
2 Theoretical Framework toward
Green Networks

Traditional designs in cellular networks focuses on spectrum efficiency, which is defined
as the amount of bits transmitted by each unit of bandwidth. Since the first-generation
cellular system, spectrum efficiency improvement, along with network coverage
enhancement, has been the most important issue in network design. Many appealing
technologies, such as orthogonal frequency-division multiplexing (OFDM), multiple-
input multiple-output (MIMO), small-cell networking, and full-duplex communications,
have been proposed in this regard.

With the explosion of wireless data applications in recent years, energy consumption
of wireless networks has aroused much interest in the 5G era. The motivation of so-
called energy-efficient communications or green networks is to save the energy con-
sumption of the whole cellular network [1]. This chapter focuses on the theoretical
framework toward green radio networks. In this chapter, we will first introduce the
definition of energy efficiency and some important metrics for green network design.
Following that, the study of energy efficiency from information theoretical aspects will
be outlined. Then some fundamental trade-offs in green radio networks will be intro-
duced, especially the energy efficiency (EE)–spectral efficiency (SE) trade-off in orthog-
onal frequency-division multiple access (OFDMA) networks. The EE design from the
perspective of optimization theory will be also introduced in this chapter. We will finally
present the EE-oriented radio resource allocation algorithms for both orthogonal and
non-orthogonal systems.

2.1 Metrics for Green Radio

There are various definitions of green metrics [2], which can be roughly classified as
two kinds: energy efficiency metrics and energy consumption metrics. Table 2.1 depicts
some typical definitions from link level, access level, and network level.

Link-Level Metric for Green Radio
The energy consumption of a point-to-point communication link presents the required
energy for transmitting one bit information (Joules/bit). Minimizing the energy con-
sumption has been considered for a long time. Radio resource allocation aims to
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2.1 Metrics for Green Radio 17

Table 2.1 Green metrics for different levels.

Energy efficiency Energy consumption

Link level b/Joule; b/s/W; Joule/bit
b/s/W; (b · m)/s/Hz/W

Access level GEE; WSEE; WMEE
Network level m2/W; user/W W/m2 W/user

minimize the average required transmit power for a given average data rate require-
ment. The corresponding energy efficiency metric could be defined as the amount of
transmitted bit for each Joule of energy (bits/Joule), as

EE = R

ζPt + Pc , (2.1)

where ζ is the inverse of power amplifier efficiency,R is the transmit data rate, Pt relates
to the transmit power, and Pc corresponds to the circuit power consumption, which can
be modeled as a linear function of data rate

Pc = Ps + ξR. (2.2)

Here, Ps is the static circuit power in the transmit mode and ξ is a constant denoting
dynamic power consumption per unit data rate. In some literatures, the dynamic power
consumption is ignored, which corresponds to a special case that ξ = 0 of the mode
just discussed. From (2.2), this energy efficiency metric can also be interpreted as the
achievable data rate for a given transmit power (b/s/W).

Some other metrics have also been often used in certain circumstances. Correspond-
ing to the spectral efficiency (b/s/Hz), power efficiency can be defined as the achievable
spectral efficiency for a given supplied power resources (b/s/Hz/W). More generally, the
radio efficiency ((b·m)/s/Hz/W) provides a more thorough definition, which takes into
account the transmission distance.

These metrics mainly focus on a single point-to-point data link and can be applied
in modulation and coding design, SE and EE trade-off, fundamental energy efficiency
analysis, and other related topics. Link-level energy efficiency largely depends on the
data rate of communication channels and the energy consumption in the transmitter and
the receiver. Therefore, for a wireless channel, link-level energy efficiency is greatly
impacted by the channel fading, such as path loss, shadowing, and fast fading. Also,
given a point-to-point data link, energy consumption mainly consists of transmit power
and circuit power. Link-level energy efficiency is important for the fundamental and
theoretical study of green radios. For example, the fundamental limits of power con-
sumption for each bit information is ln 2 · N0 for an additive white Gaussian noise
(AWGN) channel with a noise power density of N0.

https://doi.org/10.1017/9781108277389.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108277389.003


18 Theoretical Framework toward Green Networks

Access-Level Metric for Green Radio
The point-to-point link-level metric can be extended into a multiple-user link, e.g.,
multiple access network, multiuser interference, and device-to-device communications.
In these scenarios, each communication node/user has its own energy efficiency, which
should be considered for the EE metric. There are mainly three well-established metrics
to aggregate the different EEs. The global energy efficiency (GEE) is defined as

GEE =
∑K
k=1 Rk∑K

k=1 ζPt,k + Pc,k
, (2.3)

in which K is the number of total links, and Rk,Pt,k , and Pc,k refer to the data rate,
transmit power, and circuit power of user k, respectively. This GEE is actually the overall
energy efficiency of the whole network consisting of K links.

The GEE represents the ratio between the overall amount of bit and the overall
energy consumption, and thus can be interpreted as the benefit–cost ratio of the entire
network. However, the GEE does not consider the individual energy efficiency, leading
to potential unfairness among different users’ EE. The maximization of GEE does not
always provide the maximum EE for each user.

On the other hand, weighted sum energy efficiency (WSEE) is defined as the weighted
summation of all EEs, as

WSEE =
K∑
k=1

ωk
Rk

ζPt,k + Pc,k , (2.4)

where ωk is the weight for link k. Moreover, weighted minimum energy efficiency
(WMEE) is defined as

WMEE = min
k=1,...,K

ωk
Rk

ζPt,k + Pc,k . (2.5)

The WSEE and the WMEE are capable of characterizing the complete Pareto-optimal
EE region of users, as it can prioritize individual EE by varying the weight value, ωk . In
regard, the maximization of WSEE or WMEE makes a good balance, or trade-off, for
the EE of each individual link.

Network-Level Metric for Green Radio
While considering the network level, there are some other green metrics that charac-
terize network energy efficiency performance, and that involve the overall consumed
power of the whole network and the system-level performance. Again, there are two
kinds of metrics: energy consumption metrics and energy efficiency metrics.

The area energy consumption is defined as the average network power consumption
divided by the network coverage (W/m2). This metric takes into account all network
power consumptions, including radio transmission power, fixed circuit power related to
the operation system, cooling system, etc. Thus, it is more related to carbon dioxide
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2.2 EE Study from Information Theory 19

emissions and the carbon footprint. A counterpart area energy efficiency (AEE) metric
can be defined as the average network coverage per consumed power (m2/W), as

AEE = A

P
m2/W, (2.6)

where A is the coverage size and P is the overall consumed power. The AEE is more
suitable for the rural environment than for the urban environment, since the network in
the rural environment is usually coverage-limited.

In the urban environment where the network is capacity-limited, a more useful metric
defined as the number of supported users per power unit can be used, which has a unit
of users/W or W/user. With the densification of 5G small-cell base stations where the
number of access points could be comparable to that of the associated users, the average
power consumption per user becomes an important metric related to the operation cost,
particularly the electricity bill, of cellular operators.

2.2 EE Study from Information Theory

Energy efficiency has been investigated from information theory since the very begin-
ning. The capacity of a band-limited AWGN channel is given as

R = B log2

(
1 + Pt

N0B

)
, (2.7)

where B is the bandwidth, Pt is the transmit power, and N0 is the noise power density.
In this section, without loss of generality, we assume that N0 = 1. Spectral efficiency
(SE) is defined as η = R/B, which means the amount of transmitted bits for a given
unit bandwidth.

On the other hand, EE can be defined as the transmitted bit for one Joule energy, as
ε = R/Pt . Thus, the unit of EE is bit/Joule. Then, without considering circuit power
consumption, the capacity region in (2.7) can be rewritten as

ε = η

2η − 1
. (2.8)

The above equation illustrates the SE–EE trade-off for point-to-point AWGN channel
[3]. According to (2.8), EE monotonically decreases with SE, indicating that high SE
and high EE cannot be simultaneously achieved in general. Moreover, we can also
analyze that the maximum value of EE can be achieved at (ln 2)−1 when η approaches 0.

The relation of SE–EE trade-off can also be extended into multiuser channel scenario
[4]. Multiple access channel (MAC) is one of the important multiuser channel models,
which corresponds to the multiuser uplink communication in cellular networks. MAC
is also the only channel model whose capacity region is already known.
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20 Theoretical Framework toward Green Networks

The capacity region for Gaussian MAC with K users can be expressed as a convex
region restricted by the following inequalities [3]∑

i∈S
Ri ≤ B log2

(
1 +

∑
i∈S Pi
N0B

)
,∀S ⊂ {1,2, . . . ,K}, (2.9)

where Pi and Ri are the transmit power and data rate of user i, respectively.
We now investigate the EE of Gaussian MAC, as well as the EE–SE trade-off. The

above inequalities enclose the SE region, which characterizes the achievable data rate
trade-off among different users. That is, each user cannot increase its own SE without
degrading the SE of other users. Similarly, there also exists a fundamental EE trade-off
among different users, i.e., the EE of one particular user will be generally decreased as
EEs of other users increase. Therefore, to analyze the EE–SE trade-off, we shall first
investigate the EE region of MAC.

Similar to the point-to-point AWGN channel, the SE and EE of user i can be defined
as ηi = Ri/B and εi = Ri/Pi , respectively. Then, by substituting these definitions into
the MAC capacity region, we can obtain the following expression∑

i∈S

ηi

εi
≥ 2

∑
i∈S ηi − 1,∀S ⊂ {1,2, . . . ,K}. (2.10)

Both SE and EE are involved in (2.10). Therefore, two fundamental and significant
insights can be observed from it. The first is the EE trade-off among different users,
which is similar to the SE trade-off in (2.9). The second insight is the SE–EE trade-
off for each user in the MAC. Considering a particular user k, its SE–EE trade-off is a
function of all other users’ SE and EE, i.e., ηi and εi , i �= k.

Assuming K = 2, the EE–SE relation of user 1 can be derived as

ε1(ε2,η1,η2) =
{ η1

2η1 − 1
, 0 ≤ ε2 ≤ η2

2η1 (2η2 − 1)
η1

2η1+η2 − (1 + η2

ε2
)
,

η2

2η1 (2η2 − 1)
< ε2 ≤ η2

2η2 − 1
. (2.11)

With some simple mathematical analysis, we can derive that

• ε1 decreases with η1, indicating the EE–SE trade-off of a particular user.

• ε1 non-increases with ε2 and η2, which means the EE of one user will be generally
degraded if the other user increases its EE or SE.

The SE–EE trade-off and the EE region of the two-user MAC are illustrated in Fig. 2.1.
As we have discussed, the relation between EE and SE without considering circuit

power can be expressed in closed form, for both point-to-point channel and MAC. In
particular, the EE–SE curve is a cup shape curve for point-to-point transmission.

Whereas, considering circuit power, the relation between EE and SE is more com-
plicated and cannot be expressed in closedform. It becomes a bell-shaped curve for
point-to-point transmission, which will be discussed in detail later.
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(a)

(b)

Figure 2.1 The EE trade-off and EE–SE trade-off of the two-user MAC, η1 = 1. (a) The
relationship between ε1 and ε2. (b) The relationship between ε1 and η2.

EE Region of TDMA and FDMA
EE regions in FDMA and TDMA systems are also attainable. In a FDMA system, we
assume that the total bandwidth is B and the αi proportion of the entire bandwidth is
allocated for user i. Then the achievable rate region in FDMA system is given by [3]

⋃
(α1,...,αM)

{
(R1,...,RM)

∣∣∣∣Ri ≤ αiB log2

(
1 + Pi

αiBN0

)
,

M∑
i=1

αi = 1,αi ≥ 0,∀i = 1,2,...M

}
.

(2.12)
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22 Theoretical Framework toward Green Networks

By substituting the definitions of SE and EE into (2.12), we can obtain the EE region
for the FDMA system as⋃

(α1,...,αM)

{
(ε1,...,εM)

∣∣∣∣εi ≤ ηi

αi

(
2
ηi
αi − 1

),
M∑
i=1

αi = 1,αi ≥ 0,∀i = 1,2,...M

}
.

(2.13)

In a TDMA system, we assume that the total transmission time is T and αiT is the
time period allocated for each user. If we restrict the transmission power of each user in
its own transmission period αiT to be PTi = Pi , then the average achievable data rate in
time period T can be expressed as⋃

(α1,...,αM)

{
(R1,...,RM)

∣∣∣∣Ri ≤ αiB log2

(
1 + Pi

BN0

)
,

M∑
i=1

αi = 1,αi ≥ 0,∀i = 1,2,...M

}
.

(2.14)

On the other hand, if we restrict the average transmission power of each user in the
total transmission period T , that is PTi = Pi

αi
, then the average achievable rate in T can

be written as ⋃
(α1,...,αM)

{
(R1,...,RM)

∣∣∣∣Ri ≤ αiB log2

(
1 + Pi

αiBN0

)
,

M∑
i=1

αi = 1,αi ≥ 0,∀i = 1,2,...M

}
.

(2.15)

For the first kind of power constraint, the definitions of SE and EE could be ηi = Ri

B

and εi = Ri

αiPi
, respectively. For the second kind of power constraint, the definitions of

SE and EE can be rewritten as ηi = Ri

B
and εi = Ri

Pi
, respectively.

By substituting the definitions of SE and EE into (2.14) and (2.15), we can obtain
the EE expression in a TDMA system. However, under the two different constraints, the
same expressions of the EE-region can be achieved, as⋃

(α1,...,αM)

{
(ε1,...,εM)

∣∣∣∣εi ≤ ηi

αi

(
2
ηi
αi − 1

),
M∑
i=1

αi = 1,αi ≥ 0,∀i = 1,2,...M

}
.

(2.16)
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Figure 2.2 Achievable energy efficiency region in FDMA and TDMA systems, η1 = η2 = 1.

It is obvious that the EE-region of the TDMA system shown in (2.16) is the same
as the EE-region of FDMA system shown in (2.13) assuming that the average power
constraints in these systems are the same.

In Fig. 2.2, the achievable EE-regions in two-user FDMA and TDMA systems are
shown and compared with the MAC, whose EE region is given in (2.10).

There is an intersection point of the two curves in Fig. 2.2. When αi = ηi

η1 + η2
,i =

1,2, the EE trade-off point in FDMA and TDMA is the same as that in MAC, that is,

ε1 = ε2 = η1 + η2

2η1+η2 − 1
. Recalling that there is also a point that the capacity region of

FDMA or TDMA is the same to the MAC when αi = Pi

P1 + P2
. Interestingly, this point

is exactly the same as the intersection point in Fig. 2.2.

2.3 Fundamental EE–SE Trade-Off

The EE–SE trade-off can be expressed in closed form without considering the fixed
circuit power. However, if the circuit power cannot be ignored in practical networks, it
is difficult to analyze the EE–SE relation in a closed form. In this section, we use an
example of single-cell downlink OFDMA network to build a general EE–SE trade-off
framework. We also demonstrate that EE is quasiconcave in SE and discuss the potential
impact of channel power gain and circuit power consumption on the EE–SE trade-off.

Considering a single-cell downlink OFDMA networks withK active users and a total
bandwidth Bt , which is equally divided intoN subcarriers. Denote K = {1,2, . . . ,K} as

https://doi.org/10.1017/9781108277389.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108277389.003


24 Theoretical Framework toward Green Networks

the set of K active users and N = {1,2, . . . ,N} as the set of N subcarriers, each with a
bandwidth of B. Let pk,n and gk,n be the transmit power and the channel power gain of
user k (k ∈ K) on subcarrier n (n ∈ N ), respectively. Then, for an AWGN channel with
noise power density N0, the channel capacity of user k on subcarrier n can be written as

rk,n = B log2

(
1 + pk,ngk,n

N0B

)
. (2.17)

The overall system throughput and the total transmit power can be expressed as

R =
K∑
k=1

N∑
n=1

ρk,nrk,n,

Pt =
K∑
k=1

N∑
n=1

ρk,npk,n, (2.18)

respectively. In the above, ρk,n ∈ {1,0} is the subcarrier allocation indicator. We let
ρk,n = 1 if subcarrier n is allocated to user k; ρk,n = 1 otherwise. The overall transmit
power at the base station is constrained as Pmax, that is Pt ≤ Pmax. Moreover, as in
many practical OFDMA systems, we assume that each subcarrier can only be used by
at most one user to guarantee the orthogonality, i.e.,

∑K
k=1 ρk,n ≤ 1,∀ n ∈ N .

Let the set ρ = [ρk,n]K×N denote the feasible subcarrier assignment indicator matrix
and the set P = [pk,n]K×N denote the feasible power allocation matrix, which can be
expressed as

ρ ∈ 	 def=
{

[ρk,n]K×N |
K∑
k=1

ρk,n ≤ 1,∀ n ∈ N ;

ρk,n = {0,1},∀ k ∈ K,n ∈ N
}
,

P ∈ P def=
{

[pk,n]K×N |pk,n ≥ 0,∀ k ∈ K,∀ n ∈ N ;
K∑
k=1

N∑
n=1

pk,n ≤ Pmax

}
,

(2.19)

respectively.
To analyze the EE–SE trade-off, it is equivalent to maximize the EE for a given SE

requirement, or data rate requirement. Let Řk denote the data rate requirement of user
k. As in practical LTE networks, we assume that there are two kinds of users: real-
time users and non-real-time users. Let K1 = {1,2, . . . ,K0 − 1} denote the set of K0 −
1 (K0 ≥ 1) real-time users and K2 = {K0,K0+1, . . . ,K} represent the set the remaining
K −K0 + 1 non-real-time users. The real-time users have a fixed data rate requirement,
which is equal to Řk,∀k ∈ K1, while the data rate requirement of the non-real-time
users should be greater than Řk,∀k ∈ K2.
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We can now mathematically formulate the EE maximization problem as

max
ρ∈	,P∈P

ηEE

⎛⎜⎜⎜⎝=

K∑
k=1

N∑
n=1
ρk,nrk,n

K∑
k=1

N∑
n=1
ρk,n

(
ζpk,n + ξrk,n

)
+ Ps

⎞⎟⎟⎟⎠, (2.20)

subject to

K∑
k=1

N∑
n=1

ρk,nrk,n ≥ Ř, (2.21)

N∑
n=1

ρk,nrk,n = Řk,∀ k ∈ K1, (2.22)

N∑
n=1

ρk,nrk,n ≥ Řk,∀ k ∈ K2. (2.23)

In the above, we can further assume that Ř ≥ ∑K
k=1 Řk , indicating that the overall data

rate requirement is no less than the summation of each user’s data rate requirement.

2.3.1 EE–SE Relation

In the following discussion, we will study the fundamental EE–SE relation of the system
in (2.21)–(2.23). By solving the problem in (2.20) for a given Ř, we can obtain the
optimal EE as a function of SE. However it is impossible to express the EE function
as a closed-form function due to the complicated optimization problem. Nevertheless,
we can reveal some insightful properties of the EE function. In what follows, we first
demonstrate that the EE is a quasiconcave function in SE. In addition, we also dis-
cuss how channel power gain and fixed circuit power consumption impact the EE–SE
trade-off.

Assuming the number of subcarriers, N , is sufficiently large, the quasiconcavity of
the EE function ηEE(R) can be presented in the following theorem. Interested readers
can refer to [5] for the detailed proof.

theorem 1 For any achievable data rate vector, R = [Rk]K×1, achieved with a
feasible subcarrier allocation and power allocation, the maximum EE, η∗

EE (R) =
max

ρ∈	,pk,n≥0
ηEE (R), is strictly quasiconcave in R given sufficiently large number of

subcarriers. Moreover, in the SE region
[
Ř
Bt
, R̂
Bt

]
, η∗

EE

(
ηSE

)
has the following monotonic

properties.
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(a) It strictly decreases with ηSE and achieves its maximum at ηSE = Ř
Bt

if

dη∗
EE

(
ηSE

)
dηSE

∣∣∣∣∣
ηSE= Ř

Bt

≤ 0,

(b) It strictly increases with ηSE and achieves its maximum at ηSE = R̂
Bt

if

dη∗
EE

(
ηSE

)
dηSE

∣∣∣∣∣
ηSE= Ř

Bt

> 0 and
dη∗

EE

(
ηSE

)
dηSE

∣∣∣∣∣
ηSE= R̂

Bt

≥ 0,

(c) It first strictly increases and then strictly decreases with ηSE and achieves its maxi-

mum at ηSE = REE,max
Bt

if

dη∗
EE

(
ηSE

)
dηSE

∣∣∣∣∣
ηSE= Ř

Bt

> 0 and
dη∗

EE

(
ηSE

)
dηSE

∣∣∣∣∣
ηSE= R̂

Bt

< 0.

Here, R̂ is the maximum throughput and REE,max is the throughput that corresponds to
the maximum EE, ηmax

EE , under all constraints except the peak transmit power constraint
in problem (2.20).

This theorem not only shows that the EE is a quasiconcave function of the overall SE
but also presents an effective way to achieve the optimal EE–SE trade-off based on the
quasiconcavity. According to [6, ch. 8], a unique global optimum always exists for any
continuous and strictly quasiconcave function. Therefore, a unique and global optimal
EE of the problem in (2.20) can always be achieved by this theorem.

The η∗
EE-versus-ηSE curve is referred to as the EE–SE trade-off curve in the sequel. In

Fig. 2.3, we further illustrate the detailed EE–SE trade-off curves in the three possible
cases in Theorem 1, as following.

• Case A (condition a): the EE decreases with SE for the entire feasible region
where the optimal EE is achieved at the minimum achievable rate point.

• Case B (condition b): the EE is an increasing function of SE where the optimal
EE is achieved at the maximum achievable rate point.

• Case C (condition c): the EE first increases and then decreases with SE in the
feasible SE region where the maximum EE is achieved at the stationary point.

As discussed earlier, both EE and SE are related to the channel power gain and the
fixed circuit power consumption. Therefore, it is important to investigate the impact
of channel power gain and the circuit power consumption on the EE–SE trade-off. We
present the following three properties.

Property 1. Given SE, the EE is a non-decreasing function of the channel power gain,
gk,n, and a strictly decreasing function of the circuit power consumption, Pc.

This property is rather intuitive since larger channel power gain leads to better channel
capacity given a fixed transmit power, whereas larger circuit power consumption results
in the degradation of EE. According to this property, it is better to schedule users with
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Figure 2.3 EE–SE relation in downlink OFDMA.

good channel quality, such as those users near the base station, for an improved EE–SE
trade-off.

Property 2. The optimal SE, defined as ηopt
SE

def= Ropt

Bt
, is a non-decreasing

function of the static circuit power consumption, Ps . The maximum SE, defined as
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ηmax
SE

def= REE,max

Bt
, is a strictly increasing function of Ps . On the other hand, both ηopt

SE

and ηmax
SE are independent of the dynamic circuit power consumption rate, ξ .

The independence of ξ on the maximal or optimal SE is interesting and a little bit
unexpected. On some occasions if ξ or the static circuit power consumption, Ps , is
large, a high SE may be still achievable despite the low EE performance. This leads to a
relatively low and flat EE–SE curve, i.e., EE is insensitive to the change of SE. However,
in this case, the locations of ηopt

SE and ηmax
SE are not impacted.

Property 3. Even for the case of very small circuit power consumption, i.e., Pc ≈ 0, the

optimal EE, ηopt
EE , is not necessarily achieved when the SE is minimized, i.e., ηSE = Ř

Bt
.

The property 3 is a little bit counter-intuitive as the optimal EE is always achieved
when the data rate is minimized in the single user point-to-point link. This property also
indicates that even if the transmit power dominates the power consumption, the most
energy-efficient communication scheme is not necessarily the least spectral-efficient.
In this regard, it is possible for us to design both spectral-efficient and energy-efficient
communication simultaneously.

2.3.2 Bounds on the EE–SE Curve

In the previous section, we demonstrated that EE is a quasiconcave function of SE, and
introduced some insightful properties related to the EE–SE trade-off. In this section, we
further analyze the upper and the lower bounds of the EE–SE trade-off curve.

From Theorem 1, the optimal EE–SE trade-off can be obtained by solving η∗
EE (ηSE)

and
dη∗

EE(ηSE)
dηSE

. However, the exact and closed-form solution to (2.20) is rather difficult to

achieve. In what follows, we apply the Lagrange dual decomposition (LDD) to approxi-
mately approach it. The LDD is an effective method to solve this kind of problems with
a good accuracy and reasonable computational complexity.

The Lagrange dual problem of minimizing the total transmit power consumption for
a given data rate requirement, R ≥ Ř, can be expressed as

max
λ1
0,λ2
0,
λ3≥0

min
ρ∈	,P∈P

{
K∑
k=1

N∑
n=1

ρk,npk,n +
N∑
n=1

λ1,n

(
K∑
k=1

ρk,n−
)

+
K∑
k=1

λ2,k

(
Řk −

N∑
n=1

ρk,nrk,n

)
+ λ3

⎛⎝R −
K0−1∑
k=1

Řk −
K∑

k=K0

N∑
n=1

ρk,nrk,n

⎞⎠},
(2.24)

where λ1 = [λ1,1,λ1,2, . . . ,λ1,N ]T , λ2 = [λ2,1,λ2,2, . . . ,λ2,K ]T , and λ3 are the
Lagrange multipliers related to the corresponding constraints, and 
 denotes the
component-wise inequality.
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Consequently, the problem in (2.20) can be decomposed into two layers. The inner
layer solves the subordinate problem for each subcarrier n, which can be formulated as

Un = min
ρ∈	,P∈P

K∑
k=1

ρk,nuk,n, n ∈ N , (2.25)

subject to

uk,n = pk,n + λ1,n − λ2,krk,n, if k ∈ K1,

uk,n = pk,n + λ1,n − (λ2,k + λ3)rk,n, if k ∈ K2.
(2.26)

The outer layer is for the master problem and can be written as

max
λ1
0,λ2
0,
λ3≥0

{
N∑
n=1

Un −
N∑
n=1

λ1,n +
K∑
k=1

λ2,kŘk + λ3

⎛⎝R −
K0−1∑
k=1

Řk

⎞⎠}. (2.27)

The problems in (2.25) and (2.27) can be iteratively solved. In the inner layer, if
ρk,n = 1, the optimal transmit power can be expressed similarly in a water-filling way,
as

pk,n = B
[
λ2,k

ln 2
− N0

gk,n

]+
, if k ∈ K1,

pk,n = B
[(
λ2,k + λ3

)
ln 2

− N0

gk,n

]+
, if k ∈ K2,

(2.28)

where [x]+ = max(x,0). The above equation should be solved for all k ∈ K. After that,
the optimal transmit power, pk,n’s, should be substituted back into (2.26), and ρk,n’s
should be set to 1 for the user with the minimum uk,n and 0 for all other users.

Moreover, the Lagrange multipliers can be updated by the subgradient method as

λ
(i+1)
2,k =

[
λ

(i)
2,k − s(i)

(
N∑
n=1

ρ
(i)
k,nr

(i)
k,n − Řk

)]+
, (2.29a)

λ
(i+1)
3 =

⎡⎣λ(i)
3 − s(i)

⎛⎝ K∑
k=K0

N∑
n=1

ρ
(i)
k,nr

(i)
k,n −

⎛⎝R −
K0−1∑
k=1

Řk

⎞⎠⎞⎠⎤⎦+

, (2.29b)

in which s(i) is a sufficiently small stepsize for the ith iteration. We shall note that the
duality gap between the original problem and the LDD problem would not be zero due
to the non-convex nature of the problem. However, the duality gap approaches zero
when the number of subcarriers becomes large enough [7]. In practice, the duality gap
is already very small for the case with N = 64 subcarriers.

Until now, the subcarrier allocation strategy has been derived based on the LDD
method, as discussed earlier. In the next step, we shall consequently determine transmit
power allocation, and derive upper and lower bounds, respectively.
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Upper-Bound Power Allocation Strategy
For a given subcarrier allocation result, ρ = [ρk,n]K,N , from the LDD method, we
design a two-stage power allocation strategy. In the first stage, transmit power is allo-
cated by the water-filling method for each user to fulfill its own data rate requirement,
Řk . In the second stage, the extra power can be allocated among the subcarriers of all
non-real-time users also by the water-filling method until the data rate reaches R.

It is very straightforward that this power allocation strategy achieves an upper bound
of the transmit power, which also corresponds to the upper bound of the EE–SE trade-off
curve.

Lower-Bound Power Allocation Strategy
A lower bound on the minimum transmit power can be achieved by relaxing the binary
variables, ρk,n’s, into continuous real variables within [0,1], which can be also inter-
preted as time sharing of the subcarrier. With this manipulation, the data rate expression
can be rewritten as

rk,n = B log2

(
1 + pk,ngk,n

ρk,nBN0

)
. (2.30)

Then, the original problem in (2.20) can be transformed into a convex optimization
problem and then be solved by the standard methods [8]. Since the binary constraint on
subcarrier allocation has been relaxed, the result from this method can serve as a lower
bound of the total transmit power, which also corresponds to the lower bound of the
EE–SE trade-off curve.

An example of EE–SE trade-off curve is depicted in Fig. 2.4. In the example,
there are 72 OFDM subcarriers and each subcarrier has a bandwidth of 15 kHz. The
frequency-selective Rayleigh fading is according to the ITU Pedestrian-B model and
has an identical average channel-gain-to-noise ratio of 20 dB. The noise power density
is −174 dBm/Hz. There are two real-time users and four non-real-time users. It is
assumed that the data rate requirement for each real-time user is 200 kbps and the
minimum data rate requirement for each non-real-time user is 50 kbps. The power
amplifier efficiency is set to be 38%. From the figure, it is clear that the EE–SE trade-off
has a bell-shaped curve, which is also quasiconcave. Figure 2.4 also shows that the
maximum EE point decreases while the maximum SE point increases with the static
circuit power consumption. However, the latter is almost independent to the dynamic
circuit power factor. These results demonstrate the effectiveness of the analysis in this
section.

We further plot the optimal EE with different SE in Fig. 2.5. The results therein
indicate that the optimal EE design also leads to the same throughput when the minimum
data rate requirement of each user is no greater than a given threshold. However, when
the minimum data rate requirement is greater than the threshold, it is better to operate at
the minimum data rate point to maximize the system EE.
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Figure 2.4 The EE–SE trade-off.

Figure 2.5 The optimal EE versus SE.

2.3.3 Further Discussion

In this section, we have discussed the EE–SE trade-off with the consideration of circuit
power consumption. The fundamental results introduced here can be applied to many
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other different network models and scenarios. In [9], the EE–SE trade-off in downlink
OFDMA networks has been further investigated by taking into account the user fairness.
It shows that a certain EE degradation should be compromised as a cost to ensure
users’ rate fairness. The EE–SE trade-off has also been extended into the amplify-
and-forward-based relay network, and the result shows that the EE–SE trade-off curve
is also quasiconcave in this scenario [10]. In [11, 12], the EE–SE trade-off in type-I
ARQ system and cognitive radio has been studied, respectively. The EE–SE study in
homogeneous cellular networks with random distributed base stations shows that, with
respect to the outage constraint, the EE–SE trade-off only occurs under a given network
situation [13].

In [14, 15], an alternative multi-objective optimization approach has been applied to
analyze the EE–SE trade-off. The quasiconcave EE–SE relation is also revealed in these
works. Moreover, a practical theoretical framework for analyzing the EE–SE trade-off
in single-cell cellular networks to achieve tractable results has been developed in [16].
Leveraging the stochastic geometry method, the framework has also been extended to
the multicell scenario with the presence of intercell interference. The EE–SE trade-off
and the corresponding upper and lower bounds have also been investigated for video
transmission over mobile ad hoc networks in [17].

In addition to the EE–SE trade-off in practical networks, there are also three other
fundamental trade-offs regarding the green radio design [18].

• Deployment efficiency (DE)–EE trade-off: The EE can be increased by shrinking
the cell radius. However, higher density of base stations would certainly lead to
increased deployment complexity, or decreased DE. Moreover, more deployment
of base stations also results in larger circuit power consumption. With this regard,
the energy-efficient design should also be in coordination with DE.

• Bandwidth-power trade-off: In traditional SE design, the relation between band-
width and power is monotonic. However, considering EE design when circuit
power consumption scales with the transmission bandwidth, their relation is non-
monotonic. To this end, the optimal bandwidth and power trade-off should be
revisited in the EE oriented design.

• Delay–EE trade-off: Without considering fixed-circuit power, the relation between
per-bit power and packet delay is monotonically decreasing. However, as the
packet delay increases, more circuit power consumption would be introduced.
With this regard, the delay–EE relation would be no longer monotonic, and there
would exist an optimal delay–EE trade-off.

2.4 EE Design in Orthogonal Systems

In the previous section, we introduced the EE–SE relation of an OFDMA network. In
this section, we take an uplink OFDMA network as an example to show how to maxi-
mize the overall EE, summation of EE, and minimal EE of orthogonal systems. Through
this section, we try to illustrate the problem formulation, mathematical analysis, and
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algorithm development for practical energy-efficient wireless resource allocation. Note
that the detailed mathematical optimization theory is illustrated in Appendix 2.1.

Similar to Section 2.3, we also consider a single-cell uplink OFDMA system with K
users and N subcarriers, each of which has a bandwidth of B Hz. In OFDMA systems,
each user can transmit on several subcarriers, whereas each subcarrier can only be
occupied by one user to ensure orthogonality.

The overall transmit rate of user k can be written as

Rk =
N∑
n=1

Rk,n =
N∑
n=1

ρk,nBlog2

(
1 + pk,nhk,n

ρk,nBN0

)
,ρk,n ∈ {0,1}. (2.31)

In the above, pk,n denotes the transmit power and ρk,n stands for the binary channel
allocation indicator.

In the OFDMA network, the overall power consumption of each user can be expressed
as

Pk =
N∑
n=1

(
ζpk,n + ρk,nPe

)+ Pfix. (2.32)

Here, we use Pe to denote the radio frequency (RF) circuit power consumption per used
subcarrier and Pfix to denote the fixed power consumption irrespective of the number of

used subcarriers. Note that the overall circuit power Pc
def=

N∑
n=1
ρk,nPe+Pfix is consistent

with the definition in (2.2).
The EE for each individual user, say, user k, can be expressed as

ηk = Rk

Pk
. (2.33)

Instead of the GEE in Section 2.3, we aim at maximizing the WSEE or WMEE in
this section. Since the WSEE or WMEE is related to the EE of each individual user,
this objective function has the merit of providing better insight on the EE trade-off
among users. Users in practical cellular networks may have different priorities as well
as different status of battery levels. Through maximizing the WSEE or WMEE, one can
allocate more wireless resources to those users with higher priorities or lower battery
levels by setting different weight values to different users. In this way, higher EEs and
better quality of experience (QoE) could be achieved by those users. Moreover, we can
also provide fairness among users by maximizing individual EE rather than maximizing
the overall system EE or GEE.

2.4.1 Weighted Summation EE Maximization

Based on the discussion in the previous section, the maximization of WSEE can be
mathematically defined as

ηmax
ws = max

(ρ,p)∈�

{∑
k∈K

εkηk

}
, (2.34)
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subject to

ρk,n ∈ {0,1} ,∀k,n, (2.35)
K∑
k=1

ρk,n � 1,∀n, (2.36)

N∑
n=1

pk,n � Pmax,∀k, (2.37)

pk,n � 0,∀k,n, (2.38)

Rk � Rmin,∀k. (2.39)

In the above, εk is the weight for user k, � denotes the feasible subcarrier and power
allocation set, (2.35) is the constraint of binary subcarrier allocation, (2.36) limits that
each subcarrier can only be allocated to at most one user, (2.37) and (2.38) are the
transmit power constraints of each user, and (2.39) is the QoS requirement.

We shall note that the WSEE maximization problem might be infeasible due to the
potential conflicts of user QoS requirement and the maximum transmit power limitation.
In this way, some users should be dropped through the admission control strategy. Here,
admission control is not considered, and we assume that the problem is always feasible
and try to find some effective algorithms to approach it.

We notice that the WSEE optimization problem aims to maximize the summation of
several fractional functions, and thus is a sum-of-ratios optimization problem, which can
be solved by the method introduced in Appendix 2.1. However, due to the binary subcar-
rier allocation indicator, ρk,n ∈ {0,1} ,∀k,n, the problem cannot be directly solved. To
make it more tractable, we first relax ρk,n into continuous variables within [0,1]. After
that, the problem can be rewritten as

η̃max
ws = max

(̃ρ,p)∈�̃

{
K∑
k=1

εkη̃k

}
= max

(̃ρ,p)∈�̃

{
K∑
k=1

εk
R̃k

P̃k

}
, (2.40)

where R̃k and P̃k are the data rate and power consumption after the binary subcarrier
allocation ρk,n is replaced with ρ̃k,n, respectively, and �̃ is the feasible subcarrier
allocation and power control region with constraint (2.35) being replaced by

0 � ρ̃k,n � 1,∀k,n. (2.41)

We shall note that since the original constraint (2.35) has been relaxed, the solution to
(2.40) serves as an upper bound of the original problem in (2.34), that is η̃max

ws ≥ ηmax
ws ,

since � ⊂ �̃.
To tackle the problem, we first present the following important property.

proposition 1 The generalized EE, η̃k (ρ̃,p) = R̃k

P̃k
,∀k, is jointly quasiconcave in

variables ρ̃k,n and pk,n,∀k,n.
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Proof: We will first show that R̃k,n is a concave function over ρ̃k,n and pk,n. Define

x � Bρ̃k,n,y � pk,nhk,n

N0
, and f (x,y) = −xlog2

(
1 + y

x

)
, then R̃k,n = −f (x,y). The

Hessian of f (x,y) is

H =

⎡⎢⎢⎣
y2
/
x

(x + y)2 − y

(x + y)2
− y

(x + y)2
x

(x + y)2

⎤⎥⎥⎦, (2.42)

which is positive semi-defined, since the eigenvalues of H are

λ1 = 0,

λ2 = x2 + y2

x3 + 2x2y + xy2
≥ 0.

Therefore R̃k,n is concave. Clearly, R̃k is concave since it is a linear combination of

R̃k,n. We further define η̄k (ρ̃,p) = −η̃k (ρ̃,p) = − R̃k
P̃k

and its sublevel sets as

τα = {
ρ̃k,n � 0,pk,n � 0,∀n|η̄k (ρ̃,p) ≤ α}, (2.43)

which equals

τα =
{
ρ̃k,n � 0,pk,n � 0,∀n| − αP̃k − R̃k � 0

}
. (2.44)

We see that τα is convex due to the convexity of −αP̃k − R̃k , which leads to the
quasiconcavity of η̃k (ρ̃,p). This ends the proof. �

According to this property, we can equivalently transform the problem into

max
(̃ρ,p)∈�̃,ψ

{
K∑
k=1

ψk

}
, (2.45)

subject to

ψk ≤ εk R̃k
P̃k
,∀k. (2.46)

Then, based on the sum-of-ratios optimization method (please see the details in
Appendix 2.1), we have the following theorem.

theorem 2 If
(
ρ̃∗,p∗,�∗) is the optimal solution to (2.45), then there exists

κ∗ = (
κ∗

1,κ
∗
2, . . . ,κ

∗
K

)
, such that

(
ρ̃∗,p∗) is the optimal solution to the following prob-

lem for κ = κ∗ and � = �∗

max
(ρ̃,p)∈�̃

{
K∑
k=1

κk

(
εkR̃k − ψkP̃k

)}
. (2.47)
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And (̃ρ∗,p∗) also satisfies the following system of equations for κ = κ∗ and � = �∗:

κk = 1

P̃k
,∀k, (2.48)

εkR̃k − ψkP̃k = 0,∀k. (2.49)

According to this theorem, to solve the problem in (2.40) is equivalent to solving the
problem in (2.47). Moreover, the latter can be iteratively solved by the following two
nested steps: the inner step solves

(
ρ̃∗,p∗) for given (κ,�), and the outer step updates

the parameter (κ,�) satisfying (2.48) and (2.49).
We now discuss the optimality of the algorithm. As shown in [24], the sum-of-

ratios algorithm achieves at least a KKT point of the original problem, which means
at least a local optimal solution can be obtained. In addition, as we have proved that
the generalized EE is quasiconcave, the local optimal solution is also the global optimal
one.

Although the global optimum of the problem in (2.40) can be obtained, the proposed
algorithm is not exactly the optimal one due to the continuous relaxation of the binary
channel allocation indicators. That is, the resulting optimal solution does not necessarily
guarantee that ρk,n’s are binary variables. In what follows, we shall develop a sub
optimal algorithm to approach the original problem based on the LDD method and take
into account the binary variables as well.

The suboptimal solution is based on the resulting Lagrange parameters, κ∗
k and

ψ∗
k , ∀k, in the upper-bound algorithm. Once κ∗

k and ψ∗
k , ∀k are obtained, the objective

function for the suboptimal problem can be redefined as

max
(ρ,p)∈�

K∑
k=1

κ∗
k

(
εkRk − ψ∗

k Pk
)
. (2.50)

In the above, ρ is now a binary variable.
We can rewrite the Lagrangian function of (2.50) as

L (ρ,p,λ) =
K∑
k=1

κ∗
k

(
εkRk − ψ∗

k Pk
)+

N∑
n=1

λ(1)n

(
1 −

K∑
k=1

ρk,n

)

+
K∑
k=1

λ
(2)
k

(
Pmax −

N∑
n=1

pk,n

)
+

K∑
k=1

λ
(3)
k (Rk − Rmin),

(2.51)

where λ(1)n , λ(2)k , and λ(3)k are the Lagrange multipliers related to the corresponding
constraints. Furthermore, the Lagrange dual problem can be expressed as

min
λ

max
ρ,p
L(ρ,p,λ), (2.52)

subject to λ(1)n � 0,λ(2)k � 0,λ(3)k � 0,∀k,n. (2.53)

Since the problem is now non-convex because of the binary ρk,n, the LDD method
and the KKT condition cannot be applied to find the optimal solution. In the following,
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we decouple the problem into two sub-problems: the channel assignment sub-problem
and the power allocation sub-problem.

In the channel assignment sub-problem, we again relax the variables, ρ. In this
way, we can utilize the KKT condition to find the optimal Lagrange multipliers, λ(1)∗n ,
λ
(2)∗
k ,λ

(3)∗
k ,∀k,n, and the optimal results, ρ̃∗

k,n,p
∗
k,n,∀k,n. By substituting these results

into (2.52), the channel assignment problem can be formulated as

max
ρ

K∑
k=1

N∑
n=1

ρk,nuk,n + v, (2.54)

subject to ρk,n ∈ {0,1} ,∀k,n, (2.55)

K∑
k=1

ρk,n ≤ 1,∀n, (2.56)

where

uk,n =
(
κ∗
k εk + λ(3)∗k

)
R∗
k,n − λ(1)∗n − ψ∗

k Pe,∀k,n,

and

v = −
K∑
k=1

N∑
n=1

ψk
(
ζp∗
k,n + Pfix

)+
N∑
n=1

λ(1)∗n +
K∑
k=1

λ
(2)∗
k

(
Pmax −

N∑
n=1

p∗
k,n

)

−
K∑
k=1

λ
(3)∗
k Rmin,

is a constant irrespective to ρk,n. Apparently, this problem is an assignment problem
whose optimal solution can be obtained by the classical Hungarian algorithm with a
computational complexity of O(N3) [35].

Once the channel assignment is obtained, each user’s subcarrier set can be denoted as
Sk . Next, the power allocation problem can be solved for each user with the following
problem

max
p

∑
n∈Sk

Rk,n∑
n∈Sk

(
ζpk,n + Pe

)+ Pfix
,∀k, (2.57)

subject to
∑
n∈Sk

pk,n ≤ Pmax, (2.58)

pk,n ≥ 0,n ∈ Sk, (2.59)∑
n∈Sk

Rk,n ≥ Rmin. (2.60)

Note that this problem is a standard convex–concave fractional programming and
therefore the Dinkelbach algorithm can be used to solve it optimally. The detailed theory
and approaches are discussed in Appendix 2.1.
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Although both the Hungarian algorithm and the Dinkelbach algorithm optimally solve
the channel assignment and power control problem, respectively, the proposed solution
to the problem in (2.50) is not necessarily optimal due to the problem decoupling as
well as its non-convexity. However, at least a suboptimal solution can be obtained since
the result corresponds to a KKT point of the problem. Moreover, the main merit of the
proposed algorithm is its low computational complexity, which can be implemented in
practical networks.

2.4.2 Maximum-Minimal EE Maximization

We now consider the WMEE maximization problem, which aims at maximizing the
minimum EE. The mathematical optimization problem can be formulated as

ηmax
mm = max

(ρ,p)∈�
min
k∈K

{ηk}. (2.61)

Again, binary subcarrier allocation indicator is involved. Thus, we need to relax the
above problem into a continuous one, as

η̃max
mm = max

(ρ̃,p)∈�̃

min
k∈K

{
R̃k

P̃k

}
. (2.62)

This problem is a generalized fraction problem (GFP) as described in Appendix 2.1.
We can use the generalized Dinkelbach algorithm to solve it. However, the “max-min”
operation renders it difficult to solve. In the following, we shall introduce an alternative
algorithm to solve the problem.

First, according to the fact that a quasiconvex function attains its maximum on the
vertex of a convex polyhedron [32], we have the following proposition.

proposition 2 The WMEE problem is equivalent to

min
k∈K

{
R̃k

P̃k

}
= min

y∈Y

{
η̃sum

mm (y,ρ̃,p) = yRT

yPT

}
, (2.63)

where Y �
{
(y1, . . . ,yK) |yk � 0,∀k,

K∑
k=1
yk = 1

}
, P =

{
P̃1,P̃2, · · · P̃K

}
, and

R =
{
R̃1,R̃2, · · · R̃K

}
.

Furthermore, we can prove the quasiconcavity of η̃sum
mm , as presented in the following

proposition.

proposition 3 η̃sum
mm (y,ρ̃,p) is quasiconcave over (ρ̃,p) for a given y ∈ Y , and

quasilinear over y, for a given (ρ̃,p) ∈ �̃.

Proof: We can first prove that yRT is concave. Define η̄sum
mm (ρ̃,p) = −η̃sum

mm (ρ̃,p) =
−yRT

yPT , then its sublevel set can be expressed as

τα = {
ρ̃k,n � 0,pk,n � 0,∀k,n|η̄sum

mm (ρ̃,p) ≤ α}, (2.64)
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which is equivalent to

τα =
{
ρ̃k,n � 0,pk,n � 0,∀k,n| − αyPT − yRT ≤ 0

}
. (2.65)

Since −αyPT − yRT is convex over (ρ̃,p), τα is convex, which leads to the quasicon-

cavity of η̃sum
mm (ρ̃,p). Similarly, define the sublevel sets of η̃sum

mm (y) = yRT

yPT for given

(ρ̃,p), as

Sα = {
yk � 0,∀k|η̃y(y) ≤ α}, (2.66)

which is equivalent to

Sα =
{
yk � 0,∀k|yRT − αyPT ≤ 0

}
. (2.67)

Since yRT − αyPT is both convex and concave over yk,∀k, it is quasilinear. �
Since η̃sum

mm is quasiconcave, we can further apply the Sion’s min-max theorem [33] to
finally convert the problem into a better tractable one, as

max
(̃ρ,p)∈�̃

min
k∈K

{
R̃k

P̃k

}
= max
(̃ρ,p)∈�̃

min
y∈Y

{
yRT

yPT

}
= min

y∈Y
max
(̃ρ,p)∈�̃

{
yRT

yPT

}
. (2.68)

Now, we can solve the problem in (2.68) in two steps: the inner layer finds the optimal
ρ̃,p for a given y, and the outer layer solves the optimal y∗. The detailed algorithm is
similar to Algorithm 6 in Appendix 2.1.

Interestingly, the GEE, defined as the ratio of the overall achievable data rate and
the overall power consumption, serves as an upper bound for the WMEE. This can be

simply proved by the setting yk = 1

K
,∀k in (2.63), as

η̃
spup
mm = max

(̃ρ,p)∈�̃

{
yRT

yPT

}
= max
(̃ρ,p)∈�̃

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=1
R̃k

K∑
k=1
P̃k

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≥ η̃max
mm . (2.69)

The GEE can be achieved by the Dinkelbach algorithm (please see the details in
Appendix 2.1). We denote

B (θ) =
K∑
k=1

R̃k − θ
K∑
k=1

P̃k . (2.70)

Then η̃spup
mm is achieved if and only if max

(ρ̃,p)∈�̃

B
(
η̃

spup
mm

) = 0.

Again, the above algorithm only achieves an upper bound to the WMEE maximiza-
tion problem due to the relaxation of binary variables. Therefore, in the following, we
shall develop a suboptimal algorithm to the original problem in (2.61) while considering
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the binary subcarrier allocation constraint. Based on the optimal EE achieved by the
upper-bound algorithm, a suboptimal heuristic problem can be formulated, as

max
(ρ,p)∈�

min
k∈K

{
Rk − η̃max

mm (k) Pk
}
,

where η̃max
mm (k) is the k-th element in the optimal EE achieved by the upper-bound

algorithm. The idea of the suboptimal heuristic algorithm is to achieve the EE as close
as to the optimal EE for each individual user. We can rewrite the problem in a parametric
optimization format, as

max
(ρ,p)∈�

τ, (2.71)

subject to Rk − η̃max
mm (k) Pk ≥ τ,∀k. (2.72)

Then, the Lagrange multiplier method can be applied to solve it. The Lagrange func-
tion can be written as

L (ρ,p,λ) =τ +
N∑
n=1

λ(1)n

(
1 −

K∑
k=1

ρk,n

)

+
K∑
k=1

λ
(2)
k

(
Pmax −

N∑
n=1

pk,n

)

+
K∑
k=1

λ
(3)
k (Rk − Rmin)

+
K∑
k=1

λ
(4)
k

[(
Rk − η̃max

mm (k)Pk
)− τ ],

(2.73)

where λ(1)n , λ(2)k , λ(3)k and λ(4)k are Lagrange multipliers related to the corresponding
constraints in (2.35)–(2.39). Furthermore, the Lagrange dual decomposition is

min
λ

max
ρ,p
L (ρ,p,λ), (2.74)

subject to

λ(1)n � 0,λ(2)k � 0,λ(3)k � 0,λ(4)k � 0,∀k,n. (2.75)

This problem can be easily solved by a similar method to the WSEE problem.

2.4.3 Numerical Results

We now present simulation results to evaluate the performance of the algorithms devel-
oped in this section. A simple two-user scenario is considered. The base station has
a radius of 500 m. There are 2–8 subcarriers in the system. The channel of each user
follows independent and identically distributed (i.i.d.) Rayleigh fading model. Other
parameters are summarized in Table 2.2.
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Table 2.2 Simulation parameters

Parameter Value

Cell radius 500 m
subcarriers bandwidth, B {1,2,3,4,5} ∗ 0.25 MHz
Noise spectral density, N0 −174 dBm/Hz
Path loss model 128.1+37.6log10(d[km]) dB
Shadowing standard deviation 10 dB
Rmin 100 kbps
Number of users, K 2
Number of subcarriers, N 2–8
Pfix 1 W–3 W
Pe 0.42 W
Power efficiency 50%

E
E
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t  (

M
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t/s
/J

ou
le

)

Minimum SE requirement (bit/s/Hz)

Figure 2.6 Weighted-sum EE versus subcarrier bandwidth. Pmax = 26.7 dBm, Pfix = 2.13 W.

In Fig. 2.6, we show the performance of WSEE algorithms where the weights are set
equal for all users. Particularly, the upper-bound algorithm and the suboptimal algorithm
are compared. As we can observe from the figure, the performance gap between the
upper-bound algorithm and the suboptimal algorithm is very small, which verifies the
effectiveness of our proposed algorithm. In addition, the WSEE increases as the number
of subcarriers increases. This is because that more subcarriers will bring about more
communication freedom for EE improvement.

In Fig. 2.7, the algorithms for maximizing the WMEE are compared, i.e., the upper-
bound algorithm, the algorithm to maximize the GEE, and the suboptimal algorithm.
From the figure, the GEE achieves the highest EE performance, as has been discussed
before. However, this upper bound is very loose. On the other hand, the upper-bound
algorithm can achieve a tight upper bound as we can observe that the WMEE gap
between the upper-bound algorithm and suboptimal algorithm is very small. This result
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Figure 2.7 The minimum EE versus number of subcarriers. Pmax = 26.7 dBm, Pfix = 2.13 W,
B = 1.25 MHz.
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Figure 2.8 EE comparison of different algorithms. N = 4, Pmax = 26.7 dBm, B = 1.25 MHz.

verifies the effectiveness of our proposed algorithms for WMEE maximization. Again,
from the figure, as the subcarrier number, N , increases, the EE performance increases.

We further compare the sum EE, the maximum EE, and the minimum EE of the
two users with WSEE and WMEE maximization algorithms in Fig. 2.8. Both upper
bounds for WSEE and WMEE maximization algorithms are plotted. From the figure,
the WSEE algorithm has a better sum EE than the WMEE algorithm. However, from
this result, WSEE algorithm doesn’t necessarily guarantee user fairness. On the other
hand, although the sum EE in the WMEE algorithm is smaller than that in the WSEE
algorithm, the two users achieve almost the same EE as can be observed from the figure.
In this regard, the WMEE maximization can achieve fair EE performance among users.

Our proposal in this section indeed provides an insightful reference for network
operator to choose which algorithm to be used in practice.
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2.5 EE Design in Non-Orthogonal Systems

In the previous section, we illustrated how to use the optimization theory to maximize
various EEs for orthogonal systems, such as OFDMA networks. In this section, we will
further analyze the EE trade-off problem in non-orthogonal systems, where non-convex
optimization theory will be applied.

As shown in Fig. 2.9, we consider a network with K pairs of users communi-
cating with each other, denoted as K = {1,2, . . . ,K}. Let {Tx1,Tx2, . . . ,TxK} and
{Rx1,Rx2, . . . ,RxK} denote the transmitter and the receiver, respectively, and B denote
the overall bandwidth of the considered system. Moreover, let hm,k denote the channel
power gain between Txm and Rxk .

The capacity region of interference channel is still an open challenge and the best
known achievable region is the Han–Kobayashi region [36], which is very difficult to
achieve. Here, we simply treat interference as noise, which serves as a lower bound of
the data rate for interference networks.

The data rate of user pair k in the interference network can be expressed as

Rk = Blog2

⎛⎜⎜⎜⎜⎝1 + pkhk,k
K∑

m=1,m�=k
pmhm,k + BN0

⎞⎟⎟⎟⎟⎠,∀k, (2.76)

where pk is the transmit power of the transmitter k and N0 represents the variance of
the noise spectral density. Denote p = {pk}. The EE of each user pair can be defined as

ηk = Rk

pk + Pc
,∀k. (2.77)

where pk and Pc are the RF power consumption and the fixed circuit power consump-
tion respectively. Here, for notational simplicity, we have omitted the power amplifier
efficiency, which would not lose the generality of the following analysis.

Instead of maximizing a single-objective EE function, the emphasis of this section is
to maximize the EE of each user from the perspective of multi-objective optimization

h1,1

hK,K

h2,2

h2,1

h
1,2

h
1,K

h
2,K

h K,1

hK,2

TxK RxK

Figure 2.9 The model of non-orthogonal systems.
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theory, as detailed in Appendix 2.1. Therefore, the optimization problem can be mathe-
matically formulated as

ηmax = max
p∈P

{η1,η2, . . . ,ηK}, (2.78)

where P is the feasible power allocation strategy set satisfying

0 ≤ pk ≤ Pmax,∀k, (2.79)

Rk ≥ Rmin,∀k. (2.80)

In the above, (2.79) limits the maximum transmit power for each user and (2.80) guar-
antees the minimum data rate for each user.

2.5.1 Utopia EE

We use the weighted Tchebycheff method to solve (2.78) (please see the details in
Appendix 2.1). We shall first introduce the utopia EE for each individual user, as defined
in the following.

Definition 1. The utopia EE for user k, ηu
k , is defined as the maximal EE this user could

achieve, i.e., ηu
k = max

η∈F
{ηk}, where F denotes the set of all Pareto-optimal EEs.

According to the definition, the utopia EE can be solved by the following problem

ηu
k = max ηk, (2.81)

subject to (2.79) and (2.80).

The above problem is a single-ratio fractional program, therefore Dinkelbach-like
algorithm can be utilized to solve it. Let us define U (ϕ) = max

p∈P
{Rk − ϕPk}, then ηu

k

can be achieved if and only if U
(
ηu
k

) = 0.
Unfortunately, it is still difficult to obtain the optimum value since the objective

function is non-concave due to the interference in the denominator of Rk . However,
this problem has a difference-of-convex (d.c.) structure, which can be solved by the
method elaborated as follows.

The objective function can be rewritten as

f (p) = Rk − ϕPk �= fcave1 (p)− fcave2 (p), (2.82)

where

fcave1 (p) = Blog2

(
K∑
m=1

pmhm,k + BN0

)
,

and

fcave2 (p) = Blog2

(
K∑

m=1,m�=k
pmhm,k + BN0

)
+ ϕ (pk + Pc).
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We can observe that both fcave1 (p) and fcave2 (p) are strictly concave on p. Therefore,
the original problem can be expressed as the following d.c. problem

max
p∈P

{fcave1 (p)− fcave2 (p)}. (2.83)

There are many algorithms that can effectively solve the d.c. problem, such as the
d.c. algorithm (DCA) [37]. In this problem, the function fcave2 (p) is differentiable.
Therefore, the concave-convex procedure (CCCP) method can be utilized to solve the
problem in (2.83) [38]. Therefore, we can develop the following theorem to solve the
above problem by following the majorization-maximization approximation.

theorem 3 The problem in (2.83) can be iteratively solved by the following concave
programming

p(j+1) = arg max
p∈P

{
fcave1 (p)− pT ∗ ∇fcave2

(
p(j)

)}
, (2.84)

where pT denotes the transpose of p and ∇fcave2
(
p(j)

) �=
[
∇(j)1 ,∇(j)2 , . . . ,∇(j)K

]
denotes the gradient of fcave2 (p) at p(j ), where

∇(j)i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bhi,k(

K∑
m=1,m�=k

p
(j )
m hm,k + BN0

)
ln 2

, ∀i �= k,

ϕ, i = k.

In the above theorem, we can further prove that the first part in (2.84), fcave1 (p),
is concave, whereas the second part, −pT ∗ ∇fcave2

(
p(j)

)
, is linear. Therefore, it is a

standard concave optimization problem and classic convex optimization methods can be
used to solve it. The detailed procedures of applying the CCCP approach to solve our
problem can be summarized in Algorithm 1.

Algorithm 1 CCCP for the d.c. problem
1: Initialize

2: Set ε > 0, j = 0, and ∀p(0) ∈ P .

3: Do

4: p(j+1) = arg max
p∈P

{
fcave1 (p)− pT ∗ ∇fcave2

(
p(j)

)}
.

5: j = j + 1.

6: Until
∥∥p(j) − p(j−1)

∥∥ < ε.
Furthermore, the detailed procedures of our algorithm to find the Utopia EE for user

k are summarized in Algorithm 2.
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Algorithm 2 The algorithm to find the Utopia EE for user k.
1: Initialize

2: Set ε > 0, j = 0, and ∀p(0) ∈ P .

3: Do

4: ϕj = η(j)k .

5: Calculate p(j+1) = arg max
p∈P

{
Rk − ϕjPk

}
by CCCP.

6: j = j + 1.

7: Until

∣∣∣∣max
p∈P

{
Rk − ϕj−1Pk

}∣∣∣∣ < ε.

We now show that the above algorithm can converge. First, according to the CCCP,
the objective function in (2.84) is non-decreasing on the generated sequence

{
p(j)

}
,

which will eventually converge to the stationary point p(∞) when p(j+1) = p(j). From
[38], the stationary point also satisfies the Karush–Kuhn–Tucker (KKT) conditions of
the problem in (2.83). Therefore, by jointly utilizing the Dinkelbach method and the
CCCP, at least a local optimal solution can be obtained. In fact, it is quite challenging to
prove the global optimality. However, from [37, 39], the global optimum can be always
achieved if the starting point is appropriately chosen.

2.5.2 Pareto-Optimal EE

After the utopia EE for each user is attained, we can apply the weighted Tchebycheff
method to convert the multi-objective optimization problem into a single-objective func-
tion one, as

ηwt = min
p∈P

max
k∈K

{
φk

(
ηu
k − Rk

Pk

)}
�= min

p∈P
max
k∈K

{
φk
(
ηu
kPk − Rk

)
Pk

}
,

(2.85)

where φk is an arbitrary positive weight for user k. The details of the weighted-
Tchebycheff method are discussed in Appendix 2.1.

The utopia EE and the Pareto-optimal EE in a two-user case is illustrated in Fig. 2.10.
In the figure, the shadowed area depicts all achievable EE for the two users in the
problem in (2.78) and its boundary is the Pareto-optimal EE, as illustrated by the solid
curve. Furthermore, ηu

1 and ηu
2 are the utopia EE for each user, which is exactly the

maximum EE that the user can achieve. This figure also clearly illustrates how the
weighted Tchebycheff method achieves the Pareto-optimal EE by minimizing the dis-
tance between the utopia EE point and achieved EE point, i.e., η∗

1 and η∗
2. Moreover, by

varying the weight φk,k = 1,2, all Pareto-optimal EEs on the boundary can be achieved.
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Figure 2.10 The weighted Tchebycheff method for a two-user case.

We now introduce an algorithm to solve the problem in (2.85) for given φk and ηu
k .

The objective function in the weighted Tchebycheff method can be rewritten as

ηwt = min
p∈P

max
k∈K

{
φk
(
ηu
kPk − Rk

)
Pk

}
. (2.86)

The above problem is also a fractional optimization and can be solved by the Dinkelbach
method [19], which is discussed in Appendix 2.1 in detail. We have the following
theorem, whose proof is similar to that in [26].

theorem 4 Define

V (α) = min
p∈P

max
k∈K

{
φk
(
ηu
kPk − Rk

)− αPk
}
, (2.87)

then ηwt is achieved if and only if V
(
ηwt
) = 0.

Unfortunately, the problem in (2.87) is also non-convex due to the involved interfer-
ence in Rk . In the following, we develop a suboptimal algorithm to achieve the local
optimum point by jointly utilizing the Lagrange method and the CCCP method. First,
define l= max

k∈K
{
φk
(
ηu
kPk − Rk

)− αPk
}
. Then, based on the parametric method, the

problem in (2.87) can be equivalently transformed into

min
p∈P

l, (2.88)

subject to
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l ≥ φk
(
ηu
kPk − Rk

)− αPk,∀k. (2.89)

According to the LDD method, we can express the Lagrangian function of the above
problem as

L (p,l,λ,μ,ν) = l +
K∑
k=1

λk
{
φk
(
ηu
kPk − Rk

)− αPk − l}
+

K∑
k=1

μk (pk − Pmax)

+
K∑
k=1

νk

⎧⎨⎩(2
Rmin
B − 1

)⎛⎝ K∑
m=1,m�=k

pmhm,k + BN0

⎞⎠− pkhk,k

⎫⎬⎭,
where λ,μ,ν are Lagrange multiplier vectors corresponding to the respective con-
straints. Furthermore, the Lagrangian dual problem can be written as

max
λ
0,μ
0,ν
0

min
p
0,l

L (p,l,λ,μ,ν). (2.90)

Then, the Algorithm 3 is presented to solve the above problem, which contains the inner
loop and the outer loop.

Inner Loop
The inner loop aims to solve min

p
0,l
L (p,l) for a given (λ,μ,ν). It is also non-convex but

has a d.c. structure. Therefore, we can decompose L (p,l) into a subtraction of a concave
function and a linear function, as

L (p,l) = Lvex1 (p,l)− Lvex2 (p), (2.91)

where

Lvex1 (p,l) = l −
K∑
k=1

λk

{
φkBlog2

(
K∑
m=1

pmhm,k + BN0

)}

+
K∑
k=1

λk
{
φkη

u
kPk − αPk − l}+

K∑
k=1

μk (pk − Pmax)

+
K∑
k=1

νk

⎧⎨⎩(2
Rmin
B − 1

)⎛⎝ K∑
m=1,m�=k

pmhm,k + BN0

⎞⎠− pkhk,k

⎫⎬⎭,
and

Lvex2 (p) = −
K∑
k=1

λk

⎧⎨⎩φkBlog2

⎛⎝ K∑
m=1,m�=k

pmhm,k + BN0

⎞⎠⎫⎬⎭.

https://doi.org/10.1017/9781108277389.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108277389.003


2.5 EE Design in Non-Orthogonal Systems 49

Now, min
p
0,l

L (p,l) has been expressed as the minimization of a d.c. function in a convex

set, as

min
p∈P,l

{Lvex1 (p,l)− Lvex2 (p)}. (2.92)

The CCCP method can be used to effectively solve it. Similar to Theorem 3, we have
the following theorem.

theorem 5 The problem in (2.92) can be iteratively solved by the following sequen-
tial convex programming

p(j+1) = arg min
p∈P

{
Lvex1 (p,l)− pT ∗ ∇Lvex2

(
p(j)

)}
, (2.93)

where Lvex2
(
p(j)

) �= [
∇(j )

1 ,∇(j )
2 , . . . ,∇(j )

K

]
denotes the gradient of Lvex2 (p) at p(j ),

where

∇(j )
i = −

K∑
k=1,k �=i

λkφkB

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
hi,k(

K∑
m=1,m�=k

p
(j )
m hm,k + BN0

)
ln 2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.

We can also prove that the first part of (2.93), Lvex1 (p,l), is convex, and the second
part of (2.93), −pT ∗ ∇Lvex2

(
p(j)

)
, is linear. Therefore, (2.93) is a standard convex

optimization problem and can be easily solved.

Outer Loop
Since the Lagrangian dual function is differentiable, we utilize the subgradient method
to solve the outer loop, i.e., finding the optimal (λ,μ,ν) for given (p,l). The subgradient
update equations can be written as

λk = [λk + ς1
{
φk
(
ηu
kPk − Rk

)− αPk − l}]+,∀k,
μk = [μk + ς2 (pk − Pmax)

]+
,∀k,

νk = [νk + ς3
(
ϑ − pkhk,k

)]+
,∀k,

(2.94)

where ϑ =
(

2
Rmin
B − 1

) (∑K
m=1,m�=k pmhm,k + BN0

)
, ς1, ς2, and ς3 are all positive

stepsizes.
We now summarize the proposed algorithm to achieve the Pareto-optimal EE, which

contains three nested steps. The first step leverages the Dinkelbach method to update α
in (2.87) until V (α) = 0. The second step is a standard subgradient method to update
the Lagrangian multipliers in (2.94). The third step utilizes the CCCP method to solve
(2.93). The detailed procedures of the three-step algorithm can be found in Algorithm 3.

Again, since all three steps can converge, the convergence of the proposed algorithm
can be guaranteed. However, due to the non-convexity of the optimization problem, the
global optimality cannot be ensured although it converges. However, our algorithm can
at least achieve a local optimal point that satisfies the KKT condition. Nevertheless,
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Figure 2.11 The EE trade-off with different communication distances. © 2016 IEEE. Reprinted,
with permission, from Yu, G., 2016, “Energy Efficiency Tradeoff in Interference Channels,”
IEEE Access, Vol. 14, No. 6, pp. 3207–3218.

if carefully choosing the start point in the CCCP method, global optimum is often
attainable.

Algorithm 3 The algorithm to find the Pareto-optimal EE.
1: Initialize

2: Set ε1,ε2 > 0, j = 0, and ∀p(0) ∈ P .

3: Calculate ηu
k,∀k.

4: Do

5: Calculate αj = max
k∈K

{
φk

(
ηu
kP
(j)
k −R(j)k

)
P
(j)
k

}
.

6: Initialize λ,μ,ν, i = 0, l(0) = 0.

7: Do

8: Using the CCCP to find (p∗,l∗) = arg min
p∈P,l

{Lvex1 (p,l)− Lvex2 (p)}.

9: Update λ,μ,ν, i = i + 1, p(i) = p∗, l(i) = l∗.

10: Until
∥∥(p(i),l(i))− (

p(i−1),l(i−1)
)∥∥ < ε1.

11: j = j + 1, p(j) = p∗.

12: Until

∣∣∣∣min
p∈P

max
k∈K

{
φk
(
ηu
kPk − Rk

)− αj−1Pk
}∣∣∣∣ < ε2.

2.5.3 Numerical Results

A system with two pairs of users is considered. Let di denote the distance between
the i-th user pair, which varies from 100–300 m. We assume that the channel models
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Figure 2.12 The EE trade-off in the two-user case with different g. © 2016 IEEE. Reprinted, with
permission, from Yu, G., 2016, “Energy Efficiency Tradeoff in Interference Channels,” IEEE
Access, Vol. 14, No. 6, pp. 3207–3218.

between users are according to i.i.d Rayleigh fading and the path loss exponent is 4.
Furthermore, we assume that each user has the same maximum transmit power, Pmax,
and the fixed circuit power consumption is assumed to be 24 dBm. The minimum data
rate requirement, Rmin, is not considered in the simulation. Moreover, for simplicity, we
further assume that the average interference power gain to all other users are identical
for each user, that is, hk,m = ghk,k,∀m �= k, where g is the interference-to-signal ratio.

Figure 2.11 plots the Pareto-optimal EE for the two-user case with different com-
munication distances, where d1 and d2 denote the communication distances between
user pairs. The EE trade-off can be easily observed from the figure. Moreover, the EE
decreases with the communication distance. We further compare the EE trade-off curves
with different interference-to-signal ratios, g, in Fig. 2.12. Here, both users have the
same communication distance of 200 m. Also, the EE trade-off between the two users
can be easily observed from the figure. Both users’ EE decreases with g since large
interference will certainly degrade both the spectral and energy efficiency.

Appendix 2.1 Optimization Theory for EE Design

This section discusses the mathematical optimization theory for EE design. Different
from SE optimization problems, EE optimization problems generally involve fractional
objective functions, which are known as fractional programming and are challenging
to solve in general. New mathematical optimization theory and method are required to
deal with it. The fractional programming can be effectively solved by the Dinkelbach
approach, by converting the fractional objective function into a subtractive form. In this
section, we will introduce the basic methodology of fractional programming and its
extensions, such as sum-of-ratios optimization and generalized fractional programming
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(GFP). We will also introduce the multi-objective optimization theory and attempt to
deal with the EE trade-off problem.

A2.1.1 Fractional Programming and the Dinkelbach Algorithm

Fractional programming solves the mathematical optimization problems with fractional
objective functions, which are in general nonlinear and non-convex. The ratio function
to be optimized often reflects some kind of efficiency, defined as the ratio of utility and
cost. In the EE optimization problem, the utility corresponds to the achievable data rate
while the cost corresponds to the consumed power.

Definition 2 (Fractional programming problem). Let us define f,g,hj,j = 1, . . . ,M
as some real-valued functions on a set S0 ∈ R

n. The nonlinear programming

max
x

f (x)

g(x)
, (A2.1)

subject to

hj (x) ≤ 0,j = 1, . . . ,M,

g(x) > 0,

is a fractional programming. Specifically, when f is nonnegative and concave, g is
positive and convex, and S0 is a convex set, the problem is a concave fractional pro-
gramming.

The Dinkelbach algorithm is effective to solve fractional programming problems.
Define an auxiliary function

F (λ) = max
x

{f (x) − λg(x)}. (A2.2)

Then, the following theorem presents the solution to the problem in (A2.1).

theorem 6 x∗ is the optimal solution to the fractional programming in (A2.1) if
and only if x∗ also solves the problem in (A2.2) with the same constraints and when
F (λ) = 0.

According to Theorem 6, the fractional objective function now can be transformed
into a subtractive function and can be solved by standard methods. Particularly, if f is
concave and g is convex, the problem in (A2.2) can be solved by classical convex opti-
mization methods, such as interior method, subgradient method, etc. To solve (A2.1),
an iterative updating is further required to find the root of F (λ) = 0. The Dinkelbach
algorithm [19] is an effective way to accomplish this, as presented in Algorithm 4.

https://doi.org/10.1017/9781108277389.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108277389.003


Appendix 2.1 Optimization Theory for EE Design 53

Algorithm 4 Dinkelbach algorithm to solve single-ratio fractional programming
1: Initialize x0 ∈ S0. Set ε > 0;
2: Compute λ1 = f (x0)/g(x0). Set k = 1;
3: while |F (λk)| ≥ ε do
4: x∗ = arg maxx∈S0{f (x) − λkg(x)}
5: k = k + 1;
6: λk = f (x∗)/g(x∗);
7: end while

The Dinkelbach algorithm can deal with all fractional programming problems, no
matter whether the problem is concave. However, for concave fractional programming,
a simple approach can be used to solve it.

Let us denote t = 1

g(x)
, then the concave fractional program can be equivalently

transformed into the following parameter-free concave problem

max
{x,t}

tf (x), (A2.3)

subject to

hj (x) ≤ 0,j = 1, . . . ,M,

tg(x) ≤ 1,

t ≥ 0.

Now the transformed problem is a concave one and can be easily solved by some
classical methods. The fractional programming has been applied to design the energy-
efficient resource allocation for green radio networks in [20–23].

A2.1.2 Sum-of-Ratios Optimization

The fractional programming aims to solve a single ratio problem, e.g., the GEE metric
in (2.3). Whereas for the other EE metrics, such as WSEE and WMEE, the objective
function involves multiple ratios, which can not be directly solved by the single-ratio
Dinkelbach algorithm. In the following exploration, we will introduce two alternative
methods to solve multi-ratio fractional programming, namely, sum-of-ratios optimiza-
tion [24] and generalized fractional programming [25, 26].

Regarding the WSEE metric defined in (2.4), the objective function is the summation
of several fractional functions, which is known as the sum-of-ratios programming. The
sum-of-ratios optimization has been employed to solve various WSEE maximization
problems in [27–30].

Similar to the definition of fractional programming, the sum-of-ratios programming
is defined as follows.

Definition 3 (Sum-of-ratios programming). Define fi,gi,i = 1, . . . ,N,hj,j =
1, . . . ,M as some real-valued functions on a set S0 ∈ R

n. The sum-of-ratios
programming has the following format
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max
x

N∑
i=1

fi(x)

gi(x)
, (A2.4)

subject to

hj (x) ≤ 0,j = 1, . . . ,M,

gi(x) > 0,i = 1, . . . ,N .

The sum-of-ratios programming can be solved by utilizing parametric algorithm and
by converting the fractional format into subtractive format as well. It is easy to equiva-
lently convert the above problem into the following one

max
x,β

N∑
i=1

βi, (A2.5)

subject to

fi(x) ≥ βigi(x),i = 1, . . . ,N,

hj (x) ≤ 0,j = 1, . . . ,M,

gi(x) > 0,i = 1, . . . ,N .

Then, we introduce the following theorem to further transform the problem into a
better tractable one [24].

theorem 7 If (x∗,β∗) is the solution to the problem (A2.5), then there exist ui,i =
1, . . . ,N, such that x∗ is a solution to the following problem for u = u∗ and β = β∗

max
x

N∑
i=1

ui(fi(x) − βigi(x)), (A2.6)

subject to

hj (x) ≤ 0,j = 1, . . . ,M .

And x∗ also satisfies the following system of equations for u = u∗ and β = β∗

ui = 1

gi(x)
,i = 1, . . . ,N, (A2.7)

fi(x) − βigi(x) = 0,i = 1, . . . ,N . (A2.8)

According to the above theorem, the sum-of-ratios optimization problem can be iter-
atively solved by two nested loops. The inner loop solves the problem in (A2.6) and
the outer loop finds the optimal u∗ and β∗ satisfying (A2.7) and (A2.8). If fi,∀i are
concave and gi,∀i are convex, the inner problem is concave and its optimum can be
obtained. In this case, the duality gap between the equivalent problem (A2.6) and the
original problem (A2.5) is zero, which means that the problem can be optimally solved.
Moreover, the outer loop can be solved by some numerical analysis approaches like
Newton’s method.
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A2.1.3 Generalized Fractional Programming

Generalized fractional programming (GFP) is another extension of the single-ratio frac-
tional programming into the multi-ratio scenario, which aims to maximize the minimum
of several ratio functions.

Definition 4 (Generalized fractional programming). Define fi,gi,i = 1, . . . ,N,hj,
j = 1, . . . ,M, as some real-valued functions on a set S0 ∈ R

n. The GFP has the
following format

max
x

min
i

fi(x)

gi(x)
, (A2.9)

subject to

hj (x) ≤ 0,j = 1, . . . ,M,

gi(x) > 0,i = 1, . . . ,N .

Also, we can use the parametric algorithm to convert the fractional problem into a
subtractive form, as

F (μ) = max
x

min
i

{fi(x) − μgi(x)}. (A2.10)

Then, similar to the single-ratio fractional programming, problem (A2.9) and problem
(A2.10) have the same optimal solutions if F (μ) = 0.

Accordingly, a Dinkelbach-type algorithm can be introduced to solve the above prob-
lem, as summarized in the following.

Algorithm 5 Dinkelbach-type algorithm to solve GFP
1: Initialize x0 ∈ S0. Set ε > 0;
2: Compute μ1 = mini fi(x0)/gi(x0). Set k = 1;
3: while |F (μk)| ≥ ε do
4: x∗ = arg maxx∈S0 mini{fi(x) − μkgi(x)}
5: k = k + 1;
6: μk = mini fi(x∗)/gi(x∗);
7: end while

This algorithm is very similar to the single-ratio Dinkelbach algorithm except that
a min operation is involved. It is useful to apply if the step (4) can be easily solved.
However, the main drawback of the above algorithm is its slow convergence rate, which
is superlinear as indicated in [26].

A fast Dinkelbach-type algorithm was developed in [31], which applies the Newton-
like algorithm to update the ratio μ. Assuming x∗ to be the optimal solution, the para-
metric subtractive problem can be reformulated as

F (μ) = max
x

min
i

{
fi(x) − μgi(x)

gi(x∗)

}
. (A2.11)

In practice, the optimal x∗ is impossible to be known a priori. Therefore, the previous
iteration point, xk−1, could be used as an approximation of x∗. Using (A2.11) instead of
step (4) in the Dinkelbach-type algorithm, the convergence rate becomes quadratic.
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The preceding algorithms can effectively solve the GFP. However, the min operation
in step (4) renders it difficult to solve in some cases. In the following, we introduce a
new dual problem to solve the GFP.

We assume that fi , ∀i are concave on S0 and gi , ∀i, are positive and convex on S0.
Moreover, either fi , ∀i are nonnegative or gi , ∀i are affine on S0.

Let f (x) = [f1(x),f2(x), . . . ,fN (x)] and g(x) = [g1(x),g2(x), · · · ,gN (x)]. Then,
according to the fact that a quasiconvex function attains its maximum on the vertex of a
convex polyhedron [32], we have

min
i

fi(x)

gi(x)
= min
y∈Y

yf (x)

yg(x)
,

where Y � {(y1,...,yN )|yn ≥ 0,∀n,∑N
n=1 yn = 1}.

Moreover, by applying Sion’s mini-max theorem [33], the problem can be eventually
transformed into

max
x

min
i

fi(x)

gi(x)
= max

x
min
y∈Y

yf (x)

yg(x)
= min
y∈Y

max
x

yf (x)

yg(x)
.

Now the problem can be solved in two steps: the inner layer solves the optimal x∗ for

a given y and the outer layer finds the optimal y∗. Let us define c(y) = max
x

yf (x)

yg(x)
.

Obviously, the inner problem is a single-ratio fractional problem and can be easily
solved by the Dinkelbach algorithm.

To solve the outer layer, we define F (y,c(y)) = max
x
y(f (x) − c(y)g(x)). Then, the

optimal y∗ can be achieved if min
y
F (y,c(y)) = 0. Based on the above analysis, we can

introduce an iterative algorithm to solve the dual problem, as detailed in Algorithm 6.

Algorithm 6 Dual algorithm to solve the GFP
1: Initialize y0 ∈ Y,ε,ϕ , and k = 0.
2: x∗ = arg max

x∈S0

{ykf (x) − ϕykg(x)}

3: If

∣∣∣∣max
x∈S0

{ykf (x) − ϕykg(x)}
∣∣∣∣ ≤ ε, then

4: Goto step (9)
5: Else

6: ϕ = ykf (x)

ykg(x)
7: Goto step (2)
8: End if
9: y∗ = arg min

y∈Y
max
x∈S0

{yf (x) − ϕyg(x)}

10: If

∣∣∣∣max
x∈S0

{y∗f (x) − ϕy∗g(x)}
∣∣∣∣ ≤ ε, then

11: Exit
12: Else
13: k = k + 1,yk = y∗, go to step (2)
14: End if
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A2.1.4 Multi-Objective Optimization and Weighted Tchebycheff Method

In the previous subsection, we have introduced the fractional programming and its
extensions to solve EE-oriented resource optimization problems. The optimization solu-
tions for both single-ratio and multi-ratio fractional programs have been discussed.
The aforementioned problems are basically single-objective optimizations, no matter
whether the objective is single-ratio or multi-ratio. However, in some occasions, we
need to maximize many different EEs simultaneously and in this case, single-objective
optimizations are not effective enough. For example, if jointly maximizing both the EE
of users (uplink) and the EE of base stations (downlink), neither WSEE nor WMEE
could provide a good metric for the optimization.

In light of the above, new optimization theory and approaches involving multi-
objective optimization are demanded. Therefore, in this part, we will introduce the
basic formulation of multi-objective optimization problems and their solutions.

Different from the single-objective optimization, multi-objective optimization aims
to maximize many objectives simultaneously, or equivalently, an objective vector.
The multi-objective optimization problem (MOOP) can be mathematically formulated
as [34]

max
x∈S0

(f1(x),f2(x), . . . ,fN (x)). (A2.12)

In general, the solution to a MOOP is not unique since all objective functions cannot
always be maximized simultaneously. The solutions to a MOOP are usually known as
the Pareto-optimal solutions, which can be defined as follows.

Definition 5 (Pareto-optimal solution to the MOOP). A solution x∗ is Pareto optimal
to the MOOP defined in (A2.12) if and only if there does not exist any another x, such
that fi(x) ≥ fi(x∗),∀i and fj (x) > fj (x∗) for any index j .

The Pareto-optimal solution for the problem in (A2.12) means that a single objective
function cannot be increased without decreasing any other objective functions.

To directly solve a MOOP is very challenging due to the existence of multiple Pareto-
optimal solutions. Instead, a MOOP can be effectively solved by converting it into some
single-objective optimization problems, e.g., scalarizing the multiple objectives into a
single one. There are many scalarization methods, including the weighted-summation
of the objective functions, minimizing the maximal of the objective functions, etc. In
the following discussion, we will introduce another scalarization method, namely the
weighted Tchebycheff method, to solve MOOPs. In fact, the weighted Tchebycheff
method can provide the complete Pareto-optimal solutions no matter whether the objec-
tive functions are concave. Also, in many occasions, the weighted Tchebycheff method
also has a merit of low computational complexity.

To solve the MOOP in (A2.12) using the weighted Tchebycheff method, it is essential
to introduce the concept of the utopia point, f ui , for each objection function fi . The
utopia point is also known as the idea point, which is defined as the maximal attainable
point of each objective function, as
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f ui = max
x∈S0

fi(x).

By solving the above single-objective optimization problem, the utopia point is often
attainable. Having the utopia point for each objective function, a scalarized single-
objective problem can be formulated as

min
x∈S0

{
N∑
i=1

wi[f
u
i − fi(x)]p

} 1
p

, (A2.13)

where wi is the weight for the i-th objective function with
∑N
i=1 wi = 1 and wi > 0,∀i,

and p > 0. The above optimization problem aims to minimize the norm or distance
between the solution point and the utopia point, while the weight vector w stands
for the relative importance of each objective function. According to [34], the single-
objective problem in (A2.13) provides sufficient and necessary conditions for the Pareto
optimality of the original problem in case that its solution is unique.

The weighted Tchebycheff method is expressed as

min
x∈S0

max
i

{f ui − fi(x)}, (A2.14)

which is a special case of the problem in (A2.13) if p → ∞.
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