
3 Solar (Light) Energy Harvesting

3.1 Introduction

The ubiquitous presence of sunlight makes solar energy one of the most abundant

sources of ambient energy. Consequently, harvesting of light wave energy is one of

the most important applications of energy harvesting technologies. This chapter

presents the principles of solar cell operation and focuses on the challenges

and optimization of light energy harvesting circuits and their integration with

other harvester circuits and antennas, topics that are fundamental toward the

implementation of energy autonomous wireless sensors.

The chapter begins with an introductory section describing the origins of

solar cell technology. Next measures of light energy and the solar cell model

and efficiency are presented. Finally, the integration of solar cells with antennas

and the combination of various energy harvesting sources are discussed.

3.2 History

Solar energy harvesting, or more generally light energy harvesting, consists of

converting energy contained in photons of light into electrical energy. This is a

one-step process where a photon, a quantum of energy of light, is absorbed by

an electron in a solid. The electron is excited in a higher energy state where it

is able to move, generating an electric current [61].

This phenomenon was first studied by Edmond Bequerel in 1839 [62]. Bequerel

observed that an electrical current was produced when two platine or gold elec-

trodes dipped in a solution that can be acid, neutral, or alcaline are illuminated

by unequal light intensity. This is known as the photovoltaic effect. Experiments

by other researchers followed and, most notably, in 1876, William Adams and

Richard Day observed an electrical current when a selenium sample in contact

with two heated platinum contacts was illuminated by light [61]. The first solar

cell is attributed to Charles Fritts, who installed the first rooftop solar panel by

coating selenium with gold in 1894.
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When a semiconducting material such as silicon is illuminated by light,

light photons with energy above the band gap of the material excite carri-

ers, which results in an observed electrical current [6]. Specifically, electrons

from the valence band of the semiconductor that absorb the incoming pho-

tons are excited into the conduction band, resulting in electron–hole pairs

and therefore an increased conductivity. A piece of semiconducting material

with ohmic contacts is a photoconductor. In order to be able to generate

current and avoid the subsequent fast recombination of the electron–hole

pairs, photodiodes are utilized instead of photoconductors [63]. There exist

four types of photodiodes, namely p-i-n, p-n, heterojunction, and metal-

semiconductor (Schottky barrier) photodiodes [64]. Conventional wafer type

solar cells are p-n photodiodes, whereas thin-film solar cells are typically p-i-n

photodiodes [63].

There are three generations of solar cells. The first generation includes wafer-

based solar cells mainly built on silicon. The disadvantages of wafer-based solar

cells are both high cost and low solar-to-electrical energy conversion efficiency.

Approximately half of the cost of a Si wafer (c-Si) photovoltaic module is

attributed to wafer preparation [63]. The second generation began in the early

1980s and includes thin film solar cells [65]. Thin film technology both reduced

material costs and allowed a much larger size of the unit of manufacturing

of approximately 100 times compared to the first-generation unit size, which

was limited to the wafer size. In 2003, the production cost of first-generation

technology was 150 USDm−2 with obtained efficiencies of 20%, whereas second-

generation technology offered reduced production costs of 30 USDm−2 with

lower efficiencies of 5%–10% [65].

Third-generation photovoltaic technology combines the low-cost fabrication of

thin film technology with novel design concepts able to lead to much higher

efficiencies. One such possibility is the use of tandem solar cells where two

or more cells of different materials and band-gap energy are stacked on top

of each other aiming to maximize the efficiency of photovoltaic conversion of

photons with different energy [65]. Another approach is the possibility of exciting

multiple electron–hole pairs from high-energy photons. Finally, another tech-

nique is the solar thermal electric one, where sunlight is first converted to heat

and subsequently converted to electrical energy or reradiated as light (thermo-

photovoltaics).

Finally, an emerging solar cell technology is based on quantum dots. Quantum

dots are semiconductor nanoparticles that have optoelectronic properties that are

tunable according to their shape and size. Colloidal quantum dots are synthesized

into thin films from liquid solutions, and they have shown a very promising

potential in solar cell applications due to the ability to tune their band gap

by modifying the fabrication conditions [66] and due to the possibility of large-

scale fabrication using, for example, spin coating or inkjet printing methods [67].

They have been considered for single junction or tandem solar cell configurations

exploring both the infrared and visible solar spectra [66].
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Figure 3.1 Air mass standards.

3.3 Light Sources and Measures

The various light sources are characterized by measuring their irradiance Iλ,

which has units of power density (Wm−2). Solar light with a power density of

1,000 Wm−2 (= 100 mWcm−2) is also called 1 sun. The irradiance measures

the power density of a radiated wave across the complete frequency spectrum. In

contrast, the spectral irradiance consists of the irradiance per wavelength, and

it is typically measured in Wm−2nm−1.

The irradiance should be distinguished from illuminance, which is a photomet-

ric measure with units lux or lumens per square meter (lux = lm m−2), which

measures the perceived power density of light weighted by the sensitivity of the

human eye [68]. The sensitivity of the human eye is defined by a luminosity

function. The visible light spectrum extends from 380 nm to 750 nm, while the

solar spectral irradiance is typically provided in the 280 to 4,000 nm interval.

The American Society for Testing and Materials (ASTM) has developed the

standard solar spectral irradiance distributions that are used in evaluating solar

cell performance [69]. The air mass zero (AM0) or extraterrestrial (ETR) irra-

diance spectrum is provided in the standard ASTM E-490-00 developed in 2000

[70] based on several sets of measured data from satellites or space missions. The

total solar irradiance of AM0 is 1.366 KWm−2, known as the solar constant [69].

Additionally, ASTM defines two terrestrial solar irradiance distributions, the

AM1.5 Global (AM1.5G) and the AM1.5 Direct and Circumsolar (AM1.5D),

included in the standard ASTM-G-173-03 [70]. Both distributions are defined

assuming a surface that is receiving the solar radiation that has a tilt of 37◦

toward the Earth’s equator. The tilt angle selected is approximately the average

latitude for the contiguous U.S.A. The air mass AM quantity is derived from the

length of the path that the solar radiation waves are passing through within the

earths atmosphere. An air mass of 1 (AM1) corresponds to a solar zenith angle

of 0◦. The AM1.5 standard distributions correspond to a solar zenith angle of

48.18◦ as shown in Figure 3.1.

The global spectral irradiance distribution includes both direct and diffuse

solar radiation and has a total irradiance of 1 sun = 1 KWm−2. The direct and

circumsolar distribution does not include diffuse radiation, and it corresponds to
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Figure 3.2 Standard solar spectral irradiance distributions.

an irradiance of 0.9 KWm−2 [7]. The three standard distributions are shown in

Figure 3.2.

Indoor light sources have a much lower irradiance between 100 and 1,000 times

less than outdoor sunlight. Specifications for indoor light sources are usually

given in photometric units, with a typical minimum value of 500 lux required

for libraries and offices [8]. The AM1.5 global spectrum corresponds to 100 Klux

in photometric units. However, the actual levels of solar irradiance can vary

significantly from the values specified in the AM1.5 standards due to many

factors such as the daily variation of the air mass that solar radiation has to

travel through during a single day as the position of the sun varies relative to

the earth, and due to the presence of clouds that scatter direct sunlight. It is

reported in [71] that the average solar irradiance on earth is 170 Wm−2 which

is approximately one sixth of the AM1.5G standard irradiance.

3.4 Efficiency of Solar Cells

The most important parameter in characterizing the performance of solar cells

is their efficiency. The efficiency η is defined as the ratio of the electrical power

generated by the solar cell Po to the incident light power Pi.

η = Po/Pi (3.1)

The incident power is the integral of the irradiance Iλ over the surface A of

the solar cell, which for a uniform irradiance is given by

Pi = IλA. (3.2)

The theoretical calculation of the output power of the solar cell requires

the application of solid-state theory and thermodynamics. There are several
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theoretical works dealing with the efficiency of solar cells; however, a widely

used model was proposed by Shockley and Queisser [72].

In computing the efficiency of solar cells, Shockley and Queisser assumed that

the source of light energy, the sun, and the solar cell itself behave as black bodies

with temperature Ts and Tc respectively. In [72], it was postulated that the solar

cell efficiency depends on four parameters, namely the energy band gap Eg of

the material comprising the solar cell, the ratio between the temperature of the

sun Ts and the temperature of the solar cell Tc, the probability t that a photon

with energy above the band gap will excite an electron to the conduction band

and generate an electron–hole pair and a geometric factor fw related to the angle

subtended by the sun toward the solar cell. This is expressed as

η = η(xg, xc, t, fw), (3.3)

where

xg = Eg/kTs (3.4)

xc = Tc/Ts (3.5)

and k = 1.38064852 · 10−23 m2 kg s−2 K−1 is Boltzmann’s constant. In (3.3) the

normalized energy parameters xg and xc were used, similarly to [72]. Shockley

and Queisser computed the ultimate efficiency limit and the detailed balanced

efficiency limit for p-n junction solar cells, which will be described next. In the

following, the probability t is assumed to be equal to one.

3.5 Ultimate Solar Cell Efficiency

The ultimate solar cell efficiency ηg depends only on the energy band gap Eg

of the material comprising the solar cell and the temperature of the sun Ts

expressed through the single parameter xg [72].

Every photon with energy E = h · f > h · fg = Eg, where f is the frequency

of the photon and h = 6.62607004 · 10−34 m2kg s−1 is Planck’s constant, excites

a single electron to the conduction band. Because the sun is considered a black

body with temperature Ts it radiates photons whose energy follows the Planck

distribution.

The number of photons Q with energy between two limits E1 and E2 for a

black body described by a Plank distribution with temperature T , is calculated

by integrating the Planck distribution from E1 to E2,

Q(T,E1, E2) =
2π

h3c2

∫ E2

E1

E2dE

eE/kT − 1
(3.6)

Therefore, the number of photons Qs with energy larger than Eg takes the form

Qs = Q(Ts, Eg,+∞), which is computed as
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Qs = Q(Ts, Eg,+∞) =
2π

c2

∫ ∞

fg

f2df

ehf/kTs − 1
=

2π(kTs)
3

h3c2

∫ ∞

xg

x2dx

ex − 1
. (3.7)

It is further assumed that the excited electrons quickly lose any excess energy

above Eg as thermal energy. The total output power available by the solar cell

is then

Po = hfgQsA. (3.8)

The irradiance Iλ of the light impinging the solar cell is given by integrating

the Planck distribution from 0 to +∞,

Iλ =
2πh

c2

∫ ∞

0

f3df

ehf/kTs − 1
=

2π(kTs)
4

h3c2

∫ ∞

0

x2dx

ehx − 1
=

2π5(kTs)
4

15h3c2
= σT 4

s ,

(3.9)

where σ = 5.670367J m−2s−1K−4 is the Stefan–Boltzmann constant. Using (3.2),

(3.8), (3.7), and (3.9), one gets

ηg =
EgQs

Iλ
=

hfgQs

Iλ
=

15xg

π4

∫ ∞

xg

x2dx

ex − 1
. (3.10)

One can easily compute numerically (3.10) for different energy band-gap values

and a given sun temperature. Shockley and Queisser showed that the ultimate

efficiency ηg has a maximun value of 44% corrseponding to a normalized band

gap of xg = 2.2 (or Eg = 1.1 eV) assuming a sun temperature of 6,000 K.

The energy unit electon-volt 1 eV = 1.60217662 · 10−19 J is typically used in

solid-state physics. A more accurate ultimate efficiency value can be computed

by considering a sun temperature of 5,800 K or by integrating a measured solar

spectrum such as the AM0 or AM1.5 instead of the Planck distribution [73].

3.6 Detailed Balance Limit

In order to compute a more accurate efficiency value, Schockley and Queisser

[72] considered the various contributions to the generation and recombination

of carriers in the solar cell, thus defining the detailed balance limit of the solar

cell efficiency. There are five different contributions to the carrier generation

and recombination, namely, (a) the generation of electron–hole pairs due to the

absorption of the incident solar radiation with rate Fs; (b) radiative recom-

bination of electron–hole pairs with rate Fc(V ); (c) removal of electron–hole

pairs due to current generation from the solar cell with rate I/q and finally

other nonradiative processes that result in (d) generation with rate R(0); and

(e) recombination with rate R(V ) of electron–hole pairs. The voltage V is the

voltage between the p and n regions of the solar cell. In the steady-state condition,

all the preceding processes are balanced, resulting in

I/q = Fs − Fc(V ) +R(0)−R(V ) (3.11)
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I = q [Fs − Fc0] + q [Fc0 − Fc(V ) +R(0)−R(V )] , (3.12)

where Fc0 = Fc(0). In the next paragraphs, we will consider the different pro-

cesses separately in order to express the steady-state equation in a more practical

form

I = Is + Id = Is − I0

[
e(V/Vc) − 1

]
Is = q [Fs − Fc0]

Id = −q [Fc0 − Fc(V ) +R(0)−R(V )] ,

(3.13)

where the different current components are identified as the short-circuit current

Is and the dark current Id, with I0 = q [Fc0 +R(0)], Vc = kTc/q.

3.6.1 Generation of Electron–Hole Pairs Due to Solar Radiation

In order to compute the generation rate of hole–electron pairs, one first needs

to compute the incident solar radiation. In computing the ultimate solar cell

efficiency, it was assumed that all the power emitted from the sun reaches the

solar cell, which was considered a black body with temperature Ts (3.9). A black

body, however, radiates isotropically, and therefore only a fraction of the radiated

power reaches the solar cell. In fact, the total number of photons per unit time

reaching the surface of the solar cell is equal to the rate of generation of electron–

hole pairs

Fs = fwAQs, (3.14)

where we assumed as before that the probability of excitation of a hole–electron

pair by a photon with energy above the band gap Eg is one. A geometrical factor

fw has been introduced that depends on the solid angle ωs subtended by the sun

and the angle of incidence upon the solar cell.

The solid angle subtended by the sun is

ωs = π(D/L)2/4 = 6.85 · 10−5sr, (3.15)

where D = 1.39 · 106 km is the diameter of the sun and L = 149 · 106 km the

distance of the sun to the earth and the solar cell.

Assuming a planar flat solar cell, the angle of incidence of the solar radiation

is defined as the angle θ between the normal to the solar cell and the direction

of the sun. In this case, the geometrical factor fw becomes [72]

fw = ωs · cos(θ)/π. (3.16)

In the case of normal incidence, the geometrical factor becomes fw = ω/π =

2.18 · 10−5.

Finally, the total incident power to the solar cell becomes

Pin = fwAIλ = fwAσT
4
s . (3.17)
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3.6.2 Radiative Recombination of Electron–Hole Pairs

In order to compute the recombination rate Fc of electron–hole pairs, Schockley

and Queisser assumed that the solar cell is surrounded by a black body of

temperature Tc. The recombination rate is proportional to the the number of

electrons per unit area n in the conduction band and the number of holes per

unit area p in the valence band, i.e., Fc ∝ np.

In the equilibrium state, where no external perturbations such as the absorp-

tion of photons from the sun affect the solar cell, the rate of photons impinging

to the solar cell by the surrounding black body is equal to the rate of photons

radiated by the solar cell due to the recombination of electron–hole pairs. Conse-

quently, no net current generation is observed. Similarly to the previous section,

the rate of incident photons with energy above the bandgap is equal to

Fc0 = 2AQc, (3.18)

where Qc = Q(Tc, Eg,+∞) the number of photons per unit time and area with

energy above Eg computed by appropriately integrating Planck’s distribution

with temperature Tc. It is also assumed that each photon with such energy has a

probability equal to 1 to generate an electron–hole pair. Furthermore, since the

black body surrounds the solar cell, the total area of the cell is equal to 2A and

the geometrical factor fw is equal to one.

In the equilibrium state, the number of electrons per unit area n in the

conduction band and the number of holes per unit area p in the valence band of

the semiconductor are related by [61, 64]

np = n2
i , (3.19)

where ni ∝ e−Eg/kT is the intrinsic carrier density that depends on the band-

gap energy Eg. When the solar cell is illuminated by an external light source

such as the sun and electron–hole pairs are generated due to the absorption

of photons, the solar cell is not in equilibrium and the carrier densities do not

obey (3.19). However, when the disturbance is not very large and not too fast

changing, the carrier densities reach a quasithermal equilibrium state that is

modeled as a small perturbation of the original thermal equilibrium state [61, 64].

The carrier generation results in a chemical potential qV difference between the

Fermi levels corresponding to the electrons and holes, where V is equal to the

voltage generation across the semiconductor solar cell terminals. The electron

and hole density product is then given

np = n2
i e

V/Vc . (3.20)

Consequently, in the nonequilibrium case, the rate of radiative recombination

becomes [72]

Fc(V ) = Fc0e
V/Vc . (3.21)
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3.6.3 Nonradiative Generation and Recombination of Electron–Hole Pairs

The nonradiative generation and recombination rates of electron–hole pairs are

defined as R(0) and R(V ) respectively. Similarly to their radiative counterparts,

they are also equal when the solar cell is in the equilibrium state, and they

depend on the chemical potential qV in the nonequilibrium state as

R(V ) = R(0)eV/Vc . (3.22)

Shockley and Queisser further assumed that the nonradiative processes are only

a fraction of the radiative ones defined by the ratio fc = Fc0/(Fc0 +R(0). Using

3.21 and 3.22, one obtains an expression for the dark current

Id = −q [Fc0 − Fc(V ) +R(0)−R(V )]

= q [Fc0 +R(0)]
[
e(V/Vc) − 1

]
= I0

[
e(V/Vc) − 1

]
,

(3.23)

where

I0 = q [Fc0 +R(0)] =
qFc0

fc
=

2qAQc

fc
. (3.24)

3.6.4 The Short-Circuit Current and the Open-Circuit Voltage

The short-circuit current Is and the open-circuit voltage Voc are two important

parameters characterizing the performance of a solar cell. The results of the

previous section provide some insight into these two important parameters. One

can find a relation between the two by setting I = 0 and V = Voc in (3.13) and

solving for Voc or Is

Voc = Vc ln

(
1 +

Is
Io

)

Is = Io

(
e

Voc
Vc − 1

)
.

(3.25)

The short-circuit current was defined from (3.12) and (3.13) to be

Is = q [Fs − Fc0] . (3.26)

We proceed by normalizing the expression of Is using the saturation current Io
(3.24) to write

Is
Io

= fc

[
Fs

Fc0
− 1

]
. (3.27)

Finally, using (3.14) and (3.21), one obtains

Is
Io

= fc

[
fw
2

Qs

Qc
− 1

]
≈ fcfw

2

Qs

Qc
. (3.28)
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The number of photons Q(T,Eg,+∞) with energy at least Eg emitted from a

black body at temperature Ts has an exponential dependence on the band-gap

energy Eg [72]

Q(T,Eg,+∞) ≈ A(T )e
−Eg
kT , (3.29)

where A(T ) is a constant that depends on the temperature T . Using 3.29, one can

obtain the dependence of the short-circuit current on the band-gap energy Eg

Is
Io

≈ fcfw
2

A(Ts)

A(Tc)
eEg/kTc . (3.30)

Finally, using (3.25) and (3.30) one obtains the dependence of the open-circuit

voltage on the band-gap energy

Voc

Vc
= ln

[
(1− fc) +

fcfw
2

Qs

Qc

]
≈ ln

[
fcfw
2

Qs

Qc

]
Voc

Vc
≈ Eg

kTc
+ ln [C(fc, fw, Ts, Tc)] .

(3.31)

The constant C is smaller than 1, and consequently the open-circuit voltage

is always smaller than the band-gap voltage Eg/q and becomes equal to it as

temperature Tc tends to 0 K [72].

3.7 Circuit Model of Solar Cells

The current voltage characteristic of the solar cell is given by (3.13), which is

repeated here for convenience.

I = Is + Id = Is − I0

[
e(V/Vc) − 1

]
. (3.32)

This is expressed in a circuit schematic as a current source in parallel with

an ideal diode shown in Figure 3.3. When the equilibrium of the solar cell is

perturbed by an external source of photons, additional carriers are generated

in the cell. If the solar cell is connected to a load, then a current is generated.

The value of this current corresponds to the short-circuit current Is, and it is

equal to the current due to the additional carriers qFs minus a quantity qFc0

due to the recombination of carriers at thermal equilibrium [72], given in (3.13).

Furthermore, as the external perturbation results in a quasithermal equilibrium,

a voltage V is developed across the cell, which results in a current with opposite

polarity called the dark current Id of the solar cell. The dark current is equal to

the current that flows across the solar cell if there is an external voltage V applied

to its terminals in the dark (i.e., without any external light source applied). As

one can immediately identify, the dark current expression is similar to that of

an ideal diode.

The nonideal solar cell model also includes parasitic series Rs and parallel

Rp resistances that represent thermal losses included in Figure 3.3. The series
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Solar cell

Is

I

Id Rp

Rs
RL

Figure 3.3 Circuit model of the solar cell.

Figure 3.4 Current to voltage characteristic of an ideal solar cell.

resistance is typically due to the terminal contacts of the cell and the parallel

resistance due to leakage current around the sides of the device [61]. The current

voltage characteristic of a nonideal solar cell becomes

I = Is − I0

[
e

V +IRs
Vc − 1

]
− V + IRs

Rp
. (3.33)

3.8 The Detailed Balance Limit of Maximum Efficiency

The solar cell current to voltage I-V characteristic has the shape shown in Figure

3.4. Being a current source, the solar cell generates an approximately constant

current for a wide range of voltage values across its terminals, which corresponds

to different output loads connected to the solar cell. On one hand, as the load

resistance becomes very small the solar cell current tends to its limiting value

corresponding to the short-circuit current value Is. On the other hand, as the

load resistance takes large values the solar cell characteristic approaches the

open-circuit voltage Voc. The slope of the I-V characteristic near the Is and
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Figure 3.5 Effect of parasitic resistances on the current to voltage characteristic of a
solar cell.

Voc limiting values is dependent on the parasitic resistance Rs and Rp values

respectively, as shown in Figure 3.5.

Due to the nonlinear nature of the I-V characteristic, there exists an optimum

load value for a given solar irradiance or Is, for which a maximum power Pm is

delivered to the load as Figure 3.4 shows. This value, in effect, corresponds to

the detailed balance limit of efficiency. The optimum voltage Vm can be obtained

by taking the derivative of power versus the voltage and setting it equal to zero

dP/dV = d(IV )dV = 0, which gives(
1 +

Vm

Vc

)
e

Vm
Vc = e

Voc
Vc = 1 +

Is
Io

. (3.34)

The optimum voltage can be obtained by multiplying (3.34) with e in order

to bring the left side to the form xex and using the definition of the Lambert

function W to obtain

Vm

Vc
= Wo (e(1 + Is/Io))− 1 = Wo

(
e(1+Voc/Vc)

)
− 1, (3.35)

where the principal branch Wo of the Lambert function is used because its

argument takes positive values. The optimum current value Im is then found

solving (3.34) for eVm/Vc and substituting the obtained value in (3.13).

Im
Io

= (1 + Is/Io)

(
Vm/Vc

1 + Vm/Vc

)
(3.36)

Using (3.35) and (3.36), one can obtain an expression for the maximum output

power from the solar cell Pm = ImVm,

Pm = (Is + Io)
Vc (Wo (e(1 + Is/Io))− 1)

2

Wo (e(1 + Is/Io))
. (3.37)

The maximum power Pm is graphically given by a rectangle with sides equal

to Im and Vm. The values Im and Vm are a fraction of Is and Voc respectively,

which depends on (3.13) and (3.35). The fill factor FF expresses how close the

product ImVm is to the product IsVoc
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FF =
ImVm

IsVoc
, (3.38)

which represents a maximum possible power value for a given solar irradiance

and solar cell and provides a measure of the quality of the solar cell. The detailed

balance limit of efficiency is given

η =
ImVm

Pin
=

FFIsVoc

Pin
, (3.39)

where the input power Pin = fwAIλ = fwAσT
4
s has been derived in (3.17).

Using (3.13), (3.14), (3.17), (3.21), (3.24), and (3.37), one obtains an expression

for the maximum efficiency limit, which depends on Ts, Tc, fw, fc, and Eg,

η =

[
qQs

Iλ

] [
1 +

2(1− fc)

fcfw

Qc

Qs

] Vc

[
Wo

(
e( fcfw2

Qs

Qc
+ (1− fc))

)
− 1
]2

Wo

(
e( fcfw2

Qs

Qc
+ (1− fc))

) (3.40)

or, using the expression for the ultimate efficiency ηg (3.10),

η = ηgηsr (3.41)

with

ηsr =

[
qVc

Eg

] [
1 +

2(1− fc)

fcfw

Qc

Qs

] [Wo

(
e( fcfw2

Qs

Qc
+ (1− fc))

)
− 1
]2

Wo

(
e( fcfw2

Qs

Qc
+ (1− fc))

) , (3.42)

where the effect of the geometrical considerations and of the radiative recombi-

nation in reducing the ultimate efficiency ηg has been included in the term ηsr.

If one does not consider any nonradiative recombination processes fc = 1, then

the expression for the efficiency is simplified to

η = ηgηsr = ηg
qVc

Eg

[
Wo

(
e( fw2

Qs

Qc
)
)
− 1
]2

Wo

(
e( fw2

Qs

Qc
)
) . (3.43)

Using the preceding theory, Schockley and Queisser [72] calculated the detailed

balance limit of efficiency of solar cells for different parameter values, by deriving

numerically the maximum current and voltage using the condition (3.34). The

formulation obtained previously using the Lambert function provides an intuitive

expression for the efficiency giving the same numerical result.

The efficiency for Ts = 6,000 K, Tc = 300 K, fw = 2.18 · 10−5 and no non-

radiative recombination fc = 1 is plot in Figure 3.6. The numerical results

showed that the maximum efficiency is approximately 30.5% for a band-gap

energy Eg = 1.314 eV, whereas the maximum efficiency for Silicon with band-

gap energy Eg = 1.1 eV is approximately 29.5% [72]. A more accurate efficiency

limit can be obtained by considering a measured solar spectrum such as the AM0

or the AM1.5 instead of the Planck distribution [73].
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Figure 3.6 Ultimate efficiency and detailed balance efficiency limit versus bandgap
energy Eg (Ts = 6,000 K, Tc = 300 K, fw = 2.18 · 10−5 and no nonradiative
recombination fc = 1).

The four quantities Is, Voc, FF , and η are commonly used to compare the

performance of different solar cells under various standard conditions such as

Tc = 25◦ C and AM1.5G solar irradiance. Comparison tables are published

periodically in the literature [74]. Table 3.1 illustrates measured values of these

parameters for a selective set of different solar cell technologies based on the data

published in [74]. One can see that silicon solar cell performance is approaching

the detailed balance efficiency limit, while the best efficiency to date is obtained

by GaAs solar cells.

Table 3.1 Selected maximum measured solar cell performance parameters under AM1.5G
solar irradiance at T = 25 ◦ C [74].

Technology Efficiency (%) Voc (V) Is/A (mAcm−2) FF (%)

Crystalline Si 26.7 0.738 42.65 84.9
Multicrystalline Si 22.3 0.6742 41.08 80.5
Amorphous Si 10.2 0.896 16.36 69.8
Thin film GaAs 29.1 1.1272 29.78 86.7

CIGS 22.9 0.744 38.77 79.5
CdTe 21.0 0.8759 30.25 79.4

Perovskite 20.9 1.125 24.92 74.5
Dye sensitized 11.9 0.744 22.47 71.2

Organic 11.2 0.78 19.30 74.2

https://doi.org/10.1017/9781139600255.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139600255.004


3.9 Efficiency Limits for Tandem Solar Cells 35

Figure 3.7 Architecture of a tandem solar cell: (a) unconstrained and (b) series
connected.

3.9 Efficiency Limits for Tandem Solar Cells

It is possible to increase the overall efficiency of a solar cell by forming a stack of

solar cells where each cell has an energy band gap that is optimum for converting

to electrical energy the energy of the photons of a specific energy range (or

equivalently frequency range) within the solar spectrum. These are called tandem

solar cells [65].

We assume that a solar cell absorbs all photons with energy above its band gap

and it is transparent to all photons with energy less than its band gap. This way

we visualize a tandem cell comprising a stack of individual cells. Each solar cell in

the tandem absorbs photons both from the solar radiation that reaches its surface

and from the remaining solar cells of the tandem [75]. Due to the difference in

temperatures between the sun and the solar cells, the amount of radiation from

the remaining solar cells can be ignored when the number of cells in the tandem

is small [75]. The top cell of the tandem, which the solar radiation reaches first,

has the highest band-gap energy (Eg1), and the bad-gap energy of the subsequent

cells in the stack is progressively reduced (Eg1 > Eg2 > Eg3 > . . .). The first

(top) solar cell absorbs all photons with energy E > Eg1, the second cell absorbs

photons with energy Eg2 < E < Eg1, the third Eg3 < E < Eg2, and so on.

We may assume that the outputs of each solar cell are independent, resulting in

what is called an unconstrained cell, or that they are connected in series [76].

The structure of the tandem cell is conceptually shown in Figure 3.7. The series

connection imposes an additional constraint in the tandem cell in that the current

through all solar cells has to be equal.

Therefore, both in the unconstraint and in the series connected tandem cell

the band-gap energies of the individual cells may be optimized in order to find

the values that lead to a maximum obtained efficiency. In order to compute the

optimum band-gap energies, it is possible to consider either the ultimate solar

cell efficiency (Section 3.5) or the detailed balance limit of efficiency (Section 3.8)

and model the solar radiation either as a blackbody or using measured spectra

such as the AM1.5G spectrum.

Based on the preceding, in order to compute the solar cell efficiency of the

tandem cell we will need to integrate the Plank distribution corresponding to a

blackbody with temperature T between two energy limits E1 and E2, defined
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Figure 3.8 Ultimate efficiency limit for a tandem solar module comprising two cells
with different band-gap energy.

in Equation (3.6). Using the efficiency formulations derived in Sections (3.5)

and (3.8), we have computed efficiency contours for a two band-gap tandem cell

modeling the solar radiation as a blackbody with Ts = 6,000 K. The ultimate

efficiency for each solar cell is computed based on Equation (3.10), where the

integral of the Planck distribution Q is computed using the appropriate energy

limits for each solar cell in the tandem. The ultimate efficiency of the tandem

cell becomes

ηg =
Eg1Qs1 + Eg2Qs2

Iλ
(3.44)

with Qs1 = Q(Ts, Eg1,+∞) and Qs2 = Q(Ts, Eg2, Eg1). The results correspond-

ing to the ultimate efficiency limit for an unconstrained tandem are shown

in Figure 3.8. The optimum band-gap energies corresponding are found to be

approximately 0.78 eV and 1.7 eV.

The detailed efficiency limit was also computed in Figure 3.9 assuming Tc =

300 K, fw = 2.18 · 10−5 and no radiative recombination. In this case, the

efficiency is found based on (3.40) with fc = 1. The detailed efficiency limit

of the tandem cell takes the form

η =
Im1Vm1 + Im2Vm2

Pin
, (3.45)

where Pm1 = Im1Vm1 and Pm2 = Im2Vm2 are the maximum power values from

each cell in the tandem and the input power Pin = fwAIλ = fwAσT
4
s has been

defined in (3.17). The maximum voltage and current of a solar cell have been

defined in (3.35) and (3.36) respectively and for fc = 1 using (3.28) and (3.24),

they become

Vm = Vc

[
Wo

(
e

(
fwQs

2Qc

))
− 1

]
(3.46)

https://doi.org/10.1017/9781139600255.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139600255.004


3.9 Efficiency Limits for Tandem Solar Cells 37

Figure 3.9 Detailed balance efficiency limit for a tandem solar module comprising two
cells with different band-gap energy.

Im = qAfwQs

[
Wo

(
e
(

fwQs

2Qc

))
− 1
]

Wo

(
e
(

fwQs

2Qc

)) . (3.47)

For the two solar cells of the tandem, the various integrals of the Planck dis-

tribution become Qc1 = Q(Tc, Eg1,+∞), Qc2 = Q(Tc, Eg2,+∞) and, as before,

Qs1 = Q(Ts, Eg1,+∞), Qs2 = Q(Ts, Eg2, Eg1). This way, the detailed efficiency

limit of the tandem solar cell becomes

η =
qVc

Iλ

⎡
⎢⎣Qs1

[
Wo

(
e( fw2

Qs1

Qc1
)
)
− 1
]2

Wo

(
e( fw2

Qs1

Qc1
)
) +

Qs2

[
Wo

(
e( fw2

Qs2

Qc2
)
)
− 1
]2

Wo

(
e( fw2

Qs1

Qc2
)
)

⎤
⎥⎦ . (3.48)

Finally, Figure 3.10 shows the computed detailed efficiency limit in the case

of a series constrained tandem cell. In this case, we must limit the maximum

current of the tandem cell to the value corresponding to the smaller of the two

cells and then compute the corresponding maximum voltage values. This is done,

for example, defining an intermediate parameter X as follows:

X = min

⎧⎨
⎩Qs1

[
Wo

(
e
(

fwQs1

2Qc1

))
− 1
]

Wo

(
e
(

fwQs1

2Qc1

)) , Qs2

[
Wo

(
e
(

fwQs2

2Qc2

))
− 1
]

Wo

(
e
(

fwQs2

2Qc2

))
⎫⎬
⎭ . (3.49)

The series current is then defined with the help of X as follows:

Im = qAfwX. (3.50)

Having found the current through the solar cell Im, we can solve (3.13) to

compute the solar cell voltage,

Vm = Vc ln

[
1 +

Is − Im
Io

]
, (3.51)
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Figure 3.10 Detailed balance efficiency limit for a tandem solar module comprising
two series connected cells with different band-gap energy.

where Io = 2qAQc is found from in (3.24) using fc = 1. Additionally using

(3.28), this becomes for each of the two solar cell voltages

Vm1 = Vc ln

[
fw
2

· Qs1 −X

Qc1

]
(3.52)

and

Vm2 = Vc ln

[
fw
2

· Qs2 −X

Qc2

]
. (3.53)

Finally, the detailed efficiency of the tandem cell becomes

η =
Im(Vm1 + Vm2)

fwAIλ
=

qX(Vm1 + Vm2)

Iλ
. (3.54)

The maximum efficiency of the unconstrained tandem cell with two cells was

found to be 42.3% and for the series connected tandem 41.7%. This value rep-

resents a substantial increase compared to the maximum efficiency of a single

cell of 30.5% shown in Figure 3.6. This formulation can easily be extended to a

tandem cell with more than two cells.

3.10 Solar Antennas and Rectennas

Solar antennas integrate solar panels with antennas and have been originally

proposed for satellite applications [77]. As a result, antenna and solar panel arrays

have been developed [78, 79]. The immediate advantage of integrating solar cells

and antennas is that of reducing size and consequently cost. The recent interest

in extending the energy autonomy of wireless sensor nodes in the context of the

Internet of Things (IoT) has resulted in design efforts focusing on low-profile
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solar antennas implemented in rigid substrates [80], transparent substrates [81],

and also flexible substrates including paper, plastic polyethylene terephthalate

(PET) [82], and textiles [83].

In the design of solar antennas, different types of printed antennas can be

used, including patch or dipole/monopole antennas on the one hand and slot

type antennas [79] on the other hand. Furthermore, the design process takes

advantage of the fact that solar cells typically include a conductive (mirror)

layer that can be integrated on top of the conductive surface of the antenna,

or alternatively play the role of the conductive surface of the antenna itself

if the layer conductivity is sufficiently high [79]. The design process consists

of identifying through electromagnetic simulation the optimal placement of the

solar cell in order not to disturb the radiation and impedance properties of the

antenna. Another design challenge is that of identifying the proper placement of

the wiring associated with the terminals of the solar cell and embedding it in the

radiating structure. In this case, it is often common to connect one of the solar

cell terminals (e.g., the dc ground) directly onto one of the conducting surfaces

of the antenna, while the second terminal must be carefully wired in order not

to disturb the radiating fields of the antenna.

An example of an ultrawideband monopole on PET substrate with a flexible

solar cell on top is shown in Figure 3.11 [84]. The positive terminal of the solar cell

is connected to the monopole conductor, while the negative terminal of the solar

cell is connected to the ground conductor of the monopole through a conductive

line near the top of the monopole, which has been shown in simulation to have a

minimum effect in distorting the input impedance and the radiation pattern of

the monopole antenna. The input s-parameters of the antenna with and without

the solar cell are shown in Figure 3.11b, where we can see that the solar cell

affects very little the input impedance of the antenna. Furthermore, measured

radiation patterns of the solar antenna are shown in Figure 3.12 [85]. One can

see that the presence of the solar cell has little effect on the antenna maximum

gain and copolarization radiation pattern, and it results in an increase in the

cross-polarization radiation pattern.

An example of a slot antenna integrating cells on top of the conducting areas

surrounding the slot is shown in Figure 3.13 [84]. The antenna is a cavity backed

slot antenna, where the cavity is formed by metalized vias in the substrate

implementing an antenna in substrate integrated circuit technology.

An example of a textile solar antenna is shown in Figure 3.14 [83]. A quarter

wavelength shorted patch antenna is used as the basis of the solar antenna, and

the solar cell wiring is taken from the shorted side of the patch, thus having a

minimum effect on the antenna performance.

Table 3.2 includes selected recent solar antenna designs in the literature and

summarizes their properties.

Finally, one interesting application is that of integrating solar cells with RFID

tag antennas in order to provide an additional source of power to the tag other

than the RF power and consequently increase their operating range. The idea
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Figure 3.11 Flexible solar cell integrated on top of an ultrawideband monopole on a
PET substrate demonstrated in [84]: photo of the antenna with and without the solar
cell and input s-parameters. c©2014 IEEE. Reprinted, with permission from [84]

Table 3.2 Selected solar antenna publications.

Reference Antenna type Frequency

[77] Patch antenna, linear polarization 2.25 GHz
[79] Slot antenna, Ultralam substrate 3.87 GHz
[80] UWB monopole antenna, FR4 substrate 3.1 GHz–10.6 GHz
[83] Shorted patch antenna, textile substrate 915 MHz
[82] UWB monopole, PET substrate 0.85 GHz–6 GHz
[81] Patch antenna, transparent conductor AgHT-4 3.4 GHz–3.8 GHz
[86] Slot antenna array underneath solar cell 2.4 GHz

was initially proposed in [87], where a printed monopole antenna with a solar cell

on top of the monopole ground and an RFID tag was envisioned. The challenge

is how to supply the RFID tag IC with the dc power from the solar cell. While

there exist tags with an external input port separate from the RF port that

accepts dc power, tag ICs typically only have two RF input ports. In [88], solar

cells were integrated on RFID tag dipole arms (Figure 3.15) and the dc signal

from the solar cells was converted to an RF signal by powering an RF oscillator

placed next to the tag IC. The RF signal from the oscillator was fed to the input

RF ports of the tag IC, therefore enabling the topology to be compatible with

common type RFID tag ICs. The solar RFID tag is shown in Figure 3.15.
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Figure 3.12 Measured (a) E-plane and (b) H-plane radiation patterns of the solar
monopole antenna shown in Figure 3.11a at 1.85 GHz [85].

Figure 3.13 Cavity-backed substrate-integrated waveguide slot antenna with solar
cells. c©2014 IEEE. Reprinted, with permission from [84]

3.11 Problems and Questions

1. What is the physical phenomenon that the operation of solar cells is based

on, when was it discovered, and by who?

2. What is the measure 1 sun?

3. What is the AM1.5G standard?
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Figure 3.14 Solar patch antenna on textile substrate courtesy of Prof. Hendrik Rogier,
Ghent University [83].

Figure 3.15 Solar power harvesting assisted RFID tag: a) original tag and b) modified
tag with solar cells and oscillator circuit. c©2012 IEEE. Reprinted, with permission
from [88]

4. What is the ultimate solar cell efficiency?

5. What is the detailed balance limit?

6. Compute the maximum value of ultimate solar cell efficiency and the corre-

sponding band-gap value corresponding to the AM0 and AM1.5G spectra.

7. Name four characterizing parameters of solar cells. What is the fill factor of

a solar cell?

8. What is the maximum solar cell efficiency based on the detailed balance limit

for a silicon solar cell (Eg = 1.1 eV) and for a GaAs solar cell (Eg = 1.424 eV),
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assuming Ts = 6,000 K, Tc = 300, fw = 2.18 · 10−5, and no radiative

recombination.

9. Compute the ultimate efficiency contours of tandem solar cells with three band

gaps. What are the optimum band-gap energies and what is the maximum

theoretical efficiency?

https://doi.org/10.1017/9781139600255.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139600255.004

