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Non-linear circuit analysis

71 Introduction: linear and non-linear elements

In the preceding chapters, discussions have been confined to
circuits that could be modelled by linear elements. The property that
characterizes a linear element is independent of current or voltage. For
example, the voltage—current characteristic of a resistor, modelled by a
pure, linear resistance R is a straight line passing through the origin and
having a slope equal to 1/R (fig. 7.1(a)). A linear resistor is also bilateral,
that is, its voltage—current relationship is the same in the first and third
quadrants of the characteristic. This property implies that the component
can be connected into a circuit without regard to the polarity of the voltage
to which it is subjected.

An example of a non-linear resistor is the incandescent lamp whose v—i
characteristic is shown in fig. 7.1(b). The non-linearity in this case results
from the great increase in temperature of the filament as it becomes
incandescent. The characteristics of the lamp are the same whichever way
round it is connected to the supply, and the device, although non-linear, is
bilateral. On the other hand, the diode, whose v-i characteristic is shown in
fig. 7.1(c), is neither linear nor bilateral.

Linear inductors and linear capacitors present a behaviour similar to

d
that of the linear resistor. The response, v, = La[i(t)], of a linear inductor
to a changing current is independent of the magnitude of the current in the
. oo d - .
inductor. Likewise, i = CE [v(t)] is independent of the magnitude of the

voltage across the capacitor. An ordinary capacitor rarely exhibits
appreciable non-linear behaviour unless it is driven beyond the voltage
range for which it was designed. An inductor that contains no fer-
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romagnetic material, or which has an appreciable air gap in its fer-
romagnetic core if it is present, exhibits linear behaviour. If, however, the
path for the flux is entirely contained within ferromagnetic material, then,
except for vanishingly small amplitudes of currents, the device will be non-
linear and will exhibit the phenomena of saturation and hysteresis that were
discussed in chapter 4.

In chapter 2 theorems were developed that depended upon the property
of linearity, and we saw in later chapters how one of the most important of
these - superposition —allowed us to find the total response of a circuit to an
excitation by adding or superposing the transient and steady-state
responses found separately. This technique cannot be applied to circuits
containing non-linear devices, such as the diode, since in this case the
incremental response will no longer be proportional to the excitation.
Similar remarks may be made concerning all of the linear circuit theorems.
Consequently the theory and techniques appertaining to the analysis of
non-linear circuits are very much more restricted than is the case for linear
circuits.

In contrast with the linear circuit theorems, Kirchhoff’s Laws, being
essentially expressions of the laws of conservation of energy and charge, are
universally applicable.

7.2  Graphical analysis

A non-linear device may always be represented by its experiment-
ally determined v~i characteristic. A single v— (or i-v) plot is sufficient to
completely characterize a simple two-terminal device such as a resistor.
When a device has more than two terminals, its behaviour must be described
by either a family of curves or, more generally, several families of curves.

Fig. 7.1. Voltage—current characteristics of: (a) linear and, ((b) and
{¢)), non-linear devices.
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420 Non-linear circuit analysis

The graphical method is very often used to find the currents and/or
voltages when two circuit elements whose characteristics are given are
connected in series or in parallel. The graphical construction solves
whichever of Kirchhoff’s laws is appropriate to the given problem. The
method will be introduced with the example, shown in fig. 7.2(a), of a series
circuit consisting of a non-linear resistor, a linear resistor, and a voltage
source. We wish to find the current I and the voltage V, across the non-
linear resistor. The characteristic of the non-linear resistor, shown in fig.
7.2(b), gives one relation between i and v,. A second relation is obtained by
application of KVL to the circuit of fig. 7.2(a).

V0=Ul+vz =iR+Uz
So

j=——— (7.1)

This is the equation of a straight line with slope —1/R and intercept
Vo/R. Also, when i=0, v, =V,. In fig. 7.2(c) (7.1) is plotted on the same
axes as the characteristic of the non-linear resistor. The intersection of the
two lines provides the required combination of I and V,. The voltage across
Ris (Vo —V,). The construction of the straight line is simple. One locates V),
on the voltage axis and V/R on the current axis and joins these points by a
straight line.

Examination of fig. 7.2(c) shows that the straight line represents the
characteristic of the linear resistor R in a coordinate system having its
origin at ¥ and having voltage increasing to the left. Use of this fact makes
possible the extension of the graphical method to the case of two non-linear
resistors in series as illustrated in fig. 7.3.

Fig. 7.2. Graphical solution for a circuit containing a non-linear
resistor (NLR): (a) circuit; (b) non-linear resistor characteristic; (c)
graphical construction for solution.
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The same graphical approach is applicable when circuit elements are
connected in parallel. Fig. 7.4{(a) shows a parallel combination of a non-
linear resistor and a linear resistor supplied from a current source of
magnitude I,. The problem is to find the current in each circuit element and
the voltage across the combination. Since voltage now is the common
quantity, we draw the non-linear characteristic with v as the dependent
variable. This is shown in fig. 7.4(b). Now KCL gives

. . v
10=11+12=11 +E

So
v=I,R—i,R (72)

This is the equation of a straight line with slope —R and intercept I4R.
Furthermore, when v=0, i; = I. In fig. 7.4(c) the line represented by (7.2) is
drawn on the characteristic of the non-linear resistor. The intersection of

Fig. 7.3. Graphical solution for two non-linear resistors in series.
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Fig. 7.4. Graphical solution for linear and non-linear resistors in
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the two lines gives the combination Iy and V, representing the current in
and the voltage across the non-linear resistor. The current in R is
Iy=(o—1,)

In section 1.7.3 formulae were derived for the equivalent resistance of a
series/parallel combination of several linear resistances. Non-linear resist-
ances cannot be combined using these formulae and it is necessary to adopt
other means; a graphical approach is often appropriate. In fig. 7.5 are
drawn the characteristics of two non-linear resistors. If these elements are
connected in series, then the current must be the same in both. For example,
acurrent I, requires a voltage V, across device number 1 and a voltage V,
across device number 2. The total voltage required to maintain I, in the
series combination is therefore V,+ V,. We thus determine one point on a
new non-linear (composite) characteristic that represents the series combi-
nation of the two non-linear resistors. By assuming other currents, we may
obtain other points on the composite characteristic.

If the circuit elements are connected in parallel then the composite curve
is found by finding the total current required to maintain a given voltage
across the combination. Details are shown in fig. 7.6.

Fig. 7.5. Composite v-i characteristic for two non-linear resistors in
series.

i A

Fig. 7.6. Composite v-i characteristic for two non-linear resistors in
parallel.
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We examine next a three-terminal device as shown schematically in fig.
7.7(a). (This obviously is the special case of a two-terminal pair device (or
two-port) in which there is a common connection between input and
output.) Now there are two current-voltage pairs to be considered.
Subscript 1 refers to the input and subscript 2 refers to the output. If the
device is of any practical use, there will be interaction between input and
output and two sets of characteristic curves will be required to describe the
device behaviour.

Fig. 7.7(a) is an appropriate representation of a transistor. In what
follows we shall assume that we are dealing with an npn transistor in the
common-emitter connection.* The notation generally employed with
transistors is shown in fig. 7.7(b).

The characteristics of a typical silicon transistor are shown in fig. 7.8. It is
important to observe that izis almost independent of vcg while icis strongly
dependent upon ip.

Suppose now that we make external connections to the transistor as
shownin fig. 7.9. We wish to determine the currents Igand I¢. Following the
procedure already described, we construct load lines on the input and
output characteristics as shown in fig. 7.10. (Note that the spacing between
the curves in fig. 7.10(a) has been exaggerated for the sake of clarity.) From
the intersections of the input load line with the family of input charac-
teristics, we obtain pairs of values of Iz and V¢ that satisfy the constraints
imposed by the combination of supply voltage V', and resistance R;. When
transferred to the output characteristic, these pairs of values determine
points that establish a transfer characteristic indicated by the broken line in
fig. 7.10(b). The intersection of the transfer characteristic with the output

Fig. 7.7. Schematic representation of three-terminal devices.

i iy
+O—pf—o —r—4—O0 +
v, v,
(a) General device (b) Transistor (npn)

* The three terminals of a transistor are called, respectively, the base, the emitter
and the collector. Any one of these may be the terminal that is common to
input and output. The common-emitter connection is most often employed.
Schematically, the transistor in the common-emitter connection is shown in fig.
7.7(b). For an npn device, the collector and the base normally are maintained
positive with respect to the emitter. For further details see reference 5.
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(a)

Non-linear circuit analysis

Fig. 7.8. Silicon transistor characteristics for common-emitter
connection.
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Fig. 7.9. Transistor common-emitter connections to input and output.
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Fig. 7.10. Load-line method for determining operating point of a
transistor.
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load line (determined by V, and R,) represents the operating point Q and
determines the current I and the corresponding voltage Vcr. We then use
Ve and the input characteristic to determine Igand Vge. The application of
this method to bipolar transistors is simplified by the fact that the curves on
the input characteristic are very close together. Consequently, the effect of
vcp upon ip may be ignored. One simply finds Iz from the input
characteristic (assuming that the device may be represented by a single line)
and then uses the appropriate line on the output characteristic to establish
the operating point.

7.3 Small-signal models

7.3.1  Non-linear resistor model

In Section 7.2 we described how to find the current in a series
circuit consisting of a non-linear resistor (NLR), a linear resistor R and a
voltage source V,. The circuit and the graphical construction are repeated
in fig. 7.11. The current I and the voltage Vg determine the quiescent or
operating point, commonly designated by the letter Q. Now assume that V,
increases by a small amount AV. There will then be a new quiescent point
Q’, found by a new construction as shown in fig. 7.11(c). A small decrease in
Vo will result in a shift of the operating point to Q”’.

Fig. 7.11. Development of the small-signal model for a non-linear

resistor.
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Let us now revise the circuit of fig. 7.11(a) to include a sinusoidal voltage
source v,=AVsinwt, as shown in fig. 7.11(d). Now the operating point in
fig. 7.11(c) will move periodically along the characteristic curve between
limits Q' and Q. As AV decreases, the relevant portion of the characteristic
curve decreases in length. In the limit, as A¥—0, this portion of the curve
may be approximated by a straight line whose slope is di/dv at point Q. Let
di/dv=1/r,. Then, as far as the voltage v, is concerned, the circuit is
equivalent to the series combination of two linear resistors and the source v
as shown in fig. 7.12. Then the alternating component of the voltage across
the NLR is

Tn
r,+R

v, (7.3)

U, =

In fig. 7.11(d), the circuit is said to be biased by the source V at the point
Q whose coordinates are I and Vg I is the bias current and the resistance
rnin fig. 7.12 is determined by the slope of the NLR characteristic at the Q
point. The resistance r, is referred to variously as the slope, dynamic, or
incremental resistance, and once it has been determined, the circuit of fig.
7.12 is sufficient for calculating the alternating current behaviour of the
circuit. Fig. 7.12 is truly valid only for alternating voltages of vanishingly
small amplitudes. It is called the small-signal model. It is apparent that this
model utilizes a linear representation of the NLR - a representation whose
validity depends upon the amplitude of the driving alternating voltage and
upon the shape of the NLR characteristic.

7.32  Transistor model

Let us now examine the possibility of obtaining a small-signal
model of the transistor that may be used in circuit calculations without
recourse to the characteristic curves.

Referring again to fig. 7.10 we assume that the transistor is biased at an
appropriate point by means of batteries and resistors. Consider first the
input characteristic, a change in vgg can be caused either by a change in iz or
by a change in veg. If vcg is held constant, then the combination (i, vpE)

Fig. 7.12. Small signal model for a non-linear resistor.
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must lie on the appropriate vcg line. Let iy=I,sinwt represent an
alternating current with I, €I Then, just asin the case of the two-terminal
device the characteristic may be represented by a straight line having the
slope of the characteristic at the operating point. Then we may write

avbe
Upe =—7;
¢ 61,,

Iy = Rielp (74)
UcE
where h;, = 0v,./0i, is the slope of the characteristic. Now let ig remain
constant at Iz and let vcg change. Then the corresponding change in vgg is

Av,,
Upe = Uce
Av,,

In the limit then

6vbe

Uee = hrevce (75)

v =
b avce ip

If both ig and vce may change, (7.4) and (7.5) give
Upe = hieib + hrevce (76)

In fig. 7.10(b), ic depends upon both vcr and iz Suppose, with the
transistor biased at the point Q, ip is held constant and vcg changes. Then
the combination (ic,vcg) must move along the line that represents a
constant value of I'5. So, again considering small amplitude a.c. quantities

A
l.=
© v,

Vee = haevce (77)

‘g

Finally, if vcgis held constant and if i g changes the corresponding change in
ic is
i,

.= 2, iy="hyeip (7.8)

UcE

So, if both iz and veg change, (7.7) and (7.8) give
;= hfeib + hoevce (79)

It is a straightforward matter to devise a linear, two-port model that
represents equations 7.6 and 7.9. This hybrid parameter model (so called
because the hs do not all have the same dimensions) is shown in fig. 7.13.
Observe that this model contains two dependent sources. In many
transistors the parameter h,, is so small as to be negligible in most
applications. (This corresponds to the situation where the curves on the
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input characteristic are very close together.) Also, h,, is frequently very
small. (This corresponds to the curves in the output characteristic being
almost horizontal and thus having zero slope.) So, in many applications the
appropriate small-signal model of the transistor is as shown in fig. 7.14. It
must be remembered that the models of figs 7.13 and 7.14 apply only to
currents and voltages of small amplitude, and that both models are based
upon the assumption that d.c. voltages have been applied to bias the
transistor at the appropriate operating point.

7.4 Piecewise-linear circuits

7.4.1  Piecewise-linear approximation
The small-signal model of a device uses a linear approximation
that is valid over a narrow region of the device characteristic. We examine
next a model that may represent a non-linear device over an arbitrarily
wide region of its characteristic.
In general, a curve describing the characteristic of a real device may be

Fig. 7.13. Hybrid-parameter model of a transistor in the
common-emitter connection.

Upe Uee
Fig. 7.14. Simplified hybrid-parameter model in the common emitter
connection.

Vpe Uce
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represented to any required accuracy by a broken line consisting of many
short straight segments. Many real non-linear devices are represented
adequately by two or three such segments. Fig. 7.15 shows one example of a
characteristic and a three-segment approximation. If we can devise a model
that has this piecewise-linear property, the device may be represented by the
model and methods of linear circuit analysis may be used.

Two kinds of problems are of interest in applications of piecewise-linear
models. The first type involves synthesis of a circuit that will reproduce, to
whatever accuracy is required and over a specific range of operation, the
non-linear behaviour of a device. The second type of problem is concerned
with analysis of a given circuit to determine the slopes of the linear segments
and the coordinates of the break points i.e. those points at which the slope of
the characteristic changes. When slopes and break points are known, the
piecewise-linear characteristic of the circuit may be drawn. In synthesis we
are given a characteristic and we must find a circuit to represent it. In
analysis we are given a circuit and are required to find the corresponding
piecewise-linear representation of its characteristic. It is possible to
construct piecewise-linear circuit models using resistances and ideal diodes.

742  The ideal diode

Anideal diode is a voltage-controlled two-terminal device that has
the characteristics of a switch. If voltage of one polarity is applied, the diode
is a short circuit (i.e., a closed switch) while if the voltage polarity is reversed
the diode is an open circuit (i.e., an open switch). The diode is represented as
shown in fig. 7.16(a) where the arrow represents the direction of current
when the diode is conducting. The i-v characteristic of a diode is as shown
in fig. 7.16(b), with positive values of i and v defined in fig. 7.16(a). Except
where real diodes are specified, all diodes in the circuits that follow are ideal.

Fig. 7.15. Piecewise-linear approximation.
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74.3  Combinations of resistances and ideal diodes

Before discussing synthesis and analysis, we examine the v-i
characteristics of some resistance-diode combinations. These simple
circuits may then be used as ‘building blocks’ in either the synthesis or the
analysis of more complex circuits.

Fig. 7.17 shows four diode-resistance combinations and the v-i charac-
teristic of each. For these circuits the characteristics are easily determined.
For example, in fig. 7.17(a), when v is positive the diode conducts. Since a
conducting diode has no resistance, there is no voltage drop across it and so
the v-i characteristic is simply the straight line of slope 1/R that represents
the resistance R. When v is negative, the diode does not conduct and so the
current is zero.

The combinations shown in fig. 7.17 all have a single break point at the
origin. By including a voltage source in the series circuits of figs. 7.17(a) and
(b), we can shift the break point along the voltage axis (see fig. 7.18). A
current source in parallel with the resistance-diode combinations of figs.
7.17(c) and (d) shifts the break point along the current axis (see fig. 7.19).
Again, it is a simple matter to sketch the i-v characteristic. For example, in
fig. 7.19(a), as long as the input current exceeds ( — I) there is a net forward
current through the diode and so the voltage across it is zero. When i is less
than (—I) there is current through R producing a voltage drop that turns
the diode off. As i decreases further, a current (i—1I) flows in R and the
characteristic is a straight line having slope 1/R and passing through the
point (0, —I).

Consider next the effect of adding a second resistance to the circuit of fig.
7.17(a). The resulting circuit and its characteristic are shown in fig. 7.20(a).

Fig. 7.16. Ideal diode.
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Fig. 7.17. Diode-resistance combinations with break point at the
origin.
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Fig. 7.18. Diode-resistance combinations with the break point on the

v-axis.
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Fig. 7.19. Diode-resistance combinations with break point on i-axis.
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A resistance added to the circuit of fig. 7.17(c) yields the result shown in fig.
7.20(b).

Addition of a resistance to the circuits of figs. 7.18 and 7.19 causes the
break point to move off the axis. Consider, for example, the circuit of fig.
7.18(a) shown again as fig. 7.21(a). Let R, be added as in fig. 7.21(b). We
determine the break point by making use of the fact that when the diode
switches from the conducting state to the non-conducting state both the
voltage vy across the diode and the current iy through the diode must be
identically zero. For the circuit of fig. 7.21(b)

U—Ud—ide—V=0 (7.10)

and when vy =0and iy =0, then v = V. The condition iy =0 means that there
is no current in the diode branch. Therefore, at the break point, i = V/R,.

Above the break point when the diode is conducting the slope of the
characteristic is 1/(R;//R;)=(R; + R;)/R;R,, while below the break point
(diode not conducting) the slope is 1/R,. Observe that at v=0,i =0, so the
characteristic passes through the origin.

Consider next the circuit of fig. 7.19(b), redrawn in fig. 7.22(a). Let R, be
added as in fig. 7.22(b). Now to find the break point we impose the
condition, iy =0 and vy=0. When v4 =0, the current through R, must be

Fig. 7.20. Diode resistance combinations with two different slopes.
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Fig. 7.21. Effect of added parallel resistance to circuit of fig. 7.18(a).
(a) Original circuit and characteristic; (b) Circuit and characteristic
with addition of R,.
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Fig. 7.22. Effect of added series resistance to circuit of fig. 7.19(b). (a)
Original circuit characteristic; (b) Circuit and characteristic with
addition of R,.
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zero. Since at the same time iy =0, it follows that at the break point i=1. But

if i=1 and the voltage across R, is zero, then at the break point v=1IR,.
Above the break point, with the diode conducting, the slope of the

characteristic is simply 1/R,. When the diode is not conducting, KVL gives

U“"iRl +IR1 —iRz =0

and so

j— v+ IRl _ v + Rl
R,+R, R,+R, R,;+R,

I (7.11)
From this expression we see that the slope of the characteristic below the

Fig. 7.23. Development of circuit model for the forward characteristic
of a real diode.
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break point is 1/(R; + R,). For this characteristic to pass through the
origin, it is necessary that R, =0. Then the break point disappears because
there is just the resistance R, across v.

7.4.4  The real diode

In contrast to the ideal diode that we have used so far, a real diode
has a characteristic as shown in fig. 7.23(a). Typical semiconductor diodes
have resistance of the order of a megohm for reverse voltage so the
characteristic in the third quadrant is nearly horizontal. When forward
voltage is applied, current rises exponentially with voltage.

For many purposes the semiconductor diode may be represented by a
piecewise-linear approximation having a single break point on the voltage
axis as shown in fig. 7.23(b). An approximation that accounts for the small
reverse leakage current that exists under reverse voltage conditions is shown
in fig. 7.23(c).

If the reverse voltage is made sufficiently large, a real diode exhibits
breakdown, that is, it begins conducting heavily in the reverse direction. Its
resistance then is of the order of a few ohms. Fig. 7.24 shows a model that
accounts for breakdown. For most purposes R; may be omitted. Then both
break points will lie on the voltage axis.

74.5  The Zener diode

The voltage at which reverse breakdown occurs in a semiconduc-
tor diode is termed the Zener voltage. In rectifier or other applications
based upon the unidirectional conducting properties of the diode, the Zener
voltage is of interest simply because it specifies the maximum peak inverse
voltage that the diode will withstand. The Zener diode, on the other hand, is
a device whose normal mode of operation lies within the reverse breakdown

Fig. 7.24. Circuit model for the complete characteristic of a real diode.

-
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region. Special care is taken in the manufacture of this device to ensure that
the slope of the characteristic in this region is very steep, that is, that the
effective resistance is very small (see fig. 7.25). Thus, the voltage remains
substantially constant over a wide range of operating currents. Inspection
of fig. 7.25 shows that there is a minimum reverse current, in the region of
the knee, that must exist in the diode in order for it to operate in the
constant voltage region. The maximum current is determined by the heat
dissipating properties of the diode. Zener diodes are available with
operating voltages between 2 V and 200 V and with power ratings up to the
order of 50 W.

The primary application of the Zener diode is that of maintaining a
constant voltage across a load regardless of fluctuations in supply voltage
or load currents. A basic circuit used for this purpose is shown in fig. 7.26(a).
The supply voltage V, is large in relation to the load voltage V' so that the
current through R is substantially constant; thus, changes in load current
I, are reflected in equal and opposite changes in diode current I ;. The diode
current, therefore, swings over a range of values equal to the load current
variation and, since the characteristic of the Zener diode has a finite slope,
this produces small fluctuation in the load voltage. Variations in supply
voltage will also cause the load voltage to vary. We now establish an
expression, using piecewise-linear analysis, for the variation in Vi that
results from small variations in Iy and V.

Consider the circuit of fig. 7.26(b) in which the Zener diode has been
modelled by the circuit of fig. 7.18(a). By KVL we obtain

U +1Z)R +1zR;=V,—V,
and

IzRZ= V]_— VZ

Fig. 7.25. Zener diode characteristic.
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Eliminating I, from these equations gives
R, R,
-ty =
(RZ I)VL R Z+R IL Vo (7.12)
Now, from the total differential, the incremental change in Vy is given by:

v,

AVi= ol v,

ZLAL + LAY, (7.13)

where AI, and AV, are the incremental changes in load current and

supply voltage.
Differentiating (7.12) we obtain

R, VL
1 R, =
( + )31L+ 1=0

R, avy
1
( +1>5V0

Hence, by substitution in (7.13)

and

R,R R
AV, = — —1"Z Al Z__AV, 7.14
L <R1+RZ> L+R1+RZ 0 (7.14)

The coefficient of the first term in (7.14) is recognied as the parallel
combination of R, ** R; the coefficient of the second term derives from the
voltage-divider principle. Clearly, AV, is reduced by making R, >R, in
which case (7.14) reduces to

R
AV, ~ —RZAIL+R—ZAV0 (7.15)
1

Fig. 7.26. Voltage stabilizer circuit incorporating a Zener diode.
R,

R, —W\~-
MA— < .
1, l I N
+
V+ Load v, C)
° <> Zener Vi -
- diode -
(a) Circuit (b) Piecewise-linear circuit model
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Expressions (7.14) and (7.15) indicate that R, should be as large as
possible in order to achieve good immunity from supply voltage variation.
The value of R, determines, however, the quiescent operating point on the
characteristic, and its upper limit will be set by the required load-current
swing.

7.4.6  Analysis of piecewise linear circuits

To analyze a circuit consisting of ideal diodes and resistors, we find
break points by determining the input-voltage/input-current combination
that exists as each diode changes from the non-conducting state to the
conducting state. We then locate these break points on an i-v plane. By
joining adjacent break points with straight lines we have the desired
piecewise-linear characteristic of the given circuit.

Sometimes we may be interested in the output voltage v. input voltage
characteristic. Once the break points have been determined, this charac-
teristic may readily be found. The procedure is illustrated by the following
example.

747  Worked example

For the circuit of fig. 7.27(a), find the break points and plot
(a) the i, V. v;, characteristic;
(b) the vy, V. v;, characteristic.

Fig. 7.27. Circuits for worked example.
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Solution

Because there are three diodes, there are three break points. We find these

by considering one diode at a time in the order of their subscripts.
Diode D,: When vy <10V, D; conducts. When v,>10V, D, is reverse

biased and so is not conducting. The first break point occurs at vo=10V.

When vg =10V, D, is not conducting, so i, =0. Also, at the first break point,

iy =0. Therefore, at the first break point, v,=10V, and

o =io = 10/4000 =2.5 mA
D= 10+ (2.5 x 1073 x 2000)= 15V

Diode D,: When v,<25V, D, is reverse biased and does not conduct.
When vy>25V, D, conducts. When v,=25V, D, is not conducting, so
i; =0. The second break point occurs then at vy =25V and i, =0. So

Iin =10 =25/4000=6.25mA,
0;, =25+ (6.25x 1073 x2000)=37.5V

Diode D5: Assume Dj is not conducting. Then v, is provided by the 10V
source in series with D, and vy = 10(4/5)=8 V. For this value of vy, D, is not
conducting so i, =0. If v, exceeds 8 V, D, conducts, but if v;, isless than 8 V,
D5 cannot conduct. Therefore, the third break point is at v;, =8V, i;, =0.

We now must determine what happens above the second break point,
that is, when v;,, exceeds 37.5 V. For this condition, D, is not conducting and
D, conducts. We then have the circuit of fig. 7.27(b). By nodal analysis

Vo—Uin Vo Uo—25
hil) =0
2 it

which reduces to
vo = (0.4v;, + 10)
Then,

. Vin — Vo _vin—(0.4vin+ 10)_
=Ty T 2 -

(0.3v,,— 5) mA

Therefore, for v;, > 37.5V, the curve vy v. v;, has slope 0.4. The curve i;, v. v;,
has slope 0.3 x 1073, corresponding to a resistance of 3.3.kQ.

We now have information from which we may draw the two required
characteristics. They are shown in fig. 7.28.

7.48  Synthesis of piecewise-linear circuits

The first requirement for synthesizing a piecewise-linear circuit is
to decide upon an appropriate linear approximation for the given
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characteristic of the device or circuit. Then the slopes of the straight line
segments may be found. The break points are the intersections of these
segments. By referring to the ‘building blocks’ whose characteristics have
already been found (figs. 7.17-7.22) we then choose the proper circuits and
the appropriate values of resistors and sources to provide the required
break points and slopes. The procedure is illustrated in the following
example.

Fig. 7.28. Characteristics of the circuit of fig. 7.27.
iin A
mA

15 T
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i

volts

<

(a) Input characteristic

Vout
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749  Worked example

Given the continuous characteristic of fig. 7.29(a), determine an
appropriate three-segment piecewise-linear approximation and then design
a circuit that has the desired characteristic.

Solution

The dashed line in fig. 7.29(a) indicates a three-segment linear approxim-
ation that may be taken as an adequate representation of the original
characteristic. The coordinates of the break points are (0, 0), (V,, I,) and
(Vy, I,,). The synthesis is accomplished by starting at the lowest values of v
and i and working through successive break points.

In region I of fig. 7.29(a) the characteristic is a straight line through the
origin. This is represented as in fig. 7.29(b) by a diode D, in series with a
resistor R; of value 1/M, Q.

At break-point a, the slope increases, indicating that the total circuit
resistance has decreased. Therefore, we add in parallel with our original
D,—R, combination a series combination of D,, R, and V,. The ap-
propriate values are:

V2= Va and R1R2/(R1 +R2)= 1/M2

Since R, has already been found, R, may be calculated. The circuit now is as
shown in fig. 7.29(c).

At break-point b, the slope decreases. This means that the circuit
resistance in region III must be greater than in region I1. To accomplish this
resistance change we use a parallel diode/resistor/current-source combi-
nation as shown in fig. 7.29(d). Here, I3 =1, and R; is chosen so that

R34+ R R /(Ri+R;y)=1/M;

The justification for the parallel resistance combination is as follows. As
long as i < I, there is no current through R3, and diode D; carries current
(i—I5). Fori> I3, some current must go through R;. The resulting voltage
drop across Rj; provides reverse bias for Dy and so the diode does not
conduct and its current is zero. Therefore, for i> I;, R; is effectively added
in series with the parallel combination of R, and R,.

For design of a practical circuit, we would use the Thévenin-Norton
transformation to convert the current source I3 to a voltage source V3, as
shown in fig. 7.29(e).

7.5 Analytical methods

The characteristics of many non-linear devices may be expressed
by means of analytical functions or approximated by power series. In such
cases the circuit of which they form part may be solved either analytically or
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Fig. 7.29. Diagrams for worked example: (a) original characteristic

with three-segment linear approximation; (b) and (c) steps in circuit

synthesis; (d) and (e) two forms of final circuit.
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numerically. For example, certain non-linear resistors, consisting of
crystals of silicon carbide bonded together and fired at high temperature,
have a voltage—current relationship of the form

i=ko? (7.16)

where k and p depend on the nature and physical state of the material. The
index p usually lies in the range 3-5. If a device of this type is connected in a
series circuit such as that shown in fig. 7.2, we have by KVL

V() =iR+Uz
But from (7.16) v, =v=(i/k)"/* hence,

i 1/p
Vo=iR+|~
o=1 +<k>

This equation may be solved by numerical iteration using the recurrence
relationship

Vo 1 {i, 1p
ln+1_R R k

The voltage—current characteristic of a diode may also be expressed
analytically by the equation

i=I(ek"—1) (1.17)

where I, and K are constants dependent upon temperature. (A similar
equation (the Ebers-Moll equation) relates the collector current of a
bipolar transistor to its base-emitter voltage.) By expanding the exponen-
tial term in (7.17) as a power series we obtain

_ , . )
i=1, <1+Kv+(KU) + &) +...>—1J

2! 3!

or

i=1| Kv+

] TR (7.18)

| (Kv)2+(Kv)3+._.]

The polynomial formed by taking the first few terms of this expression may
then be used to obtain an algebraic or numerical solution for a circuit
incorporating the diode. The procedure is similar to that adopted above for
the case of the non-linear resistor.

The characterization of a non-linear device by means of a power series
provides a powerful tool for the analysis of modulators and frequency
changer circuits used extensively in communication networks. We conclude
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this section with an examination of the simple circuit shown in fig. 7.30(a),
which may be used both as a modulator and as a frequency changer.

When used as a modulator, two sinusoidal signals v, and vy, of widely
differing frequencies (w, > wy,), are applied to the input. The output is an
amplitude-modulated wave of the form shown in fig. 7.30(b). The signal at
the higher frequency is called the carrier, while that at the lower frequency is
the modulating signal. From fig. 7.30(b) it is evident that the instantaneous
value of the modulated wave is

Vo =V, sinwt + (Vg sinwgt)sinwt (7.19)

We now show that this form of output arises directly as a result of the non-
linearity of the diode characteristic.

Fig. 7.30. Modulator (frequency changer) circuit.

+
+
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(b) Output waveform of modulator
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The two input signals, together with a d.c. bias voltage V, which ensures
that the diode operates in an appropriate region of its characteristic, are
applied to the diode and resistance connected in series. If R is made
sufficiently small, substantially the whole of the voltage (V+uvy,+v.)
appears across the diode, and the current in the circuit may be described by
an expression of the form (7.18). Thus, the voltage developed across R may
be written:

Vr=a(V+0m+0)+b(V+om+v)i+. .. (7.20)

where a and b are constants. For our present purposes the first two terms of
(7.20) are of interest; when these are expanded we obtain:

vp=aV+av,+av.+bV2 +2bVo, + 2bVv, +bvy? + 2bvgv, + bo 2

(7.21)
If
Vm = VmSinw,t and v, =V sinwt
then
2
Vm> = Vi 2sin2wpt =T"' (1 —cos2wy,t)
and
2
0.2 =V 2sinw,t =2L (1 —cos2w,t)
Also
VmUe = Vi Ve Sinwptsinw, ¢
VaVe
= [cos(w, — )t —cos(w, + w,,)t] (7.22)

Substitution of these expressions in (7.21) followed by regrouping of terms
gives
bVa2 bV2

_ 2
vr=aV+bV*+ > + 2

+(a+2bV)V sinwpt + (a+ 2b V)V sinw,t

2 b 2
€OS2Wpmt — ——

m

cos2wt

+bVaV.cos(w,— )t —bV,, V. .cos(w,+ o)t (7.23)
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Now, the voltage vy is applied to the input of a filter which takes the form
of a resonant circuit tuned to the carrier frequency w,. This tuned circuit is
designed to pass frequencies at, or close to, w, and reject all others. The first
four terms of (7.23) constitute a d.c. component and are rejected, as are the
terms in w,, and 2w,,, which lie well below the pass band. The terms in 2w,
lie above the pass band and are likewise rejected. The sum and difference
frequencies, however, lie close to w, (because w, > wy,) and are passed. The
output voltage (assuming that amplitudes are unmodified by the filter) is
then

Vo =(a+2bV)V sinwt+bV, V cos(w,—w,)t—bV, V.cos(w,+w,)t
But by (7.22) this may be written as
Voo = (a+2bV)V sinw t +2bV, V sinw,tsinw t

which is an amplitude modulated wave of the form (7.19).

As mentioned above, the circuit of fig. 7.30(a) may also be used as a
frequency changer. A common application of frequency changing, is to be
found in the superheterodyne receiver. In this case the received radio
frequency signal is applied to the circuit together with a signal generated by
a ‘local’ oscillator within the receiver. The frequency of the local oscillator is
arranged to be close to that of the received signal so that their difference is
much lower than the frequency of either. If in fig. 7.30(a), v, is the received
signal and v, is the local oscillator signal, then (w, — w,,) <©.. The filter is
tuned to the frequency (w, — @y ), and all terms in (7.23) other than the term
in (w.— wgy) are rejected. Thus the frequency w, of the received signal is
changed by the circuit to the lower frequency (w. —wy,). It may be shown
that if the received signal is amplitude modulated, then the difference
frequency is similarly amplitude modulated.

Practical modulator and frequency changing circuits utilize transistors
rather than diodes, but the underlying principles of operation remain the
same.

7.6 Rectifier circuits

7.6.1  Half-wave rectifier

A diode is often used as a rectifier to convert alternating voltage to
unidirectional voltage. In fig. 7.31(a), the alternating voltage v =V sinwt is
applied to the series combination of a diode and a resistor. If the diode is
ideal, then during each positive half cycle of v the diode conducts and there
is current in the circuit. The input voltage, the voltage across each element
and the current are shown in fig. 7.31(b) as functions of time. The single
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Fig. 7.31. Half-wave rectifier: (a) circuit using ideal diode; (b) wave-
forms for circuit (a); (c) circuit using real diode modelled by ideal
diode and a resistance; (d) waveforms for circuit (c).
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diode is a half-wave rectifier, providing current in the load R that is always
in the same direction and that exists for half of each cycle of the input
voltage.

We have seen that a real diode may be modelled in several ways
depending upon the importance of such factors as forward voltage drop,
forward resistance, reverse current and reverse breakdown voltage. In most
rectifier applications we need consider only the forward resistance and the
reverse breakdown voltage. (If the amplitude V, of the input voltage is very
small, the forward voltage drop may cause a significant decrease in the
fraction of a cycle during which the diode conducts, because the diode
current will be small until the applied voltage exceeds the diode forward
voltage drop.)

The forward resistance of the diode often must be included when
calculating the load current. If the diode is to act effectively as a rectifier, its
reverse breakdown voltage must exceed by a safe margin the maximum
signal voltage that appears periodically as a reverse voltage across the
diode. In specifying diodes for rectifier service it is appropriate to state the
required power dissipation (which may be calculated from the r.m.s. current
and the forward resistance) and the peak inverse voltage (PIV) that one
expects to apply to the diode.

An appropriate model for the half-wave rectifier is as shown in fig.
7.31(c). Voltage and current waveforms are shown in fig. 7.31(d). The
instantaneous current is

i=I,sinwt v>0
i=0 v<0
where
I,=Va/(ra+R)
The average value of this current is of interest because it is what a

d’Arsonval type ammeter would indicate if it were included in the circuit.

1 (" I
L, =—J‘ Ipsinwtdt =" (7.24)
T 0 4
To calculate the power dissipated in the diode resistance and the power

delivered to the load we must find the effective (r.m.s.) current

1 (" o
I= [?L Ia2sinwt dt] =7m (7.25)
The power rating of the diode then must be at least
I 2rd | 4 Zrd
P=Dry=—""=_—2"2 7.26
rq 4 4(R+rd)2 ( )
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A simple half-wave rectifier may be used to charge a storage battery. The
fact that the current amplitude is not constant is immaterial; we are
interested only in the total charge that passes through the battery. This total
charge and the battery voltage together determine the amount of energy
supplied and stored as chemical energy in the battery.

7.6.2  Worked example
It is necessary to charge ten 12-volt automobile batteries. Design a

half-wave circuit using a diode with 1 Q forward resistance that will provide
an average charging current of 1A. (Assume the battery has negligible
internal resistance.)

Solution: The batteries must be connected in series in order to ensure that
all have the same charging current. We must determine:
(1) the amplitude of the supply voltage;
(2) the maximum current;
(3) the power dissipated in the diode;
(4) the peak inverse voltage (PIV) rating of the diode.

The circuit is shown in fig. 7.32(a). Calculations are simplified if we use
v="Vncoswt. We saw that for a resistive load there is current during the

Fig. 7.32. Diagrams for worked example: (a) circuit; (b) definition of

conduction angle.
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whole positive half cycle. Now, however, the bank of batteries provides a
reverse bias of 120 volts and there will be current only whenv> Vp=120V.
So

1
i=r— (Vacoswt — V) (7.27)
d
It is convenient to define a conduction angle 20 that represents the fraction
of each positive half cycle during which the diode conducts; this is shown in
fig. 7.32(b). We use the given information, I,, =1A, to calculate V. From
(7.27), using r4=1Q,

[

I =L (Vmcoswt — 120)dwt
2n |- 9
1 .
=—(Vasing—1206)=1A (7.28)
T

Also from (7.27) the equation for the angle 0 is
Vmcosd —Vy=0
or,

Vg

™ cosf

Hence, (7.28) becomes

% (tanf—0)=1

To find 0 we use the approximation, valid for small angles,
tanf=0+(1/3)6*

These two equations give,

0=0.43 radians =24.6°

Then, cosf#=0.91 and V,,=120/0.91=132V.
The maximum current is I, =(132—120)/1=12A.
To find the power dissipated in the diode we must find the effective

current.
‘] _ 2 4
I =[L j <Vmcoswt VB> dcotJ
2n —-9 ra
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This integral may be evaluated using the approximation cos¢ =1—1¢?,
and the relation Vg=V,_cosf. Then

vz [ /p2 2\2 Nt
NI
2nrg? Joo\ 2 2
When the integration is performed and the limits substituted, the result is
e )(me)‘%
AVELYAN S

The power dissipated in the diode is I*r,, so,

Pgioae = (2/157)(132)*(0.43)° =10.87 W

The maximum reverse voltage across the diode is V,,+ Vp=252V.
Therefore, the PIV rating of the diode must be greater than 252V.

7.6.3  Full-wave rectifier

There are a few applications, such as the battery charger of the
previous example, where the pulsating unidirectional current supplied by
the half-wave rectifier is satisfactory. We shall see in a later section (7.9) how
filters may be used to modify the output waveform of the half-wave rectifier
and make the voltage more nearly constant. Filtering of the output voltage
to get a constant value is easier if the output voltage does not remain zero
for half of each input cycle. A full-wave rectifier utilizes both the positive and
the negative halves of the alternating input voltage.

There are two common full-wave rectifier circuits. The first uses two
diodes and requires a transformer with a centre-tap (see fig. 7.33(a)). During
half of the a.c. cycle, v, and v, are positive. Then diode D, is forward biased
and conducts while D, is reverse biased and is off. During the other half
cycle, D, conducts and D, is off. Regardless of which diode is conducting,
the voltage drop across R is always of the polarity shown in fig. 7.33(a). The
total secondary transformer voltage and the current in the load are shown
in fig. 7.33(b). In this circuit only one diode is conducting at any instant, so
the resistance of only one diode must be considered in calculating the
current. The peak inverse voltage is Vp,.

The bridge rectifier shown in fig. 7.34 gets its name from the fact that the
arrangement of circuit elements resembles the bridge used for measuring
resistance or impedance. It requires four diodes but does not need a centre-
tapped transformer. In fig. 7.34, D, and D; conduct during one half cycle
while D, and D, conduct during the other half cycle.

The output voltage waveform of the bridge circuit is identical with that of
the full-wave rectifier. An advantage of the bridge circuit is that the inverse
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Fig. 7.33. Full-wave rectifier: (a) circuit; (b) waveforms.
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Fig. 7.34. Bridge rectifier.
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voltage is across two diodes in series so the PIV rating of each diode is half
that required for the standard full-wave arrangement. The bridge circuit
can be connected directly across the power line. Such a connection can be
dangerous, however, since neither side of the load can then be grounded
(because one side of the power line normally is grounded). Because the
bridge circuit uses two diodes in series, an additional voltage drop appears
in the circuit. This usually is not significant. The effective value of the load
current is the same as has already been calculated for sinusoidal alternating
current, that is, I =1I,/,/2. The average value of the full-rectified current
wave is

1 " 21
Ia,,=—f Imcoswt dwt ==
2n J_» i

7.7 Thyristor circuits

With either a half-wave or a full-wave rectifier one may vary the
average current supplied to a given load by (1) controlling the amplitude of
the alternating voltage supply or (2) including a variable resistor in series
with the load. The first method requires a variable transformer and the
second is wasteful of energy. Another method of controlling the load
current employs the controlled rectifier. The controlled rectifier is usually
fabricated of silicon and so is often called, particularly in the U.S.A, a
silicon controlled rectifier, abbreviated SCR. In the U.K. the term thyristor is
more frequently used.

The two-terminal diode conducts whenever the anode is positive with
respect to the cathode. The thyristor is a diode in which a voltage applied
between a third terminal (the gate) and the cathode can affect the forward
conducting characteristic (fig. 7.35(a)). The characteristic between anode

Fig. 7.35. Characteristic for a thyristor.

K vV,

(a) Symbol

(b) Characteristic
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and cathode of the SCR when the gate—cathode voltage is negative has the
form shown in fig. 7.35(b). Unless the anode—cathode voltage exceeds V4
the diode current is insignificant. The dashed line represents an unstable
region. When the anode-cathode voltage exceeds V 4, the diode suddenly
becomes fully conducting, the voltage drops sharply, and the current
increases, being limited by whatever external resistance there is in series
with the diode. The device now behaves like an ordinary two-terminal
diode. Current continues until the anode—cathode voltage is reduced to
zero.

For most practical applications, however, the thyristor is chosen so that
the anode—cathode voltage will not exceed V 4. The diode is instead made to
conduct by driving the gate positive with respect to the cathode by an
amount sufficient to cause a trigger current of a few milliamps to flow in the
gate circuit. This trigger current initiates forward conduction in the diode.
In contrast with the turn-on process, the traditional thyristor can be turned
off only if there is a negative gate current comparable in magnitude to the
forward diode current. So it has been customary to say that, practically,
once the diode conducts the gate loses control and conduction ceases only
when the anode—cathode voltage drops to zero. Recently, however, there
has appeared a controlled diode which can be turned off by a negative gate
current of the order of 19 or less of the diode current. Such a device
increases the possible applications of the thyristor.

Fig. 7.36(a) shows a thyristor circuit in which the gate is used to control
the average current in the load of a half-wave rectifier. As shown there, the
gate is connected through resistor R to the same side of the power line as the
anode. During the negative half of the input voltage cycle the diode D, in
the gate circuit is reverse biased and cannot conduct. As the input voltage
enters its positive half cycle, D, conducts, the gate—cathode voltage
becomes positive and the gate current increases. For a particular value of R
the input voltage must reach a specific amplitude in order to furnish the
required trigger current that initiates conduction in the diode. The larger R,
the later in the positive half cycle conduction begins. It is apparent that if
conduction has not occurred by the time the input voltage reaches its
maximum value, conduction cannot occur at all. Thus, by varying R we
may reduce the average load current smoothly from its maximum value to
one-half the maximum value, but no lower. The circuit of fig. 7.36 is said to
provide a ‘retard angle’ that can lie between zero and 90 degrees. Fig. 7.36(b)
shows the currents and voltages when R is chosen for an angle of 45°.

Smooth control of the load current over almost the full range from zero
to its maximum value may be achieved by phase control of the gate voltage.
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Fig. 7.37(a) shows a half-wave rectifier using a thyristor. Now the gate
voltage comes from the power line through an RC phase-shift circuit. When
the thyristor is not conducting, the voltage Vg x depends upon R and C:

1/joC V. | 4

KT 1jwC+R ™ 1+jwCR _ J[1+ (@CR)?] &

where 0= —tan™'(RwC). Thus, Vg« lags V,, and there can be no gate
current until V., becomes positive. The maximum angle of lag (90°) is
approached as (wCR) becomes much greater than 1.0.

Now R both adjusts the phase of V4 and limits the gate current. Fig.
7.37(b) shows the case where R is set for 6 = —45°. There is an additional
delay in onset of thyristor conduction as the gate current rises to the
‘trigger’ level. Even after R has reached a value such that 8~ —90°, further
delay in “firing’ is achieved by further increase in R. In a practical case, R
may consist of a small fixed resistor in series with a variable resistor, so that
the gate current is always held to a safe value.

Fig. 7.36. Gate current control of a thyristor.
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Fig. 7.37. Phase control of thyristor: (a) circuit; (b) waveform for 45°
phase angle; (c) waveform for 90° phase angle.
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In addition to providing control of average rectified currentin a load, the
circuit of fig. 7.37(a) finds application in dimming circuits for incandescent
lamps and in the control of the speed of fractional horsepower motors
(those used in hand-held electric drills, for example). Wider range of control
in these applications is achieved by use of the triac, a three terminal device
that exhibits identical bidirectional conduction and control characteristics.
Its characteristic in either direction is the same as that of the thyristor. Fig.
7.38 shows the triac connected in a full-wave control circuit. The drive for
the common gate is obtained from a phase shift circuit as in fig. 7.37(a).
Note that diode D, in fig. 7.37(a) has been replaced by resistor R, because
now the gate must carry current in both directions.

Because it is a bidirectional device, the triac does not function as a full-
wave rectifier. However, this may be achieved by using two thyristors in
place of the conventional diodes of fig. 7.33(a). Such a circuit is shown in fig,
7.39 where each gate is supplied from a separate phase-shift circuit. The two
phase-shift resistors may be identical and may be mounted on the same
shaft so that a single knob controls both. Usually it is desirable to have the
two diodes conduct for equal fractions of the positive and negative half
cycles.

Fig. 7.38. Triac with phase control.

Load >

Yin @

Triac R,

Fig. 7.39. Full-wave rectifier using phase-controlled SCRs.
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7.8 Fourier analysis of periodic waves

7.8.1  Fourier expansion

Periodic non-sinusoidal waveforms are encountered in many
branches of science and engineering. The rectifier circuits that have been
discussed in the preceding sections, for example, give output voltages that
are periodic but non-sinusoidal. The techniques of a.c. circuit analysis,
introduced in chapter 3, apply only to sinusoidal waveforms and we cannot
employ them directly to find the response of a circuit to a non-sinusoidal
waveform. We can, however, transform the problem so that such techniques
are applicable.

By means of Fourier analysis a periodic, non-sinusoidal function may be
expressed as a series containing a constant term together with a number of
sinusoidal terms. The response to each component term of the series may be
found using standard techniques. Provided the circuit is linear, the response
to the original function may then be obtained from the superposition of the
separate responses. This approach to the analysis of circuits is of great
power and generality.

As an introduction to Fourier analysis consider fig. 7.40(a), which shows
a constant and several sinusoids whose frequencies are integral multiples of
the lowest frequency shown. In fig. 7.40(b) we have plotted the algebraic
sum of the functions of time shown individually in fig. 7.40(a). The sum is a
periodic but non-sinusoidal wave whose period is the period of the lowest
frequency in fig. 7.40(a). The waveform of fig. 7.40(b) may be written as the
sum of its components

flwt)y=f1 +f2 +f3 +f2 =1+ 3sinwt + 1sin2wt — isin3wt (7.29)

This expression illustrates the following general statement: within certain
limits of finiteness and continuity that always are met in practice, periodic
functions may be expressed as infinite series of the form:

flwt)= %0 + (a,coswt + b sinmt) + (a,co82wt + b,sin2wt )+ . ..

+ (a,cosnwt + b, sinnwt)+. . . (7.30)

The series in (7.30) is the Fourier series, or the Fourier expansion, for fwt),
and the a, and b, are the Fourier coefficients.
Equation (7.30) may also be written more compactly as
0

flot)= —7 Z a,cosnwt +b,sinnwt) (7.31)
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or in the alternative form

ﬂwt)=“2—°+ S Kicos(not + ) (7.32)
=1

n

where

_b,
K,=./(a,*+b,?) and ¢>,,=tan"< - >

Since the average value of each sine or cosine term in the above equations is
zero, it follows that the term a,/2 must be the average value of flwt). The
term K cos(wt + ¢ ) in (7.32) is called the fundamental or first harmonic and
has the same period as the original function. The nth term in the summation
is the nth harmonic; its frequency is n times the fundamental frequency.
Interpreted as a periodic function of voltage, (7.32) may be written as

v(wt)=Vo+ V,cos(wt +¢y)+ V,cosQut+¢,)+. ..
+ V,cos(nwt + ¢,)+. . .

Fig. 7.40. Addition of sinusoids.
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In this expression Vy(=ag/2) is the average value or d.c. component of the
waveform; V,(=K,) is the amplitude of the nth harmonic (V,=V,./2,
where V, is the r.m.s. magnitude), and ¢, is the phase of the nth harmonic.*

The Fourier expansions represented by (7.30) and (7.32) are infinite
series. In many cases of practical interest in electrical engineering the
amplitudes of the terms in the series decrease rapidly as the order of the
harmonics increases, and often the first three or four terms will provide a
satisfactory representation of the original function.

The process of Fourier analysis consists essentially in finding the
coefficients a, and b, This process is somewhat simplified if we express the
variable of the given function in terms of angle rather than time. In the
following theory we shall therefore, where appropriate, put wt=0. In this
case (7.31) becomes

f(9)=“7°+ Y (a,cosnd+b,sinnd) (1.33)

n=1

To obtain an expression for a,, let the function f{#) be defined over one
complete period, conveniently over the range —n <8 <=. Multiply both
sides of (7.33) by cosmfd6f (where m is an integer not equal to zero) and
integrate between the limits — x to n. The resulting expression will contain,
on the right-hand side, integrals of the form:

Jn cosnfcosmfdf=n form=n
-n =0 for m#n

and

J sinnfcosmfdf=0 for all m and n
(The values of these integrals for the given m and » may be confirmed by
simple integration.) We see that this procedure eliminates all terms except
the one containing a,, hence,

f f(B)cosnfddf=a,n

or

a,,=%j f(8)cosnf do (7.34)

* The notation V (rather than V,,) to denote amplitude avoids the confusion of
subscripts in Fourier analysis.
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We have previously noted that ao/2 is the average value of f(0), therefore,

Ao

1 n

or

1 n
ao =;Jl f(@) de

From this we see that a, also can be found from (7.34) for the special case
n=0. (Note that this result is obtained because we have expressed the first
term of the series as ao/2, not simply as a,.)

A similar procedure allows us to find b,: multiply (7.33) by sinm8 d6 and
integrate from —=n to m. Again all terms on the right-hand side of the
resulting expression vanish except that containing b,. The result is:

b,,=%J‘ f(@)sinnf do (7.35)

For purposes of evaluating a, and b,, any point on the periodic function f{8)
may be taken as the origin of time or angle. The amplitudes of the
harmonics (represented by K, =./(b,* + a,*)) depend upon the form of the
original function and are independent of the choice of origin. The phase
angle ¢,, however, will depend upon the location of the origin. The above
statements are equivalent to saying that it is sometimes possible to choose
the origin so that either all the a, or all the b, in (7.31) are identically zero.
Equations (7.34) and (7.35) are useful only when: (1) we have an explicit
expression for the original function f{#), and (2) we can perform the
integrations indicated by the equations. These conditions are met for a wide
variety of waveforms encountered in electrical engineering practice.

782  Worked example
Derive the Fourier expansion for the square wave (fig. 7.41(a))
defined by

v(wt)y=-V —n<wt<0
=4V O<wt<m

Solution
Let wt =0, then, by (7.34),

n

)]
1 1
a,=— J (— V)cosnfdo +; f {+ V)cosn6do

TJ-n 0
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Fig. 7.41. Diagrams for worked example: (a) square wave; (b) Fourier
components; (c) line frequency spectrum.
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vV . o Vo .
= [ —sinn6]2 ,,+;l;t— {sinf]5

=0
and, by (7.35)

V] n
b, =1J (—V)sinn@do +% j (+ V)sinnfdo
0

n)ox

|4 Vv
=— [cosnf]° ,+—[—cosnf];
nm nm

2V
=— (1—cosnn)
nn

0 n even
hTar
nw n odd

Hence, using (7.33)

4¥v 2 1
v(@)=—> —sinnd  nodd
n n

n=1

In expanded form, the representation of the square wave is (with 6 =wt)
4v _ . L L
v(wt)=7 [sinwt +4sin3wt +3sinSwt +. . .] (7.36)

We observe that there are no even harmonics. It is true in general that there
are no even harmonics when the function has identical positive and
negative parts, that is, when f(wt)= —f(wt +i0T).

Fig. 7.41(b) shows a partial sum of the first three terms of the expansion
(7.36); the resulting wave is already a good approximation to the original
function. Increasing the number of terms improves the approximation; in
particular, the slope of the transitions between positive and negative values
is increased.* But it must be remembered that real pulse waveforms, for
which the square wave is an idealized representation, possess finite
transition times and it is, therefore, unnecessary to include more terms in

* In the case of the square wave an infinite number of terms will not produce a
perfect representation. A detailed mathematical treatment shows that the
infinite Fourier series (7.36) is not uniformly convergent and that there is
appreciable overshoot (about 18%) at the discontinuities between positive and
negative values. This result is known as the Gibbs phenomenon (see reference
14).
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the Fourier representation than is warranted by the transition times
occurring in the real waveforms under consideration.

An informative way of displaying graphically the relative amplitudes of
the harmonics in a waveform is by means of the line frequency spectrum.
This is shown for the first few terms of the square wave in fig. 7.41(c).

7.8.3 Odd and even functions

It is often possible to choose the origin so that the wave being
analyzed is symmetrical about wt = § =0. If the symmetry is such that f(#) is
an even function (that is, f{0)=f(—6)), all the b, are zero. Furthermore,
integration from — 7 to 0 gives identical results to integration from 0 to 7.
To find a, in this case, therefore, it is convenient to change the lower limit in
(7.34) to zero and double the result. When this is done, we obtain for an even
Sfunction:

an=gf f(@)cosnf do (1.37)
T Jo
and

f(9)=“7°+ Y a,cosnf (7.38)
n=1
Ifthe wave is an odd function (f{0) = — f( — 8)), then all the a, are zero and,
again, similar remarks apply concerning the interval of integration. In this
case we obtain for an odd function:

b,,=z f f(B)sinn6do (7.39)
ntJo
and
f6)= f b,sinnd (7.40)
n=1

The square wave of section 7.8.2 was an example of an odd function
resulting in an expansion containing only sine terms. It should be noted
that if (@) is even, the amplitude of the nth harmonicis K, =a,; if f(#)is odd,
then K,=b,.

784  Worked example

Find the Fourier cosine series and Fourier sine series for a
triangular waveform of current having peak values +1 and period T.
Solution: The function of current i(wt) is shown in figs. 7.42(a) and (b) where
w=2n/T. In fig. 7.42(a) the origin has been chosen so that the function is
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even; thus, all b, in the expansion are zero and we obtain the Fourier cosine
series.

Let wt =0, then, in the range 0 < @ < 7, the slope of the function i(6)is 2I/n
and the intercept on the vertical axis is — 1. The function may therefore be
described by

1(0)=~0 I= 1<§—1> O<ot<nm

The coefficients a, are given for an even function by (7.37), which in this case
becomes:

a,=— (%— 1>cosn0 do

T Jo

21 [ZJ Ocosnfdo— f cosnfdé J
71: T Jo 0

Because of symmetry about the horizontal axis the second integral in this
expression is obviously zero. The first integral is readily evaluated using
integration by parts (putting u=#8; dv=cosn#). This gives

a, —41 [ = (cosnm — I)J
n?

Therefore,
0 n even
an=9 —8I

n*n?

n odd

Fig. 7.42. Diagrams for worked example: triangular wave.

i I

(a) Even function (b) Odd function
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So the Fourier cosine series for the triangular wave is (with 8=wt)
, 81 1 1 i
i(wt)= —— | coswt +—cosdwt +~_cosSwt +. . . (741)
n 9 25

To find the Fourier sine series we choose the origin as shown in fig.

7.42(b). In the range 0 < 0<§ the slope of the function is 21 /x, while in the

range g<0<n it is —2I/m, hence, the current is described by:
21
i0)==0 0<0<Z
7 2

I
i(9)=1—2—1<9—f>=2—(n—9) Tcb<n
T 2 b4 2

The coefficients b, are given for an odd function by (7.39):

n/2 n 7
b,,=gl[zj fsinnf do +zj (~0)sinnd dBJ
TJo T Jn

¥/ /2

Integration by parts (putting u = (n — 0); dv =sinnf, in the second integral)

gives
41f2 . o
bn:? n—281nn5

0 n even
+8I

b,,= 7127 n=1,5,9...
—81
2—}’[2 n=3, 7, J § -
14

Hence, the Fourier sine series for the triangular wave is
_ 81 . 1, 1. )
i(wt)=— | sinwt ——sin3wt +—_sin5wt +. . . (7.42)
n 9 25

Comparing (7.41) and (7.42) we see that in the cosine series all terms are
of the same sign whereas in the sine series terms alternate in sign. The reason
for this will become apparent if the first three terms of the series for this
wave are sketched out for a full period of the fundamental (in a fashion
similar to that shown in fig. 7.41(b) for the square wave). It will be seen that
a shift in the origin of n/2 (fig. 7.42) changes the terms in the summation
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from cosine to sine and at the same time changes the signs of the first and
fifth harmonics leaving the third harmonic unchanged.
Mathematically (7.42) may be derived from (7.41) using the relationship

2
a shift in the origin of n/2) referred to the fundamental, corresponds to a
phase shift of nn/2 referred to the nth harmonic. Hence the nth term of the
cosine series transforms to

) T o ) T
—sm[n0—5+n5J— —sin [n0+ (n— I)EJ

n=1 cosf— —sind
n=3 co0s30— —sin(30 +n)=sin30
n=>35 c0s850— —sin(560 + 2n) = —sin50 etc.

cosnf =sin (E — n9> = —sin <n9 —g) A phase shift of /2 (corresponding to

For

The series for the triangular wave converges more rapidly (as 1/n%) than
does the series for the square wave. The difference in the rates of
convergence is related to the fact that the square wave is discontinuous
whereas the triangular wave is continuous but has discontinuous derivat-
ives. In general, the smoother the original wave the more accurately it can
be represented by a few terms in the series. The square wave requires higher
harmonics to fill in the corners.

Observe that in both examples the constant term is zero. This could have
been predicted from the fact that in both cases the positive and negative half
cycles are identical and so the average value of the wave is zero.

7.8.5  Fourier expansion for rectifier output

Of particular interest are the Fourier expansions for the output
voltages of half-wave and full-wave rectifiers.
(a) Half-wave rectifier. For convenience the amplitude of the output
waveform (fig. 7.43) is taken to be unity. We choose the origin where the
voltage is maximum, which results in an even function so that all the b, are
zero. The a, are derived from (7.37).

T /2
a, =2 f f(B)cosnf dé =2 f cosfcosnf dé (743)
T Jo TJo

Integration of (7.43) is accomplished by making use of the identity
cosAcosB=1[cos(A + B)+cos(A — B)]. The result is:

= COS— (7.44)
n
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Now

0 nodd(n#1)
cos—= < —1 n=2,6,10...
1 n=4,812...

For n=1, (7.44)is indeterminate; therefore, we return to (7.43) which, with
n=1, becomes

2 /2
a, =—J cos?0do
TJe

This, after integration and substitution of limits, gives a; =4. The other
coefficients, including ay, are evaluated using (7.44). The Fourier expansion
for the half-wave rectifier output is then (with 8 =wt)

2 2
flot) =% [1 +g coswt +§ cos2wt — G cosdwt+ .. ] (7.45)

(b) Full-wave rectifier. We choose the origin as shown in fig. 7.44. Here
again the wave is an even function and so there are no sine terms. From

(1.37)
2 f ,
a,=— | sinBcos(nf)do
TJo
=1U sin(1+n)0de+J sin(l_n)gng
nl Jo .
=n(1+n)[cos(1+n)n—1]+n(l_n)[cos(l—n)n_1]

When n is odd, both terms in the brackets are zero. When n is even, each
bracket has the value —2. Therefore,

4
a,=

T r(l—n?)

Fig. 7.43. Half-wave rectifier output represented as an even function.
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The Fourier expansion for the full-wave output is then

2f 2 2 2 |
f(wt)=;[l —Ecos2wt—1—5cos4wt—§§cos6wt - J (7.46)

7.8.6  Expansion of functions of time
Sometimes it is convenient to specify waveforms as functions of
time rather than of angle. In this case the expressions for the Fourier
expansion take a slightly different form.
For a periodic function f(t)=f(t + T) we may put wt =2xnt/T in (7.31) to
give

i 2
fr) =a7°+ n; <a,,cos—nT—m+ b,sin 2_r;z_t> (7.47)

Since =, the half-period in angle, corresponds to T/2 in time, (7.34) and
(7.35) become

rT/2

2 2nmt
a,=— t)cos——dt 7.48
7, Seos (748)
and
2 (77 2nmt
=— t)sin——dt 7.4
b, Tu_mf( )sin T d (7.49)

These equations allow one to evaluate the Fourier coefficients directly in
terms of time; however, they are usually more cumbersome to use than the
corresponding equations (7.34) and (7.35) in terms of angle. For this reason
it is usually preferable in a practical problem to specify functions in terms of
angle.

78.7 Complex exponential form of Fourier series

The Fourier series expansion (7.31) or (7.33) may also be written in
terms of the complex exponential. This approach to Fourier expansion is of
particular importance in the theory of communication networks.

Fig. 7.44. Full-wave rectifier output represented as an even function.
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The pair of general terms in (7.33) may be written as

) ejn0+e—jn9 ejno_e—j'le
a,cosnf+b,sinnf=a, n -
2 J2
—_ a" _Jb" ej’lo + a" +an e‘j"o

2
Now if we define complex coefficients
a,—jb, _a,+jb,

dc_
and ¢_, 5

(7.50)

Cp=

then the expansion (7.33) may be written

€T
f@)=co+ Y (e +c_e7)
n=1
where ¢y =ay/2.
This expression may, by allowing n to have all integral values from — co
to + oo, including zero, be written in the compact form:

f16)= i e’ (7.51)

n=—ao

By combining (7.50) with (7.34) and (7.35) we obtain

e="" L S(B)cosnd do — L f f(0)sinn6 do
2 27[ -n 27'[ -
=LJ f(6)(cosnd —jsinnd)dé
2n ).
or
1 (" .
C":_f fig)e™ " do (7.52)
2 J-x

It may be shown that this equation holds for all n, positive, negative and
zero.

Although (7.52) provides a direct method for deriving the coefficients c,,,
in practice it is usually easier to evaluate a, and b, and then to derive ¢, from
(7.50).

The Fourier series expansion in the form (7.51) may be interpreted in a
mathematical rather than a physical sense, as a series containing terms of
both positive and negative frequency. The individual harmonic com-
ponents of the trigonometric Fourier series are, however, composed of pairs
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of terms from the positive and negative sequences, as will be appreciated if
the coefficients c, are expressed in terms of the amplitudes and phases of the
harmonics. In the form (7.32) (with wt=48) the Fourier expansion is

fO=5+ ¥, Kycos(nd +,) (132)
n=1
where:
amplitude of nth harmonic K,,=\/ (a2 +b,2)

and

—b
phase of nth harmonic d),,=tan“< ")

n

From (7.50) and (7.32) we have

—jb, L K,
cn=an 2J =%\/(an2+bn2)ej¢"= ) e
ib, L K, .
c-,,=a"-;'] =1/(a,2 +b,2)e 1= Se jon (7.53)

The sum of the two terms corresponding to the nth harmonic in the series is,
therefore

. _ K, . _s
c,,e"'"+c_,,e Jn9=_2£(ej(n9+d>n)+e J(n9+d>n))

=K,cos(nf + ¢,)

Thus, the sum of pairs of negative and positive frequency components
contained in the complex exponential series corresponds to one harmonic
component in the trigonometric series. We observe also, from (7.53) that the
amplitude of each coefficient of the pair of terms is half that of the
corresponding coefficient in the trigonometric series, that is,

K,
|en|=le-al=7" (7.54)

The magnitude of the phase angle is the same in both complex and
trigonometric series.

As an example of the application of the complex form of Fourier series, let
us consider again the square wave of amplitude + V shown in fig. 7.41 and
analyzed in section 7.8.2. The origin was chosen so that the wave was an odd
function thus giving a,=0. The coefficients b, were found to be
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4V

—_— n odd
bn — nm

0 n even

Therefore, from (7.50),

—j 4V 2V
=7 m~ rm

jav 2y [ "odd
=y o=+

2 nn nm

The complex Fourier expansion is then, from (7.51),

& 2V .
flon= 3 ~jo”em

n=-— oo nw

=.. .+j2—Ve_j5wt+jgze—-w"”_i_jz}ie—jmt
Sn 3n T

2V . ) 2V .
-j —e’”"—j2—Ve’3""—j—Ve15‘“' ca (7.55)
3n Sn

It is seen that the phases of the complex coefficients ¢, and c_, are —90°
and +90° respectively. Amplitude and phase spectra are plotted in fig. 7.45.
Plots of this type find application in the theory of communication networks.
In fig. 7.45(c) amplitude and phase information has been combined in a
single diagram, the phase change of +90° to —90° being indicated by
oppositely directed amplitude components. This form of representation is
possible only if the original function is either even or odd, otherwise the ¢,
coefficients possess both real and imaginary parts and the phase changes
continuously throughout the spectrum.

17.8.8 Expansions for r.ms. values and power

It is frequently of interest to know the r.m.s. or effective value of a
periodic, non-sinusoidal waveform of current or voltage. This may be
calculated (from the definition given in section 3.1) using the analytical
function describing the waveform. Such calculation yields an r.m.s. value
that includes the effect of all of the harmonics contained in the waveform. It
may, however, be of interest to know the r.m.s. value of just a portion of the
spectrum and for this a series expansion is required. We may also wish to
know the power developed at a terminal pair in a circuit where voltage and
current are periodic at the same fundamental frequency but which possess
different waveforms. This may be found by taking the instantaneous
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Fig. 7.45. Line spectra for the square wave of fig. 7.41.
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product of the two waveforms and integrating to find the average value of
the product over one period of the waveform. But, again, it may be of
interest to know the power contributed by one or more harmonics present
in either of the waveforms.

We now proceed to establish expressions that will allow us to calculate
the r.m.s. values and powers associated with one or more harmonics in non-
sinusoidal waveforms.

Consider two functions, flwt) and g(wt), represented by their Fourier
expansions in the form (7.32):

flwt)=

wrCOS(Nt + ¢yr) (7.56)

n=

g(a)t)— !+ Z Ko cos(mot + ¢,,) (7.57)
In these expressions ag,/2 and ao,/2 are the average values or d.c.
components of the two functions; K, and K,,, are the amplitudes, and ¢,,
and ¢,,, are the phase angles of the nth and mth harmonic components of
the two functions respectively.
The average value of the product of the two functions is given by

Sflot)g(wt) = J flwt)g(wt)dot (7.58)

When we multiply (7.56) by (7.57), the right-hand side of (7.58) is seen to
contain:

(a) self-product terms of the same frequency (m=n);

(b) cross-product terms of different frequency (m#n);

(c) terms consisting of products of the d.c. components with harmonics;
(d) the product of the two d.c. components.

Type (a) terms are of the form:

2n
2L K, cos(nwt + ¢, p )K 08 (nwt + ¢,,) dwt
T Jo
KoK [
= "én ng f 1{cos(2nwt + Gy + Puy) +€OS(Pry — Pug)] dot
0

(using the identity cosA4cosB =1[cos(A4 + B)+cos(4 — B)]). The first term
within square brackets is a cosine function of time whose average value is
zero; the second term is a constant. Since the average value of a constant is
the constant itself, the average value of the nth self-product term is

KoK s cos( s — dng) (7.59)
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Type (b) terms are of the form:

1
27'(0

2n
K, rcos(nwt + ¢, ) K c08(mwt + ¢p,) dort

K Komg

2n
=_2;_L Heos{(n+m)wt + ¢y + Pmg}

+cos{(n—m)wt + ¢,; — Pyt ] dwt =0

since for n# m#0, each of the terms within the square brackets is a cosine
function of time whose average is zero.

Type (c) terms also give rise to cosine functions of time with zero average.
With regard to type (d) terms, clearly, the average value of the product of
the two d.c. components is the product itself, namely,

aofa()g

4 (7.60)

Combining (7.59) and (7.60) we obtain a series representing the average
value of the product of two functions:

Fanglan ="222 4 3 £Encos(p,, ~ ) (161)
n=1

This expression may be used to find the r.m.s. value of a current i(wt) in
terms of its harmonic components.

Let i(wt) =f{wt), then, from (7.56), with a,,/2=1, and K,,; = I, (where I,
is the amplitude of the nth harmonic), the expansion of i(wt) may be written
as

iwt)=Io+ Y Icos(nwt+¢,)
n=1

Equation (7.61), with i(wt)=f{cwt) =g(wt), then gives:
w f 2
{wt)? =1+ Y, % (7.62)
n=1

By definition, the r.m.s. value of a current i(wt) is

i(0t),.ms.=+/[average value of i(w?)*]

© iZ_
_ \/[Ioz i ¥ %J (763)
n=1

Expressing the harmonic components in terms of their r.ms. values
1,=1,/\/2, (1.63) becomes
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e [ 51

i@)ems. =y Ho> + 12+ 12 +.. ] (7.64)*

or

A similar expression holds for the r.m.s. value of a voltage function.
Equation (7.61) enables us to find also an expansion for the average
power P at a terminal pair in a circuit, given expressions for the
instantaneous voltage and current v(wt) and i(wt).
Using (7.56) and (7.57), voltage and current functions may be expressed
as

v(wt)=Vo+ Y V.cos(not +¢,,)

n=1

and
i(w)=Io+ Y I.cos(mot+¢,)
m=1

Then from (7.61)
o

P=v(wt)i(wt) =Volo+ i cos(¢p,— Dui) (7.65)

Ifwelet ¢, = ¢,, — ¢,; be the phase angle of the nth harmonic of voltage with

respect to current, and if we let V,,=I7,./\/5 and I,,=f,,/\/§, then (7.65)
becomes

P=Vylo+ Y. V.I,cos¢,
n=1
or

P=Vyl,=V,l,cos¢,+ V,I,cos¢,+
=Sum of powers for each harmonic component alone (7.66)

If voltage and current are pure sinusoids, then there are no harmonics and
this expression reduces to VIcos¢, which is the expression for power
obtained by other means in section 4.2.

An important conclusion which may be drawn from the foregoing theory

* Equations (7.64) is a special case of Parseval’s theorem (see, for example,
references 2. 8, 10)
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is that only voltages and currents of the same frequency can interact to
produce finite average power. In particular, d.c. components do not interact
with a.c. components. Products of quantities of different frequency average
over a period of time to zero.

78.9 Summary of formulae
Basic forms:

flot) =a70 + Y (a,cosnwt +b,sinnot) (7.31)
n=1
=32°—+ T K,cos(not + ¢,) (1.32)
n=1
where
—b,
K,=./(a,>+b,?) and ¢,=tan™! ( a )
and
a, =l Sflwt)cosnwt dwt (7.34)
TJ-=n
1"
b,=— 1 flot)sinnwtdwt (7.35)
n)ox

For an even function

2 ("
a, == Swt)cosnwtdwt; b,=0 (7.37)
JO

For an odd function
2 (" ,
b,,=;f Sflwt)sinnwt dwt; a,=0 (7.39)
)]
Complex form:
floty="3 c,e™ (7.51)

where

cn=%(an_jbn) n>0
=4(a,+jb,) n<0
=ae/2 n=0
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or
1 " .
c,,=—f Slot)e " dwt (7.52)
2n ),
|en|=Ka/2 (7.54)
Square wave (unit amplitude; odd function)
1 1 i
flot)= |:smwt+ 3 s1n3wt+5 sinSwt +. . J (7.36)
Triangular wave (unit amplitude; odd function)
1 t
fowt)= [sma)t ——sin3wt +—sinSwt —. .. (7.42)
9 25
Half-wave rectified sine wave (unit amplitude; even function)
i 2 2
flot)=— 1 + 7 cosmwt += 3 cos2cot—l—5 cosdmt + . (7.45)

Full-wave rectified sine wave (unit amplitude; even function)

2[, 2 2 2 i
f(wt):; tl —3 cosZwt—Ecos4wt—§cos6wt — J (7.46)

Average value of product of two functions. If

flot)= + Z K, scos(nwt + ¢,;) (7.56)
and

glot)= +m2 K cos(mot + ¢,,4) (7.57)
then

flotigon =250 1 3. 5 cos(g,— ) (161)

R.M.S. value of a function in terms of harmonic components.
If i(cot) is a function of current with r.m.s. value I, then

I=[i(t)? ]t ={/U>+ 12+ 1,*+.. ) (7.64)

where Iy, Iy, I, etc., are the r.m.s. values of harmonic components.
Power in terms of harmonic components.
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If, at a terminal pair, v(wt) and i(wr) are functions of voltage and current
with the same periodicity, then the average power is given by

P=v(wt)i(wt) =Volo+ V I,cosp,+ V,1,c08¢0,. .. (7.66)

where (V,1,); (V,,1,); etc. are the r.m.s. values of harmonic components of
like frequency.

17.9 Filter circuits for rectifiers

Half-wave or full-wave rectifier circuits of the type discussed in
section 7.6 provide the basis for most d.c. power supplies used in electronic
equipment, but for many applications the unidirectional but fluctuating
voltages provided by such circuits is not sufficiently constant, and provision
must be made for ‘smoothing’ their outputs. This is accomplished by means
of a filter circuit designed to attenuate the fluctuating harmonic com-
ponents of the output voltage waveform whilst passing the constant, d.c.
component.

Referring to fig. 7.46, each harmonic component in the Fourier
expansion of the rectifier output may be regarded as deriving from a
separate ideal voltage source. The attenuation of the filter may then be
calculated separately for each input and, assuming that filter and load are
composed of linear circuit elements, the overall effect of all sources acting
together may be obtained by superposition. In practice it is sufficient to
know that the amplitude of a particular component is below a certain
specified level. In the type of circuit considered here only the first two or
three harmonic components are of interest since higher harmonics, firstly,

Fig. 7.46. Analysis of a rectifier/filter circuit using Fourier component
representation of rectifier output waveform.

A

Vp= Vnhcos nwt
A

v, =V, cos 2wt
A

v, =V, cos ot

v,=Vy

Source Low-pass filter Load
(rectifier)
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have relatively small amplitudes (see equations (7.45) and (7.46)); and,
secondly, they suffer greater attenuation by the filter.

Various combinations of inductive and capacitive elements are used in
rectifier filter circuits; some of the more common arrangements are
considered below.

7.9.1  Inductor

One of the simplest filter circuits consists of a single inductor in
series with the load, assumed to be a pure resistance, as shown in fig. 7.47.
We analyze first the smoothing effect of this circuit upon the output of the
full-wave rectifier, making use of the series expansion (7.46) and considering
each term separately.

The first term represents the d.c. component of the rectified wave with
amplitude 2V, /n, where V,, is the peak value of the rectified wave. Since this
is a direct voltage all of it appears across R (assuming that the inductor has
negligible resistance).

The next term in the expansion is the second harmonic component with
amplitude 4V,,/3x. If the supply frequency is w, then the second harmonicis
at frequency 2w and the factor by which this component is reduced by the
filter is R/\/[R* + (2w)*L?]. Thus, the amplitude V,, of the ripple across R
is given by

4V R 4V 1
T3 J(RP4+QwpPL?) T 3n J[1+(2wL/R)A]

Vom (7.67)

Usually, with this type of circuit, the reactance of the inductor 2wL) is
arranged to be large in comparison with R, in which case V,,, is given to a
sufficiently good approximation by

4V, R 2VLR
3n 20l 3noL

VA (wL>R)

Fig. 7.47. Inductor smoothing of rectifier output.

Rectifier
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The fourth harmonic component has amplitude 4V,,/15x, and the ampli-
tude of the voltage appearing across R due to this component is
approximately

4Vm R VuR

T157 4wl 15mwL

V4 m

From the above expressions we see that the amplitude of the fourth
harmonic component across the load is only about one tenth that of the
second harmonic component and can usually be ignored.

It is customary to describe the effectiveness of the smoothing action of a
filter circuit by stating the peak-to-peak value of the most significant ripple
component as a percentage of the d.c. component.

peak-to-peak ripple amplitude

ercentage ripple = - ;
P ge ripp magnitude of direct component

x 100 (7.68)

For the full-wave rectifier with series inductor smoothing the percentage
ripple is

2V.R R
mxlqm#iqmm

2x 3nwl 2V, 3wL

As an example, consider a full-wave rectifier designed to supply a 50Q load.
If L=10H and the supply frequency is 50 Hz, then the percentage ripple
will be

2x50x 100

Ix2ix 5010 17

Note that the full-wave rectifier with inductor smoothing produces a lower
ripple than the half-wave rectifier because, for the former, the fundamental
component of ripple is at twice supply frequency, while for the latter it is at
the same frequency as supply frequency (compare series expansions (7.46)
and (7.45)).

Carrying out a similar analysis for the half-wave rectifier, using the
expansion (7.45), gives the following results:

D.C. component Vo=Vn/n
Amplitude of first harmonic Vim=Va/2
Reduction factor _ i
(for first harmonic) oL

Va R = 7R
i =2X— X — X — X 100=—x 100%
Percentage ripple =2 x > X oL X v x 100 oL x 100%

=59 (for R=50Q; L=10H)
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792  L-section

Considering again the full-wave rectifier, a further degree of
smoothing is obtained by the addition of a capacitor to the circuit of fig.
7.47, as shown in fig. 7.48. It is usual to make the reactance of this capacitor
(1/2wC) small in comparison with R so that substantially the whole of the
second harmonic component of current goes through the capacitor. The
inductor and capacitor then constitute a voltage divider and the factor by
which the second-harmonic voltage is reduced is, approximately,

120C 1

JI(20C) + 2oLy 40’LC (7.69)

7.9.3  Capacitor

The output of a rectifier circuit may be smoothed by placing a
capacitor across the load, as shown in fig. 7.49(a). With this type of circuit
the diode conducts for only a fraction of each half-cycle of the supply
voltage, and the output waveform can no longer be represented by the
Fourier series expansions given in section 7.8.5. The action of the circuit is
illustrated in fig. 7.49(b). On positive half cycles of the input voltage the
capacitor charges to the peak value V,, of the supply. As the supply voltage
falls, the diode ceases to conduct and the capacitor discharges through the
load R with a time constant RC. If this time constant is large compared with
the period T of the input voltage, then the capacitor will lose only a small
fraction of its initial charge before the next half cycle of the voltage appears
and raises the capacitor voltage back to V. During the period in which the
diode is non-conducting the capacitor supplies the whole of the current to
the load, and for this reason it is often referred to as a ‘reservoir’ capacitor.

Fig. 7.48. L-section filter.

Load
R
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The capacitor voltage during the discharge period is

v, = Vme—t/RC

If RC > T, then we may approximate the exponential by the first two terms
of its series expansion to give

t
WVl l——
Ve m< RC>

Now, if we further assume that the charging time ¢, is short compared with
T, the decrease in capacitor voltage AV is approximately

VaT

AV~_
RC

and the average voltage (d.c. component) across the load is

AV T
Vorx Vyp——=V, | 1 ———— 7.7

Using the definition (7.68) the percentage ripple for the half-wave rectifier
with capacitor smoothing is given by

Fig. 7.49. Half-wave rectifier with capacitor smoothing: (a) circuit (b)

waveforms.
o
Load
+ R
Vi COS 01 6
(a)
)
Vi ¢ ¥
\/M WV
\ \
/ A / A +
Vy—>/ \ bt e N
/ A A N
<« T=2 ————> !
)
(2]
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. AV _(VaT/RC)x100 T o
Percentage ripple =70 X 100~——I—/:——~R—C— x 1009,
This approximate expression is usually sufficiently accurate to allow one
to choose a suitable value for the filter capacitor. However, if a more
detailed and accurate treatment is required, in particular if the power in the
diode is to be calculated, then one may use methods similar to those
employed in section 7.6.2 in relation to the battery charger problem. These
methods allow one to calculate the conduction period ¢, and, given the
diode resistance, to derive the instantaneous function of current during the
charging period. The power dissipated in the diode may then be
determined.

794  n-section
If a high degree of smoothing is required, the single capacitor of fig,
7.49(a) may be combined with the L-section filter of fig, 7.48 to produce the
n-section filter circuit shown in fig. 7.50. In this circuit the voltage across C,
will resemble the sawtooth voltage of fig. 7.49(b). In order to estimate the
ripple across the load it is usual to make the simplifying assumption that the
fundamental component of ripple across C, (for the half-wave rectifier, this
is the first harmonic Fourier component of the sawtooth at supply
frequency) has an amplitude equal to half the peak-to-peak voltage of the
sawtooth. (Such an assumption gives, of course, an overestimate of the
ripple.) Then, making also the assumptions discussed in section 7.9.2, we
may deduce that the factor by which this ripple component is reduced is
1/(@?LC). (For a full-wave rectifier the fundamental component of ripple is
at twice supply frequency and the corresponding factor is 1/(4w?LC).)
In order to reduce weight and cost of components, n-section filters are
often designed with a resistor R in place of the inductor. In this case the
ripple is reduced by the factor 1/wCRy for the half-wave rectifier, or

Fig. 7.50. n-section filter.

Load
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1/2wCRE for the full-wave rectifier. A disadvantage of this circuit is that R
and R now form a voltage divider for the d.c. component of the rectifier
output and so the d.c. voltage across the load may be reduced significantly if
a low ripple, and therefore a high value of R, is required.

710 Summary

The analysis of circuits containing non-linear elements requires
special techniques. These fall into four major categories: graphical analysis,
small-signal models, piecewise-linear techniques, and analytical techniques.

By means of graphical analysis, voltages and currents can be found in
circuits containing simple series and parallel combinations of linear and
non-linear elements; this method depends upon a knowledge of the
complete voltage—current characteristic of the non-linear devices in the
circuit. For a two-terminal non-linear device, such as a diode, a single
characteristic curve relating voltage and current is all that is required. For a
three-terminal device, such as a bipolar transistor, two sets of characteristic
curves are required. Graphical analysis is commonly used to determine the
bias and operating point in circuits containing transistors, the procedure in
this case being often referred to as the load line method.

If the incremental voltage and current swings in a non-linear device are
small, then over a limited region, its voltage-current characteristic may be
considered as being of straight-line form and a linear relationship may be
assumed between voltage and current. This is the basis of the small-signal
approach to the analysis of non-linear circuits in which the non-linear
devices in the circuit are described by one or more linear parameters. This
approach is of particular importance in the case of transistor circuits. The
hybrid-parameter (small-signal) models of figs. 7.13 and 7.14 are commonly
employed in this context.

The small-signal model of a device uses a linear approximation that is
valid over a narrow region of the device characteristic. By this means
circuits including such devices may be treated as linear and all the
techniques of linear circuit analysis become applicable. An extension of this
approach is to approximate the voltage-current characteristic of a device
by a series of straight-line segments extending over an arbitrarily wide
region of the characteristic. Within each segment the device is modelled by
appropriate linear parameters. This piecewise-linear approximation then
allows linear circuit analysis to be applied over any desired range of
operating voltages and currents. The analysis of circuits containing diodes
is one important area of application for this technique, in particular rectifier
circuits. The piecewise-linear approach is also useful when we wish to
synthesize circuits that will reproduce given non-linear characteristics by
means of combinations of resistors and diodes.
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The characteristics of many non-linear devices may be expressed by
means of analytical functions or approximated by power series. In such
cases the circuits of which they form part may be solved using either
algebraic or numerical techniques. The characterization of a non-linear
device by means of a power series provides a method for the analysis of
modulators and frequency changer circuits of the type used in communi-
cation networks.

Rectifiers, employing diodes and thyristors for a.c.-d.c. power conver-
sion, comprise a broad class of circuits requiring non-linear techniques of
analysis. In such circuits it is often sufficiently accurate to approximate a
diode or thyristor by a two-segment piecewise-linear approximation, which
in its simplest form is equivalent to treating the device as a switch.

Many types of non-linear circuit produce waveforms that are periodic
but non-sinusoidal; rectifier circuits being but one example. The response
of linear circuits to such waveforms cannot be determined directly using
standard techniques of d.c. or a.c. circuit analysis. However, by means of
Fourier series analysis a periodic waveform may be resolved into a d.c.
component plus a series of harmonic components of sinusoidal form. The
response to such a waveform may then be conveniently found by
determining the response to each Fourier component separately and then
combining these individual responses by superposition. The utility of the
technique lies in the fact that it is usually necessary to consider only the first
few harmonic components in order to obtain a sufficiently accurate
knowledge of circuit behaviour for design purposes. This approach is
particularly useful in the design of filter circuits for rectifiers.

Finally, Fourier theory may be extended to allow the calculation of the
r.m.s. value of an arbitrary number of harmonic components, and the power
associated with the harmonic components of periodic non-sinusoidal
voltage and current waveforms.

711 Problems

1. A source of em.f. 4.5V is connected in series with a 2250
resistor and a diode operating in the forward conducting region. The diode
has the voltage—current characteristic given in table 7.1. Determine by a
graphical method the current in the circuit and the voltage across the diode.
Curento 1 5 3 4 5 6 7 8 9 10 11 12
(mA)

X;’)“age 0 0.45 0.78 1.02 1.23 1.38 1.56 1.74 1.92 2.04 2.16 2.28 2.36

Table 7.1 for problems 1 and 2
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2. Each of the diodes in the circuit of fig. 7.51 has the voltage-current
characteristic given in table 7.1. Use a graphical method to determine the
combined v—i characteristic for the two diodes and the 1.5V battery. Hence
determine the value of the current I and the voltage V. Determine also the
dissipation in each diode.

(London University)

3.
Current
(mA)
Voltage
D,
Voltage
D,

0 1 2 3 4 5 6 7 8 9 10
0 07 13 17 21 23 26 29 32 34 36

0 1.8 28 36 43 49 53 58 62 66 6.9
Table 7.2 for problem 3

The diodes in the circuit of fig. 7.52 have the characteristics given in table
7.2. Using a graphical method to combine the diode characteristic,
determine the current I, the voltage V and the voltage across each diode.
Find also for this bias condition the effective d.c. resistance and the
incremental a.c. resistance of the diode combination.

(London University)

Fig. 7.51. Circuit for problem 2.

AV ' >

450 2

+
+ D D2
9V = 450 Q : 3[ 1%

Fig. 7.52. Circuit for problem 3.
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I
+
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4. A tunnel diode having the characteristic shown in fig. 7.53 is connected
in series with a voltage source V, and a resistor R.
(a) If Vo =0.75V, what range of values of resistance R allows the circuit to
have two stable states?
(b) If R=1kQ, what change in V, is necessary to change the state of the
circuit?
5. The Zener diode in the circuit of fig. 7.54(a) has the characteristic shown
in fig. 7.54(b).
(a) What is the voltage across the diode if R, =o0?
(b) What value of R, will reduce the diode voltage to 909 of the open
circuit value?
6. Determine the slopes and break points of the v-i relationship for the
piecewise-linear circuit shown in fig. 7.55. (Assume ideal components.)
7. Determine the slopes and break points of the v-i relationship for the
piecewise-linear circuit shown in fig. 7.56. (Assume ideal components.)
8. Design a circuit consisting of ideal sources, diodes and resistors that will
have the piecewise-linear characteristic shown in fig. 7.57.
9. Fig. 7.58(a) shows two ideal voltage generators ¥, and ¥, connected to a
load resistance R; through R, and R, plus a perfect diode. The voltages are
shown in fig. 7.58(b).

Draw the waveform of the voltage across R, and the currents in R, and
R,, when Ry =R, =R;=R. What power is consumed in R;?
(Oxford University)

Fig. 7.53. Graph for problem 4.
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Fig. 7.54. Circuit and graph for problem 5.
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Fig. 7.55. Circuit for problem 6.
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10. A diode whose forward characteristicis givenin fig. 7.59(a)is connected
as shown in the circuit of fig. 7.59(b).

(a) What will be the diode voltage, current and power dissipation?

(b) Approximate the diode characteristic, over the full range shown, by
three straight-line segments, keeping the errors in the diode current to
within 0.4 mA. Hence draw a piecewise-linear equivalent circuit for the
diode when conducting in the forward direction. If the diode is replaced by
the equivalent circuit, what will be the power dissipated in the equivalent
circuit?

(Cambridge University: Second year)

Fig. 7.56. Circuit for problem 7.
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Fig. 7.57. Graph for problem 8.
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11. The circuit shown in fig. 7.60 is employed to approximate the
characteristic i =v?/10* amperes over the range 0 <v< 10V by a piecewise-
linear approximation. Assuming that the diodes are ideal and that D, is to
conduct at 10/3V and Dj; at 20/3V, calculate suitable values for the
resistors.

(Cambridge University: Second year)

12. In the circuit of fig. 7.61 the non-linear resistor r has a characteristic
described by v=1i(1 +i%)"*. Determine the current I.

Fig. 7.58. Circuit and graph for problem 9.
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Fig. 7.59. Graph and circuit for problem 10.
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13. Two non-linear devices d,,d, have the following v-i characteristics:

d,: i;=0.3""—1)
dzi iz =0y +0.41)22

The devices are connected in series across a voltage source.

(a) Ifthe voltage sourceisideal with e.m.f. 3V, find the current in the circuit
and the voltage across each device.

(b) If the voltage source has an e.m.f. of 3V and internal resistance 0.5,
find the current in the circuit and the voltage across each device.

14. In the circuit shown in fig. 7.62, if the output load resistance R, is
constant, show that the incremental variation of output voltage V, with a
change of input voltage V,, is equal to

Rx\~!
R+4—
x<x+ +RL>

Fig. 7.60. Circuit for problem 11.

Dl
R?
R, R, ‘
D2
R4
-Q D3
+0 1 kQ ke K
- iy
0V
+

Fig. 7.61. Circuit for problem 12.
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20

IAT@ §2Q §r
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where x is the incremental impedance of the Zener diode.

(Sheffield University: Second year)

15. (a) Derive a two-slope circuit model for the diode whose characteristic
is given in fig. 7.63(a).

(b) The diode is used in the simple rectifying circuit of fig. 7.63(b). What is
the average current in the circuit if the supply voltage v(t) is:

(1) 1.0coswt volts;

(it) 100coswt volts?

Fig. 7.62. Circuit for problem 14.
R

o AN +
+

-
Vin A’ RL§ v,
5 -

Fig. 7.63. Graph and circuit for problem 15.
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16. Switch contacts may be damaged by the opening of a switch that
supplies current to a coil. Protection to the contacts is afforded by
installation of a diode as shown in fig. 7.64.

(a) Without the diode, the switch contacts would ‘arc’ when the switch is
opened. Why?

(b) Explain how the diode solves the ‘arcing’ problem but does not interfere
with normal operation of the coil.

(c) What is the steady state current in the coil with the switch closed?
(d) How long after the switch is opened will be required for the coil current
to reach 3mA?

17. In the circuit shown in fig. 7.65 the two voltage sources are equal, the
diode is perfect and the resistance is small compared to 4,/(LC). Initially
there is no charge on the capacitor. Calculate and sketch the variation of
capacitor voltage with time after the switch is closed.

(Oxford University)

18. (a) A half-wave rectifier consists of a silicon diode in series with a load
resistance of 2 Q and is supplied from the secondary of a 50 Hz transformer
which has an open-circuit voltage of 5.0 V r.m.s. and an effective resistance
of 0.1 Q. The diode characteristic may be represented by an ideal diode in
series with a resistance of 0.04 Q. Determine the mean current flowing in the
load.

Fig. 7.64. Circuit for problem 16.
s o

+
10 V_C) Relay

Fig. 7.65. Circuit for problem 17.
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(b) A smoothing capacitor, connected across the load, is needed to reduce
the peak-to-peak ripple voltage to 10% of the mean voltage at the load.
Determine the capacitance to be used and comment on the result. Show
that the mean voltage at the load is now about 5V.

(Cambridge University: Second year)

19. A half-wave rectifier supplies a load resistor R =5kQ in parallel with a
filter capacitor C=32uF. The a.c. supply is 300sin(100xrt)V and the
combined forward resistance of the rectifier diode and the resistance of the
supply is 30Q2. Estimate:

(a) the average current in the load resistor;

(b) the percent amplitude of the ripple voltage;

(c) the peak current in the rectifier;

(d) the r.m.s. current in the rectifier;

(e) the percent ripple if a second 32 microfarad capacitor is added in
parallel;

(f) the percent ripple if a second 32 microfarad capacitor and a 20 henry
choke are used in the circuit. (The two capacitors and the choke are
arranged to make an L-section filter.)

20. (a) A transformer with centre-tapped secondary each half of which has
an e.m.f. of 400V r.m.s. at 50 Hz is used with a 20 henry inductor and two
diodes of zero forward resistance to provide d.c. power to a 500 load.
Calculate the average voltage across the load and the amplitude of the
lowest frequency component of the ripple voltage. It may be assumed that
one or the other rectifier is conducting at all times.

(b) A filter capacitor is used instead of the inductor and the transformer
e.m.f. is altered to give approximately the same average voltage and percent
ripple across the 500 Q load. What is the new e.m.f. and what capacitance is
required?

21. (a) For the general bridge circuit of fig. 7.66(a) show that balance
occurs when Z,Z, =Z,Z ;. The bridge is unbalanced by changing Z, by a
small increment 6Z,. Show that the unbalance voltage | V 45| is, to a good
approximation, proportional to |6Z,|. If Z,=2Z,=2Z;=(1000+j0)Q,
Z,=(990+j0)Q, and V is a sinusoidal voltage of r.m.s. magnitude 10V,
what is the unbalance voltage?

(b) In the phase-sensitive detector circuit of fig. 7.66(b) the signal and
reference voltages are sinusoidal and of the same frequency but differ in
phase by an angle ¢. V, and V, are the r.m.s. magnitudes of the
corresponding transformer secondary voltages (V, > V;). The time constant
CR is long compared with the period of these waveforms. Derive an
expression for the d.c. output voltage V4 in terms of V, ¥V, and ¢. It may be
assumed that the diodes are ideal and that no current is drawn from the
output terminals.
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(c) Explain the advantages of using the circuit of fig. 7.66(b) as a detector
for the bridge circuit of fig. 7.66(a). Indicate how the circuits are connected,
and suggest one possible application of such an arrangement.
(Cambridge University: Second year)

22. Inthecircuit of fig. 7.67 the resistance R controls the mean power to the
load. The gate current required to trigger the thyristor is 20 mA. What
approximately is the maximum angle of delay achievable with this circuit,
and to what value must R be set to obtain this angle?

Fig. 7.66. Circuits for problem 21.

Z,

B (a)

P -
+
R T C
Signal Vi ®
Reference R T‘ c
pi GRS G
Fig. 7.67. Circuit for problem 22.
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With the angle of delay set to 45°, derive an expression for the load
current i during the period of conduction. Sketch the waveforms of i and v
for one complete period of the a.c. mains supply. Indicate on your sketch the
approximate angle at which the current reaches a maximum and the angle
at which conduction ceases.

(Cambridge University: Second year)

23. The trapezoidal wave shown in fig. 7.68 has period T seconds,
amplitude 4 and rise and fall times between zero and A of p seconds. Derive
a Fourier expansion for this waveform choosing a time axis that will give
rise to sine terms only. Hence find the sine series for:

(a) a square wave;

(b) a triangular wave.

Find values of p for which:

(c) there is no third harmonic;

(d) there is no fifth harmonic.

Fig. 7.68. Waveform for problem 23.

A
e

ISR
(STE

Fig. 7.69. Waveform for problem 24.
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24. The voltage waveform indicated by the heavy line in fig. 7.69 is
produced by a thyristor circuit. Show that the amplitude of the funda-
mental ripple component is

Cr= % /[(14 + 12cosa — 4cos3a — 6¢c0s2a)]

Hence calculate the angle « for which ¢, is a maximum and the ratio of ¢, to
the mean value of the voltage at that angle.
(Cambridge University: Second year)
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