
5 Thermal Energy Harvesting

5.1 Introduction

Thermoelectric transducers convert thermal energy into electric energy. Thermal

energy is generated as a result of a multitude of phenomena and applications, in

some cases intentionally but most of the time as waste heat from a process or

reaction, from industrial plants to buildings, heating systems, and automobiles

to the human body, which, in turn, provide numerous applications for thermal

energy harvesters.

This chapter begins with a description of thermoelectric phenomena and the

geometrical structure of a thermoelectric generator (TEG). Next an introduction

to the theory of heat transfer is presented in order to provide the theoretical

background for the analysis of the performance of thermoelectric generators,

and it is followed by theoretical expressions for the efficiency of TEGs. The next

section deals with the figure of merit of different thermoelectric materials, and it

is followed by a SPICE model of a thermoelectric generator. Finally the chapter

ends with selected examples of TEG systems.

5.2 Thermoelectric Phenomena

There are three thermoelectric phenomena that govern the conversion of thermal

energy to electrical energy and vice versa: (a) the Seebeck effect, (b) the Peltier

effect, and (c) the Thomson effect. In the following, a summary of the three

effects is provided.

5.2.1 The Seebeck Effect

According to the Seebeck effect, a temperature gradient between two different

metals or semiconductors that are in contact creates a voltage difference between

the two components [63]. Given a set of two different metal or semiconduc-

tor materials 1 and 2 that are connected forming two junctions as shown in

Figure 5.1a, the presence of different temperatures TH and TC at the two junc-

tions results in a voltage Voc across the two contacts.
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Figure 5.1 Thermoelectric phenomena: (a) the Seebeck effect and (b) the Peltier effect.

The voltage is given by

Voc = α12ΔT, (5.1)

where ΔT = TH −TC and the coefficient α12 is the called the Seebeck coefficient

and has units of V/K. The Seebeck coefficient depends on both materials 1

and 2 and can be negative or positive. As we will see in a later section, the

Seebeck coefficient is higher when semiconductor materials rather than metals

are used to form the junctions, and consequently TEG devices typically are made

of semiconducting materials.

5.2.2 The Peltier Effect

The Peltier effect is the inverse of the Seebeck effect [63]. In other words, the

application of an external voltage difference V at the junctions of two different

metals or semiconductors results in a current I flowing through the junctions,

which, in turn, results in one junction absorbing thermal energy and the other

junction generating thermal energy. As a result of the current flow, a heat flow

rate Q is created. Consequently, a temperature gradient is generated between

the junctions (Figure 5.1b).

The Peltier effect is described by the following equation

Q = π12I, (5.2)

where the heat flow rate between the two junctions is measured in W and the

current through the circuit in A. The coefficient π12 is called the Peltier coefficient

and has units of W/A or equivalently V. The Peltier coefficient, like the Seebeck

coefficient, is a relative coefficient corresponding to the two materials forming

the junctions.
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5.2.3 The Thomson Effect

The third thermoelectric effect is the Thomson effect, which occurs in one mate-

rial (metal or semiconductor) when its edges are subject to a temperature dif-

ference and at the same time they are subject to a voltage difference resulting in

current flowing through the material [63]. As a result, there is heat QT absorbed

or dissipated by the material, which depends both on the applied current and

the temperature difference. The Thomson effect is described by the equation

QT = βIΔT, (5.3)

where β is the Thomson coefficient, which is measured in WI−1K−1 or equiv-

alently V K−1. The heat rate due to the Thomson effect is smaller than the

one due to the Peltier effect; nonetheless, it can become significant when the

temperature difference ΔT is large [63].

5.2.4 The Kelvin Relationships

The three thermoelectric coefficients a12, π12, and β are related by the Kelvin

relationships [63]

π12 = α12T (5.4)

and
dα12

dT
=

β1 − β2

T
. (5.5)

The first equation relates the Seebeck and Peltier effects and demonstrates

the reversible nature of the effects and the fact that the same set of materials is

suitable both for electric power generation and for thermal power generation (or

refrigeration). The second equation relates the Seebeck effect with the Thompson

effect and enables the definition of an absolute Seebeck coefficient for a single

material as

α =

∫
β

T
dT . (5.6)

The Seebeck coefficient α12 corresponding to the two junctions of the two mate-

rials 1 and 2 is proven to be equal to the difference between the absolute Seebeck

coefficients of each of the two materials α12 = α1 − α2 [63]. Similarly, once an

absolute Seebeck coefficient is defined, (5.4) defines an absolute Peltier coefficient

as π12 = π1 − π2. When the magnitude of the Seebeck or Peltier coefficients of

the two materials is equal, α1 = −α2 and π1 = −π2 = π, then α12 = 2α and

π12 = 2π.

5.3 Thermoelectric Generators

TEGs are typically constructed by forming matrices of pairs of p-type and n-type

semiconductor columns called pellets. The pellets are electrically connected in
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Figure 5.2 Cross-section of a TEG.

Figure 5.3 Electrical equivalent circuit of a TEG.

series using conducting (for example, copper or aluminum) strips, and are sand-

wiched between thermally conductive ceramic plates, as shown in Figure 5.2.

The output voltage of TEGs depends on the size and number of pellet pairs

and typically ranges from 10 to 50 mV/K [106]. Due to the fact that the output

voltage of a TEG in a energy harvesting application scenario takes such small

values, a TEG is usually connected to a load consisting of a switched-type voltage

converter, such as a boost or fly-back converter in order to produce a desired

voltage required by standard circuitry [106].

The electrical equivalent circuit of a TEG consists of a Seebeck voltage source

with a value Voc given by (5.1) in series with an electrical resistance Rt repre-

senting the heat generated inside the TEG due to thermal losses as the electrical

current flows through the pellets. The equivalent circuit is shown in Figure 5.3.

5.4 Heat Transfer Fundamentals

Heat is transferred through three physical mechanisms, conduction, convection,

and radiation [107]. Each mechanism is governed by a rate equation, which

provides a quantification of the heat flux rate measured in W/m2.

Conduction is the transfer of energy between hot and cold particles of a

material. The rate equation of conductive heat transfer is Fourier’s law. Con-

ductive heat transfer typically occurs in TEGs, and for this reason Fourier’s law

is described in more detail in the next subsection.

Convection is the transfer of heat due to the bulk, macroscopic motion of fluids.

In the case of solids, an important scenario is that of a fluid with temperature T∞
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62 Thermal Energy Harvesting

flowing over a heated solid surface of temperature Ts. In this case, the convection

rate equation is

qcv = h (Ts − T∞) . (5.7)

The parameter h (W m−2K−1) is the convection heat transfer coefficient.

Finally, all matter at a temperature higher than zero Kelvin emits thermal

radiation whose upper limit is given by the rate equation known as the Stefan–

Bolzmann law

qr = σT 4, (5.8)

where qr is the radiated heat flux rate of an ideal blackbody radiator measured

in W/m2 that is at temperature T . The constant of proportionality σ is the

Stefan–Bolzmann constant, which is equal to σ = 5.67 · 10−8 W m−2K−4.

5.4.1 Fourier’s Law

The conduction heat transfer process is described by Fourier’s law expressed by

q = −k∇T. (5.9)

According to Fourier’s law, the heat flux rate q measured in W/m2 is proportional

to the temperature gradient ∇T (K m−1). The constant of proportionality k is

the thermal conductivity of the material (W m−1 K−1). The minus sign expresses

the fact that heat is transferred from points of the material with a higher

temperature toward points of lower temperature. A TEG can be approximately

modeled as a one-dimensional (1D) problem of heat diffusion from the hot plate

toward the cold plate (Figure 5.2). In this case, Fourier’s law becomes

q = −k
dT

dx
, (5.10)

where x represents the vertical direction between the two plates shown in Figure

5.2. Once the steady-state temperature distribution in the material is defined,

the heat flux can be computed using Fourier’s law.

In the case of 1D problems, Fourier’s law presents an analogy with Ohm’s

law of electrical circuits [107]. Let us consider an infinitesimal volume V = AL,

where the heat rate is flowing through the volume surface A and the temperature

gradient is taken along the length L. Then we can write Fourier’s law as

Q = −kA

L
(−dT ) ⇒ Q = KΔT ⇒ QΘ = ΔT, (5.11)

where K = kA/L is defined as the thermal conductance (W K−1) and Θ = 1/K

is the thermal resistance. The analogy with Ohm’s law IR = ΔV is now obvious.

This fact is explored in computing the steady state of TEGs using electrical

circuit simulators, as we will see in Section 5.6.
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Figure 5.4 Conservation of energy in a TEG.

5.4.2 The First Law of Thermodynamics

In heat transfer problems, one must always apply the first law of thermodynam-

ics, in other words the law of conservation of energy [107]. One may express this

law in different formats, for example in terms of energy flux rates or in terms of

energy rates (i.e., power). We assume that the heat distribution is uniform over

the boundary surfaces of the TEG, and in this case we can convert heat flux rates

q to heat rates Q simply by multiplying the former by the area A of the surface

of the TEG boundary, i.e., Q = qA. The conservation of energy for the TEG

system in terms of heat rates is depicted in Figure 5.4, and it takes the form

Qst = QH −QC +QJ . (5.12)

Equation (5.12) states that the stored thermal and mechanical energy rate Qst

in the TEG system of a certain volume is equal to the difference between the

inflow of energy rate QH and outflow of energy rate QC at the system boundary

surface, plus any thermal energy rate QJ generated in the system.

When we are dealing with the boundary surfaces of the system, conservation of

energy across a boundary is expressed by the fact that the incoming energy rate

must be equal to the outgoing energy rate at each boundary. Based on Figure

5.4, the conservation of energy in the hot H boundary becomes

QH = QPH +QCDH , (5.13)

where QPH is the absorbed Peltier heat and QCD contains contributions from

heat conduction and Joule heat generation in the TEG, which we derive using

the heat diffusion equation in the next section. The conservation of energy in the

cold C junction becomes

QC = QPC +QCDC , (5.14)

where QPH is the emitted Peltier heat and QCD contains contributions from heat

conduction and Joule heat generation in the TEG accordingly. The magnitude

of QPH is different from QPC because of the different temperatures at the H

and C boundaries. Furthermore, QCDH is different from QCDC because the heat
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64 Thermal Energy Harvesting

conduction rate flows from the H to the C boundary, but the generated Joule

heat is emitted from both boundaries equally as we will see in the next sections.

5.4.3 The Heat Diffusion Equation

Once the steady-state temperature distribution in a material is determined, one

can compute the heat flow using the rate equations. The heat diffusion equation,

or simply the heat equation, provides a means to determine the temperature

distribution as a function of time. In Cartesian coordinates, it is given

∇(k∇T ) + qj = ρcp
∂T

∂t
, (5.15)

where k is the thermal conductivity of the material, ρ is the density (kg m−3),

and cp (J kg−1 K−1) is the specific heat of the material. The product ρcp is

called volumetric heat capacity and measures the ability of the material to store

thermal energy [107]. Finally, qj is the heat density rate measured in Wm−3.

In the case of a one-dimensional conduction problem and of a material with a

constant thermal conductivity, which represents an approximate model for the

TEG, the heat equation becomes

∂2T

∂x2
+

qj
k

=
1

α

∂T

∂t
, (5.16)

where α = k/(ρcp) is the thermal diffusivity. The steady-state condition is

obtained by setting the partial derivative of the temperature versus time equal

to zero, in which case one obtains

∂2T

∂x2
+

qj
k

= 0. (5.17)

5.5 TEG Efficiency

The conversion efficiency η of a TEG is defined as the ratio of the electrical

power delivered to a load RL connected to the TEG PL divided by the heat rate

absorbed at the hot junction QH

η =
PL

QH
, (5.18)

where QH is the heat rate at the hot junction. Assuming a uniform heat distri-

bution along the junction of the TEG, the heat rate is QH = qhA, where qh is

the heat flux rate and A is the surface area of the hot junction.

5.5.1 The Carnot Efficiency

Let’s consider first the ideal case where only the Peltier and Seebeck phenomena

exist. We do not consider heat conduction phenomena and no heat generation
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inside the TEG. The first assumption results in the thermal conductivity of the

TEG being zero k = 0, while the second assumption results in the electrical

resistance of the TEG being set to zero Rt = 0 in the model of Figure 5.3.

The power delivered to the load is PL = I2RL, where I is the current flowing

through the TEG and the load RL. Using (5.1), one has

VL = α12(TH − TC) (5.19)

IL =
α12(TH − TC)

RL
(5.20)

and

PL = I2LRL = α2
12(TH − TC)

2 1

RL
. (5.21)

Application of the first law of thermodynamics at the hot junction boundary

of the TEG results in the heat rate QH absorbed at the hot junction being equal

to the Peltier absorbed heat rate, and therefore

QH = π12IL = α12THIL, (5.22)

where (5.2) and (5.4) were used. The TEG efficiency becomes

ηC =
TH − TC

TH
. (5.23)

This is known as the Carnot efficiency and it represents an upper bound in the

efficiency of TEGs. One should highlight that even the ideal Carnot efficiency

takes very small values in many application scenarios of energy harvesting, for

example a hot junction with tempetature ΔT = 10 K above a cold junction at

room temperature TC = 300 K gives a Carnot efficiency of 3.33%.

5.5.2 Conversion Efficiency Considering Heat Conduction and Thermal Losses in
the TEG

An ideal TEG presents no thermal conductivity and no electrical resistance.

All materials, however, present a nonzero thermal conductivity k and a nonzero

electrical resistance Rt.

The power delivered to the load in the case of a nonzero electrical resistance

Rt as shown in Figure 5.3 becomes

VL = α12(TH − TC)
RL

Rt +RL
(5.24)

IL =
α12(TH − TC)

Rt +RL
(5.25)

and

PL = I2LRL = α2
12(TH − TC)

2 RL

(Rt +RL)2
. (5.26)
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The load power becomes maximum when Rt = RL, in which case

PLmax =
α2
12(TH − TC)

2

4Rt
. (5.27)

In order to compute the heat rate at the hot junction, we apply the heat

diffusion equation to determine the temperature distribution along the TEG

height. The heat diffusion equation in the steady state ∂T/∂t = 0 takes the form

∂2T

∂x2
+

qj
k

= 0. (5.28)

Considering a uniform heat generation along the TEG, the Joule heat density qj
takes is equal to

qi =
PJ

V
=

I2Rt

AL
, (5.29)

where A is the area of one pellet pair, L its length, and V = AL its volume.

The solution of (5.28) has the form

T (x) = − qi
2k

x2 + C1x+ C2. (5.30)

The temperature variation across the TEG pellet height has a parabolic profile.

The constants C1 and C2 are determined by the boundary conditions

T (0) = TH

T (L) = TC ,
(5.31)

where L is the length (or height) of the pellet. One can easily compute

T (x) = − I2Rt

2ALk
x2 +

(
−TH − TC

L
+

I2Rt

2Ak

)
x+ TH . (5.32)

Once we have determined the temperature distribution T (x), application of

Fourier’s law (5.11) at the hot junction of the TEG gives the conduction heat

flux qcdh.

In order to find the heat rate at the hot junction H (x = 0) of the TEG as

shown in Figure 5.4, first we determine the first derivative of the temperature

from (5.32):

dT (x)

dx
= −I2Rt

ALk
x− TH − TC

L
+

I2Rt

2Ak
. (5.33)

Then Fourier’s law (5.11) gives

qcdh = −k

(
dT

dx

)
x=0

= k
TH − TC

L
− I2R

2A
. (5.34)

The conduction heat rate QCDH is be computed from the heat flux qcdh using

the cross-section A of the pellet pair as QCDH = qcdhA, resulting in

QCDH =
kA

L
(TH − TC)−

I2R

2
= K(TH − TC)−

I2R

2
, (5.35)
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where K is the thermal conductivity of a pellet pair with height L and cross-

section A.QCDH included both the conduction heat rate, leaving the hot junction

and a Joule heat term generated in the TEG.

We have seen in (5.13) that the application of the first law of thermodynamics

(5.12) at the hot junction boundary gives that the incoming absorbed heat rate

QH is equal to the Peltier emitted heat rate QPH = α12THI plus the heat

conduction and Joule heat generation term QCDH :

QH = QPH +QCDH = α12THI +K(TH − TC)−
I2R

2
. (5.36)

Following a similar calculation, we can show that the emitted heat rate QC at

the cold junction boundary of the TEG is

QC = α12TCI +K(TH − TC) +
I2R

2
. (5.37)

The analysis has been made for one pellet pair. A TEG typically has a large

number N of pellet pairs that are connected thermally in parallel and electrically

in series (Figure 5.2). In this case, the thermal conductance K, the electrical

resistance Rt, the Seebeck voltage Voc, and consequently the absorbed QH and

emitted heat rates QC are all multiplied by the number of pellet pairs N .

We have seen in (5.18) that in order to calculate the efficiency of the TEG we

only require the absorbed heat rate QH at the hot junction. Using (5.18), (5.25)

and (5.36) the conversion efficiency of the TEG becomes

η =
α2
12(TH − TC)RL

α2
12

[
TH(Rt +RL)− ΔTRt

2

]
+K(Rt +RL)2

(5.38)

or

η = ηC
ZRL

Z
[
(Rt +RL)− nCRt

2

]
+ 1

RtTH
(Rt +RL)2

, (5.39)

where ηC is the Carnot efficiency and Z = α12/(KRt) is defined as the figure

of merit of the thermoelectric material of the TEG. The figure of merit is

proportional to the square of the Seebeck coefficient, and inversely proportional

to the thermal conductivity and the electrical resistance of the TEG material and

has units K−1. Good thermoelectric materials have a large Seebeck coefficient

but also low thermal conductivity and low electrical resistance. It is customary

to multiply Z with the temperature in order to obtain a unitless parameter.

As we have seen, the condition for maximum delivered electrical power to

the load is Rt = RL. However, due to the dependance of both the load power

PL and the absorbed power QH on the load resistance RL, the load value that

provides maximum efficiency η is different from the load value that provides

maximum delivered power. Taking ∂η/∂RL = 0, one obtains the load value that

corresponds to maximum efficiency as

RLm = Rt

√
1 + ZT̄ , (5.40)
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Figure 5.5 TEG conversion efficiency (TC = 300 K).

where T̄ = (TH + TC)/2. The maximum efficiency then becomes

η = ηC

√
1 + ZT̄ − 1√
1 + ZT̄ + TC

TH

. (5.41)

The conversion efficiency for different values of the figure of merit versus the

hot side temperature is shown in Figure 5.5, when the cold side is at TC = 300 K.

The Carnot efficiency is also included for comparison. It should be noted that

for a TEG made of a material with figure of merit Z = 0.003 K−1, when the hot

side is at 10 K above room temperature, the conversion efficiency is just 0.52%.

5.5.3 The Figure of Merit

The figure of merit is proportional to the square of the Seebeck coefficient,

inversely proportional to the thermal conductivity and the electrical resistance

of the TEG material, and has units K−1. Good thermoelectric materials have

a large Seebeck coefficient but also low thermal conductivity and low electrical

resistance.

All three parameters depend on the carrier concentration in the material. The

dependence is pictured in Figure 5.6 [108]. The results show that highly doped

semiconductor materials are more suitable for thermoelectric applications than

metals or insulators.

Furthermore, Figure 5.7 [63] shows obtained values of the figure of merit for

several materials. The figure of merit Z is normalized to the temperature in order

to obtain a unitless parameter. One can see that Bi2Te3 has a maximum figure

of merit value around room temperature T = 300 K, and for this reason it is

commonly used in TEG applications. Typical values for the figure of merit range

around 2.5 · 10−3 K−1 to 3 · 10−3 K−1.
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Figure 5.6 Schematic description of Seebeck coefficient, thermal conductivity, and
electrical resistance dependence on carrier concentration based on [108].
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Figure 5.7 Selected normalized figure of merit ZT plots for different thermoelectric
materials, reproduced from [63].

5.6 A Thermal and Electrical SPICE Model for the TEG

Fourier’s law for heat conduction presents an analogy with Ohm’s law in electrical

circuits. Due to this fact, it is possible to model and analyze thermal problems

using electrical simulators such as Simulation Program with Integrated Circuit

Emphasis (SPICE). The analogy between the various thermal and electrical

quantities is summarized in Table 5.1 [109].

Table 5.1 Analogy between thermal and electrical quantities [109].

Thermal Unit Electrical Unit

Heat rate, Q W Current, I A
Temperature, T K Voltage, V V

Thermal resistance, Θ = 1/K K W−1 Resistance, R Ω
Heat capacity, C J K−1 Capacitance, C F

Absolute zero temperature 0 K Ground 0 V
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Figure 5.8 SPICE model of a TEG [109].

Using Table 5.1, the energy balance equations at the hot and cold boundaries

of the TEG (5.36) and (5.37) can be represented with controlled current sources

and a resistor. Thus, it is possible to build a SPICE equivalent model for the

TEG [109] shown in Figure 5.8, where

QPH = α12THI

QPC = α12TCI

QJ = I2Rt

QK = K(TH − TC)

Voc = α12(TH − TC).

(5.42)

The model can be used to find the steady state of the TEG. The model

parameters can be computed from the TEG manufacturer specifications [109]. It

is further possible to introduce a thermal capacity C (J/K) in the SPICE model,

which allows to study the transient behavior of the TEG [110].

5.7 Thermal Energy Harvester Systems

Seiko presented in 1998 the first watch that was powered by a thermoelectric

transducer [111]. The power that is required in order to operate a quartz digital

wristwatch is approximately 20–40 μW [63]. There are many application sce-

narios where electronic circuits generate a large amount of heat. For example,

typically in RF and microwave electronics a power amplifier operates with low

efficiency in order to maintain an acceptable level of distortion and consequently a

significant fraction of the power used to supply the power amplifier is dissipated

in heat. Therefore, it is possible to use a TEG in order to convert some of

the wasted heat back into electrical power. Such an application scenario has

been studied in [112]. A 1.37 W power amplifier with 10 dB of gain was used,

operating at 2.45 GHz with a measured power-added efficiency (PAE) of 34%.

The PAE is defined as (PRF
o − PRF

i )/Pdc, which means that the amplifier

generated approximately 0.88 W of heat.

The amplifier printed circuit board with a commercial TEG placed below is

shown in Figure 5.9. The electronics of the TEG board are shown in the figure
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Figure 5.9 Thermal energy harvesting from an RF power amplifier. c©2013 IEEE.
Reprinted with permission from [112]

Figure 5.10 Patch antenna integrating a thermoelectric generator [113]. Photo
courtesy of Dr. Marco Virili, Qorvo Inc.

whereas the hot side of the TEG was placed in contact with the ground place

of the amplifier board directly below the amplifier packaged integrated circuit.

A measured temperature map of the power amplifier printed circuit board when

the amplifier was operating is also shown in Figure 5.9. At steady state, the

temperature at the hot side of the TEG was measured to be 313.1 K, whereas

the temperature at the cold side was 305.9 K. The temperature difference of

7.2 K was maintained with the help of a heat sink placed below the TEG. This

temperature gradient corresponds to a Carnot efficiency of 2.3%. A measured

output power of 1 mW was obtained from the TEG, which, although represents

a very low efficiency for the thermoelectric generator, as an absolute value it is

sufficient to power a wireless sensor circuit performing some monitoring function,

for example.

The integration of multiple harvesting systems of different technologies is

important in order to optimize the energy autonomy of a wireless sensor circuit by
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Figure 5.11 S-parameters of the patch antenna with TEG [113].

exploring different sources of power. Due to the typically small size of the sensors,

the integration becomes a challenge in order to minimize the used space. In [113],

it was investigated whether a TEG can be integrated with an antenna, which can

be a communication antenna or an RF energy harvesting antenna. A commercial

TEG was placed above a quarter-wave shorted patch antenna implemented in

FR4 substrate. The patch antenna with and without the TEG placed on top is

shown in Figure 5.10. A shorted patch antenna design was selected in order to

provide a low thermal resistance connection between one of the TEG surfaces

and the ground plane of the antenna.

The antenna dimensions were retuned with the help of commercial electro-

magnetic simulator software in order for the antenna to operate in the 2.4 GHz

industrial, scientific, and medical (ISM) band. The measured s-parameters of the

antenna prototype are shown in Figure 5.11, where we can see that the desired

operating bandwidth is obtained. The measured radiation pattern of the antenna

with the TEG at 2.45 GHz is shown in Figure 5.12, which showed an obtained

gain of approximately 2.3 dB. The presence of the TEG reduced the antenna

gain by less than 1 dB.

Following the successful implementation of the patch antenna with the TEG,

a shorted patch antenna integrating both a TEG and a solar cell on top was

successfully demonstrated in [114]. The antenna prototype is shown in Figure

5.13, whereas its measured performance is shown in Figure 5.14 verifying that

with proper design the presence of the TEG and the solar cell has a minimal effect

in the operation of the parch antenna. Such systems integrating antennas with

TEGs and solar cells are also particularly suitable for smart-fabric interactive-

textile systems in a variety of applications such as rescue missions, interventions,

and health care [115].
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Figure 5.12 Measured gain radiation pattern of the patch antenna with TEG [114].

Figure 5.13 Prototype of shorted patch antenna with TEG and solar cell [114].
Antenna photo courtesy of Dr. Marco Virili, Qorvo Inc. Circuit schematic c©2015
IEEE. Reprinted with permission from [114]

5.8 Problems and Questions

1. Describe the three thermoelectric phenomena: (a) the Seebeck effect, (b) the

Peltier effect, and (c) the Thomson effect.

2. Describe the three mechanisms of heat transfer.

3. Describe Fourier’s law and its analogy to Ohm’s law.

4. Describe the conservation of energy in the hot and cold surface boundaries of

a TEG.

5. Derive the Carnot efficiency formula assuming the Peltier and Seebeck effects.

6. Calculate the emitted heat from the cold boundary surface of a TEG by

solving the heat diffusion equation and applying Fourier’s law and the con-

servation of energy.
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Figure 5.14 Measured performance of the patch antenna with TEG and solar cell [114].

7. Starting from (5.38) or (5.39) for the TEG efficiency, compute the optimum

load that maximizes the efficiency and find the maximum efficiency.

8. The hot junction of a TEG is at TH = 315 K and the cold junction at

TC = 300 K. The figure of merit of the thermoelectric material of the TEG is

Z = 0.003 K−1. The TEG comprises N = 100 pellet pairs, where each pellet

pair has electrical resistivity ρ = 25 μΩm, surface A = 1 mm2, and length

L = 2 mm. Derive the Carnot efficiency and the TEG efficiency assuming

that the TEG is connected to a RL = 50 Ω load. What is the optimum load

maximizing the efficiency and what is the optimum efficiency?

9. Derive the optimum TEG efficiency and optimum load when the length of the

pellets of the TEG of the previous problem is doubled, i.e., L = 4 mm.
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