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7.1 Introduction

Over the past few years, an increasingly diverse and ever-changing wireless
spectrum has created a need for cognitive radio networks. Such networks lever-
age spectrum sensing and information from each layer in the protocol stack to
overcome spectrum diversity by adapting all layers (e.g., the MAC and PHY)
on the fly. By doing so, cognitive radios can achieve the greatest level of perfor-
mance, given the current networking conditions. For example, in areas where
access to the spectrum is highly contended, the radio can switch from using a
carrier sense multiple access (CSMA) MAC protocol, to a time division multi-
ple access protocol that reduces overhead in accessing the spectrum to increase
capacity and reduce collisions. Despite the increased recent activity in cogni-
tive radio networks, supporting the development of protocols at the MAC and
PHY layers, as well as cross-layer optimizations for such networks, has been
extremely challenging. Commodity wireless hardware does not facilitate such
development, because the majority of MAC functionality is placed on the net-
work interface (NIC) hardware, where programmability is limited and access to
the software that runs on the NIC is often restricted.

The limited programmability of wireless NICs makes Software-Defined
Radios (SDRs) an attractive alternative for building cognitive radio network
protocols. SDRs implement the majority of functionality, including the physical
and link layers, in software running on commodity hardware, making all layers
of the protocol stack easy to modify. The SDR hardware simply translates the
signals between the RF and digital domains, and the software does the majority
of the processing. The processing of the digitized samples in SDR architec-
tures5,8,14,16,17 is commonly distributed across various processing units – includ-
ing FPGAs and CPUs located on the SDR device and the host machine. Unfor-
tunately, the high degree of flexibility offered by SDRs does not automatically
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lead to flexibility in cognitive radio network protocol implementations. The
heterogeneous processing units and interconnecting buses in such architectures
often contribute large latencies and jitter in processing. These latencies can
severely cripple the ability of the MAC layer, for example, to effectively respond
to channel conditions, time transmissions, and communicate in a timely manner,
which reduces the performance of the radio. These are important functions in
a cognitive radio network, because being able to respond timely to spectrum
conditions is the essence of a cognitive protocol. Placing the functionality on
the SDR radio hardware to avoid these latencies would again make it difficult to
develop, which is what made SDRs an attractive platform over NICs.

In this chapter, we explore an API enabled through the addition of a control
channel and metadata that enables rich information and control between the radio
hardware and the host, allowing adaptation at all layers on a per-packet basis.
Additionally, we present a novel split-functionality approach to implementing
core cognitive radio network functions that enables high-performance MAC (a
common layer for adaptation) and cross-layer implementations. In this approach,
a part of the cognitive radio function is placed on the SDR radio hardware for
performance reasons, and a part on the host CPU to maintain easy customization
of the protocol (at any layer) and radio. A set of novel techniques is presented to
achieve the split of the functions, and how to properly distribute the functionality
between the processing units on the hardware. Finally, we present a design and
implementation of a cognitive switching layer that would allow control of the
radio, such as the MAC protocol it is running, in the future Internet. Such a layer
could be accessible by the future Internet through a global controller, or allow
for local coordination within a single LAN.

This chapter makes the following contributions: Given that cognitive radio
networks strongly leverage adaptation at the MAC layer, we place a major focus
of our work at this layer. We identify a set of core protocol functions, from which
many MAC and cognitive protocol layers are built, as well as cross-layer imple-
mentations that must be implemented close to the radio for performance and effi-
ciency reasons. We define a split-functionality architecture that allows the func-
tions to be implemented near the radio hardware while maintaining control on
the host CPU through an API. We present an implementation of our architecture
using the GNU Radio5 and USRP14 SDR platform. Using our implementation,
we characterize the performance-flexibility tradeoffs for key protocol features.
For example, our results show three orders of magnitude greater response time
of the radio to spectrum conditions. Finally, we use our implementation for an
end-to-end evaluation of the split-functionality architecture. We show how the
system can support high-performance cognitive network protocols by first imple-
menting 802.11-like and Bluetooth-like protocols for experimentation over the
air, and then a cognitive protocol that can switch between the two MAC proto-
cols based on current network conditions. The rest of the chapter is organized as
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Figure 7.1. Generic SDR architecture.

follows. We discuss current radio architecture and its impact on MAC protocol
development in Section 7.2. In Sections 7.3 and 7.4, we explore the core wireless
MAC and cognitive protocol requirements and introduce our split-functionality
architecture. Section 7.5 provides details for each component implementation
with evaluation results. Finally, we present end-to-end evaluation results, related
work, and a summary of our results in Sections 7.6 through 7.8.

7.2 Software-Defined Radio Architecture and Challenges

Software-defined radio architecture varies in the exact nature of the processing
units and interconnecting buses; however, a common architecture which will be
the focus of this work is shown in Figure 7.1. The frontend is responsible for
converting the signal between the RF domain and an intermediate frequency,
and the A/D and D/A components convert the signal between the analog and the
digital domain. Physical and higher-layer processing of the digitized signal are
executed on one or more processing units. Typically, there is at least an FPGA
or DSP close to the frontend. The frontend, D/A, A/D, and FPGA are usually
placed on a network card that is connected to the host CPU by a standard bus. In
the next section, we quantify the delays between each of these components. In a
Host-PHY architecture, the majority of the signal processing (e.g., modulation)
would be done on the host-machine in userspace or in the kernel. On ther other
hand, in a NIC-PHY architecture, this signal processing is done on the FPGA or
a similar processing unit on the radio hardware.

Unfortunately, SDRs have fallen short in providing rich physical layer infor-
mation to the protocol stack and have failed to provide high-performance flexible
protocol (e.g., MAC and cross-layer) implementations. Functionality imple-
mented on the radio hardware (e.g., modulation) will have good performance
but lack flexibility and will be hard to modify. We refer to this architecture as
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NIC-PHY, exemplified by WARP.17 The opposite is true of functionality in a
host-PHY architecture where the functionality is placed on the host CPU (e.g.,
GNU Radio5 and the USRP14). A host-PHY architecture has been considered
incapable of supporting even core protocol techniques (e.g., carrier sense) due to
the large processing delays inherent to the architecture.12,15 However, the goal
of our work is to support high-performance flexible protocol implementations
in a host-PHY architecture to enable many MAC protocols, cognitive protocol
techniques, and cross-layer optimizations such as those proposed between the
MAC and PHY layers.4,6,7 Given that cognitive radio network protocols often
heavily adapt at the MAC layer, we focus the majority of our work on optimizing
performance and development at this layer while increasing the reactiveness of
the radio to the spectrum.

In the next section, we explore delay and jitter measurements in the host-PHY
architecture, which are the major limiting factor on the performance of MAC
implementations12,15 and the responsiveness of the radio to cognitive protocol
techniques. By understanding the sources of the delay and quantifying them,
we can explore a split-functionality approach (Section 7.4) that places pieces
of techniques (e.g., carrier sense) before specific sources of delay or jitter to
achieve greater performance. Therefore, it is important to not only understand
the total delay in the system, but the delay between each major component in
Figure 7.1.

7.2.1 Delay in Software-Defined Radios

In this section, we explore sources of delay in a host-PHY architecture for the
purpose of understanding why MAC and cognitive network protocol implemen-
tations have suffered in performance, such that we can overcome the delay. We
use GNU Radio and the USRP for this work, which12 present as a delay measure-
ment for the platform; however, they focus on user-level measurements, largely
ignoring precise measurement of delays between the kernel and userspace, and
kernel and the radio hardware. Such measurements are important because they
can provide insight into whether implementing protocol techniques in the kernel
is sufficient to overcome the performance problems associated with user level
implementations.

To obtain precise user and kernel-level measurements, we modified the Linux
kernel to record nanosecond precision timestamps on the USB data between the
host and radio hardware at various times in the transmission and receive process.
All user-level timestamps are taken in user space right before data is submitted
to the kernel, or when the data is first read in user space. To measure as close
to the USB bus as possible, timestamps in the kernel are recorded at the last
point in the kernel’s USB driver before the DMA write request is generated, or
after a DMA read request. To measure the roundtrip time between GNU Radio

https://doi.org/10.1017/CBO9780511921117.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511921117.008


182 Supporting Cognitive Radio Network Protocols on Software-Defined Radios

Table 7.1. SDR host-PHY Architectural Delay Measurements

Units: μs Avg SDev Min Max

User→Kernel 24 10 22 213
Kernel→User 27 89 13 7000
4096 Kernel→FPGA 291 62 204 360
512 Kernel→FPGA 148 35 90 193
GNU Radio→FPGA 612 789 289 9000

(in user space) and the FPGA, we introduce a ping command on a control channel
that we implement (Section 7.4.2). Using the measurements described earlier,
we are also able to identify the sources of the delay by calculating the user-to-
kernel space delay, kernel-to-user space delay, and roundtrip time between the
kernel and FPGA based on ping. We ran the user process at the highest priority to
minimize scheduling delay. We used the default 4,096 byte USB transfer block
size for all experiments, and then perform an additional kernel to FPGA RTT
experiment using a 512 byte transfer block size, the minimum possible, in an
attempt to minimize queueing delay.

Averaged over 1,000 experiments, the delay results are presented in Table 7.1.
The results show that the roundtrip time is dominated by the kernel-FPGA
roundtrip time (291 out of 612 μs), whereas the user-kernel and kernel-user
times are relatively modest (24 and 27 μs). The remaining time (270 μs) is
spent in the GNU Radio chain. The high latency of the kernel-FPGA roundtrip
time is somewhat surprising, given that the effective measured rate of the USB
with the USRP is 32 MB/s. Focusing on the latencies between 4KB and 512B, the
difference is only a factor of two, suggesting that the setup cost for transfers con-
tributes significantly to the delay. The kernel-FPGA time also includes the time
it takes for the data to pass through the USRP USB FX2 controller buffers, and to
be copied into the FPGA for parsing. The time taken for the data to pass through
the USRP USB FX2 controller buffers and copied into the FPGA for parsing also
contributes to the kernel-FPGA RTT. The standard deviations and the min/max
values show that the user-kernel and kernel-FPGA times are not highly vari-
able, therefore contributing only a small amount of jitter. On the other hand, the
kernel-user times are extremely variable, resulting in a high standard deviation
for the GNU Radio ping delays. This is clearly the result of process scheduling.

7.2.2 Implications of SDR Latency on Cognitive Protocol Implementations

The delays shown in Section 7.2.1 have strong implications on cognitive protocol
development, especially on protocols running at the host. Although the host
CPU is easy to program, the significant delay and jitter shown between the
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radio hardware and host CPU will impact a host-based cognitive radio network
protocol’s ability to react quickly to the spectrum, and for the MAC layer to
precisely control packet timing, or implement small, precise interframe spacings.
We conclude that time-critical radio or MAC functions should not be placed on
the host CPU. On the other hand, processing close to the radio hardware on the
FPGA has the opposite properties, making it attractive for implementing delay-
sensitive functions and adapting quickly to the spectrum. Unfortunately, code
running on the radio hardware is often closed-source and much harder to change
because it is often hardware-specific and requires a more complex development
environment. Therefore, we conclude that in order to be widely applicable, the
control of flexible MAC implementations and cognitive techniques should reside
on the host.

When distributing functionality between the host and radio hardware, three
key properties of the SDR will be affected: network performance, flexibility in
protocol implementations, and reprogrammability. Unfortunately, as discussed
earlier, these properties are in conflict with each other and achieving the highest
level for each is not possible. In this chapter, we present a split-functionality
architecture that implements part of key protocol functions on the radio hardware
for performance, and an additional part on the host that provides full control. As
we will show, this allows us to simultaneously score very high on all four metrics,
and it also allows developers and users to make tradeoffs across the metrics. Even
though developers will always have to make tradeoffs, the negatives associated
with specific design choices are significantly reduced in our design. Note that
this does not imply that our design can support any arbitrary or even all existing
MAC designs and cognitive network techniques. However, we believe that it is
capable of supporting most of the critical features of modern designs that can be
quickly adapted for cognitive techniques using a control channel we introduce.
Therefore, we must first identify core functions that the design must support
high performance and flexible implementations of, from which modern MAC
designs and cognitive techniques can be built.

7.3 Core Cognitive Radio and MAC Functions

An ideal platform for cognitive radio network development, with a focus on
a highly adaptable MAC layer, should support well-known MAC protocols,
novel designs, and various cognitive techniques. A study of current wireless
protocols including WiFi (both Distributed and Point Coordination Function),
Zigbee, Bluetooth, and various research protocols shows that they are based on
a common, core set of techniques such as contention-based access (CSMA),
TDMA, CDMA, and polling. In this section, we identify the subset of functions
that a platform must implement efficiently in order to support a wide range of
MAC protocols and cognitive radio techniques. In further sections, we focus on
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splitting these core functions in the architecture in such a way that we achieve
high performance of each, while maintaining flexibility for development and
fine-grained control over the functions to adapt the radio to the spectrum for
cognitive techniques.

� Precise Scheduling in Time: TDMA-based protocols require precise
scheduling to ensure that transmissions occur during time slots. Imprecise
timing can be tolerated by using long guard periods; however, this degrades
performance. Surprisingly, modern contention-based protocols also require
precise scheduling to implement interframe spacing (i.e., DIFS, SIFS, PIFS),
contention windows, back-off periods, and so on.

� Spectrum Sensing/Carrier Sense: Contention-based and cognitive radio
network protocols often use spectrum sensing and carrier sense to detect
other transmissions and available spectrum. Carrier sense may use simple
power detection (e.g., using signal strength) or may use actual bit decoding.
Network interfaces need to transmit shortly after the channel is detected to
be idle. Additional delay increases both the frequency of collision and also
the minimum packet size required by the network.

� Backoff: When a transmission fails in a contention-based protocol, a backoff
mechanism is used to reschedule the transmission under the assumption that
the loss was caused by a collision. Backoff is related to precise scheduling,
but focuses more closely on fast-rescheduling of a transmission without the
full packet transmission process (e.g., modulation).

� Fast Packet Recognition: Many MAC performance optimizations could use
the ability to quickly detect an incoming packet and identify that it is relevant
to the local node in a timely and accurate manner. For example, detecting
and identifying an incoming packet before the demodulation procedure can
reduce resource use on the processing units and on the bus.

� Dependent Packets: Dependent packets are explicit responses to received
packets. A typical example is control packets that are associated with data
packets, for example, for error control (e.g., ACKs) or for improved channel
access (e.g., RTS/CTS). Network interfaces need to generate these pack-
ets quickly and transmit them with precise time scheduling relative to the
previous packet.

� Fine-grained Radio Control: Cognitive radio networks need to adapt to the
spectrum quickly, therefore the radio should also be able to switch and adapt
all layers on the fly in a timely manner. Frequency-hopping spread spectrum
protocols such as Bluetooth and the recently proposed MAXchop algorithm9

require fine-grained radio control to rapidly change channels according to
a pseudorandom sequence. Recent designs1 for minimizing interference
require the ability to control transmission power on a per-packet basis.
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� Access to physical layer information: Many MAC protocol optimizations
and cognitive network techniques could benefit from access to radio-level
packet information. Examples include using a received signal strength indi-
cator (RSSI) to improve access point handoff decisions or to locate unused
spectrum, and using information on the confidence of each decoded bit to
implement partial packet recovery.6

It is difficult to argue that this (or any) list of core functions is the correct
one and is complete, but we believe that it is sufficient to implement a broad
range of interesting MAC protocols and cognitive radio techniques. To provide
some degree of confidence in this statement, we describe our implementation
of an 802.11-like CSMA protocol and a Bluetooth-like TDMA protocol using
our framework in Section 7.6, as well as a cognitive technique that switches
between the two layers. As such, this is a reasonable first “toolbox” that protocol
developers can extend over time.

7.4 Split Functionality Architecture

Having derived a set of core functions in Section 7.3, we can now determine the
types of delay that can affect the performance of each function and discuss how
to overcome them. For example, most cognitive radio network protocols need
spectrum sensing and need to react quickly to the spectrum; however, the delays
inherent in a host-based implementation in the given SDR architecture would
make these functions inefficient or ineffective. We first introduce limitations
that prevent high-performance implementations of the core functions, and then
discuss how to overcome these limitations.

7.4.1 SDR Architectural Limitations

Enabling high-performance implementations of the core functions from Sec-
tion 7.3 is prevented by three major factors in SDR architecture:

� Bus delay: A constant delay introduced by bus transmission is relatively
easy to accommodate in supporting precision scheduling. However, large
delays impact spectrum sensing and carrier sense, dependent packets, and
fast packet recognition, as they require information, which is significantly
delayed, to perform some task.

� Queuing delay: Although queueing delay can be smaller than the bus-
transmission delay, it increases the amount of jitter in the system, which
makes precision scheduling difficult, if not impossible, at the microsecond
level (common in current protocols). In related work,11 it is shown that
this compression can be so significant in the given architecture that spacing
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transmissions by less than 1 ms cannot be achieved reliably using host-CPU
based scheduling.

� Stream-based architecture of SDRs: The frontend operates on streams of
samples that can make fine-grained radio control and access to physical layer
information from the host ineffective. The reason is that it adds complexity to
the interaction between a MAC layer executing on a host CPU (or NIC CPU)
and the radio frontend, because it is difficult to associate control information
or radio information with particular groups of samples (e.g., those belonging
to a packet). This problem consists of two components: (1) how to propagate
information within the software environment that performs physical and MAC
layer processing; and (2) how to propagate the information between the host
and the frontend, across the bus and SDR hardware. This first issue is being
addressed in the GNU Radio design with the introduction of m-blocks,2

which is briefly discussed in Section 7.7, but we must address the second
issue.

7.4.2 Overcoming the Limitations

We now present an architecture that overcomes the above limitations. The goal
is to allow as much of the protocol to execute on the host as possible to achieve
the flexibility and ease of development goals, both of which are important
to a wireless platform for protocol development, as identified in Section 7.2.
However, we must ensure that the high latency and jitter between the host and
radio frontend does not result in poor performance and limited control, the other
two criteria in Section 7.2. This is done by introducing two architectural features,
per-block meta-data and a control channel, shown in Figure 7.2. The novelty is
not in the two new architectural features, but in how we use them to implement
the core MAC functions (Section 7.3) in such a way that we maintain flexibility
while increasing performance (Section 7.5). We first discuss both features in
more detail.

Per-block meta-data: Enabling the association of information with a packet
is crucial to the support of nearly all of the core requirements in Section 7.3. Each
packet is modulated into blocks of samples, for which we introduce per-block
meta-data. The meta-data stored in the header includes a timestamp (inbound
and outbound), a channel flag (data/control), a payload length, and single-bit
flags to mark events such as overrun, underrun, or to request specific functions
that we implement on the radio hardware. We limit the scope of the meta-data
to the minimum needed to support the core requirements, thus minimizing the
overhead on the bus.

Control channel: The control channel allows us to implement a rich API
between the host and radio hardware and allows for less frequent information to
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Figure 7.2. Split SDR architecture.

be passed. It consists of control blocks that are interleaved with the data blocks
over the same bus. Control blocks carry the same meta-data header as data blocks
but have the channel field in the header set to CONTROL. The control block
payload contains one or more command subblocks. Each subblock specifies
the command type, the length of the subblock, and information relevant to the
specific command (e.g., a register number). Examples of commands include
reading or writing configuration registers on the SDR device, changing the
carrier frequency, and setting the signal sampling rate.

With these two features, we can effectively partition the core functions into
a part that runs on the radio hardware close to the radio frontend, and a control
part that runs on the host. Of course, meta-data and control channels are used in
many contexts. The contribution lies in how we use them to partition the core
functions, which is the focus of the next section.

7.5 Evaluating the Split-Functionality Approach
for Cognitive Radio Networks

We now examine how the split-functionality approach can be used to implement
the core functions described in Section 7.3, and just as importantly, how the split-
functionality architecture can enable protocols that can react more quickly to the
spectrum without sacrificing flexibility. We only present a subset of the functions
that are crucial in supporting cognitive network protocols, which illustrate the
split-functionality approach, and refer the reader for the details of the remaining
functions in related work.11 We focus our discussion on the GNU Radio and
USRP platform.
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7.5.1 Spectrum Sensing and Carrier Sense

The ability of a cognitive radio to react to the current state of the spectrum is
extremely important to the performance of the radio and the effectiveness of
the cognitive techniques. Given that cognitive techniques require information
about the current state of the network to adapt, if this information is stale, the
network will adapt inappropriately. The quicker the radio can adapt, the greater
the performance will be. A perfect example of such a technique that requires
physical layer information in a timely manner to react properly is carrier sense.
The performance of carrier sense is crucial to CSMA protocols: The longer it
takes to transmit a packet after the channel goes idle, the greater the chance of
collision. Measuring the reactiveness of carrier sense is a raw measurement of
the reactiveness of the radio. This timing, which we will refer to as reactiveness,
is shown in Figure 7.3. Reactiveness is crucial to cognitive radio networks: It is
the time it takes for the radio to adapt to a change in the spectrum. We therefore
present the split-functionality design of carrier sense to demonstrate how we can
achieve greater performance of the core function, and how the split-functionality
design increases the reactiveness of the radio.

7.5.1.1 Carrier Sense Design and Evaluation

To significantly increase the reactiveness of the radio to the spectrum, and
therefore the performance of carrier sense, we must avoid the associated delays
by placing the decision at the radio hardware. However, the decision process
should be controlled by software running on the host CPU to maintain flexibility.
The first assumption we can make is that when a host wishes to perform carrier
sense, it can modulate a packet and pass the computed samples to the radio
hardware to wait for the carrier to be idle. The per-block meta-data for the
transmission has a single bit flag set to indicate that the block should be held
until there is no carrier using a locally computed RSSI value. The host can
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control the carrier sense threshold via the control channel. We use an RSSI value
recorded in the radio hardware to implement a simple RSSI threshold carrier
sense mechanism. Therefore, we split the carrier sense implementation in our
split-functionality design by placing the carrier sense triggering mechanism on
the radio hardware, and full control over the RSSI threshold and carrier sense
algorithm on the host. As our evaluation will show, this allows us to achieve
greater performance (a smaller reaction time), without sacrificing flexibility.

We now present an evaluation of this carrier sense design in comparison to
performing carrier sense at the host. This compares the reactiveness of the radio
if the core functions were implemented solely at the host, to the reactiveness of
using a split-functionality approach. In the host implementation, the host esti-
mates the received signal strength from the incoming sample stream and uses
thresholds to control outgoing transmissions. We use the evaluation setup illus-
trated in Figure 7.3, where a USRP (node C) monitors two node’s transmissions
by measuring the magnitude of received complex samples. At 8 megasamples
per second, the monitoring node (C) achieves a precision of 125 nanoseconds for
measuring the reactiveness of the radios. The two contending nodes (A and B)
exchange the channel using carrier sense 100 times, and we measure the spac-
ing between each transmission as the reactiveness, as illustrated in Figure 7.3.
The first contending node, A, finishes transmission T Xn, and B takes T1 time
to detect the channel as idle and begin transmission T Xn+1. T1 represents the
reactiveness.

As shown in Figure 7.4, taking the average gap observed across 100
exchanges, the results were 1.5 μs and 1.98 ms for the split-functionality and
host implementations, respectively. The host-based latency could be reduced
closer to 1 ms, or on the order of tens of microseconds, by moving the function-
ality to the USRP device driver, or the kernel, respectively. In our evaluation,
the times were recorded at an application-level block in GNU Radio where a
MAC protocol would reside. These measurements illustrate our design’s ability
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μ

Figure 7.4. Comparing achieved reactiveness.
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to reduce the carrier sense blind spot by three orders of magnitude while main-
taining host control on a per-packet basis. This can significantly increase the
capacity in the channel by reducing the time it takes to detect it is idle. The host
can even control the threshold on a per-packet basis by placing a control packet
with a new threshold on the bus before the data packet.

7.5.2 Fast Packet Recognition

Cognitive radio network protocols not only need to react quickly to changes
in the spectrum, but also to incoming packets. For example, cognitive radios
may exchange packets to inform each other of protocol parameters, or even of
complete switches of a layer (e.g., changing from TDMA to CSMA at the MAC
layer). Therefore, the radio must be able to identify incoming packets to the
node in a timely manner. Additionally, traditional software-defined radios in
the receive state will stream captured samples at some decimated rate between
the radio hardware and the host. For many MAC protocols, such as CSMA-style
designs, the radio cannot determine when packets for the attached node will
arrive. As a result, the radio must remain in the receiving state. The downside
to this is that the demodulation process uses significant memory and proces-
sor resources despite the fact that incoming packets destined for the radio are
infrequent. As such radios become more ubiquitous and common for imple-
mentation, resource usage will become increasingly important, especially for
energy-constrained devices such as the battery-powered Kansas University Agile
Radio.8

One simple solution would be to send samples when the RSSI is above some
threshold. However, this does not filter out transmissions destined to other hosts
and external signals. A better solution would be to have the radio hardware look
for the packet preamble and the destination address, then transfer a maximum
packet size worth of samples to the host after any match. As we also describe in
related work,11 the ability to identify packets and process them partially on the
SDR hardware is also critical to supporting low-latency MAC interactions (e.g.,
packet/ACK exchanges or RTS/CTS) in a high-latency architecture.

7.5.2.1 Fast Packet Recognition Design

Our goal is to accurately detect packets at the radio hardware without demod-
ulating the signal (to keep flexibility). To achieve this goal, we perform signal
detection. The most relevant work in signal detection comes from the area of
radar and sonar system design. From this area, we borrow a well-known tech-
nique, called a matched filter, to detect incoming packets at the radio hardware
without performing demodulation.

Matched filter: A matched filter is the optimal linear filter that maximizes
the output signal-to-noise ratio for use in correlating a known signal to the
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Figure 7.5. Matched filter and dependent packet design.

unknown received signal. For use in packet detection, the known signal would
be the time-reversed complex conjugate of the modulated framing bits. These
known signal’s samples, which are referred to as coefficients, are stored in
the matched filter’s memory bank (Figure 7.5). The received sample stream is
convolved with the coefficients. The result can be treated as a correlation score
between the unknown and known signals. The correlation score is then compared
with a threshold to trigger the transfer of samples to the host. The matched
filter is flexible to different modulation schemes (e.g., GMSK, PSK, QAM)
but requires a Fast Fourier transform for OFDM, given that the symbols are in
the frequency domain. This would require an FFT implementation on the radio
hardware.

To also detect that the frame is destined to the particular host, two different
methods that have mathematically different properties can be used. Single Stage:
Use a frame format where the destination address is the first field after the
framing bits, and use this complete modulated sequence as the matched filter
coefficients. Dual Stages: Detect the framing bits first, then change the coef-
ficients to the modulated destination address. Our implementation uses the
single-stage approach for simplification. However, a dual stage is more appro-
priate for monitoring multiple addresses such as a local address and a broadcast
address.

7.5.2.2 Fast Packet Recognition Evaluation

We evaluate the effectiveness of the matched filter at detecting incoming
sequences using simulations where we can control the noise level. Results are
presented from over-the-air experiments with the presence of interference, mul-
tipath, and fading in related work.11

To evaluate the effectiveness of the matched filter with varying signal quality,
we first run experiments with controlled signal-to-noise ratios (SNR) using the
GNU Radio software. We introduce additive white Gaussian noise (AWGN)
to control the SNR in terms of dB: SNR(dB) = 10 ∗ log10 ∗ Powersignal

P owernoise
. To

introduce the noise, we compute the signal power: Powersignal = |Signalampl|2,
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Figure 7.6. Success rate of the matched filter.

and then the noise power: Powernoise = Powersignal

SNR
, based on the specified snr:

SNR = 10(snr/10). For evaluation, 1,000 frames of 1,500 bytes are encoded
using the Gaussian minimum-shift keying (GMSK) modulation scheme. These
frames are used as the ground truth and mixed with the noise. We require
that the matched filter detect the framing bits and that the transmission is
destined for the attached host using the single-stage scheme (Section 7.5.2).
The success rate is defined as the number of detected frames over the total
number of frames in the dataset (1,000). For comparison, we also include
the success rate of the full GMSK decoder. At a high noise level, even the
full decoder will fail at detecting the frames. The success rate, as a func-
tion of the SNR, is shown in Figure 7.6. The results show that the matched
filter can detect the frames at a much higher success rate than the decoder
can, even at low SNR levels where the noise power is greater than the signal
power.

Given these results, and further real-world results presented in related work,11

we conclude that using the matched filter for detecting relevant packets is accu-
rate enough that the host will never miss an actual frame due to the filter. In fact,
the filter triggering samples to the host can be seen from a different perspective
as providing further confidence to the host that there is actually a frame within
the sample stream. The host could then perform additional processing in an
attempt to decode the frame successfully.

7.5.3 Access to Physical Layer Information and Fine-Grained
Radio Control

The underlying radio hardware in an SDR platform has many controls that are
not configured by the transmitted sample stream (e.g., transmission frequency
and power), and can make many observations that are not easily derived from the
input sample stream (e.g., RSSI). We use our control channel between the SDR
hardware and host to expose these controls and physical layer information to the
MAC protocol implementation. Many existing network interfaces use similar
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Figure 7.7. Decode times for various frame sizes.

designs for setting the transmission channel and obtaining RSSI measurements.
One key difference is that our interface operates on blocks of samples instead
of packets.

7.5.3.1 Physical Layer Information

Access to physical layer information at all other layers in the processing chain
is important for supporting common cross-layer optimizations and extremely
crucial to cognitive radio network protocols to adapt to the spectrum. This can
be seen through recent work where per-bit confidence levels are used to perform
partial packet recovery.6 We enable this functionality in our architecture through
the control channel and per-block meta-data. In our design, information from
the SDR can be sent to the host using either the control channel or per-block
meta-data. We use this mechanism to report RSSI to the host. Note that the host
could calculate RSSI using the raw samples, but an RSSI value that takes into
account the gain or attenuation in the RF stages is only available at the radio
hardware. The control protocol is easily modified to support reporting additional
properties; however, developers must reprogram the FPGA to report the desired
values.

7.5.3.2 Radio Control

We also implement a set of radio hardware control messages on the control chan-
nel that can be synchronized with packet transmissions using the timestamp. For
example, by placing a control block with a timestamp T before a data packet on
the bus, which uses a NOW timestamp, the radio will be reconfigured at time
T and the data packet will be transmitted immediately after the reconfiguration.
This can be used to implement common techniques such as rapid frequency
hopping or to reconfigure parts of the core functions that reside on the radio
hardware. Unfortunately on the USRP, the daughterboards are tuned directly
from the FX2 USB controller using the I2C bus, which has no connection to the
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FPGA. Therefore, we cannot issue daughterboard commands from the FPGA
using the control channel and hardware clock to implement rapid frequency hop-
ping. The USRP2 tunes the daughterboards directly from the FPGA. Therefore,
if our design was implemented on the USRP2, unavailable at the time, rapid
frequency hopping could be achieved.

7.6 MAC-Layer Evaluation

We now provide end-to-end results for a Bluetooth-like TDMA protocol and
802.11-like CSMA protocol. The protocols use the split-functionality design
described in Section 7.5, and we compare their performance with that of full host-
based implementations. This demonstrates the increased performance possible at
the MAC-layer of the cognitive radio network. In the next section, we describe a
design that enables a cognitive radio network protocol that switches between the
MAC layers on the fly using information from the radio hardware (Section 7.6.3).

7.6.1 Bluetooth-Like TDMA Protocol

To illustrate the effectiveness of the overall system design, we implement a
tightly timed Bluetooth-like TDMA protocol. Like Bluetooth, the network
(piconet) consists of a master and a maximum of seven slaves. The slaves
communicate with the master in a round-robin fashion within a slot time of
625 μs. Unlike Bluetooth, our protocol fixes its frequency instead of hopping
(a limitation of the USRP discussed in Section 7.5.3), uses slightly simpler
synchronization (bypasses pairing), and we also vary the slot guard time for
evaluation.

Each slave in the network synchronizes with the start of a round by listening
for the master’s beacon, and calculates the start of transmission as the logical
synchronization time T . The beacon frame also carries the total number of
registered slaves (N) and the guard time (Tg). The slave can then compute the
total round time, which must account for the master: Tr = N + 1 ∗ (Ts + Tg),
where Ts is the slot time (625 μs). The start of round k is computed as: Tk =
T + Tr ∗ k. We remind the reader that this is a logical time kept at each node,
taken from the beacon frame that is a global reference point. Finally, each slave’s
slot offset is computed from its node ID (n), δn = n ∗ (Ts + Tg), which is then
used to compute the local start time of slave n’s slot in round k: Tn(k) = Rk + δn.

7.6.1.1 TDMA Results

We use two metrics in our evaluation: ability to maintain tight synchronization
and overall throughput. The synchronization error at the master is 15 ns, com-
puted by measuring the actual spacing of 1,000 beacons using a monitoring
node (discussed in Section 7.5.1). This illustrates the tight timing of the master’s
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beacon transmissions. To measure the synchronization error at the slaves, we
record the calculated timestamps of 1,000 beacons at 4 slaves. Each timestamp
should be exactly Tr apart from the next. The absolute error in spacing rep-
resents shifts in the slave’s calculation of the start of the round. We find the
maximum error of the 1,000 beacons at all 4 slaves to be 312 ns, with an average
of 140 ns. This answers the question of our platform’s ability to obtain tight
synchronization at both transmitters (master) and receivers (slaves).

We compare a split-functionality implementation to a host implementation,
which differ in their guard times. A guard time of 1 μs is used for the split-
functionality implementation, which is nearly three times the maximum error.
We use our roundtrip host and radio hardware delay measurements from Sec-
tion 7.2.1, which accounts for both transmissions and reception timing variabil-
ity, to estimate the host guard time needed. A guard time of 9 ms would be
needed to account for the maximum error; however, this delay occurs rarely
and we, therefore, present results using a guard time of 3 ms (approximately
3 ∗ sdev) and a more realistic guard time of 6 ms based on our recorded delay
distribution.

We perform 100 KB file transfers, varying the number of registered slaves
and presenting averaged results across 100 transfers in Figure 7.8. The split-
functionality implementation is able to achieve an average of four times the
throughput of the host-based implementation. While we had only been able to
answer the question of obtaining synchronization, we find that throughout the full
transfers, no slave drifts into another slot period using only the initial beacon for
synchronization, illustrating the ability to maintain tight synchronization. These
results are promising for the development of TDMA protocols on the platform.

7.6.2 802.11-Like CSMA Protocol

We implemented two 802.11-like CSMA MAC protocols, one fully on the host
CPU and one using our split-functionality optimizations including on-board
carrier sense (Section 7.5.1), dependent packet ACK generation, and backoff
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Figure 7.8. TDMA throughput comparison results.
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(both found in related work11). The MAC implements 802.11’s clear channel
assessment (CCA), exponential backoff, and ACKing. Our protocol does not
implement SIFS and DIFS periods; this work is in progress. For space reasons,
we focus our description on how the 802.11-like protocol uses our architecture.

The host-based implementation places all functionality on the host CPU,
including carrier sense, ACK generation, and the backoff. The optimized imple-
mentation uses the matched filter and SNR monitoring for ACK generation, and
performs carrier sense and backoff on the radio hardware. We configure the
USRPs for a target rate of 0.5 Mbps, and run 100 1 MB file transfers for each
implementation using a center frequency of 2.485 GHz in an attempt to avoid
802.11 interference. This allows us to present results that highlight the differ-
ences in the implementation without the effect of uncontrolled interference. We
also vary the number of nodes in the network, where each pair of nodes performs
a transfer.

The results for the two implementations are shown in Figure 7.9. We see
significant performance increases from the use of the split-functionality imple-
mentation. This nearly doubles the throughput on average, likely due to the
time saved in decoding to generate the ACK, and the delays associated with
carrier sense and backoff. We note that the matched filter detected every framing
sequence, and the fast-ACK generation technique only failed two times over the
total number of runs. To recover from these failures, we implemented a feedback
mechanism on the host that checks the SNR monitoring technique’s decision
and retransmits. This is needed because we did not use a higher-layer recover
mechanism like TCP.

7.6.3 Supporting Cognitive Switching of the MAC Layer

As discussed throughout this chapter, a cognitive radio network monitors cur-
rent network conditions and adapts at all layers to achieve the greatest level

Figure 7.9. 802.11-like CSMA protocol results.
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Figure 7.10. Design of a cognitive architecture for MAC layer switching.

of performance, given the current spectrum. For example, the radio can use
spectrum-sensing information to find a less congested channel, or use noise/loss
information from the PHY and MAC layers to change the protocols running to
achieve a higher throughput. Under low loss rates and low congestion, the radio
could use the CSMA protocol discussed in Section 7.6.2. Under high loss and
congestion, the radio could use the TDMA protocol discussed in Section 7.6.1,
which reduces the overhead involved with accessing the spectrum and reduces
the chances of collision. While we have briefly presented a general design for a
switching protocol, it is not the contribution of this section. The contribution is a
general architecture and design of the components on a host-PHY radio, which
allows for the switching of the layers, shown in Figure 7.10, as well as sugges-
tions on how to better support layer switching in a host-PHY architecture. From
this design, novel cognitive radio network protocols that govern the switching
of the layers can be built. Additionally, it is a layer that can be accessible via a
global controller in the future Internet to control the protocols (e.g., the MAC
layer) in use by the cognitive radio. Through such a controller, new protocols
could be designed and propagated to the radios for use.

As mentioned, the radio uses information from the protocol layers, such as
the loss rate, to change the MAC that is operating. This logic cannot reside in the
MAC layer because it needs to run independent of this layer. Additionally, we
do not want to place it at the PHY layer because it violates the general hierarchy
of networking protocols, and we would like the design to be general enough to
allow switching of the physical layer. Therefore, we need to construct a new
layer that monitors information from both the MAC and PHY layers, shown in
Figure 7.10. We refer to this layer as a control plane, which has a connection to
all possible MAC layers for control and status information. The control plane
communicates to the MAC layers, activating the appropriate MAC protocol such
that it communicates with the physical layer. There is also a connection from
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the control plane to the physical layer for control and status information such
that it can adapt based on physical layer information. As it is important that all
radios in the network operate using the same MAC layer, we construct a control
channel using a second frontend in a different frequency band on the USRP,
which uses a separate physical layer at the host. The control channel is used to
communicate a switch of the MAC layer, which all other radios will also switch
to. All radios in the network use the control channel to agree on a MAC layer,
sharing current channel information such as congestion and loss. The radios
use a basic consensus mechanism to choose the layer, based on beacons of the
current MAC layer sent by each radio on the control channel. Once consensus is
reached to change the MAC layer, the control plane uses the control-and-status
channel to the MAC layers to disable or enable the appropriate protocols.

Using this general architecture, we are able to change the active MAC layer
based on the current state of the network. However, we are not able to change the
connections between the MAC layers and the physical layer. To our knowledge,
current host-PHY architectures do not directly support switching of the MAC
layer; in fact, their general architecture inhibits it. In a host-PHY software-
defined radio architecture, such as GNU Radio, it is common that multiple
modular processing blocks are connected to create a layer such as the MAC or
PHY layers. At runtime, instances of the blocks are created, and the application
specifies how the blocks are connected. To our knowledge, there is no host-
PHY SDR that allows for the connection of these blocks, and what blocks are
instantiated, to be changed at runtime. This prevents a cognitive radio network
protocol from making “extreme” changes to the processing, such as removing a
series of blocks to completely replace the MAC layer. Therefore, as future work,
we propose host-PHY architectures take into consideration a growing need to
dynamically change the processing of the radio in an optimal manner, such that
all blocks do not need to be instantiated at runtime, which requires additional
memory and logic such that all blocks are connected.

7.7 Related Work

We review related work in the area of MAC development. Existing platforms
mostly use the extremes of the design space where either the majority of
functionality is fixed on the network card (Traditional NICs) or performs all
processing at the host (Software-Defined Radios).

Traditional NICs: Several efforts3,10,13 have built new MAC protocols on
top of existing commercial NICs (e.g., 802.11 cards). Unfortunately, commer-
cial 802.11 cards implement the bulk of the MAC functionality in proprietary
microcode on the card, limiting what functions can be changed by researchers.
As a result, this approach is not very satisfactory: The range of MAC pro-
tocols that can be implemented is limited and performance (e.g., throughput,
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capacity) is often poor from the MAC needing to be implemented on the host.
For example, past efforts have mostly implemented TDMA-based schemes.

Software-defined Radios: Software-Defined radios (SDRs) provide a com-
pelling architecture for flexible wireless protocol development, considering that
most aspects of both the MAC and physical layer are, by design, implemented
in software and thus, in principle, easy to modify. However, so far, SDR efforts
have focused on implementing the physical layer16 whereas MAC and higher-
layer protocol development has received little attention. Recent work by Schmid
et al. 12 examines the impact of increased latency in SDRs using GNU Radio and
the USRP. The authors address how the bus latency creates “blind spots” that
increase collision rates when carrier sense is performed at the host, and how pre-
computation of packets is not possible without fully demodulating (at the host),
resulting in larger interframe spacing. Our design provides solutions for both of
these issues in Sections 7.5.1 and 7.5.2, respectively. Bus delay measurements
were also taken by Valentin et al. 15

A number of groups have developed software radios with architectures that
differ from the current GNU Radio and USRP design by including a CPU on
the radio hardware (NC-CPU), either as a separate component or as a core
on the FPGA. Examples include the Rice University Wireless Open-Access
Research Platform (WARP)17 and USRP2. These designs are more expensive,
but they offer additional flexibility for partitioning the MAC. However, there
is still a nontrivial delay (compared with traditional radios) owing to physical
layer processing and queueing. The NC-CPU is also likely to be slower than the
host CPU, increasing the processing delay. Finally, in deployed products based
on this architecture, the NC-CPU is likely to be off-limit to users, similar to the
current situation with commercial wireless cards. As a result, we expect that our
architecture will be useful for this type of platform as well.

7.8 Conclusions

In this chapter, we presented a set of techniques that support the implementa-
tion of diverse, high-performance cognitive radio network protocols on software
radios. The work is motivated by an increasing diverse and ever-changing wire-
less spectrum, such that to achieve the greatest level of performance, the radio
must adapt at all layers in the wireless networking stack. Software radios offer
flexibility, but their architecture, specifically the delay between the host and the
radio frontend, has traditionally been a problem for protocols. We introduce
a split-functionally approach, which addresses this problem, and show that it
enables the implementation of a set of core MAC functions and cognitive func-
tions that can react to the spectrum more quickly for greater performance. An
implementation for the USRP and GNU Radio, along with the implementation
of an 802.11-like and Bluetooth-like protocol, shows the approach is effective.
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Additionally, we presented a basic design to support cognitive switching of the
MAC layer on the fly, which can be extended. To our best knowledge, these
protocol implementations are the first high-speed, bidirectional MAC imple-
mentations for the GNU software radio platform. For future work, we plan to
implement a more diverse set of protocols to further evaluate our design and
implement the architecture on different SDR platforms to evaluate its generality.
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