
4 Optoelectronics

4.1 Executive summary

All land line communication systems currently use optical fibres as the channel due to
their very low attenuation, and deployed systems operate up to 40 Gigabits per second
(Gbps), with experimental systems at 160 Gbps and higher. These high speed systems
use very stable sources, usually the distributed feedback lasers, with external modu-
lators and very fast detectors. Direct modulation of lasers leads to chirp, caused by
the laser frequency varying when modulated, and therefore is not used in these sys-
tems. However, interest remains in high speed lasers for several other applications. This
chapter discusses high speed optoelectronic devices which include light-emitting diodes
(LEDs), semiconductor lasers, photoconductors, p–i–n diode photodetectors, avalanche
photodetectors, metal–semiconductor–metal photodetectors, travelling wave photode-
tectors and briefly the phototransistor. The physics of the devices are outlined and then
the parameters that make these devices fast are discussed with specific examples from
the literature.

4.2 Optical sources

Two types of sources are widely used in optical communication systems, and they are
the LED and the semiconductor laser. LEDs are inherently slow; their response times
are determined by the lifetime of the carriers in the active region, and in most LEDs
this is between 2 ns and 10 ns. Thus, small-signal response of LEDs is of the order of
100 MHz, and the large-signal response is smaller than this. Lasers are complex devices,
and the response time is determined by the so-called relaxation oscillation frequency,
and this is due to the interaction between the photons which have a finite lifetime, which
is a measure of the cavity quality factor, Q, the differential gain of the structure, the
lifetime of the carriers and other parameters [1]. Most lasers, when directly modulated,
suffer from spectral broadening, and therefore direct modulation is not used for long
haul fibre-optic systems; but when this broadening is not important, direct modulation
may be used.

In this section, the fundamental aspects of LEDs and lasers are discussed, followed
by an outline of the different types of lasers. To calculate the response of lasers, the rate
equations are introduced and these are solved analytically for the relaxation frequency
fr. A short discussion of the noise mechanisms of lasers follows. A further section is
included on the very high fr lasers.
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4.2.1 Preliminaries

The generation of non-thermal light in a semiconductor requires the creation of hole–
electron pairs which recombine radiatively to emit photons at the bandgap energy, or
impurity level to valence band energy. The more recent source of light is the intra-
band relaxation of electrons from a higher energy level to a lower energy level in the
conduction band of a quantum well, to emit photons, and this has resulted in the quan-
tum cascade lasers. In both these sources of light, a means of generation of the excess
electron–hole pairs or excitation of the carriers to a higher energy state requires the
expenditure of energy. If this energy is from an electrical source, then this is called elec-
trical pumping leading to electroluminescent emission. Alternatively, optical pumping
with photons of a higher energy than the emitted photons is also a possibility. In this
chapter, only electroluminescent sources are considered, and quantum cascade lasers
are not discussed.

4.2.2 Light-emitting diodes

The ubiquitous green and red LEDs are fabricated in GaP which is an indirect gap semi-
conductor. The impurities of zinc oxide and nitrogen form isoelectronic bands which
give rise to the red and green emissions, respectively. Other LEDs include the blue GaN
device, the near infrared GaAs 870 nm device and the InGaAsP 1300 nm and 1550 nm
devices.

The mechanisms that create the LED are based on p–n junctions. A forward-biased
p–n junction injects minority carriers to both sides of the junction, and these diffuse
away from the junction to recombine radiatively and non-radiatively. The radiative
recombination results in emission of photons, with energy hν approximately equal to
the bandgap energy Eg. The recombination is spontaneous, which implies that emission
has random phase, and the linewidth is of the order of a few kBT, where kB is Boltz-
mann’s constant, and T is the temperature in kelvin, and the emission is incoherent. The
internal quantum efficiency is a measure of how efficiently the injected carriers produce
light, since some of them recombine non-radiatively. Define the total recombination rate
Rtotal, in recombination events per second, as the sum of the radiative recombination rate
Rrr and the non-radiative recombination rate Rnr. Then, the internal quantum efficiency
is given by the ratio of the radiative recombination rate to the total rate:

ηi = Rrr

Rtotal
= Rrr

Rrr + Rnr
. (4.1)

However, lifetimes are more easily measured or inferred, and the quantum efficiency is
recast in terms of the lifetimes. The radiative recombination rate is defined as the ratio
of the non-equilibrium carrier density N to the radiative lifetime τrr, and similarly, the
non-radiative recombination rate is the ratio of the carrier density N to the non-radiative
lifetime τnr, and thus Rrr = N/τrr and Rnr = N/τnr. It follows that the total lifetime
τtotal is given by

1

τtotal
= 1

τrr
+ 1

τnr
. (4.2)
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Hence, substituting in the Equation (4.1), the internal quantum efficiency is given by

ηi = τnr

τnr + τrr
. (4.3)

The total lifetime is obtained from the definition

Rnr + Rrr = Rtotal = N

τtotal
, (4.4)

and the total recombination rate Rtotal is given by

Rtotal = Anr N + Br N 2, (4.5)

where Anr is the non-radiative recombination coefficient and Br is the radiative
recombination coefficient. It follows that

τtotal = (Anr + Br N )−1. (4.6)

In direct gap semiconductors, the radiative lifetime is comparable to the non-radiative
lifetime, whereas in indirect gap semiconductors, the non-radiative lifetime is much
shorter than the radiative lifetime. Thus, the internal quantum efficiency is about 0.5
for direct gap semiconductors and this improves very considerably for lasers to almost
unity when the radiative lifetime becomes very small compared to the non-radiative life-
time. In indirect gap semiconductors, silicon and germanium for example, the internal
quantum efficiency is of the order of 10−5. Surface recombination is also a problem as
this is non-radiative and decreases the internal quantum efficiency. To reduce this, a het-
erojunction layer of a higher band gap may be deposited above the emission layer. The
other problem is the absorption of the emitted photons in the generating layer, and there
is little that can be done about this. The higher bandgap layer has very low absorption,
and this heterolayer may help marginally.

Consider the structure of the LED which is usually a p–n or p+–n or n+–p junction.
It is necessary to have the junction close to the surface so that the emitted light is able to
escape from the material into the air. Initially, consider the carrier injection process in
a p–n junction when it is forward-biased. A p–n junction when forward-biased injects
holes into the n region and electrons in the p region. With forward bias of Vf, it can be
shown that the current density in the p–n junction is given by

J = q

(
Dp pn0

Lp
+ Dnnp0

Ln

)
(eqVf/kBT − 1), (4.7)

where Dp and Dn are the minority hole and minority electron diffusion constants in
the n-type and p-type material respectively adjacent to the junction; Lp and Ln are
the diffusion lengths of the minority holes and minority electrons in the n- and p-type
material respectively adjacent to the junction; pn0 and np0 are the minority hole and
electron densities in the n- and p-type material; q is the charge magnitude of an electron;
kB is Boltzmann’s constant; T is the temperature in kelvin and Lp,n = √

τp,n Dp,n. In
some LEDs, the junction is n+–p, in which case pn0 in the n+ region is very small, as it
is equal to n2

i /n+, and in many III–V materials ni, the intrinsic density, is very low, for
example in GaAs it is about 106 cm−3. The hole injection term which is the first term in
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d

Fig. 4.1 Sketch of the n+–p junction, with a very thin p+ and the contacts of the LED. Also shown is the
effect of total internal reflection in the escape of light from the p+ layer.

Equation (4.7) is small, and the injection is largely from the n+ region into the p region.
Thus, the injection efficiency, which is the ratio of the injected current into the p region
to the total injected current is almost unity due to the fact that the injected current into
the n+ region is much smaller than that injected into the p region. This is the case for the
p+–n junction as well, since the minority carrier density in the highly doped region is
always much smaller than that in the lower doped region, and the injection efficiency is
assumed to be unity. However, as indicated above, the internal quantum efficiency is of
the order of 50% for direct gap semiconductors. As the junction temperature rises, the
non-radiative recombination increases and so this figure is typical for room temperature
devices.

Assuming that the injection is primarily from the n+ side of the n+–p junction into
the p region. The minority electron distribution in the p layer is of the form �ne−z/Ln ,
where the z direction is normal to the surface in Figure 4.1, and z is the distance from
the junction towards the surface. This minority carrier distribution may be shown to be
equivalent to np0(eqV/kBT − 1)e−z/Lp . Thus, the radiative recombination is over this
distribution, and for all practical purposes it can be shown that this is equivalent to an
uniform distribution over the distance Ln. Assume that the thickness of the active layer
is d, which is assumed to be much larger than the diffusion length Ln. Then, integrating
this distribution ∫ ∞

0
�ne−z/Ln dz = �nLn, (4.8)

which shows that �n may be considered uniformly distributed over Ln. The choice
of the upper limit of ∞ is because d � Ln. The lifetimes in GaAs and InGaAsP vary
from 2 ns to about 10 ns, and mobility of minority carriers of 1000 cm2 (V.s)−1 gives Ln

values of less than 0.5 μm, and the active layer thickness may exceed this value. In the
following sections, the tacit assumption is that the minority carrier density is uniform
over Ln.

In Figure 4.1, the top p layer has the injected minority carriers recombining to cre-
ate the photon source. The spontaneous emission is isotropic and the trajectories of the
photons at the surface to the air region result in total internal reflection when the inci-
dence angle exceeds the critical angle. Thus, extraction efficiency of the emission needs
to take into account this total internal reflection, when the incidence angle exceeds the
critical angle given by
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θc = sin−1 n0

n2
(4.9)

where n0 is the index of air equal to 1 and n2 is the index of the top layer of the LED
through which the emitted photons escape. For normal incidence of the photons, the
reflection coefficient � is given by

� = n0 − n2

n0 + n2
. (4.10)

The fractional transmitted power or the transmissivity (1 − �2) for normal incidence,
and is given by

T (0) = 4n0n2

(n0 + n2)2
. (4.11)

As the photon angle of incidence varies from the normal to θc, the reflection coefficient
changes, depending on the polarisation, which averages out between the two perpendic-
ular and parallel cases for the spontaneous emission, and the transmissivity also changes
[7]. The external quantum efficiency is obtained from

ηext = 1

4π

∫ θc

0
T (θ)2π sin θdθ. (4.12)

Since the expressions for the transmissivity vary with θ , and are difficult to inte-
grate, T (θ) is replaced by T (0). Substituting for T (0) from Equation (4.11) and using
Equation (4.9), the external quantum efficiency becomes

ηext = 1

n2(n0 + n2)2
. (4.13)

For a value of n2 of 3.5 and n0 of unity, ηext is of the order of 1.4%, which suggests that
most of the light generated is trapped inside the device. The presence of a heterojunction
layer on the top surface, discussed below, complicates this expression as the index of
this top layer is lower than that of the active layer. An anti-reflection coating on the
surface helps to improve this factor considerably. The obvious method of extracting
light from the p-layer is to place a hemispherical lens, index identical to the p-layer, on
the surface. If there is a hetero-layer, then this needs to modified further. In the case of
the p layer, the extraction efficiency becomes very high, but the problem is getting a
suitable lens with the same index.

The optical power emitted by the LED is given by

Popt = ηintηext(hν)
I

q
, (4.14)

where I/q is the number of electrons or holes that are injected into the active region
per second; the internal quantum efficiency ηint defines the fraction of them that recom-
bine radiatively; and the external quantum efficiency ηext the fraction of the generated
photons that escape from the active layer. The total quantum efficiency of the LED is
a measure of its performance and is the ratio of the output optical power to the input
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electrical power, which is given as P0 = V0 I , where V0 is the voltage drop across the
device and the current is given by I . Thus, substituting from Equation (4.14)

ηtotal = ηintηext
hν

qV0
. (4.15)

Neglecting contact resistance drops, hν ≈ Eg ≈ qV0, where Eg is the band gap in
eV, which then makes the total quantum efficiency, which is also the external power
efficiency or the wall plug efficiency:

ηtotal ≈ ηintηext. (4.16)

This is usually less than a few percent, unless other techniques are used to extract the
light more efficiently. Edge-emitting LEDs, discussed below, are therefore much more
efficient. For visible LEDs the luminosity is also an issue [3], but this is not considered
here.

The responsivity R of the LED is defined as the ratio of the emitted optical power to
the current, and substituting from Equation (4.14), is given by

R = ηintηext
hν

q
. (4.17)

This is of the order of 0.01 W A−1 for the above values of η unless this becomes much
larger.

The spectral width of the emission �ν of LEDs is approximately defined by kBT/qh
in Hz and peaks at (Eg + kBT/2q)/h [1]. The full width half maximum (FWHM) is
∼1.8kBT/qh, and at room temperature (T = 300 K) is about 11 THz. The spectral
width in wavelength �λ varies as �λ = �ν(λ2/c), and so varies from about 30 nm to
90 nm.

Modulation response
The LED is effectively a n+–p junction, and therefore the usual diode current relation-
ship holds, as discussed above:

I = I0(e
qV/kBT − 1) (4.18)

To calculate the modulation response, the small-signal behaviour is obtained by initially
biasing the LED at some bias point, where the current is given by Ib. The carrier lifetime
in the active layer determines the modulation rate of these LEDs. If N is the density
of carriers and I is the current that flows into the LED, the following rate equation
determines the carrier dynamics:

d N

dt
= I

qVol
− N

τtotal
(4.19)

where Vol is the volume of the active region. Under steady-state conditions, the time
dependence is zero and at a bias current of Ib, then

Nb = Ibτtotal

qVol
, (4.20)
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where Nb is the carrier density at bias current Ib. To obtain the small-signal response,
let the current have an ac component given by Ime jωmt , and similarly the carrier density
also has a small-signal term Nme jωmt . Note that it is assumed that Im � Ib the bias
current, and similarly Nm � Nb. Thus

I (t) = Ib + Ime jωmt (4.21)

N (t) = Nb + Nme jωmt . (4.22)

Substituting in Equation (4.19) two component equations arise; the steady-state equa-
tion is satisfied by the result in Equation (4.20). The time varying equation gives rise to
the following solution

Nm(ωm) =
Imτtotal

(qVol)
1 + jωmτtotal

. (4.23)

The expression for optical power output given in Equation (4.14) varies as I/q, which
is proportional to the carrier density. Thus, the modulated optical power Pm(ω) varies
as Nm. It follows that

Pm(ωm) = Popt
1[

1 + (ω2
mτ 2

total)
]1/2

, (4.24)

where Popt is the zero frequency steady-state output power. The frequency at which half
power is obtained by setting the denominator of the above equation to 2, which leads to

f3dB = √
3

1

2πτtotal
. (4.25)

This equation confirms that the bandwidth is inversely proportional to the carrier
lifetime.

LED structures
The basic planar LED is shown in Figure 4.2. In general, it is necessary to have a thin
highly doped contact layer to reduce the contact resistance, and the emerging light has
to pass through it. The absorption creates additional loss. If the active layer is intrinsic
or undoped, with p+ and n+ layers on either side, then the injection into this layer is
from both junctions. In practice, the intrinsic layer is always unintentionally doped as
either p− or n−, where one of the junctions is a p–n junction and the other is a high–low
junction; but injection takes place from both junctions.

p+layer

p active layer

n+ substrate

Contact metal layer

Contact metal
layer

Fig. 4.2 Sketch of the n+–p junction LED with a p+ contact layer.
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Contact metal layer

Contact metal
layer n+-GaAs contact layer

n+-AlGaAs layer

GaAs active layer

p+-AlGaAs layer

p+-GaAs substrate

Fig. 4.3 Schematic diagram of the heterojunction LED.

Contact

Dielectric
p+-InP
p+-InGaAsP
Active layer
InGaAsP
n+-InGaAsP
n+-InP 
n+-InP
Substrate

Lower contact

Fig. 4.4 Schematic diagram of the edge-emitting LED.

A variation of this structure is to have higher bandgap heterostructure layers both
above and below the active layer, appropriately doped. The diffusion of the injected
electrons and holes injected from the active layer is blocked by the heterojunctions that
are now formed on both sides of the active layer, as shown in Figure 4.3. These hetero-
layers prevent the diffusion of the minority carriers to the surface, and therefore prevent
surface recombination. Most LEDs designed at the current time use the heterolayers
where available.

A further variation on this is the placement of dielectric mirrors below the active layer
to reflect the light emitted towards the substrate. A second variant is the edge-emitting
LED shown in Figure 4.4, in which the heterolayers above and below the active layers
together with the active layer act as a waveguide. A high reflectivity mirror at one facet
makes this a superluminescent diode; with mirrors on both ends and with adequate gain,
the LED may operate as a laser. The external quantum efficiency of the edge-emitting
LED is very much higher than the surface-emitting devices because the transmissivity at
the edge facet is of the order of 0.7 for the waveguide index n2 of 3.5. With a high reflec-
tivity facet coating at one end, the external quantum efficiency is also about 0.7 for n2

of 3.5. Anti-reflection coating on transmitting facet would increase the transmissivity to
almost unity, and the external quantum efficiency also becomes nearly unity. Thus, the
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total quantum efficiency or the wall plug efficiency of edge-emitting LEDs is determined
largely by ηint, which is of the order of 0.5 in direct gap semiconductors.

The normal emission of the surface-emitting LED is Lambertian, which implies that
the emission intensity at angle θ from the normal is cos θ , which means that the beam
width is 120◦. For the edge-emitting LED, the emission is elliptic in form, and the beam
width is about 30◦ in the horizontal plane but remains 120◦ in the vertical plane.

LEDs are used in optical fibre communication systems that operate with multimode
fibres, as the broad emission spectrum prevents modal noise being a problem [17]. A
diode proposed by Burrus [4] has the fibre bonded into the face of the surface-emitting
LED.

4.2.3 Semiconductor lasers

While LEDs utilise spontaneous emission for the emitted light, lasers operate on stimu-
lated emission-generated light. Lasers are optical oscillators in which the gain medium
is in a cavity; the light acquires gain in the medium between reflections from the ends of
the cavity until steady state is reached, when the gain becomes saturated. The simplest
version is a Fabry Perot cavity with the gain medium between two mirrors.

In this section, semiconductor lasers are discussed, as they may be designed to be
high-speed and high frequency lasers. While solid state, fibre and other types of lasers
may produce extremely short pulses, known as ultrafast lasers, their repetition rates are
typically 80 MHz, to a maximum of a few GHz, and are not considered ‘high-speed’
or ‘high frequency’ lasers, and therefore not discussed here. The semiconductor laser
threshold condition is first considered, then waveguides used in these lasers are outlined,
and different types of lasers are discussed. This is followed by the derivation of the rate
equation for these lasers, and the solutions for various conditions. Discussion of noise in
semiconductor lasers is also included. Subsequently, quantum well, quantum dot lasers
and vertical cavity lasers are briefly discussed.

Basic concepts
When the gain medium is in a cavity formed by two mirrors, shown schematically in
Figure 4.5, light in the form of an electromagnetic wave, electric field amplitude E0,
travels from one end of the cavity to the other end, where it is reflected by the end

Gain medium

Mirrors

z = 0 z = L

Fig. 4.5 Schematic diagram of gain medium in a cavity formed by two end mirrors.
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mirror, and then propagates back, and is then reflected by the second mirror to return to
its starting point. Suppose that the length of the cavity is L , this determines the distance
travelled by the wave between reflections. Assume that the gain of the medium is given
by g/2 Nepers per unit length, and hence the intensity gain is g per cm. Suppose the
medium internal loss is αint/2 Nepers per unit length, or the intensity loss is α per cm,
the medium index is n, and the reflection coefficients of the mirrors are r1 and r2. For
the structure to commence oscillation, the loop gain should be unity or larger, which
implies that the field at the starting point E0 has to undergo these reflections and is also
subjected to gain to become after one round trip

E0 = E0(2L) = E0e− j2k0nLe(g−αint)L |r1||r2|. (4.26)

The real part of this equation gives

g = αint + 1

L
ln

1

(|r1||r2|) . (4.27)

The mirror reflectivity is defined as R1 = |r1|2, and similarly R2 = |r2|2. Substituting
in the above equation,

g = αint + 1

2L
ln

1

(R1 R2)
= αint + αmir. (4.28)

The first term on the right-hand side is the medium loss without pumping and the second
term is the mirror loss term, usually denoted by αmir. For the gain medium of GaAs, the
index is about 3.45, and the mirror is assumed to be formed by cleaved facets which
result in plane mirrors, parallel to each other. The reflection coefficient of each facet
mirror is

r1,2 = 3.45 − 1

3.45 + 1
= 0.551. (4.29)

The facet mirror reflectivity is 0.303, and hence the mirror loss term αmir is 1.194 cm−1.
The internal loss term is usually between 10 and 20 cm−1, and therefore the gain needs
to be 11.194–21.194 cm−1 for the round trip gain to be unity, and generally the gain
needs to be higher than this value.

In practice, only part of the wave obtains gain from the active region, and this is
defined by the confinement factor �, which is discussed later. Thus, the oscillation
condition for the laser in Equation (4.28) becomes

�g = αint + αmir. (4.30)

Also the complex propagation constant in the gain medium now is given by

β = nk0 − j
(α

2

)
, (4.31)

where n is the guide effective index and the loss term α is the net loss, and given by

α = αint + αmir − �g. (4.32)
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θ2

θ1

n2

n1

Fig. 4.6 Plane interface between medium 1, index n1, and medium 2, index n2, and the incident
and transmitted light directions given by θ1 and θ2 respectively to the normal.

The imaginary part of Equation (4.26) determines the phase requirement:

2k0nL = 2mπ or νm = mc

(2nL)
, (4.33)

where m is the longitudinal mode number, which may take values of 1, 2, 3, . . ., but
cannot be zero, as the solution is then trivial. Note that the mode spacing in frequency
is given by c/(2nL). All longitudinal modes, with the values of m, satisfy this equation
but only some of them are valid for a device. Since the medium gain is band-limited, the
modes within this gain region are all excited at threshold when the gain is just larger than
the losses. With increasing gain, generated by current pumping, the mode competition
results in those close to the gain peak growing at the expense of the other modes.

Optical waveguides in semiconductors lasers
The light in the gain medium discussed above needs to be confined and guided, and this
requires that the medium is in the form of an optical waveguide. An optical waveguide
utilises the concept of total internal reflection that occurs when light emerges from a
higher index medium to a lower index medium. In Figure 4.6, light in the form of an
electromagnetic plane wave in a medium of index n2 is incident on the plane interface
between the media, at an angle θ2 to the normal. The second medium index is given by
n1, with n2 > n1, and the light emerges into the second medium at an angle θ2, obtained
from Snell’s law:

n2 sin θ2 = n1 sin θ1 (4.34)

Since n2 > n1, it follows that θ1 > θ2. At the critical angle of θ2c, the value of θ1

becomes π/2, which implies that the emerging light travels along the interface. For inci-
dent angles greater than θ2c, total internal reflection occurs, and with a second interface
below the first, similar total internal reflection occurs so that the light remains confined
to the high index region as shown in Figure 4.7. A similar confinement may occur in
the plane normal to this to obtain two-dimensional guiding with appropriate layers to
provide for an index guiding structure.

The solution of the wave equation for this three-layer guide used in a laser results
in both even and odd modes. The even mode is sketched in Figure 4.8. Semiconduc-
tor lasers are classified as gain-guided lasers or index-guided lasers. In gain-guided
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n1

n1

n2

Fig. 4.7 Slab waveguide which provides confinement in the transverse plane.

n1

zn2

n1

y

d/2

−d/2

0

Fig. 4.8 Three-layer slab symmetric guide, which is typical for laser structures: the upper layer is p-type,
the guide layer of higher index, is generally undoped, and the lower layer is n-type. The guide
layer thickness is d . The even mode field distribution is sketched .

lasers, the mode confinement in the lateral direction, the horizontal direction, is not
designed into the structure, and the mode is guided by the gain region of the structure.
In index-guided lasers, the waveguide is well defined and the mode is confined in both
the transverse direction, the vertical direction normal to the plane of the wafer and the
lateral direction. A very popular structure among research scientists is the ridge laser,
which is weakly index-guided. In all these lasers, the transverse confinement is obtained
by the design of the heterolayers. Gain-guided, index-guided and weakly index-guided
lasers are shown schematically in Figure 4.9.

Optical waveguides are analysed using Maxwell’s equations, and the solution of the
two-dimensional guide problem may be performed by a variety of methods. The results
of this analysis enables the active region which acts as the guide to be designed. These
guides are generally designed to be single mode in the x − y plane. The width of the
guide is usually designated by w, its thickness by d and the length of the laser is L ,
leading to an active volume of Lwd . The current is assumed to flow in the contact over
the length of laser and the width of w, which results in a current flow area of Lw. The
analysis of the guide is generally performed, assuming that there is no loss or gain, and
these terms are added as perturbations. The analysis determines the propagation con-
stant of the guide β, and also its effective relative permittivity εreff and effective index
neff. The phase and group velocities are different in optical guides, and the correspond-
ing effective indices are also obtained. An important parameter is the confinement factor
�. This defines the fraction of the power contained in the active guide region to the total
power in the particular mode of the guide.
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Fig. 4.9 Schematic diagram of the gain-guided laser, the index-guided laser and the ridge laser which is a
weakly index-guided structure.

The effective index method is discussed next; it leads to approximate analytic expres-
sions for the design of the guide layer. In this method, the guiding in the transverse,
vertical, direction is analysed, and effective indices are calculated for each of the
different transverse regions as they vary in the lateral direction. With the effective
indices known for these transverse regions in the lateral, horizontal, direction, the one-
dimensional guide in the lateral direction may be analysed, to obtain the solution of the
entire guide.

Maxwell’s equations lead to the Helmholtz’s equation, assuming that the cross-
section of the waveguide remains constant in the z direction and the propagation
constant does not vary with z. Thus, the wave equation is of the form:

∇2E + εr(x, y)k2
0E = 0, (4.35)

where εr(x, y) is the structure permittivity which varies with both x and y directions
but does not vary with the z direction. The dielectric constant also varies with pumping,
typically the increase in carriers results in a small decrease in index, and vice versa. The
dielectric constant is complex due to absorption or gain, and these effects are added as
perturbations. Ignoring these effects enables the modes of the guiding structure to be
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obtained, and using the effective index approach allows both index-guided structures
and gain-guided laser structures to be analysed.

In the effective index approach, the assumption is that the solution may be separated
into a y-varying, transverse varying, component in the form of a slab waveguide, and a
similar effective index varying guide in the x direction. Assume that the solution of the
Equation (4.35) obtained by the separation of variables is of the form:

E = aξ(y; x)ψ(x)e−jβz, (4.36)

where β is the propagation constant and a is unit vector in the direction of the E-field,
E , which defines the mode polarisation. Substituting in Helmholtz’s Equation (4.35),

1

ψ

d2ψ

dx2
+ 1

ξ

d2ξ

dy2
+

[
k2

0εr(x, y) − β2
]

= 0, (4.37)

where k0 = ω
√
(ε0μ0), which defines the propagation constant in free space.

The next step is to solve the transverse, y directed, field distribution and with it the
effective propagation constant βeff(x) for a fixed value of x . Using the transverse part
of the Equation (4.37)

d2ξ

dy2
+

[
k2

0εr(x, y) − β2
eff(x)

]
ξ = 0. (4.38)

The lateral, x directed, field distribution and the propagation constant β are then
obtained from the equation:

d2ψ

dx2
+

[
β2

eff − β2
]
ψ = 0. (4.39)

Consider the transverse modes of a typical laser structure, which may have as many as
four or five layers in the slab guide form. However, the principle of the design is obtained
from the three-layer guide shown in Figure 4.8. The solution of Equation (4.38) for the
even TE mode (E is directed along the x , lateral, direction) is of the form:

ξ = Ae cos(κy) for |y| ≤ d/2 (4.40)

= Bee−γ (|y|−d/2) for |y| ≥ d/2, (4.41)

where

κ = k0

(
n2

2 − n2
eff

)0.5
(4.42)

γ = k0

(
n2

eff − n2
1

)0.5
. (4.43)

Note that n1 and n2 are the refractive indices of the cladding and the guide layer
respectively, and n2 > n1 for guiding.

In the TE mode case, the only components of field present are Ex, Hy and Hz. The
boundary conditions require the continuity of ξ and dξ/dy at |y| = d/2, and these cor-
respond to the continuity of the Ex component across the interfaces, and the continuity
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of the Hz component across the interfaces, respectively. This leads to the following two
equations:

Ae cos

(
κd

2

)
= Be (4.44)

and

κAe sin

(
κd

2

)
= γ Be. (4.45)

Dividing the above two equations,

κ tan

(
κd

2

)
= γ. (4.46)

The solution of this equation gives the values of βeff from which the effective index is
obtained through the relationship βeff = k0neff.

For the odd TE modes, it may be shown that the dispersion relationship becomes

− κ cot

(
κd

2

)
= γ. (4.47)

This is obtained by setting the initial solution for ξ in Equation (4.40) as sin(κy) instead
of cos(κy).

For the TM modes, the E vector is along the y direction, normal to the interfaces
in Figure 4.8. In this case, the only components of fields present are Ey, Hx and Ez.
From the Maxwell curl equations, Ez is proportional to dEy/dy. Thus, the boundary
conditions are the continuity of the y component of electric flux across the interfaces
and the continuity of Ez across the interfaces. These lead to the following equations for
the even TM modes:

n2
2 Ae cos

(
κd

2

)
= n2

1 Be (4.48)

and

κAe sin

(
κd

2

)
= γ Be. (4.49)

Dividing the above two equations gives the dispersion relationship:

κn2
1 tan

(
κd

2

)
= n2

2γ. (4.50)

For the odd TM mode, the dispersion relationship is given by

− κn2
1 cot

(
κd

2

)
= n2

1γ. (4.51)

Consider the TE mode solutions, squaring Equations (4.42) and (4.43), and adding
results in

κ2 + γ 2 = k2
0

(
n2

2 − n2
1

)
. (4.52)

This is the equation of a circle in the κ−γ plane, and the intersection of the circle with
the curves defined by the Equations (4.46) and (4.47) provides the modal solutions for
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these equations. Note that multiple solutions are likely to occur as both tan and cot are
periodic functions, and also depending on the parameters of the guide, defined by n1,
n2, d and the wavelength which defines k0.

At the cutoff of the guide which implies that the guide is no longer guiding, then
γ = 0. Note that γ may not become negative, as it would imply exponential growth
in the cladding region which is non-physical, and therefore the smallest value γ takes
zero. When γ = 0, then from Equations (4.46) and (4.47)

κd = pπ, (4.53)

where p is an integer whose even and odd values satisfy Equations (4.46) and (4.47)
respectively, corresponding to the even and odd modes. Now let

D = pπ = κd. (4.54)

Now for γ = 0, Equation (4.52) becomes

D = k0

(
n2

2 − n2
1

)0.5
d, (4.55)

where D is the normalized guide layer thickness. For a single transverse TE mode
guide, this requires D < π . The layer thickness d for a single transverse mode guide is
obtained as follows. Setting k0 = 2π/λ in the above Equations gives

d <
λ

2

(
n2

2 − n2
1

)−0.5
. (4.56)

For GaAs/AlGaAs at 870 nm wavelength, with indices of 3.45 and 3.41, this suggests
the guide thickness of less than 830 nm. The usual thickness is of the order of 0.2–
0.5 μm. If the AlGaAs layer has a higher value of index, closer to that of GaAs, then the
thickness of this layer may be larger. For InGaAsP lasers [2], the layer thickness is also
of the order of 0.2 μm, and in this case the layer thickness needs to be less than 0.48 μm.
According to [2], this relationship holds for lasers in the wavelength range 1.1–1.65 μm.
The confinement factor in the transverse direction �T is a measure of how much of the
mode power lies in the guide active region, and is calculated from the equation:

�T =
∫ d/2
−d/2 ξ

2(y)dy∫ ∞
−∞ ξ2(y)dy

. (4.57)

Performing the integration and simplifying, [2] derives this as

�T ∼= D2

(2 + D2)
. (4.58)

The effective index of the guide in the transverse direction is given as [2]:

n2
eff

∼= n2
1 + �T

(
n2

2 − n2
1

)
. (4.59)

The lateral modes are next evaluated. The loss of laser structures may be as high as
5–10 Np cm−1, and therefore in principle these losses need to be taken into account.
However, when pumped, the gain which is typically of the order of 50 Np cm−1 and
larger, allows the guide to become transparent, which implies that the loss is cancelled
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Fig. 4.10 Three-layer slab symmetric guide in which the slabs are specified by the effective indices neff1
and neff2 vertically, with neff2 > neff1 for the index-guided laser and the weakly guiding ridge
laser.

by the gain. However, if the losses need to be accounted for, this is usually performed by
the perturbation technique. Thus, the lateral modes are calculated in a similar manner
as the transverse modes, assuming the guide is lossless. In this case, the wave equation
to be solved is given by Equation (4.39) and repeated here for convenience:

d2ψ

dx2
+

[
β2

eff(x) − β2
]
ψ = 0. (4.60)

Note that βeff(x) = k0neff(x) which is obtained from Equation (4.59), and thus the prop-
agation constant of the total guide β is obtained. In the case of the index-guided laser in
Figure 4.9, the transverse effective index in the main guide region has the largest effec-
tive index, and the regions outside have lower effective indices. As shown in Figure 4.10,
the symmetric slab guide in the vertical direction with the effective indices calculated
from the transverse slab guide equation. Here, neff2 > neff1 so that the guide acts with
the centre region as the larger index.

In this case, the TE mode from the transverse slab guide becomes a TM mode and the
TM mode becomes a TE mode. Based on the earlier approach, the width of the central
region is set as w, and the normalised width as W . Then, it follows that
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W = k0

(
n2

eff2 − n2
eff1

)0.5
w (4.61)

and

W = qπ. (4.62)

For the lowest order mode

w <
λ

2

(
n2

eff2 − n2
eff1

)−0.5
. (4.63)

In this case, the effective indices take different values, but this provides an indication to
the width of the guide which usually is in the 3 μm region.

The lateral confinement factor �L, following the earlier derivation, is given by

�L = W 2(
2 + W 2

) . (4.64)

The waveguide mode refractive index is now given by

n2
eff

∼= n2
eff1 + �L(n

2
eff2 − n2

eff1). (4.65)

The laser confinement factor � is the product of �T and �L and is given by

� = �T�L. (4.66)

The two most important parameters that are obtained from this analysis are the effec-
tive index of the guide and the confinement factor. From the effective index, the guide
propagation constant may be obtained.

These results are for the index-guided structures, and the same technique may be
used for the weakly guiding ridge structure in Figure 4.9. The analysis of the gain-
guided laser is much more complex, and interested readers are referred to the paper by
Nash [24].

Emission characteristics
The waveguide which guides the light has facet mirrors on both sides of the device.
These may be coated to obtain high reflectivity or to reduce the reflectivity as desired,
but generally these facets are uncoated, in which case the reflectivities are equal.

With current pumping, the light intensity against input current is plotted in the L–I
characteristic as shown schematically in Figure 4.11. Note the different regions of this
curve: the pre-threshold where the laser output is from spontaneous emission, the thresh-
old current at which the device starts to lase, which is the linear region, followed by the
saturation region due to gain saturation. The current into the laser is of the form:

I = wL J, (4.67)

where w is the width of the active region and L is the cavity length. In practice, index-
guided lasers in Figure 4.9 have leakage current through the various reverse-biased
junctions, and should be added to this current expression, but this is ignored in the
present discussion.
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Fig. 4.11 Schematic diagram of the light intensity against current drive, the L–I characteristic.

Assume that the gain is given approximately by the expression

g = a(N − N0), (4.68)

where a is the gain coefficient, equal to (∂g/∂N ), N is the carrier density, and N0 is
the carrier density at which transparency is obtained, when population inversion occurs.
The threshold carrier density is defined when the product of the confinement factor and
the gain is equal to the loss, or

�a(Nth − N0) = αmir + αint, (4.69)

or

Nth = N0 + (αmir + αint)/(a�). (4.70)

The number of carriers pumped into the active region per second is I/q. However,
since the equations are in carrier density, the number of carriers injected per second
per unit volume is I/(qVol) = I/(qwLd) = J/qd. The loss of the carrier density is
through recombination at the rate R(N ), which also includes the stimulated emission
recombination, and this is defined as Rtotal. Thus, the rate equation for the carriers is
given by

d N

dt
= J

qd
− Rtotal = J

qd
− N

τe
− Rstim Nph, (4.71)

where τe is the carrier lifetime and the last term is the stimulated emission recombi-
nation. At and below threshold, this last term may be omitted as the contribution from
stimulated emission is small. At steady state, the time variation is zero, and hence

J = qd Rtotal. (4.72)
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The stimulated emission recombination rate is Rstim Nph, where Nph is the photon
density and Rstim is defined by

Rstim = c

n
g(N ), (4.73)

where g(N ) is the gain defined in Equation (4.68), c/n is the group velocity.
From Equations (4.70) and (4.71), the threshold current density is obtained as

Jth = qd Nth

τe(Nth)
, (4.74)

where, neglecting stimulated emission recombination close to threshold,

1

τe(N )
= (Anr + Br N + C N 2), (4.75)

where Anr is non-radiative recombination coefficient, Br is the radiative recombina-
tion coefficient and C is the Auger non-radiative recombination coefficient, which is
important for long wavelength lasers.

When the laser operates beyond threshold, the carrier density is clamped at the
threshold value, and further injection results in conversion into photons by stimulated
emission. Thus, Equation (4.72) may be written as

J = qd Rtotal = qd
Nth

τe
+ qd Rstim Nph. (4.76)

Substituting from Equation (4.73), and replacing g by αint + αmir at threshold,

J − Jth = qdvg(αint + αmir)Nph. (4.77)

The photon density in the cavity depends on the carriers injected into the cavity and the
quantum efficiency of the material. However, the photons in the cavity travel at the group
velocity of the medium vg, and are either absorbed due to internal losses or escape from
the facets. Thus, the photons have a finite lifetime in the cavity, and the photon lifetime
τp is given by

τp = 1

vg(αmir + αint)
. (4.78)

The Equation (4.77) becomes

J − Jth = qd
Nph

τp
(4.79)

The relationship between the injected carrier density per second and the photon density
in the cavity is now obtained. The carriers recombine at a rate defined by the carrier
lifetime, to produce photons, and this is accounted for by the quantum efficiency of the
material from Equation (4.3), and the photon density also decays at the photon lifetime.
Thus,

ηint
(J − Jth)

qd
= Nph

τp
(4.80)
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or

Nph = ηintτp
(J − Jth)

qd
. (4.81)

This equation shows that the photon density in the cavity increases linearly with current
density above the threshold current density.

The output power per facet is obtained by the product of energy of each photon hν, the
photon loss per facet vgαmir/2, the active laser volume Vol and the photon density Nph:

Pfacet = 1

2
hνvgαmirVolNph, (4.82)

where Vol = Lwd . Substituting for Nph

Pfacet = hν

2q
ηint

αmir

αmir + αint
Lw(J − Jth). (4.83)

Since I = LwJ , this equation becomes

Pfacet = hν

2q
ηint

αmir

αmir + αint
(I − Ith). (4.84)

Note that the threshold current is obtained from Equation (4.74)

Ith = q Lwd Nth

τe
. (4.85)

The total output power Pout = 2Pfacet and the differential (external) quantum efficiency
is given by

ηd =
d

(
Pout

hν

)
d
(I − Ith)

q

= ηint
αmir

αmir + αint
. (4.86)

This is proportional to the slope of the L–I curve. Note that in the laser the ηint needs
to take into account the stimulated emission rate. Then, the total recombination rate
becomes

Rtotal = Anr N + Br N 2 + C N 3 + Rstim Nph. (4.87)

The coefficients have been identified in Equation (4.75) except for Rstim, which is
the stimulated emission rate and given in equation (4.73) Thus, the internal quantum
efficiency now is given by

ηint = Rrad

Rtotal
= Br N 2 + Rstim Nph

Anr N + Br N 2 + C N 3 + Rstim Nph
(4.88)

Above threshold, the Rstim Nph dominates and is much larger than the other terms, which
makes ηint almost unity.

The power efficiency of the laser is given by

ηP = Pout

V I
= hν

qV

αmir

(αmir + αint)

(I − Ith)

I
, (4.89)

where V is the applied bias in volts.
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Fig. 4.12 The L–I curves for a buried heterostructure laser at different temperatures. The inset plots the
threshold current against temperature to obtain T0 ( R. J. Nelson, R. B. Wilson, P. D. Wright,
P. A. Barnes, N. K. Dutta, IEEE Journal of Quantum Electronics, Vol. 17, No. 2, pp. 202–207,
1981. c©1981 IEEE).

The temperature dependence of the threshold current density varies as

Jth = Jth0eT/T0 . (4.90)

A typical example of the variation of the L–I curves for different temperatures is shown
in Figure 4.12 [25], and the inset in this figure is also the plot of threshold current with
temperature to obtain T0.

This figure shows that as the temperature rises, the threshold current increases as the
recombination becomes increasingly non-radiative.

The edge-emitting laser has a large number of longitudinal modes within the gain
region, and at threshold all these are excited. Figure 4.13 shows these modes, and at
threshold only those modes that have enough gain to neutralise the loss finally emerge.
In this figure, two modes are shown to have this property, and in general it is possible
that only one of these modes is likely to be dominant and the other becomes a secondary
mode as the current and hence the gain is increased.

In Figure 4.14, the spectrum of the emission is plotted relative to the current excitation
along the L–I curve, and this is also from [25].

The spectrum narrows from several modes close to threshold to a dominant mode
with a few subsidiary modes at higher drive currents. The ratio of the intensity of the
dominant mode to the next highest mode expressed in dBs is a measure of the mode
suppression ratio (MSR). Since there is no guarantee that the Fabry–Perot laser with
facet mirrors will produce a device with a single dominant mode with a large MSR of
at least 20 dB, other techniques for mode selection, such as gratings in the active region
or outside, may be used.
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Fig. 4.13 The longitudinal modes of the laser within the gain region of the laser, showing the modes that
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Fig. 4.14 The L–I curve of a buried heterostructure laser, together with the mode spectrum at different
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The laser illuminates the facets and these fields determine the near field pattern of
the laser. It is usual to approximate the fields as a Gaussian distribution in the trans-
verse direction, and a similar Gaussian distribution in the lateral direction (see [1]). The
product of these Gaussians give rise to an elliptic distribution of the E-field on the facet.
The far-field beam pattern is obtained using the usual methods by the spatial Fourier
transform of the near field pattern [1].

Calculation of absorption, emission and gain
The calculation of the absorption, emission and gain in a semiconductor is a complex
process, and will not be given here, as the method has been discussed in several text-
books, for example in [8]. Figure 4.15 shows the calculated gain/absorption spectra of
InGaAsP for different levels of carrier injection, with the gain peak shifting as the carrier
density increases [9].

Rate equations
Since lasers have a complex relationship between the injected carriers and the photons
generated, the calculation of the dynamic response is more involved than that in LEDs.
Essentially, the laser operates as an oscillator with a cavity, which is many wavelengths
long, except in specific cases. Therefore, the cavity has many resonances corresponding
to the expressions in Equation (4.33) in which the resonance frequencies are given by
νm = mc/2nL , for different values of m. The corresponding radial frequency for the
mth mode is assumed to be �m = 2πνm, and the corresponding wave number k is
given by

km = n�m

c
= mπ

L
. (4.91)

For the present, the subscript m is omitted for convenience. The laser radial frequency ω

is undetermined, but nearly coincides with the cavity radial frequency �. The effective
permittivity εreff is defined by the effective index of the laser guide, but the perturbation
of gain and loss has to be added. However, the use of the effective permittivity or index
reduces the wave equation to the one-dimensional form.

The injection of carriers into the laser causes a small change in index of the various
layers, and for the active layer this takes the form:

�n = bN , (4.92)

where b is equal to ∂n/∂N , and has a small negative value. Define

βc = −2k0b

a
= −2k0

(
∂n
∂N
∂g
∂N

)
, (4.93)

which results in βc ∝ b, but is dimensionless, and also positive. βc has been described
as the anti-guiding parameter, or the linewidth enhancement factor.

The effective index is now given by

neff = n + ��n. (4.94)
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Fig. 4.15 The absorption/gain spectra for different levels of carrier injection. Reprinted with permission
from N. K. Dutta, Journal of Applied Physics, Vol. 51, pp. 6095–6100, 1980. c©1980, American
Institute of Physics.

This assumes that �n is mainly in the active guide due to carriers, which is strictly not
correct, as the carriers have to be injected from the top and bottom contacts. However,
both the electrons and the holes end up in the active region to recombine and so this is
an acceptable approximation. This assumption also simplifies equations to be derived
below.

Also, the effective permittivity is given by

εreff = (n + ��n)2 − j
nα

k0
≈ n2 + 2�n�n − jnα

k0
. (4.95)

The one-dimensional wave equation applied to a cavity requires a solution in the form
sin kmz, with km defined in Equation (4.91), neglecting the effects of the end mirrors.
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The electric field wave equation for the cavity is

d2E
dz2

− εreff

c2

d2E
dt2

= 0, (4.96)

and the solution is of the form:

E(z, t) =
∑

i

sin(k j z)A(t)e jωt , (4.97)

where A(t) is assumed to be slowly varying in time compared to the light wave fre-
quency. Assuming this is a single longitudinal mode laser, the summation and the
subscripts i and j are dropped. Substituting this in the wave Equation (4.96) and
neglecting the second time derivative of A

− k2A + ω2

c2
εreffA − 2 jω

c2
εreff

dA
dt

= 0. (4.98)

Simplifying with k2 � �2n2/c2:(
ω2

c2
εreff − �2n2

c2

)
A − 2 jω

c2
n2 dA

dt
= 0. (4.99)

However, since the laser frequency ω is very close to the cavity frequency �, then
(ω2 − �2) ≈ 2ω(ω − �). With further simplifications, substituting for εreff from
Equation (4.95), this equation becomes

dA
dt

= − j
n

ng
(ω − �)A − jω

ng

(
��n − j

α

2k0

)
A, (4.100)

where ng is the group index.
Separate this equation into its real and imaginary parts by substituting

A = Ae jφ (4.101)

into (4.100) to obtain for the real and imaginary parts:

d A

dt
= − α

2k0
A = 1

2
vg(�g − αmir − αint)A (4.102)

and
dφ

dt
= −(ω − �) − ω

ng
��n. (4.103)

The rate equations may be written in terms of the photon density Nph and carrier density
N , or in terms of total number of photons and total number of carriers in the laser active
volume, and both these approaches have been used in the literature. In the following
derivations, the total number of photons and carriers in the laser volume are used. The
total number of photons in the cavity is obtained from the equation:

S = ε0n2

hν

∫
Vol E2dV, (4.104)

and since A2 ∝ S, then multiplying Equation (4.102) by A, this equation becomes

d S

dt
= (G − γp)S + Rsp, (4.105)
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where

G = �vgg (4.106)

is the normalised gain, which is the stimulated emission rate. The photon decay rate is
given by

γp = vg(αint + αmir) = 1

τp
. (4.107)

The term Rsp has been added to account for the spontaneous emission in the lasing
process. The spontaneous emission takes place over the whole laser cavity but only a
small fraction βsp couples into the waveguide mode, which is the integral part of the
laser. Rsp may be written as

Rsp = βspηspγe Nt, (4.108)

where

γe = (Anr + Br N + C N 2) = 1

τe
(4.109)

and βsp is the spontaneous emission factor, which is usually a fitting parameter with
values of 10−4–10−5, according to Agrawal [2]. The term ηsp = Br N/γe is the internal
quatum efficiency, and is the fraction of carriers that recombine to emit photons through
spontaneous emission.

Nt is the total number of carriers in the active volume obtained by integrating the
carrier density N over the volume:

Nt =
∫

NdV . (4.110)

The phase Equation (4.103) needs further simplification. From Equations (4.92) and
(4.93)

�n = − βc

2k0
aN ≈ − βc

2k0
�g. (4.111)

The last term in Equation (4.103) becomes

ω

ng
��n = −1

2
βc�vg�g. (4.112)

Now �G = �vg�g, and replacing �G by G − γp, Equation (4.103) becomes

dφ

dt
= −(ω − ωth) + 1

2
βc(G − γp). (4.113)

The first term on the right-hand side in the above equation has been expanded in terms
of the threshold frequency, and at threshold the cavity frequency � is very close to the
threshold frequency.

The carrier rate equation given above in Equation (4.71) is

d N

dt
= J

qd
− N

τe
− Rstim Nph. (4.114)
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The expression for Rstim is given by

Rstim = c

ng
g(N ) = vgg(N ). (4.115)

Equation (4.75) defines the carrier lifetime τe. Since the volumetric values of N and Nph

are used in the photonic rate equations, integrating this equation over the active volume
results in

d Nt

dt
= I

q
− γe Nt − GS, (4.116)

where γe = 1/τe. The confinement factor is introduced in the last term to convert the
expression to G, and the total photon number S is obtained from the integration of the
photon density Nph.

In practice, Fabry–Perot lasers with facet mirrors are longitudinally multimode, and
therefore the rate equations apply to each individual mode, and have to be solved
simultaneously. Thus, the rate equations become

Ṡm = (Gm − γp)Sm + Rsp(ωm) (4.117)

Ṅt = I

q
− γe Nt −

∑
m

GSm. (4.118)

The rate equations developed above allow the calculation of the L−I curve, the longi-
tudinal mode spectrum and the MSR, among other properties of the laser, provided the
parameters are known. The dynamic behaviour which includes the turn-on delay, the
modal behaviour, small- and large-signal modulation may also be calculated from these
equations. The calculation of noise requires the addition of the noise sources to these
equations, and these may also be obtained. In the following section, some aspects of the
calculation methods for the steady-state and dynamic behaviour are discussed.

Steady-state and dynamic characteristics
Under steady-state conditions, for the single longitudinal mode laser in Equation
(4.105), the time variation is zero. This makes this equation:

(G − γp)S + Rsp(ω) = 0, (4.119)

which becomes

S = Rsp

γp − G
, (4.120)

which states that the spontaneous emission photons in the cavity are created by the
injected current. When the net stimulation emission rate G is nearly equal to the photon
decay rate γp, then threshold is reached. The value of G is a little below the decay rate at
threshold, and as the gain increases, G is asymptotic to γp, but the denominator should
always remain positive.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.005


Optoelectronics 249

10
DEVICE CURRENT (mA)

P
O

W
E

R
 (

m
W

)

N
U

M
B

E
R

 O
F 

P
H

O
T

O
N

S
, P

20 300

10–4

10–4

10–5
Ith

1

10

102

103

104

105

10–3

10–3

βsp

10–2

10–1

1

10

Fig. 4.16 Power output against current (G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, Van
Norstrand Rheinhold, 1993. c©Springer). With kind permission of Springer Science and
Business Media.

Substituting in the carrier rate Equation (4.116)

I

q
= γe Nt + Rsp

G

γp − G
. (4.121)

This equation may be used to calculate the light intensity output against current, the L–I
curve. Lee [19] has discussed the method of solution, as this is a non-linear equation.
Figure 4.16 shows the results of the calculation of output power against current from
[2] for the particular laser that has been modelled.

The time evolution of the build up in the carrier levels and the photon levels are
shown in Figure 4.17 from Marcuse’s paper [21] for a multimode laser when the cur-
rent has been increased as a step function from 0 to 1.5 Ith. The rate equations are
solved by numerical calculations outlined in [21], and the results are shown in the
Figure 4.17.

The time delay of the build up to stimulated emission is typically of the order of 3 ns,
and this is the reason why lasers are biased just below threshold current when they are
pulsed on and off. The output power at this bias level is extremely low and so for most
purposes may be regarded as negligible. Note the oscillations in the light power output
at the relaxation oscillation frequency of the laser. This relaxation oscillation frequency
fr determines the maximum small-signal response of the laser, and this may be derived
from the above rate equations. Also it may be shown that the relative intensity noise
of the laser also peaks at the relaxation oscillation frequency, and thus modulation at
or near this frequency needs to be avoided to improve the signal-to-noise ratio of the
detected signal.
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Fig. 4.17 Transient response for a laser in which the current is increased as a step function from 0 to
1.5 Ith, showing the carrier density and power in the fundamental mode and other modes
(D. Marcuse, T. P. Lee, IEEE Journal of Quantum Electronics Vol. QE-19, No. 9,
pp. 1397–1406, 1983. c©1983 IEEE).

This figure shows that the oscillations are damped and in the form of e−(�r±j�r)t ,
where �r is the decay rate and �r is the frequency of oscillation, which is the radial
relaxation oscillation frequency in radians s−1.

To calculate the relaxation oscillation frequency, the rate Equations (4.105) and
(4.116), repeated here for convenience, are used.

Ṡ = (G − γp)S + Rsp (4.122)

Ṅt = I

q
− γe Nt − GS. (4.123)

Consider perturbations to S and Nt given by δS and δNt. Additionally,

G(Nt, S) ∼= G + G NtδNt + GSδS, (4.124)

where G Nt = ∂G/∂Nt and GS = ∂G/∂S. Substituting in the rate equations, separating
the perturbed terms, results in

δ Ṡ = −�SδS +
(

G Nt S + ∂Rsp

∂Nt

)
δNt (4.125)

δ Ṅt = �NtδNt − (G + GSS)δS, (4.126)

where

�S = Rsp

S
− GSS, (4.127)
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and

�Nt = γe + Nt

(
∂γe

∂Nt

)
+ G Nt S. (4.128)

To solve these equations, the assumption is that these perturbations decay at the rate
shown in the time evolution result in Figure 4.16.

Thus, let

δS = δS0e−ht (4.129)

δNt = δNt0e−ht, (4.130)

where δS0 and δNt0 are the initial values of the perturbations, and

h = �r ± j�r. (4.131)

The real part is the decay rate

�r = 1

2
(�Nt + �S), (4.132)

and the radial relaxation oscillation frequency, after some approximations, is given by

�r ≈ (GG Nt S)
1/2. (4.133)

With further substitutions for

S = (I − Ith)

(qG)
(4.134)

Ith = qγe Nt−th (4.135)

G Nt = �vga

Vol
, (4.136)

the expression for the relaxation frequency becomes

�r =
[

1 + �vgaN0τp

τpτe

(
I

Ith
− 1

)]1/2

. (4.137)

where N0 is the transparency carrier density. Derivation of the small-signal response
shows that �r is the key parameter for high-speed lasers; the larger this is, the higher
the laser response frequency. The term �vgaN0τp evaluates to a number close to unity,
and therefore may not be neglected. However, making τp smaller increases the value of
�r. This reduction in τp may be obtained by decreasing the facet mirror reflectivities
by coatings, or alternatively by making the laser guide more lossy. The parameter τe

which is the carrier recombination rate is initially determined by the material. After
threshold this recombination rate becomes shorter, and little can be done to reduce it
further. Reducing Ith and increasing the ratio I/Ith also increases the magnitude of �r.

The small-signal modulation response calculation uses the rate equations, but in this
case the phase Equation (4.103) is also featured. The derivation assumes that the laser
is biased above threshold at some current Ib, and the small-signal current modulation
term, modulation at ωm, is given by Im sin(ωmt). The expression for the total current is
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I (t) = Ib + Im sin(ωmt), (4.138)

with the assumption that Im � (Ib − Ith), which implies small-signal modulation.
The total cavity photons may be written as

S(t) = Sb + Sm sin(ωmt + θm), (4.139)

where Sb is the cavity photons at the bias current of Ib and the second term is the
sinusoidal time varying component, with a phase term which usually lags the current
component. The carriers in the cavity have a similar expression given by

Nt(t) = Nt−b + Nt−m sin(ωmt + ξm), (4.140)

with the phase delay ξm, which differs from the photon number delay.
Substituting in the rate equations, the solutions for the various small-signal terms

may be obtained. The small-signal photons in the cavity, which is also a measure of the
output power, may be shown to be

Sm = GNt SIm/q

[(ω2
m − �2

r − �2
r )

2 + 4ω2
m�2

r ]0.5
, (4.141)

and the phase lag term for the photons is given by

θm = tan−1
(

2�rωm

ω2
m − �2

r − �2
r

)
. (4.142)

The modulated cavity photons or equivalently the modulated output light power is
almost constant when ωm � �r, then peaks to a maximum near �r, and falls off for
ωm > �r. Note that the laser is a forward-biased p–i–n diode, and therefore additional
series resistance due to contact resistance and parasitic inductance and capacitance from
the bond wire and pads results in further degradation of the response. This is shown
[33] in Figure 4.18. It may be shown that the 3 dB bandwidth is given by [1], assuming
�r � �r:

f3dB =
√

3�r

2π
. (4.143)

When the laser current is modulated, the increase and decrease in the current result in
the laser effective index varying inversely as the current according to Equation (4.92).
Thus, the longitudinal mode cavity changes its electrical length since the index changes
with current injection. As the modulation takes place the frequency of emission of
the laser keeps changing in synchronism with this modulation. Using the phase rate
equation, it may be shown that the change in frequency results in a frequency chirp
given by [1]:

δν(t) = 1

2π

dφ

dt
= βc

4π

[
G Nt(Nt − Nt−0) − 1

τp

]
, (4.144)

where βc is the linewidth broadening factor of Equation (4.93) and

Nt−0 =
∫

N0dV . (4.145)
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Fig. 4.18 Modulation response for different current drives, showing the effect of parasitics, from [33] with
permission (R. S. Tucker and I. P. Kaminow, Journal of Lightwave Technology, Vol. 2, No. 4,
pp. 385–393, 1984. c©1984 IEEE, OSA).

This linewidth broadening that occurs with chirp is unacceptable for long haul fibre
optic systems, and therefore an external modulator is used with dc current into the laser.

The process of obtaining a single longitudinal mode requires a grating in the wave-
guide either in the whole of the gain section which makes it the distributed feedback
(DFB) laser or at the ends as the grating acts as a frequency selective reflector which
makes it a distributed Bragg reflector (DBR) laser. This does ensure that a single
emission line emerges from the laser, and feeds into an external modulator.

Laser noise
The semiconductor laser has noise associated with the emission, and the primary source
of noise is the spontaneous emission, followed by the carrier recombination noise,
which is essentially shot noise. Since this is in a cavity, the oscillations are affected
by an amplitude or intensity noise component called the Relative intensity noise (RIN),
and a phase noise component which affects the linewidth of the emission. The method
of analysis is to include the noise terms in the rate equations, and traditionally these are
the Langevin noise components, which added to the rate equations. These noise terms
are assumed to be Gaussian, with a zero mean, and the correlations are assumed to be
Markovian, which simplifies the equations. Thus, the rate equations become

d S

dt
= (G − γp)S + Rspon + FS(t) (4.146)

d Nt

dt
= I

q
− γe Nt − GS + FNt(t) (4.147)

dφ

dt
= −(ω − ωth) + 1

2
βc(G − γp) + Fφ(t), (4.148)
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where FS(t), FNt and Fφ(t) are the Langevin noise components. The mean of each of
these components is zero, but their auto- and cross-correlation terms result in so-called
diffusion components which have specific values. Thus,

< Fi(t) > = 0 (4.149)

< Fi(t), Fj(t
′) > = 2Dijδ(t − t ′) (4.150)

where i, j, k are S, Nt, φ, and it may be shown [2] that the dominant contributions
are from the auto-correlation terms DSS = RspS and Dφφ = Rsp/4S. The method of
solution is by perturbations of all three variables; these lead to equations which give
rise to the auto-correlation factors for the perturbations, and consequently noise spec-
tral density is obtained through the Fourier transform. Thus, the spectral density of the
photon number or the light intensity leads to the relative intensity noise. The intensity
auto-correlation is given by ASS, and thus

ASS(τ )=<δS(t)δS(t + τ) > S̄ 2, (4.151)

where S̄ is the time average photon intensity and δS = S− S̄, represents the fluctuations,
and hence the noise. Fourier transform of ASS gives the RIN

RIN =
∫ ∞

−∞
ASS(τ )e

jω tdt, (4.152)

and it may be shown that [2]

RIN = 2Rsp[(�2
Nt

+ ω2) + G Nt S
2(1 + γe Nt/RspS) − 2�Nt GNt S]

S
[
(�r − ω)2 + �2

r

] [
(�r + ω)2 + �2

r

] . (4.153)

From this expression, the RIN may be plotted as a function of frequency as shown in
Figure 4.19 [2]. The RIN peaks at the relaxation oscillation frequency, and therefore it
follows that direct modulation of lasers should not be performed close to fr.

It may also be shown that the signal-to-noise ratio is given by

SNR =
(

2�rS

Rsp

)0.5

. (4.154)

Using the phase rate equation with the Langevin noise terms (Equation (4.148)), it may
be shown [2] that the frequency noise spectral density is given by the expression in the
following equation. The frequency noise is the phase noise integrated over time:

Aff ∼= Rsp

2S

(
1 + β2

c�
4
r[

(�2
r − ω2)2 + (2ω�r)2

])
. (4.155)

The above expression shows that the term is flat in the region ω � �r, and similar to
the RIN, it peaks at the relaxation oscillation frequency �r, and then falls off rapidly.

The linewidth fluctuation is obtained by considering the electric field fluctuations, and
including both the amplitude and phase fluctuations. After considerable simplifications,
the FWHM �ω = 2π� f of the line, assumed to be a Lorentzian, is given by [2]

� f = Rsp(1 + β2
c )

4πS
. (4.156)
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Fig. 4.19 Calculated RIN for a typical 1.3 μm InGaAsP laser at different output power levels
(G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, Van Norstrand Rheinhold, 1993.
c©Springer). With kind permission of Springer Science and Business Media.

This may be written as

� f = (1 + β2
c )� f0, (4.157)

where

� f0 = Rsp

4πS
, (4.158)

which is the unperturbed linewidth of the laser.

Quantum well and quantum dot lasers
The gain medium considered so far has been assumed to be bulk material, where gain
is in the region of 100 cm−1. The use of quantum wells or quantum dots as the gain
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Fig. 4.20 A single quantum well, showing the lowest energy levels in the conduction and valence bands.

medium results in considerable reduction in the number of carriers injected to obtain
population inversion and thus the threshold current.

In traditional double heterostructure lasers, the active region is between higher
bandgap materials, and the holes and electrons recombine in this region to emit light.
To obtain stimulated emission, the energy difference between quasi-Fermi levels for the
holes and electrons in this active region needs to be greater than the band gap of the
active region. Then population inversion takes place and the light output is dominated
by stimulated emission. When the active region becomes very narrow, comparable to
the de Broglie wavelength in the material, quantum confinement occurs, and this region
becomes a quantum well.

In a quantum well the energy level in the direction across the well, the x direction
in Figure 4.20, is quantised, and is a continuum in the other directions, y and z direc-
tions. The depth of the well in the conduction band is �Ec and in the valence band is
�Ev, and the emission energy for the recombination from E1c to E1v is greater than
(Eg). These levels are calculated by solving the time-independent Schrödinger equation
of the well with finite barriers for the conduction band electrons, and for the valence
band heavy holes and light holes. The bulk material degeneracy of the heavy hole and
light hole bands is removed in the quantum well with the heavy hole band being upper-
most, followed by the light hole band, and at a lower level, the split-off band as shown
schematically in Figure 4.21. The effective masses of the heavy and light holes are dif-
ferent and therefore the levels are also different. The normal wavelength of the lasing
level is from E1c to E1hh which is a TM mode wave.

The density of states per unit volume for the quantum well is given by

ρqw−ci = πmci

h2Lqw
, (4.159)
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Fig. 4.21 Schematic band diagram of a bulk semiconductor and a quantum well.

where mci is the effective mass of the electrons in i th sub-band of the quantum well
and Lqw is the width of the quantum well. The density of states for the valence band is
identical except that the appropriate effective masses are used.

The density of states for the conduction band of bulk material, assuming parabolic
bands, is of the form:

ρc(E) = 4π

(
2mc

h2

)3/2

E1/2. (4.160)

Comparing the two, it is apparent that the density of states for the quantum well is
independent of energy. Furthermore, it may be shown that the density of states for
the quantum well is much smaller than that of the bulk material. Thus, the current
density for threshold is generally much smaller than that for bulk material. The cur-
rent state of the art structures have current densities of the order of 100 A ·cm−2 per
quantum well, in contrast to bulk structures which have threshold current densities
of almost ten times this figure. The maximum gain of quantum wells is estimated at
between 1000 cm−1 and almost 10 000 cm−1. However, the confinement factor of a sin-
gle quantum well is of the order of 0.01–0.02, which makes the net gain of the order
of 100 cm−1. In contrast, bulk structures have gains of the order of 100 cm−1, and con-
finement factors of about 0.20–0.40. In multiple quantum well structures, the spacing
between the wells is chosen to be sufficiently large so that the wells are not coupled.
Typical well widths are about 10 nm, and the barriers between them are also of similar
widths.

Quantum well lasers come in different forms, from the single quantum well laser to
the multi-quantum well laser, and these may be incorporated in the waveguides for lasers
discussed earlier. Figure 4.22 sketches some of these structures from the graded index
single quantum well laser to the separate confinement single and multiple quantum well
lasers.
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Fig. 4.22 Schematic band diagrams of the graded index single quantum well laser structure, and separate
confinement single and multiple quantum well laser structures.

Strained quantum well lasers have the quantum wells with compressive or tensile
strain, and sometimes the barriers between wells are also strained. The compressive
strain increases the band gap, and also the separation between the heavy hole and light
hole bands, and the emission is in TM mode. With tensile strain the band gap is reduced,
and the gap between the light hole and heavy hole bands is reduced, and may even push
the light hole band above the heavy hole band. With the light hole band above the heavy
hole band, the lasers emit in the TE mode. Strained quantum well lasers have lower
threshold current densities and are sometimes preferred over unstrained well structures.

Quantum well lasers show better performance compared to the bulk lasers with
reduced threshold current densities, better linewidths and better chirp performance.
With the distributed Bragg grating to obtain single longitudinal mode with further
modifications, these have become the lasers of choice for fibre optical systems.

Quantum dot lasers are a class of lasers that use confinement to improve on the
performance of the quantum well lasers. In these devices, the gain is through current
injection into quantum dots. A quantum dot is a three-dimensional structure in which
every dimension is less than the de Broglie wavelength in the material, and quantum
confinement occurs. The density of states in this case is a delta function, and in prin-
ciple the number of carriers to be injected is very small. Quantum dots are created by
the Stranski–Krastinov growth technique [5], with further modifications, by allowing a
strained layer to relax, and this results in self-organised dots. These dots need to have
wetting layers to make contacts, and since single layer of dots does not provide sufficient
gain this composite of dot layers and wetting layers need to be repeated many times.
Lasers made of these active layers show reduced threshold current densities, linewidth
reduction, and reduced chirp [11] compared to quantum well lasers. The major problem
with these lasers is that the dots vary in size and so the distribution affects the linewidth.

Vertical cavity surface emitting lasers (VCSELs) are another class of lasers that use
quantum wells for the gain medium. In this case, the cavity is usually one wavelength
long, and the quantum well is placed in the middle so as to provide maximum gain to
the standing wave within the cavity. Since the gain is so small, the mirror reflectivities
need to be extremely high, as close to unity as possible. This is obtained by a multi-layer
dielectric stack mirror with reflectivities of 0.997 for the top output mirror and 0.999 for
the lower mirror. A schematic diagram of a VCSEL is shown in Figure 4.23. Currently,
VCSELs have been built in the visible, at 840 nm, 980 nm, and also at the longer wave-
lengths of 1300 nm and 1550 nm. These devices may be built with sub-milliampere
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Fig. 4.23 Schematic diagram of a single quantum well vertical cavity laser.

threshold current. These lasers are also one of the most efficient devices with very high
wall plug efficiencies. The 840 nm VCSELs are used in data-communication applica-
tions where data is transferred between computers, processors and storage media. The
linewidth of these lasers is generally high, of the order of 0.1 nm, and direct modulation
of these results in linewidth broadening. These lasers find application in coarse wave-
length division multiplexed systems, where channel spacing may be as high as 40 nm,
and in the 10 GHz Ethernet applications.

High-speed lasers
High-speed lasers need to have high relaxation frequencies, �r or fr. The expressions
for �r are repeated here:

�r ∼= (GGNt S)
1/2. (4.161)

With the substitution for S,

S = (I − Ith)

(qG)
(4.162)

results in

�r =
[

GNt(I − Ith)

q

]0.5

. (4.163)

Also note that

Ith = qγe Nt−th (4.164)

GNt = �vga/Vol, (4.165)
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Fig. 4.24 Plot of relaxation oscillation frequency against square root of normalised current. Reprinted with
permission from D. Tauber, G. Wang, R. S. Geels, J. E. Bowers, L. A. Coldren, Applied Physics
Letters, Vol. 62, No. 4, 1993. Copyright 1993, American Institute of Physics.

the expression for the relaxation frequency becomes

�r =
[

1 + �vg N0τp

τpτe

(
I

Ith
− 1

)]1/2

. (4.166)

Equation (4.161) suggests that high values of G Nt are required, which is essentially
that ∂g/∂N is high per unit volume, and S needs to be high, which implies that the
photon density Nph should be high in the cavity. From Equation (4.163), it follows that
Ith should be as low as possible. The small-signal derivation in Equation (4.145) shows
again that f3dB is determined by �r. Thus, this equation may be written as

f3dB ≈
√

3�r

2π
. (4.167)

Ideally, the quantum dot lasers should have the highest relaxation oscillation frequency.
However, the problem of the parasitics of the wetting layer and other issues [11] result
in these lasers not being as fast as the quantum well tunneling injection lasers discussed
below.

Of the lasers discussed above, the lowest threshold current device is the VCSEL, and
early measurements have shown that the relaxation oscillation frequency measured by
streak camera [31] was 84 GHz shown in Figure 4.24. However, the problem is that the
parasitics of the device in its present form, with the current passing through the entire
top and bottom mirrors, are large. Thus, the device parasitics should be made as low
as possible, as well as the packaging parasitics, as otherwise the modulation signal will
be attenuated severely at high frequencies. A high-speed VCSEL operating at 35 GHz
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Fig. 4.25 Plot of the band diagram of the conduction band of the tunnelling injection laser (X. Zhang,
A. L. Gutierrez-Aitkens, D. Klotzkin, P. Bhattacharya, C. Caneau, R. Bhatt, Electronics Letters,
Vol. 32, No. 18, pp. 1715–1717, 1996. c©1996 IEEE).

[6] has the laser drive and modulation current pass through the top mirror but only
through a small number of layers of the lower mirror to achieve this result.

The approach by Bhattacharya’s group [35] has resulted in tunneling injection quan-
tum well lasers that have the potential for very high modulation rates. The claim is
that when the electrons travel from the cladding and fall into the separate confinement
region, they gain energy and become hot. The electrons diffuse across the separate con-
finement region (SC), and when they fall into the quantum wells, they become even
more hot. The holes having a large mass are not as mobile, and therefore are largely
unaffected by these changes in potential. The approach is to have a reservoir of elec-
trons in the SC region, and these tunnel out into the SC region, and also into the quantum
wells with only small gains in energy, to allow high modulation rates. The theory dis-
cussed above for �r does not account for the temperature of the carriers in determining
its value. A more elaborate theory would do this, but only qualitative explanations are
therefore available.

Figure 4.25 shows the conduction band diagram of the device. Careful design of the
reservoir, its width and its level with respect to the SC region and the quantum wells are
necessary. Again the device parasitics need to be low. The results are indeed impressive,
3 dB bandwidths of 100 GHz, and these are probably the fastest lasers built to date. Note
that the structure used in high-speed quantum dot lasers has also used the tunnelling
structure, but these are not as fast as the quantum lasers discussed above.

4.3 Photodetectors

Photodetectors are devices used to convert light signals into electrical versions. The per-
formance of the different types of detectors is determined by their quantum efficiency,
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their frequency response and responsivity. In this chapter only solid state detectors are
considered, and the slower detectors are only briefly discussed. The photomultiplier,
which is widely used as a sensitive and fast (of the order of 100 MHz) detector, will
not be discussed here. Solid state detectors considered here are the extrinsic kind, in
which the photon energy is close to the band gap of the semiconductor material used
for the detector. Intrinsic photodetectors are used for detection of light with energies
below the band gap, and depend on deep level traps, or with different energy levels
in a quantum well, but these are not discussed here. In this chapter, the detectors con-
sidered are photoconductors, and the junction devices which include the p–i–n diode,
the metal–semiconductor–metal (MSM) photodetector and the avalanche photodetec-
tor (APD). The photoconductor is a slow device and also noisy, but its simplicity is an
attractive feature.

4.3.1 Preliminaries

Consider a semiconductor photodetector which absorbs photons with energies at or
above Eg, the bandgap energy of the semiconductor. Suppose the incident optical power
is given by Pin, and it is assumed that all the incident photons enter the semiconductor.
Suppose the photocurrent generated as a result of this incident optical power is given by
Ip, then the relationship between Pin and Ip is

Ip = R Pin, (4.168)

where R is the responsivity of the photodetector in units of AW−1.
The quantum efficiency of the detector η may be defined as ratio of the number of

hole–electron pairs generated to the number of incident photons, and is given by

η =
Ip

q
Pin

hν

= hν

q
R. (4.169)

Thus, R may be written as

R = qη

hν
= ηλq

hc
. (4.170)

Suppose the thickness of the semiconductor is w, and the absorption coefficient is α

Np m−1, then the transmitted optical power escaping from the semiconductor is given by

Ptr = Pine−αw. (4.171)

Thus, the absorbed power is given by

Pabs = Pin − Ptr = Pin(1 − e−αw). (4.172)

Since every absorbed photon creates one hole–electron pair, the quantum efficiency is
given by

η = Pabs

Pin
= (1 − e−αw), (4.173)

which assumes that all the incident photons enter the semiconductor with no reflection.
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4.3.2 Photoconductor detectors

The photoconductor detector depends on the increase in conductivity of a semiconduc-
tor when illuminated with photons of energy above the band gap. The absorbed light
creates hole–electron pairs, which increases the conductivity, and with an applied bias,
the excess carriers drift to the appropriate electrodes, and constitute an increase in cur-
rent. Holes and electrons created by the light may be swept out before they recombine
by the applied bias field. Alternatively, they recombine as they drift towards the appro-
priate electrode. The electrons are swept out faster than the holes, and to maintain charge
neutrality, more electrons are injected, and this constitutes gain.

A typical photoconductor detector takes the form of a slab of material of thickness a,
width b and length L , with ohmic contacts at the sides as shown in Figure 4.26.

The dark current flowing in the slab is given by

I = qab(nμn + pμp)
V

L
, (4.174)

where n and p are the free electron and hole number densities, μn and μp are the mobil-
ities of the electrons and holes respectively, and V is the applied voltage across the slab.
When illuminated, the conductivity increases due to the electron–hole pairs created by
the photons. Thus, the current when the slab is illuminated is given by

(I + �I ) = qba[(n + �n)μn + (p + �p)μp] V

L
, (4.175)

where I is the dark current, assumed to be small. The increase in current due to the
illumination is

�I = qab(�nμn + �pμp)
V

L
. (4.176)

Suppose the minority carriers are electrons, then the rate equation for the electrons takes
the form:

d�n

dt
= ηP

hνabL
− �n

τ
, (4.177)

where η is the quantum efficiency, which determines the number of hole–electrons gen-
erated per photon, usually taken to be unity, and P is the optical power absorbed. Note
that an equal number of holes as electrons are generated, but remain as the majority
carrier. Under steady state, the time variation is set to zero, and then

V

i

Photons

a

b

Fig. 4.26 Schematic diagram of a photoconductor slab: length between contacts L , width b and
thickness a.
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�n = ηPτ

hνabL
. (4.178)

This assumes that the photon-generated hole-electron pairs are in the volume of the slab,
and the volume is abL . The electron current due to these excess electrons is given by

�In = q�nμnba
V

L
= qηPG

hν
, (4.179)

where G is the gain of the device. Substituting for �n from Equation (4.178), G is
defined as

G = μnτV

L2
= τ

ttr,n
, (4.180)

where the electron transit time ttr,n is given by

ttr,n = L

vn
= L

μnE = L2

μnV
. (4.181)

In addition to the electrons, adding the motion of the holes results in this equation
becoming

G = (μn + μp)τV

L2
= μn + μp

μn

τ

ttr,n
. (4.182)

Note that since μh � μn, the expression for gain is that given in Equation (4.180).
Making L as small as possible increases the gain and also reduces the response time.

If the carriers are swept out before they recombine, then the electrons reach the ohmic
contact before the holes. To maintain charge neutrality, extra electrons are injected into
the photoconductor. If sweep out of the carriers occurs, then the lifetime is the transit
time of the carriers and is given by

ttr,n,p = L

μn,p
( V

L

) = L2

μn,pV
. (4.183)

Since the mobility of holes is lower than that of electrons, the transit time of electrons
is smaller. If μp � μn, then the gain term is dominated by the electron mobility term
and in turn the transit time

G = τ

ttr,n
. (4.184)

Thus, the photon-induced current from Equation (4.179) becomes

Iph = �In = τ

ttr,n

qηP

hν
. (4.185)

In Equation (4.177), the time variation of �n may be as ejωt, and in the small-signal case
the response time varies inversely as (1 + jωτ), which defines the bandwidth. Thus, if
the optical power is given by

P(ω) = Popt + P1ejωt, (4.186)

then the ac current term is

�Iac = qηP1

hν

τ

ttr,n

1

1 + jωτ
. (4.187)
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The rms current magnitude is given by

�Iac,rms = qηP1√
2hν

τ

ttr,n

1

(1 + ω2τ 2)1/2
. (4.188)

Noise in these detectors is from several sources and these are thermal or Johnson noise,
generation-recombination noise, and at low frequencies, the 1/ f flicker noise. If the
resistance of the device is Rcond, then the thermal noise current is given by〈

|ıth|2
〉
= 4kBT� f

Rcond
, (4.189)

where � f is the bandwidth. The generation-recombination noise term is given by〈
|ıGR|2

〉
= 4qG Io� f

1 + ω2τ 2
. (4.190)

where Io = qηPoptG/ωτ . Neglecting the contribution of 1/f noise at low frequencies,
the signal-to-noise ratio is given by

S

N
= �I 2

ac,rms〈|ıth|2
〉 + 〈|ıGR|2 〉 (4.191)

= ηP2
1

8hνPopt� f

[
1 + kBT

Gq
(1 + ω2τ 2)

1

Rcond Io

]−1

. (4.192)

The noise equivalent power (NEP) is defined as the incident rms optical power required
to produce a signal-to-noise ratio of unity in a bandwidth of 1 Hz, [3], and the detectivity
of a detector is the inverse of NEP or D = (NEP)−1. The normalised detectivity D∗ is
defined as

D∗ = A1/2(� f )1/2

N E P

(
cm.Hz1/2 W−1

)
, (4.193)

where A is the area of the photoconductor on which light is incident. The bandwidth
is usually set to 1 Hz, and the reference area is set to 1 cm2. Note that D∗ is usually
expressed as D∗(λ, f, 1), where λ is the wavelength of light, f is its frequency of
modulation, and 1 is the bandwidth in Hz and may be obtained from Equation (4.192).

The structure of these devices may take various forms, including the interdigitated
surface contact structure shown in Figure 4.27.

4.3.3 P–I–N diodes

Detection of photons with energies at or above the band gap of a semiconductor requires
that they are absorbed and create hole–electron pairs, and a current be induced due to
this absorption. The depletion layer of a reverse-biased p–n junction of the semicon-
ductor causes the holes and electrons to separate and be collected by the appropriate
contact/collection region. The photons entering this device, schematically shown in
Figure 4.28, create hole–electron pairs as the light is absorbed, from the top contact
region, through the depletion layer on both sides of the junction and possibly beyond, to
the lower contact region. The fields in the depletion layer are high enough to separate the
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Fig. 4.27 Schematic diagram of a photoconductor detector with interdigitated fingers.
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Fig. 4.28 Schematic diagram of a p–n junction photodiode.

holes and electrons, and send them to the respective majority carrier region, holes to the
p region and electrons to the n region, because of the reverse bias. Holes and electrons
generated in the p and n contact regions need to be considered differently. The minority
carriers, electrons in the p region and holes in the n region, about one diffusion length
from the depletion layer, diffuse towards the depletion layer and are accelerated to the
appropriate majority carrier region. This diffusion is a slow process, which degrades the
response of the diode detector.

The alternative to the simple p–n junction detector is to use a p–i–n structure, the ‘i’
region is either an ‘i’ layer or a p− or n− layer. In this device, the depletion layer extends
through the whole of the ‘i’ region with no bias or with a negative bias. The usual top
p+ layer is made thin to ensure that absorption in the top contact layer is negligibly
small. Most of the absorption is in the ‘i’ or n− layer, with some in the lower n+ layer,
as shown in Figures 4.29 and 4.30.

Suppose the photon flux per unit area is given by φ0, and the absorption coefficient is
given by α, then the hole–electron generation rate is given by

Gen(z) = φ0αe−αz, (4.194)
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Fig. 4.29 Schematic diagram of a p–n junction photodiode in mesa form, with a ring top contact.
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Fig. 4.30 Schematic diagram of a p–i–n junction photodiode.

and the photon flux density φ0 is given by

φ0 = Pinc(1 − R)

Ahν
(4.195)

where the incident optical power is given by Pinc, R is the reflectivity of the surface
and A is the device area. Note that the extra α introduced in the generation term is to
normalise the current density. The drift current density is given by

Jdrift = −q
∫ w

0
Gen(z)dz = qφ0(1 − e−αw). (4.196)

The tail end of the optical power also enters the lower n+ region, and generates hole–
electron pairs. In this region, the hole, minority carrier, motion is determined by the
diffusion equation

Dp
∂2 pn

∂z2
− pn − pn0

τp
− Gen(z) = 0, (4.197)

where Dp is the diffusion coefficient for holes, τp is the lifetime for holes beyond
pn0, the equilibrium hole density for the n+ doped layer. The boundary conditions are
pn = pn0 for z = ∞ and pn = 0 for z = w; the former has some validity since the
structure is generally grown on an n+ substrate. The latter boundary condition has the
excess hole density to be zero since those generated at the boundary are acted upon by
the depletion layer and accelerated away. The solution is given by
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pn = pn0 − (pn0 + Ce−αw)e(w−z)/Lp + Ce−αz, (4.198)

where Lp = √
Dpτp and

C = φ0αL2
p

Dp

(
1 − α2L2

p

) . (4.199)

The diffusion current density is

Jdiff = −q Dp

(
∂pn

∂z

)
(4.200)

= qφ0
αLp

1 + αLp
e−αw + qpn0

Dp

Lp
, (4.201)

and the total current density is the sum of the drift current density and the diffusion
current density, and is given by

Jtot = qφ0

(
1 − e−αw

1 + αLp

)
+ qpn0

Dp

Lp
. (4.202)

The value of pn0 is small in the n+ region, and therefore under illumination, this last
term is small and is usually omitted, and the current is proportional to the photon flux.

The quantum efficiency may be obtained from these expressions:

ηext = Jtot A/q

Popt/hν
= (1 − Rr)

(
1 − e−αw

1 + αLp

)
, (4.203)

where Popt is the optical power absorbed and Rr is the reflectivity. To make the quantum
efficiency high, the diode reflectivity needs to be made small using an anti-reflection
coating, so that Rr ≈ 0. Also αw� 1 makes ηext closer to unity but at the expense of
transit time delay, and hence the frequency response becomes small.

The frequency response of the photodiode is governed by several factors, and these
are discussed below. The diffusion of the minority carriers generated outside the deple-
tion region and their transit to the appropriate electrode region are major limitations
to the response time of the diode. However, careful design may minimise this effect,
including the use of heterostructures so that the p+ and the n+ regions are in higher
bandgap material, which prevents the generation of hole–electron pairs in these contact
regions. The RC time constant of the diode, where C is its capacitance and R is shunt
resistance added to extract the signal, determines the circuit response, and is minimised
by suitable choice of R, and the area of the diode. The carrier transit time across the
depletion region is also a major factor, and this is analysed below.

Suppose the incident optical flux is modulated to have a time varying component of
the form φ1e jωmt . At any point z in the depletion layer, the carriers generated have to
drift to the appropriate electrode region at the saturation velocity vs. Thus, the conduc-
tion current density due to the carriers generated at z has a phase delay of e−jωsz/vs and
is given by

Jcond(z) = qφ1ejωmte−jωmz/vs . (4.204)
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Fig. 4.31 Plot of the transit time factor in Equation (4.206) against the product of the transit time and the
modulation frequency (A. Yariv, Optical Electronics in Modern Communications, Fifth Edition,
Oxford University Press 1997. Figure 4.11– 4.17. By permission of Oxford University
Press, Inc.).

Considering the carriers generated over the entire depletion layer, neglecting the
absorption coefficient, the total conduction current density is given by

Jcond = 1

w

∫ w

0
qφ1ejωmte−jωz/vsdz (4.205)

= qφ1

(
1 − e−jωmttr

jωttr

)
ejωmt, (4.206)

where ttr is the transit time equal to w/vs. In addition to the conduction current density,
the displacement current density is given by

Jdisp = jωmεE = jωmεV

w
. (4.207)

The total current density is the sum of these two terms. The conduction current density
is reduced by the transit time factor as shown in Equation (4.206). Figure 4.31 shows a
plot of this factor (1 − e−jωmttr)/(ωmttr) against ωmttr. Note that when the denominator
becomes 2π , this factor goes to zero.

The expression for the transit time effect in Equation (4.206) becomes 1/
√

2 when
the value of ωmttr is 2.4, and also has a phase shift of 2π/5. Thus, the 3 dB response is
given by

f3 dB = 2.4

2π ttr
= 0.382vs

w
= 0.382vsα, for αw = 1. (4.208)

Note that including the effect of the absorption coefficient in the above derivations,
Equations (4.204)–(4.208) in fact reduces the transit time factor further, and therefore
these results are optimistic.
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Fig. 4.32 Equivalent circuit of a p–i–n photodiode.

The equivalent circuit of the p–i–n photodiode is shown in Figure 4.32, and consists
of a current generator, the diode incremental resistance Rd in parallel, the diode capac-
itance C also in parallel, the series resistance Rs, which includes the contact resistance
and the load resistance RL also in parallel. The inductance of the wire bond or contact
line in series with Rs has been omitted. Note that RL is generally small compared to Rd.

The analysis of this section shows that to make frequency response of the photodi-
odes high, the capacitance of the diode should be low so that the RLC time constant is
small and the ‘i’ layer thickness should be between 1/α and 2/α, where α is the absorp-
tion coefficient, and this comes at the expense of responsivity. Using higher bandgap
materials for the p+ and n+ regions allows higher fields to be used as the breakdown
voltage is increased. The usual choice is to make RLC time constant equal to the tran-
sit time across the depletion region. To reduce the capacitance, the area is made small,
of the order of 50 μm2 or less. High-speed p–i–n diodes have been designed and built
for many years, and currently diodes with responses in the 50 GHz region are available
[10]. To reduce the transit time effects, the absorbing layer is made as thin as possible,
of the order of 0.15 μm, and this is at the expense of responsivity. To overcome the
reduced absorption in the thin ‘i’ layer, the use of a dielectric mirror above the contact
layer and an epitaxial mirror below the absorbing layer causes the light to have multiple
passes, and improves the responsivity [10]. The problem of having this in the n+ layer
requires careful design of the doping of the heterostructure mirror, since current has to
flow through it. Note that the lower mirror is similar to those used in VCSELS and there
the mirror series resistance problem has been alleviated considerably.

Heterostructure diodes in which the p+ and n+ regions are of a larger bandgap mate-
rial, with the absorption ‘i’ or n− layer, have also been designed. The advantage of this
structure is that the incoming light is not absorbed in the heavily doped regions, and the
depletion fields may be higher. However, the heterojunctions may have to be graded to
prevent carrier trapping.

The noise output of the p–i–n diode is dominated by the thermal or Johnson noise.
Then the input signal photocurrent is given by

Iph = qηint Pin

hν
≡ R Pin, (4.209)

where R is the diode responsivity in A W−1. The shot noise is due to the background
optical power generating a current given by IB, the dark current Id due to the reverse-
biased p–i–n diode and the photocurrent Iph, and is given by〈

|σs|2
〉
= 2q(Iph + IB + Id)� f. (4.210)

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.005


Optoelectronics 271

The diode is usually connected to a preamplifier, noise figure Fn, input resistance Ra,
which is in parallel with the diode output resistance Rd and the load resistance across
the diode RL, and neglecting the series resistance Rs which is small, the equivalent
resistance given by

1

Req
=

(
1

Rd
+ 1

RL
+ 1

Ra

)
≈ 1

RL
, (4.211)

and the corresponding Johnson or thermal noise current squared, including the pream-
plifier noise figure, is given by 〈

|σt|2
〉
= 4kbT Fn� f

Req
. (4.212)

Thus, the signal-to-noise ratio is given by

S

N
=

(
qηint Pin

hν

)2

2q(Iph + IB + Id)� f + 4kbT Fn� f

Req

. (4.213)

Usually, the shot noise current is small, Req is approximately equal to RL, and the
signal-to-noise ratio becomes

S

N
=

(
qηint Pin

hν

)2

4kbT� f

RL

(4.214)

Thus, to make the signal-to-noise ratio large, RL needs to be made as large as possible,
but the problem here is that the RC time constant then becomes large and the response
time becomes slow. Thus, the values of RL are of the order of 50–100� to ensure that
the RC time constant approaches the transit time limit.

4.3.4 Avalanche photodiodes

The p–i–n diode has no gain, and adding gain enhances its performance. Increasing the
reverse bias close to or at the breakdown of the diode, the electric field in the ‘i’ or n−
region becomes high, and results in the carriers being accelerated to a higher velocity
before a collision with the lattice occurs. If the velocity is high, then this collision may
be inelastic and causes ionisation, resulting in an additional electron and hole being
generated. This additional electron and hole together with the original electron are also
accelerated in turn to have further collisions to create additional hole–electron pairs.
A schematic diagram of this process is shown in Figures 4.33 and 4.34 in which an
electron is injected, at the start of the high field region of the depletion layer. This
figure assumes that the ionisation coefficient for the electrons αe is equal to that for
the holes αh. These coefficients are probabilistic, and are the reciprocal of the average
distance that the carrier travels before an ionising collision occurs. These coefficients
are a function of the electric field, and vary with the material parameters. In Silicon,
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Fig. 4.33 Schematic diagram of the avalanche process with injection of an electron into the avalanche
region, which after collision creates an additional hole–electron pair, which, together with the
original electron, is also accelerated to have further ionising collisions, resulting in additional
hole–electron pairs for each carrier. In this diagram, the ionisation coefficients of the electrons
and holes are assumed to be nearly equal.
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Fig. 4.34 Schematic diagram of the avalanche diode.

αe > αh; but in III–V material, GaAs and InP and others they are almost equal. The
collisional increase in carriers results in an increase in the current which implies current
gain.

The expression for the ionisation coefficient is given by [3]:

αe,h = α∞ exp

[
−

(
b

E
)m]

. (4.215)

In GaAs, α∞ is ∼1.3 × 106 cm−1, b is 2 × 106 V cm−1 and m is 2. The multiplication
coefficient or factor M is the ratio of the output current density to the input current
density, and may be subdivided for the electron component and the hole component.

Suppose that the total current density in the diode is given by

Jtot = Je(x) + Jh(x), (4.216)
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where Je(x) is the electron current density, Jh(x) is the hole current density and Jtot is
a constant at any plane of the diode. The multiplication factors are defined as

Me = Je,out

Je,in
= Je(w)

Je(0)
(4.217)

for the electron current density, and

Mh = Jh,out

Jh,in
= Jh(0)

Jh(w)
(4.218)

for the hole current density.
Suppose a p–i–n diode with an ‘i’ region is considered, the field across the ‘i’ region

is uniform. Also assume that the ionisation coefficients αe = αh, and are constant at
the fixed electric field in the ‘i’ region, and the width of the avalanching region is w.
The holes and electrons are accelerated in opposite directions, and the collisions result
in ionisation and multiplication. Assume that at x = 0, there is only electron injection,
hole injection is zero at x = w, and therefore the avalanching is initiated by electrons.
In this case, the multiplication factor is given by

M = 1 + αew + (αew)2 + (αew)3 + (αew)4 + · · · (4.219)

= 1

1 − αew
for αew < 1. (4.220)

This final result implies that the multiplication factor goes to ∞ when αew is unity, or
that each carrier has one ionising collision over the distance w.

For the case of the p–i–n, with an n− region instead of the ‘i’ region, the field
increases linearly from the n+ region to the p+ region, and the above assumptions
of constant ionisation coefficients no longer hold. The total current density flow-
ing in the diode is the sum of the electron current density and the hole current
density.

The current densities in the avalanching region satisfy the following equations:

d Je

dx
= αe Je + αh Jh + qGen(x) (4.221)

−d Jh

dx
= αe Je + αh Jh + qGen(x), (4.222)

where qGen(x) is the optical generation rate. Subtracting these two equations results in

d

dx
[Je(x) + Jh(x)] = 0, (4.223)

or

Je(x) + Jh(x) = constant = Jtot. (4.224)

This implies that the current density is a constant at any plane in the diode, as claimed
earlier in Equation (4.216). Substituting for Jh from Equation (4.216) by Jtot − Je in
Equation (4.221)

d Je

dx
− (αe − αh)Je = αh Jtot + qGen(x). (4.225)
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Consider the case when αe = αh, neglecting the Gen term, this becomes

d Je

dx
= αe Jtot, (4.226)

and the solution is

Je(w) = Jtot

∫ w

0
αedx + Je(0). (4.227)

Assuming that there is no hole injection at x = w, then Je(w) = Jtot, and this equation
becomes

Je(w) = Je(w)

∫ w

0
αedx + Je(0). (4.228)

Dividing by Je(0), this equation becomes

Je(w)

Je(0)
= Me = Me

∫ w

0
αedx + 1, (4.229)

or

Me = 1

1 − ∫ w

0 αedx
. (4.230)

For avalanching, ∫ w

0
αedx = 1. (4.231)

When αe �= αh, then Equation (4.225) needs to be solved. This is first-order differential
equation of the form:

dy

dx
+ P(x)y = Q(x), (4.232)

and the solution is given by

y =
∫ x

0 Q(x ′)e
∫ x ′

0 P(x ′′)dx ′′ + y(0)

e
∫ x

0 P(x ′)dx ′ . (4.233)

Consider the case of electron injection at x = 0, with Gen(x) = 0 and no hole injection
at x = w, which implies that Jh(w) = 0, and Jtot = Je(w). Following the above
procedure, with these boundary conditions, the solution of Equation (4.225) is obtained,
and the electron current multiplication factor becomes [8]:

Me = Je(w)

Je(0)
= e

∫ w
0 (αe−αh)dx ′

1 − ∫ w

0 dx ′αh(x ′)e
∫ w

x ′ (αe−αh)dx ′′ . (4.234)

When αe = αh, then this equation becomes, as shown in Equation (4.230)

Me = 1

1 − ∫ w

0 αedx
. (4.235)

When the denominator of these multiplication factors is zero, the diode avalanches. A
similar expression to that in Equation (4.234) may be derived for Mh, if the avalanche
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is initiated by holes. For this case, it is assumed that at x = w, Je(w) = 0, Gen(x) = 0
and Jh(0) = Jtot, and the variable is Jh(x) to give

Mh = Jh(w)

Je(0)
= e− ∫ w

0 (αe−αh)dx ′

1 − ∫ w

0 dx ′αe(x ′)e− ∫ x ′
0 (αe−αh)dx ′′

, (4.236)

and again the avalanching occurs when the denominator goes to zero. The avalanching
is dependent on the field in the depletion layer, carrier population and the collision
frequency, and not dependent on the carrier initiating the avalanche process. By careful
control of the bias, the avalanche gain may be controlled to values as desired.

Notice that the generation term has been omitted in these expressions, but may be
included as necessary. Silicon avalanche photodiodes (APDs) may use the absorption
region as the avalanche region. In this case, the derivations above with the genera-
tion term would be the appropriate equations. Near infrared wavelengths have used
GaAs/AlGaAs APDs, and for wavelengths in the telecommunications band, 1300 nm
and 1550 nm bands, the absorption layer is generally InGaAs which is lattice-matched
to InP. The avalanche region for these diodes is separate and usually InP, since large
leakage currents occur due to tunneling with high reverse bias in InGaAs. This type of
diode is termed the separate absorption and multiplication (SAM) APDs [26], and is
currently the usual APDs at these wavelengths, as shown schematically in Figure 4.35.
Accumulation of holes occurs in the InP–InGaAs valence band junction region, and a
graded junction alleviates this problem [22].

The multiplication factor is a random variable and therefore the excess noise due to
this avalanche process may be estimated by a noise factor FM. This factor is a function
of the multiplication factor M and kA, where kA is the ratio of the ionisation coefficients
and kA lies in the range 0 < kA < 1. Thus, kA = αh/αe, provided αh < αe, or
alternatively kA = αe/αh, provided αe < αh. The expression for the noise factor is

E
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Fig. 4.35 Schematic diagram of the separate absorption and multiplication avalanche photodiode, also
showing the field in the different regions.
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Fig. 4.36 Excess noise factor FA as a function of the multiplication factor M and the ratio of the ionisation
coefficients kA (G. P. Agrawal, Fiber-Optic Communication Systems, 3rd edition, John Wiley &
Sons, 2002. c©2002 John Wiley & Sons). Reprinted with permission of John Wiley & Sons, Inc.

given by [23]:

FA = kA M + (1 − kA)

(
2 − 1

M

)
. (4.237)

Figure 4.36 shows the excess noise factor FA plotted against the multiplication factor
M , as a function of kA, from the Equation (4.237) [1].

The responsivity of the avalanche photodiode includes the multiplication factor M
and is given by

RAPD = M
ηq

hν
, (4.238)

and therefore the input signal photocurrent is given by

Iph,APD = RAPD Popt = M
ηq

hν
Popt. (4.239)

The shot noise current squared of the avalanche diode is also enhanced by the
multiplication factor and the noise factor and is given by〈

|σs|2
〉
= M2 FA(RAPD Pin + ID + IB)� f, (4.240)

where ID is the dark current and IB the background current. The thermal noise current
squared is given by, as in Equation (4.212), including the amplifier noise figure Fn,〈

|σt|2
〉
= 4kbT Fn� f

Req
. (4.241)
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Hence the signal-to-noise ratio is given by

S

N
=

(
Mqηint Pin

hν

)2

2q M2 FA(Iph + IB + Id)� f + 4kbT Fn� f

Req

. (4.242)

In this case, the shot noise term dominates and therefore the signal-to-noise ratio
becomes

S

N
=

(
Mqηint Pin

hν

)2

2q M2 FA(Iph + IB + Id)� f
. (4.243)

The APD is the preferred photodiode, but the introduction of the gain stage reduces
the frequency response. However, recent results have shown that these devices have
gain bandwidth products of over 300 GHz, with a response of 28 GHz [18]. Lower gain
results show a higher response of over 30 GHz [29]. These devices are much more
expensive than p–i–n diodes, although the performance is better because of the gain
that arises due to avalanching.

4.3.5 Metal–semiconductor–metal detectors

A planar version of the p–i–n diode is the metal–semiconductor–metal (MSM) detector,
in which the contacts are metal Schottky barrier diodes to a thin undoped semiconductor
layer, and the region between the metal contacts, usually in the form of an interdigitated
structure, shown in Figure 4.37, is completely depleted. The gap between the fingers is
made small, and the transit time limitation is small. The capacitance has two compo-
nents: one in parallel with the gap across the fingers, and the second is the capacitance
to the ground of both electrodes. However, this latter may be made small so that the RC
time constant of the diode is small. Consequently, these detectors are extremely fast,

Fig. 4.37 Interdigitated form of the MSM detector, in which the contacts are Schottky diodes to the thin
epitaxial absorption layer.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.005


278 High-Speed Electronics and Optoelectronics

0
0

100

200

300

20 40 60 80 100
Side Length / μm

3 μm spacing MSM

2 μm spacing MSM

1 μm spacing MSM

2.0 μm
pin

0.5 μm
pin

C
ap

ac
it

an
ce

 / 
tF

Fig. 4.38 Capacitance against the edge length of the fingers of the interdigitated MSM device for gaps of
1, 2 and 3 μm spacing, with finger widths of 0.5 and 1.0 μm. The parallel plate capacitance of
the p–i–n diode is plotted for comparison, with the ‘i’ or n− layer thickness of 0.5 and 1 μm.
The electrode width for the p–i–n diode has not been given in the paper (J. B. D. Soole and
H. Schumacher, IEEE Journal of Quantum Electronics, Vol. 27, No. 3, March 1991. c©1991
IEEE).
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Fig. 4.39 Response of the MSM detector showing the detected photocurrent against the bias voltage for
different values of light intensity for the 1 μm electrode width and a 2 μm interelectrode gap
device (J. B. D. Soole and H. Schumacher, IEEE Journal of Quantum Electronics, Vol. 27,
No. 3, March 1991. c©1991 IEEE).

but their responsivity is affected by the shadowing effect of the fingers. However, it was
found that the quantum efficiency increases with increasing bias, which suggests that
there is some gain that arises due to trap densities at the interfaces between layers, at
electrode interfaces. However, [30] suggests that with careful growth this gain may be
much reduced as seen in Figure 4.39. Note that one of the diodes is forward-biased and
the other is reverse-biased, and again careful processing results in symmetric response
and soft breakdown.

MSM photodetectors of InGaAs on an InP substrate [30] for operation at 1.3 μm
and 1.5 μm wavelengths are discussed here. The Schottky barrier on InGaAs is of the
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Fig. 4.40 Quantum efficiency of the InGaAs MSM device the electrode widths of 1 μ and different
spacings from 1, 2, 3 μm inter-electrode spacing. The zero width electrode result is also plotted
here (J. B. D. Soole and H. Schumacher, IEEE Journal of Quantum Electronics, Vol. 27, No. 3,
March 1991. c©1991 IEEE).

order of 0.2 V, and is leaky in reverse bias, and therefore is enhanced by a layer of
lattice-matched InAlAs under the electrodes. The thickness of the InGaAs layer was
1.3 μm, and the InAlAs layer was 80 nm. The capacitance between the fingers has been
calculated by means of the usual Schwarz–Christofel transformation in this paper, and
it is shown that the edge capacitance of the fingers is much less than the capacitance of
comparable area mesa-type p–i–n diodes, as shown in Figure 4.38. Provided the series
resistance is comparable, the RC time constant is much less for the MSM detector.

The device with a 1 μm wide electrode with the interelectrode gap of 2 μm between
them has a response shown in Figure 4.39 of the detected photocurrent against the bias
voltage across the electrodes for different values of light intensity on the device. Note
that the response is not flat but rises, indicating that there is gain in the device; this
may be in part due to the photoconductor effect and also may be at the higher bias due
to avalanching near the electrodes. The quantum efficiency of the MSM detectors is
hampered by the shadowing effect of the electrodes and this is plotted for this InGaAs
device in Figure 4.40, which shows that this may rise to as high as about 70% for the
1 μm electrode width and a 2 μm interelectrode gap device. The bandwidth of the device
is in the 20 GHz region, and other devices on GaAs show similar or better frequency
response.

4.3.6 Travelling wave p–i–n photodiodes

As discussed above, the frequency response limitation of p–i–n diodes arises from
the transit time of photogenerated carriers reaching their respective electrode contact
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regions, and also from the RC time constant of the device. Making the absorption
layer small, 0.3 μm, results in poor responsivity; placing mirrors underneath to obtain
a double pass improves the response, but the RC time constant rises. The MSM device
reduces the RC time constant but the transit time limitation remains. The second lim-
itation is the device saturation that occurs when the light intensity becomes high. The
alternative is the waveguide photodetector (WPD), which is an edge-fed p–i–n diode
that is made very narrow and long, and the absorption layer may be thin to overcome the
transit time limitation, making it highly efficient. However, the RC time constant limits
the device response to about 55 GHz bandwidth–efficiency value (product of bandwidth
and quantum efficiency) [16].

To overcome the problem of the RC limitation of the waveguide detector, and also
be able to handle high power detection, the travelling wave detector was proposed by
[8, 32]. An optical waveguide with a thin absorption layer is the basis for this device.
The absorption layer is made thin enough to only absorb a small fraction of the light
per unit length so as not to saturate the device, thus high power signals may be detected
without saturation. However, the limitation of the travelling wave detector arises from
the velocity mismatch between the electrical wave on the electrode structure and the
optical waveguide. The electrode on top of the guide with the accompanying ground
electrodes on the sides form a coplanar waveguide, in which the detected signal trav-
els in the form of a voltage/current wave, see Figure 4.41. The optical signal travels at
the guide layer group velocity, usually at c/ng, and ng is the group index of the guide
layer. The detected signal forms electrical forward and backward waves on the elec-
trode structure. The backward wave reflects at the input of the electrode structure, if it
is an open circuit at the start of the detector, or alternatively, the wave is absorbed in
the load if matched. Thus, the electrical wave travelling on the electrodes is a combina-
tion of the forward wave and the reflected component of the backward wave travelling
in the forward direction, and also the backward wave traveling in the reverse direc-
tion. The lack of velocity match between these two optical and electrical waves leads
to walk off, and the frequency response drops [15]. However, bandwidth of 172 GHz
and bandwidth–efficiency product of 76 GHz [12] and pulse response with transform
bandwidth as high as 560 GHz [28] have been reported. Careful choice of the absorb-
ing layer, absorbing coefficient of α0, and its thickness and location in the waveguide

Absorption region and
optical waveguide

Optical
Input

Contacts (Transmission line)

Electrical
Signal

Optical
Signal

Fig. 4.41 Schematic diagram of a travelling wave photodiode, with coplanar electrodes (G. Rengel-Sharp,
R. E. Miles, S. Iezekiel, The Radio Science Bulletin, Vol. 311, No. 12, pp. 55–64, December
2004. c©2004 URSI).
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Fig. 4.42 Schematic diagram of a travelling wave photodiode, showing the p–i–n structure with the
absorbing layer, and the electrodes.

allow the confinement factor � to be determined, and thus the decay factor becomes
e−α0�z for the optical wave intensity. These types of travelling wave devices are the fully
distributed detectors. A second design has used a passive guide between MSM detec-
tors [20], in which each detector only detects a small fraction of the power carried by the
optical wave. Velocity matching allows the 3dB frequency response to rise to 49 GHz.
Both these types of travelling wave devices are the fastest photodetectors built at the
present time. The usual optical waveguides are of the ridge type, with the top electrode
and adjacent ground electrodes of the coplanar waveguide (CPW) type, as shown in
Figure 4.41 [27].

The theory of the distributed detector has been developed by [12] and [15]. Essen-
tially, the p–i–n diode has to support the optical mode, and the electrode structure
supports the electrical mode. Figure 4.42 shows a typical structure of this travelling
wave photodetector.

The optical mode travels in the central p–i–n region, and the electrical mode is sup-
ported by the electrode structure transmission line shown in this figure. The equivalent
circuit of the elemental section of the line is now the usual R–L in series and C–G in
parallel, but now with the elemental p–i–n structure in parallel; the modified circuit is
shown in Figure 4.43. Note that the usual capacitance is that of the depletion layer, and
therefore is across the current source.

In this circuit, Rcpw is the series resistance of the central electrode and varies due
to the skin effect, increasing as

√
f . The semiconductor series resistance Rsemi is in

series with the depletion layer, and is determined by the doping levels of the p+ and
n+ layers, shown as p and n in Figure 4.42. The capacitance of the central electrode is
dominated by the depletion layer capacitance of the p–i–n diode, which is much larger
than the edge capacitance. The depletion layer capacitance gives rise to a slow wave
effect, similar to that suggested by Hasegawa [14]. The inductance is the usual CPW
value, and is unaffected by the presence of the p–i–n structure. The series resistance Gs

is the top contact layer in parallel with the electrodes. The distributed current source is
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Fig. 4.43 Schematic diagram of the equivalent circuit of a travelling wave photodiode (G. Rengel-Sharp,
R. E. Miles and S. Iezekiel, The Radio Science Bulletin, Vol. 311, No. 12, pp. 55–64, December
2004. c©2004 URSI).

related to the input optical power Po, and is given by

Iph(z) = Po
ηqλ

hc
�αoe−�αo e− jβoz, (4.244)

where λ is the wavelength of the optical power, αo is the absorption layer coefficient, �
is the confinement factor in this absorption layer, βo is the optical propagation constant
and η is the quantum efficiency of the distributed p–i–n diode. The terminations at the
input may be an open circuit or a matched load, and at the output is matched to extract
the signals on the electrical wave. This equivalent circuit may be used to analyse the
performance of the travelling wave detector.

The major concern in the treatment of the travelling wave detector is the velocity
mismatch between the optical wave and the electrical wave on the electrode structure.
Giboney et al. [12] have analysed the transmission line using an impulse excitation,
to account for the velocity mismatch. Performing the Fourier transform, the following
expression for the normalised photocurrent is obtained for the case when �αo� � 1 for
the frequency ω:

ıν(ω) = 1

2

[
ωf

ωf − jω
+ γ (ω)

ωr

ωr + jω

]
e−jω(�/ve), (4.245)

where

ωf = �αove(
1 − ve

vo

)
and

ωr = �αove(
1 + ve

vo

) .

γ is the electrical reflection coefficient at the device input, γ = 1 for an open circuit
and γ = 0 for matched load. The term ve is the electrical wave velocity and vo is the
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Fig. 4.44 Normalised current response for both the velocity-matched and -mismatched cases for both the
open circuit and the matched terminations at the input (G. Rengel-Sharp, R. E. Miles and
S. Iezekiel, The Radio Science Bulletin, Vol. 311, No. 12, pp. 55–64, December 2004. c©2004
URSI).

optical wave velocity. The results of this calculation are shown in Figure 4.44. Notice
that the normalised current for the matched case has no frequency variation, but since
half of it goes to the input-matched load, the output current is reduced by half. For
the velocity-mismatched case, for γ = 0, again the frequency variation is lower than
for the case when the input has an open circuit, when γ = 1. The open circuit case
has considerable frequency variation, but the current is higher at all frequencies for the
velocity-matched case, and becomes asymptotic to the γ = 0 case. For the velocity-
mismatched case, the current falls off faster at the higher frequencies, and becomes
asymptotic to the velocity-mismatched γ =0 case.

For the velocity mismatched case with matched input termination, γ = 0, when
��αo � 0, the 3 dB bandwidth is given by [27]

f3dB = �αo

2π

vove

(vo − ve)
, (4.246)

and for the case when open circuit input termination, γ = 1, the bandwidth is

f3dB ≈ �αove

3π
. (4.247)

This last result holds for velocity mismatch in the range 0 ≤ ve/vo ≤ 1.47 [13]. Addi-
tional losses occur due to the optical guide scattering loss and microwave transmission
line loss, and carrier transit time effects, and these will change the results and hence
the performance of the photodetector. Since the optical waveguide is in the heterostruc-
ture form, carrier trapping may be a problem, but graded interface junctions would
alleviate this.
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Fig. 4.45 Schematic diagram of a photo-HBT showing the depletion layers.

4.3.7 Heterostructure bipolar transistor photodetector

The bipolar transistor acts as excellent photodetector with gain. In the HBT, Figure 4.45,
the absorption of light occurs solely in the base, and possibly in the subcollector region.
In a double HBT in which the emitter and collector are of larger bandgap material, the
absorption is confined to the base region, even though the base is not fully depleted. The
usual modus operandi is to leave the base open circuit, as the light-generated carriers
constitute the base current, though in some case to avoid carrier trapping contact is
made to the base. The transit time of the electrons in the base of an n–p–n transistor
determines the frequency limit of operation of the HBT, in addition to the base resistance
effects. For a reasonable fraction of the incident to be absorbed, the base and the base–
subcollector regions should be of the order of 1 μm thick, which makes these devices
extremely slow, typically about 1 GHz bandwidth.

According to [3], the optical gain G of the single heterojunction phototransistor is
the ratio of the number of carriers in the collector current due to the photogenerated–
base and subcollector carriers to the number of photons incident on the base-
subcollector:

G = hν Iph−coll

q Pinc
. (4.248)

For a thick subcollector depletion width, which is greater than 1/α, then

G = ηβT, (4.249)

where η is the quantum efficiency and βT is optical current gain of the photo-transistor.

4.4 Problems

(1) A GaAs LED has a structure shown in Figure 4.1, and injection takes place from
the n+ layer into the p layer where the recombination takes place. Suppose the
lifetime of the electrons in this layer is 10 ns, the electron mobility is 3000 cm2

(V.s)−1 and hole mobility is 300 cm2 (V.s)−1, determine the thickness of the p
layer if it is to be one diffusion length.
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(2) Calculate, numerically, the correct value of the external quantum efficiency of a
LED radiating into air. Assume that the semiconductor index is 3.5, the polari-
sation random which implies that half the radiation is perpendicular polarisation
and the other half is parallel polarisation. Assume that the transmission coeffi-
cient for the perpendicular polarisation from medium 1, index n1, into medium
2, index n2, is given by

τ⊥ = 2n1 cos θ1

(n1 cos θ1 + n2 cos θ2)
,

and the transmission coefficient for parallel polarisation is given by

τ‖ = 2n1 cos θ2

(n2 cos θ1 + n1 cos θ2)
.

(3) A ridge laser is to operate at 800 nm, with a guide index of 3.41 and cladding
index of 3.43. Determine the maximum thickness and width of the laser wave-
guide.

(4) An InGaAsP laser operating at 1300 nm has an effective guide index of 3.4. What
is the reflectivity of its cleaved facets? Suppose the internal loss is 30 cm−1,
what is the photon lifetime, assuming the group index is 3.5? Suppose the laser
length is 300 μm, width 3 μm and thickness of 0.2 μm, the gain coefficient a
is 2 × 10−16 cm2, the value of the transparency number density is 1018 cm−3

and carrier lifetime is 1 ns. What is the threshold carrier density and the thresh-
old current? What is the relaxation oscillation frequency at twice the threshold
current?

(5) A p–i–n diode receiver at 1300 nm has a preamplifier noise figure of 2 dB. The
signalling rate is 1 GHz, bandwidth of 100 MHz, the load resistance is 100�,
dark current is 1 nA, the diode quantum efficiency is 0.95 and a signal of 5 μW
illuminates this diode. Determine the signal-to-noise ratio at the output.

(6) Suppose the p–i–n diode is replaced by an avalanche photodetector, multiplica-
tion factor of 10, noise factor of 3, dark current of 10 nA and background current
of 1 nA. This APD is illuminated with 1 μW of optical power; determine the
signal-to-noise ratio.
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