5 Thermal Energy Harvesting

5.1 Introduction

Thermoelectric transducers convert thermal energy into electric energy. Thermal
energy is generated as a result of a multitude of phenomena and applications, in
some cases intentionally but most of the time as waste heat from a process or
reaction, from industrial plants to buildings, heating systems, and automobiles
to the human body, which, in turn, provide numerous applications for thermal
energy harvesters.

This chapter begins with a description of thermoelectric phenomena and the
geometrical structure of a thermoelectric generator (TEG). Next an introduction
to the theory of heat transfer is presented in order to provide the theoretical
background for the analysis of the performance of thermoelectric generators,
and it is followed by theoretical expressions for the efficiency of TEGs. The next
section deals with the figure of merit of different thermoelectric materials, and it
is followed by a SPICE model of a thermoelectric generator. Finally the chapter
ends with selected examples of TEG systems.

5.2 Thermoelectric Phenomena

There are three thermoelectric phenomena that govern the conversion of thermal
energy to electrical energy and vice versa: (a) the Seebeck effect, (b) the Peltier
effect, and (c) the Thomson effect. In the following, a summary of the three
effects is provided.

52.1 The Seebeck Effect

According to the Seebeck effect, a temperature gradient between two different
metals or semiconductors that are in contact creates a voltage difference between
the two components [63]. Given a set of two different metal or semiconduc-
tor materials 1 and 2 that are connected forming two junctions as shown in
Figure 5.1a, the presence of different temperatures Ty and T¢ at the two junc-
tions results in a voltage V. across the two contacts.
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Figure 5.1 Thermoelectric phenomena: (a) the Seebeck effect and (b) the Peltier effect.

The voltage is given by

V:)c = algAT, (51)

where AT = Ty — T and the coefficient a2 is the called the Seebeck coefficient
and has units of V/K. The Seebeck coefficient depends on both materials 1
and 2 and can be negative or positive. As we will see in a later section, the
Seebeck coefficient is higher when semiconductor materials rather than metals
are used to form the junctions, and consequently TEG devices typically are made
of semiconducting materials.

5.2.2 The Peltier Effect

The Peltier effect is the inverse of the Seebeck effect [63]. In other words, the
application of an external voltage difference V' at the junctions of two different
metals or semiconductors results in a current I flowing through the junctions,
which, in turn, results in one junction absorbing thermal energy and the other
junction generating thermal energy. As a result of the current flow, a heat flow
rate @ is created. Consequently, a temperature gradient is generated between
the junctions (Figure 5.1b).
The Peltier effect is described by the following equation

Q = mal, (5.2)

where the heat flow rate between the two junctions is measured in W and the
current through the circuit in A. The coefficient 715 is called the Peltier coefficient
and has units of W/A or equivalently V. The Peltier coefficient, like the Seebeck
coefficient, is a relative coefficient corresponding to the two materials forming
the junctions.
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5.2.3 The Thomson Effect

The third thermoelectric effect is the Thomson effect, which occurs in one mate-
rial (metal or semiconductor) when its edges are subject to a temperature dif-
ference and at the same time they are subject to a voltage difference resulting in
current flowing through the material [63]. As a result, there is heat Q7 absorbed
or dissipated by the material, which depends both on the applied current and
the temperature difference. The Thomson effect is described by the equation

Qr = BIAT, (5.3)

where 8 is the Thomson coefficient, which is measured in WI—'K~! or equiv-
alently VK ~!. The heat rate due to the Thomson effect is smaller than the
one due to the Peltier effect; nonetheless, it can become significant when the
temperature difference AT is large [63].

524 The Kelvin Relationships

The three thermoelectric coefficients aqs, w12, and S are related by the Kelvin
relationships [63]

T2 = 12T (5.4)
and
daja B — Bo
T T (5.5)

The first equation relates the Seebeck and Peltier effects and demonstrates
the reversible nature of the effects and the fact that the same set of materials is
suitable both for electric power generation and for thermal power generation (or
refrigeration). The second equation relates the Seebeck effect with the Thompson
effect and enables the definition of an absolute Seebeck coefficient for a single
material as

a= /%dT. (5.6)

The Seebeck coefficient a5 corresponding to the two junctions of the two mate-
rials 1 and 2 is proven to be equal to the difference between the absolute Seebeck
coefficients of each of the two materials a2 = a3 — ap [63]. Similarly, once an
absolute Seebeck coefficient is defined, (5.4) defines an absolute Peltier coefficient
as Mo = m; — m2. When the magnitude of the Seebeck or Peltier coefficients of
the two materials is equal, &y = —ag and m = —my = 7, then a2 = 2a and
T2 = 2.

5.3 Thermoelectric Generators

TEGs are typically constructed by forming matrices of pairs of p-type and n-type
semiconductor columns called pellets. The pellets are electrically connected in
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Figure 5.2 Cross-section of a TEG.
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Figure 5.3 Electrical equivalent circuit of a TEG.

series using conducting (for example, copper or aluminum) strips, and are sand-
wiched between thermally conductive ceramic plates, as shown in Figure 5.2.

The output voltage of TEGs depends on the size and number of pellet pairs
and typically ranges from 10 to 50 mV /K [106]. Due to the fact that the output
voltage of a TEG in a energy harvesting application scenario takes such small
values, a TEG is usually connected to a load consisting of a switched-type voltage
converter, such as a boost or fly-back converter in order to produce a desired
voltage required by standard circuitry [106].

The electrical equivalent circuit of a TEG consists of a Seebeck voltage source
with a value V. given by (5.1) in series with an electrical resistance R; repre-
senting the heat generated inside the TEG due to thermal losses as the electrical
current flows through the pellets. The equivalent circuit is shown in Figure 5.3.

5.4 Heat Transfer Fundamentals

Heat is transferred through three physical mechanisms, conduction, convection,
and radiation [107]. Each mechanism is governed by a rate equation, which
provides a quantification of the heat flux rate measured in W/m?.

Conduction is the transfer of energy between hot and cold particles of a
material. The rate equation of conductive heat transfer is Fourier’s law. Con-
ductive heat transfer typically occurs in TEGs, and for this reason Fourier’s law
is described in more detail in the next subsection.

Convection is the transfer of heat due to the bulk, macroscopic motion of fluids.
In the case of solids, an important scenario is that of a fluid with temperature T,
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flowing over a heated solid surface of temperature Ts. In this case, the convection
rate equation is

Gev = h (Ts - Too) . (57)

The parameter h (W m~2K™!) is the convection heat transfer coefficient.

Finally, all matter at a temperature higher than zero Kelvin emits thermal
radiation whose upper limit is given by the rate equation known as the Stefan—
Bolzmann law

¢ = oT?, (5.8)

where ¢, is the radiated heat flux rate of an ideal blackbody radiator measured
in W/m? that is at temperature T. The constant of proportionality o is the
Stefan-Bolzmann constant, which is equal to o = 5.67 - 1078 W m—2K 4.

5.4.1 Fourier's Law

The conduction heat transfer process is described by Fourier’s law expressed by
qg=—kVT. (5.9)

According to Fourier’s law, the heat flux rate ¢ measured in W/m? is proportional
to the temperature gradient V7' (K m~1!). The constant of proportionality k is
the thermal conductivity of the material (W m~! K—1). The minus sign expresses
the fact that heat is transferred from points of the material with a higher
temperature toward points of lower temperature. A TEG can be approximately
modeled as a one-dimensional (1D) problem of heat diffusion from the hot plate
toward the cold plate (Figure 5.2). In this case, Fourier’s law becomes

dr
k

—k— 1
= (5.10)

q=
where z represents the vertical direction between the two plates shown in Figure
5.2. Once the steady-state temperature distribution in the material is defined,
the heat flux can be computed using Fourier’s law.

In the case of 1D problems, Fourier’s law presents an analogy with Ohm’s
law of electrical circuits [107]. Let us consider an infinitesimal volume V' = AL,
where the heat rate is flowing through the volume surface A and the temperature
gradient is taken along the length L. Then we can write Fourier’s law as

Q=7 (~dT) > Q= KAT = QO = AT, (5.11)

where K = kA/L is defined as the thermal conductance (W K~!) and © = 1/K
is the thermal resistance. The analogy with Ohm’s law IR = AV is now obvious.
This fact is explored in computing the steady state of TEGs using electrical
circuit simulators, as we will see in Section 5.6.
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Figure 5.4 Conservation of energy in a TEG.

5.4.2 The First Law of Thermodynamics

In heat transfer problems, one must always apply the first law of thermodynam-
ics, in other words the law of conservation of energy [107]. One may express this
law in different formats, for example in terms of energy flux rates or in terms of
energy rates (i.e., power). We assume that the heat distribution is uniform over
the boundary surfaces of the TEG, and in this case we can convert heat flux rates
q to heat rates @ simply by multiplying the former by the area A of the surface
of the TEG boundary, i.e., @ = gA. The conservation of energy for the TEG
system in terms of heat rates is depicted in Figure 5.4, and it takes the form

Qst = Qr — Qc + Q. (5.12)

Equation (5.12) states that the stored thermal and mechanical energy rate Qs
in the TEG system of a certain volume is equal to the difference between the
inflow of energy rate Q5 and outflow of energy rate Q¢ at the system boundary
surface, plus any thermal energy rate @) ; generated in the system.

When we are dealing with the boundary surfaces of the system, conservation of
energy across a boundary is expressed by the fact that the incoming energy rate
must be equal to the outgoing energy rate at each boundary. Based on Figure
5.4, the conservation of energy in the hot H boundary becomes

Qu = Qprua + QcpH, (5.13)

where QQpy is the absorbed Peltier heat and QQ¢p contains contributions from
heat conduction and Joule heat generation in the TEG, which we derive using
the heat diffusion equation in the next section. The conservation of energy in the
cold C junction becomes

Qc = Qpc + Qcpes (5.14)

where QQ pg is the emitted Peltier heat and Q¢ p contains contributions from heat
conduction and Joule heat generation in the TEG accordingly. The magnitude
of Qpy is different from @Qpc because of the different temperatures at the H
and C boundaries. Furthermore, Q¢ p g is different from Qcpc because the heat
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conduction rate flows from the H to the C boundary, but the generated Joule
heat is emitted from both boundaries equally as we will see in the next sections.

5.4.3 The Heat Diffusion Equation

Once the steady-state temperature distribution in a material is determined, one
can compute the heat flow using the rate equations. The heat diffusion equation,
or simply the heat equation, provides a means to determine the temperature
distribution as a function of time. In Cartesian coordinates, it is given

or
V(kVT) +q; = PCp g (5.15)

where k is the thermal conductivity of the material, p is the density (kg m=3),
and ¢, (J kg=! K1) is the specific heat of the material. The product pc, is
called volumetric heat capacity and measures the ability of the material to store
thermal energy [107]. Finally, ¢; is the heat density rate measured in Wm™3.
In the case of a one-dimensional conduction problem and of a material with a
constant thermal conductivity, which represents an approximate model for the
TEG, the heat equation becomes

82T Qj - 1 8T

922k adt’
where o = k/(pc,) is the thermal diffusivity. The steady-state condition is
obtained by setting the partial derivative of the temperature versus time equal
to zero, in which case one obtains

0*°T ¢

9zt =0 (5.17)

(5.16)

5.5 TEG Efficiency

The conversion efficiency 1 of a TEG is defined as the ratio of the electrical

power delivered to a load R, connected to the TEG Py, divided by the heat rate

absorbed at the hot junction Qg

— PL
Qu’

where Qg is the heat rate at the hot junction. Assuming a uniform heat distri-

" (5.18)

bution along the junction of the TEG, the heat rate is Qg = g A, where gy, is
the heat flux rate and A is the surface area of the hot junction.

55.1 The Carnot Efficiency

Let’s consider first the ideal case where only the Peltier and Seebeck phenomena
exist. We do not consider heat conduction phenomena and no heat generation
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inside the TEG. The first assumption results in the thermal conductivity of the
TEG being zero k = 0, while the second assumption results in the electrical
resistance of the TEG being set to zero R; = 0 in the model of Figure 5.3.

The power delivered to the load is P;, = I? Ry, where I is the current flowing
through the TEG and the load Ry,. Using (5.1), one has

Vi = a12(Ty — T¢) (5.19)
Ty — T
I = a12(Ty —Tc) (5.20)
Ry,
and
1
Py =1%Rp = o2)(Ty — TC)ZR—L. (5.21)

Application of the first law of thermodynamics at the hot junction boundary
of the TEG results in the heat rate Qg absorbed at the hot junction being equal
to the Peltier absorbed heat rate, and therefore

Qu =malL = arTyly, (5.22)
where (5.2) and (5.4) were used. The TEG efficiency becomes
Ty — T,
ne = % (5.23)
H

This is known as the Carnot efficiency and it represents an upper bound in the
efficiency of TEGs. One should highlight that even the ideal Carnot efficiency
takes very small values in many application scenarios of energy harvesting, for
example a hot junction with tempetature AT = 10 K above a cold junction at
room temperature T = 300 K gives a Carnot efficiency of 3.33%.

5.5.2 Conversion Efficiency Considering Heat Conduction and Thermal Losses in
the TEG

An ideal TEG presents no thermal conductivity and no electrical resistance.
All materials, however, present a nonzero thermal conductivity k and a nonzero
electrical resistance R;.

The power delivered to the load in the case of a nonzero electrical resistance
R; as shown in Figure 5.3 becomes

Rr
Vi, = Ty —Tc)———— 5.24
L =a(Th C)RtJrRL (5.24)
aro(Tg —Tc)
I, = = 5.25
L R, + Ry, (5:25)
and

2 2 2 Ry

PL = ILRL == a12(TH - Tc) (526)

(R + Rp)®
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The load power becomes maximum when R; = Ry, in which case

2 2
(&% TH - TC
PLmaa: = 12( 4Rt ) . (527)
In order to compute the heat rate at the hot junction, we apply the heat
diffusion equation to determine the temperature distribution along the TEG
height. The heat diffusion equation in the steady state 9T'/0t = 0 takes the form
82T Qj
— + = =0. 5.28
2% © k (5.28)
Considering a uniform heat generation along the TEG, the Joule heat density g;
takes is equal to

Py I’R,

qi = vV T AL’

where A is the area of one pellet pair, L its length, and V' = AL its volume.
The solution of (5.28) has the form

(5.29)

T(z) = —2%352 + Chz + C. (5.30)

The temperature variation across the TEG pellet height has a parabolic profile.
The constants C and Cs are determined by the boundary conditions

T70)=T
(0) =T (5.31)
T(L) = T,
where L is the length (or height) of the pellet. One can easily compute
IR, , Ty —Te  I°R,
- — Ty. 32
(@) = =5amk" ( L Toax )ttt (5:32)

Once we have determined the temperature distribution 7'(x), application of
Fourier’s law (5.11) at the hot junction of the TEG gives the conduction heat
flux gean.-

In order to find the heat rate at the hot junction H (z = 0) of the TEG as
shown in Figure 5.4, first we determine the first derivative of the temperature

from (5.32):
dT(x)  I’R, Ty-To  I’R,
dr  ALKT T T L 24k (5.33)
Then Fourier’s law (5.11) gives
dr Ty —Tc I’R
c = —k —_ = ki — . . 4
(edh (dx)T . L 24 (5.34)

The conduction heat rate Qcpy is be computed from the heat flux g.q, using
the cross-section A of the pellet pair as Qcpr = qeanA, resulting in
kA I’R I’R

Qcpr = T(TH —Tc) — - = K(Ty —Tc) — — (5.35)
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where K is the thermal conductivity of a pellet pair with height L and cross-
section A. Q¢ py included both the conduction heat rate, leaving the hot junction
and a Joule heat term generated in the TEG.

We have seen in (5.13) that the application of the first law of thermodynamics
(5.12) at the hot junction boundary gives that the incoming absorbed heat rate
Qg is equal to the Peltier emitted heat rate Qpy = 12Tyl plus the heat
conduction and Joule heat generation term Qcpp:

I’R

Qu =Qpru + Qcpn = arTul + K(Ty —To) — ——. (5.36)

Following a similar calculation, we can show that the emitted heat rate Q¢ at
the cold junction boundary of the TEG is
I’R

Qe =apTcl+ K(Ty —Tc) + - (5.37)

The analysis has been made for one pellet pair. A TEG typically has a large
number N of pellet pairs that are connected thermally in parallel and electrically
in series (Figure 5.2). In this case, the thermal conductance K, the electrical
resistance Ry, the Seebeck voltage V., and consequently the absorbed @y and
emitted heat rates Q¢ are all multiplied by the number of pellet pairs N.

We have seen in (5.18) that in order to calculate the efficiency of the TEG we
only require the absorbed heat rate Qg at the hot junction. Using (5.18), (5.25)
and (5.36) the conversion efficiency of the TEG becomes

a%Q (TH - Tc)RL

n= 5.38
ofy [Ty(Ry + Rr) — 228 + K(R, + Rp)? (5.38)
or
Z Ry,
n=1nc — , 5.39
Z [(Ri+ Rp) — 2] + (R, + Ry)? (5.39)

where n¢ is the Carnot efficiency and Z = «12/(KR;) is defined as the figure
of merit of the thermoelectric material of the TEG. The figure of merit is
proportional to the square of the Seebeck coefficient, and inversely proportional
to the thermal conductivity and the electrical resistance of the TEG material and
has units K='. Good thermoelectric materials have a large Seebeck coefficient
but also low thermal conductivity and low electrical resistance. It is customary
to multiply Z with the temperature in order to obtain a unitless parameter.

As we have seen, the condition for maximum delivered electrical power to
the load is R; = Ryr. However, due to the dependance of both the load power
Pr, and the absorbed power Qg on the load resistance Ry, the load value that
provides maximum efficiency 7 is different from the load value that provides
maximum delivered power. Taking dn/0R;, = 0, one obtains the load value that
corresponds to maximum efficiency as

Rppm = RiV1+ZT, (5.40)
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Figure 5.5 TEG conversion efficiency (Tc = 300 K).

where T = (Ty + T¢)/2. The maximum efficiency then becomes

V1+2ZT -1
= NC—F——-

TN A T+ =
The conversion efficiency for different values of the figure of merit versus the
hot side temperature is shown in Figure 5.5, when the cold side is at T = 300 K.
The Carnot efficiency is also included for comparison. It should be noted that

for a TEG made of a material with figure of merit Z = 0.003 K~!, when the hot
side is at 10 K above room temperature, the conversion efficiency is just 0.52%.

(5.41)

55.3 The Figure of Merit

The figure of merit is proportional to the square of the Seebeck coefficient,
inversely proportional to the thermal conductivity and the electrical resistance
of the TEG material, and has units K~!. Good thermoelectric materials have
a large Seebeck coefficient but also low thermal conductivity and low electrical
resistance.

All three parameters depend on the carrier concentration in the material. The
dependence is pictured in Figure 5.6 [108]. The results show that highly doped
semiconductor materials are more suitable for thermoelectric applications than
metals or insulators.

Furthermore, Figure 5.7 [63] shows obtained values of the figure of merit for
several materials. The figure of merit Z is normalized to the temperature in order
to obtain a unitless parameter. One can see that BisTes has a maximum figure
of merit value around room temperature 7' = 300 K, and for this reason it is

commonly used in TEG applications. Typical values for the figure of merit range
around 2.5-1073 K=! to 3-1073 K1,
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Figure 5.6 Schematic description of Seebeck coefficient, thermal conductivity, and
electrical resistance dependence on carrier concentration based on [108].
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Figure 5.7 Selected normalized figure of merit ZT plots for different thermoelectric
materials, reproduced from [63].

5.6 A Thermal and Electrical SPICE Model for the TEG

Fourier’s law for heat conduction presents an analogy with Ohm’s law in electrical
circuits. Due to this fact, it is possible to model and analyze thermal problems
using electrical simulators such as Simulation Program with Integrated Circuit
Emphasis (SPICE). The analogy between the various thermal and electrical
quantities is summarized in Table 5.1 [109].

Table 5.1 Analogy between thermal and electrical quantities [109].

Thermal Unit Electrical Unit
Heat rate, @ \\Y% Current, [ A
Temperature, T' K Voltage, V' \%
Thermal resistance, © = 1/K K W'  Resistance, R Q
Heat capacity, C' JK™'  Capacitance, C F
Absolute zero temperature 0K Ground oV
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Figure 5.8 SPICE model of a TEG [109].
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Using Table 5.1, the energy balance equations at the hot and cold boundaries
of the TEG (5.36) and (5.37) can be represented with controlled current sources
and a resistor. Thus, it is possible to build a SPICE equivalent model for the
TEG [109] shown in Figure 5.8, where

Qprg = axTyl

Qpc = aTcl
Qs =IR (5.42)
Qr = K(Ty —Tc)
Voe = a12(Ty —Tc).

The model can be used to find the steady state of the TEG. The model
parameters can be computed from the TEG manufacturer specifications [109]. It
is further possible to introduce a thermal capacity C' (J/K) in the SPICE model,
which allows to study the transient behavior of the TEG [110].

5.7 Thermal Energy Harvester Systems

Seiko presented in 1998 the first watch that was powered by a thermoelectric
transducer [111]. The power that is required in order to operate a quartz digital
wristwatch is approximately 20-40 pyW [63]. There are many application sce-
narios where electronic circuits generate a large amount of heat. For example,
typically in RF and microwave electronics a power amplifier operates with low
efficiency in order to maintain an acceptable level of distortion and consequently a
significant fraction of the power used to supply the power amplifier is dissipated
in heat. Therefore, it is possible to use a TEG in order to convert some of
the wasted heat back into electrical power. Such an application scenario has
been studied in [112]. A 1.37 W power amplifier with 10 dB of gain was used,
operating at 2.45 GHz with a measured power-added efficiency (PAE) of 34%.
The PAE is defined as (PR — PEF)/P,. which means that the amplifier
generated approximately 0.88 W of heat.

The amplifier printed circuit board with a commercial TEG placed below is
shown in Figure 5.9. The electronics of the TEG board are shown in the figure
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Figure 5.9 Thermal energy harvesting from an RF power amplifier. (©2013 IEEE.
Reprinted with permission from [112]
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Figure 5.10 Patch antenna integrating a thermoelectric generator [113]. Photo
courtesy of Dr. Marco Virili, Qorvo Inc.

whereas the hot side of the TEG was placed in contact with the ground place
of the amplifier board directly below the amplifier packaged integrated circuit.
A measured temperature map of the power amplifier printed circuit board when
the amplifier was operating is also shown in Figure 5.9. At steady state, the
temperature at the hot side of the TEG was measured to be 313.1 K, whereas
the temperature at the cold side was 305.9 K. The temperature difference of
7.2 K was maintained with the help of a heat sink placed below the TEG. This
temperature gradient corresponds to a Carnot efficiency of 2.3%. A measured
output power of 1 mW was obtained from the TEG, which, although represents
a very low efficiency for the thermoelectric generator, as an absolute value it is
sufficient to power a wireless sensor circuit performing some monitoring function,
for example.

The integration of multiple harvesting systems of different technologies is
important in order to optimize the energy autonomy of a wireless sensor circuit by
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Figure 5.11 S-parameters of the patch antenna with TEG [113].

exploring different sources of power. Due to the typically small size of the sensors,
the integration becomes a challenge in order to minimize the used space. In [113],
it was investigated whether a TEG can be integrated with an antenna, which can
be a communication antenna or an RF energy harvesting antenna. A commercial
TEG was placed above a quarter-wave shorted patch antenna implemented in
FRA4 substrate. The patch antenna with and without the TEG placed on top is
shown in Figure 5.10. A shorted patch antenna design was selected in order to
provide a low thermal resistance connection between one of the TEG surfaces
and the ground plane of the antenna.

The antenna dimensions were retuned with the help of commercial electro-
magnetic simulator software in order for the antenna to operate in the 2.4 GHz
industrial, scientific, and medical (ISM) band. The measured s-parameters of the
antenna prototype are shown in Figure 5.11, where we can see that the desired
operating bandwidth is obtained. The measured radiation pattern of the antenna
with the TEG at 2.45 GHz is shown in Figure 5.12, which showed an obtained
gain of approximately 2.3 dB. The presence of the TEG reduced the antenna
gain by less than 1 dB.

Following the successful implementation of the patch antenna with the TEG,
a shorted patch antenna integrating both a TEG and a solar cell on top was
successfully demonstrated in [114]. The antenna prototype is shown in Figure
5.13, whereas its measured performance is shown in Figure 5.14 verifying that
with proper design the presence of the TEG and the solar cell has a minimal effect
in the operation of the parch antenna. Such systems integrating antennas with
TEGs and solar cells are also particularly suitable for smart-fabric interactive-
textile systems in a variety of applications such as rescue missions, interventions,
and health care [115].
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Figure 5.12 Measured gain radiation pattern of the patch antenna with TEG [114].

<«—————— Solar cell

__—— TEG top/hot layer
TEG

TEG bottom/cold layer
Antenna substrate
’_—— Antenna patch

__— Antenna ground

Figure 5.13 Prototype of shorted patch antenna with TEG and solar cell [114].
Antenna photo courtesy of Dr. Marco Virili, Qorvo Inc. Circuit schematic (©2015
IEEE. Reprinted with permission from [114]

5.8 Problems and Questions

1. Describe the three thermoelectric phenomena: (a) the Seebeck effect, (b) the
Peltier effect, and (c) the Thomson effect.

2. Describe the three mechanisms of heat transfer.

3. Describe Fourier’s law and its analogy to Ohm'’s law.

4. Describe the conservation of energy in the hot and cold surface boundaries of
a TEG.

5. Derive the Carnot efficiency formula assuming the Peltier and Seebeck effects.

6. Calculate the emitted heat from the cold boundary surface of a TEG by
solving the heat diffusion equation and applying Fourier’s law and the con-
servation of energy.
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Figure 5.14 Measured performance of the patch antenna with TEG and solar cell [114].

7. Starting from (5.38) or (5.39) for the TEG efficiency, compute the optimum
load that maximizes the efficiency and find the maximum efficiency.

8. The hot junction of a TEG is at Ty = 315 K and the cold junction at
Tc = 300 K. The figure of merit of the thermoelectric material of the TEG is
Z = 0.003 K~!. The TEG comprises N = 100 pellet pairs, where each pellet
pair has electrical resistivity p = 25 uQm, surface A = 1 mm?, and length
L = 2 mm. Derive the Carnot efficiency and the TEG efficiency assuming
that the TEG is connected to a Ry = 50 €2 load. What is the optimum load
maximizing the efficiency and what is the optimum efficiency?

9. Derive the optimum TEG efficiency and optimum load when the length of the
pellets of the TEG of the previous problem is doubled, i.e., L. = 4 mm.
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