5  Building blocks for high-speed
analogue circuits

5.1 Executive summary

This chapter is about the use of electronic devices in elementary circuit blocks found in
any micro- or millimetre-wave system — or in the analogue portions of fibre-optic com-
munications systems. An introductory section describes linear two-ports on the basis of
scattering parameters, discusses different gain definitions and treats important aspects
of stability as well as noise in two-ports, with special emphasis on noise reduction by
proper choice of generator impedance.

Following this, amplifiers, oscillators and mixers are described in sequence. In the
amplifier section, small-signal parameters are used to derive fundamental properties of
common topologies, from the simplest, one-transistor circuits to more complex gain
cells, such as the cascode and differential amplifiers. Tuned amplifiers are covered,
as well as broadband amplifier techniques, including distributed amplification. Finally,
low-noise and power amplifiers are being treated, as well as non-linearities in amplifiers.

The oscillator section discusses how small-signal instability and non-linear gain com-
pression effects combine to create stable sinusoidal oscillations. Important oscillator
topologies and noise phenomena affecting the phase stability of oscillators are also
covered.

Mixer circuits show how specifically designed non-linear circuits provide frequency-
translating capabilities. Mixing principles are discussed first, followed by several mixer
topologies using field effect and bipolar transistors.

5.2 Basic relations for two-port networks

5.2.1 Scattering parameter theory

Small signal equivalent circuits for semiconductor devices and circuits are usually repre-
sented in two-port form as shown in Figure 5.2. At low frequencies, two-port networks
are represented by an impedance matrix, an admittance matrix, a hybrid matrix or a
chain matrix. These matrices are described by Z, Y, h or ABCD parameters. Such rep-
resentations are suitable at low frequencies where the parameters may be measured
by placing short or open circuits at the input and output terminals of the two-port. At
high (microwave) frequencies where there are travelling waves, short and open circuits
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Source and load circuit for the S-parameter discussion. a and b are normalised power waves.

cannot be precisely placed and the above-mentioned matrix representations cannot be
accurately determined. The development of the vector network analyser made it pos-
sible to perform measurements of high frequency travelling wave circuits. Scattering
parameters were introduced by Kurokawa [24]. He defined a set of normalised power
waves a and b and introduced a normalising impedance Zy:

V +Zyl
= 5.1
=7 -1
V — Zol
b 0 (5.2)

270

where V and [ are the voltage and the current, respectively, at a load Z.

These normalised power waves are chosen in this way so that they relate to the power
delivered to the load. Refer to Figure 5.1 where a source with a real source impedance
Zy is connected to an arbitrary load Z. The maximum power is delivered to the load if
Z= Z(’)k = Zo. Then,

Z,max — ZO == 4ZO ==

|a|? is hence the available power from a generator with source impedance Z. This also
tells us that the unit of a (and b) is v/ W.

Now consider:

lal? — |b]* = RV I}). (5.3)

This is the power delivered to the load for arbitrary Z. We can hence interpret |a|> as
the power travelling towards the load, and |b|? as the power travelling from the load
back to the generator, with the difference dissipated in the load. The ratio of b to a is
the reflection coefficient:

-7
+ Z

b _ Vi —Zoly

T a Vi+Zohh

Z—Zy
= , (5.4)

Z+Zy
because Z = Vi /1.

We now expand the normalised power wave concept to a two-port. The incident
waves at each port are again designated as a and the reflected waves are designated
as b, while the subscript denotes the port where the power waves are measured. For the
two-port, the normalised power waves are ai, by, a> and by, as shown in Figure 5.2. The
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Fig. 5.2 Two-port network embedded in a transmission line with characteristic impedance Z, with

incident waves ap, ap and reflected waves by, by.

scattering parameters are the coefficients of linear equations relating the reflected waves

b to the incident waves a:

by = Snay + Sipaz
by = Sr1a1 + Sxpas.

(5.5)
(5.6)

The scattering parameters can therefore be expressed as the ratio of two power waves,
provided that all the ports are terminated in a non-reflective fashion (@ = 0 at all other

ports). For a two-port,

by

St = —la=0
aj
by

S12 = —la=
aj
by

S$21 = —|a=0
ai
by

8§22 = —|a,=0-
ar

These relations can be written in matrix form as follows:

<b1>=(511 512)(01)
by S Sn ay )’

(5.7)

(5.8)

(5.9)

(5.10)

.11

Let Zy be the characteristic impedance of the transmission lines connected to ports 1
and 2 of the two-port. If port 2 is terminated by Zy, there is no reflection at the load and
hence the wave incident at port 2, as, is zero. Similarly, if port 1 is terminated by Z
and the stimulus is fed to port 2, ay, is zero. If port 1 is designated to be the input and
port 2 the output, then Sy; is the input reflection coefficient with Z, the output, S»;
is the output reflection coefficient with the input terminated by Zg, S»; is the forward
transmission coefficient with Z as the output load, and S is the reverse transmission

coefficient with Z at the input.

In general, the scattering parameters are complex. The polar form of the scattering

parameter is useful in many applications:
S=5|expl?,

where | § | is the magnitude of S and 0 is the phase.
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Properties of scattering parameters

The following properties of the scattering parameters are important in two-port network
applications. Subsequently, it is assumed that the transmission line is lossless with negli-
gible attenuation, such that the line’s complex propagation constant y = o« + j8 ~ j.

(i) Reciprocity. Passive networks are reciprocal (unless they contain non-reciprocal
components like isolators or circulators), and the S-parameters satisfy

Sik = Skj. (5.13)
This property can be written in general form as
[S]=[S"]. (5.14)

It states that the matrix is equal to its transpose denoted by [ST].

(i1) Lossless networks. An important property of lossless networks is that the product
of the transposed complex conjugate scattering matrix and the scattering matrix is
equal to the unitary matrix.

[S1S™1* = (11, (5.15)
where 0
1
[I]= |: 0 1 :| (5.16)

defines the unitary matrix.
(iii) Lossy networks. In lossy networks, the network itself dissipates power, hence

DolacP =) b (5.17)

The scattering matrix satisfies the property
[1] - [SISTT* > 0. (5.18)

(iv) Reference planes. Measurements can be made at different planes along the trans-
mission lines connected to the two-port network; this changes the results due to
the signals’ travelling wave nature. The reference plane is the position where the
actual measurements are made. If the positions of the ports are shifted by electri-
cal distances B¢ away from the reference planes, the S-parameters in these shifted
planes can be related to the initial S-parameters in the reference plane.

If the S-parameters were measured originally at the planes z; = O and zo = 0

and if the reference planes are now at z; = £ and zp = ¢; as in Figure 5.3, the
resulting S-matrix is given by
’ ’ —j26; —j(01+62)
|: S}l S}z ] _ |: St ex_};(eﬁgz) S12exp oo, ] ’ (5.19)
S5 Sy S21 exp S22 exp
where
01 = B
0 = L.

The expression (5.19) assumes that the transmission lines are lossless.
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Port 1 Port 2
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Two-port network

z=l; z=0 z=0 z={(,

Change of reference planes.

The scattering parameters can be converted to current—voltage parameters such as
impedance ([Z]) parameters as well as admittance ([Y]) parameters. These conversions
are given by Gonzalez [14].

The Smith chart

The analysis of two-port networks at microwave frequencies was tedious and time-
consuming before speedy computation methods were available with computer-aided
design software. A graphical aid to calculate various network properties such as
impedances was developed by Smith [36, 37] and referred to as the Smith chart. The
accuracy of results obtained from the Smith chart is quite adequate in most cases.

When a transmission line is terminated in an arbitrary impedance Z, there are reflec-
tions along the line, and the reflection is defined as the ratio of the voltage in the wave
reflected from the terminating load to the voltage in the wave incident on the terminat-
ing load. In Equation (5.4), we had already defined the reflection coefficient I, which
can be expressed as

. Z—Zy
T Z+7Z

(5.20)

In most applications, it is convenient to use the value of the impedance normalised
to the characteristic impedance or other reference impedance. The normalised value is
given by

Zz
= —. 5.21
=7 (5.21)
Equation (5.20) can now be written as
z—1
= . 5.22
z+1 ( )

Both z and I' are complex quantities and they are written in terms of their real and
imaginary parts:

I'=u+jv (5.23)
7=r+ jx. (5.24)
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zplane I plane
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Mapping between the z plane and the I" plane.

It is often useful to express the reflection coefficient in polar coordinates.
= |T e, (5.25)

where | I' | is the magnitude, and 6 is the phase of the reflection coefficient.

It follows that z and I' are defined in two complex planes. Equation (5.22) gives
the relationship between points in the two complex planes. The relationship is known
as mapping. Equation (5.22) is a bilinear transformation where orthogonal lines in the
z plane map into orthogonally intersecting circles in the I' plane. Furthermore, it is a
conformal mapping whereby the angle between the two line segments is maintained in
mapping between the z and I planes. It is to be noted that a straight line is simply a
degenerate circle. Figure 5.4 shows the correspondence between points in the z and I'
planes. Expanding Equation (5.22) we have

. r+jx—1
= —. 5.26
v r+jx+1 ( )
Equating real and imaginary parts on both sides,
2 2
—1
g o Ex (5.27)
r+ 1% +x?
2
al (5.28)

ST
By eliminating x from Equations (5.27) and (5.28), we have

2 2
LA I S (5.29)
" r+1 r+1 ’ ’

By eliminating r from Equations (5.27) and (5.28), we obtain

1\? 1\?2
2
(u—1) —|—(v——> =(—> . (5.30)
X X
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Constant resistance

Constant reactance

Constant resistance and reactance circles in the I" plane.

Equation (5.29) is the equation of a family of circles with their centres at u = r/r + 1,
v = 0 and radii equal to 1/r 4 1, while Equation (5.30) is the equation of a family of
circles with their centres at © = 1, v = 1/x and radii equal to 1/x. Equation (5.29)
represents constant resistance circles; each value of r > 1 represents a circle. Equation
(5.30) represents constant reactance circles which are plotted for all values of z when
Re(z) > 0. Both constant resistance and constant reactance circles are shown in Figure
5.5. A typical Smith chart representation for practical use is shown in Figure 5.6.

The Smith chart can also be used as an admittance chart. The constant resistance cir-
cles become the constant conductance circles and the constant reactance circles become
the constant susceptance circles. The bilinear transformation in this case is

_1=y (5.31)
I+y
The impedance and admittance representations of the Smith chart are symmetric with
respect to the origin of the Smith chart. Because in typical impedance-matching prob-
lems, both impedance and admittance representations are needed, they are frequently
plotted in the same diagram (see Figure 5.7).

Impedance matching

To maximise gain in an amplifier, its input and output impedances must be chosen to be
the complex conjugate of the generator and load impedances, respectively. To achieve
this, impedance-matching networks are connected at the input and the output of the
amplifier, which convert the true generator and load impedances (frequently 50 2) to
the necessary values. Figure 5.8 shows the block diagram of the complete network.
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Aside from the complex conjugate match, also referred to as power match, impedance
transformation may be necessary to achieve minimum noise figure, or maximum output
power. Detailed discussions of these techniques (with diverging goals) are given later in
this chapter.

524 Power gains for amplifier design

The power gain in microwave circuits is expressed in terms of the scattering parameters
for convenience in performing calculations using network analyser measurements.
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Fig. 5.7 Smith chart showing impedance circles (bold lines) and admittance circles (thin lines).
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Fig. 5.8 Block diagram of a two-port embedded in impedance matching networks.

Input and output reflection coefficients for arbitrary terminations
The two-port network in Figure 5.9 is now assumed to be an amplifier circuit. We will
first calculate the input and output reflection coefficients I'y, and 'y, respectively, for
arbitrary source and load reflection coefficients.

If Zy is the load impedance in a transmission line system of characteristic impedance
Zy, the reflection coefficients at the source and load (Figure 5.9) are given by
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—
Amplifier Z

Amplifier representation.

Zs — 7y
Ng=——— 5.32
S Zs + Zy 6-32)

ZL— 7y
ZL+Zo

Writing Equation (5.11) in expanded form, we have

L (5.33)

by = S1ia1 + Sipaz (5.34)
by = So1a1 + Spas. (5.35)

It is evident from Figure 5.9 that reflection coefficients are related to the incident and
reflected waves by the following equations:

b
[y = (5.36)
ai
ay =I'Lbs. (5.37)
By substitution into Equation (5.11), it can be shown that
S1281T'L
n=S=S B 5.38
in 11+ [ — SZ2FL ( )
The output reflection coefficient is defined as
by
Fouwt = — |VS:O . (539)
as
By substitution in Equation (5.11), it can be also shown that
S125211's
FCouwt =S R — 5.40
out = S22+ T SiTs (5.40)

Powers at input and load
When designing amplifiers, different definitions of power gain are applied depending
on the application. It is necessary to define the power at the input and the output of the
amplifier in order to obtain the gain.

The power delivered to the input port of the amplifier is written in terms of the inci-
dent and reflected waves at the input. The reflected wave can be expressed in terms of
the incident wave and the reflection coefficient, see Equation (5.36).
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Po=lai > —1|b (5.41)
=la P (1= 1T ). (5.42)
Similarly, the power delivered to the load Zy is
PL=1b*—la |? (5.43)
=1b P (1= 1T P). (5.44)

The power travelling towards the load is partly due to the wave originated by
the generator electromotive force bg, and partly by the reflection from the source
impedance ['s:

a; = bs + I'sby (5.45)
with
Vs Z
by = —Y 20 (5.46)
Zs + Zo
Zs — 7y
[g=——. 5.47
ST Zs+ 2o 647

Detailed analyses are given by Gonzalez [14].
The power available from the source is labelled P,y and is defined as

| bs |2
1— | Ts |?
5|1 = TsTin|?
1 —Ts|?

Pyys = (5.48)

= |ai|

Note that P,y is the input power under conjugate match, i.e. when I';;, = Fg.
The power available from the network Py, is defined as the power delivered by the
network when the load is conjugately matched to the output impedance, or

152112 1bs|?
11— S11Ts2(1 — [Toul?)

Pon = (5.49)

Power gain definitions

Let us now discuss the power gain definitions which are important in amplifier design.
The operating power gain Gp is the ratio of the power delivered to the load to the power
delivered to the input of the amplifier:

PL
Gr = 5
b 1= T
Clar| 1= Ty 2
Since
by $21
ar T 1- NI

https://doi.org/10.1017/CB09780511626517.0eFIBFAES RRRKS OMina R Grankrigeedniversity Press, 2010


https://doi.org/10.1017/CBO9780511626517.006

302

5.2.5

High-Speed Electronics and Optoelectronics

and using Equation (5.38), we obtain

1— |

Gp = |51 :
[1—TLS2nl? —|S11 — TLA(S)[?

(5.50)

where A(S) is the determinant of the scattering matrix.
The transducer power gain G is the ratio of the power delivered to the load to the
power available from the source:

P
Gt =
Pavs
_ B2 A=A s P)
ai |l = Tin[s|?
1— T —|Tsf?
P (e N V[ I 550

|1 —=TLS% — s (S11 — TLAS)) |2

In the absence of deliberate feedback, the reverse transmission Sj2 is frequently very
small and can be neglected. S = 0 simplifies the denominator in Equation (5.51) and
we obtain the unilateral transducer power gain

(1 =T = Ts?)
[(1 = ST (1 — Spnls)?

The available power gain G, finally, is the ratio of the available gain from the network
P,y to the available power from the source Pyys:

Gru = IS

(5.52)

P
Gy = (5.53)
PaVS
2 1—|Ts|?
= |21 3 3
11— SuTs|*(1 — [Coutl*)
=S L IsP

11— S1Tsl? = 1S2(1 — S11Ts) + S1251Ts >’
using Equation (5.40).

Stability

G still contains I's as a variable. We know already that the maximum power transfer
from the source to the load occurs for I's = I';, so this appears to be an optimum
choice. Before we proceed, however, let us again investigate Equation (5.53). If the
denominator becomes zero, the available gain would grow beyond all bounds. This
happens if

[T —S11Ts| = [S22(1 — S11T's) + 812821 s,
or, written differently,

S1281Ts

———— | = 1= Touls
l—Sllrs |0th|

S +
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using Equation (5.40). Likewise, we can show from the available gain in the reverse
direction that it would grow beyond all bounds for |I'j,| = 1.

Both these conditions are considered as the instability of the amplifier, a potentially
dangerous situation which may lead to malfunction or even fatal failure. In most cases
(the notable exception are oscillators), it needs to be avoided.

Unconditional stability
From the above, we can deduce that a two-port will be unconditionally stable if

S12851TL
S _ 1, 5.54
’11+1—S22FL< (5.54)
for all [I'L| <1, and
S1251G
S —_— 1, 5.55
2t T 5Tl = (5.55)

forall [I'g| < 1.

Stability circles

The following discussion follows Hoffmann [20]. For conditionally stable two-ports —
where at least one of the conditions in Equations (5.54) and (5.55) is violated — we can
still find generator and load admittances which allow stable operation. If we plot the
locus of

SpSul'c | |

1—S1I'g

in the complex I'g plane, we obtain a circle with centre vector

A(S)*Sy» — Sikl

S +

Il'gc=—75—""75. 5.56
CCTIA®P IS0 520
The radius is
S12 8
rg = | 122 21 - (5.57)
1A =[S |
Likewise, plotting the locus of
S128T
i+ 1222111 |
1 — S»nl'y
in the complex I'y, plane, we obtain a circle with centre vector
A(S)*S11 — S;Q
MNc=——5——7725, (5.58)
|A(S)I? — [S22]?
and radius
S12 8
[S12 211 (5.59)

ATNG TN

Examples for stability circles in the generator and load planes are shown in Figure 5.10.
The stability circles provide the boundaries between the stable and the unstable regions;
however, we still need to determine whether the inside or the outside of the circle is
stable. Let us do this for the ' plane first.
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(a) (b)

Stability circle examples: (a) in the I'G plane and (b) in the ', plane.

Using Equation (5.40), we conclude that 'y, (I'g = 0) = S2>. Now we locate the
area which contains I'g = 0 (the centre of the Smith chart). We can say:

e If [S22] < 1, then the region which contains I'g = 0 is the stable region.
e Otherwise, if |S22| > 1, the region containing ['g = 0 is the unstable region.

The same procedure applies for finding the stable region in the I'L, plane.
Using the stability circles, we can look at stability in a different way. A two-port will
be unconditionally stable, if all of the following conditions are fulfilled:

® 1Sl <1

(i) [S22] <1
(i) [I'Lecl > 1+
@iv) |FG,C| >1+rg.

In this case, both stability circles are fully outside of the Smith chart unity circles in the
reflection coefficient plane (which contain all [I'g|, |I'L| < 1), and the outer regions of
the circles are the stable ones.

Rollet’s stability factor

Conditions (iii) and (iv) above can be combined into the following:

k>1+ma o'A(S)|2_1 (5.60)
> x|0, —— |, .
21812118211
where
1= 181112 = |S221? + |A(S) |2
= Lo 1SuP —150P +1AS)] 5.61)

2181218211

k is the Rollet factor. k > 1 is often used as a stability criterion; however, note that it is
a necessary, but not sufficient requirement for unconditional stability.
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A very common, and potentially fatal, mistake is to assess stability only for the
intended frequency of operation. It must be investigated over the full frequency range
where instability may conceivably occur — parasitic oscillations at very low frequencies
are extremely common, and instabilities may also increase with increasing frequencies
such as in cascode amplifiers (see p. 333).

Maximum available gain and maximum stable gain

Let us now reassess the case of an amplifier with simultaneous complex conjugate
match at the input and output ports, i.e. I's = ', 'L = Iy, The available gain

n’ out*
in this case is the maximum available gain and can be written using the Rollet factor

Equation (5.61) as
521

MAG =
S12

(k Vi - 1) . (5.62)

Obviously, a real solution exists only if k > 1.

For k < 1, the maximum stable gain is frequently quoted. This is the MAG in the
limit of k& = 1, which can be obtained by the resistive loading of an otherwise not
conditionally stable amplifier:

S$o1

Si2

MSG = . (5.63)

Mason’s unilateral gain

The concept of unilateral gain for a two-port network was first introduced by Mason in
his paper [28], which is now considered a classic. A comprehensive review of the paper
and its relevance today is given by Gupta [15].

The unilateral gain is defined as the maximum power gain obtained by a two-port
when it is made unilateral — unilateralised. A two-port network that includes an active
device is made unilateral by a lossless and reciprocal four-port network connected to
input and output of the two-port under investigation. This network provides the nec-
essary feedback to impose the unilateral condition. Mason’s unilateral gain is not to
be confused with the unilateral transducer power gain Gty, Equation (5.52), which
had been derived by neglecting the reverse transmission. Here, reverse transmission is
eliminated by a unilateralising network.

The unilateral gain is a figure of merit which is intrinsic to the device and hence
independent of the circuit in which the device is placed. The unilateral gain is, therefore,
an invariant property of the device. Hence, it can be expressed in terms of the device’s
small-signal parameters. The scattering parameter representation of U is the most useful
in microwave applications. Ku [23] has given an expression in terms of the S-matrix:

| S12 — So1 |2

U= , 5.64
AT = [S*1TSD 669

https://doi.org/10.1017/CB09780511626517.0eFIBFAES RRRKS OMina R Grankrigeedniversity Press, 2010


https://doi.org/10.1017/CBO9780511626517.006

306

5.2.8

53

5.3.1

High-Speed Electronics and Optoelectronics

where [/] is the identity matrix. U can also be expressed with the help of the stability
factor k [15]:

S 2
(52) 1
U=—rg 12 ot (5.65)
2% | 22| — 2Re [ﬂ}
Si2 Si2

Maximum frequency of oscillation

The maximum frequency of oscillation is a criterion for a device’s ability to amplify
power. Because the maximum power gain at any frequency is obtained by conjugately
matching the input and output ports, the MAG (see Equation (5.62)) is an obvious
choice. The maximum frequency of oscillation fi.x is then the frequency where MAG
drops to unity:

MAG( finax) = 1. (5.66)

However, we had seen that MAG only exists when Rollet’s stability factor k > 1. This
raises a practical problem — for many high-performance microwave transistors, k < 1 in
the whole measurement range, and so fiax cannot be determined using Equation (5.66).

Another customary definition therefore makes use of Mason’s unilateral gain U (see
Equation (5.65)), which does not have this limitation. fiax is then understood as the
frequency where U drops to unity:

U(fmax) = 1. (5.67)

Note, however, that Equations (5.66) and (5.67) will generally not yield the same result,
so it is important to check the definition used when comparing fiax values.

Noise in two-ports

Noise phenomena

Any electronic component exhibits electronic noise, provided that the absolute tempera-
ture is 7 > 0. There are several physical origins, which have been discussed in Chapter
2 in the context of active devices, so only a brief summary shall be given here.

Noise occurs in all contexts where carrier motion or carrier density is stochastic:

e As there is always a random thermal motion superimposed on any charge carrier
movement, thermal or Johnson noise is omnipresent in all conductors with non-zero
resistance. The rms voltage generated by the thermal noise in a resistor of value R
is Vims = +/4kT RB, where k is Boltzmann’s constant and B is the measurement
bandwidth.

e Emission of charge carriers over energy barriers is equally a stochastic process, and
its associated noise mechanism is called shot noise. The rms current generated by a
current of magnitude 7 flowing over an energy barrier is I;ms = +/2¢1 B, where g is
the elementary charge and B again the measurement bandwidth.
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o] T

Thévenin equivalent circuit of a noise resistor terminated by a load of equal value.

e Examples of noise due to random fluctuations in carrier density is generation-
recombination noise or noise due to trapping and de-trapping processes. Unlike
the first two noise phenomena, which can be considered to have a spectral density
independent of frequency (‘white noise’), these processes produce noise spectra with
low-pass behaviour, and cutoff frequencies in the Hz—MHz range.

e Another example of noise generated by random changes in carrier densities is
avalanche noise, due to carrier multiplication effects in high-field regions. This pro-
cess also produces a low-pass limited noise spectrum with a cutoff frequency in the
GHz range.

For the discussion of noise in linear two-ports, however, the physical origin of noise
is irrelevant. In fact, we will occasionally assume in the following that noise is always
thermal in nature. Thermal noise has an interesting property. Consider that the squared
magnitude of the noise voltage phasor generated in a resistor R in a bandwidth B is

<|vn|2> — 8kTRB, (5.68)

which corresponds to the rms value of ~/4kT R B mentioned above. The Thévenin equiv-
alent circuit of the noise resistor can then be drawn as in the box of Figure 5.11. The
source is terminated by the same resistance R, so that the available power is delivered.
As power is related to the peak voltage as 0.5 V2 /R, and the voltage drop across the
resistor is v, /2, the resulting available power due to the thermal noise in resistor R in a
bandwidth B is

(lunl?)

N = =kTB. (5.69)
&R

The available noise power of a resistor is hence independent of the resistor value and
depends only on the absolute temperature 7" and the measurement bandwidth B.

Noise figure

We will now, in a general form, consider what happens to a signal as it traverses a
noisy two-port. Figure 5.12 shows an arrangement where the two-port is connected to
a generator (source) with generator resistance Rg and a load Ry. For now, we assume
that we deal only with real impedances and that both generator and load constitute a
power match, i.e. Rin = Rg, Rout = RL. The condition of power match at the input will
be dropped further down.
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Port 1: S;, N, Port 2: Sy, N,

Generic noisy two-port connected to source and load.

We further assume that the noise at the input is only due to the thermal noise of the
generator resistance, and that this resistor is at a temperature of 7o = 290 K.! The noise
power at the input port is then

Ny =kTyB. (5.70)

In a 1 Hz bandwidth, this amounts to 4 - 107! W or —174 dBm.?

The two-port will also contribute noise. To simplify things, let us assume that all
noise sources inside the two-port combine into a single noise source with power Neg,
also located at port 1. Because the two-port has a gain of G, the noise power at the
outputis N2 = G - (N1 + Neg).

If there is an additional signal component S present at the input, it equally is magni-
fied by G. S = G - S1. We can now define the ratio of the signal-to-noise ratios at the
input and the output:

Si/Ni _ $iIGIN1 + Neg) _ L Neg
S2/ N> - N1GSy - N

=F (5.71)

This defines the noise figure F of the two-port as the ratio of the signal-to-noise ratios at
the input and the output, provided that the input carries thermal noise at a temperature
To = 290K only. Note that F' > 1 under all circumstances.

We also found the relationship between the equivalent noise power at the input and
the noise figure:

Neq = (F = 1)Ny = (F — DkTyB. (5.72)

If we assume that Neq is also thermally generated, Neq = kT,B, we can define an
equivalent noise temperature for the two-port:

T, = (F — DTp. (5.73)

Both F and T, can be used interchangeably to characterise the noise performance of
two-ports. The use of T, is customary in cases where F is very close to 1, for example
in low-noise amplifiers (LNAs) for satellite applications, while F is more popular for
general applications.

1 290K is the standard temperature for noise calculations.
2 1 dBm is one decibel relative to a power of 1 mW.
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Cascaded noisy two-ports.

Noise figure of cascaded two-ports
The situation depicted in Figure 5.12 is too simplistic for practical applications, because
amplifiers or receivers generally consist of several stages. Let us consider next what
happens when several noisy two-ports are being cascaded. This is shown in Figure 5.13.
Again we assume that all ports are power-matched, which is an important restriction,
but is made here to simplify calculations.

First, we calculate the noise at the output (delivered to the load Ry ), assuming that
for each two-port, the noise sources are combined into equivalent noise sources at its
input. Then,

Ny = G3 {Neg.3 + G2 [Neg2 + G1 (Neg,1 + N1)]} . (5.74)

Now we assume that all noise sources are being transferred to the input of the cascade.

The equivalent noise source there will have a noise power of

N eq,2 + N, eq,3
G GGy’

Neq,tot = Neq,l + (5.75)

Recalling Equation (5.72), we finally calculate the noise figure of the cascaded two-
ports:

Neq, tot h—-1 F—-1
Fiot =1+ — =F+ + . 5.76
tot Ni 1 G G1G, ( )
In a more generalised form, the total noise figure of a cascade of n stages is
n
Fi—1
Foo=Fi+) — (5.77)
i=2 l_[ Gy
k=1

This is the famed Friis equation [11] which in effect postulates that in a receiver
chain the overall noise figure is approximately the noise figure of the first stage, pro-
vided that that stage has sufficient gain — an important observation for the design
of LNAs.

A consequence of the Friis formula is that in any amplifier, a low noise figure without
sufficient gain is meaningless as the noise of the following stages will take over. It
is therefore useful to combine noise figure and gain in a single figure of merit. This is
the noise measure according to Haus and Adler [19]. When using noise figures, it is
written as

F—1

=16 (5.78)
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where F is the noise figure and G the gain. The noise figure of an infinite chain of

identical transistors is then

Foo =M+ 1.

The noise measure can also be written in the form of a noise temperature:

Ty

Mp=—"
=116

(5.79)

(5.80)

where T, is the equivalent noise temperature of the two-port (see Equation (5.73)).

5.3.3 Noise figure with arbitrary generator admittance

We will now abandon the condition that all ports are power-matched by allowing arbi-
trary terminations for the input port. The source admittance Y g is expressed by its real
and imaginary parts, ¥ ¢ = Gs + jBs. As before, we assume that all noise sources
internal to the two-port can be combined at the input. Due to the arbitrary generator
admittance, we now have to split the noise sources into a noise voltage source v and a

noise current source i. This is shown in Figure 5.14.

The equivalent noise voltage and current sources, v and i, are partially correlated.
This can be accounted for by introducing a correlation admittance Y  and splitting the
current source into an uncorrelated part iy and a fully correlated part ¥ ~v:

i =i+ Ycv.

(5.81)

The real part of the generator admittance contributes a thermal noise current with the

phasor:

<|iT|2> — 8kTyBGs,

(5.82)

where Tp = 290 K is the standard temperature and B the measurement bandwidth.
Note that in Figure 5.14(b), all sources share the same source admittance Ys, so that

it is sufficient to calculate v; for the case i; = 0:

vy =v+ 5.83
1 Ys (5.83)
Equivalent noise
two-port
Y.= G, +j B, v iy

I O > —

iAoy, Noisy ; f;\ v i? v Noiseless

s s two-port s W s W ! two-port

(a) (b)

Fig. 5.14 (a) Noisy two-port with arbitrary generator admittance and (b) its equivalent circuit, introducing

the equivalent noise voltage v and the equivalent noise current i.
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We are really only interested in the powers, N (|v1 |2>:

<|v1|2> = (viv}) (5.84)
R (1 o o B (0 B k)
= (107} + T Ys T
_ <|i|2>+<|iT|2) 2 Y Yo"
RATARE +<'”'>[1+X_s+(z_s>]

The noise figure can be expressed as

F = Nl,total _ |Ul|2
Niip (lir12) /1Y g1?

where N oral s the noise power due to all noise sources and N j; the noise power due
to the generator thermal noise at T = T alone.
Combining Equations (5.84) and (5.85) yields

e <<|'Q|22)> " <<||;||22)>'XS'2 (E)] ew

Equation (5.86) can be written in a simpler form by introducing

(5.85)

e an equivalent noise admittance

8kTyB
e an equivalent noise resistance
()
" 8kTyB
e and remembering that
(lir]?)
Gs = —,
57 8kTyB
from Equation (5.82).
This results in
&n Ry 2 XC XC '
F=1+—+—IY 14+ = = . 5.87
Gs+Gs|_S|[+Xs+ Ys (5.87)

The noise figure depends therefore on the generator admittance Ys = Gs + jYs. This
was first pointed out by Rothe and Dahlke in 1955 [31, 32].
We can now search for the generator admittance where F will be minimal. This

results in
8
Gs,opt = | 5 — BX (5.88)
Ry
BS,opt = _BC7

where Bc is the imaginary part of the correlation admittance.
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Introducing these terms into Equation (5.87), the noise figure can be written as
follows:

R
F =1+ 2Ry(Gs.op + Gc) + G—‘; [(Gs — Gs.op)? + (Bs + BS,Opt)Z] . (5.89)

For Ys = Ys, opt, the minimum noise figure is

Funin = 1 + 2Ry(Gs opt + Gc) = 1 + 2Ry (Gc + % - Bg) , (5.90)
n

and therefore finally

R
F = Fnin + G_l;] [(GS - GS,opt)2 + (Bs — BS,opt)z] (5.91)

RN 2
— Fmin + G_S ‘Xs - Xs,opt

To describe the noise performance of a two-port, we need the following parameters:

e the minimum noise figure Fin,
e the equivalent noise resistance Ry,
e the noise-optimised generator admittance ¥ g ..

For microwave applications, it is more customary to work with reflection coefficients
instead of impedances or admittances. For this, we introduce a normalising admittance
Yo, typically 20 mS, and a normalised noise resistance r, = R, Y. Then Equation (5.91)
turns into

4ry ‘FS - 1_‘S,optyz

F = Fyin + 5 R (592)
(1 - |FS| ) |1 + 1_‘S,opt|
where
Yo— Y
I's = 0 S.
Yo+ Ys
Plotting F = f(I's) on a Smith chart, the contours of constant F are circles. An

example is shown in Figure 5.15.

Associated gain

The condition for noise-optimised source reflection coefficient I's = I's opt is inde-
pendent of the power matching conditions derived earlier, I's = I'; . The maximum
gain under ‘noise matching’ conditions is therefore smaller than the MAG, which
would be achieved when input and output of the two-port are conjugately matched.
Here, I's = I'sop and the gain for the conjugately matched output becomes (see
Equation (5.53))
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Fig. 5.15 Example for ‘noise circles’ — contours of constant noise figures on the Smith chart.
1— | 1—‘S opt |2 2
Guss =7 > |92 ——— (5.93)
| 1 - S]IFS,opt |2 1—- | Iﬁout |2

121 (1= [Ts.om|)

= 2 20
|1 = S1Ts.opt|” — |S22(1 = S11Ts 0pt) + S12821T's opt
since
$21812T
Fout _ 522+ 19121 S,opt )
1 — 811Ts opt

The available gain under noise matching conditions is called associated gain.

5.4 Transistor amplifiers

5.4.1 A brief historical discourse

Amplifiers are such an integral part of any wireless communication system that we have
to explicitly recall that in the first decades of radio, they were not used at all. It was not
before the invention of the electron tube triode that amplification of alternating current
signals became possible. Lee De Forest’s Audion tube (conceived in 1906 and patented
in 1908 [10]) is probably the first example of an amplifying device. It was 24-year-
old Edwin Armstrong, the prolific and finally tragic inventor of radio’s early days, who
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De Forest’s three-terminal audion (from US Patent No. 879,582).

actually explained its operation in 1914. As Figure 5.16 shows, the De Forest Audion
already has the common three-terminal arrangement which we also find in transistor
amplifiers. De Forest’s claim to have invented the tube concept independently of the
‘thermionic valve’ patented by John Ambrose Fleming in 1905 [9] is doubtful, however.

Critical amplifier parameters vary with respect to where in a system it is being used,
and what kinds of signals are being fed through the amplifiers. For example:

e When dealing with very low-level signals, for example immediately after the receiving
antenna, or behind the optoelectronic converter in a fibre communication system, it
is of paramount importance that the amplifier itself adds as little electronic noise as
possible.

e At the output of a wireless transmitter, an amplifier should produce the required RF
power with optimum efficiency and/or the required linearity, which in turn depends
on the modulation format used.

e Other systems, such as in fibre-optic communications or ultra-wideband wireless sys-
tems, require extreme bandwidths, with little variation of gain and group velocity
between the lower and upper cutoff frequencies.

These requirements can rarely be met simultaneously, so trade-offs have to be made
which require a thorough study of the system specifications before the amplifier design
is begun.

Fundamental amplifier configurations

Amplifiers will be discussed initially at a certain level of abstraction in order to make
clear that the fundamental methods apply to FETs and bipolar transistors alike. The use
of general methods will be emphasised rather than introducing a large number of circuit
topologies. To this end, we will first introduce a generalised equivalent circuit for an
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Generic three-terminal amplifying device.

amplifying device, and then calculate its small-signal parameters — the y matrix in this
case. Based on the y matrix, we develop general expressions for important amplifier
parameters — the input and output admittances, and voltage and current gain. For differ-
ent circuit topologies, we then calculate modified y matrices, which will immediately
yield the amplifier parameters.

The move from abstract concept to actual circuit implementation will also be made
occasionally. You will see that the elements of real devices can be readily matched to
the general equivalent circuit.

The first important observation in amplifier design is that three-terminal devices can
be used in three fundamentally different ways. Let us consider the generic three-terminal
device depicted in Figure 5.17.

We restrict our discussion to linear behaviour for the time being — corresponding to
the small-signal case. The amplifying action is due to the voltage-controlled current
source between nodes 2 and 0. The controlling entity is the input voltage vi¢ and the
parameter is the transconductance g . which is generally taken as a complex value.
This allows us to include additional phase delays in g .

g, = gmoe " (5.94)
Additionally, we included complex impedances Y i, Y 5o and Y ;,. These can later
be correlated with the parameters of FET or bipolar transistor small-signal equivalent
circuits introduced in Chapter 2.

y matrix representation
For the ‘hybrid 7’ equivalent circuit in Figure 5.17, the y matrix is easily calculated and
will be used here. The advantage is that general amplifier properties, such as voltage and
power gain or input and output admittance with arbitrary terminations, can be calculated
once and can then be easily applied to the different topologies we will consider.

The y matrix expresses the following system of linear equations with respect to the
two-port shown in Figure 5.18:

i1 =y11vi+ynwn (5.95)
ip = y21v1 + ynv2 (5.96)
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# Yo ¢V1 Y] Vﬂ Y,

A two-port in y matrix representation terminated with generator impedance Y i and load
impedance Y .

The y matrix [Y] can also be calculated from the scattering matrix [S] introduced earlier:
[Y]=Yo- (1] —[SD (1] +[SD~" (5.97)

where [1] is the identity matrix and Y; the normalising admittance used in the
calculation of the scattering matrix — usually 20 mS.

First, consider the input admittance Y;. The output port is terminated by an
admittance Yy .

i

Y| = —
V]
ip=—-unY;.
We find
Y12 Y21
Yi=yn—-———"—. (5.98)
Y+ y»

Likewise, the output admittance when the input is terminated with an arbitrary
admittance Y s is

Y12 Y21

Yo =y»n— . (5.99)
Yo + yi
The forward voltage gain Ay = v2/vg is
)21
Ay = ———. (5.100)
L+ y2
And finally the current gain Ay = iy/i1:
Y
Al P21 (5.101)

oy +Y) -y

The frequently used short-circuit current gain can be easily calculated from Equation
(5.101) when Y| — oo:

1

hay = i—f (v = 0) = (5.102)

Common source/common emitter: node 0 as the common node
The most obvious connection is to ground node 0. In FETs, this configuration is called
common source; in bipolar transistors, it is called common-emitter configuration.
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1 Yiz 2
i 2
Vi Y10 ¢ V1o gm V1o ‘ y20 vy
Y
o : -0
Fig. 5.19 Generic amplifier configuration with node 0 grounded.

The y matrix can be easily calculated (see Figure 5.19):

ym=Yg+Y, (5.103)
yiz=-Yy (5.104)
=g —Yp (5.105)
v =Y+Y. (5.106)

Let us first investigate the voltage gain using Equation (5.100):

g —Y
Ay=——220  ___Sm 12 (5.107)
Y +y» Y +Y+Y),

To facilitate interpretation, let us assume that 8. is real, and that the feedback
admittance is weak: gm — ¥ 15 % gm, ¥ + Yo + Y15 ¥ Y1 + Y. Then,

For low frequencies, Y| and Y , are real, and we find:

e The magnitude of voltage gain in common-source and common-emitter stages will be
approximately equal to the product of transconductance and effective load resistance
(the parallel connection of external load resistance and device output resistance).

e The output voltage lags the input voltage by 180°.

A useful figure of merit is the maximum voltage gain a three-terminal device can pro-
duce with node 0 grounded. We find it from Equation (5.107) by choosing Y1, = 0 and
assuming ¥ ;5 <Yy, g -

g
AV, max ~ —;—m. (5.108)
L.20

Now let us take a look at the input admittance, using Equation (5.98):

Y12 y21 gm— Yo
Vi=yw———=Yp+Y <1+—),
YL+ y» 10 12 Y  +Y+Y

or recognising from Equation (5.107) that the last term in parentheses is Ay:

Yi=Y0+Y,(1-Av). (5.109)
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Fig. 5.20 Simplified hybrid 7 equivalent circuit of a FET with load admittance.

Miller effect

It is now time for a small practical example. In a FET, the small-signal equivalent circuit
looks like Figure 5.20, if we neglect the series resistances. From comparison with Figure
5.17, we recognise that

Yy =JjoCcs
Y, =jwCcp
Y 5y = gps.
The voltage gain is now
gm —JjoCp gm

Ay = — A — ,
YL + gps + joCop YL + gps

for low frequencies.
The input admittance is, using Equation (5.109),

Y1 = joCgs + joCop (1 — Ay) . (5.110)

The feedback capacitance Cgp appears in parallel with Cgs, but is multiplied by the

magnitude of the voltage gain, augmented by one — this is the dreaded Miller Effect,

which we always have to be aware of in high-speed circuit design, because it may

significantly increase the input capacitance. It was described as early as 1920 [29].
Going back to Figure 5.19, we calculate the output admittance to be

Yo=Y, +Y <1+§m;z”> (5.111)
T ENTSR Yo+Y 0 +Y/) .
The term
gm — Y12 _
Yo+ Yo+ Y12 r

can be significantly larger than 1 and may act like a ‘reverse Miller Effect’. This has to
be taken into account if a tuned circuit is connected to the output node, as is the case
in typical tuned amplifiers. Figure 5.21 shows an example — the detuning effect of the
feedback capacitance will be much larger than expected.
The current gain of the common-source/common-emitter amplifier, finally, becomes
(g m Y Y,

Al = . (5.112)
Y ¥y +g, +Y0+Yo) +Y 0L +Y5)

We can safely assume here that the real parts of all admittances are larger than zero —
then the current gain in the quasi-static limit (f — 0) is positive.
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CGD (1 +Ar)

Common-source amplifier stage with tuned load, and the output-referred Miller capacitance.

Let us check the latter equation again with our FET equivalent circuit by calculating
the short-circuit current gain:

gm —JoCGD __ 8&m
Jo(Cgs +Caop)  jwCqs

ha1 = Aj|(Y | — 00) =

assuming that g, > wCgp and Cgs > Cgp.

This is the equation we had earlier used in Chapter 2 to estimate the transit frequency
of aFET to be fr = gm/(27Cgs).

Let us summarise our findings for the amplifier configuration with node O grounded —
applicable to both the FET common-source and the bipolar common-emitter topologies:

e The configuration can provide substantial voltage and current gains.

e The voltage gain provides a phase shift of 180° in the quasi-static limit, whereas the
current gain experiences no phase shift.

e Due to the presence of feedback, the input and output admittances always depend on
the termination of the opposite port.

e For substantial voltage gains, the Miller effect has to be observed which can
substantially increase the input capacitance.

Common gate/common base: node 1 as the common node

In the next set-up to be discussed, node 1 is grounded, and the input current is fed into
node 0. Node 2 is still the output node. This applies to the FET common-gate and the
bipolar common-base configurations. Again, we will first calculate the y matrix in a

general form. For this, it is valuable to recognise in Figure 5.22 that v = —vg.
yii=Y,+Yy +§m (5.113)
yizo=—Yy (5.114)
21 =Y — . (5.115)
=Y +Y,. (5.116)
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Y1 2

i 2
1
" 7 pN O e—ip
v.
V1 Yo ¢ Y am Vo ¢ Y0 | V2
\[J
I 0
O I/ O
Fig. 5.22 Hybrid 7 equivalent circuit with node 1 grounded.
This input admittance is then
Y, +Yp

Y :Z10+(§m+zzo) (5.117)

Y +Yy+Y)p
Let us simplify this expression somewhat. First, realise that in practical devices nec-
essarily g =~ 3> Y, otherwise it would not have a reasonable voltage gain in
common-source or common-emitter configuration (see above). Further, let us assume
that Y |, < Y. Then,
Yi~Y o+ a8

TR ey Y,

An interesting observation is that now Y , is the feedback admittance which determines
the sensitivity of the input admittance on the load. If further, this admittance is very
small, ¥ 5y < Y, then

Using the example of Figure 5.20, we find

wCgs L@
legm<1+_] >=gm<1+J )
wr

8m
The input admittance is hence approximately the transconductance, unless we are oper-
ating close to fr. In practical transistors, this will be a quite large value — much larger
than the input admittance in the topology with node 0 grounded.
The output admittance is

Yo +Y
=Y, +Y T

. 5.118
_QOXG‘FXlo‘f‘XzoﬁLEm ( )

Assuming again that g > Y 5,
Y
HRYp+———
14 —=m
Yo+Yy
Compared to the topology with node 0 grounded (common emitter or common source),
the output admittance will be substantially smaller.
The voltage gain is calculated as
8., T X

Ay = —82 = 5.119
v Y  +Y+Y), ( )
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Assuming again that g o> Yo, this simplifies to

Em

Ay= ——F——.

Yy +Y+Y,
Compare with Equation (5.107) — this is the same result, if Y |, < gm, which is a safe
assumption.

Finally, the current gain is

XLE -
YL +Y )T +Yo+g )+Ys0Y o

Al = (5.120)

The magnitude of Aj for this topology is hence less than 1. For greater simplicity,
calculate the short-circuit current gain (Y, — 00):

Yytsg,
Yo+g, +Y0

1

hy = —

cT Ty
1+—_l()
8

—m
Using again the simple FET equivalent circuit in Figure 5.20, this reduces to
1

—
1+ ;—
wr

hy = —

In other words, the short-circuit current gain of the common-gate and common-base
configurations will remain independent of frequency until quite close to ft.

Common drain/common collector: node 2 as the common node
The last fundamental configuration of the generic amplifying three-terminal device
(Figure 5.17) has node 2 as the common node (see Figure 5.23). In FETs, this will
be called common drain; in bipolar transistors, this will be called common-collector
configuration.

Again, first calculate the y matrix of this configuration.

ym=Y p+Yp (5.121)
Yo=Y (5.122)
ni1 = _(Z]0+§m) (5.123)
=Y p+Yy+g, . (5.124)
i1 Y12 0
—» O O O -a-—i
Yo ¢v10 Im V1o ¢ Ya0
V.
1 V) | vy
2
O O
Fig. 5.23 Generic amplifier configuration with node 2 grounded.
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Let us first consider the voltage gain Ay, when port 2 is terminated with a load
admittance Y.

Yiot+sg Y, +Y -
Ay = — 20 _ —10 " m =(1+=1=20) (5125
YL+yn Y +Yo+Yy+g Yiotsg,,

In practical devices, the second term in parentheses will be small compared to 1, at least
at lower frequencies, so that Ay ~ 1 (but always less than 1) — v, follows vy, which
is why this topology is also called a source follower or emitter follower for FETs and
bipolar transistors, respectively.

The input admittance is calculated to be

Y2y _ Y, Y +Y0)Y
YL+ y2 Y +Yy+Yo+g,
Yo
Yioteg,
Y +Yy

Yi=yn -

=Y+ (5.126)

~y .4 Lo (5.127)
~Li s .

because typically, at least at frequencies sufficiently below fr, g o > Yo and
assuming that Y ; > Y .

Compare this to the input admittance of the topology where node 0 was grounded,
Equation (5.109), and you will notice that the influence of Y ,, is substantially reduced,
while Y |, does not suffer from the augmentation due to the Miller effect. We can
therefore state that the topology with node 2 grounded presents a much lower input
admittance.

Going to our usual FET example where the amplifying device is represented by
the equivalent circuit in Figure 5.20, we can show that Equation (5.126) may have an
unexpected result. In this case,

JwCas
| 4 8m +JjoCqs
Y1, + gps
Now assume that g, > wCgs, i.e. o K or, that Y1, is capacitive (YL = joCr), and
that oCy, > gps.

Y1 = jowCgp +

@?CgsCL
gm + jo(CL + Ccs)’
or separating into real and imaginary parts,

@?gmCosCL ; (CUZCGSCL(CL + Cgs)

Y, = joCsp —

Y =

— +C . 5.128
g%+ @2 (CL+ Cas)? g% + @ (CL+ Cos)? GD) o128

We created an admittance with a negative real part! This can be useful, for example if
we want to build an oscillator (see Section 5.5), but also very dangerous for amplifier
stability.
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Moving back to the more general case, let us calculate the current gain:

Y Xyp+g,)
YWy +Yy+Y+g )+Y oYL +Yy)

(5.129)

1=-—

Comparing this with the equation for the current gain with node 0 grounded (Equation
(5.112)), we see that the denominators are equal. If further g > Y 44, ¥ j5, which is
typically the case, the two current gains have equal magnitude.

Finally, the output admittance of the topology with node 2 grounded will be
calculated. The input port is terminated with a generator admittance Y.

X+g )X +Y )

Y=Y, +
-2 Yo+Y p+Y)

(5.130)

To interpret this equation, assume that Y6 >> Y 1y + Y 15, g > Y ;. Then,
Yz'w\’zzo'f‘gm"\\fgm,

in most cases. Compared to the output admittance of the original topology which had
node 0 as the common node (Equation (5.111)), we see that now we have a substantially
higher output conductance.

The combination of a very low input conductance (very high input impedance)
and high output conductance (low output resistance) is the most important aspect of
common-drain/common-collector topologies.

5.4.3 Feedback

Negative feedback is another important principle in amplifier design. In small-signal
design, it is used for impedance matching purposes, to make an amplifier stable and to
increase its bandwidth. The negative feedback amplifier was invented by Harold Black
in 1927 [22].

The most important feedback implementations in high-speed amplifier design are
shunt—shunt and series—series feedback, as shown in Figure 5.24.

v [Y]
Y] \‘ [v]
(a) (b)

Fig. 5.24 Feedback configurations: (a) shunt—shunt feedback and (b) series—series feedback.
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Shunt-shunt feedback
Case (a) is easily calculated using a y matrix representation, because the resulting y
matrix is the sum of the individual matrices.

[Yr] = [V]+ [Vf] = |:y11 +yir Y2+t y12,f:| (5.131)
Y21 +y21, 5 Y22+ Yy

Series—series feedback
Series—series feedback is better treated using a z matrix representation:

vp = Z11i1 + 21202 (5.132)
vy = 22101 + z2202. (5.133)

Conversion from y to z matrix is easy because the z matrix is simply the inverse of the
y matrix:

1 Y22 —ylz}
7= —— , 5.134
1Z] A(Y) |:—y21 i1 ( )

where A(Y) is the determinant of the y matrix and A(Y) = y11y22 — yi12y21-
Once the z matrices have been obtained, the resulting z matrix of the circuit with
series—series feedback is the sum of the individual z matrices:

[Zr] =21+ 2] = [Z“ ez m’f} . (5.135)
221 221 222 +222f
The conversion back from z to y matrix is equally simple:
1 —
V]= —— [ 2 Z”} . (5.136)
A(Z) [—z21  zul

Use of feedback in small-signal amplifiers
A very common feedback example is shown in Figure 5.25, where an admittance Y; is
connected between the output and the input of a common-source amplifier. The FET

Example of shunt-shunt feedback in a common-source amplifier.
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shall be treated using the generic equivalent circuit in Figure 5.17. The feedback two-
port contains only one element, Y7. If [Yq] is the y matrix of transistor Q1, then the y
matrix of the transistor with feedback is

(5.137)

1,01 + Y5 yi2,01 — Y
[YT]:[y Q Y12, ]

21,01 — Yr y».Q1+ Yt

Unilateralisation
An immediate application of this feedback technique is the elimination of the parameter
y12. Choosing

Ye = —yn.q1

results in a unilateralised amplifier two-port where the input parameters no longer
depend on the output load, and vice versa. This can be used to improve amplifier
stability, and is referred to as neutralisation.

There are several ways of achieving this. In narrow-band amplifiers, the usually
purely capacitive feedback may be tuned out using an inductor. The inductor is chosen
to form a parallel resonance with the feedback capacitor at the frequency of operation.

A more elegant technique was invented by Harold A. Wheeler in the early 1920s
for electron tubes. A current with equal magnitude — but opposite phase, as the current
through the feedback admittance — is fed back from the output to the input node, where
the two currents cancel out exactly. This is shown in Figure 5.26. In integrated circuits,
the realisation of the autotransformer is hampered by the typically high losses of on-chip
inductors. However, any kind of phase reversal will do; a particularly simple technique
will be discussed further down in the context of the differential amplifier (p. 336).

Port matching
A very common task in amplifier design is matching, e.g. the input admittance Y; to
the generator admittance: Yy = Y, where Y is the complex conjugate of the generator

T~

N

Amplifier neutralisation using an autotransformer.
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Inductive emitter degeneration as an example for series—series feedback.

admittance. While this is commonly done by cascading a matching network and the
amplifier two-port, the same result can frequently be achieved by using feedback.
With shunt—shunt feedback, the input admittance becomes

12,01 — Y (y21,01 — Y¢)

Yi =y +Y— (5.138)
< YL+ yno + Y
Setting Y1 = Y('i; and solving for Y, we obtain
— YXY, + —
v, 11,01 — YO YL + y22,01) — ¥21,Q1Y12,Q1 (5.139)

CYE =YL — (311,01 F Y12,01 F 21,01 + ¥2.01)

Inductive source degeneration

Series—series feedback is also commonly used in matching problems. A practical exam-
ple is shown in Figure 5.27. An inductor is inserted into the source lead of a FET. This
is referred to as inductive source degeneration, and may equally be applied to bipolar
transistors. We shall now investigate its effect on the input impedance. For simplicity’s
sake, we assume that for transistor Qy, Y ;, and Y ,, can be neglected. For a general
impedance Zr in the source lead, the input impedance becomes

1 8
21=2=—+Zf<1+__m>~ (5.140)
it Yy Y
In the specific case, Zr = jwL. Using the simple FET equivalent circuit in Figure 5.20,

further Y ;j = jwCgs. Recall that ot = g/ Cgs, and we find

Zi=wrlL+ (C()L — ) . (5.141)

wCags
The inductance hence creates a real part in the input impedance.

Bandwidth improvement
Both shunt-shunt and series—series feedback can be used to increase bandwidth,
however at the expense of maximum gain.
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Fig. 5.28 Two-port in y matrix representation with shunt-shunt feedback.

Let us investigate the use of shunt—shunt feedback. First, realise that the influence
of the generator impedance needs to be included. Figure 5.28 shows the correspond-
ing schematic. We are interested in the voltage gain between generator and load. For

Yr = 0, this is
A
Gy =2 = v (5.142)
vo 1+ Zcg(O + Avyi2)
where Ay is given by Equation (5.100). With Y; # 0, we obtain
o
Al = —Av—y;f‘ (5.143)
I+ ———
v+ YL
A/
/ v (5.144)

Gy = .
V714 26 [vi1 + Ayyiz + Yi(1 — A})]

The noteworthy feature here is that Y appears magnified by 1 — AY, in the denominator.
We found this already in a different context when discussing the Miller effect.

The bandwidth enhancement effect can be seen in a simple example. The amplifying
device shall be the simple FET from Figure 5.20. Then the y matrix is, with some
appropriate simplifications,

yi1 = jo(Cgs + Cop) & joCas
yi2 = —joCcp
Y21 = gm — JwCGD & gm

y22 = gps + JoCap ~ gps.
Let us further assume that
r < 8m-

Then,

AV = _g—m7
Y1, + gps
Y1 + gps

Ay = Ay———,
v YL + gps + Y
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and
Gl = Ay |
1+ Zg [(1 — AYYi+ jo(Cgs — Ay Cap)]

We calculate the 3dB cutoff frequency as the frequency where the real and the
imaginary parts in the denominator are equal. For Y = 0, this is

1
Zg(Cgs — AvCap)

Next, we apply a purely resistive feedback, Yy = Gy:

wc(Yr=0) =

1+ Z6Gi(l — A})
Zg(Cgs — AyCap)

wc(Yr = Gy) =

Frequently, Gy < (YL + Gps) and therefore A{, ~ Ay. The resistive feedback hence
results in a very substantial bandwidth enhancement by the factor 1 + ZgG(1 — Ay).
The low-frequency gain, however, decreases to

Ay

G 0) = ,
Ve = 0 = R = Av)

so that the product Gy (w — 0)wc = const.

Larger bandwidth enhancement is possible if we allow Y; to have a negative
imaginary part. This will be treated further down.

Bandwidth enhancement using series—series feedback will be treated for the specific
example shown in Figure 5.29. This is a transadmittance stage which converts an input
voltage into an output current. The series feedback using Z¢ will first of all increase the
input impedance to lower the load on the preceding stage. If it is made complex, it can
be used for significant bandwidth enhancement as well.

Iy

— O——>0
v1l

Fig. 5.29 Bandwidth enhancement using series—series feedback.

Z;

]
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The transadmittance of this stage is

i
=== &0 ,

v o w
: 1+ngf<1+i)—)
T

329

(5.145)

if the FET is described by the simple equivalent circuit in Figure 5.20, and using ot =

gm/Cgs-
If now Zy is a parallel RC network,
R
Zi=—
1+ joR:Cy
and C¥ is chosen, |
- wTtRf’

the frequency dependence in Y1 will disappear:

_ 8&m
1+ ngf’

at least for this simple equivalent circuit!

Yr

54.4 Amplifier configurations with two transistors

In the first part of this chapter, we have seen how the fundamental topologies we can
realise with a three-terminal amplifying device have very different properties in terms
of input and output admittances, as well as voltage and current gains. Further flexibility
in tailoring amplifier properties is achieved when we combine two of the fundamental
topologies. We will use generic FETs in order to help visualise the circuits. However, the
fundamental concepts apply equally to bipolar transistors — in fact, to any three-terminal

amplifying device, as was outlined in the more abstract discussion above.

Common-drain/common-source configuration

Suppose that we want to construct a buffer amplifier, which shall impose a minimal load
on a generator, yet also have a significant voltage gain. This can be achieved with the

combination of

e a common-drain stage (node 2 as the common node), providing the high input

impedance, and

e a common-source stage (node 0 as the common node), providing the voltage gain.

Figure 5.30 shows the schematic of the common-drain/common-source (CD/CS) topo-
logy. Q1 is the common-drain transistor, O, the common-source transistor, Y1, is the

load admittance and Y the generator admittance.

The two important aspects of this configuration are input admittance and voltage gain,

as discussed.
The voltage gain of the second stage is

Em _ &mQ2

v2
Ave=—~— =
VA

Y, +Y gps.Q2 + 1.
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>0, v,

Schematic of a CD/CS amplifier cell. Bias arrangement has been omitted for clarity’s sake.

using Equation (5.107) with the simplifying assumptions indicated there, and the FET
equivalent circuit in Figure 5.20.
We can now calculate the input admittance of stage two:
Y12 =Y 9+ Y1201 — Av.Q2) = jo[Cas.q2 + Cap.a(l — Av.q2)] -

Because Q> is in common-source configuration, we observe the Miller effect, which
may significantly increase the capacitance seen from node A into Q>. To judge the
importance of this, consider the output admittance of transistor Q, which appears
in parallel to Yi g2 at node A. We can use Equation (5.130) with the appropriate
simplifications:

.01 ¥ Y001 + 8, o = 8DS.Q1 + 8mQ2 ¥ gmQl-
The admittance from node A to ground can then be written as
YA = gmo1 (1 + jota),
where 14 is the characteristic time constant of node A:

_ Ces, n Cop,2
8m,Q1 8m,Q1

TA (1= Av,Q2).
As long as (2mta)~! is significantly outside of the intended frequency range of
operation, its effect can be neglected.

The concept of the characteristic time constant of internal nodes is very helpful in
high-speed design, especially when tracking down reasons for unexpected limitations
in performance.

Here, the situation may not be so bad, because the high capacitance seen into Q> is
compensated for by the high conductance seen into the output of O in its common-
drain configuration.

The voltage gain of stage Q1 is Equation (5.125):

~1
v +Y 1
Ayl = va 4 20,Q1 ~ &m,Ql _ -

vy gmQl +Y1,01 1+ jota

Z 10,Q1 + §m,Q1
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The total voltage gain is finally

Av, Q2

— " x~ A ,
1+ jota v

Ay = Av,Q1Av,Q2 &

ifw K r;l. Again we notice the importance of the characteristic impedance of node A.
The input admittance can be calculated from Equation (5.126):

Yi0.q1 . joCas Qi
Ni~Ypq+—F — =JjoCopq + —5 o0 o
14 QL I+3-
Y12 Y@

Recall that in our case, Y7 2 is purely capacitive. As shown earlier, a capacitive load to
a common-drain stage leads to a negative real part in the input admittance (see Equa-
tion (5.128)). Whether this represents a problem for amplifier stability depends on the
generator admittance value Y. This should be kept in mind when investigating stability
problems.

Finally, we take a look at the overall current gain. Because the output current of
the first stage feeds the input of the second, we expect the overall current gain to be the
product of the two individual current gains. However, we have to observe that we always
counted currents positive when they flow info the device (see Figure 5.18). Then,

A= —ArQ1 - A2 (5.146)

The current gain of the first (common-drain) stage is given by Equation (5.129),
observing that now the load admittance is the input admittance of the second stage:
Y901 + 8

. m,Ql)
Y@ + Y e +g, o)+ Yioaie+ Yoq1)
(5.147)
while the current gain of the common-source stage is given by Equation (5.112):

ALl =

(§m,Q2 —Ypo)YL
Y@L +8, 0t Y00t Y200) t Yo L+ Yae) ’

ALy = (5.148)

where Y71, is the load admittance connected to the drain of Q5.

Since the explicit calculation of A presents considerable difficulty, let us make a
number of simplifying assumptions. First, we make the two-ports unilateral, i.e. we
assume Y |, = 0. Then, we assume that the load admittances are always much larger
than the elements Y 5, for both transistors: Y12 3> Y 59 g1, YL > Y 5 - Equation
(5.146) then has a very simple solution:

8 8
Ap= Q2 =mQl ) (5.149)
Y 0.0 Y 10,01

For further interpretation, turn again to our simple FET equivalent circuit (Figure 5.20),
and recall the transit (cutoff) frequency wt &~ gm/Cgs. Equation (5.149) can then be
written as
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O
N v
Darlington amplifier configuration.
w 10} w
Ap=— ( T,Ql 2T,Qz ¥ T,Q2> . (5.150)
w w
Assume now that wt Q1 = wr,Q2 = wr. For @ <« wr, the current gain is now

approximately the product of the current gains of the individual devices, but rolls
off at —40dB/decade, instead of —20 dB/decade. The frequency where |Aj] = 1 is

V2/(V5 = Dor = 1272 0r.

Darlington amplifier

The CD/CS configuration is not quite the same as the popular Darlington [7] topology,
shown in Figure 5.31. The difference is that in the Darlington amplifier, the drain of
Q) is connected to the drain of Q. While the goal is similar, there are two noteworthy
differences:

e The feedback admittance of device Qi, ¥ 5 o;, is now in the path between the
output and the input nodes, and not connected directly to ground as in the CD/CS
configuration. Therefore, the Miller effect will be present at the input.

e The output current of Q1 now also flows through the load. This changes the current
gain equation. Using the same strong simplifications as in deriving Equation (5.150),
we now find

A= [wT,Q] CZUT,QZ + (a)T,Ql " wT,Qz)] . (5.151)
1) 1) 1)

Compared to the CD/CS amplifier, the Darlington has slightly more short-circuit
current gain close to wr. If again both transistors are equal and equally biased, the
frequency where |Aj| = 1 is 2wr. This is why this configuration is sometimes also
called fr doubler. The expression should be taken with a grain of salt. Remem-
ber that ft is derived here from current gain, and that we neglected the feedback
admittances in calculating Equation (5.151). The Miller effect disadvantage of the
Darlington stage therefore does not show up in the simplification, but can signif-
icantly affect circuit performance for small values of Y1 . Further, the current gain
rolls off with —40 dB/decade, which may lead to stability problems when feedback is
applied around the stage. So your mileage may vary.
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Vee

\

Vi Q Va

=
Battjes ft doubler circuit.

Battjes fr Doubler

The well-known circuit shown in Figure 5.32, patented by C. R. Battjes [2], is essen-
tially a Darlington amplifier (Q1, Q2) combined with a current mirror (Q2, Q3), which
makes sure that both transistors in the signal path are operated with the same current. If
they are also of equal size, they will have the same transit frequency. The circuit shown
uses bipolar transistors (as in the patent), but the concept equally works with FETs.
Note that the input capacitance of Q3 needs to be accounted for —if Q1/Q3 and Q> are
supposed to have the same current, then Q> and Q3 need to have the same size, and the
effective capacitance attached to node A approximately doubles (neglecting the Miller
capacitance seen into Q»).

Cascode amplifier
The cascode amplifier is a combination of a common-source (or common-emitter) with
a common-gate (or common-base) topology. It was conceived as a way to overcome the
Miller effect and first described in 1939 using two triode tubes [21], where the cathode
of tube 2 was series-connected (‘cascaded’) to the anode of tube 1. The term cascode
hence refers to cascaded anode. Figure 5.33 shows a cascode realised using FETs.

Let us assess the input admittance first. Because Q7 is in common-source configura-
tion (node 0 grounded), we use Equation (5.109):

Yi=Y00 + Y0 (I —AvoD.

When calculating Ay g1, we recognise that the load admittance is the input admittance
of O, at node A:

8mo1 ~ Y1201
Vi + Yoo +Ynao

Ayl = —

The input admittance Y7 q2 is calculated using Equation (5.117), because Q7 is in
common-gate configuration:

n+Yq

Y@ =Y+ @, qtY00) Y +Y00+Yng
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H "

By
1

Fig. 5.33 Schematic of a cascode stage built with FETSs (bias arrangement omitted).

Assume that g o 3> Y qo, further Y 3> Y5 g, Y9 qo- Then, the input
admittance of Q» simplifies to

Y@~ Y002+ 800
With this simplification, the voltage gain of Q is then

8mao1 Y501

Ayl = —
Y1002+ 80t Y2001 H X2
~ Smai

Yo+ §m,Q2’

o

further assuming that 8man > X 1201+ Y001
The input admittance of the cascode finally becomes

~ gm,Ql 1
Ni~Ypo+tYopoe|lt 7 (5.152)
SmqQ2 | 4 =102
gm,QZ

Using our simple FET equivalent circuit (Figure 5.20) this finally becomes

Q 1
Y1 = jo | Cgs,o1 + Cap,o1 | 1 + Sm.Q1 —F |-
gmQ2 1+ j -

The suppression of the Miller effect is simply explained by the low voltage gain of the
common-source stage —gm.Q1/8&m,Q2 for low frequencies. Frequently, transistors Q
and Q» are chosen the same size, and since they share the same drain (or collector)
current, it follows that gy Q1 = gm,Q2 and Ay g1 = —1.

https://doi.org/10.1017/CB09780511626517.0eFIBFAES RRRKS OMina R Grankrigeedniversity Press, 2010


https://doi.org/10.1017/CBO9780511626517.006

Building blocks for high-speed analogue circuits 335

The calculation of the output admittance starts with the output admittance of tran-
sistor O, which is in common-gate configuration (node 1 grounded), using Equation
(5.118):

Y201+ Y 00

2 2,Q2 = L12,Q2 T £.20,Q2 Y2,Ql +X10,Q2 +120,Q2 +§m’Q2

where Y3 1 is the output admittance of transistor Q' in common-source configuration
(see Equation (5.111)):

EmQ1 ~ Yo )

Noa=Yyu+Ypul(l+
Q Q Yo +Y 901 Y01

where Y is the admittance terminating the input port. We simplify the expressions by
assuming that the feedback admittances are small and the corresponding terms can be
neglected. Then Y5 g1 & Y 5 o and the overall output conductance becomes

—1
8mqe T Y20 )

(5.153)
Y 0,00+ Y2001

Y22 Y500 (1 +
Because g /Y 5o is the magnitude of the maximum voltage gain in common-
source configuration (see Equation (5.108))), an additional sensible assumption is that

§m7Q2 > Xzonz. Then,

-1

g

Sm,Q2

DAYy |1+ —— e — | . (5.154)
Q Y000+ Y2001

In our simple FET example, we finally find

-1
8m,Q2
Y2%8DS,2<1+ ) ,
Q gps,Q1 + JwCas,Q2

and for the quasi-static case, w — 0:

8DS,Q2
1+ 8m,Q2
8DS,Q1

Y, ~

The output admittance is therefore significantly reduced compared to the common-gate
or common-source configurations.
The voltage gain of the cascode stage, Ay = Ay, g1 - Av,Q2, is

SmQi  Em Y@

Ay & (5.155)

N+Y%e 8het Y02
neglecting the feedback admittances. In the FET example,

. 8&mql  1+gpsq2/gm
YL + gps.Q2 I+ jo/or
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or provided that gm 2 > gps,Q2 and w K wrt:

_ 8m,Q1
YL +gpsqQ

In summary, the cascode configuration provides a comparable voltage gain to the
common-source topology, but its input admittance is significantly lower due to the
reduction of the Miller capacitance and its output admittance is significantly higher.

Finally, an important side effect of the cascode shall be pointed out here: the real part
of the output admittance may become negative. In practical devices, the assumption
that parameter Y , is purely real is not correct; a better approximation is Y 5, = gps +
JwCps. If we insert this into Equation (5.153) and separate real and imaginary parts,
we find that the real part becomes negative if

£Ds.01 - €05.02 < w”Cps.2 - (Cps.q1 + Cas.q2),

assuming that g Q2 > gps,Q1 along the way. Frequently, this can lead to amplifier
instabilities, but it may also be used to compensate losses in travelling-wave amplifiers,
as will be discussed later.

5.4.5 Differential amplifiers

An important component in many high-speed electronic circuits is the differential
amplifier. One of the most influential pioneers of biomedical engineering, Otto Schmitt,
is frequently held to be the father of the differential amplifier topology [34] — the ability
of the differential amplifier to reject common-mode signals at its input is crucial for
the measurement of weak bio-electric signals. Incidentally, he also invented the Schmitt
trigger circuit.

A generic differential amplifier topology realised with FETSs is shown in Figure 5.34.
A first noteworthy difference between the amplifiers discussed so far is that the input
and output voltages are not referenced to ground, but to the other input and output
electrodes, respectively.

Figure 5.35 shows the small-signal representation of the differential amplifier, where
the transistors are represented using the generic small-signal equivalent circuit from
Figure 5.17. The transistors are identical.

Differential mode

Any combination of nodal input voltages va = v/, + vV, U = vg + vp can be split into
a differential mode (v, = —vg, v\ = vg = 0) and a common mode (v = vy, V) =
vg = 0). First, we concentrate on the differential mode. To calculate the voltage of the
common mode vg, we first loop through va, vi 1, vi2 and vg:

V1,1 — V1.2
_vg—l—v],] —vl’z—va‘:O—) U’AZ T
On the other hand, vg = vg — v1,1 and therefore
v+ v12
vy = ——————.
2
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T
Yo ¢I0

Fig. 5.34 Generic differential amplifier topology.

O
V2
Y10 M Yi2 0
N
v 2] 11 Y10 ¢ Yao Yoo ¢ Yo lw 2
v A v
Im V11 Im V1,2
Va O
VB YO lVO
\)
Fig. 5.35 Small-signal representation of the differential amplifier.
For symmetry reasons, vg = —vé also implies v; | = —v1,2 and hence

vo =0

in differential mode! The common node A constitutes a virtual ground. This is a very
important concept in high-speed circuit design, as it dramatically reduces problems with
common-node impedances, such as in bond wires to ground, which otherwise may lead
to a variety of feedback problems.
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Now that A is grounded, the two halves of the differential amplifier reduce to standard
common-source (or common-emitter) circuits which we have already analysed. The
input voltage to the left half is vi,1 = v1/2, while the right half receives v 2 = —v;/2.

Using Equation (5.109) to calculate the common-source input admittance Y; cs for
the individual transistors, the differential mode input admittance is

i _ s

Yl,d= _— =

5.156
o 5 ( )

Likewise, the output admittance is half the output admittance Y> cs for the common-
source stage given by Equation (5.111):

(5.157)

Equation (5.107) is used to calculate the common-source voltage gain Ay cs. The
differential voltage gain is then

v2
Ava==Aves. (5.158)

Common mode

In common mode, both input terminals have the same potential to ground: vy = vg.
The individual transistors are connected in parallel then at input and output, resulting in
the equivalent circuit shown in Figure 5.36, and their y matrices can simply be added.
We arrive at an equivalent transistor Q. with the following y matrix:

Yioi+Y i, Y
8 — Y1 Yoi+Yin,

Sm,1

[)’Qe] =2 |:

The parameters are those of the individual transistor. This problem can be treated using
the results of the feedback discussion (see p. 323), converting the y matrix first to a z
matrix, and adding the z matrix corresponding to Yy, which is

Equivalent circuit of the differential amplifier under common mode excitation.
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1 1
_| Y Yo
Yo Yo

and converting back to a y matrix.

Here, we will consider a quick solution using a simplified equivalent circuit where
we neglect both Y j, . and Y 5 . for the transistor Q.. Let Sme = 2gmiand Y o, =
2Y 19.1» as discussed. The voltage gain Ay ¢m for common-mode excitation is then

_ng,l

U2 2Y,
AV,cm = = ( L2)

V]
1+ —
Yogm
8m, 1

~ o0 (5.159)

assuming gm 1/Yo > 1. The output voltage here is taken between one of the output
terminals and ground — the differential output voltage for common-mode excitation is
0, provided that the circuit is perfectly symmetrical. The voltage gain under differential
excitation, but with the output voltage taken between one of the output terminals and

ground, is
Av.d gnd = _@-
o 2Y1,
The ratio
‘ AV,d,gnd _ 8m, 1 (5.160)
AV,cm YO

is the common-mode rejection ratio, a measure for the suppression of common-mode
input signals. We see that Y( should be as small as possible.

Neutralisation of differential amplifiers

The fact that the output voltages of a differential amplifier are exactly 180° out of phase
can be used to elegantly eliminate the effect of the feedback capacitances in the transis-
tors. This is shown in Figure 5.37. The capacitances Cp,, which have to be exactly equal
to Cgp, feed a current into the gate nodes of the two transistors, which is equal in mag-
nitude, but of opposite sign, compared to the currents flowing through Cgp, cancelling
these capacitances.

A more complex differential amplifier example

Differential amplifiers for high-speed applications are frequently more complex and
exploit the special properties discussed in the section on basic amplifier topologies using
two transistors. Figure 5.38 shows a cell common to many high-speed differential ampli-
fiers. Transistors Q1 and Q2 are in common-collector configuration, connected to the
transistor pairs Q3, Qs and Qu, Qg, respectively, which form a differential cascode.
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(,M_

v1l
o—
Fig. 5.37 Differential amplifier with neutralisation.
o Vee
0
1
N—-o
Qs Qs
o—1 & Q,
4] l g
O—
Fig. 5.38 A more complex differential amplifier example. The dashed line indicates the symmetry plane;

all nodes along this plane are virtual grounds.

All nodes along the median, which is indicated as a dashed line, are virtual grounds,
provided that the circuit is driven fully differentially. This is particularly interesting
for the bases of Q5 and Qg, because proper grounding of the base terminal can be a
problem in cascode stages — here, it is easy due to the virtual ground property. Equally,
the emitters of Q3 and Q4 are properly grounded. The DC bias voltage terminal, Vcc,
is also an RF ground, facilitating RF/DC decoupling.
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O—» Q,
e,

T
i

Source-coupled amplifier schematic (bias elements omitted).

These advantages lead to an increasing use of differential topologies in micro- and
millimetre-wave circuits. Drawbacks are the increased power consumption due to the
doubled component count and the increased area consumption. Another problem may
be on-wafer testing, due to the necessity for differential probes.

Source-coupled amplifier

The amplifier topology shown in Figure 5.39 has, at first glance, a configuration very
similar to the differential amplifier. We immediately recognise the source-coupled pair
and the common-current source. However, the amplifier is driven single-endedly and
also has only a single output. Upon closer investigation, Q1 is in common-drain and Q>
in common-gate topology.

The idea is therefore very similar to the CD/CS amplifier discussed earlier. The
common-drain input transistor creates a low input admittance, while the common-gate
stage delivers the voltage gain. The Miller effect is eliminated, and the input is well
isolated from the output.

Compared to the CD/CS amplifier, the input admittance is higher, because the input
admittance of the common-gate transistor Q5 is much higher than that of a comparably
biased common-source transistor: Y1,q2 ~ Y 19 oy + g ; see Equation (5.117) with
Y1, > Y 5 o- The input admittance of the source-coupled amplifier is then

Y001

. (5.161)
8ma2 T Y102

'i=Ypot

14
81 T X0

Using our simple FET equivalent circuit, ¥ 1, = jwCgs and

1)
§m+X1o=gm (1+]w—T)~
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If the transistors therefore have the same wr, the input admittance is

Cas.qQl
Yi=jo|Cep,ol + —%——
1+ 8m,Q2

8m,Ql

It is purely capacitive and does not show the risk of a negative real part, which the
CD/CS amplifier had posed.

The circuit can also be compared to the cascode — the source-coupled amplifier has
a lower input admittance, is non-inverting and requires a lower supply voltage than the
cascode, but the cascode requires less current, because the current through the common-
gate stage is recycled in the common-source transistor.

54.7 Tuned amplifiers

Tuned amplifiers are commonly used at micro- and millimetre-wave frequencies when
the fractional bandwidth is small. The fractional bandwidth is the required opera-
tional bandwidth divided by the centre frequency. For example, the 24 GHz license-free
ISM band has a total allowed spectral width of 250 MHz, so any amplifier will need
sensibly only a fractional bandwidth of 1072, Other applications, such as emerging
ultra-wideband sensor and communications standards, will have fractional bandwidths
which are orders of magnitude larger — the design of amplifiers for such systems will be
treated in the next section (p. 350).
A typical tuned amplifier will use three fundamental circuit techniques:

(i) A resonant load — the load admittance goes through a minimum at the frequency
of operation, maximising the voltage gain for a given transconductance.
(i) Complex conjugate match at the input, ensuring that the available power from the
source is delivered to the amplifier.
(iii) Complex conjugate match at the output, ensuring that the available power from the
amplifier is delivered to the load.

For LNAs and power amplifiers, other matching strategies may apply for the input and
output ports, respectively. These will be treated in the sections on LNA design (p. 365)
and power amplifier design (p. 376). For now, we assume that achieving the maximum
gain is our objective.

Resonant loads
Let us first investigate the resonant load, using the simple example of Figure 5.40. The
schematic also indicates the generator and the equivalent input admittance of the fol-
lowing stage — it is essential to include at least the next-stage input admittance in the
calculations, and due to feedback, the generator admittance will also have an effect,
albeit more weakly.

The admittances Y> g1 and Yi g2 can typically be represented by a conductance in
parallel with a capacitive reactance (exception — if the following stage is a common-gate
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-
o

Generator Load

Fig. 5.40 Tuned amplifier stage with resonant load.

or common-base stage, the reactance may be inductive). These elements are absorbed
into the load. The resulting reactances of the tank circuit are then

Gr = RI:] + Re(Y2,01 + Y1,02)

1
Cr=CL+ Zlm(YZQl + Y1,02)
Lt=Ly.

The transfer function of the voltage gain is

8 1
Av(w) = —‘G—“‘ - - (5.162)
T 14y (“’G_i - wLTGT)
which has its maximum at
1
w) = —F——»
VLt Cr
and its —3 dB corner points at
G3 1 G
wl = —L + + —T
2 4C2  LrCr  2Ct
The bandwidth between the —3 dB points is therefore
G
Aw = 0] — wy = =X, (5.163)
Cr

This equation can be used to choose the proper Gt for the required bandwidth of the
amplifier.
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Using Equations (5.162) and (5.163), we find the product of the voltage gain at w =

wo and the —3 dB bandwidth:
— Av(en) - Aw = 2, (5.164)
Cr

which is interestingly independent of frequency. This is due to simplifying assumptions,
of course. In the ansatz for Equation (5.162) we used Equation (5.107) with the assump-
tion that g = > Y 15, hence that feedback is negligible, which is no longer true at very
high frequencies.

A tuned tank circuit always bears the risk of amplifier instability. For the common-
source amplifier in the example, we use Equation (5.109) to calculate the input
admittance of the circuit, using the expression in Equation (5.162) for Ay (w):

g 1
Yi=Yo+Yp l+=2 c ;
T1+j[wG_£_ LTGT]

c 1
Sm - J I:wG_I; B wLTGT]
=X10+Z12+X12G—T . R
1+[ T ]

a)G_T ~ wLTGr

If, as is usually the case, Y |, & jwCgp, the third term in the sum has a negative real
part for @ < wg. The risk of parasitic oscillations increases with increasing peak gain.
Neutralisation measures as discussed already (p. 325) may become necessary in such
cases.

Input and output matching networks
A common requirement in microwave amplifiers is that input and output admittances
need to have a predefined value. There are two major reasons for this:

(1) If the input and output admittances are the complex conjugates of the source and
load admittances, the source’s available power is transferred to the amplifier, and
the amplifier’s available power is transferred to the load, resulting in the maximum
power gain — this value is called the maximum available gain and will be discussed
shortly.

(i) To avoid standing waves on interconnecting transmission lines, the lines need to
be terminated by their characteristic impedances at least at one end.

The characteristic impedance of a lossless transmission line is real; hence, input and out-
put admittances are normally tuned to a purely real value where the circuit will interface
with a transmission line. For internal nodes, however, this is not necessary — in fact,
as we will see in our discussion of broadband amplifier techniques, at internal nodes
impedance matching is often abandoned altogether, in favour of increased bandwidth,
but with penalties in power gain.

Because the Smith chart (see p. 295) is the most important tool in solving matching
problems, we will conduct the matching discussions using scattering parameters.
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Most importantly, we need to translate source and load admittances as well as two-
port input and output admittances into reflection coefficients. This is easily done:

Yo—Y Z—Zy

CYo+Y Z+2Zy

where Yy = 1/Z is the normalising admittance, which is frequently 20 mS (corre-

spondingly Zy = 50 €2), but can be chosen arbitrarily.

We have seen that in two-ports which are not unilateral (y;» # 0, correspond-

ingly S12 # 0), the input admittance depends on the load admittance, and the output

admittance depends on the source admittance. In general terms and with the two-port

(5.165)

expressed as a scattering matrix, the input (I'1) and output (I'2) reflection coefficients
are (p. 300)

S5
r=Ss —_— 5.166
1 1+ T SplL ( )
S12521TG
I'h==~S —_— 5.167
2=t o T (5.167)

where ['g and I'L, are the generator and load reflection coefficients, respectively.
For simultaneous power match at input and output ports, we need these coupled
equations to be satisfied:

NPAENS
Tf =Sy + 2L
G " 1 — Sl
S1281G
I} = Sy 4 22208
O P e

where I'* is the complex conjugate of I". Solving these equations for the necessary
generator and load reflection coefficients I'g 1, and I' m,, we find
_ C} B B? .

IC1l \ 21Cq] IC1? ’

I'G,m (5.168)

with
Bi = 1— S’ +[Sul” — [A(S)?
C1 = S11 — A(S) S5,
where A(S) is the determinant of the scattering matrix. For the load reflection
coefficients, we find likewise:
¢ [ B B3
Gl \ 221G |Ca?

I'Lm , (5.169)

with
By =1—1811>+ 50> — |A(S)?
Cr =S — AS) S

Simultaneous input and output power match is not always possible, but requires a two-
port to be unconditionally stable (see p. 303).
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Fig. 5.41
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Generic L network topologies.

Generally speaking, impedance transformation can be achieved using

e reactances L, C,
e transformers,
e transmission line impedance transformation.

At micro- and millimetre-wave frequencies, ‘true’ transformers based on coils are
rarely used, because when realised on-chip using planar inductors, they tend to be very
lossy, and additionally have high parasitic capacitances. So only impedance transforma-
tions using reactive networks and transmission line impedance transformation will be
discussed here.

The most fundamental impedance transforming network is the L network, which can
have any of the shapes shown in Figure 5.41.

There is always more than one topology which achieves the desired impedance trans-
formation. This is an important observation, because other considerations need to be
taken into account also. For example, the input port may have to be DC-blocked, in
which case a topology with a series C may be suitable(cases c, d, g, or h in Figure 5.41),
or DC bias may have to be supplied through the port, in which case a series L and no
shunt L are needed (cases a or e). Likewise, it may be advantageous to ground the input
port at low frequencies, favouring a topology with a shunt L (cases b, c, or f).

Figure 5.42 shows an example of an impedance matching problem, solved using sev-
eral topologies. In all cases, the impedance in the lower left quadrant is the starting point
and the centre of the Smith chart is the target.

e Path 1 uses an L in series with the start impedance and then a shunt L.

e Path 2 also starts with a series L, but a larger one, and then uses a shunt C.

e Path 3 starts with a shunt L, and then continues with a series L.

e Path 4 starts equally with a shunt L, but a smaller one, and then uses a series C to
reach the required impedance.

The several options are best visualised using the Smith chart.
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Table 5.1 Matching a complex load (100 €2 parallel to 2.5 pF) to 50
using different L network topologies, f =1 GHz

Path Components Bandwidth
1 Ls 1=3.1nH, Lp »=8.8nH 508 MHz
2 Ls 1=11nH, Cp »=2.75pF 547 MHz
3 Lp,1=26nH, Lg »=7.9nH 561 MHz
4 Lp,1=6.1nH, Cs »=3.15nH 324 MHz

—-j1.0

Fig. 5.42 Example for multiple impedance transformation paths using L networks.

Other aspects of matching networks need to be considered as well. This shall be
done in an example, where a parallel RC load (R = 1002, C = 2.5pF) is matched
to Zp = 50 using the different topologies in Figure 5.42. The results are shown in
Table 5.1.

First of all, we note that the matching bandwidth, defined as the difference between
the frequencies where the reflection coefficient becomes |I'| > 0.32 (return loss less
than 10 dB), is vastly different — path 4 has less than 60% of the bandwidth of the others.
Also, component values may become impractically larger for on-chip implementation —
for example, Lp,; for path 3.
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Fig. 5.43
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Example of (a) a 7-type matching network and (b) its decomposition into two cascaded L
networks.

These calculations have been performed using ideal components. In practice, large-
value spiral inductors also come with considerable series resistances, which is another
aspect to consider.

7 networks are an extension of L networks — they are best thought of as being sepa-
rated into two L networks, as shown in Figure 5.43. The first L network transforms to
an intermediate impedance Zintermediate, Which is then transformed by the second L net-
work to the desired value. 7w networks offer an additional degree of freedom, so we can
additionally design for different matching bandwidths. They are additionally attractive,
because they allow the absorption of interconnect parasitics into the matching network —
e.g. bond pad parasitics on chip and in the package (or on the PCB board) can form part
of C; and C,, while the bond wire inductance can be absorbed into L.

Other combinations of L-type networks exist and can be useful for specific matching
problems, but this is beyond the scope of this book.

Figure 5.44 shows three examples of compact tuned amplifiers in an 80 GHz fr
Si/SiGe HBT technology [6]. The amplifiers share the same basic topology — three
cascaded cascode stages with resonant loads and LC interstage matching using spiral
inductors. Additionally, inductive emitter degeneration (Equation (5.141)) is used to
assist the match by increasing the real part of the input impedance. The use of concen-
trated reactances, even at millimetre-wave frequencies, leads to an extremely compact
layout.

Transmission line segments can also be used to transform impedances. Assuming
lossless transmission lines, the input impedance looking into a transmission line of
length [ and characteristic impedance Z, terminated by an impedance Zy , is

Z1 =7

ZL+ jZotan (27 %) (5.170)

0 ,
Zo+ jZitan (27 1)
where )’ is the wavelength on the transmission line,

/ €0
AN =——.
NG

A very popular example is the quarter-wavelength transformer. In case [ = 1\ /4, the
input impedance becomes
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Fig. 5.44
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Tuned millimetre-wave amplifiers in a Si/SiGe HBT technology, using LC loads and matching
networks. (After [6])

i
=7
In other words, to match two impedances Za, Zp, they need to be connected with
a transmission line which is A’/4 long and has a characteristic impedance of Zy =
V' ZAZg. Quarter-wave transmission line sections are also called impedance inverters —
the reason is obvious from Equation (5.171).

Transmission lines open up additional possibilities in matching. This is shown in
Figure 5.45, again using the same start impedance as above:

Z (5.171)

e In path 1, a transmission line section of impedance Zy =50 €2 is used first to make
the impedance real. The intermediate impedance is 14.5 ©2; hence the quarter-wave
section must have an impedance of +/50 - 14.5=26.9 Q.

e Path 2 first uses a series inductance to make the impedance real, the intermediate
impedance is 28.7 Q2. The quarter-wave section then needs to have a characteristic
impedance of 37.8 Q.

e Path 3, finally, uses a shunt inductance to make the impedance real (Zipermediate =
100 €2) and a quarter-wave section with Zo = 70.7 Q.

Option 2 has the widest matching bandwidth, but the transmission line in option 3 is
likely the easiest to realise.

With increasing frequency, tuned amplifiers using transmission line segments become
increasingly interesting, because spiral inductors are especially difficult to realise and
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-1.0

Matching examples using quarter-wave transmission line transformers.

model, and the main objection against the use of transmission lines — their physical
size in layout — becomes irrelevant as the wavelength shrinks. Figure 5.46 shows an
example. The IC represents a three-stage fully differential amplifier for 77 GHz auto-
motive RADAR systems, realised in a 190 GHz fr Si/SiGe BiCMOS technology [5].
The amplifier provides 16 dB gain while consuming 90 mW from a 3 V supply. Thin-
film microstrip> lines (TFMSLs) are used here for impedance matching purposes. Due
to the high frequency, the resulting IC is still very compact (740 x 540 um? chip size).

Broadband amplifier techniques

Tuned loads and reactive impedance matching networks are not suitable for amplifiers
with large fractional bandwidths, such as those used in high-speed fibre-optic systems,
micro/millimetre-wave instruments, many military systems with high frequency abil-
ity, or impulse-radio ultra-wideband systems. All of these applications need amplifiers
where the gain must be flat over a wide frequency range (often the ratio of upper to

3 In TEMSLs, the ground plane is realised on top of the substrate. This shields the signal line from the lossy
Si substrate, but leads to very narrow signal lines.
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Fully differential Si/SiGe HBT amplifier for 77 GHz, using tuned transmission lines. (After [5])

lower cutoff frequency exceeds the factor of two — multi-octave bandwidths), and almost
always the input and output return loss also needs to stay below a specified value over
the full frequency range.

In the following section, we will discuss some common techniques which prove use-
ful in the realisation of amplifiers with very large bandwidths using concentrated circuit
components. Discussion of distributed amplification, which is also a very important
concept for wideband amplifiers, will start on p. 354.

Shunt peaking

We have already emphasised the importance of the characteristic time constant in the
discussion of multi-stage amplifier topologies (p. 330). We will see that broadband
amplifier design always comes down to modifying these internal characteristic time
constants.

Consider the simple cascading of common-source amplifiers, shown in Figure 5.47
together with a strongly simplified equivalent circuit. The load resistance and the input
capacitance of the following stage are combined into an equivalent impedance to ground
Zeq. Using Zeq, the transadmittance of the cascaded stage can be expressed as

i Ri.gm,18m.2
Yr=—= _gm,lgm,2Zeq = o on

__TLomlsm2 (5.172)
v I+ joRLCgs2
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R, Cas,1 R Casa gjz
Vi l__l_ i lvgsyzl
e T
_—
V. V,
gm,1 1 Zeq gm,2 gs.2
Fig. 5.47 Intermediate node of two cascaded common-source amplifiers, with small-signal equivalent
circuit.
t L
v Cas,2
f S RIEE
T AT
_—
C —> o gm,‘l 7] Zeq gm,Z vgs,2
Fig. 5.48 Cascade connection of two common-source amplifiers with shunt peaking inductor.

Obviously, Ry,Cgs,» is the characteristic time constant of the intermediate node, which

limits the bandwidth to
1 T2

~ RLCGs2  gmaRL

w1

using wt = gm/Cas-

(5.173)

We will now partially compensate the capacitive reactance by connecting an inductor
in series with the load resistor (see Figure 5.48). The transadmittance now becomes

Yr= —8m, lgm,2Zeq

joL
I+ —
8m,18m,2 Ll _ szCgS’z + ]Q)RLCgsl.
Introducing
L RZC
r=—lim= L L
RL L T

we rewrite Equation (5.174) [25]:

Yr= _gm,lgm,ZRL 3

The new —3 dB cutoff frequency is

—m?2 —m2 2
) = W) <T+m+l)+ (T—l—m—l—l) + m?2.
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10 T

Normalised transadmittance

-3dB line
m—eo
0.1 e e~
0.1 1 10
Normalised frequency w/w,
Fig. 5.49 Normalised transadmittance of an amplifier cascade with shunt peaking versus frequency, for

different values of parameter m.

Equation (5.176) is maximum for

m =2,

or finally
1

" Voo

Figure 5.49 plots the normalised transadmittance Yt/ (gm,lgm,zRL) versus the nor-
malised frequency, and for several values of m. We note that

(5.177)

T

e we can achieve 1.8-fold increase in bandwidth;

e the increase in bandwidth comes at the expense of gain flatness;

e however, for m = 1 + /2, the response becomes maximally flat with only a marginal
decrease in bandwidth.

Feedback techniques

We had already seen (Figure 5.29) that a parallel RC combination in series—series feed-
back can be used to completely eliminate the dominant pole in the frequency response of
the transadmittance. Let us consider a somewhat more complicated example now where
the amplifier is loaded by a complex load formed by a resistor and a capacitor in paral-
lel — the typical equivalent circuit of a following amplification stage. The small-signal
equivalent circuit is shown in Figure 5.50. The voltage gain is

Ay = —gnRL Sl L , (5.178)
(1+ jotr) [1 +8+ (rs + é—"s‘w%)]
where
s = RsCs; 1L = RLCL; o1 = Sm
Cas
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AsS Tcs

Bandwidth enhancement using series—series feedback.

The enumerator term can now be used to cancel one of the denominator poles:

e If 1 + jwty dominates, then ts = 71 is the proper choice.
e If the second term dominates, then choose Ts = wp ! This corresponds to the solution
already discussed in Equation (5.145).

Distributed amplification

The amplifier topologies discussed so far employed concentrated circuit elements and
are as such not very different from topologies employed at lower frequencies. The dis-
tributed nature of components, especially interconnect lines, only comes in at the layout
stage. In the wideband amplifier technique we will discuss now, the transmission line
nature is consciously used to establish distributed amplification.

A common problem in achieving high gain at microwave frequencies is that the nec-
essary large transconductance of the amplifying device requires a large device size
(source width or emitter area), which in turn invariably increases the input capaci-
tance. In FETs, in a first-order approximation, the ratio of transconductance to input
capacitance is the transit frequency: gm/Cgs = w@r. In a common-source amplifier, the
dominant time constant at the input is therefore

71 = Z6Cos = Z622 ~ —ZG 1y, ﬂ
wT wT
where Zg is the generator admittance Yp the load admittance and Ay the quasi-static
voltage gain in common-source configuration. The input time constant is therefore
directly linked to the voltage gain of the cell, for a given load admittance.

In narrowband amplifiers, we may be able to compensate for the input capaci-
tance using a matching network, as we have seen. Very wideband amplifiers, however,
preclude the use of tuned networks.

To find a way around the input capacitance limitation, we follow two fundamental
steps:

(i) Instead of using one large device, we will use several smaller ones to deliver the
needed overall transconductance.

(i) The input (and output) capacitances will then be absorbed into an artificial
transmission line.

The second step is the most crucial one. To understand this concept, remember that
any transmission line can be modelled using a ladder-type network of concentrated
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Fig. 5.51 Lumped-element equivalent circuit of a transmission line.

Generator L L Load

i

v [ 1 T1

Fig. 5.52 Lossless transmission line loaded with additional shunt capacitances.

elements, such as shown in Figure 5.51. The line is characterised by its distributed
inductance L', capacitance C’, and the distributed series (R’) and shunt (G') losses. The
characteristic impedance Z( and the propagation constant y of the line are then:

R + joL’

70— 5.179
0 Gt ol ( )

y = V(R + JoL)(G' + joC). (5.180)

Note that the propagation constant y= « + jB, where « is the attenuation constant and
is the phase constant. In many cases, the losses can be neglected (R’ < wL’, G' < wC’)
and we obtain the simple relationships:

L/
Zo~\ & (5.181)
B=wVL C. (5.182)

This opens up a fundamental idea: any capacitance to ground can be made to disappear if
itis absorbed into a transmission line — it will simply lower the characteristic impedance,
and increase the phase constant.

Consider Figure 5.52. The lossless transmission line is loaded by additional shunt
capacitances Cj. The transmission line parameters are now

L/
Zo = —r (5.183)
'+

B=w|L (C/—i—%). (5.184)

The parameter / is the length of the transmission line segment between each shunt
capacitance.

https://doi.org/10.1017/CB09780511626517.0eFIBFAES RRRKS OMina R Grankrigeedniversity Press, 2010


https://doi.org/10.1017/CBO9780511626517.006

356

Fig. 5.53

High-Speed Electronics and Optoelectronics

Ly Ly Load
Y'Y /YY)
Y =Y, G —— G —— Y =Y,
= = = =
Generator Ly = L =

Distributed amplifier concept using FETs in common-source configuration.

Provided that L’ and C’ are chosen in such a way that Yg = YL = Z _1, the trans-
mission between generator and load is unaltered by the presence of the additional shunt
capacitances!

This observation is not new at all. Its earliest implementation is in the Pupin coils,
periodically inserted series loading coils (increasing L’ in our example) which compen-
sate for the capacitance to ground of telegraph and telephony lines. They were invented
in 1894 by Serbian physicist Mihajlo Idvorski Pupin, following earlier suggestions by
Oliver Heaviside in 1893.

Of course, the LC combination also acts as a low-pass filter. The frequency

1
w =
e = (C £ /D)

is called the Bragg frequency of the transmission line structure. The length / must be
chosen such that the Bragg frequency is significantly above the intended frequency of
operation.

Distributed amplifier structures using electron tubes were first described by
W. S. Percival in his 1937 patent [30].

(5.185)

General design procedure

We will now apply the concept to an arrangement of FETs in common-source configura-
tion along two transmission lines, connecting the inputs and outputs, as shown in Figure
5.53. Note that the transmission lines at input and output have different inductance and
capacitance per unit area. The loading capacitances are now the imaginary parts of the
input and output admittances of the common-source gain cells. Using Equations (5.109)
and (5.111) and a simplified FET equivalent circuit, we write for the shunt capacitance
loading the input line:

C1 = Cgs + Cop <1 + g—“‘) , (5.186)
2Yy
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provided that the output transmission line is terminated in its characteristic admit-
tance Y.
The shunt capacitance loading the output transmission line is

C> = Cps + Cap <1 + g—“‘) , (5.187)
2Yo

where Cpg is the parasitic drain—source capacitance.
The unloaded input and output transmission lines must be chosen such that

e the loaded characteristic impedances correspond to generator and load impedances
and

e the phase delays between corresponding nodes on the (loaded) input and output lines
are equal.

Assuming identical generator and load impedances, Zg = Z1 = Zy, we find

L) |
Zy= | ———F =2 (5.188)
Ci+7
N1
L) |
Zr = | —=— =Zp. (5.189)
C)+ &
\ 2 2
The phase synchronism requirement translates into
Bili = B2l
c C
L L (c; + l—‘) =h- |L} (cg + l—z) (5.190)
1 2

The difference in the unit amplifier cell input and output capacitances may result in
very different design parameters for the input and output transmission lines. Figure
5.54 shows this in a practical example. The distributed amplifier shown was fabricated
in an experimental Si/SiGe HFET technology [1]. The transmission lines are realised
in coplanar waveguide form. The difference in geometry for the input (gate) and output

(drain) lines is clearly visible.
: Out

[inputtine Jo=

Fig. 5.54 Chip micrograph of a distributed amplifier with 32 GHz bandwidth, realised in a Si/SiGe HFET
technology (P. Abele, 1. Kallfass, M. Zeuner, J. Miiller, Th. Hackbarth, D. Chrastina, H.v.Kénel,
U. Konig, and H. Schumacher, Electronics Letters, Vol. 39, pp. 1448-1449, 2003. © 2003
IEEE).
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Distributed amplifier with bias arrangement.

The terminating impedances for the input and output lines are placed off-chip in
this example — which brings us to a general problem we did not address so far. The
distributed amplifier concept in Figure 5.53 did not include the bias arrangement. If we
apply a gate voltage to the input and a drain voltage to the output line, a constant current
would flow through the terminating impedances attached to the ends of the transmission
lines opposite to the input and output ports — resulting in generally unacceptable power
dissipation there. The terminating impedances therefore need to be galvanically iso-
lated from the transmission lines. A more practical schematic for a distributed amplifier
would therefore look like Figure 5.55. The bias-related elements Cpjock and Lchoke S€t
the lower cutoff frequency. If a very low lower cutoff frequency is desired, then the
on-chip realisation especially of the blocking capacitors may be a significant challenge.
Lchoke 1s generally placed off-chip.

Gain and loss in distributed amplifiers
Without any losses, the theoretical voltage gain of a distributed amplifier with n stages
should be

Ay = 1 gm (5.191)

Zo

5
where gp, is the transconductance of the individual cell and Z the characteristic
impedance of the output line.

So far, we assumed that the transmission lines were lossless, and that the input and
output admittances of the unit amplifier cells were purely capacitive. The latter assump-
tions particularly are too bold, of course, and we need to assess how the resistive parts
of the input and output admittances impact distributed amplifier performance.

In most calculations so far, the gate (or base) series resistance was neglected. This we
will abandon here. For the case of a FET, the input line is then loaded with an complex
admittance:
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(5.192)

(5.193)

where Rg is the gate resistance and C; the input capacitance as before. As long as
w < (RgC1)~Y, losses due to Rg need not be accounted for, but they will increase

strongly for higher frequencies.

For the output line, some attenuation is always present due to the real part of Y ,, in

Equation (5.111), which is gpg in FETs:

Y, = gps + jo(s,

(5.194)

where C» is the output capacitance as before. The loss introduced to the drain line is

hence frequency-independent.*

When the number of stages, 7, is increased, the power consumption scales linearly.
However, with increasing n, the losses introduced by the amplifier cells become more
important and lead to a situation where the gain scales sub-linearly. This introduces a
practical limitation to the number of stages. For a detailed analysis, refer to Beyer et al.

(1984) [4].

Distributed amplifier variations
Matching input and output capacitances

A common problem in distributed amplifiers is that the amplifier cell input capac-
itance Cp is much larger than the output capacitance C;. In turn, the unloaded
characteristic impedance of the output line will be significantly smaller than that of
the input line. This is significant because the dispersion characteristics of the lines
depend on their geometries — different geometries lead to different dispersions, and
phase synchronism between input and output lines is increasingly lost with rising

frequency.

A simple technique is to increase the output capacitance. This can be done easily
using a transmission line stub between the amplifier cell output and the output transmis-
sion line. As the amplifier output shows a reasonably high impedance, the transmission
line stub acts capacitively when seen from the output line. Figure 5.56 shows this simple

concept, which is used in many practical amplifier examples.

The input capacitance can also be lowered by introducing a series capacitance in
the unit cell input port. This leads to a capacitive voltage division between the series
capacitor and the input impedance of the amplifier, and hence a reduction in gain, but
depending on the application, this may be tolerated for the benefit of an increased
bandwidth. To allow proper biasing, the capacitor must be bridged with a high-value
resistor which has no influence on the RF performance. The measure is shown in

Figure 5.57.

4 The loss due to additional drain (or collector) resistances can be neglected unless they are excessive.
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(a) (b)

Fig. 5.56 Distributed amplifier unit cell with increased output capacitance: (a) concept and
(b) implementation using a transmission line stub.

Fig. 5.57 Input capacitance reduction using a series capacitor.

By changing the series capacitance value along the input transmission line (lower
towards the generator and higher towards the termination), the input voltage across the
amplifying device can be made equal despite the decreasing signal on the transmission
line.

Distributed amplifiers with a cascode cell

Despite the potential of the distributed amplifier concept to eliminate input and output
capacitances by embedding them into an artificial transmission line, there are good rea-
sons to keep input and output capacitances low. One reason is that high input and output
capacitances force the unloaded characteristic impedances of the lines to be very high —
the signal-carrying lines then have to be very narrow and will exhibit high ohmic loss.
Further, a high input capacitance means that the loss due to the gate resistance will start
to matter at much lower frequencies (see Equation (5.192)).

Choosing a cascode as the amplifier unit cell is therefore a logical choice. A simplified
configuration is shown in Figure 5.58.

We had seen that the cascode gain cell is prone to producing a negative real part of
the output admittance (see p. 336). Here, this effect may be used with benefit to com-
pensate for losses on the output line, but amplifier stability has to be carefully checked,
especially at higher frequencies.
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Cascode gain cells in a distributed amplifier structure (bias elements not shown).
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Practical distributed amplifier design using (Al,Ga)As/InGaAs pHEMTS (bias circuitry omitted).

Practical distributed amplifier examples

40 GHz bandwidth distributed amplifier using GaAs pHEMTs

Figure 5.59 shows the schematic diagram of a practical distributed amplifier using a
pseudomorphic HEMT process [16]. Several of the measures discussed above have been
taken here. The unit cell has a cascode topology, but additionally the input capacitance
was reduced using a series capacitor in the input line. The series capacitor is bridged
using a high-value resistor; the additional resistor to ground at the gate node improves
gain flatness at low frequencies.

The gate termination does not have a DC blocking capacitor here, because the gate
line is held at 0 V — the source resistor Rg; provides the slightly negative gate—source
voltage. Note the elaborate drain termination. This is rather typical of distributed ampli-
fiers for fibre-optic systems where a lower cutoff frequency in the kHz range is required:
a broadband termination is created using several RC networks with staggered time
constants. The largest capacitor (100 nF in this case) is necessarily placed off-chip.
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Fig. 5.60

Fig. 5.61
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Drain termination
network

Vg, bias

Chip photo of the amplifier shown in Figure 5.59.
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Frequency response of gain (|51 (), and input and output reflection coefficients (|S11/, [S22])
of the distributed amplifier in Figure 5.59.

The design deliberately uses the negative real part of the cascode cell output admit-
tance to compensate for drain—line losses. Rgy and Rg| improve stability together with
the transmission line in the source lead of the cascode, which acts as a small induc-
tor and reduces the cell’s gain with increasing frequency, avoiding instability at higher
frequencies.

Figure 5.60 shows the chip micrograph of the distributed amplifier. It has six gain
stages and is implemented using standard microstrip line technology (the back of
the chip is metallised). Two adjacent stages share via the connections to ground —
this requires careful assessment of interstage cross-talk issues, but is very efficient in
reducing the necessary chip area.

The experimental frequency response (Figure 5.61), shows a very flat gain up to
about 40 GHz, where the gain drops sharply. This is a very typical feature of distributed
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amplification. Another noteworthy feature is the low reflection coefficient for both input
and output over a very wide frequency range, which is due to the distributed nature of
the input and output impedances.

The midband gain is 11dB, the output power at 1dB gain compression (for a
definition, see Figure 5.72 on p. 372) is 22.6 dBm measured at 20 GHz.

A distributed amplifier on Si using Si/SiGe HBTS

The distributed amplifier concept is not restricted to FETs. They can also be realised
using bipolar transitors or HBTs. In the example used here, the goal is to realise a
distributed amplifier in a production Si/SiGe HBT process on lossy substrates.

The latter issue, the lossy substrate (20 2cm specific resistivity), introduces an addi-
tional complication because neither standard microstrip transmission lines (which use
the substrate as the dielectric) nor coplanar waveguides (which would equally introduce
large substrate losses) can be used. Instead, a thin-film microstrip transmission line
technique (Figure 5.62) was chosen, which creates the microstrip line entirely above
the substrate. Here, the signal line was placed in metal 3, while metal 1 acts as the
ground plane, shielding the signal completely from the lossy substrate. The thin dielec-
tric, however, leads to very narrow signal lines for the characteristic impedances in
question (50-100 €2) and strongly increases series resistance losses.

Furthermore, the input admittance of a bipolar transistor is not purely capacitive, as
we could safely assume for FETs. Using the hybrid 7 equivalent circuit of Figure 5.17,
we can estimate the admittance Y for a bipolar transistor:

1 1
Y10, bipolar — + Jo <CJBE + TB—C> , (5.195)
’ /3f Vr VT

where fr is the small-signal current gain in common-emitter configuration, tg is the
base transit time, Ic is the collector current in this bias point and Vt = kT /q is the

thermal voltage. The real part of Y ;, would strongly attenuate the signal travelling on
the input line and has to be eliminated.

Passivation Metal 3

Metal 1

SiO, inter-metal dielectric
|

Example of a TFMSL on a silicon substrate.
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The latter problem can be solved using a common-collector (emitter follower) input
stage (Equation (5.126)):
Yy
1+

in=Y;,+

It is evident that the input admittance is much smaller. Furthermore, we had seen in
Equation (5.128) that given a capacitive component of Y1, the real part of the input
admittance becomes negative. This can be used to compensate for ohmic losses on the
input line, but always bears the risk of instability.

If a cascode gain cell is chosen, the negative real part of its output admittance can
equally be used to compensate for ohmic losses on the output line, with the same
stability caveat.

Figure 5.63 shows an example of a differential amplifier where all of these measures
have been taken [33]. It was realised in Si/SiGe HBT technology, with transistors of
T fmax = 80 GHz, on a 20 Q2cm substrate.

Three cascaded emitter followers are used in the input to achieve the appropriate low
input capacitance and negative input conductance. The differential cascode gain cell
has open collector outputs which connect directly to the output transmission lines. The
capacitively shunted emitter degeneration resistors in the common-source pair improve
the bandwidth through a positive gain slope of this stage.

Note the extensive use of level shifting diodes (transistors with their base—collector
contacts tied together). This is necessary due to the low collector—emitter breakdown
voltages typical of high- fr Si/SiGe HBTs.

The unusual differential topology solves an additional problem of silicon-based
MMICs: The absence of through-the-substrate via holes makes low-inductance ground-
ing highly critical. The differential topology eases packaging by creating an on-chip

o
In(+) : : In(-)
K Out(-) Out(+) j

—

IR IE N Ly

Gnd

Schematic of a differential distributed amplifier gain cell using Si/SiGe HBTs.
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Fig. 5.64 Chip photo of the differential distributed amplifier.

ground, as already discussed. In wideband amplifiers, it is not suitable for all system
architectures, however, due to the need for ultra-wideband baluns.

Figure 5.64 shows the chip micrograph of the structure. The chip size is 1.7 x
0.7mm?. The narrow width of the thin film Microstrip line is very apparent. The
differential gain is 13.6 dB and the —3 dB bandwidth is 32.2 GHz.

5.4.10 Low-noise amplifier

A very frequent requirement is the design of an amplifier with minimum noise figure —
an LNA. This is especially important in weak signal reception environments such as in
satellite receivers.

We have seen earlier that the noise figure of any two-port depends on the source
reflection coefficient presented to it (see p. 310). The parameters needed for noise-
optimum design are

(i) the noise-optimised source reflection coefficient for which the two-port noise figure
is minimal: I's op;
(ii) the minimum noise figure F,i, which provides the two-port noise figure under the
condition that the source reflection coefficient is the noise-optimised one: I's =
s, opts
(iii) the normalised equivalent noise resistance r,, which describes the sensitivity of the
noise figure F on deviations from the noise-optimised source reflection coefficient
r S,opt-

Using these parameters, the noise figure is given by
2
4ry iFS - 1_‘S,opt|
5
(1 - |FS|2) |1 + FS,opt|

In practical two-ports using active devices, the noise parameters are also bias-dependent.
Of particular interest is the dependence of Fpj, on the drain or collector current.
Qualitatively, it is shown in Figure 5.65.

An additional aspect needs to be considered — while in principle any reflection coef-
ficient |[I'| < 1 can be transformed into any other using reactive matching networks,
practical limitations need to be considered. If the end points of the transformation are
located too far apart, the resulting matching network will either be very narrow band
(if the reacting matching elements are sufficiently low loss) or introduce significant

F=Fu+ (5.196)
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Fig. 5.65 Qualitative dependence of the minimum noise figure on the source or collector current.

Impedance
transformation

Fig. 5.66 Noise matching example using device scaling and impedance transformation.

additional losses, which deteriorate the noise figure according to Friis’ formula. For
LNA design, this means that I's opt should be suitably located. I's op¢ can be changed by
changing the device width (‘scaling’) — a larger device width results in larger values of
Y. S,opt-

For a better understanding, refer to Figure 5.66. We assume that the original source
reflection coefficient I's, e.g. the feed point impedance of an antenna at resonance, is
real, and the corresponding impedance is equal to the normalising impedance of the
Smith chart, hence I's = 0. The original noise-optimised reflection coefficient I's qpt
is located too far towards the outside of the Smith chart. By choosing a larger device,
I"s,opt is achieved in a location which is much closer to I's. In fact, this location is ideal
because the transformation from I's to F/s, opt €N be achieved conveniently using only
a series inductance.
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The fundamental design steps of the LNA’s input stage are hence the following:

(i) Pick a suitable device size which puts I's p¢ into a convenient location with respect
to the original source reflection coefficient I's.
(i1) Adjust the bias point such that the optimum Fjy;, is achieved.
(iii) Design the input matching network.

Because the bias point affects I's op, a few iterations may be necessary.

In principle, matching for optimum noise performance (I's = I's opt) and matching
for optimum power transfer at the input (I's = I"?)) are unrelated. A frequent require-
ment, however, is the combination of optimum noise performance and a minimum return
loss, hence I'; A I's opt. This cannot be achieved using impedance transformation net-
works between the source and the LNA input, because that would modify I's op¢ for the
resulting two-port and I'j, in the same way. Instead, I'j, can be modified in two ways
which leave I's op¢ invariant:

(i) through lossless feedback;
(i) by mismatching the output for non-unilateral two-ports, utilising the fact that the
input reflection coefficient depends also on the load reflection coefficient:

So1812TL

Cyp=95]——.
in 11 1 _SZZFL

Figure 5.67 summarises the individual reactive networks surrounding the LNA core,
which can be used in the design to fulfil noise and return loss specifications.

The feedback elements Z4 (series or current—voltage feedback) and Zp (parallel or
voltage—current feedback) are used to set I'j; while leaving I's op¢ invariant, as dis-
cussed. M1 provides noise match or, after suitable modification of I';, using feedback
techniques, simultaneous noise and power match (minimum noise figure and minimum
input return loss). M2 can be chosen either to present the needed I'L, to the LNA core
for adjustment of T, (see above), or to achieve power match at the output (minimum
output return loss).

Very commonly, Z, is an inductor. As already shown in Equation (5.141) this pro-
vides an increased real part of the input impedance. Consider the case depicted in
Figure 5.68.

Zg

1
| S

Zs

LNA
( g M1 Core M2 2L
ZAQ

Matching and feedback networks in LNA design.
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Simultaneous noise and power match example using inductive series feedback and an input
matching network M 1.

Without any feedback or matching network, the input reflection coefficient is [y,
corresponding to an input impedance of R, — 7 Xin. The location indicated in the exam-
ple would be typical for a FET. The goal is now to transform T, to a new location
I~ ngopt. We connect an inductor L in series to the LNA core. Applying Equation
(5.141), we find for the input impedance of the LNA core with feedback:

Z!, = Rin+orL + J (@oL — Xin) - (5.197)

On the Smith chart, the transformation path corresponding to the effect of L can be
interpreted as first increasing the imaginary part, starting from I, and then increasing
the real part, as shown in the lower part of Figure 5.68.

In a second step, matching network M1 (which in the example is simply a series
inductor) transforms both Fi’n and I's op towards I's, achieving the required simultane-
ous optimisation of noise and input return loss.

For the LNA core, cascode stages (see p. 333) are very frequently being used at
microwave frequencies. This is because the aforementioned scaling, placing I's op in an
‘easily matchable’ location results frequently in relatively large transistors, where the
Miller effect (discussed on p. 318) can be significant — adoption of a cascode topology
is a proven way to reduce the increased input capacitance associated with the Miller
effect.

5 As an aside, you may notice that with increasing L, Fpin decreases — the associated gain G,ss, however,
also decreases. The entity invariant to reactive feedback is the noise measure M = Fuin/ (1 — G;:)

https://doi.org/10.1017/CB09780511626517.0eFIBFAES RRRKS OMina R Grankrigeedniversity Press, 2010


https://doi.org/10.1017/CBO9780511626517.006

Building blocks for high-speed analogue circuits 369

Vee

(@]
N

Vref @)

R1 L2 R4

C3
R3 Q3 l——f\—> to next stage
Q1 Q2

L1

= = = -+

Fig. 5.69 First stage of a three-stage LNA for 24 GHz using Si/SiGe HBTs.
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Fig. 5.70 Layout of the three-stage 24 GHz LNA.

As a practical example, we will discuss a three-stage LNA for 24 GHz using Si/SiGe
HBTs [35]. The schematic of the first stage is shown in Figure 5.69.

Transistors Q2 and Q3 form the cascode LNA core; Q1 forms a current mirror with
Q2 to set the latter’s collector current. Q3’s base voltage is then set using the voltage
divider R4/R5. All capacitors are large-value bypass capacitances.

Inductor L1 is used to allow simultaneous noise and power match along with the
proper sizing of Q2. There is no on-chip inductance in series with the /n port, because
the bond wire is used instead, efficiently including this parasitic into the design. L2
forms, together with the capacitance between the collector Q3 and ground and the input
capacitance of the following stage, a parallel resonance which provides the LNA with a
bandpass characteristic.

The other two stages are identical in topology, but due to the different source
impedances of the preceding stages, the inductive source degeneration of the common-
emitter transistor (Q2) is adjusted.

Figure 5.70 shows the layout of the three-stage amplifier. Note that the source degen-
eration inductors are constructed as two-layer stacked inductors, while the tank circuit
inductors (L2) are conventional spiral inductors.
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Gain and noise performance of the 24 GHz LNA using Si/SiGe HBT technology.

The circuit was realised in a Si/SiGe HBT technology with fr, fmax = 80GHz
and characterised on wafer. Results of a small-signal characterisation are shown in
Figure 5.71. The circuit shows the targeted bandpass performance with the gain peak
at 24 GHz (the intended application is in the 24 GHz ISM band). The minimum noise
figure at 24 GHz is 5.6 dB, while the 50 €2 noise figure is slightly below 6 dB. This devi-
ation is not surprising, as the circuit was designed to provide optimum noise figure with
the bond wire parasitic included. The gain with a 50 2 source impedance is G59 =
21.4 dB, while the associated gain under noise match conditions is G, = 22dB —in
this circuit, the noise-optimised source impedance is actually slightly closer to 50
than the input impedance.

Amplifier linearity

So far, we treated amplifiers as perfectly linear systems — the output signal can always
be described as a linear combination of the input signals. In reality, however, any cir-
cuit including active devices will show a non-linear behaviour and the assumption of
linearity holds only for small deviations around a given operating point.

In practice, the non-linear behaviour of amplifiers will generate nonlinear distortions,
which create non-linear deviations in time-domain signal shape, and additional spectral
components in the frequency domain which have to be reckoned with.

Single-tone excitation
A common way to treat general non-linear functions is the Taylor series expansion. A
non-linear function f(x) is expanded around x = x( as

X £
fo =Y #(x —x0)". (5.198)

v=0

where f W) (x) is the v derivative of f with respect to x in x = xp.
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Now assume that we apply a single sinusoidal signal to our non-linear system:
a(wt) = Ag + A sin(wt).

The output signal f(wt) can now be described by the following Taylor series
expansion (xog = 0):

f(wt) = koAo (5.199)
~+ ki sin(wt)
+ ko sin?(wt)
+ k3 sin® (wt)
+....

The first two lines in Equation (5.199) provide the linear response, while the following
terms are non-linear distortions. Consider that

1
sin?(wt) = 5 [ —cos 2 wt]

1
sin’(wt) = 2 Bsin@n) —sinGen],
and we find that Equation (5.199) turns into
k
flwt) = koAg + ?2 (5.200)
3k
+ <k1 + T;) sin(wt)
k
— ?2 cos(2wt)

k
- 23 sin(Gwr)
N

We easily see that the non-linear distortion results in new spectral components (har-
monics) being generated, which are related to the fundamental components as integer
multiples.

A simple procedure to assess an amplifier’s linearity is the single-tone excitation test.
A test generator with high spectral purity and adjustable power is connected to the
input of the amplifier, and a spectrum analyser to the output. Increasing the input power
(Ppn), the power of individual spectral components at the output is recorded. Plotting the
output power levels as a function of the input power on a double-logarithmic scale, we
obtain a graph similar to the one shown in Figure 5.72.

For low power levels, the output power of the fundamental spectral line will increase
linearly with the input power. Gradually, it will, however, rise more slowly — gain sat-
uration sets in. When the power ratio between the extrapolated linear increase and the
actual curve is 1 dB, the 1 dB compression point (P_14p) has been reached. It is a mea-
sure of the maximum power the amplifier can deliver in linear operation. Depending
on the application, it is referred to the input (e.g. LNAs) or the output (e.g. power
amplifiers).
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Fig. 5.72 Single-tone excitation test of an amplifier, showing definitions for the 1 dB compression,

second-order intercept and third-order intercept points.

The spectral power at the second harmonic increases twice as fast as the fundamental

power, before it also shows saturation. Extrapolating the curve at low input powers, we

find the single-tone second-order intercept point at the point where the extrapolation

intersects the extrapolated fundamental power.

The spectral power at the third harmonic increases three times as fast as the fun-
damental power. Its extrapolation intersects the extrapolated fundamental power at the

single-tone third-order intercept point.

The intercept points can also be referred to the input or the output, depending on the

application.

In many applications where the operational bandwidth is only a small fraction of the
carrier frequency, the generation of harmonics is not necessarily a problem, because they
can easily be removed by filtering. For example, frequency modulated (FM) transmitters
are operated under strongly non-linear conditions (class C, see p. 377), and the resulting
harmonics in the output signal are simply removed by low-pass filtering.

Two-tone excitation

An FM signal is a particularly simple example of modulation, because the resulting
signal has only a single spectral component (which varies in frequency, but that is irrel-
evant here). Most modulated signals, however, consist of many spectral components

which are present at the amplifier input simultaneously.

To understand what amplifier non-linearity will do to these signals, let us construct a
simple experiment, where the input signal is formed by two spectral components (at w
and wy) of equal amplitude, applied to the input of the amplifier. The output is connected
to a spectrum analyser again. The corresponding block diagram is shown in Figure 5.73.

Again, the test generators need to have very high spectral purity.
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w1

Spectrum
Q analyser

w2
Schematic representation of a two-tone excitation test of an amplifier (DUT = device under test).

Mathematically, the description of the distorted output signal becomes much more
complex. We obtain:

e Fundamental components at w; and w;.
e Harmonics of the input signals (at 2w 2, 3wy 2, . . .).
e Components due to the product of the two input signals — consider that

sin(wit) sin(wyt) = %{cos [(w1 — wp)t] — cos [(w1 + wo)t]}. (5.201)

The multiplication term therefore produces spectral components at the sum and
difference of the two input spectral lines. These components are called two-fone
second-order intermodulation products.

e Components due to the product of a fundamental component and a second-order
harmonic

1
sinz(wlt) sin(wyt) = 3 [sin(wyt) — sinRwit + wyt) + sinwit — wyt)] (5.202)

1
sinz(a)zt) sin(wt) = 3 [sin(wit) — sin(Rwyt + wit) + sin(Qwyt — wit)]. (5.203)

These terms hence generate spectral components at 2w 2 + w2 1, which are called
two-tone third-order intermodulation products.
e Higher-order components which are neglected here.

Figure 5.74 schematically shows the spectral components generated by non-linear dis-
tortion of a two-tone signal, up to the third order. Note that second- and third-order
harmonics as well as the second-order intermodulation products are significantly far
away from the original signal and can most often be removed by filtering. Of particular
concern are two third-order intermodulation products at 2w —w> and 2w, — w1, because
they are close to the original spectral components and cannot be removed by filtering.

Just as in case of the single-tone excitation, we can plot the output powers at the fun-
damental tones and the close-in third-order intermodulation components as a function
of the input power. Figure 5.75 shows an example of such a measurement. The two-
tone third-order intercept point is found by extrapolating the low-power portions of the
curves, where the relationship between input and output powers has a linear shape on a
double-log plot. It can be referred to the input or the output.

Often the system requirement will be formulated in terms of the intermodulation
distance (IMD) or the dynamic range, not in terms of the intercept points.
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Fig. 5.74 Schematic representation of spectral components generated from a two-tone excitation through
second- and third-order non-linearities.
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Fig. 5.75 Determination of the two-tone third-order intercept point.

The IMD, measured in a two-tone excitation test, is simply the power ratio between
the power level of the two carriers at the amplifier output and the highest inter-
modulation spectral lines. The most prominent ones will typically be third-order
intermodulation products. Then, the IMD can be calculated from the third-order inter-
cept point. Consider again Figure 5.75 and remember that on the double-log scale, the
Pout = f(Ppp) transfer curve for the fundamental component has a slope of 1, while it
is 3 for the third-order intermodulation products. The distance between the curves for
the fundamental and the intermodulation products is the IMD on the log—log scale. The
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Determination of the SFDR and the BDR in a two-tone excitation measurement.

powers are expressed most often in dBm® on a logarithmic scale. Therefore,

IMD _ 1IP3 Pin
dBm dBm)/’

(5.204)

dB

where IIP3 is the third-order intercept point referred to the input.
On a linear scale (powers in W), the IMD can be expressed as

P32
IMD = . (5.205)

P

Specification of an amplifier in terms of dynamic range combines linearity and noise.
There are two definitions, which are compared in Figure 5.76.

The spurious-free dynamic range (SFDR) is the IMD at the point where the power
of the third-order intermodulation products is equal to the noise floor. The blocking
dynamic range (BDR) is the distance between the 1 dB compression point P_jgg and
the noise floor.

Adjacent channel power ratio

Modern communication systems have frequently very complex modulation schemes,
with many spectral components present. They are, therefore, very sensitive to inter-
modulation effects in non-linear amplifiers. A two-tone measurement can only give an
indication of linearity, but is no solid proof of the amplifier’s suitability.

A very realistic test is the ACPR (adjacent channel power ratio) test, which is always
specific to a certain modulation technique. Figure 5.77 shows an example for a UMTS
signal. In a first step, the integral powers within the channel bandwidth need to be cal-
culated from the spectral analysis. Then, the ACPR is calculated as the ratio of the
power in the band of operation to either the lower or higher adjacent channel. It is a

6 dBm means decibels relative to 1 mW, i.e. 0dBm = 1 mW, 20 dBm = 100 mW, etc.
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Fig. 5.77 Example of an Adjacent Channel Power ratio (ACPR) measurement: Power spectral density

(PSD) versus frequency, with channel limits indicated.

direct measure of the interference generated by transmitter non-linearities in adjacent
channels.

5.4.12 Power amplifiers

Power amplifiers have the task of amplifying signals before they are delivered to loads,
such as antennas or cables. Critical criteria are

e maximum output power, for example measured in terms of output power at the 1 dB
compression point P_j g (see Figure 5.72);

e gain (either small-signal gain or large-signal gain at a given output power);

e gain and potentially phase deviation across the operational bandwidth;

e linearity, defined by parameters such as the output-referred two-tone third-order
intercept point, the IMD at a given output power, or the ACPR at a given output
power;

e efficiency — at microwave frequencies, it is customary to use the power added effi-
ciency (PAE), the ratio of the power difference between output and input to the DC
power:

Pout_Pi 1
PAE="2""1 _,(1-—), (5.206)
Ppc G

where 7 is the collector or drain efficiency (7 = Poy/ Ppc) and G the amplifier gain.
Classes of operation

Since the days of vacuum tubes, amplifier operation has been described by classes,
which describe where the amplifying devices are biased in a quiescent state.
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HEMT drain current /p and transconductance gy, as a function of the gate-source voltage Vgs
with bias points for power amplifier classes A, B and C indicated.

For an understanding of the ‘classical’ classes A, B and C, refer to Figure 5.78.
The example shows the drain current and transconductance of a HEMT. For the
classification, we observe the drain current curve.

In a class A amplifier, the gate-source voltage Vgs is set in the region where the
output current Ip is a linear function of the input voltage Vs — the transconductance is
approximately constant. For both positive and negative half-waves of the input signal,
current will flow — the conduction angle is 360°. In this bias point, the amplifier will
exhibit a very high linearity, but low efficiency. The theoretical maximum is 50%, but
at microwave frequencies, values of 30% would already be very satisfactory.

For class B, the device is biased at pinch-off. Only the positive half-wave of the input
signal will then generate an output current flow — the conduction angle is 180°. The
efficiency will increase theoretically to 78.5% (it /4), and at microwave frequencies it
can still reach 60% or higher, but the deviation from a sine wave in the output current
creates non-linear distortions.

A class C amplifier has a quiescent bias point where Vgg is significantly below the
threshold voltage Vi,. Output current will flow only if the momentary Vgs() > Vi,
therefore the conduction angle is <180°. The efficiency can still be higher; however,
due to the lower conduction angle, the non-linear distortions are also increased.

Switched amplifiers

There is another interpretation of class C operation, which is helpful in understanding
the way that amplifiers in class D, E and F operate. For this, look at Figure 5.79. It
shows the output I-V characteristics of a HEMT (but this could be any FET). Provided
that the driving voltage is large enough, the transistor simply changes between two
saturated states with very different differential resistances. In the quiescent point, the
transistor is in cut-off and the differential resistance between drain and source is very
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Fig. 5.79 Saturated class C operation in the output I-V characteristics of a HEMT.
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Fig. 5.80 (a) Simple class C amplifier topology and (b) its equivalent circuit.

high. For a sufficiently high input voltage, the transistor reaches another saturated state
with small rps.

We can, therefore, model the transistor in saturated class C operation simply by a
switch in series with its residual differential resistance rpg. Figure 5.80(a) shows a sim-
ple class C amplifier stage. The load is embedded in an LC resonant circuit which acts
as a bandpass filter to suppress the harmonic frequency components other than the fun-
damental. The RF choke (Lcnhoke) provides a constant current, at least on the time scale
of interest. This circuit can also be realised with an LC parallel resonant circuit, by
the way.

Replacing the choke with a constant current source, and the FET with a periodically
actuated switch and its series resistance rps, we arrive at the equivalent circuit in Figure
5.80(b). The class C amplifier operates in this configuration by periodically shunting
current away from the load.
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Class C amplifier: (a) power factor « and (b) drain efficiency g as a function of frequency.

A detailed analysis of class C operation is found in [17]. First, note that due to the RF
choke, the average voltage across the load is the supply voltage Vpp. The peak voltage
is (1 + «) Vpp and the minimum voltage (1 — «) Vpp, where

.9
(@) = 45 () (5.207)

0 +sin(0) + Zges

Here, 6 is the conduction angle. Note that for rps — 0, ¢max = @(0 = 7)) = 1.27 -
the maximum voltage across the transistor can, therefore, exceed the supply voltage by

a factor of 2.27.
The output power in saturated class C operation is

(aVpp)?
Pout = R (5.208)
The drain efficiency is
2
DS o
H=pg——-— . 5.209
") RL 6 — 2a sin (%) ( )

Both the power factor « and the drain efficiency 7 are shown in Figure 5.81 as a function
of the conduction angle 6. Note that the output power always peaks at § = 7, but that
the efficiency has its maximum at much lower conduction angle. The normalised on-
resistance of the FET, rps/ Ry, has a significant influence on both the output power and

the drain efficiency.

Class D amplifier
Above, we interpreted the class C amplifier as a resonant circuit driven by current

pulses, where for maximum efficiency the current flow angle was 6 < x. We can,
of course, not only turn the current on and off, but actually reverse it, as shown

schematically in Figure 5.82.
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Square-wave drive

Fig. 5.82 Class D amplifier principle.
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Fig. 5.83 Example implementations of class D amplifiers. After [17].

Instead of a single-pole, single-throw switch, the equivalent circuit shows a double-
pole, double-throw switch which periodically reverses the current through the load. The
parallel resonant circuit again eliminates all harmonic frequency components except the
fundamental one.

In practice, the switches are realised with transistors, of course. Figure 5.83 shows
two examples. In Figure 5.83(a), the current reversal is achieved using a transformer
where the current is fed into the centre tap, and the ends of the primary coil are
connected alternatingly to ground. This is a very common solution at lower frequencies.

At microwave frequencies, the transformers are difficult to realise, and in any case
they do not lend themselves easily to monolithic integration. The circuit in Figure
5.83(b) is then more practical — it avoids transformers altogether; however, now we
have four transistors to control instead of two: in this bridge configuration, transistors
QI and Q4, and Q2 and Q3 conduct alternately to achieve the current phase reversal
across the load.
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Class D amplifier example using a series-fed load. After [17].

Note that in both implementations, the load floats — it has no direct ground reference,
which is often a problem for microwave systems where ground-referenced (single-
ended) transmission is more common. This can be avoided in a class D amplifier if
a series-fed load is applied. This is shown in Figure 5.84. The bandpass function is now
realised with a series resonant circuit (Lo, Cp), and the voltage is alternated, not the cur-
rent. Still a balun is needed at the input, unless V(¢) is already available in differential
form.

The class D amplifier output power is in saturation [17]:

2V3
Pou = 22, 5.210
out T[ZRL ( )
while the drain efficiency is
Ry
= — 5.211
"= R+ ros ( )

at least for the circuits according to Figures 5.83(a) and 5.84. rpg is again the channel
resistance of the FET for low Vpg (‘on-resistance’). For the circuit in Figure 5.83(b),
the efficiency is lower because the switch resistance doubles.

Class D amplifiers place high demands on the ideality of the switches and on the
timing. This is particularly true for circuits such as in Figure 5.83(b) or 5.84, where
switches are stacked — they must never conduct at the same time, not even for brief
periods. Therefore, class D amplifiers are mostly restricted to lower RF frequencies.

Class E and F amplifiers

Class E and F amplifiers are derived from class C. The idea in a class E amplifier [38] is
to make sure that the drain-source voltage of the switching transistor (see Figure 5.80)
is zero when the transistor switches, leading to a reduction of losses due to capacitive
charging. This can be achieved by a modified output network. Consider Figure 5.85. At
first glance, it looks like a class C amplifier with a series resonant feed, with the addition
of shunt capacitor C». Additionally, the series resonant filter is tuned to a frequency
below the intended frequency of operation wq by increasing L. Adjusting L and Co,
the voltage-free switching condition is found and the efficiency is maximised.
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Simplified class E amplifier schematic.

An in-depth analysis of class E operation can be found, e.g. in [8]. The inductance
L is chosen as
. 1+ 1.153w9C Ry,

(5.212)
! a)(z)Cl
The capacitance C, is
2
Cr=—rr. 5.213
7 3467w RL G213

A problem may be that the maximum drain-source voltage is even higher than in the
class C amplifier, Vps max =~ 3.56Vpp.

The class F amplifier increases the efficiency by appropriately terminating the har-
monics. The idea is to achieve square-wave voltage excitation with respect to the
drain-source voltage, as in case of the series-fed class D amplifier (Figure 5.84).

A well-known fact from Fourier analysis is that a square wave (rectangular sig-
nal with 50% duty cycle) in the time domain produces only odd harmonics in the
frequency domain. We must, therefore, make sure that all odd-numbered harmonics
(n=1,3,5,...)arestill present in the drain-source voltage. The load should, therefore,
present an open to the transistors at these frequencies.

A way to achieve this is to use the transforming properties of quarter-wave transmis-
sion lines, which we discussed much earlier; see Equation (5.171) on p. 349. Assume
that a transmission line, which is a quarter wavelength long at the fundamental fre-
quency, is terminated by a short at all harmonic frequencies except the fundamental.
Then an open will appear at the input for all odd-numbered harmonics, while a short
results for all even-numbered harmonics, where the electric length of the transmission
line is a multiple of A /2. The modification of the original class C topology (Figure 5.80)
is quite straightforward, as Figure 5.86(a) shows. A is the wavelength at the frequency
of operation wg. The resonant circuit formed by L, Cy is resonant at wg; Co then acts
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Fig. 5.86 Topology of a class F amplifier: (a) using a quarter-wave transformer and (b) using a parallel

resonant trap tuned to the third harmonic.

as a short at the higher-order harmonics. This short is transformed into an open by the
quarter-wave transformer at all odd-numbered harmonics.

In monolithic integration, the transmission line transformer is frequently much too
long, and it may introduce significant losses. In many cases, it is perfectly acceptable to
just use the third harmonic. This is shown in Figure 5.86(b). Here, a simple parallel LC
circuit blocks the third harmonic (3w), while it acts as a short for all other harmonics
and the fundamental frequency.

5.5 Oscillators

Oscillators are crucial components in almost any microwave system. Their fundamental
task is to generate AC energy at a well-defined frequency from DC sources. A typical
use of an oscillator is shown in the generic receiver block diagram of Figure 5.87, where
it converts the input signal to a lower intermediate frequency. The mixer circuit, which
is also needed for the frequency translation, will be discussed in the next section.

The class of oscillators discussed here has three aspects in common:

(i) a resonator to set the frequency of oscillation,
(ii) the generation of instability to allow the onset of oscillation, and
(iii) amplitude control to establish a stable amplitude in steady state.

Simple relaxation-type oscillators, such as found in simple digital timing circuits, will
not be covered here.

5.5.1 Resonators — a brief overview

The resonator has the task of setting the oscillator’s natural frequency.
The most common resonator types are

e lumped-element LC resonators, which come in either series or parallel resonance
forms;
e transmission-line resonators,
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e cavity resonators using waveguide elements;

e dielectric resonators, which use high €; ceramics and are typically combined with
transmission line coupling structures;

e quartz crystals and similar devices which use the piezoelectric effect to derive elec-

trical from a mechanical resonance — surface acoustic wave (SAW) and bulk acoustic
wave (BAW) resonators also fall into this category.

Generic receiver block diagram.

Other resonator types, such as the magnetically tuned YIG (yttrium iron garnet)
resonators, have only very limited use in speciality applications.
Critical aspects for resonators are

e the quality factor, which will be discussed in more detail below;

e the reproducibility of the resonant frequency — this can be a significant problem in
BAW and SAW resonators;

e the stability of the resonant frequency against changes in temperature, mechanical
shock and aging;

e the runability of the resonant frequency — mostly established using variable capaci-
tance elements.

For fixed-frequency oscillators, quartz crystals can still be considered to be the gold
standard. Replacement of quartz resonators by elements which can be monolithically
integrated is highly desir