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5.1 Introduction

Wireless sensor networks (WSNs) are an important emerging class of embed-
ded distributed systems that consist of low-power devices integrating com-
putation, sensing, and wireless communications. WSNs have been deployed
for a wide range of applications, including monitoring microclimates in red-
wood forests (Tolle et al. 2005), collecting seismic signals from active volca-
noes (Werner-Allen et al. 2006), sniper detection in urban settings (Simon et al.
2004), and tracking wildlife (Zhang et al. 2004).

One of the most popular WSN node platforms is the Telos node plat-
form (Polastre et al. 2005a), shown in Figure 5.1. The Telos incorporates a low-
power microcontroller (TI MSP430) with 10 KB of SRAM and 48 KB of
program ROM; a low-power radio (Chipcon CC2420) that supports the IEEE
802.15.4 standard; and 1 MB of on-board flash memory. Various sensors can be
attached to the board; a standard set includes light, temperature, and humidity
sensors. An external connector provides digital and analog I/O ports that can
be used to mate the node to a wide range of sensors and other devices. The
USB connector is used to program the node when plugged into a host, as well
as to provide a serial interface. This allows the node to act as a USB wireless
transceiver when attached to a base station that collects data from and controls
the network.

WSN platforms are designed from the ground up for low-power operation.
The Telos consumes approximately 41 mW when the CPU and radio are active,
but can drop down to a low-power idle state consuming less than 6 μW. Depend-
ing on the duty cycle, the device can potentially operate for months on a pair
of alkaline AA batteries. However, this low power consumption comes at the
cost of extreme limitations on computational horsepower, memory capacity, and
radio bandwidth. The CC2420 radio operates at a PHY rate of just 250 Kbps, but
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Figure 5.1. Wireless sensor node platforms.

link throughput (including framing and control message overhead) is less than
100 Kbps in practice, and may be much less under lossy conditions. Moreover,
the radio consumes far more power than the CPU, mandating careful control
over the radio listen, receive, and transmit modes.

Therefore, network protocols for sensor networks must be designed to oper-
ate with lossy and low-throughput links and limited memory for storing routing
tables and other state. Protocols must also carefully manage the power consump-
tion of the radio in order to ensure long battery lifetimes.

In this chapter, we provide an overview of protocol design for wireless sensor
networks, focusing on how these designs differ from those in more conventional
networking environments. We begin with link layer protocols (Section 5.2)
including low-power MAC and link quality estimation. We move onto tree-
based routing (Section 5.3) and efficient dissemination (Section 5.4), which are
fundamental primitives for data collection and broadcast in WSNs. In Section 5.5
we describe reliable transport protocols, which differ in design from conven-
tional approaches such as TCP. Cross-layer protocols that optimize for power
consumption across the stack are described in Section 5.7. The emergence of
IPv6 for low-power wireless networks (6loWPAN) is discussed in Section 5.8.
In Section 5.6, we describe auxiliary protocols for time synchronization and
localization, two essential services in sensor networks. Finally, in Section 5.9,
we present our thoughts on how sensor network protocols might influence the
design of the future Internet.

5.2 Link Layer Protocols

Link layer protocols provide media access, and packet transmission and recep-
tion service to the upper layer protocols. In sensor neworks, link layers also
provide information about the nodes and links in the neighborhood. Although
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high channel utilization is important, energy efficiency has been the focus of
link layer research in wireless sensor networks.

Idle listening is the largest avoidable energy expenditure attributed to wireless
communication in sensor networks. Idle listening is a phenomenon in which a
node expends energy keeping its radio on even while no packet transmission
or reception takes place. On radio chips such as the IEEE 802.15.4/ZigBee-
compatible CC2420 radio, the radio consumes as much power in receive mode
as it does while transmitting a packet. Fortunately, this cost is avoidable if
we can duty-cycle the radio. However, duty cycling makes the media access
problem harder: When a transmitter is ready to transmit a packet, the radio on
the receiver might be off. Additional mechanisms are necessary to ensure both
the transmitter and the intended receiver have their radios on at the time of packet
transmission.

Two main radio duty-cycling approaches have been proposed in low-power
MAC design for sensor networks. Coordinated or synchronous duty-cycling
orchestrates radio duty cycles across the network in a predetermined schedule.
This requires that nodes synchronize their schedules with each other, and may
involve the use of a centralized scheduler, such as the base station. Uncoor-
dinated or asynchronous approaches have no explicit coordination across the
nodes. Some link layer designs combine these two approaches, but these are not
typically used in practice. Uncoordinated schemes are far more common than
coordinated schemes because they allow nodes to transmit packets at any time
without requiring the overhead and complexity of explicit synchronization. We
describe B-MAC and X-MAC, two examples of such protocols below.

5.2.1 B-MAC

B-MAC (Polastre et al. 2004) is a canonical example of a low-power MAC pro-
tocol for sensor networks. For coordination between multiple transmitters, B-
MAC uses clear channel assessment and back-offs, as described further here. To
enable low-power operation, B-MAC uses a technique called low-power listen-
ing to duty-cycle the radio. B-MAC also supports link-layer acknowledgments.

B-MAC uses clear channel assessment to determine the presence or absence
of valid packet transmission in the channel. Clear channel assessment involves
nodes determining the noise floor and comparing the level of signal with the
noise floor to determine if the channel is clear. The noise floor can be different
across different nodes, based on the ambient channel conditions. The noise floor
can also change over time. B-MAC performs periodic estimation of the noise
floor by sampling the ambient noise level in the environment. This sampling
is done during times that are unlikely to have packet transmissions – the short
wait time between a packet and its acknowledgment, for example. The median
of these samples is used as the noise floor estimate for a given time. These
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estimates are also averaged over time using exponential averaging to yield a
more stable estimate of the noise floor.

When B-MAC receives a request to transmit a packet, it must first determine if
the channel is clear. Sampling the channel once and comparing against the noise
floor results in a large number of false positives. The key insight used to increase
robustness in B-MAC’s clear channel assessment algorithm is that comparing
the low outliers of multiple samples against the noise floor results in far greater
accuracy than using threshold-based channel assessment. So, B-MAC samples
the signal level in the channel a few times, computes the outlier, and compares
against the noise floor. If the channel is clear, B-MAC transmits the packet. If
the channel is not clear, the node backs off for a randomized interval of time.
When the back-off timer expires, it performs clear channel assessment again.
If acknowledgments are enabled, the transmitter waits for the acknowledgment
before receiving or transmitting other packets.

B-MAC uses low-power listening, also called preamble sampling, to duty-
cycle the radio. By default, the radio is left in a low-power sleep state, in which
it is unable to receive incoming packets. Every sleep interval, each node turns
on the radio and checks for an incoming packet from a transmitter. If a packet is
detected, the node leaves its radio on to receive the packet. To avoid receiving a
partial packet (e.g., if the receiver starts listening in the middle of a transmission),
the transmitter must transmit a preamble before the actual packet, which is set
to the length of the receiver’s sleep interval. The long preamble ensures that a
receiver will listen at least once during a preamble transmission.

In one of the evaluation experiments, the authors ran B-MAC on a testbed of
14 Mica2 sensor nodes. During the experiment, each node sent one data packet
every three minutes to the base station using a collection routing protocol. The
result showed that the nodes achieved a worst-case duty-cycle of 2.5 % and less
than 1 s data delivery latency over six hops.

B-MAC allows applications to easily configure the MAC parameters, such as
the sleep interval and whether link-layer acknowledgments are enabled. Allow-
ing such interaction with the MAC enables applications to achieve desired
duty-cycling and energy efficiency depending on the context and need of the
application at a given time.

In low-power sensor networks, the sleep interval can be in the order of sev-
eral hundred milliseconds. This requires transmitting an equally long preamble
before each packet, which consumes a large amount of energy. In addition, long
preambles increase packet transmission latency. They also cause nearby nodes
that are not the intended recipient of a packet to wake up and attempt to decode
the incoming packet, thereby wasting energy.

B-MAC makes the tradeoff of reducing receivers’ idle listening power con-
sumption by increasing the transmitters’ power consumption when sending
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packets. This scheme is appropriate for low-data-rate applications in which
transmissions occur infrequently. Reducing the overhead of packet transmis-
sions has been the subject of much subsequent work, including the X-MAC
protocol described below.

5.2.2 X-MAC

X-MAC (Buettner et al. 2006) is another uncoordinated duty-cycling MAC
for sensor networks. X-MAC uses a series of short preambles and embeds the
destination of the packet in the preamble. When a node checks for channel
activity and receives the preamble, it can quickly determine if it is the intended
recipient of the packet. X-MAC introduces a short wait time between the pream-
bles. During these wait times, the intended receiver of the packet can signal
the transmitter (through an ACK transmission) that the receiver’s radio is on
and ready to receive the packet. This signaling allows the transmitter to trun-
cate the series of preambles and transmit the body of the packet, as shown in
Figure 5.2.

These mechanisms together improve the performance of unicast data trans-
missions over the low-power listening scheme used by B-MAC. In an indoor
testbed of TelosB nodes, with a sleep interval of 200ms and with five con-
tending packet transmitters, each node sending one packet every second, the

Figure 5.2. Comparison of transmitter-receiver coordination mechanism used in B-MAC
(LPL) and X-MAC. Redrawn from Buettner et al. (2006).
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authors report a duty-cycle of 20% compared to 65% with B-MAC’s low-power
listening.

5.2.3 Coordinated Duty Cycling

X-MAC still suffers from several limitations, such as that broadcast packet
transmissions must still be transmitted for the full sleep interval. A great deal
of ongoing research is investigating new protocols that attempt to reduce these
overheads. Coordinated duty-cycling approaches can transmit broadcast packets
more efficiently.

Coordinated duty-cycling MAC protocols explicitly compute the schedules
for packet transmission and reception across the network. The nodes keep their
radios on during these schedules and turn the radios off the rest of the time.
Two types of schedule organization are common among the coordinated duty-
cycling MAC protocols. MAC protocols such as S-MAC (Ye et al. 2002) and
T-MAC (van Dam and Langendoen 2003) organize the schedules across the
entire network (or a group of nodes) such that all the nodes (or a group of
nodes) turn their radios on at the same time and start packet transmission and
reception. The second approach organizes the schedules across the network such
that the schedules reflect the routing topology or a specific data flow pattern.
For example, the MAC protocol used by Dozer (Burri et al. 2007), described in
Section 5.7, coordinates the radio schedules only between immediate neighbors,
whereas DMAC (Lu et al. 2007) organizes the schedules along a routing path
in a staggered pattern such that the packets can be forwarded along a path
without interruption. Robust time synchronization and link dynamics, which
often necessitate schedule revision at small timescale, are the key challenges
to coordinated duty-cycling. Coordinated duty-cycling link layers seem less
successful in practice than uncoordinated duty-cycling link layers.

5.2.4 Link Quality Estimation

Discovering nodes and links in the neighborhood provides valuable information
to the routing and other protocols in sensor network. Most important function of
neighborhood discovery is accurately and efficiently estimating the link qualities
to the neighbors.

Most routing protocols in sensor networks use the ETX link metric (De Couto
et al. 2003) to quantify the link reliability. ETX is a widely used link and path
metric in wireless routing, and is defined as the expected number of transmissions
for a packet to reach a destination node, assuming link-layer ARQ is in use. A
perfect link has an ETX of 1; a larger ETX value implies a less reliable link.

In sensor network link quality estimation, the emphasis is on computing ETX
of links efficiently, because each probe transmission costs valuable energy. Early
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proposals for computing ETX of links use a periodic link quality probes and
compute average these estimates over time (Woo et al. 2003). Just relying on
link quality probes or beacons that are sent at a low rate makes the estimate less
agile and hence inaccurate over the short term. However, the short-term link
reliability is what determines the success or failure of a packet transmission at a
given instant.

As an alternative, the so-called four-bit link quality estimator (Fonseca et al.
2007) estimates the quality of wireless links using information from the physical,
link, and network layers in combination.

The physical layer can provide immediate information based on the radio’s
ability to decode an incoming radio packet. Many radios report the Received
Signal Strength Indicator (RSSI) for incoming packets. The CC2420 radio used
by many sensor nodes additionally reports a Link Quality Indicator (LQI) for
each packet. This information is available on each packet reception and tends
to have high variation: Each packet received can have different RSSI or LQI
value. Although physical layer information cannot provide complete description
of link quality, it can often be used as a fast estimate of link quality that can be
improved using information from the link layer and link quality probes.

The link layer can provide information regarding success or failure of
packet transmission on a link. Most sensor network link layer protocols support
acknowledgments of unicast packet transmission. If a packet acknowledgment
is received on a link, then we can take that as an indication of a good forward
link (data transmission) and a good reverse link (acknowledgment transmission).
Unlike computing ETX using separate probe transmissions, use of acknowledg-
ments allows the estimator to compute and update the ETX at the time scale of
one packet transmission.

The network layer can provide information regarding the importance of a
link, such as a link being on a path to the root. Although physical and link layer
information can be used to compose an accurate and agile estimator, the network
layer has information regarding which links are on the path to the root or on
better paths to the root. The link estimator can use this information to evict links,
and sometimes even high-quality links, from the link estimation table to make
room for links that are likely to be used by the routing protocol.

The four-bit estimator uses narrow and portable interfaces to access these
sets of information from the physical, link, and network layers: Only four bits of
information need to be exchanged between the link estimator and these layers
(Figure 5.3). The four-bit estimator can work on any radio platform that provides
the proposed interface. These interfaces are designed to be easily implementable
across different platforms and make few assumptions about the specific radio
technology or hardware. The four-bit estimator has been implemented on sensor
node platforms that use CC1000, CC1100, CC2420, TDA5250, and RF230
transceivers.

https://doi.org/10.1017/CBO9780511921117.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511921117.006


132 Sensor Networks Architectures and Protocols

Figure 5.3. A link estimator, represented by the triangle in the center, uses four bits of
information from the three layers. Outgoing arrows represent information the estimator
requests on packets it receives. Incoming arrows represent information the layers actively
provide.

In summary, the link layer is an active area of research in sensor networking.
As energy efficiency becomes a focus on other mobile computing domains,
some of the ideas from sensor networks link layer might inform designs in those
spaces.

5.3 Tree-Based Routing

Collection trees are a core building block for sensor network applications and
protocols. In their simplest use, collection trees provide an unreliable datagram
routing layer that deployments use to gather data from the entire network to a
small number of collection points, such as a single base station. Additionally,
tree collection protocols provide the routing topology that underlies transport
protocols such as RCRT and Flush, described in Section 5.5.

A collection protocol builds and maintains minimum-cost trees to nodes that
advertise themselves as tree roots. Figure 5.4 shows an example of a routing tree
formed in the network as the result of running a collection protocol. Collection
is address-free: When there are multiple roots, collection sends the packets to
root with the minimum cost without knowing its address.

The design goals for collection are:
Reliability: A collection protocol should deliver at least 90% of end-to-end

packets when a route exists, even under challenging network conditions; 99.9%
delivery should be achievable without end-to-end mechanisms.

Robustness: The protocol should be able to operate without tuning or con-
figuration in a wide range of network conditions, topologies, workloads, and
environments.

Efficiency: The protocol should achieve this reliability and robustness while
incurring little overhead in terms of management traffic or framing overhead.
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Figure 5.4. Result of running the Collection Tree Protocol on an indoor testbed of 85 nodes.
All the nodes form a route to the collection point or root (node at the bottom left corner).

Many collection protocols have been proposed for sensor networks. Some col-
lection protocols, such as MultihopLQI (MLQI 2009), are platform-dependent,
whereas collection protocols such as MintRoute (Woo et al. 2003) and
CTP (Gnawali et al. 2009) are platform-independent. We will use CTP as an
example to study the design of a collection routing protocol.

5.3.1 CTP: Collection Tree Protocol

CTP (Gnawali et al. 2009) is a tree-routing protocol for sensor networks. Build-
ing on the functionality provided by the four-bit link estimator (Section 5.2) to
accurately estimate link qualities, CTP incorporates two mechanisms to achieve
high reliability, robustness, and efficiency. CTP uses an adaptive rate controller
for routing beacons. As long as the routing gradient in the network is consistent,
nodes reduce the frequency of control packets over time. When the network
detects a loop or other inconsistency, nodes send control traffic more quickly to
repair the topology. CTP also uses data traffic to actively probe the topology,
detecting routing problems and repairing them as needed. This enables CTP to
be highly agile and respond to broken links within a few packets.

All the nodes running CTP maintain an estimate of the cost (based on the
ETX metric [De Couto et al. 2003] of its route to the root. A given node’s cost
is the cost of its next hop plus the cost of its link to the next hop: The cost of
a route is the sum of the costs of its links. Roots advertise a cost of zero. Each
data packet contains the transmitter’s local cost estimate. When a node receives
a packet to forward, it compares the transmitter’s cost with its own. Since cost
must always decrease, if a transmitter’s advertised cost is not greater than the
receiver’s, then the transmitter’s topology information is stale and there may be
a routing loop. Using the data path to validate the topology in this way allows a
protocol to detect possible loops on the first data packet after they occur.
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Collection protocols typically broadcast control beacons at a fixed interval.
This interval poses a basic tradeoff: A small interval reduces how stale infor-
mation can get and how long a loop can persist, but uses more bandwidth and
energy. A large interval uses less bandwidth and energy but can let topological
problems persist for a long time. CTP’s use of adaptive beaconing breaks this
tradeoff, achieving both fast recovery and low cost. It does so by extending the
Trickle algorithm (Levis et al. 2004) to maintain its routing topology.

The most relevant property of the Trickle algorithm is the adaptive timer
interval. When the routing paths are reliable and stable, the timer interval is
increased exponentially, thereby decreasing the rate at which beacons are trans-
mitted. When events such as link dynamics or detected inconsistencies neces-
sitate routing path repair, the Trickle timer is reset to a small interval, thereby
increasing the rate at which the routing beacons are sent. More specifically, the
routing layer resets the beacon interval to a small value on three events:

1. It is asked to forward a data packet from a node whose ETX is not higher
than its own. The protocol interprets this as neighbors having a significantly
out-of-date estimate and possibly a routing loop. It beacons to update its
neighbors.

2. Its routing cost decreases significantly. The protocol advertises this event
because it might provide lower-cost routes to nearby nodes. In this case,
“significant” is an ETX of 1.5.

3. It receives a packet with the pull bit set. The “pull” bit advertises that
a node wishes to hear beacons from its neighbors, for example, because it
has just joined the network and needs to seed its routing table. The pull bit
provides a mechanism for nodes to actively request topology information
from neighbors.

In a network with stable links, both the first and second events are rare. As long
as nodes do not set the pull bit, the beacon interval increases exponentially to one
routing beacon every eight minutes. When the topology changes significantly,
however, affected nodes reset their intervals to 128 ms and transmit to quickly
reach consistency.

Gnawali et al. (2009) evaluated CTP on 12 different indoor testbeds with
20 to 310 nodes. They report achieving 90–100% data delivery reliability with
duty-cycled and non-duty-cycled link layers.

5.3.2 In-network Aggregation

Apart from its use for path computation and as an underlying building block for
higher-level protocols, tree-based routing is often used to guide the placement of
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in-network aggregation mechanism in sensor networks. In-network aggregation
enables nodes in the network to combine the data received from multiple nodes
into lossy or lossless summaries (depending on the application requirement) and
transmit these summaries to the destination, thereby reducing communication
overhead. In-network aggregation can be successfully used in sensor network
applications that report summaries of data to the user: The user perceives no
difference in the reported data, even though the summaries are computed in the
network to minimize communication overhead.

TinyDB (Madden et al. 2002), Directed Diffusion (Intanagonwiwat et al.
2000), and Synopsis Diffusion (Nath et al. 2004) are representative examples
of systems that employ in-network aggregation to minimize communication
overhead. These systems define the operation a node performs to transform data
received from multiple nodes into a single data item. Thus, each node transmits
one packet to the destination as opposed to forwarding all the packets it receives.

As an example, consider computing the minimum value of all sensor readings
in a network. To compute this aggregate, each node receives data from its children
in the routing tree, computes the minimum of all those data items and its own
sensor reading, and transmits only the computed minimum value to its parent in
the tree. When all the nodes in the network run this algorithm along the routing
tree, the root receives the minimum value of the entire network. With in-network
aggregation, each node in the network transmits only one packet to its parent on
each round.

The collection of data readings has been the dominant traffic profile of sensor
network applications. Although most applications report all the data to the root,
there are promising in-network aggregation algorithms that compute accurate
or approximate aggregates, thereby avoiding the communication overhead of
transmitting all data to the root.

5.4 Dissemination

Most sensor networks require the ability to send configuration parameters or
control messages to the entire network. Dissemination protocols are used to
reliably broadcast information from one or a small set of nodes to the entire
network in an energy- and bandwidth-efficient manner.

Efficient dissemination protocols are challenging to build. A simple flooding
approach, in which each node rebroadcasts the received dissemination packet,
can lead to congestion and cause substantial packet loss. Avoiding congestion
and collisions to improve efficiency requires moderating the pace at which
information is flooded to the network. Of course, such pacing results in higher
dissemination latency.
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The dissemination protocols in sensor networks have these design goals:

� Reliability. A disseminated packet must eventually be received by all nodes
in the network.

� Efficiency. Dissemination must use as few packet transmissions as possible.
� Low latency. Data must be disseminated to the network as quickly as possible.

We describe Drip (Levis and Tolle 2008) and DIP (Lin and Levis 2008) as
two case studies of dissemination protocols. Both of these protocols use the
Trickle algorithm (Levis et al. 2004) as their underlying mechanism to time the
transmission of dissemination packets, so we describe that first.

5.4.1 Trickle

Trickle (Levis et al. 2004) is an eventual consistency protocol that efficiently
bring data stored by multiple nodes in the network to a consistent state. In
Trickle, nodes store some local state (such as a data object or software binary)
with an associated version number that is monotonically increasing. When the
state is updated by any node, the version number is incremented. Trickle is used
to maintain consistency in the version number across the network, whereas the
Drip protocol, described later in the chapter, is used to transfer the actual state
between nodes.

Trickle is a gossip-based protocol: Each node periodically broadcasts its
known version number to its neighbors. If a node hears a later (that is, higher)
version number than its own, it pulls the new state from the node and updates
its version number accordingly.

To limit overhead, Trickle adapts the rate at which version information is
broadcast by sensor nodes. Each node maintains a local timer that determines
the rate at which the version information is broadcast. The timer rate is adjusted
based on the agreement between nodes in the local radio neighborhood. If all
nodes in a neighborhood have the same version, there is no need to rebroad-
cast frequently. The timer interval is increased exponentially following each
rebroadcast by a node, until it reaches a maximum interval duration. If a node
receives information with a higher version number, the timer is reset to a small
interval, which allows new information to be rapidly disseminated (Figure 5.5).
To avoid congestion and redundant transmissions, if a node detects that another
node has transmitted the new information before its timer expires, it cancels the
scheduled transmission and increases its timer interval.

5.4.2 Drip

Drip (Levis and Tolle 2008) is a data dissemination protocol built on top of
the Trickle algorithm. Whereas Trickle allows a node to discover the existence
of new versions of data, Drip adds the mechanism to transfer the data object
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Figure 5.5. Trickle timer used to time the packet transmissions of a dissemination protocol.
The Trickle timer starts with a small interval and doubles the interpacket interval after each
transmission until the timer is reset.

itself. The canonical use case is to supply all nodes with a new set of configu-
ration parameters. Trickle is used to inform nodes of the existence of the new
parameters, whereas Drip ensures all nodes actually get a copy of them.

Once a node learns that its version is out of date, it broadcasts a request
for the latest version. A node receiving this request replies by pushing the
data object to the requesting node using a series of packet transfers with link-
layer acknowledgment and retransmission. Because data transfers happen over
a single radio hop, they can be done efficiently without the need for explicit
packet routing; using Drip, the entire network can eventually receive the newest
version of a data object injected by one node. Figure 5.6 shows the evolution
of the communication overhead of Drip; the number of packet transmissions
settles at the rate corresponding to the maximum Trickle interval despite the
high overhead in the beginning.

5.4.3 DIP

Trickle and Drip are designed to support a single data object and associated
version information. DIP (Lin and Levis 2008) is a protocol that can efficiently
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Figure 5.6. Drip’s communication overhead grows slower over time, eventually settling at
the rate corresponding to the maximum Trickle interval when there are no dissemination
requests.
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disseminate a large number of data objects. Although Trickle can be used for this
purpose, the overhead of maintaining a separate timer and performing individual
broadcasts for each data object becomes prohibitive as the number of data objects
increases.

A simple approach is to transmit the complete set of known version num-
bers each round, using the Trickle algorithm. However, given the limited size
of radio packets on typical sensor node platforms, it is typically not feasible
to do this when the number of data objects is large. DIP uses an alternative
approach, called the scan algorithm, that maintains a single timer and adver-
tises a subset of the version numbers known by the node each time the timer
fires. The challenge is deciding which subset of version numbers to advertise.
DIP’s scan algorithm collects estimates of data item version numbers based on
neighbor advertisements. DIP then prioritizes the broadcast of data item ver-
sions that are likely to be newer than the ones in the neighborhood over rest
of the data items. Although this approach has low communication overhead, it
increases the latency for detecting the presence of new version numbers in the
network.

DIP uses the search algorithm to locate the updated values using a hash tree.
DIP advertises a summary of all the versions of data objects stored by a node,
which is computed as a hash of the version numbers. When a node receives
a hash summary different than its own, it knows that at least one item on the
transmitter node is of a different version than its own. However, it cannot tell
which item is different. The receiver then advertises its own summary: Instead
of a single hash covering all its data version numbers, it transmits a set of
summary hashes over smaller ranges, but covering the same range of data where
the difference occurred. This allows the original transmitter to narrow down the
changed data version to the size of the range of the hash summary in the packet.
This iterative exchange of messages with smaller ranges results in the nodes
traversing the hash tree to find the data item that has changed. When the nodes
determine the exact data item that is different, the nodes exchange the data value
corresponding to the new version number.

When a large number of new data items are introduced for dissemination, the
search algorithm can require a large number of message exchanges to accurately
identify the updated data item. In this scenario, it is more efficient to advertise
each data item because new versions can be identified using just a single message.
Also, switching to scanning after the search has narrowed the update to a small
set of items is more efficient than continuing the message exchange between the
nodes to search down the hash tree because lost packets will cause the search
to go back up the hash tree and the constant factors of searching are higher
than scanning with small ranges. The key insight behind DIP’s efficiency is its
switching between the search and scan algorithm depending on the network
conditions and the number of updates.

https://doi.org/10.1017/CBO9780511921117.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511921117.006


5.5 Reliable Transport 139

DIP’s communication overhead and new version detection latency stays
asymptotically constant with the order of the number of data objects, but incurs
logarithmic communication overhead in identification of the data item that has
changed. The authors evaluated DIP on a testbed of 80 MicaZ motes with
sixty-four data objects. In one experiment, the authors updated eight of the data
items. DIP disseminated these updates to the entire network with 50% and 15%
lower overhead and 80% and 60% less time than the search and scan protocols,
respectively.

5.4.4 Other Dissemination Protocols

Dissemination protocols are used not only to disseminate commands and con-
figuration parameters, but also to build higher-layer application-specific dissem-
ination services. One interesting example is disseminating executable programs
to the sensor networks. Deluge and Maté are good examples of such code dis-
semination protocols.

Deluge (Hui and Culler 2004) allows new executable binaries to be dissem-
inated to the network, which might be on the size of tens of kilobytes, which
is fairly large considering the limited radio bandwidth and high energy cost for
packet transmission. The executable program is divided into pages and injected
into a source node that acts as the seed for the dissemination protocol. When a
new page is received by a node, it advertises the page number. As an optimiza-
tion, a node advertises page i only if all previous pages [0, i) are also available
at the node. As in Drip, a node that learns of the availability of an executable
page it does not yet have will transmit a request for the page to be transferred to
it. Once the transfer of all the executable pages is complete, Deluge reprograms
the node with the assembled program image and reboots the node.

Instead of transferring entire executable images, it is also possible to make use
of a simple virtual machine on each sensor node, which can execute compact
bytecode programs. Maté (Levis and Culler 2002) is an example of such a
system. Maté programs are organized as a collection of capsules, each of which
can fit within a single radio packet. When a node receives a capsule with a
new version number, the node installs and runs the code in the capsule and
forwards the capsule to its neighbors. This process continues until the program is
disseminated and installed across the network. This greatly reduces the overhead
for reprogramming the network, but restricts programs to using the limited
instruction set defined by the Maté virtual machine. However, the Maté VM
can be customized with application-specific bytecodes implementing native
functions.

5.5 Reliable Transport

Many applications for WSNs require reliable transfer of data from sensor nodes
to the base station. This is especially true in domains involving high-resolution
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signal collection, such as structural (Chintalapudi et al. 2006; Kim et al. 2007b),
acoustic (Allen et al. 2008), or seismic (Werner-Allen et al. 2006) monitoring.
Transferring a large volume of data from a sensor node over a multihop path to
a base station is challenged by packet loss, radio channel contention, and lack
of buffer space on nodes acting as routers.

Although TCP is widely used on the Internet for reliable stream-based trans-
port, this approach is not suitable for lossy multihop wireless networks. This is
primarily because TCP interprets packet loss as being due to buffer overflow in
routers, and tunes the congestion window size accordingly. In WSNs, however,
the rate at which a source node injects packets into the network is the critical
parameter, since contention for the radio channel along a multihop path limits
the effective rate at which packets can be relayed. Unlike wired networks, in
wireless networks, packet loss is caused by transients in link conditions, col-
lisions, and routing path churn, rather than by persistent congestion. In this
section, we describe two approaches to reliable transport in sensor networks,
Flush and RCRT.

5.5.1 Flush

Flush (Kim et al. 2007a) is a reliable bulk transfer protocol for multihop WSNs.
The protocol operates over a routing tree such as MintRoute or CTP (Sec-
tion 5.3) rooted at a base station. The base station transmits a request for data
object stored on a given node using a broadcast flood (Section 5.4). The node
hosting the data object breaks it into multiple packets, each with a correspond-
ing sequence number, and streams those packets to the sink over the multihop
path.

Flush relies on several techniques to ensure reliability and high throughput.
First, both link-layer ACKs and end-to-end selective NACKs are used to recover
from lost packets. Second, data is streamed along the routing path to the sink
at a rate that is chosen carefully to avoid intrapath contention. Finally, Flush
only supports a single bulk transfer in the network at a time, to avoid interflow
interference.

Flush relies both on link-layer ARQ and end-to-end NACKs for reliability.
At the link layer, a packet will be retransmitted up to four times before being
dropped by the sender. Limiting the number of link-layer retransmissions is
necessary to account for changes in the underlying routing topology or node
failures. Link-layer retransmission paves over intermittent losses due to radio
channel noise and significantly reduces the number of expensive end-to-end
retransmissions.

The sink will send a selective NACK containing the sequence numbers of
missing packets in the flow after it believes the last source packet has been
transmitted, or after a timeout based on an estimate of the end-to-end RTT. Upon
reception of the NACK, the source retransmits those packets up the routing tree
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in the manner described earlier. This process repeats until the sink has received
the entire object.

The key contribution of Flush is its rate control algorithm that determines
the peak rate at which the source node can inject new packets into the net-
work without inducing loss due to intrapath collisions. In a multihop path, as
nodes forward data to the root, those transmissions potentially collide with other
transmissions both upstream and downstream along the path. A simple solution
would be to avoid any pipelining, but this would eliminate spatial reuse of the
radio channel, thereby reducing throughput.

Flush dynamically estimates the maximum sustainable sending rate to max-
imize throughput and avoid contention along the routing path. Nodes measure
their own packet transmission delay and receive feedback from upstream nodes
on their delays, and those of other nodes that might interfere with their transmis-
sions. The set of potential interfering nodes is determined based on snooping
the radio channel; Flush assumes that a node can overhear packet transmissions
from the interfering nodes. Flush relies on the underlying MAC protocol to
schedule individual packet transmissions, so this rate control is performed at the
transport layer.

Combining these techniques, Flush achieves reliable transfer throughput that
closely matches the best possible performance measured using a fixed transmis-
sion rate. The key is that Flush automatically determines the optimal rate, which
depends on the node’s depth in the routing tree and the overall network topology.
Flush scales well with long routing paths: The protocol has been evaluated using
a 48-hop linear chain of nodes deployed outdoors.

5.5.2 RCRT

RCRT (Paek and Govindan 2007) is another reliable transport protocol. Unlike
Flush, RCRT handles multiple concurrent reliable flows. This is necessary in
cases where all nodes are generating data simultaneously, requiring real-time
streaming of the data back to the sink, owing to the limited buffer capacity. In
RCRT, the base station performs centralized congestion control for all source
nodes, using global knowledge of the performance of each flow. This approach
permits global application of policies to drive allocation of network capacity.

Like Flush, RCRT uses end-to-end NACKs for repairing lost packets. The
essential congestion control mechanism is based on measuring the time to repair
a loss. If losses are repaired quickly enough, there is no need for rate adjust-
ment. However, if the repair time exceeds the expected packet round-trip time,
congestion is present in the network, and transmission rates are adjusted. RCRT
adapts the aggregate rate of all flows using an AIMD adaptation scheme. Once
the new aggregate rate is determined, individual flow rates are calculated based
on the current policy in use. Example policies include a demand-proportional

https://doi.org/10.1017/CBO9780511921117.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511921117.006


142 Sensor Networks Architectures and Protocols

scheme, in which rates are allocated in proportion to each flow’s desired rate,
and a fair policy in which all flows receive an equal rate.

The authors evaluated RCRT on an indoor testbed of forty nodes, using tree
routing with paths up to eight hops in length. They show that RCRT is able to
sustain a per-node traffic demand of 0.8 packets/s, which is 88% of the optimal
sustainable rate for their testbed. Further, RCRT does not suffer congestion
collapse when load is increased. RCRT’s goodput is more than double that of
IFRC (Rangwala et al. 2006), another protocol designed for network-wide rate
control.

Comparing Flush and RCRT, the main difference is that Flush supports a
single reliable flow whereas RCRT supports multiple simultaneous flows and
supports policies to balance the amount of bandwidth allocated to each. Flush
computes the transmission rate at the sink using feedback from downstream
nodes, whereas RCRT performs a centralized search for stable transmission
rates at the base station. Unlike Flush, RCRT does not assume that nodes can
overhear packet transmissions from other nodes. Both protocols rely on end-to-
end selective NACKs for reliability, and both can work with any routing protocol
that provides bidirectional paths to the sink.

5.6 Support Protocols

Apart from protocols for data communication, wireless sensor networks often
employ a range of support protocols that provide services such as time syn-
chronization and node localization. In this section, we will briefly discuss three
representative protocols in this class: the Flooding Time Synchronization Pro-
tocol (FTSP) (Maroti et al. 2004), localization using acoustic beacons (Simon
et al. 2004), and radio interferometric localization (Maróti et al. 2005).

5.6.1 The Flooding Time Synchronization Protocol

Time synchronization is an essential service for sensor networks in which the
data acquired by nodes must be accurately timestamped against a global clock.
Individual sensor nodes use oscillator crystals with a tolerance of around 40 ppm,
causing the local clocks of each nodes to drift substantially. Moreover, this drift
varies over time owing to fluctuations in temperature and voltage. Applications
such as acoustic or seismic monitoring (Simon et al. 2004; Chintalapudi et al.
2006; Werner-Allen et al. 2006) require time accuracies in the millisecond or
microsecond range, so it is inadequate to perform a one-time translation of
each node’s local clock to a global timebase. Time synchronization must be run
periodically.

A simple approach would have a central node (such as the base station)
advertise a global time to all nodes in the network, which would set their local
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clocks accordingly. However, propagating timebase information throughout a
large network is challenging owing to the use of multihop paths and the timing
uncertainty of radio communication. Transmitting and receiving radio messages
incurs nondeterministic delays due to the MAC protocol, transmission and recep-
tion overheads, and interrupt processing delays. These delays must be accounted
for when relaying timebase information through the network.

The Flooding Time Synchronization Protocol (FTSP) (Maroti et al. 2004)
operates as follows. A single node acts as the root of a synchronization tree; the
local clock of the root node is used as the global timebase. Failure of the root
node leads to election of a new root. The root periodically beacons the global
time value. Nodes within one hop of the root receive these beacons and compute
a mapping from their local clock to the global timebase, as described later in
this chapter. Each node rebroadcasts the beacon, allowing the global time to
propagate throughout the network.

FTSP carefully accounts for the uncertain communication delays by times-
tamping outgoing beacon packets after the MAC delay, just prior to the actual
transmission of the first byte of the packet. Likewise, a receiver timestamps the
received packet on the arrival of the first reception interrupt. On the Chipcon
CC1000 radio used in the study (Maroti et al. 2004), an interrupt is generated for
each received byte of the packet. Receivers can determine the interrupt process-
ing jitter by measuring the time between each successive interrupt (Figure 5.7).

To compensate for clock drift, each node measures the offset between the
sender’s timestamp and its local clock. Given that clock drift is expected to
be linear over short time intervals, nodes perform a linear regression on these
offsets to correct their local clocks for drift.

FTSP has been evaluated extensively on a testbed of 60 Mica2 nodes. All
nodes were placed within radio range of each other, but a 6-hop multihop
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Figure 5.7. To minimize the impact of nondeterministic delays in packet timestamping on
time synchronization accuracy, FTSP implementation on the CC1000 radio records timing
for each byte-boundary in a packet and computes an aggregate over these times as the
packet timestamp. Source: Maroti et al. (2004).
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topology was induced in software. To measure time synchronization accuracy,
a reference broadcaster node transmits periodic messages that all nodes in
the testbed receive and timestamp using FTSP. Since it is assumed that all
nodes should receive the message at the same time (module differences in
RF propagation delay, which are negligible in the small testbed), comparing
the timestamps of this global event across nodes allows one to assess timing
accuracy. The authors show that FTSP exhibits an average pairwise error of 3 μs
and an overall maximum error of less than 14 μs.

5.6.2 Localization Using Acoustic Ranging

Accurately determining the position of sensor nodes is another essential service
in many deployments. Although many sensor networks involve static nodes that
may be placed in the field by hand, it is inconvenient and error-prone to rely on
manual surveying or GPS for determining a node’s position. GPS only works
outdoors and only provides an accuracy of a few meters. For sensor networks
deployed in an ad hoc fashion (e.g., dropped from an airplane) or involving
mobile nodes, it is critical that the network be able to self-localize.

Localization is a heavily studied topic, and a wide range of techniques
have been proposed. One of the most common approaches involves ranging
using acoustic time-of-flight (Simon et al. 2004). Sensor nodes are equipped
with a sounder and a microphone. A source node broadcasts a radio message
immediately followed by an acoustic chirp that can be detected by nearby
nodes using their microphones. Receivers timestamp the arrival of the RF
message and the chirp. Since it is assumed that the RF propagation delay
is negligible, the time-of-flight of the chirp can be readily computed as the
time between the reception of RF message and the acoustic chirp. Assuming
the speed of sound in the environment is known (which can vary based on
temperature and humidity), the approximate range to the source node can be
computed.

This process is made more challenging by the limited signal-processing
capability of motes, missed or incorrect chirp detections, reflections, and limited
acoustic sensing range. To address these issues, the system transmits multiple
chirps that are combined in postprocessing to enhance SNR. A digital bandpass
filter is also used to suppress noise. In Simon et al. (2004), this ranging technique
is shown to be accurate to within 10 cm over a range of up to 9 m.

Once a set of pairwise range estimates are known, they can be combined
to determine the relative location of nodes in the network. One approach is
to collect range estimates at a central node (e.g., the base station) and perform
iterative optimization until a stable configuration is determined. Landmark nodes
with known locations are used to anchor the network’s orientation to geographic
coordinates.
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5.6.3 Radio Interferometric Localization

As an alternative to acoustic ranging, it is possible to use RF signals alone to
obtain extremely accurate range estimates between nodes. The radio interfero-
metric technique described in Maróti et al. (2005) involves two nodes transmit-
ting sinusoid RF patterns at known frequency offsets. A pair of receiver nodes
can determine the beat pattern induced by the interfering signals. This results
in a series of equations that relates the phase offset of the beat patterns to the
nodes’ relative locations. Eight nodes are able to localize themselves in three
dimensions. Using a network of 16 nodes, the authors demonstrate the average
positional error to be 3 cm with a maximum of 6 cm. However, this technique is
not yet appropriate for mobile networks because it involves extensive measure-
ments and calibration. It also requires the use of radios that can be configured
to transmit an unmodulated sine wave. Although more recent 802.15.4 radios
provide a test mode with this capability, it is not possible to tune the frequency
of the sine wave at fine enough granularity.

5.7 Cross-Layer Concerns

Sensor network protocol designs face a tension between the desire to exploit
layering and the need for cross-layer optimizations to get the best efficiency
and performance. Although this problem is evident in conventional networks
as well, in sensor networks it is particularly pronounced due to the extreme
resource limitations of sensor nodes.

Sensor network protocols have typically followed a layering principle that
separates the physical, link, routing, and application layers, as we have presented
in this chapter. However, many designs perforate the layer interface by provid-
ing control knobs and feedback to higher levels of the stack. B-MAC (Polastre
et al. 2004) exposes a range of control parameters such as the listen interval
and preamble length. SP (Polastre et al. 2005b) provides a neighbor table with
link state and congestion information. The FTSP time synchronization proto-
col (Maroti et al. 2004) relies on link-layer packet timestamping well below
the FTSP protocol layer itself. Each of these examples illustrates the need for
cross-layer information in designing sensor network protocols. Given that sen-
sor networks are not constrained by legacy application software and standards
compliance, the community has had the opportunity to explore the protocol
design space more broadly and experiment with vastly alternative designs.

Taking cross-layer design to the extreme, Dozer (Burri et al. 2007) is a
system for low-power data collection for environmental monitoring. Unlike
previous designs that largely separated the MAC, routing, and application layers,
Dozer fully integrates these functions to achieve extremely efficient operation.
The goal is to permit nodes to spend the maximum amount of time in an
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Figure 5.8. Packet transmission and reception time synchronization between a parent and
its two children. The parent sends a beacon (B) to determine the transmission slots for the
children. The children transmit the data messages (D), which are explicitly acknowledged
(A). Source: Burri et al. (2007).

energy-efficient sleep mode. In Dozer, nodes make use of tree routing. TDMA
is used for scheduling communication; each parent node in the tree defines the
TDMA schedule for its children (Figure 5.8). This approach allows the parent to
avoid idle listening by waking up only when a child is about to transmit. There is
no explicit collision-avoidance mechanism apart from randomization of TDMA
schedules across nearby nodes.

Dozer’s tree formation protocol is based on periodic beacons that each node
transmits to maintain the TDMA schedule for its children. A node wishing to join
the tree first listens for beacons and selects a parent based on the potential parent’s
depth in the tree and the number of children it has (which can be determined
from the beacon message). The node joins by sending a connection request to
the chosen parent, which adds it to the TDMA schedule. Nodes periodically
listen for beacons from other potential parents and cache this information so
that a new parent can be selected quickly in the event of a parent failure. Nodes
that are unable to join the network drop into a suspend mode to avoid polling
the radio channel continuously.

Dozer incorporates a number of techniques to further improve efficiency.
Each node pads its TDMA schedule by a random amount on each round to avoid
schedule collisions between sibling nodes in the tree. This avoids the need for
explicit coordination of TDMA schedules across nodes. Child nodes predict the
length of each round’s random padding using a pseudorandom number generator
in which the seed is shared with the parent. Although there is no guarantee that
collisions will not happen, the randomized schedule makes multiple collisions
in successive rounds far less likely.

Dozer has been evaluated in an indoor network of forty nodes over the span
of several weeks. The sensor sampling interval was set to be 120 s and the
beacon interval was set to 30 s. The network obtained very low message losses
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(an average of 1.29%) with an overall average radio duty cycle of just 0.1679%.
This yields a mean energy consumption of just 0.082 mW.

5.8 The Emergence of IP

In recent years, there has been increased interest in linking wireless sensor
networks with conventional IP-based networks at the IP protocol layer. Initially,
it was thought that the IP family of protocols would be too heavyweight to run
on resource-limited sensor nodes, or that such protocols would be inappropriate
for the new demands of sensor network applications. However, a substantial
engineering effort by two IETF working groups – IPv6 over Low power WPAN
(6LoWPAN) and Routing Over Low-Power and Lossy Networks (ROLL) – has
resulted in efficient IP protocol implementations for sensor networks.

5.8.1 IP Packet Frame

The IETF 6LoWPAN working group has standardized the encoding of IPv6
packets on 802.15.4 networks with its publication of RFC 4944 (Montenegro
et al. 2007). The IEEE 802.15.4 standard is likely to be the most pervasive link
layer used in low-power wireless networks, such as sensor networks. Transmis-
sion of IPv6 packets over these links is challenging due to the limited packet size
supported by 802.15.4. Whereas IPv6 packets can be as large as 1,280 bytes,
802.15.4 only supports a maximum packet size of 102 bytes, assuming max-
imum frame header overhead. By default, the IPv6 header occupies 40 bytes,
leaving little room for application payload.

To reduce this overhead, the 6LoWPAN working group has defined a format
based on header compression. In this scheme, a transmitter substantially com-
presses the header of outgoing packets by substituting or eliding header fields
that have common values or that can be inferred from other header fields. The
40-byte IPv6 header can be compressed to as little as two bytes.

5.8.2 IP-Based Routing Protocols

Although no IP-based routing protocol for sensor networks has been standard-
ized, there are several IP-based protocols in use in sensor networks both in
commercial products and research.

An IP-based routing protocol must support unicast routing between arbitrary
nodes in the network. In sensor networks, a combination of tree-based routing
and source routing is typically used to enable unicast routing. In Blip, an IPv6
protocol stack implemented in TinyOS, all the nodes in the network first form a
tree-routing topology. Then the nodes periodically send their topological infor-
mation, such as their parent in the routing tree, to the root of the network. When
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a node needs to send a packet to an arbitrary node in the network, the packet is
first forwarded to the root. The root, which has topological information for all
the nodes in the network, then source-routes the packet to the destination.

The recently formed IETF ROLL working group is tasked with standardiz-
ing the routing protocols for the low-power networks such as wireless sensor
networks. The working group, after a survey of wireless network protocols, con-
cluded that no existing IETF protocol meets all of the requirements of these low
power networks. At the time of this writing (October 2010), the ROLL working
group has produced a proposed standard for routing protocols to be used in these
lossy and low-power networks.

5.9 Sensor Networks and the Future Internet

Wireless sensor networks have broad implications for the future design of the
Internet. The sheer number of sensor network nodes that may be deployed in the
future raises significant challenges in terms of naming and addressing, commu-
nication protocols, resource management, and reliability. Of course, sensor net-
works differ substantially from conventional Internet hosts. They are extremely
resource-limited; connected via wireless mesh networks; and often operate at
low duty cycles. Further, the traffic produced by sensor networks is not typically
dominated by unicast end-to-end flows; much traffic is multipoint-to-point (e.g.,
data aggregation up a spanning tree) or point-to-multipoint (dissemination to all
nodes in the WSN).

Two opposing views have emerged with respect to the relationship between
sensor networks and the Internet at large. At one extreme, sensor networks are
treated as special-purpose appliances that would be connected to the Internet
via a gateway. The gateway would translate between TCP/IP (and higher-layer
protocols, such as HTTP or Web Services calls) and a low-level, possibly propri-
etary, protocol used within the WSN itself. ZigBee (The ZigBee Alliance 2009)
is emerging as one contender for the back-end sensor network protocol and
defines both routing and device profiles for a range of applications. The “smart
gateway” approach presumes that sensor networks will evolve independently
of the rest of the Internet, using specialized protocol implementations that are
tailored for the resource-constrained, low-duty-cycle nature of sensor networks.
The gateway can provide additional services such as storage and caching.

At the other extreme, sensor networks would be treated as first-class citizens
on the Internet, communicating directly via TCP/IP to other Internet-based
clients and applications. The ROLL working group of the IETF is developing
routing solutions for sensor networks based on an end-to-end IP solution. In
Section 5.8, we summarize the various technical directions being explored within
this space. The upshot is that it is now possible to communicate with WSN nodes
using a variant of IPv6 with special support for the limited memory, bandwidth,
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and energy capacity of sensor nodes. This approach significantly narrows the
gap between WSNs and standard Internet applications.

The tension between these two competing approaches arises because sen-
sor networks challenge the “end-to-end principle” (Saltzer et al. 1984) that has
predominated the Internet architecture for decades. A smart gateway pushes
complexity into the network (rather than the edges) to support the limited capa-
bilities of a sensor network, whereas an IPv6-based solution upholds the end-
to-end principle.

Regardless of the protocol stack used, bridging between WSNs and the Inter-
net raises a number of special considerations that have yet to be fully resolved.
The first is the nature of communication between user applications and sensor
networks. End-hosts communicating with a sensor network must recognize that
these devices cannot be treated like conventional Internet hosts in terms of the
data rate, latency, and nature of traffic that WSNs can support. Although it is
technically possible to run a lightweight Web server on a WSN node running an
IPv6 stack, this may not be the best way for users to interface to the network.
More likely, a programmatic interface (e.g., via RPC) will be required, as well as
a portal to access a sensor network providing access to aggregate and historical
data. Moreover, making WSNs directly accessible via the Internet will no doubt
raise concerns over the impact of malware or buggy protocol implementations.
Deployed WSNs may need to be “protected” from DoS attacks, port scanners,
and viruses that would potentially disrupt their operation.

Moreover, transport and routing protocols present challenges when running
across the boundary between the Internet and a resource-constrained sensor
network. As described earlier, sensor network routing protocols are significantly
different than their Internet counterparts. As a result, routing paths spanning
the Internet and sensor networks will traverse segments with very different
characteristics. From the transport protocol perspective, packet loss may occur
for very different reasons on different segments of the path. As an example, TCP
interprets packet loss as the result of congestion, which is often true in wired
networks but less prevalent within a multihop wireless network. As a result,
TCP buffers, windows, and timers will either stretch the limited sensor node
resources or underutilize Internet end-host resources. Thus, transport protocols
must evolve to work well under these asymmetric conditions.

Of course, link and routing protocols only provide the lower layers of a
protocol stack. It is still necessary to provide protocol layers for accessing
sensor data, tasking sensors, and administrative control. These protocols have
yet to be defined, though it may be possible to leverage existing standards, such
as IEEE 1451, which provides mechanisms for communicating, with a wide
range of sensors and actuators.

Once sensor networks have been deployed in more widespread settings, dis-
covery protocols will be a major concern. Applications must be able to query
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the operational characteristics of the sensor network, such as what types of sen-
sors are installed; the locations of those sensors; and whether sensors have been
recently calibrated or serviced. Likewise, the network should export metadata to
report whether sensor nodes have failed. This is critical when requesting aggre-
gate data from a large network, since the number and placement of failed nodes
can have a substantial impact on the results that are returned.

Finally, conventional approaches to naming and addressing – such as DNS –
seem to be ill-suited to sensor networks, which may consist of a large number of
nodes whose population and capabilities change over time. Rather than address-
ing individual sensor nodes, a more appropriate paradigm may be to name the
data using a semantic addressing scheme. A declarative query interface such as
TinyDB (Madden et al. 2002) allows a user to request data with given filtering,
aggregation, and periodicity parameters.

Although this chapter focuses on static sensor networks, a new class of net-
works involving mobile nodes is emerging. Examples include wildlife tracking
using GPS collars (Zhang et al. 2004) and opportunistic collection of sensor
data using cell phones carried by individuals (Mun et al. 2009). Hybrid net-
works, combining both static and mobile sensors, are another important future
direction. Mobility makes it difficult to name nodes and requires a different
approach to routing given that nodes may be disconnected from the network for
significant periods of time. Furthermore, using sensors that are not necessarily
“owned by” the sensor network in which they participate (such as cell phones)
raises a number of issues in terms of accountability, security, and privacy.

If history is any guide, the increasing diversity of devices and applications
connected to the Internet will soon encompass sensor networks as well. However,
the traffic characteristics produced by sensor networks will be substantially dif-
ferent than conventional uses of the Internet, even with the increasing prevalence
of other embedded and mobile devices, such as smartphones. Sensor networks
will mostly be generators of traffic rather than sinks, so the focus will be on
optimizing the outflow of data. Likewise, sensor networks may not be limited by
the demand for human-tolerable access latencies, opening up the design space
even further.

5.10 Conclusions

Wireless sensor networks are a fundamentally new kind of distributed com-
puting system that present new opportunities and challenges for network pro-
tocol design. Their extreme constraints on energy, memory, bandwidth, and
computational resources has led to new protocol designs at every layer of the
stack, including link, routing, reliable transport, and application interfaces. Over-
all, sensor network protocol designs strive for low-power operation in the face of
variable link conditions, node failures, and changing application requirements.
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As a result, much of the research to date has focused on cross-layer approaches
that highly specialize the protocol stack for a given application. The recent
emergence of lightweight IPv6 implementations for sensor nodes has led to new
questions about the role that sensor networks should play in the evolving Inter-
net architecture. Although many open questions remain, we expect that further
experience with this technology in both academic and commercial settings will
lead to increased convergence with the Internet as a whole.

References

Allen, Michael, Girod, Lewis, Newton, Ryan, Madden, Samuel, Blumstein, Daniel T., and
Estrin, Deborah. 2008. VoxNet: An Interactive, Rapid-Deployable Acoustic Monitoring
Platform. Proceedings of the 7th International Conference on Information Processing in
Sensor Networks (IPSN ’08).

Buettner, Michael, Yee, Gary V., Anderson, Eric, and Han, Richard. 2006. X-MAC: A
Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks. Proceedings
of the 4th International Conference on Embedded Networked Sensor Systems (SenSys
’06), pages 307–320.

Burri, Nicolas, von Rickenbach, Pascal, and Wattenhofer, Roger. 2007. Dozer: Ultra-
Low Power Data Gathering in Sensor Networks. Proceedings of the 6th International
Conference on Information Processing in Sensor Networks (IPSN ’07), pages 450–
459.

Chintalapudi, Krishna, Paek, Jeongyeup, Kothari, Nupur, Rangwala, Sumit, Caffrey, John,
Govindan, Ramesh, Johnson, Erik, and Masri, Sami. 2006. Monitoring Civil Structures
with a Wireless Sensor Network. IEEE Internet Computing.

De Couto, Douglas S. J., Aguayo, Daniel, Bicket, John, and Morris, Robert. 2003. A High-
Throughput Path Metric for Multi-Hop Wireless Routing. Proceedings of the 9th ACM
International Conference on Mobile Computing and Networking (MobiCom ’03).

Fonseca, Rodrigo, Gnawali, Omprakash, Jamieson, Kyle, and Levis, Philip. 2007. Four Bit
Wireless Link Estimation. Proceedings of the Sixth Workshop on Hot Topics in Networks
(HotNets VI).

Gnawali, Omprakash, Fonseca, Rodrigo, Jamieson, Kyle, Moss, David, and Levis, Philip.
2009. Collection Tree Protocol. Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys’09).

Hui, Jonathan W., and Culler, David. 2004. The Dynamic Behavior of a Data Dissemina-
tion Protocol for Network Programming at Scale. Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems (SenSys ’04). ACM Press, pages
81–94.

Intanagonwiwat, Chalermek, Govindan, Ramesh, and Estrin, Deborah. 2000. Directed Dif-
fusion: A Scalable and Robust Communication Paradigm for Sensor Networks. Proceed-
ings of the International Conference on Mobile Computing and Networking (MobiCom
’00).

Kim, Sukun, Fonseca, Rodrigo, Dutta, Prabal, Tavakoli, Arsalan, Culler, David, Levis,
Philip, Shenker, Scott, and Stoica, Ion. 2007a. Flush: A Reliable Bulk Transport Protocol
for Multihop Wireless Networks. Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems (SenSys ’07).

Kim, Sukun, Pakzad, Shamim, Culler, David, Demmel, James, Fenves, Gregory, Glaser,
Steve, and Turon, Martin. 2007b. Health Monitoring of Civil Infrastructures Using Wire-
less Sensor Networks. Proceedings of the International Conference on Information Pro-
cessing in Sensor Networks (IPSN ’07).

https://doi.org/10.1017/CBO9780511921117.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511921117.006


152 Sensor Networks Architectures and Protocols

Levis, Philip, and Culler, David. 2002. Maté: A Tiny Virtual Machine for Sensor Net-
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