simply into the s-domain
network equation. The time-domain solution, on the other hand, requires
the evaluation of arbitrary constants after the complete solution of the
network differential equation has been found. This can be a difficult
operation since it involves the evaluation of higher derivatives in terms of
the initial energy states of the network.

6.9.8 Worked example
(a) Find the transfer function H(s) = V2(s)/V1(s) for the circuit shown

in fig. 6.38.
(b) Show that the expression for the natural response of this circuit

contains three exponential terms, and determine the time const-
ants associated with these terms for the given values of R and C.

(c) If vi(t) is a steady sinusoidal function, show that the phase shift of
v2(t) with respect to Vi(t) is zero for a particular frequency, and
determine this frequency for the given values of R and C.

Solution
(a) Referring to the s-domain circuit (fig. 6.38(b)), the circuit contains three
independent nodes O, P, Q. The voltage at 0 is the assigned voltage V2; let
the voltages at P and Q be VP and VQ respectively. Applying nodal analysis
we have: at node O

+ 0

R 1/sC
l)V2-sCRVP=V1

Fig. 6.38. Circuits for worked example (section 6.9.8).

R = l k i 2 ; C = 0.1^F

+o 1—WV

VAs) • — r t A A — J ^ - ' sC

(a) time-domain (b) s-domain
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356 Transient and steady-state analysis

Let sCR = a (The algebraic manipulation is thus greatly simplified.) Then

(a+l)V2-aVp=V1

Similarly, at nodes P and Q we obtain

-aV2 + (2a+l)VP-aVQ=Vl

and

-aVP+(2a+l)VQ=V1

Elimination of VP and VQ from the above three simultaneous equations
yields:

The transfer function is therefore

V2(s) 6s2 {RC)2

H(s) =

(b) The natural response is obtained from the roots of the denominator
polynomial in the transfer function. Normalizing, by letting the product
RC = 1, the polynomial becomes

Using program C4 in Appendix C, we find that this has roots at 5 = - 5.05;
s = - 0 . 6 4 3 ; s= -0 .308 .

In the time-domain the natural response is therefore of the form:

or

For the given component values, KC = 10~4, hence, the required time
constants are 19.8 /is; 156/xs; 325/is.
(c) For a steady sinusoidal input, the transfer function is

0CO) ~ (j(jcoRC)3 4- 6()coRC)2 + 5)coRC +

~ 1 - 6((oRC)2 + H

Let l-6(o)RC)2=p; 5a>RC = q and 5a)RC-(wRC)3 = r, then,

JtlxiCO) — ;— — ~ ^

p+y P +r
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2 .p(q-p)
J

If the phase shift is to be zero, then the imaginary term in this expression
must vanish, that is p(q — p) = 0. Putting (q — p) = 0 leads to the trivial result
co = 0, therefore,

p=\-6(coRC)2 = 0

which gives

1

For the given values of R and C, co=4082rad/s.
This circuit is one of a small number of RC circuits capable of producing

a voltage step-up. For the zero phase-shift condition, the transfer function
becomes

q= 5coCR = 5/V6 = 3 0
UC°J r 5COCR(CDRC)3r 5COCR-(CDRC)3 5/V6-(l /V6)3 29

This property of the circuit has been utilized in one type of oscillator.

6.9.9 Further Laplace transform theorems
In this section we consider some useful theorems that allow us to

extend the table of transform pairs and increase the facility with which
transforms and inverse transforms may be found. The theorems are
introduced without proof; interested readers will find proofs in references 1,
2 and 9.

Theorem 1: shift in the s-domain

If F(s)=Z[f{t)l

then

(6.140)

Example: find
Since

^[coscof] = , S , [Pair No. 8]

then

= ^ — _ [Pair No. 11]
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1

(s + 2)2

Since

Example: given F(s) = i t 2 , find/(r).

t [Pair No. 1]
|_S"J

then

Theorem 2: shift in the time-domain (also known as 'real translation')
If ^[f(t)-]=F(s)

then

&[f(t-a)~]=e-atF(s) (6.141)

Example: find the Laplace transform of the delayed impulse function
S(t-a).

Since

#[$(*)] = 1 [Pair No. 18]

then

^ W - a ) ] =e"flS [Pair No. 19]

Theorem 3: differentiation with respect to s
If &Uit)]=F(s)

then

(F(s)) (6.142)
ds

Example: find the Laplace transform of tsincot. Since

iT[sincor] = 2 ^ 2 [Pair No. 6]
•J "T~ CJO

d T= -— -
d5L5

25CO

V+co2)2

Theorems 4 and 5: initial and final value theorems

then
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= limsF(s) initial value theorem (6.143)
f->0 s->oo

and

lim/(r) = limsF(s) final value theorem (6.144)
r-*oo s->0

These theorems are applicable only if f(t) and its first derivative are
Laplace transformable. In addition, for the final value theorem, complex
factors in the denominator polynomial of sF(s) must have positive real
parts. The theorems are often useful for checking whether a function of
current or voltage derived in the s-domain gives physically sensible results.

Example. Consider a step function of magnitude V applied to the RC circuit
of Fig. 6.36. The transfer function is l/(sRC+1) so that

Then, by the initial value theorem,

and by the final value theorem

r v i
lim!>2(0=lini —^—r = ]

r-*oo s-*0 \_sRC-{• 1 j

These results are what might be expected from physical considerations:
since the voltage on the capacitance cannot change instantaneously, its
voltage must be zero at t = 0+ (assuming zero initial voltage). It is also
apparent that the capacitance will charge up to a final value V.

6.10 Pole-zero methods
Let us again consider the expression (6.139) relating the

response and excitation functions of a network. Since the ratio R(s)/E(s) is
equal to the network function H(s\ (6.139) may be rewritten as

==H

E(s)

h \ h h h I
(6.145)
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360 Transient and steady-state analysis

Recalling that the a{ and bt in this expression are functions only of the
network Ls, Cs and Rs, we see that H(s) is the ratio of two polynomials with
real coefficients, that is, it is a rational function. Therefore, according to the
fundamental theorem of algebra, the numerator and denominator poly-
nomials may be factorized to give:

f - 2 ^ - ^ - ^ (6-146)
) ( p )

where Ho =— is a scaling factor, and the zt and pt are roots respectively of

the numerator and denominator polynomials.
Now if we examine the behaviour of H(s) as the complex frequency s is

varied, we see that at the particular values of 5 =pi , s =p2 etc., each of the
factors in the denominator polynomial of H(s) in turn becomes zero and the
function becomes infinite. We say that poles of the function exist at
s = Pi,P2 • • • or that Pi,p2 . . . are poles of H(s). Likewise, at the particular
values of s = zl9 s = z2 etc., H(s) becomes zero and we refer to zl9z2 . . . as
zeros of the function H(s). Put another way: the poles are the roots of the
denominator polynomial, the zeros are the roots of the numerator
polynomial. If we trace the derivation of (6.146) from (6.139), we see that the
poles of H(s) determine the form of the natural response. For example,
consider the function

2s3-4s2+4s

which when factorized becomes

H(s)=-
(s + 3)2(s+j2)(s-j2)

The first factor in the numerator, s, may be written (5 — 0) from which it will
be apparent that a zero exists at s=0. Other zeros occur when*

s— 1 n-j 1=0 i.e., when 5 = 1 — j l

and

s— 1— j 1 =0 i.e., when s = l

Poles of the function occur when

* Strictly, a zero also occurs at s = oo. This arises because as s-*oo the function
H(s)->l/s->-0. Poles and zeros at infinity are of importance only in the more
advanced theory of the method.
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(5 + 3)2=0
s+j2=0
s-j2=0

i.e.
i.e.
i.e.

when
when
when

s= — 3 (twice)

5 = - j 2
s=+j2

The locations of the poles and zeros may be mapped in the complex
frequency plane, or 5-plane, as shown in fig. 6.39. We shall see that such a
map, which is known as a pole-zero diagram, provides an extremely
informative way of displaying the essential features of a network function,
and of illustrating the characteristics of the network from which the
function is derived. Note that the scaling factor (x 2 in this case) does not
affect the positions of the poles and zeros, and is often omitted from the
pole-Zero diagram.

In order to illustrate the use of the pole-zero diagram, we again consider
the general series branch shown in fig. 6.32. The circuit equation is

which may be written

V(s)

sC

In the above expression V(s) is the excitation function, I(s) is the response
function, and the term in brackets is the network function - in this case an
admittance function

Fig. 6.39. Pole-zero diagram for the function H(s); poles are indicated
by crosses, zeros by circles.

5-plane

Double pole

\ j

I X I I

J3 "

J2

-4 x
3 _2 _l

-J2

H{s) (5+3)2(5+j2)(s-j2)

Scaling factor = 2

<?
i l l

2 3
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R+sL+sC

The scaling factor for this function is 1/L, and there is a single zero at s = 0,
that is, at the origin in the pole-zero diagram. To find the poles, it is
necessary to factorize the denominator of (6.147). Let sl9 s2 be the roots of
(s2+sR/L+l/LC)then

where

It will be convenient at this point to use the notation introduced in section
6.5.3. Let K/2L = a, l/LC = co0

2 then

Sl,s2=-a±V(a2-coo
2) (6.148)

Now our study in section 6.5.3 of the behaviour of the RLC circuit revealed
that three different types of natural response could occur: overdamped,
underdamped and critically damped. Let us consider the admittance
function Y(s) in terms of these responses.

If OL2>CDO
2 in (6.148) then we have the overdamped case and the roots

sus2 are negative, real and unequal. Again using the notation of section
6.5.3, let sl = —m and s2 = —n, then for the overdamped case the
admittance function becomes:

1 *
Y(s)=-L (s + m)(s + n)

Poles occur at — m and -n as shown in fig. 6.40(a). It follows from (6.148)
that these poles are symmetrically disposed about the point — a on the o-
axis.

Next, consider critical damping; this occurs when OL2=CO0
2 in (6.148).

Then sx =s 2 = — a and the admittance function becomes:

In this case a repeated, double or second-order pole is said to occur at — a
(fig. 6.40(6)).
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Finally, consider underdamped or oscillatory response. In this case
coo

2>a2 and

where con is the damped natural frequency given by

Then

(6.149)

(6.150)

and the poles are located as shown in fig. 6.40(c).
It should be noted that complex poles always occur as conjugate pairs,

consequently, the pole-zero diagram is mirror symmetric about the a-axis.
If the damping in the branch is varied by changing the value of R only

(keeping L and C constant), then co0[ = 1/y/(LC)] is constant and, from
(6.149),

a>n
2 + a2 = (o0

2 = const.

Thus, the locus of the poles in the s-plane, as R is varied, is a semicircle of
radius 1/y/(LC).

The sequence of events as R is varied, so that the circuit changes from the
overdamped case through critical damping to the underdamped case, is
illustrated in the pole-zero diagram of fig. 6.41. Starting with a high value of
R the poles are located at (1,1'). As A is reduced, the poles move along the
a-axis converging towards point (2) located at a= — 1/y/(LC). On further
reduction of R, the two poles diverge, moving along the semicircle of radius
1/y/(LC) to points (3,3'). As R becomes vanishingly small the poles lie on
the jco-axis at points (4,4'). This is not, of course, a practicable possibility

Fig. 6.40. Pole-zero diagrams for the admittance function of the
general series branch.

-*—I—x—<]
-m -a -n -a

(a) Overdamped ib) Critically damped (c) Underdamped
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364 Transient and steady-state analysis

for a passive circuit (except of the superconducting variety) and the poles
will always lie somewhere in the left-hand half plane of the pole-zero
diagram. Poles in the right-hand half plane imply exponentially increasing
functions in the time-domain, which are possible only with circuits
containing active devices.* (From this point of view the pole-zero diagram
plays an important role in the theory of control systems and the conditions
that must obtain for their stability.)

It is sometimes helpful in the interpretation of the pole-zero diagram to
think of the modulus of the function under consideration as a surface above
the 5-plane. In the present instance the surface of | Y(s)\, corresponding to
the overdamped and underdamped cases, would look somewhat as
depicted in fig. 6.42. While this visualization can be informative, it must be
appreciated that it is the map of the poles and zeros in the s-plane, showing
the way in which they move with change of particular network parameters,
that provides the all-important information.

An alternative way of representing a network function in the 5-plane is
obtained by expressing the factors of the function in polar form. In the
expression (6.146) for H(s\ a factor such as (s — zx) in the numerator, which
is the difference between two complex quantities, can be written as

Fig. 6.41. Illustrating the effect of variation of R on the natural
response of the general RLC series branch (L and C constant).

Response '

(2)

(4,4')

k

t

t

t

t

(b) time-domain

The detailed theory for passive circuits shows that zeros may exist in the right-
hand half plane, but only in the case of transfer functions. Neither poles nor
zeros may exist in this region in the case of driving point functions.
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where N1 = \s — z1\ and i/^ =arg(s — zx).
In the pole-zero diagram (fig. 6.43), (s — z x) is a line segment of length N x

directed from the point z t to the point s, making an angle i/^ with the
horizontal. (This follows from the normal laws of vector addition.)

A factor (5 — px) in the denominator of (6.146) may likewise be expressed
by

with a similar interpretation in the pole-zero diagram.
Expression (6.146) may then be written

( s -P i ) ( s -p 2 ) . . .

(6.151)

As an example consider the transfer function

H(s)=-
: + 2+j4)(s + 2- j4)

which has the pole-zero diagram shown in fig. 6.44(<z). Suppose s takes the
particular value (0 + j3), that is, the point s lies on the jco axis as shown in fig.
6.44(fo). In polar form the function is

Fig. 6.42. Representation of the modulus of the network function Y(s)
in the s-plane. (a) Corresponding to fig. 6.40(a); (b) corresponding to
fig. 6.40(c).

\Y(s)\ • \Y(s)\

G

s - plane s - plane

(a) Overdamped (a) Underdamped
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H(s)=-
D,D2D3

Converting each of the factors of H(s) to polar form we obtain:

,=4.12/104°

(Note that 63 is negative.)
Hence,

H ( s ) =
 4 1 2 x 1 2 4 /(104+116.6W45 + 74-26.7)

* ' 4.24 x 7.28 x 2.24
= 0.133/128.3°

The above complex arithmetic may also be accomplished graphically using
the construction shown in fig. 6.44(fc).

This approach is particularly useful if one wishes to examine the steady-
state behaviour of a network function as a function of frequency co. In this
case s lies on the jco axis, as in the above example, and the vectors from the
various poles and zeros change in length and angle as the frequency is
varied.

From (6.146), with s=jco, the steady-state behaviour of the network
function is given by

Fig. 6.43. Polar representation of factors in the network function.
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H()C0) = Ho

(6.152)

(NlN2

where

and

M(a>) is called the amplitude response function and (f>(co) the phase response
function. Evaluation of M(a>) and </>(co) at a few spot frequencies can
quickly give one an idea of how the network behaves as a function of
frequency. By shifting, adding or deleting poles and zeros in the diagram,
the effect of changes to the circuit can be assessed; the circuit designer is
thus able to produce the circuit characteristics required.

To illustrate these ideas we examine the admittance function of the
general series branch relating to the underdamped case (equation (6.150)
and fig. 6.40(c)).

1
r«-z

In polar form with s = jco this becomes

Fig. 6.44. (a) Pole-zero diagram for the function H(s). (b) Vectors
drawn to the point s = 0+j3.

s = 0+3j
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So,

and

The vectors for the admittance function are shown for three different
frequencies in fig. 6.45.

Consider first variation of the amplitude response function M(co). For
co=0: Ni = 0 (because the zero is at the origin), therefore M(co)=0.

For co = con: Ni=ojn, Dx = [a2 + (2a)n)
2]*, D 2 =a therefore

For co-> oo: Nu Du /)2-*oo, but Nl/DlD2^ therefore M(co)-»0.
We conclude that with increasing frequency M(co) rises from zero, to a

maximum value then falls asymptotically to zero. (The shape of the M(co)
curve is seen in fig. 6.42 as the line profile of | Y(s)\ along the jco-axis.)

Now consider variation of the phase response function $((0). For all co,
xj/i = 90° because the zero is at the origin.

For co = 0:0! = - 0 2 , therefore 0(co) = 9O°
For co = con: 02=O, therefore </>(co) = 9O°-01

For co-»oo:0! =02->9O°, therefore (f)(a))-+-90°

Fig. 6.45. Amplitude-phase diagrams for the admittance function of
the general series branch at three different frequencies.

D2
(0,,

>.9

(a) (o = (b) co = co,, (c ) co—>©o
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From the pole zero diagrams shown in fig. 6.45 we can also immediately
see the effect of varying one of the circuit parameters. Reducing oc( = R/2L\
say, will shift the poles nearer to the jco-axis and increase M(co) for values of
co near to con, (that is, near to resonance) because D2 varies rapidly with a.
On the other hand, reducing a will have little effect at very small or very
large co, because vectors Dx and D2 then vary slowly with a.

In our study so far of pole-zero methods we have considered only
network functions. Excitation functions may also be represented in the s-
plane. Pole-zero diagrams for five common excitation functions are shown
in fig. 6.46. The impulse has unit value everywhere in the s-plane; the step
has a single pole at the origin, while the ramp has a double pole. The sine
wave is represented by complex conjugate poles on the jco-axis; multiplying
the sine wave by a damping term e "at, shifts the poles into the left-hand half-
plane. The latter two pole zero diagrams and their related transforms
illustrate the ideas underlying the concept of a complex frequency. In the

Fig. 6.46. Pole-zero diagrams for five common excitation functions.

jft),

Step

u(r) o

Sinewave

sin cor <=» co
S2+ CO2

X
I
I
I

Ramp

-a
I
I

*

Damped sinewave

co
(s+a)2 +co2
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steady-state theory developed in section 3.3 a sine wave of constant
amplitude was represented by the complex exponential:

The quantity Vmeie= Vm was termed a phasor.
For a damped sinusoid we have

The frequency variable is now ( — a + ')co) instead of jco. We define this new
variable by s = — a + jco.

In general 5 = (j+jco where a is negative for an exponentially decreasing
sinusoid and positive for an exponentially increasing sinusoid.

To complete our study of pole-zero methods let us derive diagrams for
the response functions obtained by applying some of the excitation
functions illustrated in fig. 6.46 to the general branch. In each case we find
the response I(s) assuming that the branch is overdamped, that is

We also find the form of the response in the time domain.

Step function Vmu(t)

i s jm_ym^ i
L (s + m)(s + n) s L

In this case the pole associated with the excitation function cancels the zero
at the origin (fig. 6.47(a)). The response function is of the form

s-fm s + n

Ramp function Vmtu(t)

1 <? V V 1
j , v L * . m m .

L (s + m)(s + n) s2 ~ L s(s + m)(s + n)

Here the excitation function creates a pole at the origin (fig. 6.47(fo))
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Pole-zero methods 371

Fig. 6.47. Pole-zero diagrams for the admittance function of the
general series branch showing the response /(s) for various excitation
functions V(s).

Network function
Y(s)

Excitation function
V(s)

Response function
I(s)=Y(s)V(s)

-a

(a) Step

(b) Ramp

(c) Damped
sinewave w

(d) Impulse jeo
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372 Transient and steady-state analysis

We see that the pole at the origin in the s-plane corresponds to a d.c.
component in the time domain.

Damped sine wave VmQ~atsincot

1 s Vmw

L (s + m)(s + n) (s + a)2+co2

The excitation function creates additional complex poles (fig. 6.46(c)), and
the response is of the form

(s + m) s + n (s + a+jco) (s + a— jco)

In the time domain

The last term in this expression is, of course, the forced response.

Impulse function d(t)
Since the transform of the impulse function is unity, multiplying the

network function by the excitation function in this case leaves the network
function unchanged, that is

The pole-zero diagram of the response function is identical to that of the
network function (fig. 6Al(d)) and response function is of the form

I(s)=
 A* , A*

(s + m)

In the time domain

which is the impulse response of the series branch.

6.11 Worked example
The circuit of a fourth-order low-pass Butterworth filter is shown

in fig. 6.48. Derive the transfer function H(s)=V2(s)/Vl{s) for this filter and
show that its poles are equi-spaced on a semicircle of unit radius in the left-
hand half plane of the pole-zero diagram. Determine graphically the
amplitude response function for frequencies co=0; co = 0.5; co = l, and
co = 1.5 rad/s.
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Worked example 373

Solution. To obtain the transfer function the ladder method described in
section 2.15.3 is used. Assume V2 = 1 volt, then, with the nodes lettered as
shown in the diagram:

hc = sCl+—
K

IAB = I BO + IBC = sC2 VBo + IBC

VAO = IABSL2 + VBO = (sC2 VB0 + IBC)SL2 + VBO

=S2C2L2VBO + IBCSL2 + VB
B0

= (IBCsLl + l)(s2C2L2 + \) + sL2lBC

= ( SCI +— )(s3L1L2C2 +sLl

+ s(L1+L2) /« + l

Now, in the above calculation, F2 is assumed to be 1 volt therefore, the ratio

(a)

Fig. 6.48. Diagrams for worked example (section 6.11). (a) Circuit for
Butterworth filter (element values are normalized to an impedance
level of 1Q and a frequency of a> = 1 rad/s). (b) Pole-zero diagrams
with amplitude vectors drawn for four selected frequencies.

B . _ C

sL7

sC7

Z* VJs)

Cx = O.383F

C2 = 1.577F

L\ = 1.082H

L2 = 1.531H

(0=1.5

co = 0 (0 = 0.5 (0=1 (0=1.5
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374 Transient and steady-state analysis

Vl/V2 must be equal to VAO. The transfer function is therefore
H(s)= V2(s)/Vi(s)= \jVAO> Putting in numerical values we obtain

H(s)=
s4 + 2.613s3 + 3.414s2 + 2.613s + 1

Using program C4 in Appendix C it is found that the roots (poles) of the
denominator polynomial in the above expression are:

sus2= -0.38268 ±j0.92388
s3 ,s4= - 0.92388+J0.38268

In polar form these become:

10/112.5; 10/ -112.5; 10/157.5; 1 o/-157.5

and in order of increasing positive angle we have

10/112.5; 10/157.5; 10/202.5; 1 0/247.5

Thus, the poles lie on a circle of unit radius in the left-hand half plane with
an angular spacing between them of 45°.

The amplitude response function is given by (equation (6.152))

M(a))= * „

where Dx . . . D4 are the lengths of the vectors extending from each pole to a
particular frequency on the jco-axis. Fig. 6.48(b) shows vectors drawn for the
four selected frequencies. By direct measurement (from a diagram with a
scale of unit frequency = 100mm) we find:

1

at co=0.5

1 = ° - 7 0
(0.39)(l.ll)(1.67)(1.97)

It is seen that the amplitude response falls sharply at frequencies above
co = 1, the normalized cut-off frequency. At cut-off frequency the amplitude
response is, theoretically, 1/^/2=0.707, that is, — 3dB referred to the
response at co=0.
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6.12 Pulse and repeated driving functions
The techniques that have been described so far for determining

the transient and steady-state conditions in a circuit allow us to deal with
only a limited range of driving functions such as the step and sinusoidal
functions. However, these techniques may be readily extended to cover
single and repeated pulse waveforms of various shapes. Pulse wavetrains of
simple shape, such as a repeated series of rectangular pulses, applied to a
first order circuit, can be dealt with adequately by elementary methods. For
more complicated waveshapes and higher order circuits, the formal
methods of the Laplace transform are often to be preferred.

6.12.1 Pulse response of first order circuits
Consider a rectangular pulse of amplitude V and duration a

applied to the RC circuit shown in fig. 6A9(a). For the duration of the pulse,
0 < t < a, the circuit response is the same as that for an applied step function,
which is from the theory presented in section 6.6.2,

v(t)=V(l-Q-t/RC) 0<t<a (6.153)

If the time constant RC is very short compared to the duration of the pulse,
v will rise to a value substantially equal to the pulse amplitude V (the steady
state value) and the output waveform will appear as in fig. 6.49(fc). If the
time constant is large compared with a, then v will not reach its maximum
possible value before the end of the pulse (fig. 6.49(c)).

At the instant t = a the input voltage drops to zero and the capacitance
discharges through the resistance via the ideal source supplying the input
pulse. The output voltage then decays from some initial value

v(a)= V(l -Q~a/RC) according to:

t>a (6.154)

Fig. 6.49. Response of an RC circuit to an applied rectangular pulse of
amplitude V and duration a for two different time constants RC.

(a)

a t

RC«a

(b)

a t

RC»a

(c)
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376 Transient and steady-state analysis

Expressions (6.153) and (6.154) can be used to find the response of the RC
circuit to a train of rectangular pulses of the type shown in fig. 6.50(a). In
this pulse train each pulse is of duration a, the interval between pulses is of
duration b. (The ratio a/b is called the mark-space ratio.) We see that the
pulse train is periodic with period T = a + b.

Fig. 6.50(6) shows the response for the condition RC<a\ in this case the
output voltage rises to its full (steady state) value V during each pulse and
decays substantially to zero between pulses. For ROa, we can encounter
the condition shown in fig. 6.50(c) in which the output voltage has time to
rise to only a small fraction of its maximum possible value during a pulse,
and fails to decay to zero during the intervals between pulses. We now show
that, under these circumstances, the output can build up so that it
eventually reaches some steady-state value which is less than the pulse
amplitude V.

Referring to fig. 6.50(c), let v(tl) = vu v(t2) = v2 etc., then at the end of the
first pulse we obtain, by (6.153),

and at the end of the first interval, by (6.154),

(6.155)

(6.156)

During the second pulse, the output will rise from an initial value v2 to some
value v3, which may be determined in the usual way by considering the

Fig. 6.50. Response of an RC circuit to a train of pulses of mark-space
ratio a/b and period T =

V

V

Pulse 3

—a

V

V

^2 ^3 u

(a) Pulse-train

(/?) Response
{RC« a)

(c) Response
{RC » a)
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response as a sum of transient and steady-state terms. The steady-state term
is obviously V, so that the output during the second pulse will be given by

v = Ae-{t-t2)IRC+V t2<t<t3

where A is a constant which is determined from the initial condition: v = v2

at t = t2. This gives A = v2 — V, hence,

v = (v2-V)e-{t-t2)/RC+V

Putting t = t3 in this expression gives

But from (6.156)

therefore

t2<t<t3

(6.157)

where a is the pulse duration and T is the period.
Combining (6.155) and (6.157) gives

-T/RC

which shows that v3 exceeds Vi by an amount i^e T/RC. By a similar process
we can show that v5>v3, v7>v5 etc. Thus, the output voltage builds up
until an equilibrium condition is reached at which the voltage exhibits a
cyclic variation about some mean level. This condition is the steady-state
response to the pulse train;* which is to be distinguished from the steady-
state response (either zero or V) associated with each individual transition
in the pulse train.

Fig. 6.51. Steady-state response of RC circuit to a pulse train:

* Some authors prefer to use the term 'quasi-steady state' for this type of
equilibrium condition.
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378 Transient and steady-state analysis

We now determine the steady-state response of the RC circuit to an input
pulse train under the condition RC >a (fig. 6.50(c)). Referring to fig. 6.51, let
vn be the output voltage at the beginning of a particular pulse in the train,
and let vn+l and vn- x be the voltages respectively at the end of this pulse and
the end of the preceding pulse. Then, by analogy with 6.156 and 6.157,

and

But in the equilibrium (steady-state) condition vn-x =vn+1, therefore

_V(l-e-a/RC)
v

and

V(l-e~a/RC)
_

The mean level is

Vn-l+Vn V ( 1 -

-(T-a)/RC

2 " 2 ( l - e - r ^ c ) L '

If, for example, the mark-space ratio is unity (T = 2a\ then, the mean level is

V (l-Q-a/RC) tA IRC^ V
*y / i ^—2o/RC\ ^ *}

So, for pulses with a mark-space ratio of unity, the output voltage of the RC
circuit settles down to a mean level of just half the pulse amplitude. For
other mark-space ratios, the steady-state output will be greater or less than
V/2 depending on the particular value of a/b.

Another example for which elementary theory is well suited is provided
by the circuit of fig. 6.52(a). Here an ideal current source drives a sawtooth
waveform of current (fig. 6.52(b)) through an RL circuit. Such a circuit
might represent, in idealized form, the deflection system of a cathode-ray
tube display. L and R are the inductance and resistance of the deflection
coils; the slow, positive-going ramp of current in the coils generates the
linear sweep of the cathode-ray tube spot, while the fast, negative-going
ramp corresponds to the flyback period. The form of the voltage generated
across the deflection coils is of some interest to the circuit designer. In the
following derivation of the source voltage waveforms, the current is
assumed, for simplicity, to have unit amplitude.
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The circuit equation is

v = L— + Ri
df

In the interval 0<t<tl9 the current rises linearly from zero at a rate of kx

amperes per second, hence,

d
at

1t = Lkl+Rklt

In this equation it must be remembered that the current is the driving
function, and v is the unknown variable. Setting the RHS of the above
equation to zero to find the transient response gives v = 0; from which we
infer that the transient term is zero. The above equation, which is of
straight-line form with intercept LkA and slope Rku represents, therefore,
the total response to the driving current.

At the instant t = tu the current starts to fall and it is then expressed by
i= 1 — k2(t — tx), where k2 is the new slope of the function. In the interval
tx <t<t2, we have, therefore,

d
At

or

=-Lk2 + R[l-k2(t-tl)']

Fig. 6.52. Voltage response of an inductor driven by a sawtooth
current waveform.

Inductor

i=kxt (0<t<tx)

i =\-k2(t-tx) (tx<t<t2)

(a) RL circuit (inductor)

(b) Driving current
waveform

(c) Voltage waveform
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380 Transient and steady-state analysis

Again this is an equation of straight-line form. At t = t2 the current
commences to rise with slope kx and the cycle repeats. The complete cyclic
voltage waveform is shown in fig. 6.52(c). The reader might find it
instructive to consider how this waveform would be modified if either L or
R were reduced to zero.

6.12.2 Delayed singularity functions: transforms of recurrent
waveforms
In this section we establish methods of describing repeated pulses

or recurrent waveforms by means of delayed singularity functions; this in
turn will allow us to obtain the Laplace transforms of such waveforms. For
the sake of simplicity it will be convenient to assume waveforms of unit
amplitude; the results obtained apply equally to waveforms of amplitude V
provided that all derived waveforms are multiplied by a factor V.

It will be recalled from our discussion in section 6.8.5 that the delayed
unit step u(t — a) provides a convenient way of representing the start of a
function at a time t = a. This device can be used also to describe pulses and
repeated functions. For example, the pulse shown in fig. 6.53 can be resolved
into two step functions: a positive step starting at f = 0 and a negative step
starting at t = a. The expression for the pulse function is then written:

p(t) = u(t)-u(t-a)

The transform of the first term is 1/s while that for the second term is,
according to the shift theorem, e'^/s (transform pair No. 22). Thus, in the
s-domain:

(6.159)

Fig. 6.53. Resolution of a pulse into two step functions.

- l
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A pulse train of the type depicted in fig. 6.54(a) may be similarly resolved
into a series of step functions:

(6.160)) = u(t)-u(t-a) + u(t-2a)-u{t-3a) + . . .

with transform

e -as Q-2as Q-3as

S S

1

s

• + -

The geometric progression within brackets may be expressed in closed form
using the following identity:

1

1+x

Thus, the transform of the pulse train of fig. 6.54{a) is

(6.161)

(6.162)

This technique for finding transforms of repeated functions may be
expressed in more general terms as follows. Let p(t) be a pulse of finite
duration, as shown in fig. 6.55(a), and let P(s) be its transform. Then, for the
repeated function/(t) of fig. 6.55(b) with period T, we have

and its transform is

f(t)k

Fig. 6.54. Resolution of a pulse train (square wave) into an infinite
series of step functions.

fit)1'
i , 1

2a 3a

(a)
-1

2a

(b)

3a
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382 Transient and steady-state analysis

Now we use the identity

= l + x + xz + ; r -K . . x < l (6.163)
1-x

to obtain

- e "

In a similar fashion it may be shown that the transform of the repeated
function shown in fig. 6.55(c) is given by

(6.165)
L + e ~ i S

The expressions (6.164) and (6.165), which are sometimes referred to as
the periodicity theorem, enable one to find the transform of a sequence of
repeated pulses or a recurrent waveform given the transform of the
individual pulse or waveform of which it is composed. For instance, the
transform of the single rectangular pulse of duration a shown in fig. 6.53 is

- (1 -e"*5) from (6.159). If this pulse is repeated with period T, then, by the
s
periodicity theorem (6.164), the transform of the rectangular pulse train will
be

(6.166)
-e"r s s (l-e"

Fig. 6.55. A single pulse function p(t) and its repeated versions f(t).

(a) Single pulse

(b) Repeated pulse

:*—j • (c) Repeated pulse with
•* * cyclic inversion

IT 3T
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If the pulse train takes the form of a square wave, that is, if T = 2a as in fig.
6.54, then

F(s)=-
1

s (l-e~2flS) 5(l+e~flS)
(6.167)

which agrees with our previous result (6.162).
As a further example, consider the triangular pulse shown in fig. 6.56. We

may resolve this function into three components: a positive ramp starting
at t = 0, a negative ramp starting at t = 1 and a negative step also starting at
t=\. For t > 1 the sum of the three components is zero, thus the function is
cut off at t = \. Now the first component is the unit ramp p(t\ and the
second component is the (negative) unit delayed ramp p(t — a) (see section
6.8.4). So, we may express the function as:

Referring to the table of transforms it is found that

"s e"s
x 1 e"s e"

p(s =-2 T
sz sz s

and the transform of the repeated pulse (fig. 6.57(a)) is by (6.164)

P(s) l - e - s - s e " s

F(s) =
1-e - Ts" 5 2 ( l -e" s )

By the use of (6.165) we may also immediately write the transform of the
waveform shown in fig. 6.51(b) as

Fig. 6.56. Triangular pulse resolved into two ramp functions and one
step function.
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384 Transient and steady-state analysis

F(
(S)

P(s)

l + e ~7s s 2 ( l+e" s )

When applying the periodicity theorem, it is essential to ensure that the
function p(t) is correctly defined in terms of its resolved components. These
must sum to zero for all t greater than the specified pulse length. This point
is illustrated in our final example: the half-wave rectified sine wave shown in
fig. 6.58(a).

Over the interval 0 < t < T/2, p(t) is specified by the function u(t)sincot in
which u(t) indicates that p(t) is initiated at f = 0. However, as it stands, this
function states that p(t) is continuous for all t > 0 whereas we require it to be
zero for t > T/2. This is accomplished by the addition of an identical
sinusoidal function, shifted so that it starts at t = T/2, which has the effect of
cancelling the original function for t>T/2 (fig. 6.58(fo)). Thus,

p(t) = u(t)sino)t + u it — — Jsinco(-4)
Fig. 6.57. Repeated versions of the triangular waveform of fig. 6.55.

fit)-
1

{a) Repeated triangular
waveform (sawtooth)

-1

(b) Repeated triangular
waveform with cyclic

inversion

Fig. 6.58. Formation of a single half-sine-wave pulse by the
combination of a continuous function with a shifted function.

t T

L
2

t 2T
3J
2

Pit)

1
M (r-I) sin co(r-I)

T
2

(a) Half-wave rectified sine wave (b) Single half-sine-wave pulse
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The transform of this function is

> - Ts/2

P(s) = -
CD CDQ CD

T ( l+e~ / s / 2 )
~S2+CD2 S2+CD2 S2+CD2

Now we can apply the periodicity theorem (6.164) to find the transform of
the repeated version of this function. Note that the function is repeated with
period 7, consequently the exponent in the exponential of (6.164) is Ts, not
(T/2)s. Therefore, the transform of the half-wave rectified sine wave of unit
amplitude is:

( l+e~ 7 s / 2 )
F(s) =

CD CD

(s2+co2) ( l - e " r s ) (s2 + co2)(l-e-Ts/2) (6.168)

6.12.3 Response by the Laplace transform
In order to illustrate the transform method, and for comparison

with a more elementary approach adopted in section 6.12.1, we return to a
consideration of the RC circuit excited by a single pulse of amplitude V and
duration a (fig. 6.59(a)). The transform of a rectangular pulse has already
been derived (equation (6.159)) so that the circuit in the s-domain becomes
as shown in fig. 6.59(b). The voltage across the capacitance is, therefore,

V(s) =
1/sC V

R + l/sC 7

1/RC

_s(s+l/RC)
( l - e " a s ) (6.169)

Because of the factor (1 — e as), which is not a polynomial, it is not possible
to expand the whole of this function in the usual way using partial fractions,
but the term within square brackets can be expanded to give:

1/RC

s(s+l/RC) s s+l/RC

1

Thus,

l-e~as)

Fig. 6.59. RC circuit excited by a single rectangular pulse of duration
a.

a t
C

^v(t)

(a) time-domain (b) 5-domain
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386 Transient and steady-state analysis

which may be written

( i s s+l/RCJ Is s + l /KCj j

Upon inversion the first term of this expression yields (1 — e~t/RC), while the
second term yields precisely the same function but delayed in time
according to the shift factor e~flS. Hence, in the time domain we have:

v=V[(l-e-t/RC)u(t)-(l-e-{t-a)/RC)u(t-a)-] (6.170)

Comparing this expression with our previous results we see that, for the
duration of the pulse, only the first term of (6.170) is operative (because
u(t — a) = 0 for t<a)) and we obtain:

v=V(l-G~t/RC) 0<t<a

which agrees with (6.153).
After the termination of the pulse, both terms of (6.170) are operative and

e-</*c)-(l-e-('-fl)/*c)] t>a
= V(Q~{t~a)/RC — e~t/RC)

which is in accord with (6.153) and (6.154).
Factors of the form (1 — e"flS), like that appearing in (6.169), commonly

occur in problems involving pulse driving functions. Such factors play no
part in determining coefficients in the expansion of the s-domain circuit
equation. Their effect is simply to establish two identical functions in the
time domain: one starting at t = 0, the other at t = a.

Continuing with our comparison of elementary and transform methods,
we now use the latter to determine the response of the RC circuit to a train of
rectangular pulses of unit amplitude (fig. 6.60(a)). The transform of the pulse
train is given by (6.166), hence in the s-domain, we have the circuit of fig.
6.60(fr). The circuit response is

V( 1/sC -1 (i-e"") T VRC ](l-e~ f l S)
[S) (R + l/sC) s ( l -e" r s) Us+l/KC)J(l-e- r s)

Expanding the term in square brackets gives

V(S)~ls

(l-e"rs)
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Let

then

JL
\_s s+l _

l/RCJ

V(s) =
Q(s)

1-e -Ts 1-e -Ts (6.171)

Now the inverse of Q(s) is (1 —e t/RC) therefore, by using the periodicity
theorem (6.164) in reverse, we find that the inverse of the first term in (6.171)
is

To find the inverse of the second term in (6.171) we expand the factor
1/(1-e~ r$) using the identity (6.163):

The series of shift factors within brackets leads to delayed functions in the
time domain of the form

Thus, the inverse of the second term in (6.171) is

The complete result is

v(t)=Mt)-f2(t)

Fig. 6.60. RC circuit excited by a train of rectangular pulses of
duration a and period T.

f(t\
1

a T t

(a) time-domain (b) s-domain
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+ [ l - e - ( | - 2 7 W J M > ( t - 2 T ) + . . . }

.} (6.172)

Let us use this expression to find the output of the circuit at the end of the
second pulse, that is, at the instant t = a + T. In this case, all terms except the
first two in each of the series contained in (6.172) vanish because of the
operation of the delayed step functions. This leaves

which upon re-arrangement becomes

This result is consistent with the expressions (6.155) and (6.157) obtained
previously in section 6.12.1. A comparison of the above method of solution
with that of section 6.12.1 will reveal that, although the amount of algebraic
manipulation required in the transform method is formidable, it offers a
more systematic approach. This is an advantage that becomes more
marked the greater the complexity of the network and the excitation. The
following example will serve to illustrate this point.

Fig. 6.61 shows a circuit used in a.c.-<l.c. power supplies. The rectifier in
this type of power supply produces a series of half-sine-wave pulses, as
shown in the figure, and the function of the circuit is to smooth out these
pulsations so that the supply delivers a constant d.c. output voltage. The
steady-state analysis of this type of circuit is best accomplished by the use of
Fourier series methods (see chapter 7), but sometimes the circuit designer
may wish to determine the behaviour of the circuit under the transient
conditions prevailing when the supply is first switched on. The transform
method provides such information.

Using the admittance divider principle, we have for the circuit transfer
function

Fig. 6.61. RLC circuit driven by a half-wave rectified sine-wave.

(a) time-domain (b) s-domain
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Worked example 389

V2(s) 1/sL 1
H(s) = 1/sL + sC+l/R LC(s2+s/RC+l/LC)

This type of circuit is always heavily damped so that the natural response
will be non-oscillatory, and the two roots of the denominator polynomial in
the above expression will be real. Let these roots be — a and — /? where
a + p = l/RC and (xp = 1/LC, then

Now the transform of the half-wave rectified sine-wave has already been
determined (equation 6.168), hence, the output voltage V2(s) is

) = H(s)V1(s)=
(s2+co2){l-e-Tsl2)

1

Partial fraction expansion of the term within square brackets gives

where Al9 A2, A3, which are functions of a, /?, a>, are found by the methods
described in section 6.9.3. The inverse of the terms within square brackets is
of the form

The function 1/(1 —e Ts/2) may be expanded using the identity (6.163)

_ _ _ _ _ _ = l + e
 rs /2 + e r s + e 37s/2 + . . .

which, as in our previous examples, is interpreted as a series of delayed
functions in the time domain. Thus, the output voltage is finally given by

6.13 Worked example
The TV video pulse train shown in fig. 6.62(a) is applied to the

circuit of fig. 6.62(b). When the output voltage v2{t) of the RC circuit reaches
a threshold voltage VT, the field time base is triggered.
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390 Transient and steady-state analysis

(a) Assuming that the circuit has attained steady-state conditions during
the line pulse sequence, calculate the voltage v2(t) at the instant t = tA.
(b) Calculate the voltage v2(t) at the end of the equalizing pulse sequence,
i.e. at the instant t = tB.
(c) If the field time base triggers at the instant t = tc = (tB + 48) JUS (middle of
second field pulse period), estimate the threshold voltage VT.

Solution
(a) Under steady-state conditions the output of the RC circuit at the end of
a pulse period, for an input pulse train of duration a and period T, (fig. 6.51)
is given by

(1-e - T/RC
_.Q-(T-a)/RC (6.158)

For the line pulse sequence: a = 4.7/*s, T = 64^s; the circuit time constant
KC = (18xl03)x(2xl0"9) = 36ius.Hence,by6.158,withK=lV,wehave

Fig. 6.62. Diagrams for worked example (section 6.13).

27.3 |is

1 V n**—
i—

— •

n
64 (As 32 JLLS

Line pulses I Equalizing I Field pulses
pulses

(a) TV video waveform: pulse train for field synchronisation.

(2nF)

V2(t)

(b)

Field time-base
trigger circuit.

Threshold voltage
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M e-4.7/36x
V e

(b) The output voltage of an RC circuit subject to an input pulse train of
unit magnitude is, during the transient period, expressed by equation 6.172.
A simplification of the algebra and a resulting saving of labour is achieved if
in this equation and those derived from it, units of time are normalized with
respect to the circuit time constant RC. In this case 6.172 may be written:

The equalizing pulse sequence in the waveform shown in fig. 6.62(a)
contains five complete pulse periods, therefore, taking the first five terms in
each of the series in the above expression, defining a new time origin at
t = tA, and putting t = 5T we obtain

Combining corresponding terms from each of the series in this expression
gives

Substituting normalized values: a = 2.3/36, 7 = 32/36, yields

v2 =0.066(0.01 +0.03 + 0.07 + 0.17 + 0.41) = 0.045V

The above calculation assumes that the capacitance is uncharged, and
therefore v2 is zero, at the commencement of the equalizing pulse sequence,
whereas it was found in section (a) above that a small but finite voltage
(0.028 V) remains at the end of the line pulse sequence. This voltage will
decay during the equalizing pulse sequence according to

(;2 '=0.028e-5r = 3.29xKT 4V

By superposition, the net voltage at the end of the equalizing pulse sequence
will be the sum

'=0.045 + 0.0003

It is seen from the above calculation that the initial voltage results in only a
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392 Transient and steady-state analysis

very small contribution to the voltage on C at the end of the equalizing
pulse sequence.*
(c) In the following calculation for estimating the threshold voltage VT we
neglect the small voltage on C at the beginning of the field pulse sequence.
(Its effect could, as in part (b), be calculated by superposition.) Since the
field time-base triggers in the middle of the second field pulse period, we
have by equation 6.172 (expressed in normalized units of time)

Substituting normalized values (a = 27.3/36; T = 32/36; t = 48/36) gives

VT = 0.736 + 0.359 -0.437 = 0.658 V

This example illustrates the application of the RC circuit as a sync-
separator. The output of the circuit remains at a low level during line and
equalizing pulse sequences but rises rapidly on inception of the longer field
pulses. This action causes the field time base to trigger.

f6.14 Convolution
The methods discussed so far in this chapter for finding the

response of a circuit to a given excitation are confined to circumstances in
which the excitation is expressible as an analytical function whose Laplace
transform can be determined. The convolution method described here is
not restricted in this way, and it is applicable also to cases for which the
excitation function can be expressed only by a numerical data sequence.

In the convolution method the excitation function in the time-domain is
resolved into a sequence of impulses, the response of the circuit to each
impulse in the sequence is found and, finally, the responses are superposed
to give the overall response function. To establish the basis of the method,
we first consider how a function may be expressed in terms of a sequence of
impulses.

6.14.1 Representation of a function by an impulse train
Any function/(f) may be represented by a train of step or impulse

functions; here we consider only the latter case. Fig. 6.63(a) shows a

* The voltage on C at the end of the line pulse sequence is slightly different for
odd and even fields of a standard TV video waveform because even fields end
with a half line pulse period whereas odd fields end with a full period (the
latter is shown in fig. 6.62(a)). The equalizing pulse sequence is included in the
video waveform to allow the voltage on C to decay substantially to the same
small value for both odd and even fields of the interlaced picture. Without
equalizing pulses the field time base would trigger at slightly different times
after the start of the field pulse sequence, resulting in line pairing.

https://doi.org/10.1017/CBO9781139170093.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.008


Convolution 393

function sampled at intervals of time 0, A, 2A, 3A. . . . During the first
interval (0 < t < A) the function may be approximated by its value at the
start of the interval, namely /(0), as shown in the figure. During the second
interval (A<r<2A) the function may be approximated by /(A); likewise
during the third and succeeding intervals by/(2A),/(3A) and so on. The
function is thus broken up into short pulses of duration A with areas A/(0),
A/(A), A/(2A) etc. Recalling from our discussion in section 6.8.2 that a short
pulse may be represented by an impulse of magnitude equal to its area, we
may represent the complete function/(t) by a train of impulses as shown in
fig. 6.63(ft). (In this figure the impulses are shown located at the start of their
corresponding intervals whereas it might appear to be more logical to place
them centrally. However, as we shall see later their precise location within
the interval is immaterial.) The first impulse in the train will then be
Af(0)d(t)9 the second impulse Af(A)S(t - A) and so on. Thus the function/^)
may be expressed by the approximation:

f(t) ~ A/(0)<5(0 + Af(A)S(t - A) + A/(2A)<5(t - 2A) + . . .
+ Af(nA)d(t - nA) + . . . Af(NA)6(t - NA)

n = 0
(6.173)

where N = tN/A and tN is some time at which the function terminates.
It must be remembered that in this summation all terms are zero except

the term in which the argument of the impulse function is zero, that is, when
the sampling instant nA is equal to t.

Fig. 6.63. Representation of a continuous function f(t) by an impulse
train.

fit)

A 2A 3A 4A 5A'

(a)f{t) represented by

pulses of duration A.
(b)f(t) represented by

an impulse train.
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394 Transient and steady-state analysis

Now f{t) can be approximated to any desired degree of accuracy by
letting A become as small as necessary and by increasing N correspond-
ingly. In the limit, as A->0 and N-+co9 nA becomes a continuous time T
while A becomes the differential di. The function is then represented by a
continuum of impulses and can be expressed exactly by the integral

-r
Jo

f(t)=\ f(x)d(t-x)dx (6.174)
Jo

This integral may be interpreted in the following way. As the sampling
time x is varied over the range 0 < T <tN, the integrand, and therefore the
integral, vanishes everywhere except when the argument of the impulse
function is zero, that is, when x = t. At this instant the integral becomes

Jo
f(t)\ S(O)dT=f(t)

Jo

since, by definition, J<5(0) = 1.
Because we are concerned only with sampling times x extending up to the

value r, the upper limit of the integral (6.174) may be replaced by t, thus

Jo
f(t)= MS(t-T)dz (6.175)

Jo

The property of the impulse function which enables it to be used to
express a continuous function in the above manner is called the sampling or
sifting property.

6.14.2 The convolution integral
Consider a network having an impulse response h(t) (fig. 6.64(a)).

An impulse of unit magnitude applied to the input terminals of this network
will produce an output h(t) typically of the form shown in the figure.

Next, consider the same network with an excitation function fi(t)*
described by the approximate expression (6.173), applied to its terminals
(fig. 6.64(b)). The first impulse of the sequence will produce a response
A/iA(0)ft(t), the second impulse a response A/1(A)/i(t —A), and so on. We
assume here that A is small compared with the effective time constant of the
network (see section 6.8.2). Each succeeding impulse produces a response
starting at the instant of the impulse and decaying in a fashion determined

* In previous sections the excitation and response functions in the time-domain
have been denoted by e(t) and r(t) respectively. In this section we use/^r) and

which conforms to the more usual notation found in texts on convolution
theory.
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by the particular impulse characteristics of the network. The output at any
particular instant t will be the resultant of all the impulses and responses
occurring prior to, and including, that particular instant. By linearity, the
output function will be given by the superposition of all the individual
responses, that is, by

Fig. 6.64. (a) Response of a network to unit impulse excitation, (b)
Response to an input function f^t) approximated by a sequence of
impulses.

n = l

A/,(2A)

0 A

A/,(2A) /j(r-2A)

2A t 0 2A

oo oo oo oo oo

(b)
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396 Transient and steady-state analysis

f2{t)~ (6.176)

The result of superposing the first four responses is indicated in the lower
diagram appertaining to the output sequence.

In fig. 6.64 we have chosen for the sake of clarity a large sampling interval
A, which has resulted in a sawtooth-like output waveform. But it will be
appreciated that by taking shorter and shorter intervals, a progressively
more faithful representation of the true output waveform will be obtained.
The effect of halving the interval A is illustrated in figs. 6.65(a) and (b) for
both input and output waveforms. Notice that halving A also halves the
magnitudes of the input impulses and therefore their corresponding output
responses. The net effect is a substantial smoothing of the output waveform.
Carrying this process to the limit, and letting A->0, the approximation
(6.176) becomes an exact integral, the convolution integral:

/2(t)= (6.177)

Fig. 6.65. The effect of sampling interval on response by convolution,
(a), (b) The effect of halving the interval, (c) Sampling continuum.

Excitation function Impulse representation Response function

https://doi.org/10.1017/CBO9781139170093.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.008


Convolution 397

The limiting process used to derive this expression corresponds exactly to
that leading to (6.175) and the symbols T and t have the same meaning.
Indeed, the convolution integral (6.177) follows directly from the integral
(6.175) since for a network with an impulse response h(t) the response to
d(t — T) is h(t — T). These two integrals provide exact expressions for the
excitation and response functions respectively (fig. 6.65(c)).

The convolution integral is often written in its most general form with the
range of integration extending from — oo to + oo. This then allows the
range in any particular problem to be set in accordance with the constraints
imposed by the conditions of that problem. In this book we are concerned
almost entirely with functions that are zero for negative time, we shall,
therefore, usually write the convolution integral, as may be convenient,
either in the form (6.177) or as

f2(t)=\ Mz)h(t-T)dz (6.178)
Jo

Further insight into the convolution integral will be gained from
consideration of the graphical interpretation of the integration processes
shown in fig. 6.66. The curves in this figure are all plotted with T as the
independent variable while t is a fixed point on the abscissa. The reason for
this is that in the evaluation of the convolution integral, t is regarded as a
fixed parameter while % is a variable of integration (a dummy variable)
ranging from zero to some upper limit.

The integrand of the convolution integral contains two functions:/^!)
and h(t — T). We obtain a graphical plot of the latter in three stages: first, the
function h(z) is plotted (fig. 6.66(a)), and then this is folded about the
vertical axis to form its mirror image h( — T) (fig. 6.66(b)). Finally, this
function is shifted to the right by an amount t to form the function h(t — T)
(fig. 6.66(c)). Of course, the form of h(t — T) in (c) could be deduced directly
without going through the intermediate stages {a) and (b\ but we have
adopted this procedure to illustrate the folding and shifting process from
which the name 'convolution' integral, was historically derived.*

The next step in this graphical integration procedure is to form the
product/1(r)/i(t —T); this is shown in figs. 6.66(d) and (e). Finally, the area
under this last curve, between the limits 0 and f, gives the value of the
integral, which is equal to the response function/2(t) at the particular value
of t considered. To find/2(0 at other values of t, the curve shown in fig.
6.66(c) must be shifted along the axis to the appropriate points. We may

* In the German language the name given to this important integral is the
'Faltung' (folding) integral.
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398 Transient and steady-state analysis

then imagine the function f2(t) being generated by sliding or scanning the
h(t — T) function along the r-axis of fig. 6.66(c) whilst performing the
subsequent operations illustrated in the following figures (d) and (e). For
this reason the h(t — T) function is sometimes called the scanning function.

We now illustrate the convolution method using as an example the
simple RC circuit excited by a pulse of unit amplitude and duration one
second. This problem is one which has been dealt with at length in sections

Fig. 6.66. Graphical interpretation of convolution.

(a) Typical impulse response function

h(-z)

(b) Impulse response folded over

h(t-f)

(c) Impulse response folded over and shifted

(d) Input function

Area =\tf[(i)h(t-i)Ar=f2(t)

(<?) Product of (c) and (rf)
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6.12.1 and 6.12.3; the reader should compare the following treatment with
the methods described in these sections.

The first step in applying the convolution method is to find the impulse
response of the circuit. Usually this is most easily accomplished by first
finding the transfer function. For the RC circuit,

HO)-,
R + l/sC RC(s + l/RC)

Thus,

^ (6.179)

Assuming, for simplicity, that the time constant RC = 1, then

) = Q~tu(t) (6.180)

In the above expressions for h(t) the step function u(t) indicates that the
response is zero for all negative time.

Now a rectangular pulse of unit amplitude may be described by (see
section 6.12.2.)

) = u(t)-u(t-a) (6.181)

hence, using the convolution integral (6.178) we obtain
/ * 00

)= {lu(z)-u(T-a)-]c-«-%
Jo
I* oo /• <

= w(T)w(£-<r)e-('-t)dT-
Jo Jo

dx

We have chosen here to write the convolution integral with limits 0 and oo;
this has been done because the limits of integration now need to be
determined in accordance with the particular parameters of the problem. In
the following argument it will be of help to recall the definition of the unit
step function, viz.,

u(t)=l t>0
=0 r<0

Turning our attention to the integrand of the first integral above, u(x) is
zero for T < 0 and unity for T > 0, so the lower limit of integration is zero. The
function u(t — x) is unity for x<t and zero for x>t, so the upper limit of
integration is t. Similar considerations apply to the second integral: in this
case the function u(x — a) is zero for x<a and unity for x>a hence
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400 Transient and steady-state analysis

integration starts at the lower limit a. As before, the u(t — T) defines the
upper limit at t.

Using these new limits of integration the response becomes

i;2(r)
Jo

- u(x - a)u(t - T) dr

Now over the range of integration, all of the step functions are unity, so we
obtain on integrating:

e-( '"a)) (6.182)

(Some care is required when applying limits in the type of expressions
encountered above: note particularly that, with r = t, u(t — T)
= u(t-t)=u(0) = l.)

Equation (6.182) is in agreement with (6.170) obtained previously. Over
0<t<a only the first term is operative and the output rises exponentially.
For t>a, both terms are operative and the output falls.

It will now be instructive to solve this same problem using a graphical
method of convolution based on the approximate equation (6.176). We
divide the pulse (assumed to be of 1 second duration) into n equal sub-
intervals. Each sub-interval will be of duration 1/n, and the area under the
curve contained within each sub-interval will also be 1/n. For the sake of
clarity in the diagrams we choose a small number of sub-intervals, say n = 4
(fig. 6.67(a)). The four pulses thus obtained are now replaced by four
impulse functions of magnitude \ (fig. 6.67(5)). The response to each of
these impulses will be (i)e~* as shown in fig. 6.67(c). The total response,
obtained by summing the individual responses, is shown by the dotted

Fig. 6.67. Response of the RC circuit excited by a single rectangular
pulse: graphical convolution, (a) Pulse divided into four short pulses.
(b) Each short pulse replaced by an impulse, (c) Response obtained by
convolution (dotted curve) compared with theoretical curve (dashed
curve).
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curve. This may be compared with the exact solution indicated by the
dashed curve.

The above example is intended to help the reader new to the theory of
convolution to gain familiarity with the concepts involved; for this
particular problem, however, we should stress that one of the elementary
methods of solution discussed in earlier sections would be more ap-
propriate. Moreover, for problems not amenable to an analytical solution,
it would be more usual to employ a numerical method for evaluating the
convolution integral (see section 6.14.4) rather than the graphical pro-
cedure, used in this example.

The convolution integral is encountered frequently in many branches of
engineering and physics. In general terms the convolution of two functions,
say </>i(t) and </>2(0, is denoted symbolically by

0J * 02 = I 0i(^)02(f — t)dr (6.183)
J — oo

where * is read as 'convolved with\ We can show very easily that 0 1

convolved with </>2 is identical to (j)2 convolved with <j>x.
Let z = t — T then dz= — dr and (6.183) becomes

• j : (6.184)

6.14.3 The convolution theorem
In preceding sections of this chapter we have developed a method

of finding the response f2(t) of a circuit to a given excitation/Jr) using the
Laplace transform. The method involves: (1) finding the transform of the
excitation, Fx (s); (2) finding the transfer function of the circuit, H(s); and (3)
finding the inverse transform of the product Fi(s) x H(s).

The convolution integral, on the other hand, allows one to find the
response directly in the time domain. The two approaches to the problem,
and the way in which they are related, are illustrated in fig. 6.68. It will be
evident from this diagram that convolution in the time domain corresponds
to multiplication in the transform domain; a relationship expressed by the
convolution theorem:

f 00

(6.185)
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This theorem may be derived directly from the definition of the Laplace
transform. Taking the transform of the RHS of (6.185), and calling this F(s),
we have

j /i(OM'-T)dT| = J I [ fi(

Changing the order of integration:

F(s)=

The integral within brackets is recognized as the Laplace transform of the
delayed function h(t-x)\ which is, from the shift theorem (6.141), e~sxH(s).
Therefore,

F(s) -J"
Jowhich proves (6.185).

The commutative property of convolution (6.184) also follows from the
convolution theorem since

and

Clearly, these two expressions are identical.
For the majority of the analytical excitation functions encountered in

circuit theory, convolution in the time domain involves a more difficult

Fig. 6.68. Illustrating the convolution theorem.

Time-
domain

t
Laplace

transform

s-domain

/ i Ma-
Network

Impulse response
h(t)

H(s)
Network function

or
Transfer function

Convolution

-o Mt) * Kt) =/2(r)

Multiplication
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mathematical procedure than multiplication in the transform domain.
However, when the excitation is arbitrary and cannot be expressed or
modelled by an analytical function, or if the Laplace transforms of the
functions involved cannot be readily found, then numerical evaluation of
the convolution integral provides a powerful technique for obtaining the
network response.

6.14.4 Worked example
The 'phase advance' circuit shown in fig. 6.69 is often used in

electronic control system networks. Show that the voltage transfer function
for this circuit is

H(s) =
V2(s) s+l/T

Vx(s) s+l/GT

Fig. 6.69. Circuit and waveforms for worked example (section 6.14.4).

~C

T=CRl=ls

G= R2/(RX +

(a)

1.0 ~"

0.5 - -

v2 (for unit step input)

/

(numerical data)

(b)

0.2 0.4 0.6 0.8 1.0
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404 Transient and steady-state analysis

where T = CRX and G = R2/(R1 + R2). Hence determine the impulse
response h(t) if T= 1 second and G = 0.5.

Find a general expression for the output v2(t) in terms of the input v^t)
and h(t). Hence, determine the output if the input is: (a) the unit step
function; (b) the waveform specified by the following numerical data:

t seconds) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
v, (volt) 0 0.07 0.38 0.83 1.3 1.5 1.23 1.04 1.0 1.0 1.0

Solution
By the method established in section 6.9.6 we obtain

sC+l/Rj _ s+l/CRi _s+l /T
(5 s 1/R2 ~s + (l/C)(Rl+R2)/R1R2s+l/GT

For T=\ second and G = 0.5:

s + 1

Expressing H(s) as a partial fraction (see section 6.9.3)

1

s + 2

hence, the impulse response is

Assuming that the input voltage is zero for t < 0, then the input is described
by Vi(t)u(t) and by convolution we obtain

-I"
Jo

V2(t)~-
Jo

-f
Jo

-J"
Jo

In the above integrals the step functions define the range of integration as
0<T<t, and are unity over this range, therefore,

»2(0
Jo Jo
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The first of these integrals is, from (6.175), simply equal to the input function
itself, hence a general expression for the output voltage is

)-e"2' I MTje2*.
Jo

= vl(t)-Q~2t | t;1(T)e2TdT (6.186)

(a) Step function input
Putting Vi(t)=^u(t) in (6.186) gives

v2(t)=u(t)-Q~2t

Jo

This expression is shown plotted in fig. 6.69(b).

(b) Numerical input data
The input waveform, defined by the numerical data, is shown in fig.

6.69(fc). Numerical integration is used to evaluate (6.186).

Tort 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t;1(i)e2t 0.085 0.57 1.51 2.89 4.07 4.08 4.21 4.95 6.04 7.38

/ = ^(Tje^dr 0.004 0.04 0.14 0.36 0.71 1.12 1.53 1.99 2.54 3.21
Jo

t;2 = i ? 1 - e " 2 7 0.067 0.36 0.75 1.14 1.24 0.89 0.66 0.60 0.58 0.57

In the above table the integral / has been evaluated using the trapezoidal
rule and a pocket calculator. The results are plotted in fig. 6.69(fe). As to be
expected, the output initially follows the input quite closely because of the
capacitive coupling between input and output; with increasing time the
output diverges from the input and decays towards its d.c. level of 0.5 V.

6.15 Summary
In this chapter a variety of methods have been developed for

finding the response of a linear network to various forms of excitation.
Broadly, these fall into three categories: time-domain techniques in which
the network differential equations are set up and solved; Laplace transform
techniques in which the network equations are formulated and solved in the
transform domain; and convolution techniques in which the network is
characterized by an impulse response and the network response is found by
means of a convolution integral.
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406 Transient and steady-state analysis

For any linear network the response r(t) and excitation e(t) are related by
a differential equation of the form:

d"r d""1 dr

=bmdr +bm~1 dr^"1"'' *+fcl dF+fc° (6136)

The solution of this equation can be written:

total response r(t) = rn(t) + rss(t)

where rn(t) is the transient or natural response, and rss(t) is the steady-state
or forced response.

The natural response contains terms of the form A&~tlZk which die away
with increasing time according to the network time constants ik. The
constants A{ depend on both the initial energy states of the network and
upon the form of the excitation; they can be evaluated only after the form of
the complete solution of the network differential equation has been found.
For high-order networks, the evaluation of these constants can be
troublesome.

The forced response depends only on the excitation; for d.c. or steady
sinusoidal excitation it is most easily found by using the standard
techniques of d.c. and a.c. network analysis developed in chapters 2 and 3.

For many problems, it is often convenient to find the natural and forced
responses separately, and then combine them to find the complete response.
This approach is particularly advantageous for first and second order
networks and where the excitation consists of step, sinusoidal or other
simple functions.

The D-operator method facilitates the process of setting up the network
differential equation and, for certain types of excitation, of finding its
solution. In this method the network differential equation (6.136) is
replaced by an equation of the form:

in which D may be treated as an algebraic quantity.
The Laplace transform provides the most powerful and comprehensive

means of analysing the transient and steady-state behaviour of linear
networks. By taking the Laplace transform of the general network
differential equation (6.136) we obtain

https://doi.org/10.1017/CBO9781139170093.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.008


Summary 407

= (bmsm + bm-ls
m-i+. . . + blS + b0)E(s) (6.139)

where s is the complex frequency, and R(s) (the response function) and E(s)
(the excitation function) are the Laplace transforms of r(t) and e(t)
respectively. The ratio of R(s) and £(s), defines a network function:

< 6 1 3 4 )

In the practical application of the method, each element of the network is
expressed as a generalized reactance or impedance function in s, which
process allows the network function H(s) to be formulated. The excitation
function E(s) is conveniently obtained from e(t) using a table of Laplace
transform pairs. The response function R(s) is then formed from the
product H(s) x £(s), and finally the inverse of R(s) is found, again using a
table of transform pairs, which yields the response r(t) in the time domain.

An important advantage of the Laplace transform method is that
information concerning the initial energy states of the network can be
incorporated into the excitation function; thus, the necessity of evaluating
the arbitrary constants, Ah as required in the solution of the network
differential equation, is obviated. Also, because the complex frequency s
may be manipulated in the s-domain as an algebraic identity, the method
retains, in this respect, the advantage of the D-operator method. The pole-
zero diagram provides an important adjunct to the Laplace transform
method. It affords the network designer with a ready means for the
appreciation and understanding of network behaviour under both trans-
ient and steady-state conditions. No such pictorial device exists for the
other methods of network analysis.

In general, the use of the Laplace transform method is advantageous
when dealing with networks of order three or higher, and for excitations of
complex form. For uncomplicated circuits and excitations of simple form,
its use can involve unnecessary algebraic complexity.

The response of a network can be found by the Laplace transform
method only if the excitation is expressible as an analytical function. The
same applies to the use of the network differential equation. The
convolution method, on the other hand, suffers from no such restriction;
the network response may be found even in cases where the excitation is
described in terms of a numerical data sequence. In the convolution
method, e(t) is expressed as a summation of delayed impulse functions; the
network is characterized by an impulse function h(t) (the inverse transform
of H(s)\ and the overall response is found by convolving e(t) with h(t) using
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408 Transient and steady-state analysis

the convolution integral. We have shown, by means of the convolution
theorem, that this procedure corresponds to multiplication of E(s) by H(s)
in the transform domain. The convolution method is particularly well
suited to the numerical integration procedures available on most calcu-
lators and small computers.

6.16 Problems
1. A voltage having a step waveform of amplitude 50 V is applied

to a circuit formed by a 1 MQ resistor in series with a 1 fiF capacitor. What
is the time constant of the circuit? How long does the capacitor take to
charge to: (a) 25 V; (b) 47.5 V?
2. In the circuit of fig. 6.70 the switch has been in position 1 for a long time.
At f = 0 it is thrown to position 2.
(a) What are ic and vc at t = 0 + ?
(b) Determine an expression for ic(t) for t>0.
(c) What are ic and vc at t = oo?
(d) How much energy is stored in the capacitor at t = oo?
(e) How much energy has been supplied by the battery during the charging
process?
(f) Show that the energy of part (e) is twice that stored in the capacitance,
regardless of the size of the resistance.
3. For the circuit of fig. 6.71, derive equations for i, i{ and i2 valid from the
instant t=0 when switch S is closed. (C is uncharged initially.) S is reopened

Fig. 6.70. Circuit for problem 2.

12 V '
0.05 T

Fig. 6.71. Circuit for problem 3.

https://doi.org/10.1017/CBO9781139170093.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.008


Problems 409

after one time constant has elapsed. If K=1V, Rl=R2 = 2kQ and
C = 1 /xF, what will be the values of i immediately before and immediately
after opening S?
Sketch the variation of current i from t = 0.
(Manchester University)
4. In the circuit shown in fig. 6.72 switches Sx and S2 are open.
(a) At f = 0, S2 is closed. Obtain expressions for the current in and the
voltage across C for time f = 0.01 s. C is initially uncharged.
(b) At t = 0.05 s, S2 is opened and at the same time Sx is closed. Obtain an
expression for the current in C subsequent to this operation and determine
the voltage across C for r=0.1 s.
(c) With Sx remaining closed, write down the circuit equations and the
initial conditions for the sudden reclosing of S2.
(Wales Science and Technology)
5. The operating coil of a relay working on a 20 V d.c. supply and activated
by opening and closing switch S is represented by L, R in the circuit of fig.
6.73. The coil is shunted by a non-inductive resistor Rx and the parameters
of the circuit are as shown.

The relay closes when the current through its coils reaches 180mA and
opens when the current falls to 60 mA. Calculate the time lags for opening
and closing respectively.
(Newcastle University)

Fig. 6.72. Circuit for problem 4.

100 V

500 ^F

10X2
-W j

20X2

200 V
>

Fig. 6.73. Circuit for problem 5.

= 0.1H

20 V %r
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6. In the circuit of fig. 6.74 the initial current in the inductance is 2 mA.
(a) With es(t) = 4cosl03£, the switch is closed at t = 0. Find an expression for
iL(t)for t>0.
(b) If es(t) = 4cos(103t + </>), determine the value of </> such that there will be
no transient when the switch is closed at t = 0.
7. The current through the deflecting coils of a cathode-ray tube is required
to rise linearly with time from zero at the rate of 3 A/s. What must be the
form of the applied voltage if the coils have an inductance of 0.1 H and a
resistance of 5 Q? What would be the form of the voltage if the resistance were
zero?
8. The following problem relating to the circuit shown in fig. 6.75, is an
exercise in determining initial and final conditions. The switch has been
open for a long time.
(a) What are the values of il9 i2 and vcl At t = 0, the switch is closed.
(b) Calculate: il9 i2, vC9 dijdt, di2/dt and di;c/dt all at t = 0 + .
(c) Calculate: il9 i2 and vc at t = oo.
9. The circuit between two terminals consists of two branches in parallel.
One branch contains an inductance L and a resistance Rx in series; the
other a capacitance C and a resistance R2 in series. By considering the

Fig. 6.74. Circuit for problem 6.

kit)
-AAAr

R = 200 Q

L = 0.4 H

Fig. 6.75. Circuit for problem 8.

AkQ
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currents which flow in the branches when a generator of e.m.f. E and zero
internal impedance is suddenly connected to the terminals, find the
relations between L,C,Ri and R2 such that the circuit behaves as a pure
resistance.
10. In the circuit of fig. 6.76 determine the value of R in terms of L, C and r
so that the potential difference between A and B will be non-oscillating
when switch S is opened.
(Manchester University)
11. For the circuit of fig. 6.77; derive the differential equation, expressed in
terms of the D-operator, relating v2(t) and v^t). Assuming that the circuit is
over-damped, write the form for the natural response for v2(t) and derive
the time constants in the expression.
12. Two coils each having inductance L have mutual inductance M. One
coil has a resistance R connected in parallel with it, and the other has a
voltage E suddenly applied through a resistance R to its terminals. Find an
expression for the subsequent voltage between the terminals of the first coil.
13. In the circuit of fig. 6.78 the initial conditions are: i(0) = 2 A, vc(0) = 1V.
The switch is closed at t = 0.
(a) Ifes(r) = l, find vc(t) fort >0.
(b) If es(t) = 2cos2t, find vc (t) and i(t) for t>0.

Fig. 6.76. Circuit for problem 10.

A

Fig. 6.77. Circuit for problem 11.
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412 Transient and steady-state analysis

14. When a 250 pF capacitor charged to 100 V is connected to an
inductance coil, it is found that the discharge is oscillatory, and that the
peak voltage falls to 10 V after 150 /is, corresponding to 150 cycles of
oscillation.

It is also found that if the experiment is repeated with a pure resistor Rx

connected across the coil, the peak voltage falls from 100 V to 10 V after
90/is, corresponding to 90 cycles of oscillation. Determine:
(a) the inductance and Q factor of the coil;
(b) the ohmic value of the resistance Rlt

The expression v = Foexp( — Rt/2L)coscot for the transient voltage v may
be assumed.
(London University)
15. In the circuit of fig. 6.79 the switch is closed at t = 0. Show that

^ L2R1-LlR2±2MR1 .

where

•+• L>2
a = - M 2 ) ;

(Manchester University)

/ ? 2 = a 2 - R1R2
UL2-M2

Fig. 6.78. Circuit for problem 13.

2H

eM)

Fig. 6.79. Circuit for problem 15.

-I
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16. In the circuit of fig. 6.80 the switch is initially open and the capacitor is
charged so that vc(0) = 10 V. At f = 0, the switch is closed. Use the Laplace
transform method to find i(t) and vc(t) for f >0.
17. Discuss the benefits of using the Laplace transform method in
network analysis.

In the network of fig. 6.81, vx(t) and v2(t) are the voltages on Cx

and C2 respectively, and iL(t) is the current through L.
(a) If the components have the values indicated, show that the Laplace

transform of the output voltage v2(t) is of the form:
I(s) + a

2 ( S ) ~ ( s+ l ) ( s 2

where I(s) is the Laplace transform of the input i(t). Derive
expressions for the coefficients a, b and c in terms of the initial
conditions 1 (̂0), v2(0), and iL(0).

(b) If i(t) is a unit step function of current applied at t =0, what initial
conditions are required to produce an output of 1 V for 0 < t < oo?
Show that your answer is consistent with the initial value and final
value theorems.

(c) If i(t) is a unit step function of current and the circuit is initially
quiescent, find an expression for the time-varying voltage for
0<t<oo .
(Cambridge University)

Fig. 6.80. Circuit for problem 16.

100 V 0.2 F 4= 80 Q

Fig. 6.81. Circuit for problem 17.

iL(0

o —
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18. A voltage waveform which starts at t = 0, rises linearly at the rate of
10 V/s until it reaches an amplitude of 1V and then instantaneously falls to
zero, is applied to a resonant circuit consisting of resistance R, inductance
L, and capacitance C, all connected in series. Determine the Laplace
transform of the voltage waveform and the current i(t) flowing in the series
resonant circuit for t>0. Assume the Q factor of the circuit to be greater
than 100 and that it is at rest when the waveform is applied.
(Newcastle University)
19. In the circuit of fig. 6.82 the switch is opened at t = 0. Show that for t > 0:

)coCI

1 - {RCcof -ficoCR

: e j " ' - Icosh^-y^sinh^
)O)CRyj5

where

2RC 2RC

(Manchester University)
20. (a) Find the Laplace transform of each of the following time functions:

e*', fear, sincot, sin(cof+ 0)

Fig. 6.82. Circuit for problem 19.

Fig. 6.83. Circuit for problem 20.
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(b) The switch S in the circuit shown in fig. 6.83 is closed at f = 0. If all the
initial conditions in the circuit are zero, find the output voltage v2 as a
function of the complex frequency s and as a function of time t.
(University of Kent)
21. Calculate the output voltage vo(t) in the circuit of fig. 6.84 if the current
source delivers a pulse of 1mA lasting 50/isec. Rl=R2 = 10kQ9

C ^ l O O p F , C2=0.01/xF.
(Oxford University)
22. Show that the voltage transfer function G(s) of the network of fig. 6.85
may be expressed as:

G(s) =
E0(s)

Ein(s) ST(2 + a + aj3) + a s V

where T = CR, a = CJC, p = R/RL, and Ein(s) and E0(s) are the Laplace
Transforms of the input voltage ein(t) and output voltage eo(t) respectively.

Sketch the frequency response of the network for the case where RL is
infinite and Cl>C. Indicate the asymptotic values of the response, and any
maxima or minima, with their corresponding frequencies.

Show how this network might be used as the frequency-determining
element of a sinusoidal oscillator.
(University of Kent)
23. Find the transfer function H(s)=V2(s)/Vl(s) of the third-order But-
terworth filter shown in fig. 6.86. Verify that the amplitude response

Fig. 6.84. Circuit for problem 21.

C2

Fig. 6.85. Circuit for problem 22.

Load
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function for a sinusoidal input at frequency co is given by

1

Show that the poles of the transfer function lie on a circle of unity radius.
(Cambridge University)
24. Obtain an expression for the input impedance (in operational form) of
the circuit shown in fig. 6.87. Find the zeros of this expression and hence find
the minimum resistance required if the excitation of current oscillations by
a step voltage input is to be avoided.
(Oxford University)
25. The impulse response of a potential divider is

/(f) = e-
af[acoshj8f-j8sinhj8f], ot>p

Find the frequency response function of the divider, and from it devise a
possible circuit.
(Manchester University)
26. The equivalent circuit of an L-C surge absorber interposed at the
junction between two transmission lines is shown in fig. 6.88.

An 'impulse' voltage (VT) volt-sees, expressible as ex = (VT)s. 1, is applied
at time t = 0 to the input terminals as shown. Show that the resultant output
voltage e2 may be expressed as

Fig. 6.86. Circuit for problem 23.

Fig. 6.87. Circuit for problem 24.

C C

= kL
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.1= (VT)R2

Show also that, if e2 is to be non-oscillatory, the necessary condition
which must be fulfilled is

(Z2-RlR2)>2ZR2

where

In a particular case, with numerical values inserted, the foregoing
expression for e2 reduces to

hi 5+10

where t is measured in micro-seconds.
Sketch the resultant wave-form of e2, and show that it attains its

maximum value of approximately 698000 V at time t = 0.26fis.
(Newcastle University)

Fig. 6.88. Circuit for problem 26.

/?, Ls
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