
Alternating current circuits

3.1 Introduction
The class of circuits described as 'alternating current circuits'

(abbreviated to a.c. circuits) comprises networks of linear lumped elements
that may include capacitance and inductance as well as resistance. It has
become a common and convenient practice to use the abbreviation, 'a.c.' as
a qualifying adjective. Thus, we speak of an 'a.c. voltage', an 'a.c. current',
and so on. In such circuits the sources of excitation produce time-varying
voltages and currents described by sinusoidal functions of the form:

v=Vmsincot or i = Imsma>t (3.1)

We may regard the above expressions as functions of time t or functions
of angle cot, the latter often being the more convenient. Waveforms
corresponding to (3.1) are shown in fig. 3.1, as functions of both time and
angle, and the various relevant parameters are defined.

An a.c. circuit is, by definition, one in which steady-state conditions
obtain; that is, any transient conditions arising in the circuit at the time of
switching will have died away leaving the circuit in an equilibrium state in
which the amplitudes of all currents and voltages are constant. The time
origin in the above equations is therefore of no consequence so that the
alternating voltages and currents in an a.c. circuit can be described equally
by the cosine functions:

V=Vmcoscot or i = Imcoso)t (3.2)

For this reason the term cisoid is sometimes used to describe in a general
way the waveforms encountered in a.c. circuits.

Although the choice of time origin is arbitrary the relative time (or
angular) displacement between waveforms, which we call phase, is of vital
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Introduction 99

importance in describing the electrical behaviour of an a.c. circuit. In fig. 3.2
we illustrate voltage and current waveforms displaced by phase angle 0.
Either of the two waveforms may be regarded as the reference with respect
to which the phase of the other is measured. If we select the voltage
waveform as reference, then, in terms of the sine function the two waveforms
are described by

and

v=Vmsincot (phase reference)

i = Imsin(cot —

In this case we say that the current waveform lags the voltage waveform by
angle 0 since, as may be seen from fig. 3.2, the current waveform passes
through zero in a positive going direction (point B) at an instant of time

Fig. 3.1. Sinusoidal voltage and current waveforms,

uor /

Amplitude

Period T seconds Period coT
= 2 n radians
= 360° (electrical)

Frequency/= ~ hertz

Angular frequency a>= 2nf radians per second

Fig. 3.2. Phase displacement between two sinusoidal waveforms.
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100 Alternating current circuits

later than the corresponding point (point A) of the voltage waveform. If, on
the other hand, we choose to take the current waveform as the reference,
then the two waveforms are described by the functions:

i = /msincot (phase reference)

and

v = Vmsin(cot + </>)

and we say that the voltage waveform leads the current waveform by angle
4>. In all of the above we could have used the cosine function instead of the
sine function; providing either one or the other is used consistently the
method of describing phase is the same.

The following points concerning the meaning and use of phase should be
noted: (1) Its definition in any circuit depends upon the choice of the phase
reference waveform. (2) It is independent of waveform amplitude. (3) It has
meaning only when referred to waveforms of the same frequency. (4) A
negative sign attached to the phase angle signifies that the associated
waveform is lagging, conversely, a positive sign signifies a leading
waveform. (5) A waveform leading by a phase angle /?, say, (measured in
degrees) may also be described as lagging by an angle 7 = 360 — j8. It is
conventional practice to choose whichever of the two possible angles is
numerically less than 180°.

An important part of a.c. circuit analysis is concerned with the
calculation of power. In d.c. circuits the calculation of power in resistance is
effected using the expressions I2R or V2/R (equations (1.20) and (1.21)); in
a.c. circuits these same expressions can be conveniently used by working in
terms of effective values of current and voltage rather than with their
amplitudes. The relationship between the effective value of an alternating
current and its amplitude may be derived by considering the amplitude of
the alternating current required to produce the same mean energy
dissipation in a resistance R as that produced by a d.c. current of/ amperes.

The instantaneous power in a resistance R carrying a current i is, from
(1.20), i2R; therefore, the energy dissipation over one complete period T is

%r
i2Rdtf

JoIf / is the effective value of the current waveform, then over a period T the
energy dissipation must be I2RT hence,

I2RT=\ i2Rdt
Jo
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o r

Effective va lue / = — i2dt\ (3.3)

This expression allows the effective value of any periodic current waveform
to be evaluated. Because of the mathematical form of (3.3) the effective
value is also known as the root mean square (r.m.s.) value or magnitude.

For the particular case of a sinusoidal waveform we have

I=\jL ( /mSincot)2dt] = T I (3-4)
In a similar way it can be shown that the effective value of a sinusoidal

alternating voltage is Vm/yj2.
Finally, we mention a parameter which is useful for purposes of

comparison between various types of periodic waveform; this is the form
factor defined as the ratio of the r.m.s. value to the half-cycle average value.
(The average value of a sine-wave over a complete cycle is, of course, zero.)

It can be shown that the half-cycle average of a sine-wave is equal to
2VJn9 hence the form factor is (VJy/2)/(2VJn)=l.ll. This may be
compared with a form factor of unity for a square-wave and 1.155 for a
triangular wave. The form factor indicates the extent to which a wave form
exhibits a 'peaked' characteristic. (See ref. 11, for a more complete
discussion.)

3.2 A.C. voltage-current relationships for the linear
circuit elements
We now consider the form of the voltage developed across each of

the three circuit elements when a sinusoidal current passes through them
(fig. 3.3). In the following analysis we choose to describe the current by the
cosine function because it is mathematically slightly more convenient.
Essentially the same results would be obtained using the sine function,
(a) Resistance. The instantaneous voltage across the resistance R is

= RImcoscot

or

vR=VRmcoscot (3.5)

where

VRm = RIm (3.6)

https://doi.org/10.1017/CBO9781139170093.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.005


102 Alternating current circuits

Converting to r.m.s. magnitudes by dividing both sides of (3.6) by y/2 we
obtain

VR = RI (3.7)

Thus, an Ohm's law type of relationship exists between alternating
current and voltage magnitudes for a resistive element. From (3.5) we see
that voltage and current are in phase,
(b) Inductance. Using (1.40) the voltage across the inductance is given by

di d
vL = L— = L—(Imcos(ot)

= —(oLImsin(ot

= coL/mcos( cot+—

or

(3.8)

where VLm = coLIm.

Fig. 3.3. A.C. voltage-current relationships, in terms of instantaneous
values, for the basic circuit elements.

, / = / COS CO t

vR=Ri
= RI cos co t

1,=/
T IT

C O S G H

, / = / COS CO t

vL=L
dr

= COL ImCOS (COt +K

= /J2L cos (cor -jr_)
coC 2
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Converting to r.m.s. magnitudes we obtain

VL = coLI (3.9)

The quantity coL is known as the inductive reactance, and since it is the
ratio of a voltage to a current, it has dimensions of ohms. It is usually
denoted by the symbol XL hence (3.9) may be written

VL = XJ (3.10)

Equation (3.8) shows that for an inductive element the voltage waveform
leads the current waveform by phase angle n/2 radians,
(c) Capacitance. Using (1.31) the voltage across the capacitance is given by

vc=— idt + vo=— I Imcoscotdt + v0
C Jo "C o

Since we are dealing with circuits in which voltages are purely sinusoidal,
there is no initial voltage across the capacitance so that we may put v0 =0.
On integrating we obtain:

Vc = —— sincot
coC

coC

or

{«*-£)vc=VCmcos((Dt--} (3.11)

where KCm=—z=
coC

In terms of r.m.s. magnitudes we have

Vc=±-=Xcl (3.12)
coC

The quantity Xc= 1/coC is called the capacitive reactance, measured in
ohms, and we see from (3.11) that in this case the voltage lags the current by
n/2 radians.

We conclude that, for each of the three elements, voltage is proportional
to current in terms of either amplitudes or r.m.s. magnitudes. For the
inductive and capacitive elements both voltage and current are sinusoidal
but suffer a phase displacement of n/2 radians or 90 electrical degrees. We
say that, for these elements, voltage and current are 'in quadrature'.
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104 Alternating current circuits

It is evident from the above theory that in a.c. circuit analysis the
application of Kirchhoff's laws requires the addition of voltages or currents
that will differ in phase if the circuit contains two or more elements of
different kinds. Because of this we cannot combine the magnitudes of the
voltages given by (3.7), (3.10) and (3.12) using direct algebraic addition;
however, we could proceed by adding the instantaneous values given by the
trigonometric functions (3.5), (3.8) and (3.11). For instance, if the total
voltage across a series combination of just two elements, say resistance and
inductance, were required, we could proceed as follows:

Total voltage v = vR + vL

FLmcos( cot +-

= RImcoscot + A^
( n

sI cot +—

= RImcoscot + XLImcoscotcos— — XL/msincotsin—

= RImcoscot — XLImsmcot

where

= tan
X1—-
R

X
also written as a = arctan —^

R

The result is a voltage of amplitude J(R2 + Xl)Im, and phase angle a with
respect to the original current flowing through the two elements. The
quantity -JiR2 + X2

L) has dimensions of ohms and is called the impedance of
the series-connected elements. In principle the total voltage across any
number of series-connected elements could be derived by repeated
application of the above trigonometrical procedure taking voltages two at a
time. We should then find that the general result was of the form:

Instantaneous = [Impedance]
voltage

Amplitude
of
current

Phase displaced
sine or cosine
function

(3.13)

Both the impedance and the phase displacement are functions of the
resistances and reactances in the circuit under consideration, and their
determination by the above trigonometrical procedure for each particular
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circuit would be tedious in the extreme. Alternative approaches are
therefore adopted based either (a) on a geometrical and graphical
interpretation of the trigonometrical equations presented above or (b) on
the use of the complex exponential and complex algebra. The latter is the
most convenient and flexible approach, and is presented in the following
sections.

3.3 Representation of a.c. voltage and current by
the complex exponential: Phasors
From the discussion and results contained in the previous sections

it will be clear that in a.c. circuit analysis it is only the magnitudes and
relative phases of voltages and currents that are of interest. The use of the
complex exponential to represent a.c. voltages and currents allows the
analysis of circuits to be effected in terms of magnitude and phase only; it
provides also a direct and simple means for depicting graphically the
relationships among a.c. quantities. We assume in the following that the
reader is familiar with the meaning of complex number and with the
elements of complex algebra.

The basis of the method is provided by the Euler relation:

Ae>e = AcosO + jAsinO (3.14)

where j = yj — 1 and A and 6 are respectively the modulus (or amplitude)
and argument (or angle) of the complex exponential.

The relation (3.14) defines a complex number A* whose real and
imaginary parts are respectively AcosO and ;4sin0, thus,

(3.15)

where

a = AcosO, b = AsinO

Therefore, we may write

a2 + b2=A2cos20 + A2sin20

that is

A=y/(a
2+b2)

and

b sinO

a cosO

* Complex quantities will be signified in this text by the use of bold italic type.
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106 Alternating current circuits

that is

0 = tan" 1 -
a

We may depict the relationship (3.14) graphically by means of the
Argand diagram (fig. 3.4) in which the complex exponential defines a point
P in the plane with polar coordinates (A, 6). The right-hand side of (3.14)
defines the same point in terms of the Cartesian coordinates

From a slightly different point of view we may regard the complex
exponential ej<? as an operator. With this interpretation multiplication of a
real scalar quantity A by eje simply causes A to rotate in the Argand
diagram by an amount 0 without change of amplitude. An important

special case occurs when 0 = - radians (or 90°); then (3.14) becomes:

Aein/2=Acos--\-]Asin-

that is,

Ae>nl2=A(0)+jA(l)

or

Similarly,

Fig. 3.4. Representation of the complex exponential A&6 on the
Argand diagram.

A s ine

A cos0 Real
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Thus multiplication of a real quantity by +j causes a rotation of 90° in a
positive (counter-clockwise) sense, while multiplication by —j causes a
rotation of 90° in a negative sense. It also follows that multiplication by j 2 is
equivalent to a rotation of 180°. This interpretation of the complex
exponential must be borne in mind throughout the following theory.

A saving of labour, particularly in numerical work, is achieved by writing
the complex exponential as

Aeid = AlA (3.16)

Now consider the argument 0 in (3.14) to be a function of time such that
0 = (cot + </>), and let A be identically equal to the amplitude Vm of an
alternating voltage wave form; (3.14) then becomes

F m e ^ + ^=Kmcos(cot + 0)+jFmsin(a;t + 0) (3.17)

We see that the complex exponential on the left-hand side of this expression
can be used to represent mathematically either the co-sinusoidal or
sinusoidal forms of the alternating voltage; the particular form being
expressed by specifying either the real part (Re) or imaginary part (Im) as
required, viz.

v= Vmcos(cot + </>) = Re F m e j ( w ' + </)) (3.18)

or

v= Vmsin(wt + (l)) = ImVmei{(Ot+<t>) (3.19)

The interpretation of (3.17) on the Argand diagram is shown in fig. 3.5(a).
The line OP, representing the amplitude Vm of the alternating voltage,
rotates with angular speed a> and we refer to this line as a rotating phasor.
The projection of the point P on to the real and imaginary axes defines time-
varying coordinates proportional respectively to Vmcos(cot + (j)) and
Vmsin(cot + (/>).

If the complex exponential is not specified by (3.18) or (3.19), then it is
understood that either form is applicable and we can describe in general
terms the instantaneous value of any alternating voltage by

This expression may be rewritten as

v=VmJ*J"t = Vme>"t (3.21)

where

Vm = Vm&* (3.22)
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108 Alternating current circuits

The expression (3.22) defines a complex voltage that is independent of time
and which contains only the amplitude and phase information concerning
the alternating voltage. We interpret the complex voltage on the Argand
diagram as shown in fig. 3.5(ft). Since the complex voltage is time-invariant
the line OP does not now rotate and it is consequently termed a stationary
phasor. The complex voltage function defined by (3.22) is also referred to as
a stationary phasor or, more simply, as a phasor.

In practical circuit analysis it is, for the reasons given in section (3.1),
better to work in terms of r.m.s. values in which case the complex voltage is
written

V=V&*=V[± (3.23)

where V= VJ^/2, and the notation of (3.16) has been used. The Argand
diagram is modified accordingly as shown in fig. 3.5(c).

Fig. 3.5. Representation of an alternating voltage in complex
exponential form by means of the Argand diagram, (a) Rotating
phasors. (b) and (c) Stationary phasors.

•H
Rotating

_ at angular

\ speed (0

v = Vm sin (co t +

Real
V =Vm COS (CO t + (f) )

(a) Instantaneous values

Ji

Real

(b ) Amplitude and phase

01 Real

(c ) Magnitude and phase
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The above treatment is, of course, applicable to the representation of
currents and we may write

(3.24)

3.4 Voltage-current relationships for the general
network branch: Impedance
The results of section (3.3) will now be used to derive the

voltage-current relationship for the series-connected elements shown in fig.
3.6. This arrangement is called the general network branch because it is
completely representative of any series-connected combination of lumped
passive elements. Once the voltage-current relationship is determined for
this circuit then it becomes possible to solve, at least in principle, any a.c. linear
lumped network.

To make the following treatment completely general we assume that the
current i passing through the branch has amplitude /m and possesses a
phase angle </> measured with respect to some other voltage or current
elsewhere in the circuit of which the branch shown in fig. 3.6 forms part. We
wish to determine the amplitude and phase angle of the total branch voltage
v.

The branch voltage v is, by Kirchhoff's voltage law,

which may be written, using the instantaneous voltage-current relation-
ships for the individual circuit elements derived in chapter 1 (equations
(1.16), (1.31) and (1.40)):

di 1 f
v = Rt + L—+- iidt (3.25)

at C J

Now the instantaneous current may be represented in complex exponen-
tial form (see equation (3.18)) by

i = Imcos((Dt + (/>) = Re/ mej(w'+*>
= Re/mejcor

therefore (3.25) becomes (taking the real part as understood)

Fig. 3.6. The general network branch.

/ = / cos (cot + (j> ) L
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110 Alternating current circuits

= R/mejwf+jcoL/mej(O(+7%ejwr+(const.)
jcoC

The constant of integration is zero since the voltages and currents in an a.c.
circuit are purely sinusoidal. (A finite value for this constant would imply
that a direct voltage existed across the terminals of the capacitor.) We may
therefore write

[ + i c o L + ^ ) m (3.26)

The quantity in brackets in the above equation is called the complex
impedance and is denoted by the symbol Z, thus

Complex impedance Z = R+](oL + -—— (3.27)
jcoC

or

Z = R + ')X (3.28)

where

The quantity X, called the reactance of the branch, is the difference
between the inductive and capacitive reactances.

Since Z is a complex number it may be converted from the Cartesian
form (3.28) to polar form:

Z= R + ')X = Zej* = Z[9_ (3.30)

where

(3.31)

and

0 = t a n " 1 | (3.32)

The modulus Z of the complex impedance, measured in units of ohms, is
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often referred to simply as the impedance. (Z, the complex impedance, is
also often called the impedance and we have to understand from the context
of the theory or argument in question which is meant.) The argument 6 in
(3.30) is called the angle of the complex impedance.

Substituting (3.27) into (3.26), the expression for the instantaneous
branch voltage becomes

v=ZIme?mt (3.33)

Now, using (3.30) and recalling that /m = /me j0, this may be written

or

v = ZIme>((Ot+++e) (3.34)

In all of the above expressions for v, the real part has been understood,
therefore, from (3.18) the branch voltage is

v = ZImcos(cot + 0 + 0) (3.35)

We see from this expression that the amplitude Vm of the branch voltage is
given by

Vm = ZIm (3.36)

and the phase angle with respect to the current is 0, the angle of the complex
impedance.

We have thus established, with the aid of complex exponential theory, the
required voltage-current relationship in terms of instantaneous values. The
reader should now compare (3.35) with (3.13). (The same result could have
been obtained, rather more laboriously, by using the trigonometrical
methods and results of section 3.2.) Of rather greater practical significance,
however, is the voltage-current relationship for the general branch in terms
of complex voltages and currents; this is derived as follows. In terms of the
complex exponential the instantaneous branch voltage may be written

Vme?at (3.37)

where

Vm = Vme>{<t>+0) is the complex voltage.

Combining (3.37) and (3.33) gives
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112 Alternating current circuits

or

Vm=Zln (3.38)

Note that eliminating ejwr from both sides of the above equation has the
effect of converting from a rotating phasor system to a stationary phasor
system.

In terms of r.m.s. magnitudes (3.38) becomes

V=Zl

In words:

(3.39)

Complex voltage = complex impedance x complex current

It will be recognized that (3.39) is of a similar mathematical form to the
Ohm's law encountered in d.c. circuit theory, consequently it is often
referred to as Ohm's law for a.c.

This equation allows us to write down the voltage drops across the
elements of the general branch in terms of the complex impedance. From
(3.27) the complex impedance of the general branch is Z = R 4-jcoL + 1/jcoC
therefore

1
J/= R+jcoL + 7

jcoC

or

)coC
(3.40)

Fig. 3.7. Voltage drops across the elements of the general branch and
the complex voltage-current relationship.

D
y _

c )

VL=)COLI

VR=RI

)(oC
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The terms in this equation represent the voltage drops across each of the
elements in the general branch, as shown in fig. 3.7. Practical a.c. circuit
analysis is carried out in terms of complex voltage drops and currents using
relationships of the form (3.40), not in terms of instantaneous quantities. It
will be noted that arrows, as well as (+ ) and ( - ) signs, have been used in fig.
3.7 to indicate the polarity, or reference direction, of the a.c. voltage drops
across the circuit elements. This practice has been widely adopted in British
textbooks, although not in American textbooks.

3.5 Phasor and impedance diagrams
The representation of complex voltages and currents on the

Argand diagram provides a valuable pictorial aid to the interpretation of
the algebraic procedures used in a.c. circuit analysis, and it greatly facilitates
the understanding of circuit operation; indeed, it is customary to illustrate
the operation of a.c. circuits by this means, often without explicit reference
to the complex exponential notation. Such diagrams are referred to as
phasor diagrams since they illustrate the relationships between the various
sinusoidal voltages and currents in a circuit interpreted in their phasor
form. (The concept of phasors and phasor diagrams can also be developed
on the basis of a geometrical interpretation of sinusoidal wave forms. See
for example reference 1.)

The phasor diagram for the general network branch provides a basis for
the construction of all other such diagrams. To derive this we use the
relationship (3.40). Recalling that 1/j = — j , this may be written as

V=Rl+')(oLl-) — / (3.41)
coC

Now let us in the first instance suppose that we have chosen the current as
the reference waveform in the circuit, that is, its phase angle is chosen to be
zero. Then we can write / = / e j 0 = / , and (3.41) becomes

V= RI +)coLI - j — / (3.42)
coC

This equation is represented diagrammatically in fig. 3.8. Interpreted
strictly from the point of view of the Argand diagram we have the situation
shown in fig. 3.8(a). The voltage drop across the resistance is VR = RI9 and
this is represented by a phasor along the real or reference axis which is, of
course, the direction of the current phasor. The voltage drop across the
inductance is of magnitude VL = coLI9 and this is represented by a phasor
along the positive imaginary axis. Similarly, the voltage drop across the
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114 Alternating current circuits

capacitance is Vc = I/coC; represented by a phasor along the negative
imaginary axis.

An alternative interpretation of (3.42) is shown in fig. 3.8(b). In this
diagram the phasors have been drawn head-to-tail (in a manner analogous
to the vector polygon used in force diagrams in the fields of mechanics and
structures), and the polygon is closed by a resultant voltage equal to Z/, the
magnitude of the total branch voltage. The angle a, which the resultant
voltage makes with the reference direction, is given by (3.32), namely,
a = tan~1(coL— l/a>C)/R. Notice that there is a topological similarity
between the circuit diagram of fig. 3.7 and the phasor diagram of fig. 3.8(b):
the order of the phasors in the phasor diagram corresponds to the order of
the voltage drops in the circuit diagram. Corresponding points have been
indicated in the two diagrams following the order ABCD.

In developing fig. 3.8 we chose to take the current as reference; if more
generally we take the branch current to have some phase angle <j) measured
with respect to another voltage or current variable elsewhere in the circuit,
then (3.40) becomes

V=
. 1
JcoC

(3.43)

We see that (3.43) is simply (3.42) multiplied by ej</>, which means that in the
phasor diagram all phasors are rotated bodily through an angle </> as shown
in fig. 3.9.

It is important to appreciate that the phasor diagram shows phasor
voltages and currents in a fixed relationship to one another, consequently,
although it is customary to draw the Argand diagram with real and

Fig. 3.8. Phasor diagrams for the general branch,

j ^

i{VL =Q)LI =XLI

I (ref.) I (ref.)

(a) (b)
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imaginary axes respectively horizontal and vertical, it is not mandatory to
draw the phasor diagram with the reference phasor horizontal. Electrical
power engineers, for instance, often take the system voltage as reference and
traditionally draw this vertically on their phasor diagrams. Phasor
diagrams may therefore be constructed in any of the forms typified by figs.
3.8 or 3.9, and with considerable freedom as to choice of reference phasor
and reference direction.

Finally, we mention one other diagram (related to the phasor diagram)
that shows the relationships between resistance, reactance and impedance
in a circuit or part of a circuit; this is the so-called impedance diagram. The
impedance diagram for the general network branch is shown in fig. 3.10,
and it is obtained by dividing each of the voltage phasors in fig. 3.8(b) by the
magnitude of the current /. The impedance diagram may be oriented in any
convenient direction to suit the problem in hand.

3.6 Linear circuit theorems and techniques in a.c.
circuit analysis
In chapter 2 a number of analytical techniques and circuit

theorems were developed based essentially on the linear properties of the
direct current circuits considered. This property of linearity depended upon
the constancy of the ratio of voltage to current for each resistive element of
the circuit, that is, upon Ohm's law. The same approach may be used in the
case of a.c. circuits since, as we have seen in the immediately preceding

Fig. 3.9. Illustrating the effect on the phasor diagrams in fig. 3.8 of
shifting the phase of the current by angle (p.

(ref.) (ref.)

Fig. 3.10. The impedance diagram.
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Table 3.1

Equation
D.C. Formulation No. A.C. Formulation

Ohm's law
V = RI

4'
Elements in series

Elements in parallel
1 1 1 1
- = — + — + . . . + —
i\ i\j J\2 i\n

G — G i ~l~ G 2 ~ \ ~ . . . - h G n

I? 1 2

Voltage divider

R2
V 2 — ••• V i

v Gl v

(1.16)

(1.17)

(1.23)

(1.27)

(1.28)

(1.26)

(2.6)

(2.7)

V=

K-

Z =

1

z-

v2-

v2-

ZI

z,+z2

1 1

Yl+Y2 +

ZiZ2

Zl + Z2

z2
Zi + Z2

Yt ]

K . . + Zn

1

1
i

Yn

1

y

sections, the ratio of complex voltage to complex current is constant for
linear resistive, inductive and capacitive elements. Commencing, therefore,
with the statement of Ohm's law in its a.c. form, (3.39), all the theorems and
techniques developed for d.c. circuits can equally well be developed for a.c.
circuits; the only difference being the replacement of the symbol R by the
symbol Zin the linear equations. We may, therefore, immediately adopt the
theory of chapter 2 in its entirety by the simple expedient of working in
terms of complex voltages and currents and writing Z for R. Some
analogous expressions and theorems for d.c. and a.c. circuits are presented
in table 3.1. In this table the symbol X called the admittance, denotes the
reciprocal of the impedance Z (see section 3.8).

As an example of the procedure we consider the Thevenin equivalent
circuit for an a.c. network. This comprises an ideal a.c. voltage source in
series with a complex impedance as shown in fig. 3.11 (a). The Thevenin-
Norton transformation is carried out in a way exactly analogous to that
shown in fig. 2.16; with the result as shown in fig. 3.1
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The graphical symbol used in this book to indicate a complex impedance
is also shown in fig. 3.11. It will be observed that the ideal a.c. voltage and
current sources are distinguished by having a sine-wave symbol enclosed
within the circle; this is a common but not universal practice.

The application of the phasor method will now be illustrated with
reference to the circuit shown in fig. 3.12, which is analogous to the single-
mesh d.c. circuit of fig. 2.5. Analysis of the circuit proceeds, as in the d.c. case,
with the assignment of a current /, and this is followed by the application of
Kirchhoff's voltage law to set up the circuit equation. Exactly the same
conventions are applied to determine the signs of the terms in the circuit
equation, and the working rules discussed in section 2.3 may be used with
advantage. Although not strictly necessary for the purposes of analysis, the
voltage drop across the resistance is also specified in fig. 3.12 so that the
relationship between all three voltages in the mesh may be clearly seen on
the phasor diagram (fig. 3.13).

Applying KVL to this circuit:

Fig. 3.11. The Thevenin-Norton transformation for an a.c. network.

o i • o

(a) (b)

Fig. 3.12. Single-mesh a.c. circuit.
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or

R R
(3.44)

Let us now suppose that the two sources have equal magnitude V and
that the phase angle of one can be varied with respect to the other, that is,
Vx = VlQ (phase reference), and V2 = Vl<k, where (f> is variable. With both
sources equal in magnitude and with 0 = 0 no current will flow; the phasor
diagram for this situation is shown in fig. 3.13(a). If 0 is now increased, say
to 60°, (3.44) becomes

1 =
W0-W60

=— [(cosO + jsinO) - (cos60 + jsin60)]
R

=-(0.5-j0.866)
R

JO-60
R

This result is interpreted on the phasor diagram as shown in fig. 3.13(b). The
directions of the phasors should be carefully observed; in particular, it

Fig. 3.13. Phasor diagrams for the circuit of fig. 3.12. Illustrating the
effect of changing the phase of V2 while keeping the magnitudes of Vx

and V2 constant.

V2 =VIA_

V, =

(a) Phase zero

(b) Phase 60°

V2 = V I 180

(c) Phase 180°
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should be noted that the direction of VR is from the tip of V2 towards the tip
of Vi. This accords with the usual convention for vector addition,
representing the relations VR=VI~ V2 or VR+V2=V1. The phasor VR lies
parallel to the current phasor; a result which is to be expected since voltage
and current must be in phase for a purely resistive element.

If now the phase of V2 is further advanced until <\> = 180°, the phasor
diagram becomes as shown in fig. 3.13(c). The current has a magnitude of
2V/R and a phase angle zero. We see that the effect of changing the phase of
V2 by 180° is the same as reversing the reference direction of V2 in the circuit
diagram, that is, changing the terminal polarity of the source.

3.7 Worked example
The circuit of fig. 3.14(a) is to be operated at mains power

frequency (50 Hz).
(a) Find the complex impedance between the terminals AB and between the
nodes D and B. Sketch an impedance diagram for the circuit.
(b) The circuit is connected to a mains power supply of 240 V; find the
currents in each branch of the circuit and the voltage of node D with respect
to B.
(c) Check the value for the node voltage obtained in (b) by using the method
of nodal analysis.
(d) Sketch a phasor diagram for the complete circuit.

Solution
(a) First the reactances of the two inductances and the capacitance are
found:

C O L 1 = 2 T I X 5 0 X 1 5 . 9 X 1 0 - 3 = 5

CDL2 = In x 50 x 66.8 x 10"3 = 21

l/cuC= 1/(2TT x 50 x 398 x 1(T6) =

These values are entered on the diagram (in brackets) as shown. Units of
ohms are understood throughout the problem.

Let the complex impedances of the left- and right-hand branches between
D and B be Zl and Z2 respectively, then

Z!=6+j21; Z2 = 30-j8

Expressed in polar form, using the notation of (3.16), these impedances
become

Zi =21.84 Z24!; Z2 = 31.04/~14-9
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Fig. 3.14. Diagrams for the worked example of section 3.7.

L =15.9mH
1 (J5) 2

A o J#Jk V\A

NodeD

Bo-

Node£

C = 398 /iF

NodeF

13.7 Resistance

240

D

80.7

6+J21

(c)

/2 = 607

/, lags VDB (branch inductive)
I2 leads VDB (branch capacitive)
/ lags V^ (circuit inductive)

7=1063
/, = 8-62
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(Note: in numerical work it is customary to express the argument of a
complex quantity in degrees rather than radians.)

The resultant impedance between DB is

zDB=zlnz2=
zzi

To evaluate this impedance the reader will recall that addition of complex
quantities is effected by expressing them in Cartesian form, while multipli-
cation or division is effected by expressing quantities in polar form. Thus

and

21.84/74.1 x 31.04/-14.9
ZDB ~ 38.27/19.9

_21.84 x 31.04/74.1 - 14.9-19.9
38.27

ZDB= 17.71/39.3= 13.7 +J11.2

(Note that the procedure known as rationalization is generally to be
avoided in numerical evaluation of expressions of the above form.)

The impedance between AB is then

Z,4B= 13.7+jll.22 + 2+j5 = 15.7+J16.22

or

ZAR = 22.57/419

The impedance diagram is illustrated in Fig.
(b) Unless stated otherwise voltages are always expressed in terms of their
r.m.s. magnitudes. Fig. 3.14(c) shows the 240 V supply, assumed to be an
ideal source, connected to AB. The supply voltage is chosen as the reference
phasor, that is, it takes zero phase angle. Since it is the branch currents
which have to be evaluated, we assign currents to each branch as shown.
(Assignment of mesh currents would entail an extra step in the calculation.)

The current drawn from the supply is found from the a.c. form of Ohm's
law:

This result is interpreted as a current of magnitude 10.63 A, lagging the
supply voltage by angle 45.9°.
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The voltage of node D with respect to B is given by

VDB=IZDB = 10.63/-45.9 x 17.71/39.3

or

^ = 1 8 8 . 3 7 - 6 . 6 V

The currents lx and I2 are found by dividing this voltage by the respective
branch impedances:

VDB 188.3/-6.6
21.84/74.1

w ' UD = 8.62/-80.7 A

and

F _ DB _
" 9 — ~ ^ —

188.3/-6.6

Z2 31.04/-14.!
= 6.07/L3A

Alternatively, for this part of the problem, the branch currents could be
evaluated by means of the current divider principle discussed in section 2.2.

In this case

Z,/ 31.04/-14.9x10.63/-45.9
38.27/19.9

ZJ 21.84/74.1 x 10.63/-45.9

= 8.62/-80.7 A

and

(c) The nodel equation at D is

VDB- 240/0 VDB VDB

7 7 7

But

= 0

rDB

therefore

VDB- 240/0
5.38/68.2 21.84/74J. T 31.Q4/-14.9

Rearranging this equation gives

1 1 1

= 0

21.84/74.1 ^ 31.04/-14.
240/0

: 5.38/68.2
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^(6.9-jl7.26+1.254-j4.4 + 3.11+j0.828)xl0-2

= 44.61/-68.2

VDB(l 1.27 -j20.83)x!Q-2 = 44.61/- 68.2

.. 44.61/-(
—0.237Z=6lS= 1 8 8-4 /-M V

(d) The phasor diagram for the complete circuit is shown in Fig. 3.14(d). Note
that the current / is the phasor resultant of Ix and I2 (indicated by the dash
lines). The voltage drop from A to D and the voltage drop from B to D are to-
gether equal to the source voltage. The voltage drops across the 6 Q and 30 Q
resistances in each branch are in phase, respectively, with the currents, Ix and
I2 (lines BE and BF); the voltage drops (lines ED and FD) are in quadrature.

As an additional exercise the reader may care to evaluate the voltage VEF.
(Answer 188.43/-155.77)

The reader should note that in working through problems of this type in
manuscript, complex quantities (here indicated by bold italic type) may, if
so desired, be indicated by a bar above or below the quantity concerned;
thus, VDB may be written VDB or VDB. Normally, however, this is
unnecessary since, as will be appreciated from the above calculations, there
is in numerical work little possibility of confusion between complex
quantities and their moduli.

3.8 Admittance
It was found to be convenient in d.c. circuit analysis to define a

quantity called conductance, the reciprocal of resistance. The formal
equations of nodal analysis were expressed in terms of conductance in
section 2.10. In a similar way we find it convenient in a.c. circuit analysis to
define a quantity called the complex admittance, the reciprocal of complex
impedance:

(3.45)

If a is the angle of the impedance and ft the angle of the admittance this
becomes, in polar form

where Y=^, and /?= - a .
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Thus, there is a reciprocal relationship between the magnitudes of the
admittance and the impedance.

Expressed in Cartesian form the complex admittance may be written

Y=G+)B (3.46)

where G is the conductance and B the susceptance. Both G and B are
expressed in units of Siemens.

Some care is required in the interpretation of G and B, as defined in (3.46),
since these quantities do not always bear a simple reciprocal relationship to
resistance and reactance. This will be clear if we consider the complex
admittance of the general network branch shown in Fig. 3.15(a). At an
angular frequency co we have

1

or

where

Y=
R+jX

1 \

The process of rationalization (multiplying numerator and denominator
by the complex conjugate of R+)X\ allows us to deduce the conductance
and susceptance.

Y=
1 R-jX R-jX

R+)X R-)X

Fig. 3.15. Complex admittance of series and parallel circuits.

o 1 o

' R

(a) Series (b) Parallel
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or

R . -X
(3.47)

Comparing (3.47) with (3.46) we see that for the general series-connected
network branch

Conductance = -

-X
Susceptance = R

Thus, conductance and susceptance for a series circuit are functions of both
resistance and reactance.

The practical use of admittance lies mainly in situations where there are a
number of elements connected in parallel. For instance, in the circuit of fig.
3A5(b) we have, by an expression analogous to (1.27)

YY +
Z R )CDL

or

y=i-+j(a;C -
R \ wL

In this case the conductance is identically equal to the reciprocal of the
circuit resistance. It should also be noted that if the inductive reactance coL
is smaller than the capacitive reactance 1/coC, the susceptance is negative,
the converse of the series-connected case.

The formal equations of nodal analysis for a.c. circuits expressed in terms
of admittance, yield expressions analogous to those expressed in terms of
conductance for the d.c. case. For example, the a.c. formulation for a two-
node circuit (corresponding to (2.28)) would be:

YuV1+Yl2V2=Ill

and (3.48)

Y2lV1+Y22V2=I22

Here Yi x and Y22 are the self admittances at nodes (1) and (2) respectively,
and Y12 = Y2i is the mutual admittance. The currents lx i and l22 represent
the net current injected into nodes (1) and (2) respectively from current
sources attached to those nodes.
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3.9 Frequency response: transfer function
The concept of a two-port network has already been mentioned in

section 2.2, and the theory of such networks is considered in more detail in
chapter 8. Here we introduce the concept of the transfer function for an a.c.
two-port network. The basic circuit is shown in fig. 3.16. An alternating
voltage Vu with angular frequency co, impressed at the input port (1) gives
rise to a voltage V2 at the output port (2). In the context of electronics and
communications systems these voltages would be referred to as signals.

The input and output voltages will be related by some linear function
dependent upon the arrangement of elements in the network; in general this
will be a function of frequency. The network can therefore be characterized
by a transfer function (or frequence response function) defined by

or

V Input voltage

The transfer function defined in this way, as a complex function of
frequency (jco), refers to the steady-state conditions only. Other more
general definitions are given in section 6.9.6.

The concept of the transfer function is not necessarily restricted to
voltage ratios in a network; the relationship between any two network
parameters (the ratio of output current to input voltage for example) may
be expressed in a similar fashion.

In practice the transfer function is most useful when expressed in its polar
form:

H(j(o) = | i f (jew) | e j a r g H ( j w ) (3.50)

Now | HQco) | (the modulus) and arg//(jco) (the angle or phase) are real
functions of co so that (3.50) may be written

Fig. 3.16. Two-port a.c. network with transfer function H(}a)).

A.C. network

Port Port
(1) (2)

HQco)
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where

H(co) = | H(jco) | and [Ms^ = argH(jco)

It may be noted that in conformity with our usual notation for complex
quantities (see section 3.3) H(]co) could also be written simply as f/, but
because other definitions of the transfer function exist we have chosen to use
the explicit form here.

To demonstrate the analytical procedures used to find the transfer
function of a network, we consider the simple capacitance-resistance CR
network shown in fig. 3.17. This circuit is employed extensively as an inter-
stage coupling network in electronic amplifiers, its function being to
prevent or block the passage of signals of zero frequency (d.c.) while
allowing the passage of signals of higher frequency.

To find the transfer function of this network we may use the voltage
divider principle (table 3.1: a.c. analogue of (2.6)). Assuming that no current
is drawn from the output port, we may write

jcoC

Hence

V2 R

Kl R+,1
jcoC

It is usually most convenient to express the transfer function in polar
form; we therefore rewrite the above equation as

H(ja))= 1-j— (3.52)

1 + )coCR

The denominator can now be expressed as

Fig. 3.17. CR coupling network.
o II f o
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= tan M - -

where

coCRJ

The modulus of H(jco) is then

1
H(co) = -

1+ -
1

\CDCR

and the angle is given by

= — a = —tan"

(3.53)

(oCR
(3.54)

(Note that it is not necessary to rationalize (3.52) in order to express H(jco)
in polar form.)

If we examine these expressions for the magnitude and angle of the
transfer function, we see that

for co^O: //(co)->0; 0(co)->9O°
for co->oo

This result is to be expected since as far as direct voltages are concerned the
capacitance acts as an open circuit; as far as very high frequencies are
concerned the capacitance is effectively a short circuit.

Two methods of illustrating graphically the way in which the magnitude
and phase angle of the transfer function vary with frequency are commonly
used. The first method, based on the Argand diagram, is shown in fig. 3.18.
In this diagram the modulus and angle are plotted in polar coordinates as a
function of co. The locus of the tip of the vector OP, traced out as co varies,

Fig. 3.18. Locus diagram: plot of H{jco) = H(co) /(/)(co) on the Argand
diagram.

J locus

Real
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defines a line characteristic of the circuit transfer function. Diagrams of this
type are called variously locus, polar or Nyquist diagrams. (Similar
diagrams can also be drawn to show the effect of varying any one of the
circuit parameters at a fixed frequency). It is important to appreciate that co
is not a function of time and, although based on the Argand diagram, the
locus diagram is not to be confused with the rotating phasor diagram.

The locus diagram corresponding to (3.52) is shown in fig. 3.19; for the
simple CR network the diagram takes the form of a semi-circle. Many other
circuits exhibit a similar behaviour and give rise to locus diagrams of
circular form. This graphical approach has been elaborated and extended
to include many different electrical devices, particularly rotating electrical
machines, and it has come to be known as the circle diagram method.

The second method whereby the transfer function may be depicted
graphically is shown in fig. 3.20. This figure is drawn for the particular CR
network of fig. 3.17. Here the modulus and phase of H(jco) are plotted

Fig. 3.19. Locus diagram for the CR network of fig. 3.17.

co increasing

co =0 CO =oo

Real

Fig. 3.20. Bode diagrams for the CR network.

co (log scale)

(a ) Log-modulus of
transfer function

(b) Phase of
transfer function

co (log scale)
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separately as functions of co on a logarithmic basis. Graphs of this type are
known as Bode diagrams or Bode plots after their originator.

Taking natural logarithms of (3.51) we obtain

In //(jco) = In //(co) + In ej*(w) = In //(co) +j(/>(co) (3.55)

In fig. 3.20(a) the real part of this expression, namely ln//(co), is plotted
on a linear scale against co which is plotted on a logarithmic scale. Likewise
the imaginary part 4>(CD) is plotted in fig. 3.20(b) also using linear-log scales.
The logarithmic basis of the Bode diagram allows large changes in the
values of the parameters to be accommodated, and it provides additional
practical advantages which are discussed below.

Frequently the modulus of the transfer function is expressed in logarith-
mic units of the decibel (abbreviation dB) (for an explanation of the
decibel, see for example reference 5) and the ordinate in the Bode plot is
scaled in these units in preference to the natural logarithmic scale used in
fig. 3.20(a). The decibel is defined strictly in terms of the ratio of two power
levels Pi and P2, that is,

p
Power ratio (dB) = 10 log10 — (3.56)

P\

If we are concerned with two voltages Vx and V2 established across identical
resistances, the power ratio is proportional to (V2/Vl)

2 and (3.56) becomes

Power ratio (dB) = 10 log10[yL) = 20 log10 y- (3.57)

In general the resistances at the input and output ports of a network are not
the same, nevertheless, by convention (3.57) is applied to the modulus of the
transfer function, defined by (3.49), without regard to the resistances
associated with the input and output ports. According to this convention
we therefore write

| //(jco) | (dB) = 20 loglo//(co) (3.58)

Fig. 3.21 shows the Bode diagram for the CR network (modulus only) with
the ordinate scaled in decibels. The dB values are all negative since V2 = V\
corresponds to OdB, and V2 can never be greater than Vx.

It will be observed that in fig. 3.21 (or fig. 3.20(a)) the curve is asymptotic
to two straight line segments. The reason for this will be appreciated if we
consider the modulus of //(jco) for very low and very high frequencies.

At sufficiently low frequencies, such that coCR<\, (3.52) becomes
//(co) = coCR. //(co) is therefore proportional to co which means that the log-
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modulus versus co relationship is of straight-line form provided co is plotted
on a logarithmic scale. Using (3.57) we have | H()co) | (dB) = 201og10o)CK.
For each decade of frequency therefore the modulus changes by
201og10(10/l) = 20dB. This determines the asymptote for low frequencies.

At sufficiently high frequencies (coCR$>l) we have H(co)=l, and
20 logl0H(co) = 0. Thus, the curve is asymptotic to a horizontal straight line
at high frequencies. The two asymptotes meet (point A in Fig. 3.21) at a
frequency cox such that cOiCR = 1 or cox = 1/CR. At this frequency the actual
value of H(co) is, from (3.53), 1/̂ /2 or 0.707, in other words the true value of
H(co) is about 30% lower than the value represented by the intersection of
the asymptotes. Expressed in decibels this is equal to — 3.03 dB. At this
frequency the phase angle is 45° (fig. 3.20(b). The frequency cox is called
variously the turnover frequency, the corner frequency, the break frequency,
or the '3 dB poinf. Since the maximum departure of the true curve from the
approximate curve formed by the two asymptotes is only 3 dB it is sufficient
for many practical purposes to represent the modulus of the transfer
function by its straight-line approximation. The principles of construction
of the asymptotes in the Bode diagram, here discussed in relation to the CR
network, may be readily extended to networks of greater complexity.

The chief advantage of the Bode diagram is that it affords a ready means
of finding graphically the overall transfer function of several networks
connected in cascade. Suppose we wish to find the overall transfer function
H0Qco) of two cascaded networks with individual transfer functions H^co)
and H2(jco). From the definition of the transfer function given in (3.49) it
will be readily apparent that H0(ico) = Hl^co)H2(jco). It is a somewhat
tedious procedure to multiply the moduli of the two transfer functions
together over a wide frequency range, especially if one or both have been
determined by experiment. However, if the results are presented on a Bode
plot, advantage can be taken of the properties of logarithms, and the

Fig. 3.21. Bode diagram for the CR network: modulus of the transfer
function expressed in units of the decibel.

ft)
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ordinates can be simply added since

This result applies equally well of course when moduli are expressed in
decibels. The ordinate addition is a particularly simple operation when the
straight-line approximation is used in the Bode diagram.

In the above discussion it has been assumed that individual transfer
functions will not be changed by connection of the networks one to
another; often in practice this will not be the case. Each network will be
affected by connection to both preceding and succeeding networks to some
extent, and due allowance must be made for this when determining the
individual transfer functions either from theory or experiment.

3.10 A.C. bridges
A.C. bridge networks form a large and important class of circuits

used for measurement purposes, for filtering (separating wanted signals
from unwanted signals), and for use in certain types of oscillator. The
essential characteristic common to all of the various circuits falling under
this heading is that for a finite input or source signal they produce zero
output signal under one particular set of conditions: the so-called balance
conditions.

The basic circuit configuration of one common form of a.c. bridge, used
mainly for measurement purposes, is shown in fig. 3.22; this will be
recognized as the a.c. analogue of the Wheatstone bridge discussed in
section 2.8.

The balance conditions may be derived using methods essentially similar
to those of section 2.8 (equation 2.21); they occur when the impedances in
the arms of the bridge are such that

Fig. 3.22. A.C. bridge network.
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or

(3.59)

By arranging Zx to be the component whose value is to be measured, and
by arranging Z2, Z3 and Z4 to be components of accurately known value,
the value of Zx can be determined. We can arrange either to make Z2 and
Z 3 fixed and to vary Z4 to achieve balance, in which case the bridge is
known as a product bridge, or we can make Z2 and Z4 fixed and vary Z3, in
which case the bridge is known as a quotient bridge. In all bridges of this
type the balance conditions are independent of the magnitude of the source
voltage although the sensitivity with which the balance can be detected will
suffer if the voltage is too low. The balance conditions may or may not
depend on frequency.

For any given arrangement of elements forming a bridge circuit the
source and detector may be interchanged without in any way affecting the
signal registered by the detector. This follows directly from the reciprocity
theorem. The new bridge circuit resulting from such an interchange is called
the conjugate of the original and it has the same balance conditions.

Two examples of bridges conforming to the basic configuration shown in
fig. 3.22 will serve to illustrate the techniques of analysis and some of the
important characteristics of this type of circuit.

3.10.1 The Sobering bridge

The circuit of this bridge is shown in fig. 3.23. Its main use is for the
measurement of capacitance, particularly the capacitance of high voltage
cables and insulators under working conditions. The unknown capacitance

Fig. 3.23. The Schering bridge.
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is Cx, and Rx is a series resistance representing the losses associated with this
capacitance (see section 3.13.1 for an account of losses in capacitors). C3

and C4 are respectively fixed and variable low-loss capacitors of accurately
known values. R2 is an accurately calibrated variable resistance and K4 is a
fixed standard resistance. (When this bridge is used in high voltage
applications, the node E is earthed, and the node A is at high potential.)

From (3.59) the balance conditions are given by

2 =^1^1=Z Z Y

where F4 is the admittance of the arm BE. Therefore,

1 1 / 1 . _ \ R2 RiC.

Equating real parts on the two sides of this equation gives

and equating imaginary parts gives

Cx =

Two balance conditions are thus obtained reflecting the fact that the
potentials of D and B at balance must be the same in both magnitude and
phase. It will be noticed that the balance conditions are independent of
frequency so that a highly stable source is not required. By adjusting R2 and
C4 alternately the bridge can be made to converge to a balance indicated by

Fig. 3.24. Phasor diagrams for the balanced Schering bridge of fig.
3.23. (a) Left-hand arm ADE; (b) right-hand arm ABE. Currents IB

and IB are the components of IB through R4 and C4 respectively.

NodeD

(a) (b)
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a null detector reading. The detector would normally consist of an
oscilloscope or a sensitive integrated circuit amplifier with its output
connected to some form of indicator. For very accurate measurements the
detector may be tuned so that it is sensitive only to the bridge source
frequency; by this means the effects of spurious signals arising, for example,
from the power supply mains (hum pick-up) may be reduced.

Phasor diagrams for the balanced Schering bridge are shown in fig. 3.24.
For the sake of clarity the diagrams for the left and right-hand arms are
shown separately. Referring first to the left-hand arm fig. 3.24(a), we may
understand how this diagram is constructed by considering the current ID

flowing from A to E via D (remembering that no current flows in the
detector branch at balance) and its relationship to the source voltage VAE,
which is conveniently taken as reference. The branch ADE contains both
capacitance and resistance so that the current ID must lead VAE by some
angle less than 90°. The arm DE is purely resistive so that the voltage
VDE( = IDRI) must be in phase with the current 7D, also the voltage drop
across Rx must be in phase with ID. These voltage phasors therefore
coincide with the current phasor ID. The voltage across Cx( = ID/(coCx)\
lags / by 90° and this voltage phasor is therefore perpendicular to the
current phasor. The phasor diagram for the right-hand arm of the bridge is
similarly constructed and is shown in fig. 3.24(b). When the two diagrams
are superimposed, the points marked D and B must coincide since there is
no potential difference across the detector at balance.

3.10.2 The Wien bridge

This bridge (fig. 3.25) is an example of the type for which the
balance conditions depend upon frequency. It finds application as a
frequency determining network in certain types of oscillator (see reference
5).

Fig. 3.25. The Wien bridge.
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From (3.59) we have

z - z4
 L^Y*

that is

+JCOC4K2K3-I

Hence equating real and imaginary parts:

Rl _ # 3 C*

R2 ^ 4 ^ 3

and

1
co2 =

R3C3R4.C4

This second balance condition gives, for any fixed set of component values,
the frequency at which there will be zero detector signal. At this frequency
the phase shift between source and detector signals will be zero, and it is this
property of the circuit which is important when it is incorporated in so-
called phase-shift oscillator circuits.

3.11 Worked example
The output at the detector terminals of a sensitive bridge circuit

using a high impedance detector contains an unwanted sinusoidal signal
component at an angular frequency coo.

(a) Show that by interposing a twin-T filter, of the type shown in fig. 3.26,
between the bridge detector terminals and the detector, the unwanted signal
may be eliminated.

(b) If the unwanted signal is caused by inductively coupled pick-up from
mains power lines operating at 50 Hz, suggest suitable values for R and C in
fig. 3.26.

(c) Sketch the general form of the modulus of the transfer function for the
twin-T filter as a function of frequency.

Solution
The twin-T filter is itself a form of bridge circuit in which the

balance conditions are frequency dependent. At one particular frequency,
therefore, the output V2 falls to zero.
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Several of the methods discussed in Chapter 2 may be used for solving
part (a) of this example; from the arguments presented in section 2.11 it will
be apparent that mesh analysis is the most cumbersome. Two alternative
methods are presented below: one employing nodal analysis, the other the
T-7r transformation.

(a) Method 1: nodal analysis
We may assume that no current is drawn from the output port of the filter
since the detector has a high input impedance. The input voltage Vx

supplied by the bridge may, for the purposes of this problem, be regarded as
a source voltage of fixed magnitude.

Choosing the reference node as shown, there remain three nodes whose
voltages are undetermined. One of these, the node 0, is the output node
with assigned voltage V2. The other nodes are P and Q with assigned
voltages VP and VQ.

At O the nodal equation is

R 1/jcoC

which reduces to

The nodal equations at P and Q are

VP- Vi VP- Vi VP

1/jcoC 1/jcoC R/2

(3.60)

From
bridge

Fig. 3.26. Circuit for worked example: twin-T filter.

NodeP
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and

R

which reduce to

, ,
l/jco2C

= 0

-)(OCV2 + (J + 2)COCJVP+(0)VQ=)CJCV1

and

~

(3.61)

(3.62)

Note that the coefficients of VQ in (3.61) and of VP in (3.62) are both zero.
This is because no mutual element exists between the nodes P and Q.
Solving for V2 using the method of determinants (section 2.5) we obtain

1
= A

0 -jcoC
1

"R

R
0

(3.63)

where A is the determinant formed by the array of coefficients in (3.60),
(3.61) and (3.62).

Now at the frequency coo of the unwanted signal F 2 =0, therefore,
expanding the numerator of (3.63) and equating to zero we obtain

= 0

Equating real (or imaginary) parts of this expression to zero gives, finally,

(a) Method 2: T-n transformation
Using relationships analogous to (2.23), each of the two T-connected
sections of the filter may be transformed separately to give the correspond-
ing ^-configuration as shown in fig. 3.27. These two Ti-sections may then be
combined to form the ^-equivalent of the original network. When this is
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done we see that impedance (Zi//Z4) spans the input port and, since the
voltage there is constant and equal to Vu it cannot affect the output in any
way. The two remaining arms of the 7r-section constitute a voltage divider,
hence we may derive a general expression from which V2 may be found at
any frequency. However, in this problem we wish to find only the frequency
at which V2 becomes zero. This will occur when Z2I/Z5 = Z2 Z5/(Z2 + Z5)
becomes infinite, that is when (Z2 + Z5) tends to zero.

From (2.23) and fig. 2.17

„ 1 1 (l/jo)C)(l/jo)C) 2 2
2 )coC jcoC (R/2) j©C co2C2R

Z5=R + R+ . =2R + 2)coCR2

(1/2JCOC)

Therefore V2 is zero at the frequency of the unwanted signal co0 when

)co0C coo
2

which gives, on equating real or imaginary parts to zero,

coo = 1/CR

(b) At the frequency of the mains power lines, coo = 2% x 50 = 314, therefore,
the product CR = 1/314. The actual values of C and R are chosen on
practical grounds: capacitors with large stable values of capacitance (with

Fig. 3.27. The T-n transformation applied to the twin-T filter of fig.
3.26; by symmetry, Zl=Z3 and ZA=Z6.

z3//z6
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the requisite low leakage resistance necessary for this application) are bulky
and expensive; very small values of C would make the circuit too sensitive
to stray capacitances between components. With these considerations in
mind a suitable value for C would be 0.1 /iF, giving R = 33 kQ. In practice R
would be adjusted to produce the precise CR product required by using
shunt or series trimming resistors.
(c) The general form of the modulus of the transfer function | V2/Vi\, may be
found without calculation by considering the extremes of the frequency
range; from co = 0 (d.c.) to co->oo. At co=0, all the capacitances are
effectively open circuit and the output node 0 is connected to the input
node A through series resistance 2R. On the assumption that no current is
drawn from node 0, there can be no voltage drop across this resistance,
therefore, the input and output voltages are the same and | V2/Vl\ = l.
Similar considerations apply for co-> oo: in this case the capacitances act as
short circuits thus connecting input and output terminals directly together.
We conclude that the plot of | V2/ Vx | versus co must take the general form
shown in fig. 3.28; the curve being asymptotic to the value unity for high
frequencies. Because of the characteristic shape of the transfer function, the
term notch-filter is often used in connection with this circuit.

It will be obvious that this circuit can be effective only if the wanted
bridge frequency is well separated from the notch frequency. Typically
bridge circuits operate at 1 kHz or so and the notch filter frequency is
arranged to be at 50 Hz. The reactance of the capacitive elements in the
circuit are therefore some twenty times smaller at the wanted frequency
than at the notch frequency, consequently, the attenuation produced by the
filter at the bridge frequency is small. The reader may care to confirm that
for the filter in this example. I V2IVX 1=0.98 at 1 kHz.

Fig. 3.28. Modulus of the transfer function, as a function of frequency,
for the circuit of Fig. 3.26.

log (0
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3.12 Inductively coupled circuits
The a.c. voltage-current relationships for a mutual inductance

may be readily established using the methods of section 3.3. We take as our
starting point the general relationship (1.49) between the instantaneous
voltage Vi and currents ix and i2 indicated in fig. 3.29(a), namely,

(1.49)

It will be recalled (section 1.10) that the (± ) signs in the second term of this
equation arise because of the two alternative ways of connecting the coils:
either with fluxes aiding (( + ) sign) or fluxes opposing (( —) sign).

Since all currents and voltages are sinusoidal they may be represented in
complex exponential form by:

vl — ^ l m e -> l\— ' l m e ' l2— I2mc

Substituting in (1.49) and taking the real part as understood, we obtain

or

By cancelling out ejwf from each term in this expression, and dividing
throughout by ^/2, we obtain the required relationship in terms of
stationary phasors and r.m.s. magnitudes:

Fig. 3.29. Voltage-current relationships for mutual inductance.

M

v2

vx = Lx d/j ±M d/2
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Vl =)coLlIl ±)(oMI2

A similar expression for the voltage V2 is obtained:

V2 =jcoL2 /2 ±']coMI1

(3.64)

(3.65)

These results are illustrated in fig. 3.29(b).
The analysis of circuits containing mutual inductance is almost in-

variably carried out using the method of mesh analysis rather than nodal
analysis because of the difficulty of defining reference nodes and node
potentials in circuits containing separate and distinct parts coupled only by
mutual inductance. For a similar reason the relationship (2.31), relating
numbers of nodes and elements in a circuit, does not apply directly,
although it may be extended to include circuits containing separate parts
(see reference 4).

The application of (3.64) and (3.65), and the general method of analysis of
a.c. circuits containing mutual inductance, may be illustrated with reference
to the circuit shown in fig. 3.30. This consists of two separate meshes linked
only by mutual inductance; corresponding ends of the coils are indicated by
the dots (see section 1.10). Currents It and 72 are assigned to meshes (1) and
(2) as shown, and these have been chosen in a clockwise direction.

For mesh (1) the self-impedance is (Rx +jcoLi), and the voltage drop is
(Ki+jcoLi)/!; to this we must add, according to (3.64), the mutual
inductance term jcoM/2. Hence the mesh equation is

+](oL1)Il -jcoM/2 = V (3.66)

The sign of the mutual inductance term follows from the dot convention
discussed in section 1.10: if one assigned current enters a dotted end and the
other leaves a dotted end, fluxes oppose and the mutual inductance term is
negative. The voltage on the right-hand side of (3.66) takes a ( + ) sign

Fig. 3.30. Mesh analysis of mutually-coupled circuits.
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because the assigned current lx leaves the voltage source in the direction of
the reference polarity arrow (working rule 2, section 2.3).

For mesh (2) the voltage drop across the self-impedance is (R2 +)a>L2)I2,
and the mutual inductance term is —jcoM/!. There is no voltage source in
this mesh so that the equation is

-jcoM/i + (R2 +jcoL2)/2 = 0 (3.67)

Notice that the mutual inductance term in this equation is treated as a
voltage drop (in conformity with (3.65)) and not as a source voltage, even
though it is the e.m.f. due to the mutual inductance effect that causes current
to circulate in mesh (2). It is clear from the circuit model discussed in section
1.10.1, and illustrated in fig. 1.26, that it would be equally valid to write
(3.67), ab initio, as

(R2V)(DL2)12=](DM11

where the term on the right is regarded as a source of voltage. However, the
formulation (3.67) is more consistent with the equations of mesh analysis
developed in chapter 2.

We shall now use (3.66) and (3.67) to find the impedance of the complete
circuit at the terminals AB, as seen from the voltage source. This impedance,
called the driving point impedance, is discussed in more general terms in
chapter 8.

From (3.67)

2~

and substituting in (3.66) we obtain

hence

The impedance at AB is then given by

V o

Z R R2+jcoL2

Rationalizing the last term in this expression we obtain

co2M2R2-)co(co2M2L2)
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or

( 1 6 8 )

Examination of (3.68) shows that if the mutual inductance between the two
meshes is negligibly small the driving point impedance becomes identical to
that of mesh (1) alone, that is, (Rx +jcoLi). With increasing M, the effective
resistance, as seen at the terminals AB (first term in brackets), is increased
while the effective inductance (second term in brackets) is decreased. This
result is unaffected by the relative winding directions of the two coils since
the final expression contains M only as a squared term; the sign associated
with M in the original mesh equations is therefore immaterial.

Another frequently encountered network configuration involving
mutual inductance is shown in fig. 3.31. In this the mutually coupled coils
are connected in series. Taking voltage drops in sequence round the circuit,
and with due regard for the dot convention, we obtain

—jcoM/+jcoL2/—jcoM/= V (3.69)

or

j c o ( L 1 + L 2 - 2 M ) / = F

This shows that the effective driving point impedance at AB is

(3.70)

That is, the effective inductance is (Lx + L2 — 2M). If the connections to one
of the coils are reversed, the signs of the mutual inductance terms in (3.69)
become positive and the effective inductance is then (Li +L 2 + 2M).

These relationships provide the basis of a method for determining the
mutual inductance between two coupled coils. Measurements are made,
usually by means of an a.c. bridge method, of the effective inductance of

Fig. 3.31. Series-connected coupled coils.
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coils connected in series in the two alternative circuit configurations; first,
with fluxes aiding and then with fluxes opposing. If these measurements
yield effective values of, say, L3 and L4 (L3 > L4), then we have, according to
the above theory,

L3=L1+L2

and

L4 = LX+L2-2M

Combining these two equations gives

= L 3 - L 4

hence, M is determined in terms of the measured values.
We complete this discussion of inductively coupled circuits by consider-

ing a useful circuit transformation that resembles in some ways the
star-delta (T-TT) transformation discussed previously. This is the so-called
T-equivalent of two coupled coils and is illustrated in fig. 3.32. Fig. 3.32(a)
shows two coupled coils, similar to those shown in fig. 3.29, but with one
corresponding end of each coil joined to form a common connection
(terminal B). The circuit configuration shown in fig. 3.32(a) can be arranged
to be electrically equivalent to fig. 3.32(fc), so far as any external connections
are concerned, by choosing suitable values for the inductances Lfl, Lb and Lc.
The utility of this transformation lies in the fact that the inductances in fig.
3.32(b) are separate and distinct having no mutual coupling between them,
and this can lead to analytical simplification in some circuits of practical
interest.

To obtain the connecting relationships for the two circuits we consider
the inductance that appears at corresponding terminal pairs (the remaining

Fig. 3.32. The T-equivalent of two coupled coils.
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terminal being open circuit). For equivalence we therefore require the same
inductances at AB and A'B', hence,

Similarly at CB and CB'

L2=Lb + Lc

Also, using similar arguments to those leading to (3.70), we have at AC and
AC

Ll+L2-2M = La

Combining and rearranging these equations we obtain:

La = Lx-M\ Lb = L2-M; LC = M (3.71)

If non-corresponding ends are joined at B, the connecting equations
become:

La = Lx + M\ Lb = L2 + M; Lc=-M (3.72)

A final point to note is that although the circuit transformation illustrated
in fig. 3.32 has here arisen in connection with a.c. circuits, it is valid for
source excitations of any form.

3.13 Resonant circuits

3.13.1 Losses in inductors and capacitors

(a) Inductors
A practical inductor consists typically of a length of wire wound

into the form of a coil to enhance the self flux linking effect and therefore the
inductance. The wire will possess some resistance so that it is natural to
think of an inductor as having a lumped linear circuit model of the form
shown in fig. 3.33(a). It might be supposed that the resistance r could be
regarded as a fixed characteristic parameter, but it is found that to describe
satisfactorily the electrical behaviour of an inductor, it is necessary to adjust
the value of r according to the frequency at which the inductor is to operate.
The reason for this is that the power loss in an inductor arises with
increasing frequency because of eddy currents induced in the wire itself. The
net effect of this is to cause the current in the wire to concentrate near the
surface, producing the so-called 'skin effect' and thereby increasing the
conduction loss (see reference 6).

Eddy currents induced in any conducting material in proximity to the
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inductor, for example a screening can, will also contribute to the losses, as
will hysteresis losses in any magnetic materials that may be present. All
these sources of loss affect the value of r to be ascribed to the circuit model.

The effective inductance will also vary with the frequency because of stray
capacitances between turns of the coil. We must conclude therefore that the
constants Ls and r in the circuit model of fig. 3.33(a) are true only for one
particular frequency, or at best for a narrow band of frequencies.

We shall see later in our study of resonant circuits that there are good
reasons for making inductors as loss free as possible; in terms of the circuit
model, this implies that for a given value of Ls, r should be as small as
possible. We find it convenient therefore to take as a measure of the
excellence of an inductor the dimensionless ratio coLJr, where Ls and r are
values appropriate to the particular angular frequency co at which the
inductor is to be operated. This ratio is termed the quality factor or Q-factor
of the inductor. Thus, by definition,

Reactance _coLs

Series resistance r

At radio frequencies the Q-factor of an inductor may typically be of the
order of 100, and when Q is this large, certain approximations may be made
in the theory of resonant circuits which greatly simplifies their analysis.
Furthermore, we are generally concerned with only narrow bands of
frequency which means that Q can be regarded as being substantially
constant.

Although the series circuit model shown in fig. 3.33(a) is the most natural
representation for an inductor, it is often analytically convenient to use the
parallel representation shown in fig. 3.33(6). The series and parallel
representations will both uniquely describe the electrical behaviour of a
linear inductor at one particular frequency if they both present the same
complex impedance at their terminals at that frequency. The transform-
ation relations may therefore be derived by equating complex impedances.

Fig. 3.33. Lumped circuit models for an inductor.
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For fig. 3.33(fl) the impedance is r+jcoLs; for fig. 3.33(fc) the impedance is
)coLp//R9 thus,

Rationalizing the right-hand side of this expression gives

r+jcoLs=-

and by equating real and imaginary parts we obtain

r__*W*_ (3.74)
R + (coLpY

and

(3.75)

(3.76)

Dividing (3.75) by (3.74) gives

coLs_ R

r coLp

Equation (3.76) provides an alternative definition of the Q-factor: the
ratio of the equivalent parallel resistance of the inductor to its equivalent
parallel reactance.

Now (3.74) and (3.75) may be re-written in terms of Q, thus,

r * - R - * ( 0 2 . n ( 3 7 ? )

and

coLs= 27~T= T " - 6 0 ^ (Q 2 ^ 1 ) (3-78)

We see from these relations that, in the transformation from series to
parallel equivalent form, the inductance remains substantially unchanged
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but that the resistance is altered by a factor equal to Q2. Hence we may
write, to a very good approximation,

LS = LP = L (3.79)

and

R = Q2r (3.80)

(b) Capacitors
Power loss in a capacitor arises because of leakage and other effects in the
dielectric between the plates and because of resistance in the plates
themselves. To account for leakage, it is natural to model the capacitor by
the parallel combination of fig. 3.34(a). However, as for the inductor, losses
from all sources can be accounted for, at one frequency, by either a series or
a parallel model. A similar procedure to that carried out above for the
inductor leads to the following relations:

Reactance l/coCs

Series resistance r

R /Parallel resistance \
~ 1/coCp V Reactance /

CS = CP = C (3.82)

and

R = Q2r (3.83)

The quality of a capacitor can also be expressed in terms of the phase
angle </> between current and applied voltage (fig. 3.35). For a pure
capacitance the phase angle is 90° but any losses cause a reduction in the
phase angle by a small amount (angle <5d in the diagram). It is usual to take
the cosine of the phase angle as a suitable measure of the losses since this is

Fig. 3.34. Lumped circuit models for a capacitor.

-AAAr
-AA/V—

r
R

(a ) Parallel model (b ) Series model
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the factor by which the product VI must be multiplied in order to calculate
the power dissipated in the capacitor. We call this the power factor (see
section 4.4).

Figs. 3.35(6) and (c) show the phasor relationships appropriate to the
parallel circuit model of fig. 335(a). The two components of the total
current / are IR( = V/R) flowing through R, and Ic( = V/(l/(oC)) flowing
through C. Hence,

Power factor = cos0 =
V/R 1

But, for a good quality capacitor, coCR>l, therefore,

Power factor = cos0 =
1

coCR

1

(3.84)

(3.85)

We see that there is a simple reciprocal relationship between power factor
and Q-factor. Precisely the same relationship may be derived on the basis of
the series circuit model of fig. 3.34(b).

In the type of capacitor commonly used in resonant circuits at radio
frequencies, the losses occur mainly in the dielectric material of the
capacitor; the greater these dielectric losses, the greater the angle 5d in fig.
3.35(b). Consequently, the angle dd is sometimes referred to as the loss-angle
of the dielectric. This loss-angle can be determined for a dielectric material
by making measurements on a capacitor containing the dielectric using an
a.c. bridge technique. By this means the parameters R and C are found at a
particular operating frequency co and the loss-angle may then be calculated
from the expression

Fig. 3.35. Phasor relationships for the parallel circuit model of a
capacitor. The power factor of the capacitor is cosc/>, and the loss
angle is Sd.

<I)+Sd= 90°

IR = V/R
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coCR
(3.86)

This expression is readily derived by considering the geometry of the phasor
diagrams in fig. 3.35.

3.13.2 The series resonant circuit
When the frequency at which a circuit is excited is such that the

reactances of individual inductive and capacitive elements are comparable,
the branch impedances of the circuit change rapidly with change of
frequency and so do the currents and voltages. The phenomena that are
exhibited when this takes place are classed under the general heading of
resonance, and the frequencies at which these phenomena occur are called
the resonant frequencies. Of the many forms of resonant circuit the simplest
is the series resonant circuit shown in fig. 3.36(a). This comprises an
inductor, a capacitor and a practical voltage source, all connected in series.

The losses of the inductor and capacitor are represented by rL and rc

respectively, while rs includes the resistance of the source together with any
other resistances that may have been included in the circuit for any purpose.
(The current in a series resonant circuit may be monitored, for example, by
using an oscilloscope to detect the voltage developed across a small-value
resistor connected into the circuit.) For the purposes of analysis, the
separate resistances may be represented by a single equivalent resistance r
as shown in fig. 3.36(6).

The impedance of the circuit is r+j(coL— 1/coC) hence the current is
given by

V

Source
frequency

CO

Fig. 3.36. The series resonant circuit.

C

rc

Inductor

Capacitor

V=VZ0

CO
=±= C

r = rL+rc+rs

(a) Series connected circuit (b) Circuit model
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V
»

r+jlcoL-
1

coC

(3.87)

The magnitude of the current is therefore

V
(3.88)

and the phase angle cj> of the current with respect to the voltage is given by

_1(oL-\/o)C)
</>= —tan" (3.89)

Let us now consider the situation where the voltage of the source is
maintained at a constant value whilst the angular frequency is varied. Fig.
3.37 illustrates how the inductive and capacitive reactances, and their
difference, vary with frequency. Clearly there is an angular frequency
co=(o0 at which the total reactance of the circuit is zero. This occurs when

a>0L =
1

OJQC

u

Fig. 3.37. The reactance of a series resonant circuit as a function of
angular frequency co; co0 is the frequency at which current resonance
occurs.
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or

At this frequency the circuit is purely resistive and the current has a
maximum value / 0 = V/r. The circuit is said to exhibit current resonance and
coo/2n is called the resonant frequency. (We shall see later that other
definitions for the resonant frequency of a series circuit are possible.)

The magnitude and phase of the current, given respectively by (3.88) and
(3.89), are shown plotted as functions of angular frequency (in the vicinity of
a>o) in fig. 3.38.

At frequencies below resonance the capacitive reactance is greater than
the inductive reactance and the circuit is therefore predominantly capacit-
ive. In consequence the current leads the source voltage, the angle of lead
increasing asymptotically to the value n/2 with decreasing frequency.
Above resonance the circuit is inductive and the current lags the source
voltage.

The shape of the resonance curves shown in fig. 3.38 are governed by the
relative values of the reactance and the resistance of the circuit and we now
define a quality factor Qo, applicable to the complete resonant circuit,
which enables us to describe in a succinct fashion the shapes of the
resonance curves and other properties characteristic of the resonant circuit.
The quality factor Qo of the complete circuit is defined by:

(3.91)Q o ^ r
r cooCr

Now r = rs + rL + rc, therefore,

and

cooL = 1/cooC

r + r + r r + r + r

1 rs rL rc
TT~ = — r i + l/a>0C

that is

where Qs=o^oL/rs, and QL and Qc are the quality factors of the inductor
and capacitor respectively at the resonant frequency. Thus, given the
quality factors of each component separately, and a knowledge of the
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source resistance, the quality factor of the complete circuit may be found
using (3.93). In most practical resonant circuits the quality factor of the
capacitor is much greater than that of the inductor and Qo depends mainly
on Qs and QL. It must be remembered that although the quality factor for
the complete circuit is defined strictly at the resonant frequency, it is
substantially constant over the narrow band of frequencies with which we
are concerned in the theory of resonant circuits.

We now take as a measure of the sharpness of the resonance peak (that is,

Fig. 3.38. Variation of magnitude and phase of the current in a series
resonant circuit in the vicinity of resonance.

/ i

(a) Magnitude

CO

(b) Phase

| lag CO, a2

4

CO

Capacitive Inductive
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the sensitivity of the current amplitude to changes in frequency above and
below coo), the increment of frequency between the two points at which the
amplitude of the resonance curve (fig. 3.38(a)) falls to 1/̂ /2 of its peak value.
The frequencies at these two points are designated a>i and co2.

At these frequencies the power dissipated in r is just half the power
dissipated when co = a>o, and they are referred to as the half-power
frequencies. The frequency increment co2 — coi is called the half-power
bandwidth or, simply, the bandwidth.

Rewriting (3.88) we obtain

/ = -
V/r

(3.94)

But at the half-power frequencies I/I0=l/y/2 thus, the denominator in
(3.94) is equal to y/2 and it follows that

co2L - = r
CD2C

or

Similarly

1
— co1L = i

or

r 1

Hence

r

~2L 2LJ LC
(3.95)

Therefore, in terms of the angular frequency, the bandwidth is given by
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r r (D0

L CD0L QO

In terms of the resonant frequency f0=co0/2n:

(3.97)

Bandwidth = — Hz (3.98)
Go

A circuit having a large Q-factor (described as a high-Q circuit) has a
small bandwidth; for a low-g circuit the bandwidth is large. In fig. 3.38(a)
the resonance curve is shown as being substantially symmetrical about a>0,
but detailed examination of (3.88) shows that the curve starts at the origin
with zero amplitude and falls to zero again only at a theoretically infinite
frequency. Considered over all frequencies the resonance curve is not
therefore symmetrical, although near resonance the slight departure from
symmetry is not normally noticeable.

Multiplying (3.95) by (3.96) we obtain, after some manipulation and
reduction,

co1o)2=co0
2 (3.99)

Thus, we see that the resonant frequency is the geometric mean of the half-
power frequencies, and it follows that (co0 — (Oi)^((D2 — coo). However, as
the bandwidth decreases with increasing Q, the geometric mean and the
arithmetic mean approach the same value; for most practical purposes the
half-power frequencies can be considered as being symmetrically disposed
about coo.

As indicated in fig. 3.38(b), at the half-power frequencies the phase of the
current with respect to voltage is just + TC/4. This follows from (3.89) and the
fact that at these frequencies the net reactance is equal to the resistance.

An important property of the resonant circuit arises from the fact that the
voltages developed individually across the inductor and the capacitor, at or
near resonance, can be many times larger than the voltage of the source
itself. (The sum of the voltages across the capacitance and inductance in the
circuit of fig. 3.36(b) is, of course, zero at resonance since these voltages are
of equal magnitude and opposite in phase.) An expression for the voltage Vc

across the capacitor at resonance may be obtained by taking the product of
the magnitude of the current at resonance and the impedance of the
capacitor, that is,

V c 1
for—->r crco0C
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or

Vc=VQo (3.100)

We see that the magnitude of the capacitor voltage is approximately Qo

times the source voltage. For this reason Qo is also known as the circuit
magnification factor.

When energy is taken from a mains power line, which represents a source
of practically zero resistance, a resonant circuit can produce dangerously
high voltages. Suppose, for example, F = 240 volts, r=40 ohms, and/=50
hertz (a> = 2n x 50 = 314 radians/s), L= 1 henry: a capacitor of about 10
microfarads will cause resonance. The current at resonance is 240/40 = 6
amps, and the reactance of the capacitor is 1/(314 x 10~5 = 318 ohms. The
voltage across the capacitor is then approximately 6 x 318 = 1908 volts. The
same voltage appears across the inductor.

The situation is different when the source of energy has an appreciable
resistance. A common type of low-frequency laboratory oscillator has an
internal resistance of 600 ohms and a maximum output of about 30 volts.
Even with a short circuit across its terminals this device can supply only
about 0.05 amps. So for the same circuit and frequency considered in the
preceding paragraph, the capacitor and inductor voltages could not exceed
about 318 x 0.05 = 16 volts.

The frequency selective and magnification properties of resonant circuits
play an important part in all forms of telecommunications equipment, and
we have seen that these properties can be neatly described by means of the
quality factor. When, for instance, a resonant circuit is used in a broadcast
receiver to select one station from among many others, it is important to use
a high-Q circuit so that adjacent stations are not also received at the same
time. This situation is illustrated schematically in fig. 3.39. Each broadcast-
ing station transmits information over a narrow band of frequencies Aco
(typically 6 kHz on the medium wave a.m. broadcasting band of
0.5-1.5 MHz).

Let us suppose that the resonant circuit of a receiver is 'tuned' so that its
resonant frequency coo coincides with the centre frequency of the Aco2 band
transmitted by station 2. Using a high-Q circuit means that the response to
stations 1 and 3 will be negligible because these frequency bands coincide
with parts of the resonance curve where the response has fallen practically
to zero. A low-Q circuit, on the other hand, wijl be unselective and allow
stations 1 and 3 to be received also. A high quality factor is, therefore, a
desirable property for this type of application, but it must also be
remembered that if the resonant circuit is given too high a quality factor
(dotted line in fig. 3.39), wanted frequencies in the selected signal will be
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attenuated and information will be lost. It should be stressed that the
situation shown in fig. 3.39 is highly simplified; in practice not one but
several resonant circuits would be used in a broadcast receiver, each tuned
to a slightly different frequency so as to achieve an overall response tailored
to meet the requirements of a particular broadcasting band.

So far we have considered the criterion for resonance in a series circuit as
being the frequency for which the current rises to its maximum value.
However, in many cases it is the voltage developed across the capacitor that
is of interest. At first sight it might be expected that since the capacitor
voltage is the product of current and impedance, this too would rise to a
maximum at the same frequency coo given by (3.90). We now show that this
is very nearly but not quite the case.

To find the critical frequency at which the voltage Vc across the capacitor
reaches its maximum value we express Vc as a function of co, making the
simplifying assumption that the losses in C are small and that rc can
therefore be neglected. We then have

Fig. 3.39. Use of a resonant circuit in broadcast reception.

Station 2

<

Station 1 Station 3

0)
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1 V

159

1

This is a maximum when

or (3.101)

is a minimum. Expanding (3.101), differentiating with respect to co, and
equating to zero; we find that Vc is a maximum when CO = CD0 such that

coo = "
1

1 -
2L

or

1 -
2Q0

2
(3.102)

It is clear from this expression that, if Q is large (Q ^ 10), co0 and co0 are very
nearly the same.

The reason for this slight difference between the values of co correspond-
ing to maxima of/ and Vc will be apparent if we consider the shape of the
resonance curve of fig. 3.38(a) in the vicinity of its maximum.

Fig. 3.40 shows the top of the resonance curve, on an enlarged scale,
together with a curve depicting the variation of the reactance of the
capacitance. From (3.94) we see that, over the range of frequencies for which

Fig. 3.40. Variation of current and capacitive reactance near resonance
in a series resonant circuit.

(O
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coL — I <| r, the current / is virtually equal to V/r and is independent of
coC/

frequency; in other words, the curve is rather flat. Thus, although / is a
maximum at co0 we shall get a higher value of Vc by going to a slightly lower
value of co, where the current has not decreased appreciably and the
reactance of the capacitor is slightly larger.

In the whole of the above theory it has been assumed that the circuit
parameters L and C are fixed and that the circuit is being brought to
resonance by varying the angular frequency co of the source. However, in
broadcast reception, it is nearly always the capacitor that is varied to bring
the circuit to resonance at a particular incoming signal frequency. By
differentiating (3.101) with respect to C as the variable, we find that in this
case the capacitor voltage is maximum at a frequency given by:

1

Other criteria for resonance may be found, giving slightly different
resonant frequencies, depending on which quantity is being measured or
detected and which parameter is being varied. The term resonance must
therefore be taken to refer to a class of phenomena and not simply to a
unique condition. When, however, the Q-factor of the circuit is large
(Q ^ 10), the different conditions for resonance are so nearly the same that
for most purposes we need not bother to distinguish between them.

It may have become apparent from the discussion so far that fig. 3.38
represents in a general way the behaviour of any series RLC circuit. Rather
than having curves that apply to circuits with specific component values, it
is useful to construct universal curves in which the quantities plotted are
dimensionless ratios. The first step toward obtaining such curves is to define
a new dimensionless quantity 5, the fractional mistiming:

I (3.103)

This quantity allows us to effect a considerable simplification in the
equations describing the behaviour of a circuit near resonance. Re-writing
(3.87) we obtain an expression for the current in the series resonant circuit
expressed as a dimensionless ratio:

(3.104)
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Now remembering that co0
2 = l/LC and that Q0=co0L/r, the term

— 1/coC) in the denominator of (3.104) may be written

CDL - = L (to -—I
coC \ coLCJ

) (3.105)
O)0 CD )

But from (3.103) co/co0 = 1 +d hence

coL—1- =
coC

or to a very good approximation,

CDL—- = 2co0L8 (3.106)

coC

Using this result in (3.104) we have, near resonance,

/ 1

or in terms of the Q-factor

f=, .L < (3-107)
i0

The magnitude of I/Io is

/ 1
, , r , . ^ «2n (3-108)
^0

Then, if we plot I/Io versus Q0S we obtain the universal resonance curve.
Similarly, a graph of tan"1 (— 2Q0S) yields a curve showing the phase of the
current as a function of Q0S. The half-power frequencies are those for which
Q05 = 1/2. Fig. 3.41 shows such universal curves derived from (3.107). They
should be compared with figs. 3.38(a) and (b).

Alternative dimensionless representations of the series resonant circuit
characteristics may be obtained by using the rationalized form of (3.104).
Thus, the real and imaginary components of I/I0 may be plotted against
Q0S as shown in fig. 3.42.
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Fig. 3.41. Universal resonance curves: magnitude and phase.
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It should be noted that the simplification achieved by the use of the
fractional mistuning parameter d in the equations describing resonance
with frequency as the variable, can also be achieved when some other
parameter in the circuit is varied. For example, if the circuit is being brought
to resonance by varying C, at a fixed co, we may write d = (C — Go)/Co,
where Co is the capacitance required for resonance. In this case, instead of

the approximation (3.106), we obtain I coL J =
\ (OCJ

Fig. 3.42. Universal resonance curves: real and imaginary components.
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3.13.3 The parallel resonant circuit
The basic form of the parallel resonant circuit is shown in fig. 3.43.

The inductor and capacitor are in this case represented by their parallel
equivalents and the circuit is driven by a practical current source. As shown
in fig. 3.43(b), the three parallel resistances may be combined to form a
single resistance R (or conductance G = l/R). The voltage F across the
circuit is given by

V=-
G+j [coC

(3.109)

Comparing this equation with the corresponding equation for the series
resonant circuit (3.87), we recognize that the two circuits are duals; with the
appropriate change of symbolism, therefore, the theory developed for the
series resonant circuit applies in its entirety to the parallel resonant circuit.
The frequency at which voltage resonance occurs in a parallel circuit is the
same as that for current resonance in a series circuit (both containing the
same L and C), namely, coo = 1/J(LC\ the curves of V and phase angle
versus co are similar to those in fig. 3.38, and the universal resonance curves

Fig. 3.43. The parallel resonant circuit.

Rs L

Source Inductor Capacitor

(a) Parallel connected circuit

(b) Circuit model
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of fig. 3.41 likewise apply if the dimensionless ratio V/Vo is used instead of
I/Io. The parallel resonant circuit exhibits current magnification; the
current in either L or C of fig. 3.43 being Qo times the current delivered by
the source. This phenomenon is of importance in the type of resonant
circuit used in the output stage of a broadcast transmitter. The very heavy
currents circulating in such a circuit (the so-called 'tank' circuit) necessitate
the use of massive water-cooled conductors.

The principle of duality renders it unnecessary to discuss the parallel
circuit of fig. 3.43 in any greater detail, however, we conclude by considering
a special case of practical interest for a parallel circuit in which the only
significant losses arise in the inductor. In this case the inductor may be
represented conveniently by means of its series model, as shown in fig. 3.44.
The admittance across the source is

Y=')coC +
1

r+jcoL

r2+co2L2

r-j(coL-coC(r2+co2L2))
= r

2+co2L2 (3.110)

Then

(3.111)

For this circuit, zero phase angle (indicating that the circuit is a pure
conductance) and the maximum value of Fdo not occur at exactly the same
frequency. If we define resonance as the conditions for which V and 7S are in
phase, then the imaginary part of the denominator in (3.111) must be zero.

Fig. 3.44. Parallel resonant circuit with lossless capacitor.
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The resonant frequency is then found from

co0'L = (Oo'C(r2+(o0'
2L2)

which gives

1

So the resonant frequency defined in this way differs from the previous
definition by the factor ^/(l - 1/<2O

2), but for Qo ̂  10, coo and coo differ by
less than 1 %.

Equation (3.112) shows that if r2C>L, coo becomes imaginary. For this
condition, corresponding to Q< 1, there will be no frequency for which V
and / s are in phase. Of course, as Q decreases below the numerical value of 1
the assumptions made in the preceding derivation become less valid. For
example, if Qo = 2, then from (3.112), coo' = co0j(l-i)=0.$lco0. It is not
usually the practice to use coils at frequencies so high that the Q-factor of
the coil has a value much below 1.

The impedance Zo of the circuit at resonance may be found from (3.110)
by putting the imaginary term equal to zero with co = coo thus

_ r2 + (coo'L)2 (coo'L)2

z r+

But from (3.112),

hence

\(LZ A
The quantity L/O, which is called the dynamic resistance, may be also
expressed in terms of the Q-factor:

L Qo
Dynamic resistance = — = Q0co0L = (3.113)

Cr OC

3.13.4 Worked example
A coil and a variable capacitor are connected to a voltage

generator to form a series resonant circuit. The coil has an inductance of
0.2 mH and a Q-factor of 150; the power factor of the capacitor is 4 x 10 " 4

The frequency of the voltage generator is 1 MHz, its internal resistance is
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2Q, and its unloaded output voltage is 2 V. Find (a) the value of the
capacitor required to tune the circuit to resonance, (b) the effective
resistance and Q-factor of the complete circuit at resonance, (c) the complex
voltage across the inductor both at the resonant frequency and at a
frequency 10 kHz above resonance.

Solution
(a) At the resonant frequency of 1 MHz we have from (3.90)

therefore,

C 6 ) 2 x 02 x 10" 3C = (2nx 106)2 x 0.2 x 10

(b) At 1 MHz the reactance of the inductor is
(jooL = 2nx 106x 0.2x10" 3 = 1256 Q. From the definition of g-factor
(equation (3.73)) we have

r

hence

For the capacitor, using (3.85),

1 1
Qc=-

power factor 4 x 10

but

Qc =

hence

The total resistance of the circuit is therefore

r = rL + rc + r s = 8.373 +0.502 + 2.0= 10.875 Q

From the definition (3.91), the g-factor for the complete circuit is
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_co0L_ 1256

Q°~~fr~ 10.875" '

Alternatively the Q-factor of the complete circuit may be found using (3.93):

1 _ 1 1 1

In this expression

1256
Qs =

hence

1 1 1 1

giving

20 = 115.5 as before,

(c) The complex voltage across the inductor is given by

VL=I{VLV)CDL)

where

, v v

using the approximation (3.106) involving the fractional mistuning 5. We
note that the Q-factor of the inductor is high hence rL <coL. For frequencies
near resonance the above expressions may therefore be written more simply
as

V V roL- "

' V 2 £ V -
or

r^Q«

At resonance the fractional mistuning (5=0, hence,

VL=)2x 115.5 =j231= 231/90
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That is, the magnitude of the voltage across the inductor is 231V leading
the generator e.m.f. by 90°.

At 10 kHz above resonance, 8 = 10 x 103/106 = 10"2, hence

y _ j2x 115.5 J231

l+ j (2x 115.5 x l ( T 2 ) 1+J2.31

t3.13.5 Definition of ^-factor in terms of stored energy
The phenomenon of resonance in an electrical circuit involves the

continuous interchange of energy between the inductances and capacit-
ances in the circuit, and during this interchange some energy is lost in the
resistances of the circuit. Taking as a specific example the series resonant
circuit of fig. 3.36 the current at resonance is / 0 = V/r, therefore, the power in
r is (V/r)2r. The energy dissipated per cycle is then given by

V\2 In _2nV2

O)0

Now the maximum energy stored in the inductor is, from (1.42),

V\2 V2

2 "

therefore,

In (Maximum energy stored)__(D0L

Energy dissipated per cycle r
(3.114)

This definition of the quality factor, although derived for a special case, is
of general application. It can be applied to mechanical and acoustical
vibrating systems as well as to more complicated electrical ones.

f3.13.6 Multiple resonance
Networks containing combinations of more than two independent

reactive elements can resonate at more than a single frequency; a
phenomenon known as multiple resonance. Three examples of such circuits
are shown in fig. 3.45. For the purpose of this discussion it is easier to
consider the components in these circuits as being lossless so that the
resonant frequencies may be deduced from consideration of the reactances
only. The results so obtained will be substantially correct provided the Q-
factors of the components exceed 10 or so.
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170 Alternating current circuits

Considering first the circuit of fig. 3.45(a), this consists of two sections:
first the inductance Lx with reactance Xl9 second the parallel resonant
circuit, formed by L2 and Cu with reactance Xp. The variation of reactances
Xl and Xp is shown in fig. 3.46. The curve of reactance Xx with frequency is,
of course, a straight line through the origin (fig. 3.46(a)). The reactance Xp

(fig. 3.46(ft)) is zero at co =0, because the inductance L2 forms a short circuit,
and is asymptotic to zero at co-»oo because the capacitor forms a short
circuit. Resonance occurs at some intermediate frequency (o = cop where the
reactance rises to a theoretically infinite value. The form of the variation of
the reactance X = (X1 + Xp) for the complete circuit is obtained by
combining the individual curves, as shown in fig. 3.46(c). It is seen that a
second resonant frequency co2 occurs where the reactance of X1 (inductive)

Fig. 3.45. Circuits exhibiting multiple resonance.
O 1 ^ O 1 O-

Driving
Point
reactance

X ^

(a) (b) (c)

Fig. 3.46. Variation of reactance in the circuit of fig. 3.45(a).

(a) (c)
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and the reactance Xp (capacitive) cancel. The resonant frequency CO1=OJP

is unchanged. Similar behaviour is exhibited by the circuit of fig. 3.45(b)
since this is the dual of the circuit in fig. 3.45(a); for the dual circuit,
however, all the curves shown in fig. 3.46 must be interpreted in terms of
susceptance rather than reactance.

We now consider the circuit shown in fig. 3.45(c). This circuit again has
two sections: L2 and C2 forming a parallel resonant circuit with resonant
frequency cop, and L1 and C1 forming a series resonant circuit with resonant
frequency cos. The variation of the total reactance X = (Xs + Xp) of this
circuit is indicated by the solid line in fig. 3.47, which is obtained by
combining the curve for the series circuit (fig. 3.37) with that for the parallel
circuit (fig. 3A6(b)). We see that the complete circuit resonates at three
different frequencies: at col and w3 the reactance is zero, and at (D2{ = (op)
the reactance is infinite. The curves have been drawn on the assumption
that cos < cop but it is easy to see that the same conclusions will apply for the
conditions cos^cop. Three resonant frequencies will always occur, the two
frequencies for which the reactance is zero lying on either side of the
frequency for which the reactance is infinite.

Expressions for the resonant frequencies cou co2, co3, are now derived in
terms of the circuit parameters. The driving-point reactance function of the
circuit in fig. 3.45(c) is

X =XS

Fig. 3.47. Variation of reactance in the circuit of fig. 3.45(c).

CO
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1
j x <*>L2l -

^ LlCl/ U{ A
L2C2

2 I Y 2

r
L2C2

1 1 1 V 1
iCi L2C2 L1C2J L1C1L2C

2

c o 2 - -L2C2

In this equation the numerator is a quadratic in co2. If cox
2 and co3

2 are
solutions of this, we may write:

xJ<*-»W-»>2) (3.H5)

where (o2
2 = 1/L2C2.

The expression (3.115) shows that the reactance function X is zero at
co = cox and at co = co3, and that it is infinite at co = co2. We describe this by
saying that zeros of X occur at co! and co3, and that a pole occurs at co2. It
will be observed that a pole also occurs at the origin (co = 0) for this circuit.
Poles and zeros are indicated by the crosses and circles on the co-axis in figs.
3.46(c) and 3.47.

Circuits of greater complexity give rise to a greater number of poles and
zeros but the driving-point reactance (or susceptance) function of a circuit
always conforms to the general pattern of behaviour described above and
which is illustrated in fig. 3.48. The slopes of the curves of reactance or
susceptance are everywhere positive, and poles and zeros occur alternately
along the frequency axis. If there is a continuous path through the circuit
from terminal to terminal formed by one or more inductive elements (as in
fig. 3.45(a)), then a zero occurs at the origin, otherwise there is a pole.
Likewise, if there is a continuous path formed by capacitive elements, there
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is a zero at co = oo, otherwise there is a pole. The alternative possibilities of
either a pole or a zero occurring at the extremes of frequency is indicated in
fig. 3.48 by the dotted lines. Note, however, that whatever happens at these
extremes does not change the alternating pattern of poles and zeros. The
poles and zeros other than those at the two extremes are called the internal
poles and zeros, and it may be shown rigorously that the driving-point
reactance function is uniquely specified, apart from a vertical scaling factor,
by the location of its internal poles and zeros. If the value of the function at a
single frequency is also specified thus determining the scaling factor, then
the function is completely specified. This is known as Foster's reactance
theorem (see reference 2). It is useful for the purposes of synthesizing
networks having specified characteristics.

t3.13.7 Inductively coupled resonant circuits
In telecommunications equipment, radio receivers for example,

high-frequency signals are amplified by means of active devices such as
transistors. The signals usually occupy a relatively narrow frequency band
disposed about some large central frequency, and to amplify this narrow
band it is usual to employ tuned coupling networks between successive
stages of amplification. Such networks often take the form of two
inductively coupled coils each coil forming part of a resonant circuit. A
typical arrangement is shown in fig. 3.49. In this circuit the output of the
transistor is represented by a practical current source. Coupling to the next
stage is achieved by means of Lu L2 and M, which together constitute a
radio-frequency or high-frequency transformer.

Fig. 3.48. Poles and zeros of a driving-point reactance (or susceptance)
function. (Internal poles and zeros are indicated by arrows.)

3
CO

zero at

co = 0

pole at co =

+CO

zero at co = «>
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174 Alternating current circuits

The frequency response characteristic of the complete circuit is governed
by the frequencies to which the primary and secondary circuits are tuned,
their Q-factors, and the degree of coupling between them. Tuning is
achieved by fine adjustment of the values of the capacitors or inductors; the
mutual inductance is usually fixed once the designer has decided upon a
suitable value.

If we apply a variable frequency drive voltage of constant amplitude to
the input of the circuit of fig. 3.49, with the primary and secondary circuits
tuned to the same resonant frequency, we observe an output voltage of the
form shown in fig. 3.50. Here we see curves for three different values of the
mutual inductance. When the mutual inductance is very small, the normal
type of resonance curve with a single peak at the resonant frequency is

Fig. 3.49. Basic circuit for one stage of a tuned radio-frequency
amplifier.

Input
signal

M

Transistor
output circuit

R-F Transformer

Signal input
to next stage

Fig. 3.50. Curves of output voltage as a function of frequency for the
circuit of fig. 3.49 with mutual inductance (or coupling coefficient) as a
parameter. Mc is the critical value of mutual inductance.

M>Mc(k>kc)

M<Mc(k< kc)

0)
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observed. As the mutual inductance is increased the peak of the curve rises
until a critical value is reached when no further increase is obtained, instead
the peak splits into two separate peaks which move further apart as the
mutual inductance is increased beyond the critical value. This phenomenon
is known as double-humping.

For reasons that will become apparent it is convenient to express the
degree of coupling in terms of the coupling coefficient k = Ml^j(LxL2). The
critical value for the coupling coefficient is approximately 0.01, when the Q-
factors of the primary and secondary circuits are of the order 100.

We shall now proceed to investigate the behaviour of this circuit
analytically but in order to do so we first simplify the circuit by applying the
Thevenin-Norton transformation to the left-hand portion of the circuit
consisting of the current generator and the capacitor. When this is done we
obtain the circuit shown in fig. 3.51 in which Rx accounts for both the
primary coil loss-resistance and the output resistance of the transistor. R2

accounts for all loss resistance in the secondary circuit. The circuit now
consists of two separate series resonant circuits coupled by the mutual
inductance. It will be sufficient for our purpose to solve for the current l2

since for small frequency changes about resonance, the output voltage will
be very nearly proportional to the modulus of this current. Using a
procedure similar to that established in section 3.12 we obtain by mesh
analysis:

for the primary circuit

x +7
J

= V

and for the secondary circuit

R2 + ')(oL2 +r-7r )h =0
JCOC

Fig. 3.51. Circuit model for fig. 3.49.

https://doi.org/10.1017/CBO9781139170093.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139170093.005


176 Alternating current circuits

Putting Xx =( coLx — I, X2 = ( coL2 — J and solving for the mo-

dulus of l2 we obtain

V
(3.116)

COM

Now consider the denominator of this expression at the resonant
frequency; both Xx and X2 will be zero since primary and secondary
circuits are tuned alike to the same frequency. In this case (3.116) reduces to

Regarding M as the variable parameter we see that there will be a
minimum value of the denominator, and therefore a maximum in I2, when
M is equal to a critical value M = MC such that

d M \ co0Mj

that is when coo
2Mc

2=R1K2

The above relationship may be expressed alternatively in terms of the
coupling coefficient kc = Mc/J(LlL2). We have in this case

co0
2Mc

2 =coo
2kc

2L1L2=R1R2

or

Recalling our definition of Q-factor (3.91) this may be expressed as

(3.117)

where Qi and Q2 are the quality factors of the primary and secondary
circuits. We see that the use of the coupling coefficient leads to a particularly
simple expression.

It is possible to show that if the coupling is less than critical, then I2 falls
monotically either side of the resonance frequency. If the coupling is greater
than critical (k^kc), then the current rises to a maximum on either side of
the resonant frequency; the location of these maxima may be found by
differentiation of the complete denominator of (3.116). The procedure is
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simplified if the assumption is made that coM remains substantially
constant, with value co0M, over the narrow band of frequencies of interest
around coo. It is convenient also to introduce the fractional mistuning (5,
(3.103); then, by (3.106), Xx = 2cooL1S and X2 = 2co0L2S. The denominator
of (3.116) may then be written:

(o0M[L

Differentiating the square of this expression and equating the result to zero
gives

[IR^o^ + 2R2co0L{]2 - S^L.L^CDo2!^2 + RXR2 - A(o0
2LlL2&

2'\ = °

We may express this equation in terms of the quality factors for the primary
and secondary circuits: multiplying through by the factor l/(co0

2LlL2)
2

and putting M2 + k2L1L2 gives

>i Q2\ L 6162

Further simplification is obtained if it is assumed that the quality factors for
the primary and secondary circuits are equal. Then \/Q1 = 1/Q2 = /cc, and
the above expression becomes

which gives, finally,

or

-K2) (k>K) (3.H8)

The over-coupled condition with primary and secondary circuits tuned
to the same frequency produces a desirable band-pass characteristic but it is
found in practice to be difficult to set up the circuit correctly because the
primary and secondary circuits interact strongly in the over-coupled
condition. It is more usual therefore to design cascaded radio-frequency
amplifiers using under-coupled transformers with primary and secondary
circuits each tuned to slightly different frequencies to produce the desired
overall band-pass characteristic. This is known as stagger tuning.

The phenomenon of double-humping described in this section is not
confined to tuned coupled circuits; the same phenomenon arises in many
other physical systems which exhibit oscillatory characteristics. Such
systems fall under the general heading of coupled oscillators.
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178 Alternating current circuits

3.14 Summary
A.C. networks consist of interconnected elements of resistance,

inductance, mutual inductance and capacitance excited by ideal sources
producing sinusoidal voltage and current waveforms of the same frequency.
The theory developed for such networks refers to steady-state conditions in
which the amplitudes and phases of all waveforms are time invariant.

Representation of sinusoidal voltages and currents by means of the
complex exponential leads to a succinct notation (V= V[d_ov / = //£) for
describing the amplitudes and phases of currents and voltages in every
branch of a network. Each branch in a network is then characterized by a
complex impedance (Z = Z[£)9 being the ratio of complex voltage to
complex current at that branch. Complex voltages, currents and impe-
dances may be combined and manipulated according to the normal rules of
linear network analysis to provide a complete description of network
behaviour at any terminal pair or port. The use of the complex exponential
(or phasor) notation also provides a convenient means of illustrating
graphically (using the Argand diagram as a basis) the relationships between
voltages and currents in parts of a network.

For many important types of circuit, including filters and bridge circuits,
it is of primary interest to determine the behaviour of the circuit as a
function of frequency. Such circuits often have two ports in which case the
relationship between input and output port parameters can be described by
a transfer function HQCO) = \H(]CJO)\I^ICO}. The transfer function is con-
veniently illustrated by means of the polar or locus diagram (based on the
Argand diagram), or by the Bode diagram in which amplitude and phases
are plotted separately on graphs having linear-log scales.

Some types of circuit exhibit marked changes in their impedance
properties at certain critical frequencies known as the resonant frequencies.
In a circuit containing a single inductance L and a single capacitance C,
there is one resonant frequency only given by co0 = 1/-J(LC).

The properties of a resonant circuit are determined by the inductance
capacitance and resistance associated with the circuit elements of which it is
composed. The Q-factor is a mathematically convenient parameter for
describing these properties. If, in a series connected circuit the effective
resistance is R, the Q-factor is given by Qo = cooL/R where co0 is the resonant
frequency. Multiple resonances can occur in circuits containing several
inductive and capacitive elements, or in circuits containing mutual
inductance.
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3.15 Problems
1. A d.c. generator of e.m.f. E and an a.c. generator of e.m.f.

Emsincot, each having negligible internal impedance, are connected in series
to a load resistance R. Obtain an expression for the power dissipated in R,
and hence an expression for the equivalent r.m.s. e.m.f. in the circuit.
2. Calculate the r.m.s. value and form factor for:
(a) a triangular wave of unit amplitude;
(b) a sine wave of unit amplitude
3. Find the equivalent complex impedance and admittance of the circuits
shown in fig. 3.52, in both Cartesian and polar forms.
4. Represent the following voltages on a phasor diagram, hence find their
sum, both graphically and by calculation.

(i) 200sin(co£ + 7r/6)V, (ii) 150cos(cot + 7r/6)V,
(iii) 200sin(cof + 57r/6)V, (iv) - 150COS(CO£ + 5TT/6)V.

5. The three elements shown in fig. 3.53 are connected in series across a
50 Hz supply, and the current drawn from the supply is found to be 7 A. The
voltages are VR= 120, KL = 240 and Vc= 160. Find the supply voltage and

Fig.

" •

O

3.52. Circuit for

<10X2

felOX2

problem

Zb

r b

3.

k
T

10X2

10X2

15.7X2 15X2

6.2812
31.9X2

10X2 20X2

Fig. 3.53. Circuit for problem 5.

R L
o VW o—JMJ, o-

-V,
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its phase relative to the current. Find also the values of the three elements.
6. What 50 Hz voltage V must be applied to the circuit of fig. 3.54 to
produce a steady-state current of 5 A in the capacitor?
(Manchester University)
7. Figure 3.55 shows a circuit used in TV and radar amplifiers. Show that
for L = 0 the ratio Vo/V{ falls from 0.5 at very low frequencies to 0.35 at a
frequency of 1.59 MHz, but that if L = 400//H this drop is reduced, the ratio
then being 0.47 at 1.59 MHz. What are the phase angles between Vo and V{

at this frequency when L = 0 and when L=400/iH?
(Hint: apply voltage divider principle (admittance formulation, table 3.1).)
8. In fig. 3.56 V is a variable frequency, constant-voltage source. Find an
expression for the frequency at which the voltage across AB is in phase with
V.
(Liverpool University)
9. Show for the circuit of fig. 3.57 that

as co-»0,
R2

Rl+R2

Fig. 3.54. Circuit for problem 6.

10 Q 0.0382 H

16 Q 0.0636 H

o V o-

Fig. 3.55. Circuit for problem 7.
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that = .N/mom00 when a>2 =
R1 + R2

Cl(Cl+C2)Rl
2R2

and that the phase lead of Vo on V-x is

0 = t a n - 1 ( c o C 1 R 1 ) - t a n - 1 ( — CDC.R,
\rrioo

Discuss the case of RlCi=R2C2

(Manchester University)
10. Show for the circuit of fig. 3.58 that as the frequency is raised from zero,

increases from
2R + r

at co = 0 to 1 at co->oo, without a maximum or

- 1 coCRr
-,or

minimum value between these extremes.

Show that the output lags the input by 9 = tan" 1coCR 4- tan ,
2R + r

leads by (TC-0).

(Manchester University)
11. Sketch the straight line approximation for the frequency response of
i2/ii where ix =/sincot in the circuit of fig. 3.59. You may assume that C is of

Fig. 3.56. Circuit for problem 8.

R L C\

Fig. 3.57. Circuit for problem 9.

d
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such a value that any frequency-dependent effects it introduces occur at
frequencies which are very much higher than those at which frequency-
dependent effects due to L are evident. The effects of C and L on the
frequency response may thus be considered separately. Give expressions for
any 'corner frequencies' shown in the response and values of the ratio | i2/ii \
on any horizontal parts of the response.
(Lancaster University)
12. The Schering bridge shown in fig. 3.60 is used for measuring the power
loss in dielectrics. The specimens are in the form of discs 0.3 cm thick and
have a dielectric constant of 2.3. The area of each electrode is 314 cm2 and
the bridge frequency is 50 Hz. The bridge balances when JR3 = 1 0 0 0 Q ,

C I = 50 pF, and C4 = 1960 pF. Find the value of K4, C2, R2 and the power
factor for the dielectric.
(Liverpool University)
13. Show that there is zero output from the bridged-T section of fig. 3.61 (a)
if

z=-(zl+z2)-
2^

Fig. 3.58. Circuit for problem 10.

Fig. 3.59. Circuit for problem 11.

o •
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Determine the form of Z in the section of fig. 3.61(5) if there is to be zero
output at angular frequency coo.
(Manchester University)
14. Show for the circuit of fig. 3.62 that

R2+ML2±M)
+L2R1)-co2(L iL2-M

2)Y

1 IR1R2

and that the p.d. between A and B is zero when

ll2L2±M

(Manchester University)

Fig. 3.60. Circuit for problem 12.

Fig. 3.61. Circuit for problem 13.

Z

V;
c,

v0

(a) (h)
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15. Give expressions for the self and mutual impedances of the two meshes
in the circuit of fig. 3.63.
16. A parallel circuit consists of a coil of resistance R and inductance L and
a variable capacitance C. A fixed-frequency voltage source, of angular
frequency co, is connected to this circuit. If Q = oL/R and Co = l/(co2L)
calculate the value of C, in terms of Q and Co, such that the current drawn
from the supply is a minimum.
(Newcastle University)
17. Why is a parallel resonant circuit sometimes known as a rejector
circuit?

Show that the resonant frequency f0 and dynamic resistance Rd of a
parallel resonant circuit consisting of a capacitor C in parallel with a coil of
inductance L and resistance R are given by

1_ _ R 2

LC~U
_L_

Fig. 3.62. Circuit for problem 14.

Fig. 3.63. Circuit for problem 15.

C
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In the circuit of fig. 3.64, the capacitor C has been adjusted until the
voltage EL is at its minimum value. Calculate the source frequency and EL

under these conditions.
(Newcastle University)
18. In the circuit of fig. 3.65, R = 20Q, LX=2H, C ^ I O ^ F ,
C2 = 5xl (T 3 F .
(a) Calculate the complex impedance Z(ja>) seen by a voltage source
v(t) = $OcoslOt. Find i(t).
(b) Construct the phasor diagram for / and V and the impedance diagram
for Z(jco).
(c) What are the resonant frequencies of this circuit, that is X(ico1) = 0 and
X(ia>2)=oo! [X(jco) is the reactance.]
(Sheffield University)
19. The response of two non-identical tuned circuits coupled together by

Fig. 3.64. Circuit for problem 17.

2mH 10 Q

b '
L

C
R

0.01

Fig. 3.65. Circuit for problem 18.

v(t)
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Fig. 3.66. Circuit for problem 19.

the mutual inductance M = k^J(L1L2), as shown in fig. 3.66, is given by

where

(JO co0 COQ^I , ~
x= ; Qi= and Q2 =

C 0 0 CO

Show that for critical coupling

1

i QiJ Q1Q2

and the — 3 dB points on the critically coupled response curve are given by

1 / 1 1
±

Find the 3dB bandwidth if/0 = 1 MHz, gi = 100 and Q2 =80.
(Glasgow University: Third year)
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