4  Energy-Efficient Signaling Design
and Resource Management

The fundamental issues of energy-efficient design have been discussed in Chapter 2,
from the perspectives of information theory and optimization theory. Those ideas and
methods mainly focus on single-cell network scenarios where energy-efficient design
can be coordinated at a single base station (BS). These approaches merely aim at link-
level energy efficiency (EE) by optimizing radio resource allocation. However, the oper-
ation of a BS contributes to 60-80% of the overall network energy consumption and is
the main source of energy usage. Therefore, energy-saving of BSs plays an important
role in green cellular networks.

Beyond energy-efficient radio resource optimization at the link level, in this chapter
we discuss green communication approaches from the perspective of network architec-
ture. Currently, most cellular networks consist of homogenous BSs, which can cover
an area with a radius from 100m to 10km. The energy consumption of these macro-cell
BSs is usually very high since high-transmit power is required to maintain large network
coverage. Moreover, most of them are equipped with cooling systems, consuming a
large amount of energy. Thus, the dynamic management of the operation status of BSs,
i.e., adaptive sleep control, is an essential issue for saving network energy consumption.

On the other hand, a heterogenous cellular structure with different kinds of densely
deployed BSs will be adopted by future cellular networks. Such heterogenous networks
(HetNets) with small-cell BSs can greatly reduce the energy consumption of both net-
work and user devices. First, the transmit power of BSs can be considerably reduced
due to the smaller network coverage size. Furthermore, compared with macro BSs, the
operation of small-cell BSs is much more energy efficient without the cooling system.
The HetNet architecture can also reduce the energy consumption of mobile devices due
to the shortened distance between user devices and serving BSs.

According to the radio access technology (RAT) used, HetNets can be classified into
two types: single-RAT HetNet and multi-RAT HetNet. Single-RAT HetNet consists of
BSs with the same radio access protocol, such as LTE BSs. On the other hand, multi-
RAT HetNet consists of BSs with different radio access protocols, e.g., LTE BSs and
WiFi access points. A single-RAT HetNet has a much easier network control, whereas
intercell interference coordination is much more complicated due to frequency reuse
among cells. On the other hand, the network control of multi-RAT HetNet is somewhat
difficult due to various types of access points. However, intercell interference coordi-
nation could be much easier, since different RATs may transmit at different frequency
bands.
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In the rest of this chapter, we will discuss green communication techniques from
the network-layer perspective. In particular, we will introduce several sleep control and
cell zooming strategies for BSs in Section 4.1. In Section 4.2, we will present a joint
downlink and uplink energy-efficient resource allocation algorithm. Sections 4.3 and 4.4
discuss the energy-efficient design issues in homogenous and heterogeneous networks,

respectively.
4.1 Sleeping Strategy and Cell Zooming
411 Dynamic Base Station Sleep Control

Cellular network operators have been continuously seeking ways to increase EE in all
components of cellular networks, including mobile devices, BSs, and core (backhaul)
networks. There has been a tremendous amount of work on mobile device EE with
the objective of prolonging battery life. Similarly, green operation of the Internet has
been considered, and some of the techniques can be extended to the cellular backhaul
networks. However, as mentioned before, the key source of energy usage in cellular
networks is the operation of BS equipment, which contributes to almost 60—80% of
total energy consumption. Therefore, the energy-efficient operation of cellular BSs is
the key challenge to implementing the so-called green cellular network.

The traditional network architecture is designed based on the assumption that user
requests may happen anytime and anyplace. Therefore, to guarantee cell coverage and
provide appropriate services for potential requests, most existing cellular networks
have been designed to keep the transmit power always on, which is clearly not energy
efficient, since the user requests occur only sometimes and somewhere in practice.

Energy-efficient design of BSs has been considered in all stages of cellular networks,
including hardware design and manufacture, deployment, and operation. However, there
is also room for significant improvement in cellular operation. In fact, the BS consumes
more than 90% of its peak energy while experiencing little or even no activity. As a
result, turning off some radio transceivers at BSs with low traffic load can save some
energy consumption but is still not sufficient for green cellular operation. To obtain
significant energy savings, BS sleeping, a carefully coordinated dynamic approach, has
been developed and involves the operation of shutting entire BSs and transferring the
corresponding load to neighboring cells during periods of low utilization.

BS sleeping has attracted more and more attention in recent years [1-3], and there
have been many ways to facilitate its implementation. Early works mainly focused on
static BS sleep according to deterministic traffic patterns over time, without consid-
ering randomness and spatial variation. However, for the path-loss-dominant cellular
network, a dynamic clustering algorithm considering BS collaboration is more effective.
A common principle is to dynamically adjust the work modes (active or sleeping)
of BSs according to the traffic variation with respect to certain blocking probability
requirements. Moreover, BSs should hold their current working modes for at least a
given interval to prevent frequent mode switching.
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The most challenging issue of dynamic BS sleep control is to maintain the cell cov-
erage. Among all methods, the most direct one is to increase the coverage area of the
nearby BSs. There are two alternative ways to realize this: increasing the transmission
power or utilizing lower-frequency bands with better penetration capacity under the
same transmission power constraint. Besides, appropriate design of multi-hop relay
and coordinated multipoint transmission will also be clearly useful to ensure that the
dynamic shutting down of BSs will not leave any coverage hole. More detailed granu-
larity of control and more differentiated heterogeneous cell sizes should also be carefully
designed.

41.2 Cell Zooming for Green Cellular Networks

Different from the dynamic BS sleep control in the previous sections, in this section,
we introduce a dynamic cell zooming strategy to facilitate the implementation of green
cellular networks [4].

The cell sizes and the transmit power on the control channel of traditional cellular BSs
are usually fixed. The cell size of a BS can be regarded as the area where the power of
the received control signal from the BS is above a given threshold. The cell size of each
BS is usually predetermined according to the estimated traffic load when the network is
established. In the past voice traffic dominated the cellular traffic load, and thus fixed cell
size could achieve satisfactory network performance with simple network management.
However, as wireless data traffic has grown very rapidly in the past few years, traffic
loads are significantly dynamic among different cells. Both spatial and temporal traffic
fluctuations can be observed. As discussed before, dynamic BS sleep control can be
applied to save network energy consumption. For example, in the nighttime, some BSs
located in office areas can be switched off due to the relatively light traffic load. In this
situation, the cell size of each BS should be adaptively adjusted according to the traffic
dynamics. This phenomenon is known as cell zooming, which can not only balance the
traffic load but also reduce network energy consumption.

There have been many ways to facilitate the implementation of cell zooming. The
simplest one is to adjust the physical parameters of BSs, such as transmit power control
and antenna tilt adaption. Increasing the transmit power can zoom out the cell size,
while adjusting the antenna tilt can change the coverage area. Another effective means
is BS cooperation where neighboring BSs can utilize the coordinated multipoint (CoMP)
transmission to form a cluster. Besides these two methods, leveraging the BS relaying
technique or D2D communications is also an effective method to realize the cell zoom-
ing [5, 6].

Figure 4.1 shows an example of cell zooming for green cellular networks in which
the BS in the center cell decides to sleep due to the low traffic load. In this situation,
the nearby BS will trigger the cell zooming operation. Among them, BS1 and BS4
increase their transmit powers to enlarge cell coverage, BS2 and BS3 leverage the relay
technique to cover some areas of the sleeping cell, while BS5 and BS6 utilize the CoMP
transmission to expand the network coverage.
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BS2 BS4

BS1 BS5

BS6

Figure 4.1 An illustration of cell zooming for green cellular networks.

41.3 Soft-Defined Network Architecture for Green Cellular Networks

In traditional cellular systems, the physical infrastructure consists of geographically
distributed hardware subsystems including the BSs. These subsystems are often ded-
icated for specific tasks and present network functions together by communicating with
each other via predefined network protocols. Although traditional cellular systems have
sufficient capabilities to serve traffic with traditional moderate QoS requirements, there
are several severe problems that must be addressed in order to reach the demand of
next-generation communications.

. Flexibility. The proprietary subsystems and interfacing protocols make it hard
to update the traditional cellular system’s functions or add services. It would be
energy-consuming for the widely-deployed subsystems.

. Efficiency. The distributed system layout prohibits cooperation technologies like
CoMP. As a result, the network performance cannot be improved via intercell and
inter-network cooperation. Dynamic BS sleeping control and cell zooming cannot
be implemented either.

. Resource utilization. Geographically distributed subsystems rely on local physi-
cal resources to function. Thus, resources must be overprovisioned for peak load,
leading to a low resource utilization efficiency.
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Thus, it is proposed that 5G networks should be constructed with centralized physical
resource placement and become increasingly software-defined. In general, the emerg-
ing cellular system architectures should be developed from the following three aspects
[7, 8].

o Separation of the air interface. Aiming at flexible and efficient control of small
cells for throughput boosting, energy-saving, and BS sleeping, the separation
of signaling and data should be featured in the new air interface architecture
of cellular networks. Therefore, the data traffic service is relative to demand,
whereas the control plane is always “on,” to guarantee basic coverage.

. Base station functions virtualization. By providing programmable BS functions
and reconfigurable radio elements, flexible and efficient signal processing can be
implemented to reconstruct the frame components from the control and traffic
layers of the air interface. In this way, control-traffic-decoupled air interface can
be realized.

. Soft-defined networking. By separating the control and data planes, the SDN
architecture enables centralized optimization of data transmission. In addition,
the control-data separation in SDN can be extended to wireless access layer by
the control-traffic-decoupled air interface.

4.2 Joint Optimization of Uplink and Downlink Energy Efficiency

There are generally two different trends for energy-efficient design in cellular networks.
One is energy-efficient design for downlink transmission, the other is energy-efficient
design for uplink transmission. The former mainly saves power consumption of BSs
from the perspective of cellular network operators, and the latter mainly saves power
consumption of mobile devices from the perspective of users. Most previous studies
have only focused on one aspect of energy-efficient design, either uplink [9-11] or
downlink [11-15]. Those energy-efficient algorithms proposed in the existing literature
may cause unbalance of uplink EE and downlink EE. In this section, we will present a
framework to simultaneously optimize both EEs by joint downlink and uplink resource
allocation.

To do so, we consider a cellular network with carrier aggregation (CA), which allows
users to aggregate different sub-bands to achieve a larger data rate. We also consider a
time division duplex (TDD) operation, which enables dynamic allocation of uplink and
downlink resource to guarantee the performance of both BS and user devices. In a TDD
CA system, the uplink to downlink resource ratio on each sub-band can be optimized.
Existing literature has investigated this problem from the perspective of throughput
enhancement and network load balance while the EE issue has not been studied yet
[16-19].

In what follows, we will first briefly introduce the system model, and then formulate
the EE optimization problem. Then, a joint uplink and downlink resource allocation
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DL1: Downlink bandwidth from band 1. UL1: Uplink bandwidth from band 1.
DL2: Downlink bandwidth from band 2. UL2: Uplink bandwidth from band 2.
DL3: Downlink bandwidth from band 3. UL3: Uplink bandwidth from band 3.

Figure 4.2 The network model of the TDD CA system.

algorithm will be developed. Finally, numerical simulation results are provided to vali-
date the effectiveness of the proposed algorithm.

4.21 System Model and Problem Formulation

As depicted in Fig. 4.2, we consider a TDD CA system with M users, M =
{1,2, ---,M}, and N available sub-bands, N' = {1,2, - - -, N}. Each user can dynami-
cally transmit on several sub-bands according to the user’s channel power gains and data
rate requirement. Moreover, the uplink to downlink resource ratio on each sub-band
can also be dynamically chosen to balance the uplink and downlink performance. The
channel between user m and the BS on the n-th sub-band follows the i.i.d. Rayleigh
fading model, as

8m,n = Fnhm,nd,;a”- (41)

In (4.1), d,, denotes the distance between user m and the BS, ¢, is the path loss exponent
of the sub-band n, I';; is the path loss constant of the sub-band n, and £, , is the random
variable reflecting the small-scale fading and the shadowing effect. We further assume
that uplink and downlink transmissions have the same channel power gain due to the
channel reciprocity of TDD.

To simplify our analysis, we only consider a single-cell TDD system where intercell
interference can be ignored. Then, we can express the signal-to-noise ratio (SNR) for
user m on sub-band n as
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_pfnngmn
=y

m,n

SNR7, , Vm,n, 4.2)
where x can be UL or DL (standing for uplink or downlink, respectively), Ny is the
power spectral density of the additive white Gaussian noise (AWGN), p;, , > 0 denotes
the transmit power allocated to user m on sub-band n, and bfn,n > (0 denotes the
bandwidth allocation. According to the Shannon formulation, the transmit data rate for
user m on sub-band n can be expressed as

= by, ,log, (1 + SNan’n) ,x ='UL or'DL/, Vm,n. (4.3)

m n

Since we need to optimize the EE of both downlink and uplink, we shall calculate the
overall data rate of both the BS and user devices. The overall transmitted data rate of
the BS can be expressed as

gm.n P
s m,n
Ry = E E b 10g2< W) , 4.4

n=Ilm=1

and the transmitted data rate of user m can be expressed as

okl g’"’”p’['{*L” 45
Ry = Z 02, W : 4.5)
m,n

We shall also model the power consumption of the BS and user devices. The power
consumption mainly includes three parts, which can be expressed as

N M N M
DL DLI DL,D DL UL
Po= 33 wappl + PP RPN 4 B) . @)
n=1 m=1

n=Ilm=1

where the first item is the radio frequency (RF) power consumption (w, denotes the
inverse of the power amplifier efficiency on sub-band n), the second item is the fixed
circuit power consumption, and the third item is the circuit power consumption related
to the total occupied bandwidth (PP-P denotes the power consumption per unit band-
width).

The total power consumption for user m can be modeled in a similar way as

N N
Py = vapyl + P+ )" (bﬁ?n + b},,{L,,) pULD, “.7)
n=1

n=1

This power consumption also contains three parts, with v, representing the inverse of
the power amplifier efficiency at the user device, PU! being the fixed circuit power
consumption, and P,P L.D being the bandwidth-related power consumption.
Now we are ready to express the EEs for the downlink and the uplink as
Ro

4.8
X0 = B’ (4.8)
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and

Xm=_1m=1123"'sM7 (4‘9)

respectively.

The objective of this section is to develop a joint downlink and uplink resource
allocation algorithm to maximize the EE of both the BS and user devices. Therefore,
the optimization problem can be formulated as

Thax anxm, (4.10a)

subject to

Z Pal < palmX v, (4.10b)

ZZ pht, < pPhmax, (4.10¢)

m=In=1
M
> (bELn b}i,Ln) < Wa, Vn, (4.10d)
m=1
UL
8m.nPm,n UL, min
by log, ——— | = R, ™", Vm, (4.10e)
St (14 32 ) >
N GmnpPL .
> bhdogy |1+ =5 | = ROV™™, Vi, (4.10f)
n=1 b’BFnNO

Here, no is the weight value for downlink EE and n,, (m € {1,2, - -- M}) is the weight
value for uplink EE of user m. They are all predetermined by the network operator to
characterize the relative importance of network energy consumption and user energy
consumption. Pys.on = [ pPt,pY 1and Byon = [ bPL, UL ] where pPL, pUrt,
bPL, and bUL are all M x N matrices collecting the elements of pm W pm W bgLn, and
bgL”, respectively. The constraints in (4.10b) and (4.10c) restrict the maximum transmit
power for each user and the BS, respectively. The constraint in (4.10d) indicates the
total uplink and downlink bandwidth on each sub-band. The constraints in (4.10e) and

(4.10f) guarantee the minimum uplink and downlink data rates for user m, respectively.
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4.2.2 Joint Uplink and Downlink Resource Allocation

The problem in (4.10a) is obviously a sum-of-ratios optimization problem, i.e., max-
imizing the summation of several fractional functions. As described in the Appendix
in Chapter 2, this problem can be effectively solved by the sum-of-ratios algorithm
by transforming it into an equivalent convex optimization problem, as shown in the
following theorem.

THEOREM 4.1 If (P*,B*) is the optimal solution to (4.10), then there exist u* =
(ug,ut, -+ ,uy) and B* = (BS. B, -+ . B};) such that (P*,B*) is a solution to the
following problem under the constraints from (4.10b) to (4.10g) for u = u* and B = B*

M
maXZum (M R — Bm Pm) . (4.11)
P.B =0
Moreover, (P*,B*) also satisfies the following system of equations for u = u* and
B=p":
1
upy = —,m=0,1,--- M, (4.12)
P
Bm = Nmxm-m =0,1,--- M. (4.13)
From the above theorem, the fractional objective function has been changed into a
M
subtractive form as Y uy, (1 Rm — Bm Pm). Thus, we can achieve the global optimal
m=0

solution to the original problem by equivalently solving this problem. We now prove
that the equivalent problem is jointly concave on (P, B).
M
Define U (P,B) = Y um (hnRm — B Pm) and H (Uy,, (P,B)) as the Hessian of

m=0

U (P,B) on the n-th sub-band and the m-th user, as

DL DL
N
A —A 0 0
o0 T Ay
0 0 A LAY
where
2 b~
AY = uono - Simn T 5
(b5, nNo + gm.npis ) In2
and
v \2
Ax _ (gm;npm,n)
2 = UmNm - B .
(b;(n,nNO + gm,np;;%,n) In2
The four eigenvalues of the Hessian matrix are ¢; = ¢ = 0, ¢p3 = — (AP + ADF) <
0,and ¢4 = — (A?L + AEL) < 0. Since all its eigenvalues are nonpositive, the Hessian

matrix is negative semi-definite. Therefore, we can conclude that U,, , (P,B) is jointly
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concave in (P,B), and U (P,B) is also jointly concave in (P,B) since linear operation
preserves concavity.

In the expressions just discussed, we have proved that the objective function is a
concave one. It is also rather obvious that the constraints also comprise a convex set.
Thus, the problem is a convex one and standard convex tools, such as Lagrangian
duality method, can be applied to solve it. The detailed steps of the convex optimization
approach can be found in classical textbooks [20] and are therefore omitted.

In summary, the initial optimization problem in (4.10a) can be solved by two steps:
the first one finds the optimal bandwidth and power allocation in (4.11) for given (8, u),
and the second one finds the optimal (8*, u*) that satisfies (4.12) and (4.13).

For the second step, we can develop a modified Newton method to solve it. We first
introduce the following theorem, which can be proved in a similar way as Theorem 3.1
in [21].

THEOREM 4.2 Let Y (B.u) = —0m R + B Py Yms140m (Bo) = —1 + wyy Py,
m = 0717 tee ’Mx and 'ﬁ (ﬂ?u) = [wo (ﬁ,u),lﬂl (ﬂ’u)7 tt a‘(/sz*i“] (ﬂvu)] Then) the
optimal (B*, u*) is achieved if and only if

¥ (B,u) =0. (4.15)
Moreover; the optimal (B*, u*) is unique for problem (4.11).

Furthermore, the modified Newton (MN) method can be used to solve the equation in
(4.15), as expressed in the follows

B = B 4 i, uF ! = uk 4 i, (4.16)

a = [v (84)] v (80), (*.17)
where Ay is the greatest £ that satisfies
¥ (8" + gl s elal) = (1 ') [ (%)

andi € {0,1,2,---},& € (0,1), and € € (0, 1). Specifically, ﬂk+1 and u**! can also be
expressed component-wise as

, (4.18)

k

Nm R

B = (1 — a0 BE + M ’;’Dk"’, vm, (4.19)
m
1

Wk = (1 = ap) uk, + i V. (4.20)
m

In summary, the algorithm includes two loops: the inner loop is the optimal band-
width and power allocation and the outer loop is the sum-of-ratios optimization that
finds the optimal (8,u). As mentioned in Chapter 2, the sum-of-ratios algorithm is a
global-optimal solution. Moreover, the inner loop is a standard convex problem and
also its global optimum solution can be achieved. Therefore, our proposed algorithm
can achieve the global optimal solution to the original problem in (4.10). Regarding
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Table 4.1 The global optimal solution for joint downlink and uplink resource allocation.

Algorithm 7 The global optimal solution for joint downlink and uplink resource
allocation.
1: Initialize the maximum tolerance A and the maximum number of iterations Iyax.

2: Choose £ € (0,1), € € (0,1), and (P°,BY) € dom EE. Let

N M DLO
gm,npm n
> 3 pPog, [ 14+ T
0 n=lm=1 " erPnONO

:30 =10 N M N LD M
3 X wapphd 4+ PPLI 4 37 PR ST (B + bRLY)

n=1m=1 n=1 m=1

bl

N ULO
ULO 8m,nPm.n
Z bm,n 10g2 (1 + bULON, )
=1 :
- Vm,

0
ﬂm:nm N

N
> vy pUlo 4 pULIL 4 S (pDLO 4 pULO) pJbD

m,n
n=1 n=1

0_ Ny DLO PDL,I y PDL»D ux bDLO bULO —1
uO_ Z Z W”lpm,n+ +Z n Zl( m,n+ m,n) >
m=

n=Ilm=1 n=1

0 N ULO UL, I N DLO, ; ULO UL,D 1
um=<2vnpm,n+P T3 (BRAHBNY) Py ) Vm
n=1 n=1

3. Initialize the iteration index k = 0. Denote ﬂk = (ﬂ(’)‘, cee ,3,’{4), uk =
(uk uk)
0’ SUar)-

4: Find the optimal (P¥, BX) for a given (8*,u*) by convex optimization tool.
5. if ¥ (B, u¥) < A then

6: (Pk, Bk) is the optimal solution and stop the algorithm.

7: else

8: Denote iy as the smallest i satisfying (4.18).

9: Let A = &%, update 5!, uk+! and ¥ by (4.16), (4.17).

10: k=k+1.

11:  if k < Ihax then

12:  gotostep 4.

13:  else

14:  gotostep 16.
15:  end if

16: end if

the computational complexity, the sum-of-ratios optimization algorithm converges in
superlinear/quadratic rate and the subgradient method of convex optimization converges
in linear rate [22]. Therefore, the computational complexity of the proposed algorithm
is low and acceptable for practical implementation. The detailed procedures of the
proposed algorithm are illustrated in Table 4.1.
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Table 4.2 System Parameters

Parameters Settings
Noise —174 dBm/Hz
User noise figure 9dB
Base station noise figure 5dB
Base station antenna gain 15 dBi
User antenna gain 0 dBi
Wavelength of sub-band 1, 1  0.375m
Path loss of sub-band 1, oy 3
Bandwidth of sub-band 1, Wi 4 MHz
Wavelength of sub-band 2, up  0.12m
Path loss of sub-band 2, ap 4
Bandwidth of sub-band 2, W, 8 MHz

pDLI pULI

46 dBm, 24.8 dBm

PPL,D, PlUL,D —23 dBm/Hz, —40 dBm/Hz
P,?L*D, pZUL’D —26 dBm/Hz, —43 dBm/Hz

PDL, max’ P}’I;le’ maX7 Vm

46 dBm, 24 dBm

153

A A [10*4, ,10*4], 10~4
Imax: Tax 5,100
RDL-min pUL.min v, 10 Mbit/s
Wn, Vi, = 1,2 1,1
&, €) (0.5,0.5)
4.2.3 Numerical Results

In what follows, we shall provide numerical results to verify the proposed joint downlink
and uplink energy-efficient resource allocation algorithm. In the simulation, we consider
a single-cell network with a radius of 250 m. There are two sub-bands, sub-band 1 and
sub-band 2, with different central frequencies of 800 MHz and 2.5 GHz, respectively.
Four users are located in the network with distances of 50 m, 100 m, 150 m, and 200 m
from the BS. The channel between the BS and users follows i.i.d Rayleigh model. Other
major simulation parameters are given in Table 4.2 unless otherwise stated.

We first test the convergence speed of the proposed algorithm, as presented in Fig. 4.3.
In this test, we set the same weight for all users, i.e., n,, = n, m = 1,2,3,4. We can
observe from the figure that the sum-of-ratios optimization converges only after about
4-5 iterations, demonstrating a fast convergence speed of our proposal.

Figure 4.4 shows the bandwidth allocation on each sub-band with different weights
of uplink EEs. In this test, we set the same weight to each uplink EE, i.e., 1, =
n,m = 1,2,3,4. We also assume that sub-band 1 is more energy-efficient than sub-
band 2 since sub-band 1 has a lower center frequency. From Fig. 4.4c, more bandwidth
will be allocated to the uplink if more importance is put up to users than the BS.
We can also observe that more bandwidth on sub-band 1 will be allocated to users
with the increase of the weight value, 7, to achieve higher uplink EE. Meanwhile, to
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Figure 4.3 The convergence of the sum-of-ratios algorithm. © 2015 IEEE. Reprinted, with
permission, from Yu, G., 2015, ‘Joint Downlink and Uplink Resource Allocation for
Energy-Efficient Carrier Aggregation’, IEEE Transactions on Wireless Communications,
Vol. 14, No. 6, pp. 3207-3218.
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Figure 4.4 The bandwidth allocation for different weights of uplink EE. © 2015 IEEE. Reprinted,
with permission, from Yu, G., 2015, ‘Joint Downlink and Uplink Resource Allocation for
Energy-Efficient Carrier Aggregation’, IEEE Transactions on Wireless Communications, Vol. 14,
No. 6, pp. 3207-3218.
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Figure 45 EE tradeoff between downlink and uplink. © 2015 IEEE. Reprinted, with permission,
from Yu, G., 2015, ‘Joint Downlink and Uplink Resource Allocation for Energy-Efficient Carrier
Aggregation’, IEEE Transactions on Wireless Communications, Vol. 14, No. 6, pp. 3207-3218.

guarantee the minimum data rate requirement, the downlink bandwidth on sub-band 2
will increase. Due to the same reason, the downlink bandwidth allocation will eventually
remain at its minimum value as 1 goes large.

In Fig. 4.5, we assume that each user has the same weight, i.e., n,, = n,m = 1,2,3,4,
and adjust n from 0.005 to 0.03. From the figure, a clear EE tradeoff between downlink
and uplink can be observed. To further show the EE tradeoff among users, we fix 1, =
0.05,m = 2,3,4 while changing n; from 0.005 to 0.05, and the results are depicted in
Fig. 4.6. From the figure, the EEs of other users, i.e., x,,m = 2,3,4, decreases with
the EE of user 1. Therefore, we can conclude that the proposed algorithm can achieve a
flexible EE tradeoff between downlink and uplink as well as among different users.

4.3 Energy-Efficient Resource Allocation in Homogeneous Networks

In Chapter 2, we introduced several works on the energy-efficient design in single-cell
networks, such as fundamental EE-SE tradeoff, EE design in OFDMA systems, and EE
design in non-orthogonal systems. In this chapter, we will discuss the energy-efficient
design in multicell systems where intercell interference poses a major challenge for EE
design. We will first investigate multicell homogeneous networks with the same kind of
LTE BSs. For such a scenario, there have been several algorithms to improve the overall
system EE, which is defined as the ratio between the overall transmit data rate and the
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Figure 4.6 EE tradeoff among users. © 2015 IEEE. Reprinted, with permission, from Yu, G.,
2015, ‘Joint Downlink and Uplink Resource Allocation for Energy-Efficient Carrier
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overall energy consumption. In this section, we will utilize a more general EE objective,
that is, to maximize the individual EE of each BS.

The motivation of this work is to maximize the individual EE of each BS, which
has a more practical meaning than the overall EE maximization, as explained in the
following. Currently, there exist some BSs powered by renewable external energy (e.g.,
solar and wind) in addition to those traditional BSs powered by the electricity grid. In
such a situation, the EEs of different BSs may have different levels of importance. For
example, to prolong the battery lifetime, BSs powered by external energy source should
be more energy-efficient than those powered by the electricity grid. Therefore, it is more
meaningful to consider the individual EE of each BS rather than the overall system EE.
Nevertheless, the overall system EE maximization could be regarded as a special case
of individual EE maximization.

In a multicell homogeneous network, the multi-stream aggregation (MSA) technique
can be applied to improve the user data rate by aggregating data from different channels
belonging to different BSs [23, 24]. This technique can greatly help improve the user
experience of cell-edge users that can easily gather data from several nearby BSs. How-
ever, there are also many challenges related with the MSA technique. Among others,
how to associate users with proper BSs, and how to allocate channel and power resource
on each channel, are two critical challenges worth investigating. Several existing works
have explored the user association and resource allocation algorithm in MSA systems
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from the perspective of system throughput maximization [25, 26]. However, there is no
work considering the EE issue in such systems.

In the following subsection, we will first describe the system model and formulate the
problem before introducing an effective algorithm to solve the problem. After that, we
will provide numerical results to test our algorithm.

4.31 System Model and Problem Formulation

As depicted in Fig. 4.7, a multicell homogeneous system with K BSs and M users is
investigated. The whole system has N orthogonal channels, and each has a bandwidth
of W Hz. It is assumed that each user can receive data from several different BSs by the
MSA technique.

Assuming user m is associated with the k-th BS on the n-th channel, we can express
its received signal-to-interference-plus-noise ratio (SINR) as

pn hn
Vimk = TR : @.21)
WNo+ > > pihy,
i=1,imj=1, j#k

where h, denotes the channel power gain of the m-th user on the n-th channel at the
k-th BS, p;, is the transmit power on that channel, and Ny is the power density of
Gaussian noise. Based on this, the data rate of user m, that is associated with the k-th

— — —>Interference

Figure 4.7 The network model for a homogenous cellular system with MSA.
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BS on the n-th channel, can be written as

n opn
pmkhmk

M K
WNo+ > > Py,
i=1,istm =1, 4k

R', =Wlog | 1+ (4.22)

To calculate the EE of each BS, we should first figure out the overall data rate
transmitted by the k-th BS as

M N
Re=> " plRr,. (4.23)

m=1n=1

In the above equation, p;, denotes the binary user association and channel allocation
indicator. That is, pﬁlk = 1 if user m is associated with the k-th BS, and the n-th channel
is allocated to that user. Otherwise, p:;lk =0.

Similarly, the total transmit power of the k-th BS can be expressed as

M N
Pe=Y "> ppiPk- (4.24)

m=1 n=1
Then, based on the definition of EE, we can express the EE of the k-th BS as

Ry

S S— 4.25
wy - Py + Pkc ( )

gk =
where @y and Py denote the inverse of the power amplifier efficiency and the fixed
circuit power consumption of the k-th BS, respectively.

As we have mentioned, we want to maximize the EE among different BSs with the
constraints of user data rate requirement and the backhaul limit of each BS. Therefore,
to indicate the levels of importance, we shall assign different weights to the EEs of
different BSs. Let us denote n; (0 < nx < 1) as the weight factor for the k-th BS, which
is a fixed value determined by the network management utility. Let £ and P denote the
resource and power allocation matrices with a dimensional of M x N x K, respectively.
Then, we can mathematically formulate the optimization problem as

K
4.26
max > mkex, (4.26)
k=1
subject to
M
P, € {0,1} and Z oy < 1,Vk,n, (4.26a)
m=1
N K '
DY opaR = Ry Im, (4.26b)
n=1 k=1
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M=

>

Pic P < P, VK, (4.26¢)
m=1n=1
M N
DO ppiRy < RIS VE, (4.26d)
m=1n=1
ik = 0,Ym,n. k. (4.26¢)

The above constraints include the orthogonality of channel allocation in each BS
(4.26a), the minimum data rate requirement of each user (4.26b), the maximum transmit
power limit (4.26¢), and the backhaul capacity constraints of each BS (4.26d).

4.3.2 Problem Analysis and the Sub-Optimal Algorithm

We can observe that the problem in (4.26) is a sum-of-ratios optimization, since its

objective function is the summation of several fractional functions, which is very com-

plicated. Furthermore, this problem is also a combinatorial one due to the binary channel

allocation matrix, 2. Therefore, the problem is NP-hard and there exists no direct

solution to solve it. To tackle it, we shall again leverage the sum-of-ratios optimization

theory to convert it into a more tractable one, as presented in the following expressions.
First, the rate expression in (4.23) can be rewritten as

M N I‘l hn
Re=YY ol Wilog | 1+ M’”" - (4.27)
m—ine1 WNo+ Y. Z Pl
i=l,i#mj=1, j#k

M N

h}’l

_ ZZWlog 1 + kapmk s Vk.
m=ln=1 WNo+ > X puPiln,
i=l,imj=1, j#k

Then, we can simply prove that p), = 0if p;, = 0. This is very clear that no power
will be allocated if channel n of BS k is not allocated to user m. Based on this, the
constraint in (4.23) is equivalent to

M N n n n
h
_ ZZWIOg - /;;nkpmk mk . Vk. (4.28)
m—ln1 WNo+ > X pipih
i=li#mj=1, j#k
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To deal with the combinatorial variable of pfnk, we can relax it into a continuous one,
denoted as o . Then, the initial problem in (4.26) can be converted into

K
max Y i, (4.29)
P
subject to
N K '
DD Ru=Rym, (4.292)
n=1 k=1
M N
DD P < PMVK, (4.29b)
m=1n=1
M N
D> R < REVE, (4.29¢)
m=1n=1
pmk 2 07 va n, ks (4.29d)
where

~n __ xn .n
Pk = Pk Pk

~n pn
pmkhmk

E;;zk = Wlog | 1+ i e
WNo + 3221 iem 2= LAk Z P,,h"

m=1n=1
M N
Pe=222 P
m=1 n=1
and
. Ry
Ek = =
wy - Py + Pf

Since the constraint in (4.26a) has been relaxed, the optimal solution to (4.29) is natu-
rally larger than the optimal solution to the initial problem in (4.26). However, the mod-
ified problem is unfortunately non-concave, since the objective function is fractional,
which is not concave. We shall utilize the sum-of-ratios optimization tool to transform
the problem into a more tractable and equivalent one, as stated in the following theorem.
The proof of this theorem can be found in the Appendix of Chapter 2.
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THEOREM 4.3 If P* is the optimal solution to (4.29), then there exist u* =
(uT,ué, e ,u’;() and ™ = (1:1*,1';, e ,I;;) such that P* is a solution to the following
problem under the constraints from (4.29a) to (4.29d) foru = u* and t = t*

K - -
max Zuk (nkRk — T (wy Py + Pkc)) . (4.30)
P k=1

Moreover, P* also satisfies the following system of equations for u = u* and T = T*:

1
uy=———k=12,--- K. “4.31)
wi Py + Pkc

T = Mk =12,--- K. (4.32)

According to the above theorem and the sum-of-ratios optimization theory (Section
A2.1.2), we shall now solve the equivalent optimization problem in the sum-of-ratios

subtractive form, i.e., max Z/f:] Uy (nkﬁk — Tr(wp 15k + Pkc)), for this case. We first
P

analyze the property of the objective function in (4.30), which can be rewritten as

- M N
Ry = Z Z WIOg WNo + pmkhmk + Z Z pzhf"]
m=1n=1 i=li#mj=1, j#k (4.33)

M N M K
— Y > Wilog (WNO + Yy ph)
m=1n=1 i=1,i#mj=1, j#k
Obviously, it is a summation of several difference-of-convex (d.c.) functions. Therefore,
it is non-concave. To further solve the problem, we can utilize the successive convex
approximation (SCA) approach to convert the objective function into the concave form.
The main idea of the SCA method is to approximate the d.c. optimization problem into
a series of convex optimization problems. The detailed approaches are described in the
follows.
We can first express the lower bound of Ry as

M N M N
Re=) "> Wilog(l+7m) =D Y Wl log@m) + b)), (434)
m=1n=1 m=1n=1

which is tight when

o, = Yk (4.35)
mk — ~n .

~n

ﬂmk = log (1 + mG) log(y, k) (4.36)

1+~”

Based on this, the objective function in (4.30) can be approximated into

M N
Zuk (Uk > Z W (o log(Tm) + Bi) — Telwn D Y P + P,f)) . (437

m=1n=1 m=1n=1
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for given approximation coefficients & £ {o;} and B & {B)}- We then define the
auxiliary variable p, = log(p) ). Therefore, the initial problem in (4.29) can be
eventually transformed into the following equivalent problems

maxZuk [nkZZW ol log(Pm) + Bhy) — Tk (wkZZexp poi) + Pk>j| ,(4.38)

m=1n=1 m=In=1
subject to
N K
DO W (e log(m) + Biy) = R, ¥, (4.382)
n=1 k=1
M N
D0 exp (pp) < PO VK, (4.38b)
m=1n=1
M N
DD W (o log(Dm) + Bii) < RPVK, (4.38¢)
m=1n=1

where log(p! ) = pi. +log(h!),) — log (WNO +y 1itm Zj‘(:l,j;ék exXp (132) hgu')'

Now, the problem in (4.38) is eventually a convex problem due to the convexity of
log-sum-exp functions. Thus, classical convex optimization approaches can be utilized
to solve it. After the problem in (4.38) is solved, we still need the following operations.
First, the optimal power should be transformed back according to p;, = exp(p),).
Then, the bound in (4.37) should be iteratively updated until reaching a tighten one.
Finally, the optimal (z*, T*) should be updated according to the sum-of-ratios algorithm,
i.e., iteratively updating o and B until both (4.31) and (4.32) are satisfied.

In summary, the original problem can be solved by three nested iterative loops, as
depicted in Fig. 4.8. The innermost loop is the optimal power allocation based on the
standard Lagrangian solution. The intermediate loop is the SCA step that finds the
appropriate {(x;’L k} and { ﬂ;}l’ k} to approximate Ry. The outermost loop is the sum-
of-ratios algorithm, finding the optimal (z,u) that satisfies (4.31) and (4.32). This step
can be realized by the Newton updating method as described earlier. Since all loops
converge, the convergence of the whole algorithm can be guaranteed.

4.3.3 Numerical Results

In what follows, we shall provide numerical results to demonstrate the effectiveness
of the proposed suboptimal algorithm. We adopt a simple scenario with two BSs and
four users, where each BS covers a circle area with a radius of 500 m. There are four
channels in each BS and users are randomly located in the network. An independent
Rayleigh channel model is used to model the channel fading between the BSs and the
users. The other major simulation parameters are summarized in Table 4.3.

We first test the convergence performance of the proposed algorithm. Figures 4.9(a)
and 4.9(b) show the convergence rate of the sum-of-ratios algorithm (the outermost
loop) and the SCA algorithm (the intermediate loop), respectively. From the figure, both
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Table 4.3 Simulation Parameters

Parameters Settings

Cellular radius 500 m

Noise —174 dBm/Hz
Path loss exp. 35

P, Vk 40W

R, Vk 50 Mbit/s

Wk, Yk 1

w 1 MHz

pax 26 W

Algorithm
initialization

Integer relaxation

v

—» Sum-of-ratios algorithm

(u.7) l

SCA method [«

Multipliers updating

.
|

Loop 1 | l
|
|

Power update

(E—

Loop 3

Convex

f optimization

Loop 2

Figure 4.8 Block diagram of the suboptimal algorithm.
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Figure 4.9 The convergence performance of the sum-of-ratios and SCA algorithms. (a) The
sum-of-ratios algorithm. (b) The SCA algorithm. © 2016 IEEE. Reprinted, with permission,
from Chen, Q., 2016, ‘Energy-Efficient User Association and Resource Allocation for
Multistream Carrier Aggregation’, IEEE Transactions of Vehicular Technology, vol. 65, no. 8,
pp. 6366-6376.
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Figure 410 EE comparison between the EE-optimal algorithm and the rate-optimal algorithm. ©
2016 IEEE. Reprinted, with permission, from Chen, Q., 2016, ‘Energy-Efficient User
Association and Resource Allocation for Multistream Carrier Aggregation’, IEEE Transactions
of Vehicular Technology, vol. 65, no. 8, pp. 6366—6376.

algorithms only require a few iterations to reach the optimal solutions, demonstrating
the quick convergence of our proposed algorithms.

We then compare the proposed EE-optimal algorithm with the rate-optimal algo-
rithm that aims to maximize the overall system throughput. Note that the rate-optimal
algorithm can be designed by simply replacing the objective function with the overall
system data rate. It can be also achieved by the SCA algorithm with the standard convex
optimization in a similar way. Figures 4.10 and 4.11 illustrate the EE performance and
data rate performance of our proposed algorithm, respectively, as compared with the
rate-optimal algorithm. As depicted in the figures, although the rate-optimal algorithm
can maximize the overall system throughput, the EE-optimal algorithm can achieve a
better EE with a small loss of data rate. It shows that our proposal can indeed achieve a
higher EE and higher system throughput simultaneously.

4.4 Energy-Efficient Resource Allocation in Heterogenous Networks

So far, we have discussed the energy-efficient resource allocation for the homogenous
cellular system with multiple macro-cell BSs. With the dramatic increase of mobile
data traffic, the cellular network structure is undergoing major changes. In addition to
those macro-cell BSs, various kinds of low-power access points have been deployed to
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Figure 4.11 System throughput comparison between the EE-optimal algorithm and the
rate-optimal algorithm. © 2016 IEEE. Reprinted, with permission, from Chen, Q., 2016,
’Energy-Efficient User Association and Resource Allocation for Multistream Carrier
Aggregation’, IEEE Transactions of Vehicular Technology, vol. 65, no. 8, pp. 6366—-6376.

improve network capacity, which is referred to as heterogeneous wireless networks [27].
Besides the improvement on the area spectral efficiency because of dense frequency
reuse, the EE can also be enhanced due to the low-power transmitter. There are two kinds
of heterogeneous networks (HetNets), namely single-RAT HetNets and multi-RAT Het-
Nets. The access points of the former one belong to the same RAT, e.g., LTE macro-cell,
pico-cell, and femto-cell. On the other hand, the latter one consists of different access
points with different radio access technologies, such as the coexistence of LTE BSs and
WiFi access points. The major characteristic of the multi-RAT heterogenous network
(HetNet) is that different access points are usually deployed by different operators and
work on different frequency bands. This brings new communication freedom into multi-
RAT mobile devices to dynamically and optimally select the most suitable network for
better performances. Moreover, users can also utilize the multi-homing technology to
further improve the throughput by aggregating data from different networks. Therefore,
the multi-RAT HetNet has aroused considerable research interest in recent years.
Undoubtedly, the EE of both single-RAT and multi-RAT HetNets is also an important
issue worth investigation [28]. Early studies show that, by offloading cellular traffic to
the WiFi network, both system capacity and EE can be significantly improved [29—
31]. The works in [32, 33] proposed partial spectrum reuse and adaptive BS sleeping
control strategies to improve the EE of two-tier heterogeneous networks, respectively.
In [34, 35], energy-efficient coordinated beamforming and precoding schemes have
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been proposed to maximize the system-level EE of MIMO heterogeneous networks. The
large-scale user behavior and traffic dynamics can also be leveraged to design energy-
efficient communication protocols [36, 37]. Moreover, energy-efficient optimal access
point selection [38] and resource allocation algorithms [39] for multi-RAT heteroge-
neous networks have been investigated.

In this section, we will introduce energy-efficient joint bandwidth and power alloca-
tion for multi-RAT HetNets to maximize the EE of uplink users. In contrast to existing
works that generally maximize the system-level EE, we aim at maximizing the EE of
each individual user. This objective is much more general than the overall EE and has the
merit of providing a better understanding of EE tradeoff. The problem of maximizing
the overall EE is generally a fractional programming problem. However, maximizing all
uplink EEs is much more different and new methods should be involved. Therefore, we
introduce a multi-objective optimization tool to model the individual EE maximization
problem. To deal with it, we first propose a novel concept of utopia EE for each user,
defined as the maximum EE that a particular user can achieve. After that, we develop an
effective multi-objective resource allocation algorithm based on the weighted Tcheby-
cheff method.

In what follows, we will first introduce the multi-RAT HetNet and formulate the
optimization problem. Then, we will describe the concept of Utopia EE and devise
the novel algorithm to solve the problem. Finally, numerical results will be provided to
demonstrate the performance of the proposed algorithm.

4441 System Model and Problem Formulation

The system model of multi-RAT HetNets is depicted in Fig. 4.12. The system has M
(M € M = {1,2,...,M}) different types of access points (APs), each equipped with

Figure 412 System model for multi-RAT heterogenous networks.
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different RAT. For example, there are three different access points, namely, LTE BS,
LTE-A small-cell access point, and WiFi access point. Different APs work on different
frequency bands and thus inter-RAT interference does not exist. There are N (N € N =
{1,2,...,N}) users randomly distributed in the network. It is assumed that each user can
utilize the multi-homing technology to opportunistically choose several APs. This can
be implemented by splitting the data stream into multiple sub-streams, and each sub-
stream is transmitted via one RAT. For simplicity, both APs and users are assumed to be
equipped with one antenna, while our work can be easily extended to the multi-antenna
scenario with few modification.

The overall available bandwidth of the m-th RAT is denoted as W,,, which can be
allocated to all users associated with this RAT. Moreover, we have the channel power
gain model between user n and RAT m as

_ —a,
8m,n = hm,ndm’r:",

which is a function of the distance between user n and RAT m (dy, ,), the small-
scale channel fading coefficient (%, ,), and the path-loss exponent «,,. To perform the
bandwidth and power allocation, it is assumed that all channel state information (CSI)
is accurate and known at the centralized scheduler.

Let by, , be the bandwidth allocated for user n in RAT m. Then, the achievable data
rate for user n in RAT m can be modeled as

Run = by, nlogy(1 + SNRyy, ), Ym,n, (4.39)

where SNR,,, , is the uplink SNR that can be expressed as a function of power allocation
Pm.n and channel power gain g, ,, as

Pm.n8m,n
SNRy, = LIn8mn . (4.40)
m bm,nNO

Then, the overall achievable data rate for user n can be written as

M
Pm,n8m,n
R, = by nl 1+ —"—"],Vn. 4.41
n n; m,n 0g2< + bm,nNO) n ( )

Similar to the previous analysis, the power consumption for each user can be mod-
elled as

M M
Po=Y Omnpmn+ P+ bunPy.Vn. (4.42)
m=1 m=1

Again, the power consumption model consists of three items: the transmit power with
wm,n being the inverse of the power amplifier efficiency; the fixed power consumption;
and the power consumption as a function of the occupied bandwidth, where P,]n) denotes
the fixed power consumption if RAT m is used. We shall note that this model is more
general than that in [39] in which the last item is not considered.
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According to (4.42), the EE of user n can be expressed as

Ry
= —.Vn. 4.43
n P, ( )
As mentioned earlier, we aim at maximizing the EE for each individual user by joint
bandwidth and power allocation. Therefore, the optimization problem can be formu-

lated as
S NEREEN s 444
max {n.m N} (4.44)
subject to
N
me,n < Wy, Vm, (4.442)
n=1
M
> Pmn < PRVn, (4.44b)
m=1
M .
Rinn = Ry™,Vn, (4.44¢)
m=1
bmn =0, ppn > 0,Ym,n. (4.444d)
In the above problem, the optimization variables are P = { Dm. ,,} MxN and B =

{bm, n } 1« the constraint in (4.44a) limits the overall available bandwidth in each
RAT, the constraint in (4.44b) is the maximum allowable transmit power of each user,
and the constraint in (4.44c) guarantees the minimum uplink data rate requirement of
users. Here, the problem is assumed to be always feasible. This can be achieved by
proper admission control strategies.

Equation (4.44) and its four parts are a multi-objective optimization problem [40],
which aims to maximize several different objective functions. Since EEs of all users
cannot be maximized simultaneously, those objective functions are generally conflicting
with each other. Therefore, the optimal solutions are in general Pareto-optimal, which
indicates that one cannot improve the EE of one user without decreasing the EE of other
users. Different from a single-objective optimization problem, there may exist many
Pareto-optimal solutions to a multi-objective optimization problem in general. For our
case, Pareto-optimal EE can be defined as follows.

Pareto optimal EE: An EE vector n* = {nj,n3, --- ,nx} is Pareto-optimal if and
only if there does not exist another EE vector n such that n, > n; for all users, but
ni > n; for at least one user.

442 The Multi-Objective Energy-Efficient Algorithm

Now we will try to develop a bandwidth and power allocation algorithm to achieve
Pareto-optimal EE. Before solving it, we first introduce the concept of Utopia EE for
each individual user, defined as.
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Utopia EE: The Utopia EE for each user can be defined as the maximal EE it can
achieve, i.e., 1, = ma]>__< {nn}, where F denotes the feasible set of bandwidth and power
ne

allocation strategies.
Based on this definition, we can formulate the following optimization problem to find
the Utopia EE for user n

max 1, (4.45)
P,B

subject to (4.44a)—(4.44d).

Clearly, this problem is a standard convex fractional programming, and therefore the
classical Dinkelbach algorithm described in Chapter 2 can be utilized to solve it. The
detailed procedures are omitted. After Utopia EE is solved for each user, we can convert
the multiple-objective optimization problem into a single-objective one by utilizing the
weighted Tchebycheff method as described in Chapter 2. The objective function of the
single-objective optimization problem can be written as

min max { (1 — n)} (4.46)

where ¢ = {¢1, - -+ ,¢n} is any weight vector with all positive elements. By changing
the weight vector, one can achieve all Pareto-optimal solutions from the above formula-
tion. The equivalence between (4.46) and (4.44) is given in the following theorem.

THEOREM 4.4 Let an EE vector n be a Pareto optimal solution to problem (4.44).
Then, there must exist a positive weight vector ¢ = {¢1, --- , PN}, such that n is the
solution to problem (4.46).

The relationship between Pareto-optimal EE and Utopia EE for a two-user case is
depicted in Fig. 4.13. The shadowing area in this figure illustrates the feasible EE region
for the problem in (4.44), and the upper bound of the region is the Pareto-optimal EE
set. Moreover, the points of nﬁ’ and n‘z’ are the two Utopia EE for user 1 and user 2,
respectively. The point (n},73) is the Pareto optimal EE corresponding to the same
weight vector, i.e., ¢| = ¢,. From the figure, point (1}, n3) can achieve the minimum of
max{n{ —n},n5 —n3}, as demonstrated in Theorem 4.4. Other Pareto-optimal EE points
can be also achieved by setting different ¢;, for i = 1,2, in a similar way. Indeed, the
weight value ¢, reflects the different levels of importance for each user, which can be
predetermined by the network operator according to practical applications. For example,
one can assign a larger weight to those users with lower battery power or higher priority.
In this way, the EEs for these users will be much closer to their maximum/Utopia EEs,
as can be derived in the above Theorem 4.4.

Now we will develop an iterative algorithm to solve the problem in (4.46). First,
inserting (4.43) into (4.46), the objective function can be converted into

min max {qbn <"ZP”—_R”) } . (4.47)

PB =1 P,
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h

Figure 4.13 The illustration of Utopia EE and Pareto-optimal EE.

Now this problem becomes a generalized fractional programming (GFP), aiming at
maximizing the minimum of several fractional functions [41, 42]. We can further prove
that the objective function is quasiconvex and can be transformed into an equivalent but
more tractable one, as shown in the following theorem.

THEOREM 4.5 The objective function in (4.47) is quasiconvex and equivalent to

YN adn (O Py — Ry)
2111\1:1 n Py

where Y 2 {(y1, -+, yn)lyn = 0,¥n, 3Ny, = 1),

max n’liﬁl f(y,B,P) = ) (4.48)

yey P,

Proof First, we will show that R, , is concave over b, , and pp ,. Define x £
by y 2 Pmn8mn ond £ (x,y) = —xlog, (1 + X).
No X
The Hessian of f(x,y) is
/i ooy
2 2
H= (x + )y) (x 2 y)

9

@+y? G+’
which is positive semi-defined, since its eigenvalues are
A =0,
24,2
X
)\‘2 — # >
x3 4+ 2x2y + xy?
Therefore, R, = —f (x,y) is concave and R, is also concave since it is a linear
combination of R, .
R
To prove the quasiconvexity of (4.47), we write the sublevel set of — —- as

n
Ry
To = bm,n P> 0»pm,n > 0,Vm,n _F <o,
n
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which is equal to
Ta = {bm,n = Oapm,n > 0,Vm,n|—aP, — R, < 0} .

We see that t,, is convex due to the convexity of —a P, — R,,, which leads to the quasi-
convexity of nj — %. According to [20], max {qbn (m>} is also quasiconvex.
n n n
Then, due to the fact that a quasiconvex function will attain its maximum in a vertex

of a convex polyhedron [43], we have

o _ N R B
max {qbn (M)} > n=1 Yn®n (0, Pn Rn).

= max N
Pn yey Zn:l Yn Pn

We will now show that f(y, B, P) is quasiconvex over (B, P) and quasilinear over y.
For a given y, the sublevel set of f(y,B,P) can be denoted as

To = {bmn = 0, pmn = 0,Ym,n| f(y,B,P) < a}.

Furthermore, we can rewrite f(y,B,P) < « as
N
Zyn(‘pn(nzpn —Ry)—aP,) <0.
n=1

Therefore, it can be easily observed that t,, is convex since 2,11\;1 V(@9 Py — R,) —
o Py) is convex over (B, P), which leads to the quasiconvexity of f(y,B,P) over (B,P).
Again, for a given (B, P), the sublevel set of f(y,B,P) is

S = {yn = 0,Vnlf1(y) < «f, (4.49)

which equals to

N
Su =10 =011 Y yu(@u(n Py — Ry) —aPy) <O

n=1

Due to that Zflv:l V(@ (9 P, — R,) — aPy) is an affine function of y, which is both
convex and concave, f(y,B,P) is quasilinear over y.
Then, according to Sion’s mini-max theorem [44], (4.47) can be finally converted into

max min B, P).
max mip f(y.B,P)

This ends the proof. O

According to Theorem 4.6, we can obtain the optimal solution to the problem in
(4.46) by iteratively solving the following two subproblems: a) finding the optimal
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{B*,P*} for a given y; b) finding the optimal y. Mathematically, they can be respectively
formulated as

nly) = gi];l f(y.B,P),

and

*
7" = max n(y).
yey y

We can use the Dinkelbach algorithm [45] to solve the above problem where the
optimal n* should satisfy U* = 0. However, it is very hard to directly find the optimal
n* to satisfy this condition. In what follows, we shall present an effective algorithm to
solve the above two subproblems, as presented in the following theorem.

THEOREM 4.6  Define
N
Uy.0) =Y ya(@n(15 Py — Ra) — aPy),
n=1
and let yO k = 0,1, ---, be a sequence updated by the following equation for any
initial y©:
*+1) — arg max min U , ®y),
y g max mis (y.n(y"™)

Then we have
(a) For the first subproblem, n(y) is achieved when

i =0.
Iglél U(y.n(y)

(b) For the second subproblem, we have n(y*+1) > n(y®) and the optimal solution
n* = n(y®) is achieved when n(y**tD) = n(y®). In this case,

U* £ maxmin U(y, n*) = 0.
yey P.B

Proof The first subproblem is a standard concave fractional programming problem,
thus (a) can be easily proved, based on the parametric algorithm in [45] by introducing
the parameter « and the function U (y, «).

For the second part, since

n@*“b=$gﬂ¢“M&Px

we have

ggU@W“m@W”»za (4.50)

On the other hand, according to the definition of y(k+1),

ggU@W“m@®»zggUmew®»=0. (4.51)
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Table 4.4 The algorithm to achieve Pareto-optimal EE

Algorithm 8 The algorithm to achieve the Pareto optimal EE

1: Initialize y© € Y, n, k =0, €1, and €5.
2: Find {P*,B*} = arg Iil)iiél U®iy®,n).

N
3 I | v @u(m2 P — RY) — nP*)| < €1, then

n=1

4 Set n(y®) = .

5: goto step (10).

6: Else N o e
7 Update n = ZFISN ¢"}f<77k§£17R")
8: goto step (2). A

9: end

10: Update y(k+1) = arg max min U(y’ n(y(k)))'
ye)y P.B

11: I py*+D)y — n(y®) < e, then

12: Set n* = n(y®).
13: exit.

14: else

15: Update k = k + 1.
16: goto step (2).

17: end

Then we can prove that n(y*tDy > ny®) by following (4.50) and (4.51), and the fact
that U (y, «) decreases with «.
If the equality is achieved in (4.51), it means

U* £ max min U(y, n(y*)) = 0.
max mit (¥, n(y*™))

This yields the global solution of n* = n(y(k)) according to [41]. This ends the proof.
|

According to Theorem 4.6, we can now develop an iterative algorithm to solve the
problem, as summarized in Table 4.4.

As shown in step 2 of the algorithm, the objective function of the first subproblem
can be written as

N
max Zjlyn (¢nRn — (a1 — ) Py) ¢ - (4.52)

We can easily prove that this objective function is jointly concave on (P, B). Therefore,
we can utilize the classic convex optimization tools to solve it, such as the subgradient
method and the interior point method.
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In step 10 of the algorithm, the second subproblem can be expressed as

N

max min D va(@a(n Pu = R) = aPy).
n=1

This problem is a bit difficult to solve. However, since a quasi-convex function attains

its maximum on a vertex of a convex polyhedron [43], we can rewrite the objective

function as

I})llélmrflx {(,bn(nzpn —Ry) — o5Pn} .

Moreover, according to the parametric optimization theory, we can further convert the
problem into

min T,
P.B

subject to (4.44a)—(4.44d), and
¢>n(nZPn —Ry)—aP, <t,Vn.

Now the problem has been converted into a convex one, thus standard convex optimiza-
tion methods can be utilized to effectively solve it.

443 Numerical Results

In this section, we will provide simulation results to show the performance of the pro-
posed multi-objective energy-efficient algorithm. A multi-RAT HetNet consisting of
two RATS is considered. The two networks have bandwidths of 1 MHz and 2 MHz,
respectively. The channel model between the AP and users follows the i.i.d Rayleigh
fading model. We assume that each uplink user has the same maximum transmit power
of 1 W and the same data rate requirement of Ry,i,. Without loss of generality, the power
amplifier efficiency is set as 100% for all users. Other major parameters are listed in
Table 4.5 unless otherwise stated. We consider a simple symmetric scenario to validate
the effectiveness of our proposal where the distances between each user and its access
point are the same.

Table 4.5 System parameters

Parameters  Settings

Noise -174 dBm/Hz

P! 0.1W

pP, PP 10 mW/MHz, 5 mW/MHz
Wi, Ws 2 MHz, 1 MHz

PMaX vp W

A 104

€1, € 1074,0.1

wm,n,Ym,n 1

r.T, 1

oy, 3,4
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Figure 4.14 The convergence speed of the proposed algorithm.

First, we examine the convergence rate of the proposed algorithm in Fig. 4.14. From
the figure, n(y®)) converges to its maximum value while U%® converges to 0 after
only 4-6 iterations, which confirms our analysis. Moreover, since the first subproblem
is a standard convex fractional programming problem, it converges fast. Therefore,
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Figure 4.15 EE versus ¢ in the symmetric scenario, ¢p = 1, Ryin, = 2 Mbps. © 2015 IEEE.
Reprinted, with permission, from Yu, G., 2015, ‘Muilt-Objective Energy Efficient Resource
Allocation for Multi-RAT Heterogeneous Networks’, IEEE Journal on Selected Areas in
Communications, vol. 33, no. 10, pp. 2118-2127.

the convergence speed of our proposed algorithm is fast and suitable for practical
implementation.

Figure 4.15 shows the EE with different weights for user 1, ¢1, while the weight of
user 2 is fixed to 1, i.e., ¢» = 1, and Rpj, = 2Mbps. From the figure, the Utopia EE
exactly serves as an upper bound of the EE for both users according to its definition.
Moreover, with the increase of the weight, ¢, the EE of user 1 increases gradually
and finally reaches its maximum/Utopia EE. Meanwhile, the EE of user 2 decreases
with ¢1, since more resource will be allocated to user 1 as its weight value increases,
which demonstrates that an EE tradeoff between the two users can be achieved by
the proposed algorithm. In the figure, we also compare the overall system EE of the
proposed algorithm with the maximum overall system EE, which can be achieved by the
classical Dinkelbach algorithm. The results in this figure show that, when ¢ = ¢ = 1,
both users can achieve the same EE, which is also the maximum system EE. When
the two weights are different, there exists a gap between the EE of our algorithm and
the maximum system EE. Fortunately, this gap is rather small, which indicates that our
algorithm can achieve a near-optimal EE performance.

We further test the EE performance with different user data rate requirements. In
Fig. 4.16, the EE for users with different data rate requirements, Ry;n, is depicted, where
@1 : ¢ = 1 : 1. The results in this figure show that the EE decreases with Ry, which
can be readily explained. When R, is smaller, a larger EE can be achieved due to
more freedom in the resource allocation algorithm. However, when Rp,, goes larger,
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Figure 4.16 EE versus Ryin. ¢1 : ¢p = 1: 1. © 2015 IEEE. Reprinted, with permission, from Yu,
G., 2015, ‘Muilt-Objective Energy Efficient Resource Allocation for Multi-RAT Heterogeneous
Networks’, IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2118-2127.
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Figure 417 EE versus Rpin. ¢1 : ¢2 = 2 : 1. © 2015 IEEE. Reprinted, with permission, from Yu,
G., 2015, ‘Muilt-Objective Energy Efficient Resource Allocation for Multi-RAT Heterogeneous
Networks’, IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2118-2127.
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more resources will be allocated to increase the data rate, and in this case the EE will be
inevitably decreased. We can also observe from the figure that the proposed algorithm
can achieve the maximum system EE when ¢| = ¢», which is similar to the results in
Fig. 4.15.

In Fig. 4.17, we further illustrate the results when ¢; : ¢» = 2 : 1. In this case,
although both users can achieve the same Utopia EE, user 1 will achieve a larger EE
than user 2 due to its relatively larger weight. We can also see from the results that
the gap between Utopia EE and the Pareto-optimal EE for user 2 is almost twice larger
than that of user 1. This is resulting from the weighted Tchebycheff algorithm, which
minimizes the maximum gap between Utopia and Pareto-optimal EEs. Furthermore, in
the case of ¢1 : ¢» = 2 : 1, our algorithm cannot achieve maximum system EE, as has
been explained previously.
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