
6 Wireless Power Transmission

6.1 Introduction

Wireless power transmission (WPT) refers to the concept of intentionally trans-

ferring power in a contactless manner aiming at powering a system located at

a certain distance from the power source. There is a wide range of applications

that require of devices and sensors operating in an autonomous manner, com-

municating with each other and providing us with useful information. Some of

these applications include biomedical implants that require of recharging, devices

placed in inaccessible locations, and the high number of sensors and devices

necessary to implement the concepts of the Internet of Things and machine-to-

machine communications. Wireless power transmission appears as an attractive

solution to provide the required energy autonomy in these applications.

In a wireless power transmission system, a power source converts dc electrical

power Pi to an RF signal Pt that is transmitted wirelessly to a target device,

which receives the RF signal Pr and converts it back to dc electrical power PL,

in order to power itself. The target device harvests electromagnetic energy. The

overall efficiency of such a system is defined as

η = ηdcRF · ηap · ηRFdc (6.1)

with

ηdcRF =
Pt

Pi
(6.2)

ηap =
Pr

Pt
(6.3)

ηRFdc =
PL

Pr
. (6.4)

The first term ηdcRF is dominated by the efficiency of the amplifier stages of

the power source. Continuous wave power amplifiers and oscillators can reach

very high efficiencies, which, depending on the operating frequency and required

output power, can vary from >95% in the low MHz range [116] to >70% in the

low GHz range [117] and >60% in X-band [118] limited by device technology

and parasitics. This chapter and Chapter 7 focus on the other two efficiency
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76 Wireless Power Transmission

terms, the efficiency of the radiating apetures ηap and the efficiency of the RF–dc

conversion devices nRFdc, the rectifiers.

These two efficiency terms are related to the classification of wireless power

transmission systems in different categories in an indirect way. One may

distinguish between high(er)-power wireless power transmission systems and

low(er)-power RF harvesting systems. Typically, when intentional radiators are

used, the RF power at the receiving devices is high. The high operating power has

a strong effect on the resulting RF–dc conversion efficiency, which is also high.

Such systems include high-power microwave power transmission systems such as

wireless vehicle chargers and the solar power satellite concept [119]. UHF RFID

systems, however, although they involve intentional RF power transmission,

operate at low power levels with a sensitivity of approximately −20 dBm and

for the purposes of this book are classified as RF harvesting systems, which is

the focus of Chapter 7. In this book, we may loosely classify as RF harvesting

systems ones where the input RF power at the terminals of the receiving antenna

is approximately −20 dBm or less. In this case, as we will see in Chapter 7, the

obtained RF–dc conversion efficiency ηRFdc is less than approximately 25%.

Wireless power transmission systems are also classified as near-field or far-

field, depending on the electromagnetic field distribution of the transmitting

and receiving radiators at the position of the receiving and transmitting antennas

respectively, as described in the antenna literature, such as for example [120]. The

field distribution has a strong effect on the operating efficiency of the radiating

apertures ηap. Brown [121] presents a plot of the efficiency of the radiating

apertures versus a parameter τ ,

τ =

√
AtAr

λd
, (6.5)

where At and Ar are the effective aperture areas of the transmitting and receiving

antennas respectively, d the distance between the transmitting and receiving

antennas, and λ the free space wavelength of the continuous wave transmitted

RF signal. The efficiency ηap has an exponential dependence on τ [122]

ηap = 1− e−τ2

, (6.6)

shown in Figure 6.1. The well-known Friis transmission formula [120] is valid in

the far-field of the radiating apertures and gives

Pr = Pt
λ2GtGr

(4πd)2
= Pt

AtAr

(λd)2
⇒ ηap = τ2 (6.7)

where the transmitting and receiving effective aperture areas are related to the

transmitting and receiving antenna gain as At = Gtλ
2/(4π) and Ar = Grλ

2/(4π)

respectively. One can easily verify that the expression of the efficiency of the

radiating apertures derived from the Friis transmission formula represents a

first-order approximation of 6.6 for small τ . The agreement between the two

expressions is good for τ < 0.5, which corresponds to the Fraunhofer limit for
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Figure 6.1 Efficiency of the radiating apertures versus τ .

the far-field [120]. As τ increases beyond 0.5, the Friis transmission formula does

not apply and the system enters the near-field region. It is interesting to note

that for τ > 2 an efficiency of the radiating apertures of nearly 100% can be

obtained.

This chapter covers near-field and far-field wireless power transmission sys-

tems, including system analysis, design guidelines, and measurement techniques.

This chapter also covers, as part of near-field wireless power transmission sys-

tems, nonresonant and resonant inductive coupling covering different aspects

such as impedance matching, appearing modes under strong coupling conditions,

and misalignment effects. Systems employing capactive coupling are also dis-

cussed. The far-field RF/microwave radiation–based wireless power transmission

section focuses on rectenna arrays for high-power transmission.

6.2 Historical Perspective

The concept of power transmission by electromagnetic waves initially appeared

in the works of Hertz and Tesla [123, 124, 125]. The first wireless power transfer

experiments were performed back in 1899 when Tesla tried to wirelessly transfer

energy by using large coils [124, 125] at 150 KHz. Later on, W. C. Brown

proposed wireless power transmission making use of higher frequencies such as

microwaves in order to achieve further transmission distances [119, 126]. Toward

this objective, he developed the rectenna element, comprising an antenna and a

rectifier circuit connected to its terminals, which he patented in 1969 [127].
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Based on the works of Brown, the first applications of wireless power trans-

mission focused on directive high-power transmission, such as the works on solar

power satellites, appeared [119, 128, 129, 130]. Solar energy was captured and

converted to electromagnetic signals that then could be reradiated and used to

power devices at long distances. Recent interest in compact devices and sensors

with energy harvesting capability has led some to utilize the same principle used

in solar power satellites toward powering low-power electronics and sensors. As

a result, low-power but highly efficient solar-to-RF converters–based solar active

antennas using dc-to-RF conversion circuits such as class-E oscillators have been

considered [77, 131].

Since the appearance of RF/microwave wireless power transmission, there have

been a large number of works toward maximizing the power transfer efficiency

in these systems mainly focusing on maximizing the RF-to-dc conversion effi-

ciency of rectifier circuits and rectenna elements [12, 122, 132, 133, 134, 135,

136, 137, 138, 139, 140, 141, 142], synthesizing rectenna arrays for high-power

wireless power transmissions [143, 144, 145, 146] and more lately there have

been several efforts on the optimal transmitting signal waveform design [147,

148, 149].

On the other hand, near-field inductive coupling has also been widely stud-

ied [150, 151, 152, 153, 154, 155, 156], showing good performance from distances

in the order of a few millimeters up to a couple of meters. Several methods to

analyze and optimize the performance of inductive coupling systems have been

used such as coupled mode theory (CMT) [150, 151, 152] and coupled inductance

model circuit theory [153, 154]. CMT focuses on representing the inducting

coupling system using the theory behind coupled resonators and represents the

system using first-order differential equations. Circuit theory derives equations

similar to the ones used in transformer circuits to describe the behavior of

inductive coupling systems.

Nonresonant inductive coupling wireless power transmission has been widely

used for short distances in the millimeter range and up to a few centimeters. As

the targeted powering distance increases, nonresonant inductive coupling can no

longer be used. Resonant inductive coupling where the transmitting and receiving

coils are made to resonate by introducing additional capacitors with the adequate

values allows maximizing the power transfer efficiency for the selected operating

frequency. Resonant inductive coupling has been shown to achieve ranges of up

to a few meters [157].

The wireless transmission of power to power up devices is pending regulation

and standardization. The existing Qi standard was developed by the Wireless

Power Consortium [158] and focuses on low-power (up to 5 W) inductive coupling

within distances up to 40 mm. Further efforts are going on toward extending this

standard to include medium power levels up to 120 W.
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Figure 6.2 Basic building blocks of an inductive coupling wireless power transfer
system.

Figure 6.3 Circuit model of a nonresonant inductive coupling system.

6.3 Near-Field Wireless Power Transmission

An inductive coupling system comprises a transmitter, two inductors between

which the transfer of power occurs, a rectifier circuit that converts the received

power to dc and a load (Figure 6.2). Additionally, matching networks are required

in the transmitting and receiving sides in order to maximize the transfer of power

between the transmitter and the transmission inductor and between the receiving

inductor and the rectifier circuit respectively.

6.3.1 Nonresonant Inductive Coupling

Nonresonant inductive coupling refers to the method of wirelessly transferring

power by using two coupled inductors. Its working principle is based on the fact

that an existing current in the transmitting coil L1 generates a magnetic field.

If the two inductors are close enough, then a change in the magnetic flux in L1

induces a current in the receiving coil L2. The power transfer efficiency in these

nonresonant inductive coupling systems depends on several factors such as the

coupling coefficient, the size of the coils, and their geometry and the alignment

between transmitting and receiving coils. In order to analyze the behavior of

these systems, circuit theory is used to model the power transfer process.

Figure 6.3 shows the schematic of a basic representation of a nonresonant

inductive coupling system where L1 and L2 are the two coupled coils and R1

and R2 represents the internal resistances associated to L1 and L2.
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Applying Kirchoffs law, the equations corresponding to the circuit in Figure 6.3

can be written as follows:

Vs = (R1 + jωL1)I1 + jωMI2

0 = jωMI1 + (R2 +Rload + jωL2)I2.
(6.8)

M is the mutual inductance among the two inductors, and it is defined as

M = k
√
L1L2, (6.9)

where k is the coupling coefficient among the inductors. Depending on the value

of k, different types of coupling can be considered among the inductors, with

k < 0.5 corresponding to weak coupling and k > 0.5 to strong coupling.

The coupling coefficient k depends of the distance between the two coils. The

farther the transmitting and receiving coils are placed, the lower the value of k.

In the same manner, the mutual inductance M depends on several parameters,

such as the dimensions of the coils, the distance among them, and their relative

position [159, 160, 161].

From (6.8), the power transfer efficiency η in a nonresonant inductive coupling

system can be calculated as

η =
Pload

PS
(6.10)

with

PS =
VsI

∗
1

2

Pload =
VloadI

∗
2

2

Vload = −I2Rload,

(6.11)

where Pload is the average delivered power to the load, PS is the average input

power delivered at Zin by the source, and the ()∗ operator indicates complex

conjugate.

Using (6.8) through (6.11), one obtains

Vload =
−jωMVSRload

(R2 +Rload + jωL2)(R1 + jωL1) + ω2M2
(6.12)

and finally

η =
Rload

R2 +Rload

ω2k2L1L2

[(R2 +Rload)2 + (ωL2)2]
R1

R2+Rload
+ ω2k2L1L2

. (6.13)

As an example, consider a nonresonant inductive coupling circuit with L1 =

L2 = 10 nH, R1 = R2 = 2 Ω designed to operate at 13.56 MHz, shown in

Figure 6.4. The performance of the circuit shown in Figure 6.4 in terms of

power transfer efficiency can be evaluated using the preceding formulas or using

a commercial simulator. Figure 6.5 shows the efficiency versus frequency for

different values of the coupling coefficient k. It can be observed that this system

requires a high value of k to achieve good power transfer efficiencies. As k is
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Figure 6.4 Nonresonant inductive coupling system.
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Figure 6.5 Power transfer efficiency of the nonresonant inductive coupling system of
Figure 6.4.

related to the distance among the coils, this implies that the coils need to be

relatively close to achieve good power transfer efficiency. This fast degradation of

the power transfer efficiency with distance is the main limitation in nonresonant

inductive coupling systems.

The power transfer efficiency in these systems also has a strong dependence on

the value of Rload connected at the output of the circuit. There exists an optimum

value of the load for which the power transfer efficiency is maximum. Figure 6.6

shows the power transfer efficiency versus Rload of the circuit of Figure 6.4 for

a fixed coupling coefficient value k = 0.1. This result shows that the initially

selected Rload = 50 Ω does not lead to maximum efficiency.

6.3.2 Resonant Inductive Coupling

As stated previously, the power transfer efficiency in nonresonant inductive

coupling systems degrades rapidly as the distance between the transmitting and

receiving ends increases. One way to eliminate this limitation in the transfer

distance is to consider resonant inductive coupling [150, 151, 152, 153, 154]. In

resonant inductive coupling systems, the inductances L1 and L2 are made to

resonate with two capacitors C1 and C2 introduced in the system such that both

https://doi.org/10.1017/9781139600255.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781139600255.007


82 Wireless Power Transmission

0
0

20

40

60

80

250 500

h 
(%

)

750 1,000
Rload (ohm)

1,250 1,500 1,750

Figure 6.6 Power transfer efficiency of the nonresonant inductive coupling system in
Figure 6.4 versus the output load Rload for a coupling coefficient of k = 0.1.

Figure 6.7 Schematic of a series–series resonant inductive coupling system.

pairs (L1, C1) and (L2, C2) resonate at the same frequency (Figure 6.7). The

resonance frequencies of both resonators can be selected as

ωo =
1√
L1C1

=
1√
L2C2

. (6.14)

There are four possible topologies that can be used to tune out the primary

and secondary inductances, namely series–series, series–shunt, shunt–series, and

shunt–shunt, shown in Figure 6.8.

The series–series topology leads to a simple mathematical analysis and will be

considered next. Applying Kirchoffs law, the equations of the resonant inductive

coupling system can be written as in (6.15):

Vs = (R1 + jωL1 +
1

jωC1
)I1 + jωMI2

0 = jωMI1 + (R2 +Rload + jωL2 +
1

jωC1
)I2.

(6.15)

Using (6.11) and (6.15), the power transfer efficiency becomes as follows

η =
Rload

R2 +Rload

ω2k2L1L2[
(R2 +Rload)2 + (ωL2 − 1

ωC2
)2
]

R1

R2+Rload
+ ω2k2L1L2

. (6.16)
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Figure 6.8 Different topologies of resonant inductive coupling systems: (a)
series–series, (b) series–shunt, (c) shunt–series, and (d) shunt–shunt.

At the resonance frequency, the power transfer efficiency is maximum and can

be expressed as

ηo =
Rload

R2 +Rload

ω2k2L1L2

R1(R2 +Rload) + ω2k2L1L2
. (6.17)

In the same way as it happens with the nonresonant inductive coupling sys-

tems, the resonant inductive coupling system presents maximum power transfer

efficiency for a certain value of Rload that has to be carefully selected in order

to optimize the efficiency of the system.

The power transfer efficiency can also be expressed in terms of the quality

factors of the inductances L1 and L2. Considering that the loaded quality factors

of the inductances are Q1 = ωL1/R1 and Q2 = ωL2/R2 and that the quality

factor of the load can be expressed as Qload = ωL2/Rload, the power transfer

efficiency expression reduces to

ηo =
k2Q1QL

1 + k2Q1QL

QL

Qload
, (6.18)

where

QL =
QloadQ2

Qload +Q2
(6.19)

is the loaded quality factor [45].

As an example, consider a resonant inductive coupling circuit with L1 =

L2 = 10 nH, R1 = R2 = 2 Ω designed to operate at 13.56 MHz (Figure 6.9).

Capacitances C1 and C2 are introduced in the circuit of Figure 6.4 in order to

resonate with L1 and L2 at 13.56 MHz. The capacitances are calculated using

the expression for the resonant frequency of a resonator. In Figure 6.10, it can be

seen that the power transfer efficiency of the system remains at a high value for

the resonant frequency of 13.56 MHz independently of the coupling coefficient

value. This shows that using a resonant inductive coupling system, it is possible
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Figure 6.9 Resonant inductive coupling system example.
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Figure 6.10 Power transfer efficiency versus frequency for different values of the
coupling coefficient k.

to obtain high values of power transfer efficiency for higher distances than when

using a nonresonant inductive coupling system.

6.3.3 Strong Coupling in Resonant Inductive Coupling Systems

In inductive coupling systems, additionally to the power transfer efficiency,

another parameter that has to be optimized is the amount of power delivered to

the load as this will determine how much dc power can be obtained when using

these systems together with the RF-to-dc converter. As it can be expected,

the amount of power delivered to the load depends directly on the coupling

coefficient k. It could be expected that the higher the coupling coefficient k, the

higher the amount of power that will be efficiently delivered to the load. This

directly applies in nonresonant inductive coupling systems; however, this is not

the case in resonant inductive coupling systems. Due to the coupled resonators

theory, as k increases the coupling between the two inductors gets stronger

and several operation modes may appear in the system. These modes produce

a double peak in the output power curves around the resonance frequency,

indicating that the maximum delivered power does not occur at the desired

resonance frequency [154].

The location of the peaks in the output power versus frequency can be deter-

mined by calculating the derivative of Pload with respect to ω and setting it equal

to zero as
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∂Pload

∂ω
= 0. (6.20)

Potential ways to correct this frequency splitting effect include varying the

values of C1 and C2 in the transmitting and the receiving ends or modifying

the input/output matching networks as a manner to shift one of the peaks so

that they are centered at the desired operation frequency [162].

As an example, consider the resonant inductive coupling circuit of Figure 6.9.

Figure 6.11 shows the output power versus frequency for different coupling

coefficient values for the circuit of Figure 6.9 that is designed to operate at

13.56 MHz. For low levels of coupling among the inductors, there is a single

peak in the curve that is centered in the resonance frequency of 13.56 MHz.

The output power curve begins presenting a double peak for coupling coefficient

values above k = 0.1 (Figure 6.11b). As k continues to increase the valley between

the two peaks is more pronounced and the peaks are more spaced (Figure 6.11c).

When this phenomenon begins, the resonant frequency of 13.56 MHz falls in the

valley between the two peaks, which means the delivered power to the load is

reduced.

The second peak can be shifted back to 13.56 MHz by tuning the value of

C1 = C2 = C from the initial value of 13.8 pF to a new value of 19.5 pF.

The results obtained after applying this tuning can be seen in Figure 6.12. In

a similar manner, the first peak could be shifted to 13.56 MHz by tuning the

value of C in the opposite direction. The applied correction may lead to reduced

power transfer efficiency between the inductors, but it will improve the global

performance of the system when connected to the RF-to-dc converter.

6.3.4 Impedance Matching in Inductive Coupling Systems

The power transfer efficiency calculated using (6.10) refers to the ratio between

the delivered power to the load over the delivered power to Zin at the input of

the system of Figures 6.3 or 6.7.

The calculation of the power transfer efficiency referred to the available power

at the transmitting source Pa has to take into account the mismatch between

the source impedance Rg and the input impedance of the first coil Zin. This

efficiency can be expressed as follows

ηav =
Pload

Pa
. (6.21)

The relationship between the delivered power Ps to Zin and the available power

in the source Pa can be written as

Ps = Pa

[
1− |Γin|2

]
, (6.22)

where Γin is the input reflection coefficient Γin = (Zin −Rg)/(Zin +Rg). Zin =

Rin + jXin is the complex input impedance of the system. We have assumed
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Figure 6.11 Power delivered to the load (Pload) versus frequency for different coupling
coefficient k values (a) k = 0.05 (b) k = 0.1 (c) k = 0.3.

without loss of generality that the source has a real impedance Rg. Substituting

(6.22) into (6.21),

ηav = η
[
1− |Γin|2

]
. (6.23)

From (6.22), it is inferred that the maximum power transfer occurs when |Γin| is
minimum. It is straightforward to show that this occurs when Rg = Rin and it

equals ηav = η. The available maximum efficiency ηav represents a lower bound

of the maximum efficiency η of the system.

In order to maximize the power transfer efficiency, it is important that both

the source and the load are matched to the inductive coupling system. There

are several ways to implement impedance matching, for example using reactive

networks comprising series and parallel capacitances and inductances in different

configurations in order to achieve Zin = Rg.
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Figure 6.12 Power delivered to the load (Pload) versus frequency for k = 0.3 corrected
to reach its peak value at 13.56 MHz.

6.3.5 Misalignment Effects

In the same manner as the value of the coupling coefficient k varies with distance,

it is also affected by misalignments between the transmitting and receiving

coils. The proper alignment of the coils in an inductive coupling system is a

key parameter as the power transfer efficiency may decrease dramatically with

misalignments.

Different types of misalignments may occur in an inductive coupling system

(Figure 6.13):

1. Lateral misalignment: The transmitting and receiving inductors are in parallel

planes but their centers are not aligned but displaced laterally a distance Δ.

2. Angular misalignment: The plane of the receiving loop is rotated by an angle

θ with respect to the plane of the transmitting loop.

3. Lateral/angular misalignments: Both lateral and angular misalignments occur

simultaneously.

The variation in the coupling coefficient k is due to the change in the mutual

inductance between the two inductors depending on the alignment conditions.

In order to estimate the variation in k, it is necessary to calculate the mutual

inductance for the different alignment cases. The usual manner to solve for the

mutual inductance is to use the current filament method [163, 164] that divides

the cross section of the coils as a mesh of (2M + 1) by (2N + 1) for L1 and a

mesh of (2m + 1) by (2n + 1) for L2. The mutual inductance using the filament

method can be expressed as

M12 =
N1N2

(2M + 1)(2N + 1)(2m+ 1)(2n+ 1)

∑
j

(∑
i

Mij

)
. (6.24)

The mutual inductances Mij can also be calculated using Newmanns form

M12 =
μ

4π

∮ ∮
dl1dl2
r12

, (6.25)
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Figure 6.13 Different types of misalignments between the transmitting and receiving
inductors in an inductive coupling wireless power transfer system (a) perfect
alignment, (b) lateral misalignment, (c) angular misalignment, and (d) lateral and
angular misalignment.

where r12 is the distance between the element dl1 of coil L1 and the element dl2
of coil L2.

For the aligned coil system, the distance between dl1 and dl2 is

r12 =
√

α2 + b2 − 2αb cos(θ − φ) + d2, (6.26)

which results in

M12 = μ
√
αb

[(
2

x
− x

)
K(x)− 2

x
E(x)

]
(6.27)

with

x2 =
4αb

(α+ b)2 + d2
. (6.28)
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K(x) and E(x) are the complete elliptic integrals of the first and second kind

respectively that are defined as

K(x) =

∫ π/2

0

dφ√
1− x2 sin2(φ)

E(x) =

∫ π/2

0

√
1− x2 sin2(φ)dφ.

(6.29)

In the case of the laterally misaligned coil system, the distance between dl1
and dl2 becomes

r12 =
√

α2 + b2 + 2αb cos(θ − φ) + 2(b− α)Δ cos(θ) + d2. (6.30)

In the same way, the distance for the case of angular misalignment can be

expressed as

r12 =√
α2 + b2 − 2αb(cos(θ) cos(φ) cos(α) + sin(θ) sin(φ))− 2bd cos(φ) sin(α) + d2.

(6.31)

6.3.6 Measurements in Inductive Coupling Systems

There are several key parameters that need to be accurately measured when

designing inductive coupling systems for wireless power transmission. The main

and most common parameters include self-inductance of the inductors, mutual

inductance between the inductors, quality factor of resonators when designing

resonant inductive coupling systems, and power transfer efficiency. Some basic

measurements guidelines are given next in order to determine these parameters.

The self-inductances L1 and L2 and the mutual inductance M of two coupled

inductors can be obtained by measuring the impedance matrix [Z] of the struc-

ture. This measurement can be done by using a conventional vector network

analyzer (VNA) that allows obtaining [Z] directly or by measuring the scat-

tering parameter matrix [S] and then calculating the impedance matrix [Z] by

using the well-known corresponding transforming relationships between [Z] and

[S] [165].

Considering the circuit equations for a two coupled inductors structure and

rearranging them in a matrix form as in (6.32) it is possible to determine L1,

L2, and M using (6.33) through (6.36). The internal resistance of the inductors

has been considered in the equations of the system (6.32).[
V1

V2

]
=

[
R1 + jωL1 jωM

jωM R2 + jωL2

]
·
[
I1
I2

]
(6.32)

[
Z11 Z12

Z21 Z22

]
=

[
R1 + jωL1 jωM

jωM. R2 + jωL2

]
(6.33)
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M12 = M21 = M =

(Z12)

ω
=


(Z21)

ω
(6.34)

L1 =

(Z11)

ω
(6.35)

L2 =

(Z22)

ω
, (6.36)

where the function 
() denotes the imaginary part of its argument.

Another parameter that needs to be determined when designing resonant

inductive coupling systems is the quality factor of the resonators formed by

(L1, C1) and (L2, C2) as these quality factors affect the power transfer efficiency

of the system. There are several methods to measure the quality factor of res-

onator circuits [166, 167], such as the reflection method and the transmission

method.

A way to measure the quality factor in a simple manner using scattering

parameters measurement follows. The loaded quality factor can be extracted

from the magnitude of S21 with the help of (6.37):

QL =
fo
Δf

, (6.37)

where fo is the resonance frequency and Δf is the bandwidth at which the

magnitude of S21 falls to half of its value or equivalently falls by 3 dB with

respect to its peak value.

If it is assumed that the coupling between the resonator and the input and

output networks used in the measurements setup is weak, then the following

approximation for calculating the unloaded quality factor holds:

QU =
QU

1− |S21|2
. (6.38)

If the coupling of the resonator with the input and output networks is strong,

then more complex methods need to be used [166, 167].

The power transfer efficiency in an inductive coupling system can also be

determined by using scattering parameter measurements. The efficiency can be

expressed in terms of the scattering parameters as

η =
Pload

PS
=

|S21|2(1− |Γload|2)
(1− |Γin|2)|1− S22Γload|2

, (6.39)

where

Γin =
S11 + S12S21Γload

1− S22Γload
. (6.40)

If both the input and output of the inductive coupling system are matched to

the source resistance Rg and load resistance Rload, then Γin = Γload = 0 and the

power transfer efficiency equation is reduced to

η = |S21|2. (6.41)
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Figure 6.14 Printed inductor designed using the modified Wheeler formula.

For example, consider the design of a printed inductor on Arlon 25N substrate

with N = 3, w = 0.25 mm and s = 0.5 mm. Depending on the geometry of the

inductors that will be used for a specific design of wireless power transfer using

inductive coupling, the initial dimensions of the inductors can be calculated using

existing formulas and expressions [159, 160, 161, 168].

The rectangular printed inductor in Figure 6.14 has been designed using the

modified Wheeler formula [160, 161], shown in (6.42), to present approximately

an inductance value of L = 0.1 μH,

L = K1μo
N2dm
1 +K2φ

, (6.42)

where μo = 4π1̇0−7 Hm−1 is the vacuum permeability, N is the number of turns

of the inductor, K1 and K2 are layout-dependent parameters, and din and dout
refer to the inner and outer dimensions of the inductor (Figure 6.14). Finally,

dm and φ are defined as

dm =
din + dout

2
(6.43)

φ =
din − dout
din + dout

. (6.44)

Assuming it is necessary to measure the inductance value of the inductor in

Figure 6.14, it is possible to do so using a VNA and measuring its scatter-

ing parameters. The two ports of the inductor are marked as P1 and P2 in

Figure 6.14. In order to measure the inductance, port P1 is grounded and the

Z-parameters are measured at P2. If it is not possible to measure directly

the Z-parameters, then one can measure Z-parameters and use the correspond-

ing transformation relationships. The value of L can be obtained using

L =

(Z11)

ω
. (6.45)
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Figure 6.15 Inductance calculation from Z-parameters.

Figure 6.16 Coupling coefficient k variation with the spacing between two printed
inductors as the one in Figure 6.14.

The inductance value from the printed inductor in Figure 6.14 calculated from

the Z-parameters is shown in Figure 6.15. It can be observed that the obtained

value is approximately L = 0.1 μH as it was expected. In Figure 6.15, one

can observe a resonance appearing around 0.8 GHz. This self-resonance of the

inductor is a consequence of its own internal capacitance.

The variation of the coupling coefficient k in a two coupled inductor system can

be measured by varying the distance between the two inductors and calculating

k from the measured mutual inductance M and the self-inductances L1 and

L2 obtained from (6.34) through (6.36) using the relationship M = k
√
L1L2.

The coupling coefficient k variation versus the spacing between two inductors

like the one in Figure 6.14 is shown in Figure 6.16. As expected, k decreases as

the distance between inductors increases.
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6.3.7 Multiresonator Systems

As we have seen, there exist different methods to analyze and optimize the

performance of inductive coupling systems, such as CMT [150, 151, 152] and

coupled inductance circuit theory [153, 154]. CMT focuses on representing the

inducting coupling system using the theory behind weakly coupled resonators

and represents the system using first-order differential equations [152]. Circuit

theory applies Kirchhoff’s circuit laws to analyze the circuit behavior. In this

section, we revisit the analysis of the steady state of near-field inductive coupling

systems in order to determine the different operating modes, similarly to the

approach followed in [169].

Let’s consider first the basic resonant inductive coupling system shown in

Figure 6.7. Applying Kirchoffs law and using ωo = 1/
√
L1C1 = 1/

√
L2C2, the

two equations representing the steady state of the system become[
Vg

0

]
−
[
Rg 0

0 RL

] [
I1
I2

]
= [Z] ·

[
I1
I2

]
, (6.46)

where

Z =

⎡
⎣R1 + jωL1

(
1− ω2

o

ω2

)
jωM

jωM R2 + jωL2

(
1− ω2

o

ω2

)
⎤
⎦ . (6.47)

One can rearrange (6.46) moving all resistance terms on the left-hand side

resulting in [
Vg

0

]
−
[
Rg +R1 0

0 RL +R2

] [
I1
I2

]
= jω [X] ·

[
I1
I2

]
, (6.48)

where

X =

[
L1 M

M L2

]
−
[
L1

ω2
o

ω2 0

0 L2
ω2

o

ω2

]
=

[
L1 M

M L2

]
−
[
L1λ 0

0 L2λ

]
(6.49)

and λ = ω2
o/ω

2. If the input generator Vg and the losses of the system are set to

zero, jωX ·I = 0 is a generalized eigenvalue equation defining the natural modes

of the coupled inductor system. The characteristic equation is given by

detX = 0 ⇒ λ2 − 2λ+

(
1− M2

L1L2

)
= 0. (6.50)

We have seen, however, that M = k
√
L1L2 resulting in

λ2 − 2λ+
(
1− k2

)
= 0. (6.51)

The two solutions of (6.51) define the two eigenvalues of the natural modes,

which are equal to

λ = 1± k ⇒
(

ω

ωo

)2

=
1

1± k
. (6.52)
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The corresponding eigenvectors become[
I1
I2

]
=

√
L2

L1

[
1

±1

]
. (6.53)

The preceding analysis provides a mathematical description of the phenomena

that was observed in Figure 6.11, where we have seen that as the coupling

factor k increases the two natural modes separate in frequency. Furthermore, the

currents in the two coils flow in the same or opposite directions depending on

the mode. In resonant inductive coupling schemes, it is common to use multiloop

structures comprising intermediate relay coils. Systems with three or four coils

are commonly found in the literature [150, 153, 154, 169].

It is interesting to investigate the modes of a three coupled coil system.

Following the same approach as for the two coil system, it is straightforward

to find

X =

⎡
⎣ L1 M12 M13

M23 L2 M23

M13 M12 L3

⎤
⎦−

⎡
⎣L1λ 0 0

0 L2λ 0

0 0 L3λ

⎤
⎦ . (6.54)

The characteristic equation becomes a third-order polynomial, which is equal to

(1− λ)3 − (1− λ)(k223 + k212 + k213) + 2k12k23k13 = 0, (6.55)

where Mij = kij
√

LiLj was used. Since the coupling factors are kij < 1,

the rightmost term of (6.55) being a product of three coupling factors maybe

considered approximately zero, which allows one to easily obtain an approximate

solution for the natural modes of the system. In this case, one can see that

λ = 1 ⇒ ω = ωo is one solution of (6.55) and therefore in the system of three

coils the frequency of one of the natural modes is approximately independent

of the coupling factors of the coils. This solution is exact in the case where at

least one pair of the coils is uncoupled, i.e., when at least one of k12, k23, or

k13 is zero. This is for example the case where two of the coils are placed far

from each other and the third one is used as a relay placed in a position between

the other two coils. This is an interesting result because the frequency of this

mode remains constant as the distance between the coils changes, which makes

the design of such a system very attractive. It is left as an exercise to the reader

to find a solution for the three natural modes as a perturbation of the solution

corresponding to the one obtained by ignoring the last term of the characteristic

equation.

The use of relay resonators placed in intermediate locations between the trans-

mit and receive resonators provides a natural way to increase the transmission

range of the system. In [170], for example, a vision of a multiresonator space

where power can be coupled to a multitude of devices exploring one or more relay

resonators placed around the walls of a space is presented, shown in Figure 6.17.

Metamaterial arrays of resonators may also be used as lenses in order to relay

power between two resonators with increased efficiency [171]. An experimental
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Figure 6.17 System concept of any-hop wireless power transmission.

Figure 6.18 Metamaterial slab used to increase wireless power transmission efficiency
of a resonant inductive coupling system demonstrator used to power a 40 W light
bulb [171]. Photo courtesy of Dr. Bingnan Wang, Mitsubishi Electric Research
Laboratories (MERL)

demonstrzation of a metamaterial slab used to focus the transmitted power of a

resonant inductive wireless power transfer system is shown in Figure 6.18. The

presence of the slab focuses the power toward the receiver, which is demonstrated

by a larger intensity in the lightbulb.

Furthermore, the efficiency can be optimized by employing phased array con-

cepts with multiple transmitters and receivers. The mathematical description

of a multiple transmitter system optimization was formulated as a convex opti-

mization problem in [156]. Convex optimization principles allow one to solve the

underlying problem in an efficient and fast manner and facilitate the implemen-

tation of optimization algorithms in practical and commercial systems.

It is common to use four-loop structures such as the one shown in Figure 6.19a

where two parasitic transmitting and receiving coil loops are used between the
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Figure 6.19 Resonant inductive coupling system with excitation loop and a load loop:
(a) general scheme and (b) circuit model.

source and load loops [154]. This system has four natural modes that can be

calculated following the previously descrbied methodology [169]. The two middle

coils are designed to resonate at the same frequency as the transmitting and

receiving coils, and they allow flexibility in implementing impedance matching for

both the transmit and receive coils and maximizing the power transfer efficiency.

For a fixed set of parameters of the resonant inductive coupling system, it is

possible to select a coupling coefficient k12 between the source loop and the

transmitting coil and a coupling coefficient k34 between the receiving coil and the

load loop that allows one to optimize the input and output impedance matching

conditions. The equivalent circuit model for the system in Figure 6.19a assuming

resonant inductive coupling is shown in Figure 6.19b.

We have seen that as the coupling increases, which can happen for example if

the distance between the coupled coils is reduced, the different modes separate

in frequency [154]. As a result, an originally tuned system for a certain value

of coupling may operate at a significantly reduced efficiency once the coupling

changes. Alternately, an application scenario where one or both coils are moving

significantly may present a large variation in operating efficiency. In order to

maintain a high efficiency, one may retune the transmit or receive resonators in

order to shift the operating mode frequency to a desired value that corresponds to

a high efficiency. This unavoidably leads to an increased complexity in the wire-

less power transfer system because one needs to introduce a sensing mechanism
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Figure 6.20 Software-defined configurable resonant inductive wireless power transfer
platform based on a particle swarm optimizer (PSO) [174].

that tracks the operating efficiency, a feedback or feed forward link that can pro-

vide to the transmitter or receiver information about the efficiency and a tuning

resonator functionality and control circuitry in order to implement the desired

frequency tuning. Such tuning as well-adaptive tuning of wireless power transfer

efficiency has received significant attention in the literature, for example in

[172, 173]. In [174], for example, a software-defined radio (SDR) platform based

on a Raspberry B+ evaluation module was used to implement a tunable 13.56

MHz resonant inductive wireless power transfer system, as shown in Figure 6.20.

A tunable capacitor bank was controlled by the SDR platform in order to change

the resonance frequency of the system based on the results of a particle swarm

optimization (PSO), which was implemented offline in a Matlab environment.

6.4 Capacitive Power Transfer

An alternative way of using the magnetic field in order to transfer power wire-

lessly is to use the electric field. This is known as capacitive power transfer. A

typical block diagram of a capacitive power transfer system is shown in Figure

6.21 [175]. In fact, Figure 6.21 shows a circuit topology of a resonant capacitively

coupled system where the reactance of the coupled capacitors C1 and C2 has been

compensated by the inductors L1 and L2. Similarly to the inductive coupled

systems, there exist four different topologies corresponding to a parallel or series

connection of the compensating inductors at the primary and secondary circuit.

In practice, in addition to the two main capacitances there exist cross-coupling

parasitic capacitances C3 and C4, as shown in Figure 6.21. One may transform

the complicated coupled capacitor circuit with the parasitic capacitances into a
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Figure 6.21 Resonant capacitive coupled wireless power transfer system: (a) circuit
*schematic and (b) equivalent circuit.

circuit comprising two coupled capacitances CP and CS and at the same time

define a capacitive mutual coupling coefficient ME in a complete analogy with

the inductive coupled systems. The resulting circuit capacitances and coupling

coefficient are defined as follows [175]:

CP =
(C1 + C3)(C4 + C2)

C1 + C3 + C4 + C2
(6.56)

CS =
(C1 + C4)(C3 + C2)

C1 + C3 + C4 + C2
(6.57)

ME =
−C3C4 + C1C2

C1 + C3 + C4 + C2
(6.58)

and

kE =
ME√
CPCS

. (6.59)

In this case, applying Kirchhoff’s current laws in the system of Figure 6.21 one

has [
Ig
0

]
−
[
Gg 0

0 GL

] [
V1

V2

]
= [Y ] ·

[
V1

V2

]
, (6.60)

where

Y =

⎡
⎣G1 + jωCP

(
1− ω2

o

ω2

)
jωME

jωME G2 + jωCS

(
1− ω2

o

ω2

)
⎤
⎦ . (6.61)

The resonant capacitively coupled system therefore takes a dual form to the

resonant inductive system of Figure 6.8.

Capacitive wireless power transfer systems were initially perceived for low

power levels and at short distances in the order of 1 mm [176]. However, it was

determined that both types of systems can achieve comparable efficiencies higher

than 90% at kilowatt power levels, and generally there exist no guidelines to

determine which type of system is more suitable for a certain power level, gap dis-

tance, and cost [176]. However, inductive power transfer systems are difficult to

implement in application scenarios where power needs to be transferred through

metal barriers due to eddy current losses and requires special shields to prevent

electromagnetic interference (EMI) and magnetic cores to increase the coupling

factors that correspondingly increase the cost. Capacitive coupled systems do not
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require magnetic cores, and because the electric field does not require a return

path, it is easier to contain it between the capacitive plates and limit EMI [177].

6.5 Far-Field Wireless Power Transmission

When the distance between the transmit and receive antennas is large relative

to the effective aperture area of the antennas, the wireless power transmission

system operates in the far-field regime. We have seen in the introduction that in

this case the Friis transmission formula holds and the efficiency of the radiating

apertures ηap is proportional to the square of the parameter τ , as shown in (6.7).

Following the work of Tesla, beginning in the 1960s, several far-field wireless

power transmission systems have been developed, particularly in the United

States and Japan. These systems comprised highly directive antennas trans-

mitting a microwave beam on one side and large arrays of rectennas receiving

the RF power and converting it to dc electrical power on the other side. There

are several publications in the literature documenting these experiments, such

as [121, 126, 178].

W. C. Brown demonstrated transmission of microwave power to a tethered

helicopter in 1964 at Raytheon [126]. A photo of the helicopter carrying the

receiving rectenna array is shown in Figure 6.22 and a more detailed photo of

the “string” rectenna array is shown in Figure 6.23. The receiving array is an

array of vertical strings of diodes separated by approximately a half wavelength,

covering a 4 square foot area comprising 4480 IN82G diodes. It was capable of

delivering a maximum dc output power of 270 W, which was sufficient to power

the helicopter rotor.

In 1968, the solar power satellite concept was proposed by Glaser [126] . It

consisted of capturing the sun’s energy in a geosynchronous orbit and converting

it into dc electrical power using solar panels and subsequently convert it into

microwave power and transmit it to earth, where it can be converted back to

dc electrical power. This activity has led to a milestone experiment of far-field

wireless power transmission by Brown and Dickinson’s team. They were able

to demonstrate transmission of a microwave beam over 1 mile at 2.388 GHz at

Goldstone, California, USA, in 1975 [179]. The Venus station 26 m diameter

reflector antenna was used to transmit a microwave beam of up to 450 kW

of power using a klystron generator. In the receiving side, a rectenna array was

used comprising 17 subarrays of 270 dipole antennas each, placed above a ground

plane at roughly a quarter wave distance and GaAs diode rectifiers. A photo of

the experiment is shown in Figure 6.24. The efficiency of the radiating apertures

of the system was approximately ηap = 11.3%. More than 30 kW of dc electrical

power was received, corresponding to a RF–dc conversion efficiency of more than

ηRFdc > 80% at the receiver.

Starting from the 1980s, many far-field wireless power transmission exper-

iments were performed in Japan [178]. In 1992, a first trial employing a

phased array transmitting antenna by Kyoto University and Kobe University,
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Figure 6.22 Helicopter powered by a microwave beam flying 60 ft above the
transmitting antenna. c©1984 IEEE. Reprinted with permission from [126]

demonstrated flying an airplane powered by a microwave beam at 2.411 GHz

using a phased array with 96 GaAs amplifiers and 288 antennas grouped in three

subarrays. A photo of the airplane and the transmit phased array are shown in

Figure 6.25.

Following these milestone demonstrations, a plethora of far-field wireless

power transmission experiments have been performed, exploring technological

advances in power generation using, for example, magnetron and solid-state

amplifier arrays, exploring antenna array concepts such as retrodirective arrays

as well as technological advances in devices for rectifier circuits such as GaN

technology [178].

6.6 RF-to-dc Conversion: the Rectifier

In the receiving side, the received RF signal from the antenna, coil, or capacitive

radiator is converted back to a dc electrical signal. A nonlinear device is necessary

in order to perform frequency translation from RF to dc. Typically a nonlinear

resistive element is used, such as a diode or a transistor. These nonlinear devices
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Figure 6.23 “String” rectenna used to power a helicopter in 1964. c©1984 IEEE.
Reprinted with permission from [126]

Figure 6.24 Wireless power transmission experiment at Venus JPL cite. c©1984 IEEE.
Reprinted with permission from [126]

are embedded in circuits called rectifiers that are optimized in order to maximize

the RF–dc conversion efficiency ηRFdc. One should note, however, that in prin-

ciple nonlinear reactive elements could also be suitable for rectification provided

they generate a required mixing product from RF to dc; however, we are not

aware of any such examples to date.

The most commonly used diode-based rectifier topologies are the series or

shunt diode rectifier, but also voltage doubler circuits with two diodes or bridge

rectifier circuits with four diodes. These topologies are shown in Figure 6.26.

Voltage multipliers with multiple diode stages such as the voltage doubler topol-

ogy are also used in order to perform rectification as well as maximize the dc

output voltage.
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Figure 6.25 Airplane powered by a microwave beam from a phased array antenna: (a)
flight experiment, and (b) antenna array [178]. Photos courtesy of Prof. Naoki
Shinohara, Kyoto University

Figure 6.26 Diode rectifier topologies: (a) series, (b) shunt, (c) voltage doubler, and
(d) bridge.

The nonlinear element acts as a switch, permitting current to flow through it

only in one direction, and this functionality results in generating harmonics and

dc power. In order to get a theoretical estimate of the maximum efficiency, one
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may proceed by considering an ideal switch with an “ON” state corresponding

to a short circuit and an “OFF” state corresponding to an open circuit, taking

care that the voltage and current values at the boundary of the two states must

be the same. Then one applies Kirchhoff’s laws and computes a time average

of the voltage or current expressions over one period T of the RF signal. The

results are used to derive an estimate of the RF–dc conversion efficiency. This

methodology has been followed, for example, in [137, 180, 181]. More complicated

models for the nonlinear device may be used by considering the nonlinear capaci-

tance and series resistance of the diode [137] and nonideal open and short-circuit

states for the switch [181]. Let us discuss the shunt diode rectifier following the

approach by [180] considering an ideal switch model for the diode.

The available input power PA, the dc output load power PL, and the efficiency

ηRFdc are

PA =
E2

8Rs
(6.62)

PL =
V 2
o

RL
(6.63)

nRFdc =
PL

PA
=

8Rs

RL

(
Vo

E

)2

. (6.64)

We then proceed to write Kirchhoff’s voltage law for the shunt rectifier circuit

of Figure 6.26b:

v1 + Vc = vL + Vo = vd, (6.65)

where vc and vL is the voltage across the input capacitor C and output inductor

L respectively. DC components are indicated by the capital V or I letters. It

is assumed that the capacitor C has a sufficiently large value to present an RF

short and that the inductor L has a sufficiently large value to present a dc short.

Integrating over one period T , one obtains∫
T

v1dt+ VcT =

∫
T

vLdt+ VoT ⇒ Vc = Vo. (6.66)

The integral of the RF voltage across the inductor vL vanishes since it presents a

dc short. Furthermore, since no dc current flows through the resistor Rs (in the

steady state) due to the dc blocking functionality of the capacitor C, the integral

of v1 also vanishes. Next we address the two states of the diode switch. Let us

assume that the diode is in the “ON” state for a period |t| < t1 and whereas the

“OFF” state lasts from t = t1 until t = T − t1. In this case, during the “ON”

state, one has

v1(t) = −Vo ⇒ i1(t)Rs = E cos(ωt)− Vo = E cos(ωt)− IoRL (6.67)

and during the “OFF” state

i1(t) = Io ⇒ v1(t) = E cos(ωt)− IoRs. (6.68)
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We enforce the condition that v(t1) must take the same value for the two

expressions for the “ON” and “OFF” states,

− Vo = E cos(φ)− IoRs ⇒ E cos(φ) = Io(Rs −RL), (6.69)

where φ = ωt1 and Vo = IoRL. Next, taking the integral of v1 over a period T ,

one has ∫
T

v1dt = 0 ⇒
∫ t1

−t1

v1dt+

∫ T−t1

t1

v1dt = 0. (6.70)

Using (6.67) for the first integral of the left-hand side and (6.68) for the second,

one obtains

− Vo2t1 +
E

ω
[sin(ωT − ωt1)− sin(ωt1)]− IoRs(T − 2t1) = 0. (6.71)

Rearranging and using Vo = IoRL, ωT = 2π and φ = ωt1,

E sin(φ) = −Io [φRL + (π − φ)Rs] . (6.72)

Combining (6.69) and (6.72) one obtains

tan(φ)− φ =
πRs

RL −Rs
⇒ RL

Rs
=

sin(φ) + (π − φ) cos(φ)

sin(φ)− φ cos(φ)
. (6.73)

Using the preceding result in (6.69), one can compute the output voltage Vo

Vo = IoRL =
RLE cos(φ)

Rs −RL
=

E

π
[sin(φ) + (π − φ) cos(φ)] (6.74)

and the efficiency

ηA =
8

π2
[ sin(φ)− φ cos(φ)] [sin(φ) + (π − φ) cos(φ)] . (6.75)

It is easy to very if by substitution that the maximum efficiency is obtained for

φ = π/2, resulting in

ηAmax =
8

π2
≈ 81.1% (6.76)

with RL = Rs. It is interesting to note that the same maximum efficiency

ηAmax = 8/π2 ≈ 81.1% for RL = Rs is obtained for the series rectifier too [180].

We will see in the next sections that it is possible to obtain 100% by properly

terminating the harmonics generated by the rectifier.

6.6.1 Time Reversal Duality

Amplifier and rectifier circuits have an inverse functionality of converting dc elec-

trical power to RF and the opposite respectively. Strictly speaking, an amplifier

requires both a dc and an RF input and therefore oscillator circuits should be

considered instead of amplifier circuits. However, let us disregard this fact for

the sake of simplicity and consider both oscillator and amplifier as dc-to-RF

conversion devices. Consideration of these properties has led to the formulation
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time reversal duality principle [182]. According to the time reversal duality

principle, any resonant amplifier can be transformed to a resonant rectifier of the

same operating class, with the nonlinear switching device current and voltage

waveforms of the rectifier being time-reversed versions of the corresponding wave-

forms of the amplifier. In mathematical terminology, let us consider a dynamical

system such as an oscillator or an amplifier described by the N -dimensional state

vector x, x ∈ RN

dx

dt
= f(x(t), t), (6.77)

where f is a nonlinear vector function. If one considers the reverse time variable

τ = −t, then

dx

dτ
= −f(x(−τ),−τ). (6.78)

One may consider (6.78) as a new dynamical system with state variables y in

the forward time t [182] as

dy

dt
= g(y(t), t) (6.79)

with g = −f and y(t) = x(−t). The equation y(t) = x(−t) expresses precisely

the fact that the state variables y of the second system are time-reversed versions

of the state variables and x of the first system [182].

This has an important implication in wireless power transfer systems for the

following reason. It is well known that there exist classes of switched power

amplifier circuits that have a theoretical dc-to-RF efficiency of 100%, such as

class-E, class-F, or class-F−1 [183]. The principle of operation of these classes is

to design the voltage and current waveforms of the nonlinear switching device

such that they are offset with each other so that their product, which corresponds

to dissipated power, is equal to zero. The time reversal duality principle showed

that one may design rectifier circuits based on the original amplifier circuits,

having time-reversed voltage and current waveforms with respect to the original

amplifier circuits and having theoretically 100% RF-to-dc conversion efficiencies.

Such rectifier circuits operating in GHz frequencies were successfully demon-

strated in [181]. Specifically, a 2.14 GHz rectifier circuit based on a GaN HEMT

class-F−1 amplifier had a power-added efficiency of 84% at an output power

of 37.6 dBm. The rectifier had a measured RF–dc conversion efficiency of 85%

for 10 W input power. A diode-based rectenna and active antenna oscillator

circuit operating at microwave frequencies was reported in [184]. The rectenna

was optimized to operate at 2.45 GHz with a high efficiency of 85% while as

an oscillator the circuit was operating at 3.3 GHz with a low efficiency. This

fact highlights the challenge in exploiting the time duality principle if one wants

to design a circuit that operates both as a rectenna and as an active antenna

oscillator. First, one has to tune both circuits to operate at the same frequency

band, or in a more general concept at the desired operating bands as a rectenna
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Figure 6.27 Schematic representation of a bidirectional rectifier and oscillator circuit
operating at 2.45 GHz [185].

Figure 6.28 Performance of the oscillator mode of the circuit of Figure 6.27 [185].

and as an oscillator. Second, one has to tune both circuits to operate with high

efficiency in both the rectenna mode and in the oscillator mode.

In [185], a transistor-based rectifier and oscillator circuit was designed oper-

ating at 2.45 GHz in both modes with an efficiency higher than 50%. A high-

electron-mobility transistor (HEMT) device was used to implement the nonlinear

circuits, and self-biasing of the gate of the device was explored in order to achieve

a high efficiency at the oscillating mode. The circuit is shown in Figure 6.27

and the performance as an oscillator and as a rectifier is shown in Figures 6.28

and 6.29 respectively.
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Figure 6.29 Performance of the rectifier mode of the circuit of Figure 6.27 [185].

6.7 Far-Field Wireless Power Transmission at Millimeter Wave
Frequencies and Beyond

While the majority of far-field wireless power transmission circuits have been in

the low GHz range due to the fact that it is easier and cheaper to generate

high power and to obtain high-efficiency rectifiers at these lower microwave

frequencies, operation at higher frequencies such as millimeter waves also has

certain advantages.

Millimeter wave circuits allow for a small form factor due to the small wave-

length, and therefore they permit the design of very compact circuits. More

importantly, for the same reason they enable the implementation of a very large

number of antenna elements, thus allowing one to design a very directive power

transmitting antenna on one hand and a very directive receiving antenna or a

large receiving surface of many individual subarray rectennas on the other hand.

Therefore, it is possible to have a better control of the directive transmission

of power and to minimize unwanted power transmission at undesired directions.

These advantages may outweigh the high cost and less favorable performance of

the available nonlinear devices in these frequencies.

Selected examples of millimeter wave far-field wireless power transmission

circuits and systems include, for example, a 94 GHz rectenna array by JPL [186],

and Class-F millimeter wave rectennas operating at 24 GHz and 60 GHz [142].

An example of a 24 GHz rectenna implemented in substrate integrated waveg-

uide technology is shown in Figure 6.30 [187]. Its efficiency is shown in Figure

6.31, where one can verify that it is more difficult to obtain a high efficiency

at comparable power levels at millimeter waves in comparison with rectennas

operating at low GHz.
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Figure 6.30 24 GHz SIW rectenna prototype. c©2013 IEEE. Reprinted with permission
from [187]

Figure 6.31 24 GHz SIW rectenna measured efficiency [187].

While high power generation is challenging at millimeter wave and toward THz

frequencies, high power and highly directive optical sources are much easier to

implement using lasers. Consequently, laser power transmission presents another

exciting possibility for powering wirelessly devices. There have been successful

demonstrations of transmitting power to a small aircraft using a laser, where

solar cells have been used to receive the laser beam and convert it to electrical

power [188].

6.8 Problems and Questions

1. What is the difference between inductive coupling and resonant inductive

coupling?

2. Calculate the power transfer efficiency of a resonant inductive coupling system

with L1 = L2 = 5 μH, k = 0.3 and Rload = 100 Ω operating at 13.56 MHz.

Assume that the two coils have resistances R1 = R2 = 2 Ω.
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3. Calculate the number of turns necessary to synthesize an inductance of 0.1

μH with a square printed coil with side length D = 2 cm using the modified

Wheeler formula (assume K1 = 2.34 and K2 = 2.75).

4. Calculate the optimum value of the load resistance Rload for a nonresonant

inductive coupling system with L1 = L2 = 20 μH and k = 0.2 at 13.56 MHz.

Assume that the two coils have resistances R1 = R2 = 2 Ω.

5. Compute the maximum theoretical efficiency of a series diode rectifier with

the circuit diagram shown in Figure 6.26.

6. Compute the maximum theoretical efficiency of a voltage doubler with the

circuit diagram shown in Figure 6.26.

7. Compute an approximate solution for the eigenvalues of a three coil system

with characteristic equation (6.55) as a perturbation of the solution obtained

by setting 2k12k23k13 ≈ 0.
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