
5 Building blocks for high-speed
analogue circuits

5.1 Executive summary

This chapter is about the use of electronic devices in elementary circuit blocks found in
any micro- or millimetre-wave system – or in the analogue portions of fibre-optic com-
munications systems. An introductory section describes linear two-ports on the basis of
scattering parameters, discusses different gain definitions and treats important aspects
of stability as well as noise in two-ports, with special emphasis on noise reduction by
proper choice of generator impedance.

Following this, amplifiers, oscillators and mixers are described in sequence. In the
amplifier section, small-signal parameters are used to derive fundamental properties of
common topologies, from the simplest, one-transistor circuits to more complex gain
cells, such as the cascode and differential amplifiers. Tuned amplifiers are covered,
as well as broadband amplifier techniques, including distributed amplification. Finally,
low-noise and power amplifiers are being treated, as well as non-linearities in amplifiers.

The oscillator section discusses how small-signal instability and non-linear gain com-
pression effects combine to create stable sinusoidal oscillations. Important oscillator
topologies and noise phenomena affecting the phase stability of oscillators are also
covered.

Mixer circuits show how specifically designed non-linear circuits provide frequency-
translating capabilities. Mixing principles are discussed first, followed by several mixer
topologies using field effect and bipolar transistors.

5.2 Basic relations for two-port networks

5.2.1 Scattering parameter theory

Small signal equivalent circuits for semiconductor devices and circuits are usually repre-
sented in two-port form as shown in Figure 5.2. At low frequencies, two-port networks
are represented by an impedance matrix, an admittance matrix, a hybrid matrix or a
chain matrix. These matrices are described by Z, Y, h or ABCD parameters. Such rep-
resentations are suitable at low frequencies where the parameters may be measured
by placing short or open circuits at the input and output terminals of the two-port. At
high (microwave) frequencies where there are travelling waves, short and open circuits
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Fig. 5.1 Source and load circuit for the S-parameter discussion. a and b are normalised power waves.

cannot be precisely placed and the above-mentioned matrix representations cannot be
accurately determined. The development of the vector network analyser made it pos-
sible to perform measurements of high frequency travelling wave circuits. Scattering
parameters were introduced by Kurokawa [24]. He defined a set of normalised power
waves a and b and introduced a normalising impedance Z0:

a = V + Z0 I

2
√

Z0
(5.1)

b = V − Z0 I

2
√

Z0
, (5.2)

where V and I are the voltage and the current, respectively, at a load Z .
These normalised power waves are chosen in this way so that they relate to the power

delivered to the load. Refer to Figure 5.1 where a source with a real source impedance
Z0 is connected to an arbitrary load Z . The maximum power is delivered to the load if
Z = Z∗

0 = Z0. Then,

PZ,max = V 2
1

Z0
= V 2

S

4Z0
= |a|2.

|a|2 is hence the available power from a generator with source impedance Z0. This also
tells us that the unit of a (and b) is

√
W .

Now consider:

|a|2 − |b|2 = �{V1 I ∗
1 }. (5.3)

This is the power delivered to the load for arbitrary Z . We can hence interpret |a|2 as
the power travelling towards the load, and |b|2 as the power travelling from the load
back to the generator, with the difference dissipated in the load. The ratio of b to a is
the reflection coefficient:

� = b

a
= V1 − Z0 I1

V1 + Z0 I1
= Z − Z0

Z + Z0
, (5.4)

because Z = V1/I1.
We now expand the normalised power wave concept to a two-port. The incident

waves at each port are again designated as a and the reflected waves are designated
as b, while the subscript denotes the port where the power waves are measured. For the
two-port, the normalised power waves are a1, b1, a2 and b2, as shown in Figure 5.2. The
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Two-port network

Port 1 Port 2

Z0 Z0
a1 a2

b2b1

Fig. 5.2 Two-port network embedded in a transmission line with characteristic impedance Z0, with
incident waves a1, a2 and reflected waves b1, b2.

scattering parameters are the coefficients of linear equations relating the reflected waves
b to the incident waves a:

b1 = S11a1 + S12a2 (5.5)

b2 = S21a1 + S22a2. (5.6)

The scattering parameters can therefore be expressed as the ratio of two power waves,
provided that all the ports are terminated in a non-reflective fashion (a = 0 at all other
ports). For a two-port,

S11 = b1

a1
|a2=0 (5.7)

S12 = b1

a2
|a1=0 (5.8)

S21 = b2

a1
|a2=0 (5.9)

S22 = b2

a2
|a2=0. (5.10)

These relations can be written in matrix form as follows:(
b1

b2

)
=

(
S11 S12

S21 S22

) (
a1

a2

)
. (5.11)

Let Z0 be the characteristic impedance of the transmission lines connected to ports 1
and 2 of the two-port. If port 2 is terminated by Z0, there is no reflection at the load and
hence the wave incident at port 2, a2, is zero. Similarly, if port 1 is terminated by Z0

and the stimulus is fed to port 2, a1, is zero. If port 1 is designated to be the input and
port 2 the output, then S11 is the input reflection coefficient with Z0 the output, S22

is the output reflection coefficient with the input terminated by Z0, S21 is the forward
transmission coefficient with Z0 as the output load, and S12 is the reverse transmission
coefficient with Z0 at the input.

In general, the scattering parameters are complex. The polar form of the scattering
parameter is useful in many applications:

S = | S | exp j θ , (5.12)

where | S | is the magnitude of S and θ is the phase.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.006


294 High-Speed Electronics and Optoelectronics

Properties of scattering parameters
The following properties of the scattering parameters are important in two-port network
applications. Subsequently, it is assumed that the transmission line is lossless with negli-
gible attenuation, such that the line’s complex propagation constant γ = α + jβ ≈ jβ.

(i) Reciprocity. Passive networks are reciprocal (unless they contain non-reciprocal
components like isolators or circulators), and the S-parameters satisfy

Sjk = Skj. (5.13)

This property can be written in general form as

[S] = [ST]. (5.14)

It states that the matrix is equal to its transpose denoted by [ST].
(ii) Lossless networks. An important property of lossless networks is that the product

of the transposed complex conjugate scattering matrix and the scattering matrix is
equal to the unitary matrix.

[S][ST]∗ = [I ], (5.15)

where

[I ] =
[

1 0
0 1

]
(5.16)

defines the unitary matrix.
(iii) Lossy networks. In lossy networks, the network itself dissipates power, hence∑

| ak |2 >
∑

| bk |2 . (5.17)

The scattering matrix satisfies the property

[I ] − [S][ST]∗ > 0. (5.18)

(iv) Reference planes. Measurements can be made at different planes along the trans-
mission lines connected to the two-port network; this changes the results due to
the signals’ travelling wave nature. The reference plane is the position where the
actual measurements are made. If the positions of the ports are shifted by electri-
cal distances β� away from the reference planes, the S-parameters in these shifted
planes can be related to the initial S-parameters in the reference plane.

If the S-parameters were measured originally at the planes z1 = 0 and z2 = 0
and if the reference planes are now at z1 = �1 and z2 = �2 as in Figure 5.3, the
resulting S-matrix is given by[

S′
11 S′

12
S′

21 S′
22

]
=

[
S11 exp−j2θ1 S12 exp−j(θ1+ θ2)

S21 exp−j(θ1+ θ2) S22 exp−j2θ2

]
, (5.19)

where

θ1 = β�1

θ2 = β�2.

The expression (5.19) assumes that the transmission lines are lossless.
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Two-port network

Port 1 Port 2

z =  1 z = 0 z = 0 z =  2

Fig. 5.3 Change of reference planes.

The scattering parameters can be converted to current–voltage parameters such as
impedance ([Z ]) parameters as well as admittance ([Y ]) parameters. These conversions
are given by Gonzalez [14].

5.2.2 The Smith chart

The analysis of two-port networks at microwave frequencies was tedious and time-
consuming before speedy computation methods were available with computer-aided
design software. A graphical aid to calculate various network properties such as
impedances was developed by Smith [36, 37] and referred to as the Smith chart. The
accuracy of results obtained from the Smith chart is quite adequate in most cases.

When a transmission line is terminated in an arbitrary impedance Z , there are reflec-
tions along the line, and the reflection is defined as the ratio of the voltage in the wave
reflected from the terminating load to the voltage in the wave incident on the terminat-
ing load. In Equation (5.4), we had already defined the reflection coefficient �, which
can be expressed as

� = Z − Z0

Z + Z0
. (5.20)

In most applications, it is convenient to use the value of the impedance normalised
to the characteristic impedance or other reference impedance. The normalised value is
given by

z = Z

Z0
. (5.21)

Equation (5.20) can now be written as

� = z − 1

z + 1
. (5.22)

Both z and � are complex quantities and they are written in terms of their real and
imaginary parts:

� = u + jv (5.23)

z = r + j x . (5.24)
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z plane
z = r + jx

Γ plane
Γ = u + jv

x = 0
r = 0

x = –1

x = +1

r 
x

x

+j

–j
1

r u

v

Fig. 5.4 Mapping between the z plane and the � plane.

It is often useful to express the reflection coefficient in polar coordinates.

� = | � | e j θ , (5.25)

where | � | is the magnitude, and θ is the phase of the reflection coefficient.
It follows that z and � are defined in two complex planes. Equation (5.22) gives

the relationship between points in the two complex planes. The relationship is known
as mapping. Equation (5.22) is a bilinear transformation where orthogonal lines in the
z plane map into orthogonally intersecting circles in the � plane. Furthermore, it is a
conformal mapping whereby the angle between the two line segments is maintained in
mapping between the z and � planes. It is to be noted that a straight line is simply a
degenerate circle. Figure 5.4 shows the correspondence between points in the z and �

planes. Expanding Equation (5.22) we have

u + jv = r + j x − 1

r + j x + 1
. (5.26)

Equating real and imaginary parts on both sides,

u = r2 − 1 + x2

(r + 1)2 + x2
(5.27)

v = 2x

(r + 1)2 + x2
. (5.28)

By eliminating x from Equations (5.27) and (5.28), we have(
u − r

r + 1

)2

+ v2 =
(

1

r + 1

)2

. (5.29)

By eliminating r from Equations (5.27) and (5.28), we obtain

(u − 1)2 +
(
v − 1

x

)2

=
(

1

x

)2

. (5.30)
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u

v

Constant resistance

Constant reactance

Fig. 5.5 Constant resistance and reactance circles in the � plane.

Equation (5.29) is the equation of a family of circles with their centres at u = r/r + 1,
v = 0 and radii equal to 1/r + 1, while Equation (5.30) is the equation of a family of
circles with their centres at u = 1, v = 1/x and radii equal to 1/x . Equation (5.29)
represents constant resistance circles; each value of r ≥ 1 represents a circle. Equation
(5.30) represents constant reactance circles which are plotted for all values of z when
Re(z) ≥ 0. Both constant resistance and constant reactance circles are shown in Figure
5.5. A typical Smith chart representation for practical use is shown in Figure 5.6.

The Smith chart can also be used as an admittance chart. The constant resistance cir-
cles become the constant conductance circles and the constant reactance circles become
the constant susceptance circles. The bilinear transformation in this case is

� = 1 − y

1 + y
. (5.31)

The impedance and admittance representations of the Smith chart are symmetric with
respect to the origin of the Smith chart. Because in typical impedance-matching prob-
lems, both impedance and admittance representations are needed, they are frequently
plotted in the same diagram (see Figure 5.7).

5.2.3 Impedance matching

To maximise gain in an amplifier, its input and output impedances must be chosen to be
the complex conjugate of the generator and load impedances, respectively. To achieve
this, impedance-matching networks are connected at the input and the output of the
amplifier, which convert the true generator and load impedances (frequently 50�) to
the necessary values. Figure 5.8 shows the block diagram of the complete network.
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Fig. 5.6 Practical Smith chart.

Aside from the complex conjugate match, also referred to as power match, impedance
transformation may be necessary to achieve minimum noise figure, or maximum output
power. Detailed discussions of these techniques (with diverging goals) are given later in
this chapter.

5.2.4 Power gains for amplifier design

The power gain in microwave circuits is expressed in terms of the scattering parameters
for convenience in performing calculations using network analyser measurements.
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Fig. 5.7 Smith chart showing impedance circles (bold lines) and admittance circles (thin lines).

Matching
network

Matching
network

Two-
port

ZS

VS

ZL

50 Ω

50 Ω

Fig. 5.8 Block diagram of a two-port embedded in impedance matching networks.

Input and output reflection coefficients for arbitrary terminations
The two-port network in Figure 5.9 is now assumed to be an amplifier circuit. We will
first calculate the input and output reflection coefficients �in and �out, respectively, for
arbitrary source and load reflection coefficients.

If ZL is the load impedance in a transmission line system of characteristic impedance
Z0, the reflection coefficients at the source and load (Figure 5.9) are given by
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Amplifier

b2a1

b1VS

ZS

a2

ZL

ΓLΓin ΓoutΓS

Fig. 5.9 Amplifier representation.

�S = ZS − Z0

ZS + Z0
(5.32)

�L = ZL − Z0

ZL + Z0
. (5.33)

Writing Equation (5.11) in expanded form, we have

b1 = S11a1 + S12a2 (5.34)

b2 = S21a1 + S22a2. (5.35)

It is evident from Figure 5.9 that reflection coefficients are related to the incident and
reflected waves by the following equations:

�in = b1

a1
(5.36)

a2 = �Lb2. (5.37)

By substitution into Equation (5.11), it can be shown that

�in = S11 + S12S21�L

1 − S22�L
. (5.38)

The output reflection coefficient is defined as

�out = b2

a2
|VS=0 . (5.39)

By substitution in Equation (5.11), it can be also shown that

�out = S22 + S12S21�S

1 − S11�S
. (5.40)

Powers at input and load
When designing amplifiers, different definitions of power gain are applied depending
on the application. It is necessary to define the power at the input and the output of the
amplifier in order to obtain the gain.

The power delivered to the input port of the amplifier is written in terms of the inci-
dent and reflected waves at the input. The reflected wave can be expressed in terms of
the incident wave and the reflection coefficient, see Equation (5.36).
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Pin = | a1 |2 − | b1 |2 (5.41)

= | a1 |2
(

1− | �in |2
)
. (5.42)

Similarly, the power delivered to the load ZL is

PL = | b2 |2 − | a2 |2 (5.43)

= | b2 |2
(

1− | �L |2
)
. (5.44)

The power travelling towards the load is partly due to the wave originated by
the generator electromotive force bS, and partly by the reflection from the source
impedance �S:

a1 = bS + �Sb1 (5.45)

with

bS = VS
√

Z0

ZS + Z0
(5.46)

�S = ZS − Z0

ZS + Z0
. (5.47)

Detailed analyses are given by Gonzalez [14].
The power available from the source is labelled Pavs and is defined as

Pavs = | bS |2
1− | �S |2 (5.48)

= |a1|2 |1 − �S�in|2
1 − |�S|2 .

Note that Pavs is the input power under conjugate match, i.e. when �in = � 
S.

The power available from the network Pavn is defined as the power delivered by the
network when the load is conjugately matched to the output impedance, or

Pavn = |S21|2|bS|2
|1 − S11�S|2(1 − |�out|2) . (5.49)

Power gain definitions
Let us now discuss the power gain definitions which are important in amplifier design.
The operating power gain GP is the ratio of the power delivered to the load to the power
delivered to the input of the amplifier:

GP = PL

Pin

=
∣∣∣∣b2

a1

∣∣∣∣2 1− | �L |2
1− | �in |2 .

Since
b2

a1
= S21

1 − �LS22
,
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and using Equation (5.38), we obtain

GP = |S21|2 1 − |�L|2
|1 − �LS22|2 − |S11 − �L�(S)|2 , (5.50)

where �(S) is the determinant of the scattering matrix.
The transducer power gain GT is the ratio of the power delivered to the load to the

power available from the source:

GT = PL

Pavs

=
∣∣∣∣b2

a1

∣∣∣∣2
(1 − |�L|2)(1 − |�S|2)

|1 − �in�S|2

= |S21|2 (1 − |�L|2)(1 − |�S|2)
|1 − �LS22 − �S (S11 − �L�(S)) |2 . (5.51)

In the absence of deliberate feedback, the reverse transmission S12 is frequently very
small and can be neglected. S12 = 0 simplifies the denominator in Equation (5.51) and
we obtain the unilateral transducer power gain

GTU = |S21|2 (1 − |�L|2)(1 − |�S|2)
|(1 − S11�L)(1 − S22�S)|2 . (5.52)

The available power gain GA, finally, is the ratio of the available gain from the network
Pavn to the available power from the source Pavs:

GA = Pavn

Pavs
(5.53)

= |S21|2 1 − |�S|2
|1 − S11�S|2(1 − |�out|2)

= |S21|2 1 − |�S|2
|1 − S11�S|2 − |S22(1 − S11�S) + S12S21�S|2 ,

using Equation (5.40).

5.2.5 Stability

GA still contains �S as a variable. We know already that the maximum power transfer
from the source to the load occurs for �S = � 

in, so this appears to be an optimum
choice. Before we proceed, however, let us again investigate Equation (5.53). If the
denominator becomes zero, the available gain would grow beyond all bounds. This
happens if

|1 − S11�S| = |S22(1 − S11�S) + S12S21�S|,
or, written differently, ∣∣∣∣S22 + S12S21�S

1 − S11�S

∣∣∣∣ = 1 = |�out|,
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using Equation (5.40). Likewise, we can show from the available gain in the reverse
direction that it would grow beyond all bounds for |�in| = 1.

Both these conditions are considered as the instability of the amplifier, a potentially
dangerous situation which may lead to malfunction or even fatal failure. In most cases
(the notable exception are oscillators), it needs to be avoided.

Unconditional stability
From the above, we can deduce that a two-port will be unconditionally stable if∣∣∣∣S11 + S12S21�L

1 − S22�L

∣∣∣∣ < 1, (5.54)

for all |�L| ≤ 1, and ∣∣∣∣S22 + S12S21�G

1 − S11�G

∣∣∣∣ < 1, (5.55)

for all |�G| ≤ 1.

Stability circles
The following discussion follows Hoffmann [20]. For conditionally stable two-ports –
where at least one of the conditions in Equations (5.54) and (5.55) is violated – we can
still find generator and load admittances which allow stable operation. If we plot the
locus of ∣∣∣∣S22 + S12S21�G

1 − S11�G

∣∣∣∣ = 1

in the complex �G plane, we obtain a circle with centre vector

�G,C = �(S)∗S22 − S∗
11

|�(S)|2 − |S11|2 . (5.56)

The radius is

rG = |S12 S21|∣∣|�(S)|2 − |S11|2
∣∣ . (5.57)

Likewise, plotting the locus of ∣∣∣∣S11 + S12S21�L

1 − S22�L

∣∣∣∣ = 1

in the complex �L plane, we obtain a circle with centre vector

�L,C = �(S)∗S11 − S∗
22

|�(S)|2 − |S22|2 , (5.58)

and radius

rG = |S12 S21|∣∣|�(S)|2 − |S22|2
∣∣ . (5.59)

Examples for stability circles in the generator and load planes are shown in Figure 5.10.
The stability circles provide the boundaries between the stable and the unstable regions;
however, we still need to determine whether the inside or the outside of the circle is
stable. Let us do this for the �G plane first.
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(a)

ΓG, C

rG

rL

ΓL, C

(b)

Fig. 5.10 Stability circle examples: (a) in the �G plane and (b) in the �L plane.

Using Equation (5.40), we conclude that �out(�G = 0) = S22. Now we locate the
area which contains �G = 0 (the centre of the Smith chart). We can say:

• If |S22| < 1, then the region which contains �G = 0 is the stable region.
• Otherwise, if |S22| > 1, the region containing �G = 0 is the unstable region.

The same procedure applies for finding the stable region in the �L plane.
Using the stability circles, we can look at stability in a different way. A two-port will

be unconditionally stable, if all of the following conditions are fulfilled:

(i) |S11| < 1
(ii) |S22| < 1

(iii) |�L,C| > 1 + rL

(iv) |�G,C| > 1 + rG.

In this case, both stability circles are fully outside of the Smith chart unity circles in the
reflection coefficient plane (which contain all |�G|, |�L| < 1), and the outer regions of
the circles are the stable ones.

Rollet’s stability factor
Conditions (iii) and (iv) above can be combined into the following:

k > 1 + max

[
0,

|�(S)|2 − 1

2|S12||S21|

]
, (5.60)

where

k = 1 − |S11|2 − |S22|2 + |�(S)|2
2|S12||S21| . (5.61)

k is the Rollet factor. k > 1 is often used as a stability criterion; however, note that it is
a necessary, but not sufficient requirement for unconditional stability.
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A very common, and potentially fatal, mistake is to assess stability only for the
intended frequency of operation. It must be investigated over the full frequency range
where instability may conceivably occur – parasitic oscillations at very low frequencies
are extremely common, and instabilities may also increase with increasing frequencies
such as in cascode amplifiers (see p. 333).

5.2.6 Maximum available gain and maximum stable gain

Let us now reassess the case of an amplifier with simultaneous complex conjugate
match at the input and output ports, i.e. �S = � 

in, �L = � 
out. The available gain

in this case is the maximum available gain and can be written using the Rollet factor
Equation (5.61) as

M AG =
∣∣∣∣ S21

S12

∣∣∣∣ (
k −

√
k2 − 1

)
. (5.62)

Obviously, a real solution exists only if k ≥ 1.
For k < 1, the maximum stable gain is frequently quoted. This is the MAG in the

limit of k = 1, which can be obtained by the resistive loading of an otherwise not
conditionally stable amplifier:

M SG =
∣∣∣∣ S21

S12

∣∣∣∣ . (5.63)

5.2.7 Mason’s unilateral gain

The concept of unilateral gain for a two-port network was first introduced by Mason in
his paper [28], which is now considered a classic. A comprehensive review of the paper
and its relevance today is given by Gupta [15].

The unilateral gain is defined as the maximum power gain obtained by a two-port
when it is made unilateral – unilateralised. A two-port network that includes an active
device is made unilateral by a lossless and reciprocal four-port network connected to
input and output of the two-port under investigation. This network provides the nec-
essary feedback to impose the unilateral condition. Mason’s unilateral gain is not to
be confused with the unilateral transducer power gain GTU, Equation (5.52), which
had been derived by neglecting the reverse transmission. Here, reverse transmission is
eliminated by a unilateralising network.

The unilateral gain is a figure of merit which is intrinsic to the device and hence
independent of the circuit in which the device is placed. The unilateral gain is, therefore,
an invariant property of the device. Hence, it can be expressed in terms of the device’s
small-signal parameters. The scattering parameter representation of U is the most useful
in microwave applications. Ku [23] has given an expression in terms of the S-matrix:

U = | S12 − S21 |2
�([I ] − [S∗]T[S]) , (5.64)
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where [I ] is the identity matrix. U can also be expressed with the help of the stability
factor k [15]:

U =

∣∣∣∣( S21

S12

)
− 1

∣∣∣∣2

2k

∣∣∣∣ S21

S12

∣∣∣∣ − 2Re

[
S21

S12

] . (5.65)

5.2.8 Maximum frequency of oscillation

The maximum frequency of oscillation is a criterion for a device’s ability to amplify
power. Because the maximum power gain at any frequency is obtained by conjugately
matching the input and output ports, the MAG (see Equation (5.62)) is an obvious
choice. The maximum frequency of oscillation fmax is then the frequency where MAG
drops to unity:

MAG( fmax) = 1. (5.66)

However, we had seen that MAG only exists when Rollet’s stability factor k ≥ 1. This
raises a practical problem – for many high-performance microwave transistors, k < 1 in
the whole measurement range, and so fmax cannot be determined using Equation (5.66).

Another customary definition therefore makes use of Mason’s unilateral gain U (see
Equation (5.65)), which does not have this limitation. fmax is then understood as the
frequency where U drops to unity:

U ( fmax) = 1. (5.67)

Note, however, that Equations (5.66) and (5.67) will generally not yield the same result,
so it is important to check the definition used when comparing fmax values.

5.3 Noise in two-ports

5.3.1 Noise phenomena

Any electronic component exhibits electronic noise, provided that the absolute tempera-
ture is T > 0. There are several physical origins, which have been discussed in Chapter
2 in the context of active devices, so only a brief summary shall be given here.

Noise occurs in all contexts where carrier motion or carrier density is stochastic:

• As there is always a random thermal motion superimposed on any charge carrier
movement, thermal or Johnson noise is omnipresent in all conductors with non-zero
resistance. The rms voltage generated by the thermal noise in a resistor of value R
is Vrms = √

4kT RB, where k is Boltzmann’s constant and B is the measurement
bandwidth.

• Emission of charge carriers over energy barriers is equally a stochastic process, and
its associated noise mechanism is called shot noise. The rms current generated by a
current of magnitude I flowing over an energy barrier is Irms = √

2q I B, where q is
the elementary charge and B again the measurement bandwidth.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.006


Building blocks for high-speed analogue circuits 307

R

R

vn

Fig. 5.11 Thévenin equivalent circuit of a noise resistor terminated by a load of equal value.

• Examples of noise due to random fluctuations in carrier density is generation-
recombination noise or noise due to trapping and de-trapping processes. Unlike
the first two noise phenomena, which can be considered to have a spectral density
independent of frequency (‘white noise’), these processes produce noise spectra with
low-pass behaviour, and cutoff frequencies in the Hz–MHz range.

• Another example of noise generated by random changes in carrier densities is
avalanche noise, due to carrier multiplication effects in high-field regions. This pro-
cess also produces a low-pass limited noise spectrum with a cutoff frequency in the
GHz range.

For the discussion of noise in linear two-ports, however, the physical origin of noise
is irrelevant. In fact, we will occasionally assume in the following that noise is always
thermal in nature. Thermal noise has an interesting property. Consider that the squared
magnitude of the noise voltage phasor generated in a resistor R in a bandwidth B is〈

|vn|2
〉
= 8kT RB, (5.68)

which corresponds to the rms value of
√

4kT RB mentioned above. The Thévenin equiv-
alent circuit of the noise resistor can then be drawn as in the box of Figure 5.11. The
source is terminated by the same resistance R, so that the available power is delivered.
As power is related to the peak voltage as 0.5V̂ 2/R, and the voltage drop across the
resistor is vn/2, the resulting available power due to the thermal noise in resistor R in a
bandwidth B is

N =
〈|vn|2

〉
8R

= kT B. (5.69)

The available noise power of a resistor is hence independent of the resistor value and
depends only on the absolute temperature T and the measurement bandwidth B.

5.3.2 Noise figure

We will now, in a general form, consider what happens to a signal as it traverses a
noisy two-port. Figure 5.12 shows an arrangement where the two-port is connected to
a generator (source) with generator resistance RG and a load RL. For now, we assume
that we deal only with real impedances and that both generator and load constitute a
power match, i.e. Rin = RG, Rout = RL. The condition of power match at the input will
be dropped further down.
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RG

RL

Gain G

Noisy
Two-port

Port 1: S1, N1 Port 2: S2, N2

Fig. 5.12 Generic noisy two-port connected to source and load.

We further assume that the noise at the input is only due to the thermal noise of the
generator resistance, and that this resistor is at a temperature of T0 = 290 K.1 The noise
power at the input port is then

N1 = kT0 B. (5.70)

In a 1 Hz bandwidth, this amounts to 4 · 10−21 W or −174 dBm.2

The two-port will also contribute noise. To simplify things, let us assume that all
noise sources inside the two-port combine into a single noise source with power Neq,
also located at port 1. Because the two-port has a gain of G, the noise power at the
output is N2 = G · (N1 + Neq).

If there is an additional signal component S1 present at the input, it equally is magni-
fied by G. S2 = G · S1. We can now define the ratio of the signal-to-noise ratios at the
input and the output:

S1/N1

S2/N2
= S1G(N1 + Neq)

N1GS1
= 1 + Neq

N1
= F (5.71)

This defines the noise figure F of the two-port as the ratio of the signal-to-noise ratios at
the input and the output, provided that the input carries thermal noise at a temperature
T0 = 290 K only. Note that F > 1 under all circumstances.

We also found the relationship between the equivalent noise power at the input and
the noise figure:

Neq = (F − 1)N1 = (F − 1)kT0 B. (5.72)

If we assume that Neq is also thermally generated, Neq = kTn B, we can define an
equivalent noise temperature for the two-port:

Tn = (F − 1)T0. (5.73)

Both F and Tn can be used interchangeably to characterise the noise performance of
two-ports. The use of Tn is customary in cases where F is very close to 1, for example
in low-noise amplifiers (LNAs) for satellite applications, while F is more popular for
general applications.

1 290 K is the standard temperature for noise calculations.
2 1 dBm is one decibel relative to a power of 1 mW.
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RS

RLG1, F1 G2, F2 G3, F3

Fig. 5.13 Cascaded noisy two-ports.

Noise figure of cascaded two-ports
The situation depicted in Figure 5.12 is too simplistic for practical applications, because
amplifiers or receivers generally consist of several stages. Let us consider next what
happens when several noisy two-ports are being cascaded. This is shown in Figure 5.13.
Again we assume that all ports are power-matched, which is an important restriction,
but is made here to simplify calculations.

First, we calculate the noise at the output (delivered to the load RL), assuming that
for each two-port, the noise sources are combined into equivalent noise sources at its
input. Then,

N2 = G3
{

Neq,3 + G2
[
Neq,2 + G1

(
Neq,1 + N1

)]}
. (5.74)

Now we assume that all noise sources are being transferred to the input of the cascade.
The equivalent noise source there will have a noise power of

Neq,tot = Neq,1 + Neq,2

G1
+ Neq,3

G1G2
. (5.75)

Recalling Equation (5.72), we finally calculate the noise figure of the cascaded two-
ports:

Ftot = 1 + Neq,tot

N1
= F1 + F2 − 1

G1
+ F3 − 1

G1G2
. (5.76)

In a more generalised form, the total noise figure of a cascade of n stages is

Ftot = F1 +
n∑

i=2

Fi − 1
i−1∏
k=1

Gk

(5.77)

This is the famed Friis equation [11] which in effect postulates that in a receiver
chain the overall noise figure is approximately the noise figure of the first stage, pro-
vided that that stage has sufficient gain – an important observation for the design
of LNAs.

A consequence of the Friis formula is that in any amplifier, a low noise figure without
sufficient gain is meaningless as the noise of the following stages will take over. It
is therefore useful to combine noise figure and gain in a single figure of merit. This is
the noise measure according to Haus and Adler [19]. When using noise figures, it is
written as

M = F − 1

1 − 1/G
, (5.78)
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where F is the noise figure and G the gain. The noise figure of an infinite chain of
identical transistors is then

F∞ = M + 1. (5.79)

The noise measure can also be written in the form of a noise temperature:

MT = Tn

1 − 1/G
, (5.80)

where Tn is the equivalent noise temperature of the two-port (see Equation (5.73)).

5.3.3 Noise figure with arbitrary generator admittance

We will now abandon the condition that all ports are power-matched by allowing arbi-
trary terminations for the input port. The source admittance Y S is expressed by its real
and imaginary parts, Y S = GS + j BS. As before, we assume that all noise sources
internal to the two-port can be combined at the input. Due to the arbitrary generator
admittance, we now have to split the noise sources into a noise voltage source v and a
noise current source i . This is shown in Figure 5.14.

The equivalent noise voltage and current sources, v and i , are partially correlated.
This can be accounted for by introducing a correlation admittance Y C and splitting the
current source into an uncorrelated part iu and a fully correlated part Y Cv:

i = iu + Y Cv. (5.81)

The real part of the generator admittance contributes a thermal noise current with the
phasor: 〈

|iT|2
〉
= 8kT0 BGS, (5.82)

where T0 = 290 K is the standard temperature and B the measurement bandwidth.
Note that in Figure 5.14(b), all sources share the same source admittance YS, so that

it is sufficient to calculate v1 for the case i1 = 0:

v1 = v + i + iT

YS
. (5.83)

Noisy
two-port

Noiseless
two-port

(a) (b)

is is

i1

v1Ys

v

iYs

Ys = Gs + j Bs

Equivalent noise
two-port

Fig. 5.14 (a) Noisy two-port with arbitrary generator admittance and (b) its equivalent circuit, introducing
the equivalent noise voltage v and the equivalent noise current i .
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We are really only interested in the powers, N ∝ 〈|v1|2
〉
:〈

|v1|2
〉
= 〈v1v

 
1〉 (5.84)

=
〈
|v|2

〉
+

〈|i |2〉 + 〈|iT|2〉
|Y S|2 + 〈iv 〉

Y S
+ 〈i v〉

Y  
S

=
〈|i |2〉 + 〈|iT|2〉

|Y S|2 +
〈
|v|2

〉 [
1 + Y C

Y S
+

(
Y C

Y S

) ]
.

The noise figure can be expressed as

F = N1,total

N1,iT
= |v1|2〈|iT|2〉/|Y S|2 , (5.85)

where N1,total is the noise power due to all noise sources and N1,iT the noise power due
to the generator thermal noise at T = T0 alone.

Combining Equations (5.84) and (5.85) yields

F = 1 +
〈|i |2〉〈|iT|2〉 +

〈|v|2〉〈|iT|2〉 |Y S|2
[

1 + Y C

Y S
+

(
Y C

Y S

) ]
. (5.86)

Equation (5.86) can be written in a simpler form by introducing

• an equivalent noise admittance

gn =
〈|i |2〉

8kT0 B
,

• an equivalent noise resistance

Rn =
〈|v|2〉

8kT0 B
,

• and remembering that

GS =
〈|iT|2〉
8kT0 B

,

from Equation (5.82).
This results in

F = 1 + gn

GS
+ Rn

GS
|Y S|2

[
1 + Y C

Y S
+

(
Y C

Y S

) ]
. (5.87)

The noise figure depends therefore on the generator admittance YS = GS + jYS. This
was first pointed out by Rothe and Dahlke in 1955 [31, 32].

We can now search for the generator admittance where F will be minimal. This
results in

GS,opt =
√

gn

Rn
− B2

C (5.88)

BS,opt = −BC,

where BC is the imaginary part of the correlation admittance.
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Introducing these terms into Equation (5.87), the noise figure can be written as
follows:

F = 1 + 2Rn(GS,opt + GC) + Rn

GS

[
(GS − GS,opt)

2 + (BS + BS,opt)
2
]
. (5.89)

For YS = YS,opt, the minimum noise figure is

Fmin = 1 + 2Rn(GS,opt + GC) = 1 + 2Rn

(
GC +

√
gn

Rn
− B2

C

)
, (5.90)

and therefore finally

F = Fmin + RN

GS

[
(GS − GS,opt)

2 + (BS − BS,opt)
2
]

(5.91)

= Fmin + RN

GS

∣∣∣Y S − Y S,opt

∣∣∣2
.

To describe the noise performance of a two-port, we need the following parameters:

• the minimum noise figure Fmin,
• the equivalent noise resistance Rn,
• the noise-optimised generator admittance Y S,opt.

For microwave applications, it is more customary to work with reflection coefficients
instead of impedances or admittances. For this, we introduce a normalising admittance
Y0, typically 20 mS, and a normalised noise resistance rn = RnY0. Then Equation (5.91)
turns into

F = Fmin + 4rn
∣∣�S − �S,opt

∣∣2(
1 − |�S|2) ∣∣1 + �S,opt

∣∣2
, (5.92)

where

�S = Y0 − YS

Y0 + YS
.

Plotting F = f (�S) on a Smith chart, the contours of constant F are circles. An
example is shown in Figure 5.15.

Associated gain
The condition for noise-optimised source reflection coefficient �S = �S,opt is inde-
pendent of the power matching conditions derived earlier, �S = � 

in. The maximum
gain under ‘noise matching’ conditions is therefore smaller than the MAG, which
would be achieved when input and output of the two-port are conjugately matched.
Here, �S = �S,opt and the gain for the conjugately matched output becomes (see
Equation (5.53))
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ΓS,opt

Fig. 5.15 Example for ‘noise circles’ – contours of constant noise figures on the Smith chart.

Gass = 1− | �S,opt |2
| 1 − S11�S,opt |2 | S21 |2 1

1− | �out |2 (5.93)

=
|S21|2

(
1 − ∣∣�S,opt

∣∣2
)

∣∣1 − S11�S,opt
∣∣2 − ∣∣S22(1 − S11�S,opt) + S12S21�S,opt

∣∣2
,

since

�out = S22 + S21S12�S,opt

1 − S11�S,opt
.

The available gain under noise matching conditions is called associated gain.

5.4 Transistor amplifiers

5.4.1 A brief historical discourse

Amplifiers are such an integral part of any wireless communication system that we have
to explicitly recall that in the first decades of radio, they were not used at all. It was not
before the invention of the electron tube triode that amplification of alternating current
signals became possible. Lee De Forest’s Audion tube (conceived in 1906 and patented
in 1908 [10]) is probably the first example of an amplifying device. It was 24-year-
old Edwin Armstrong, the prolific and finally tragic inventor of radio’s early days, who
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Fig. 5.16 De Forest’s three-terminal audion (from US Patent No. 879,582).

actually explained its operation in 1914. As Figure 5.16 shows, the De Forest Audion
already has the common three-terminal arrangement which we also find in transistor
amplifiers. De Forest’s claim to have invented the tube concept independently of the
‘thermionic valve’ patented by John Ambrose Fleming in 1905 [9] is doubtful, however.

Critical amplifier parameters vary with respect to where in a system it is being used,
and what kinds of signals are being fed through the amplifiers. For example:

• When dealing with very low-level signals, for example immediately after the receiving
antenna, or behind the optoelectronic converter in a fibre communication system, it
is of paramount importance that the amplifier itself adds as little electronic noise as
possible.

• At the output of a wireless transmitter, an amplifier should produce the required RF
power with optimum efficiency and/or the required linearity, which in turn depends
on the modulation format used.

• Other systems, such as in fibre-optic communications or ultra-wideband wireless sys-
tems, require extreme bandwidths, with little variation of gain and group velocity
between the lower and upper cutoff frequencies.

These requirements can rarely be met simultaneously, so trade-offs have to be made
which require a thorough study of the system specifications before the amplifier design
is begun.

5.4.2 Fundamental amplifier configurations

Amplifiers will be discussed initially at a certain level of abstraction in order to make
clear that the fundamental methods apply to FETs and bipolar transistors alike. The use
of general methods will be emphasised rather than introducing a large number of circuit
topologies. To this end, we will first introduce a generalised equivalent circuit for an
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1 2

0

Y12

Y10 Y20
v10 gm v10

Fig. 5.17 Generic three-terminal amplifying device.

amplifying device, and then calculate its small-signal parameters – the y matrix in this
case. Based on the y matrix, we develop general expressions for important amplifier
parameters – the input and output admittances, and voltage and current gain. For differ-
ent circuit topologies, we then calculate modified y matrices, which will immediately
yield the amplifier parameters.

The move from abstract concept to actual circuit implementation will also be made
occasionally. You will see that the elements of real devices can be readily matched to
the general equivalent circuit.

The first important observation in amplifier design is that three-terminal devices can
be used in three fundamentally different ways. Let us consider the generic three-terminal
device depicted in Figure 5.17.

We restrict our discussion to linear behaviour for the time being – corresponding to
the small-signal case. The amplifying action is due to the voltage-controlled current
source between nodes 2 and 0. The controlling entity is the input voltage v10 and the
parameter is the transconductance g

m
, which is generally taken as a complex value.

This allows us to include additional phase delays in g
m

:

g
m

= gm0e−jωτ (5.94)

Additionally, we included complex impedances Y 10, Y 20 and Y 12. These can later
be correlated with the parameters of FET or bipolar transistor small-signal equivalent
circuits introduced in Chapter 2.

y matrix representation
For the ‘hybrid π ’ equivalent circuit in Figure 5.17, the y matrix is easily calculated and
will be used here. The advantage is that general amplifier properties, such as voltage and
power gain or input and output admittance with arbitrary terminations, can be calculated
once and can then be easily applied to the different topologies we will consider.

The y matrix expresses the following system of linear equations with respect to the
two-port shown in Figure 5.18:

i1 = y11 v1 + y12 v2 (5.95)

i2 = y21 v1 + y22 v2 (5.96)
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[Y ]

i1 i2

v1
v2YG YL

Fig. 5.18 A two-port in y matrix representation terminated with generator impedance Y G and load
impedance Y L.

The y matrix [Y ] can also be calculated from the scattering matrix [S] introduced earlier:

[Y ] = Y0 · ([1] − [S]) ([1] + [S])−1 (5.97)

where [1] is the identity matrix and Y0 the normalising admittance used in the
calculation of the scattering matrix – usually 20 mS.

First, consider the input admittance Y1. The output port is terminated by an
admittance Y L.

Y1 = i1

v1

i2 = −v2 Y L.

We find

Y1 = y11 − y12 y21

YL + y22
. (5.98)

Likewise, the output admittance when the input is terminated with an arbitrary
admittance Y G is

Y2 = y22 − y12 y21

YG + y11
. (5.99)

The forward voltage gain AV = v2/v1 is

AV = −y21

YL + y22
. (5.100)

And finally the current gain AI = i2/ i1:

AI = y21 Y L

y11(y22 + Y L) − y21 y12
. (5.101)

The frequently used short-circuit current gain can be easily calculated from Equation
(5.101) when Y L → ∞:

h21 = i2

i1
|(v2 = 0) = y21

y11
. (5.102)

Common source/common emitter: node 0 as the common node
The most obvious connection is to ground node 0. In FETs, this configuration is called
common source; in bipolar transistors, it is called common-emitter configuration.
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v1
v10 v2

gm v10

i1 i21 2Y12

Y10 Y20

Fig. 5.19 Generic amplifier configuration with node 0 grounded.

The y matrix can be easily calculated (see Figure 5.19):

y11 = Y 10 + Y 12 (5.103)

y12 = −Y 12 (5.104)

y21 = g
m

− Y 12 (5.105)

y22 = Y 20 + Y 12. (5.106)

Let us first investigate the voltage gain using Equation (5.100):

AV = − y21

Y L + y22
= − g

m
− Y 12

Y L + Y 20 + Y 12
. (5.107)

To facilitate interpretation, let us assume that g
m

is real, and that the feedback
admittance is weak: gm − Y 12 ≈ gm, Y L + Y 20 + Y 12 ≈ Y L + Y 20. Then,

AV ≈ − gm

Y L + Y 20
.

For low frequencies, Y L and Y 20 are real, and we find:

• The magnitude of voltage gain in common-source and common-emitter stages will be
approximately equal to the product of transconductance and effective load resistance
(the parallel connection of external load resistance and device output resistance).

• The output voltage lags the input voltage by 180◦.

A useful figure of merit is the maximum voltage gain a three-terminal device can pro-
duce with node 0 grounded. We find it from Equation (5.107) by choosing YL = 0 and
assuming Y 12 � Y 20, g

m
:

AV,max ≈ − g
m

Y 20
. (5.108)

Now let us take a look at the input admittance, using Equation (5.98):

Y1 = y11 − y12 y21

YL + y22
= Y 10 + Y 12

(
1 + gm − Y 12

Y L + Y 20 + Y 12

)
,

or recognising from Equation (5.107) that the last term in parentheses is AV:

Y1 = Y 10 + Y 12(1 − AV). (5.109)
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v1 = vgs gm vgs

gDS

CGS

CGD

YL

i1G D

S

Fig. 5.20 Simplified hybrid π equivalent circuit of a FET with load admittance.

Miller effect
It is now time for a small practical example. In a FET, the small-signal equivalent circuit
looks like Figure 5.20, if we neglect the series resistances. From comparison with Figure
5.17, we recognise that

Y 10 = jωCGS

Y 12 = jωCGD

Y 20 = gDS.

The voltage gain is now

AV = − gm − jωCGD

YL + gDS + jωCGD
≈ − gm

YL + gDS
,

for low frequencies.
The input admittance is, using Equation (5.109),

Y1 = jωCGS + jωCGD (1 − AV) . (5.110)

The feedback capacitance CGD appears in parallel with CGS, but is multiplied by the
magnitude of the voltage gain, augmented by one – this is the dreaded Miller Effect,
which we always have to be aware of in high-speed circuit design, because it may
significantly increase the input capacitance. It was described as early as 1920 [29].

Going back to Figure 5.19, we calculate the output admittance to be

Y2 = Y 20 + Y 12

(
1 + g

m
− Y 12

Y G + Y 10 + Y 12

)
. (5.111)

The term
gm − Y12

YG + Y10 + Y12
= Ar

can be significantly larger than 1 and may act like a ‘reverse Miller Effect’. This has to
be taken into account if a tuned circuit is connected to the output node, as is the case
in typical tuned amplifiers. Figure 5.21 shows an example – the detuning effect of the
feedback capacitance will be much larger than expected.

The current gain of the common-source/common-emitter amplifier, finally, becomes

AI = (g
m

− Y 12) Y L

Y 12(Y L + g
m

+ Y 10 + Y 20) + Y 10(Y L + Y 20)
. (5.112)

We can safely assume here that the real parts of all admittances are larger than zero –
then the current gain in the quasi-static limit ( f → 0) is positive.
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CGD (1 + Ar)

Fig. 5.21 Common-source amplifier stage with tuned load, and the output-referred Miller capacitance.

Let us check the latter equation again with our FET equivalent circuit by calculating
the short-circuit current gain:

h21 = AI|(Y L → ∞) = gm − jωCGD

jω(CGS + CGD)
≈ gm

jωCGS

assuming that gm � ωCGD and CGS � CGD.
This is the equation we had earlier used in Chapter 2 to estimate the transit frequency

of a FET to be fT = gm/(2πCGS).
Let us summarise our findings for the amplifier configuration with node 0 grounded –

applicable to both the FET common-source and the bipolar common-emitter topologies:

• The configuration can provide substantial voltage and current gains.
• The voltage gain provides a phase shift of 180◦ in the quasi-static limit, whereas the

current gain experiences no phase shift.
• Due to the presence of feedback, the input and output admittances always depend on

the termination of the opposite port.
• For substantial voltage gains, the Miller effect has to be observed which can

substantially increase the input capacitance.

Common gate/common base: node 1 as the common node
In the next set-up to be discussed, node 1 is grounded, and the input current is fed into
node 0. Node 2 is still the output node. This applies to the FET common-gate and the
bipolar common-base configurations. Again, we will first calculate the y matrix in a
general form. For this, it is valuable to recognise in Figure 5.22 that v1 = −v10.

y11 = Y 20 + Y 10 + g
m

(5.113)

y12 = −Y 20 (5.114)

y21 = −Y 20 − g
m

(5.115)

y22 = Y 20 + Y 12. (5.116)
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1

0

2i1 i2

v1

Y10

Y12

v2Y20
gm v10

v10

Fig. 5.22 Hybrid π equivalent circuit with node 1 grounded.

This input admittance is then

Y1 = Y 10 + (g
m

+ Y 20)
Y L + Y 12

Y L + Y 20 + Y 12
. (5.117)

Let us simplify this expression somewhat. First, realise that in practical devices nec-
essarily g

m
� Y 20, otherwise it would not have a reasonable voltage gain in

common-source or common-emitter configuration (see above). Further, let us assume
that Y 12 � Y L. Then,

Y1 ≈ Y 10 + g
m

Y L

Y L + Y 20
.

An interesting observation is that now Y 20 is the feedback admittance which determines
the sensitivity of the input admittance on the load. If further, this admittance is very
small, Y 20 � Y L, then

Y1 ≈ Y 10 + g
m
.

Using the example of Figure 5.20, we find

Y1 ≈ gm

(
1 + jωCGS

gm

)
= gm

(
1 + j

ω

ωT

)
.

The input admittance is hence approximately the transconductance, unless we are oper-
ating close to fT. In practical transistors, this will be a quite large value – much larger
than the input admittance in the topology with node 0 grounded.

The output admittance is

Y2 = Y 12 + Y 20
Y G + Y 10

Y G + Y 10 + Y 20 + g
m

. (5.118)

Assuming again that g
m

� Y 20,

Y2 ≈ Y 12 + Y 20

1 + g
m

Y G + Y 10

Compared to the topology with node 0 grounded (common emitter or common source),
the output admittance will be substantially smaller.

The voltage gain is calculated as

AV = g
m

+ Y 20

Y L + Y 20 + Y 12
. (5.119)
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Assuming again that g
m

� Y 20, this simplifies to

AV = g
m

Y L + Y 20 + Y 12
.

Compare with Equation (5.107) – this is the same result, if Y 12 � gm, which is a safe
assumption.

Finally, the current gain is

AI = − Y Lg
m

(Y L + Y 12)(Y 20 + Y 10 + g
m
) + Y 20 Y 10

. (5.120)

The magnitude of AI for this topology is hence less than 1. For greater simplicity,
calculate the short-circuit current gain (YL → ∞):

h21 = − Y 20 + g
m

Y 20 + g
m

+ Y 10

≈ − 1

1 + Y 10

g
m

.

Using again the simple FET equivalent circuit in Figure 5.20, this reduces to

h21 = − 1

1 + j
ω

ωT

.

In other words, the short-circuit current gain of the common-gate and common-base
configurations will remain independent of frequency until quite close to fT.

Common drain/common collector: node 2 as the common node
The last fundamental configuration of the generic amplifying three-terminal device
(Figure 5.17) has node 2 as the common node (see Figure 5.23). In FETs, this will
be called common drain; in bipolar transistors, this will be called common-collector
configuration.

Again, first calculate the y matrix of this configuration.

y11 = Y 10 + Y 12 (5.121)

y12 = −Y 10 (5.122)

y21 = −(Y 10 + g
m
) (5.123)

y22 = Y 10 + Y 20 + g
m
. (5.124)

1

2

0i1
i2

v1 v2

Y10

Y12

Y20
v10 gm v10

Fig. 5.23 Generic amplifier configuration with node 2 grounded.
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Let us first consider the voltage gain AV, when port 2 is terminated with a load
admittance YL.

AV = − y21

YL + y22
= Y 10 + g

m

Y L + Y 10 + Y 20 + g
m

=
(

1 + Y L + Y 20

Y 10 + g
m

)−1

. (5.125)

In practical devices, the second term in parentheses will be small compared to 1, at least
at lower frequencies, so that AV ≈ 1 (but always less than 1) – v2 follows v1, which
is why this topology is also called a source follower or emitter follower for FETs and
bipolar transistors, respectively.

The input admittance is calculated to be

Y1 = y11 − y21 y12

YL + y22
= Y 12 + (Y L + Y 20)Y 10

Y L + Y 20 + Y 10 + g
m

= Y 12 + Y 10

1 + Y 10 + g
m

Y L + Y 20

(5.126)

≈ Y 12 + Y 10

1 + g
m

Y L

, (5.127)

because typically, at least at frequencies sufficiently below fT, g
m

� Y 10, and
assuming that Y L � Y 20.

Compare this to the input admittance of the topology where node 0 was grounded,
Equation (5.109), and you will notice that the influence of Y 10 is substantially reduced,
while Y 12 does not suffer from the augmentation due to the Miller effect. We can
therefore state that the topology with node 2 grounded presents a much lower input
admittance.

Going to our usual FET example where the amplifying device is represented by
the equivalent circuit in Figure 5.20, we can show that Equation (5.126) may have an
unexpected result. In this case,

Y1 = jωCGD + jωCGS

1 + gm + jωCGS

YL + gDS

.

Now assume that gm � ωCGS, i.e. ω � ωT, that YL is capacitive (YL = jωCL), and
that ωCL � gDS.

Y1 = jωCGD − ω2CGSCL

gm + jω(CL + CGS)
,

or separating into real and imaginary parts,

Y1 = − ω2gmCGSCL

g2
m + ω2(CL + CGS)2

+ jω

(
ω2CGSCL(CL + CGS)

g2
m + ω2(CL + CGS)2

+ CGD

)
. (5.128)

We created an admittance with a negative real part! This can be useful, for example if
we want to build an oscillator (see Section 5.5), but also very dangerous for amplifier
stability.
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Moving back to the more general case, let us calculate the current gain:

AI = − Y L(Y 10 + g
m
)

Y 12(Y 10 + Y 20 + Y L + g
m
) + Y 10(Y L + Y 20)

. (5.129)

Comparing this with the equation for the current gain with node 0 grounded (Equation
(5.112)), we see that the denominators are equal. If further g

m
� Y 10, Y 12, which is

typically the case, the two current gains have equal magnitude.
Finally, the output admittance of the topology with node 2 grounded will be

calculated. The input port is terminated with a generator admittance YG.

Y2 = Y 20 + (Y 10 + g
m
)(Y G + Y 12)

Y G + Y 10 + Y 12
. (5.130)

To interpret this equation, assume that YG � Y 10 + Y 12, g
m

� Y 10. Then,

Y2 ≈ Y 20 + g
m

≈ g
m
,

in most cases. Compared to the output admittance of the original topology which had
node 0 as the common node (Equation (5.111)), we see that now we have a substantially
higher output conductance.

The combination of a very low input conductance (very high input impedance)
and high output conductance (low output resistance) is the most important aspect of
common-drain/common-collector topologies.

5.4.3 Feedback

Negative feedback is another important principle in amplifier design. In small-signal
design, it is used for impedance matching purposes, to make an amplifier stable and to
increase its bandwidth. The negative feedback amplifier was invented by Harold Black
in 1927 [22].

The most important feedback implementations in high-speed amplifier design are
shunt–shunt and series–series feedback, as shown in Figure 5.24.

[Yf]

[Yf][Y ]

[Y ]

(a) (b)

Fig. 5.24 Feedback configurations: (a) shunt–shunt feedback and (b) series–series feedback.
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Shunt–shunt feedback
Case (a) is easily calculated using a y matrix representation, because the resulting y
matrix is the sum of the individual matrices.

[YT] = [Y ] + [Yf] =
[

y11 + y11, f y12 + y12, f

y21 + y21, f y22 + y22, f .

]
(5.131)

Series–series feedback
Series–series feedback is better treated using a z matrix representation:

v1 = z11i1 + z12i2 (5.132)

v2 = z21i1 + z22i2. (5.133)

Conversion from y to z matrix is easy because the z matrix is simply the inverse of the
y matrix:

[Z ] = 1

�(Y )

[
y22 −y12

−y21 y11

]
, (5.134)

where �(Y ) is the determinant of the y matrix and �(Y ) = y11 y22 − y12 y21.
Once the z matrices have been obtained, the resulting z matrix of the circuit with

series–series feedback is the sum of the individual z matrices:

[ZT ] = [Z ] + [Zf] =
[

z11 + z11,f z12 + z12,f

z21 + z21,f z22 + z22,f

]
. (5.135)

The conversion back from z to y matrix is equally simple:

[Y ] = 1

�(Z)

[
z22 −z12

−z21 z11

]
. (5.136)

Use of feedback in small-signal amplifiers
A very common feedback example is shown in Figure 5.25, where an admittance Yf is
connected between the output and the input of a common-source amplifier. The FET

YL

Yf

Q1

v1

v2

Fig. 5.25 Example of shunt–shunt feedback in a common-source amplifier.
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shall be treated using the generic equivalent circuit in Figure 5.17. The feedback two-
port contains only one element, Yf. If [YQ1] is the y matrix of transistor Q1, then the y
matrix of the transistor with feedback is

[YT] =
[

y11,Q1 + Yf y12,Q1 − Yf

y21,Q1 − Yf y22,Q1 + Yf

]
. (5.137)

Unilateralisation
An immediate application of this feedback technique is the elimination of the parameter
y12. Choosing

Yf = −y12,Q1

results in a unilateralised amplifier two-port where the input parameters no longer
depend on the output load, and vice versa. This can be used to improve amplifier
stability, and is referred to as neutralisation.

There are several ways of achieving this. In narrow-band amplifiers, the usually
purely capacitive feedback may be tuned out using an inductor. The inductor is chosen
to form a parallel resonance with the feedback capacitor at the frequency of operation.

A more elegant technique was invented by Harold A. Wheeler in the early 1920s
for electron tubes. A current with equal magnitude – but opposite phase, as the current
through the feedback admittance – is fed back from the output to the input node, where
the two currents cancel out exactly. This is shown in Figure 5.26. In integrated circuits,
the realisation of the autotransformer is hampered by the typically high losses of on-chip
inductors. However, any kind of phase reversal will do; a particularly simple technique
will be discussed further down in the context of the differential amplifier (p. 336).

Port matching
A very common task in amplifier design is matching, e.g. the input admittance Y1 to
the generator admittance: Y1 = Y ∗

G, where Y ∗
G is the complex conjugate of the generator

VDD

CN CGD

Fig. 5.26 Amplifier neutralisation using an autotransformer.
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YL

i1

v1

Q1

L

Fig. 5.27 Inductive emitter degeneration as an example for series–series feedback.

admittance. While this is commonly done by cascading a matching network and the
amplifier two-port, the same result can frequently be achieved by using feedback.

With shunt–shunt feedback, the input admittance becomes

Y1 = y11,Q1 + Yf − (y12,Q1 − Yf)(y21,Q1 − Yf)

YL + y22,Q1 + Yf
. (5.138)

Setting Y1 = Y ∗
G and solving for Yf, we obtain

Yf = (y11,Q1 − Y ∗
G)(YL + y22,Q1) − y21,Q1 y12,Q1

Y ∗
G − YL − (y11,Q1 + y12,Q1 + y21,Q1 + y22,Q1)

. (5.139)

Inductive source degeneration
Series–series feedback is also commonly used in matching problems. A practical exam-
ple is shown in Figure 5.27. An inductor is inserted into the source lead of a FET. This
is referred to as inductive source degeneration, and may equally be applied to bipolar
transistors. We shall now investigate its effect on the input impedance. For simplicity’s
sake, we assume that for transistor Q1, Y 12 and Y 20 can be neglected. For a general
impedance Zf in the source lead, the input impedance becomes

Z1 = v1

i1
= 1

Y 10
+ Zf

(
1 + g

m

Y 10

)
. (5.140)

In the specific case, Zf = jωL . Using the simple FET equivalent circuit in Figure 5.20,
further Y 10 = jωCGS. Recall that ωT = gm/CGS, and we find

Z1 = ωTL + j

(
ωL − 1

ωCGS

)
. (5.141)

The inductance hence creates a real part in the input impedance.

Bandwidth improvement
Both shunt–shunt and series–series feedback can be used to increase bandwidth,
however at the expense of maximum gain.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.006


Building blocks for high-speed analogue circuits 327

[Y ]

ZG

v0 v1 v2

YL

Yf

Fig. 5.28 Two-port in y matrix representation with shunt–shunt feedback.

Let us investigate the use of shunt–shunt feedback. First, realise that the influence
of the generator impedance needs to be included. Figure 5.28 shows the correspond-
ing schematic. We are interested in the voltage gain between generator and load. For
Yf = 0, this is

GV = v2

v0
= AV

1 + ZG(y11 + AV y12)
(5.142)

where AV is given by Equation (5.100). With Yf �= 0, we obtain

A′
V = −AV

1 − Yf

y21

1 + Yf

y22 + YL

(5.143)

G ′
V = A′

V

1 + ZG
[
y11 + A′

V y12 + Yf(1 − A′
V)

] . (5.144)

The noteworthy feature here is that Yf appears magnified by 1 − A′
V in the denominator.

We found this already in a different context when discussing the Miller effect.
The bandwidth enhancement effect can be seen in a simple example. The amplifying

device shall be the simple FET from Figure 5.20. Then the y matrix is, with some
appropriate simplifications,

y11 = jω(CGS + CGD) ≈ jωCGS

y12 = −jωCGD

y21 = gm − jωCGD ≈ gm

y22 = gDS + jωCGD ≈ gDS.

Let us further assume that

Yf � gm.

Then,

AV = − gm

YL + gDS
,

A′
V = AV

YL + gDS

YL + gDS + Yf
,
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and

G ′
V = A′

V

1 + ZG
[
(1 − A′

V)Yf + jω(CGS − A′
VCGD)

] .
We calculate the 3 dB cutoff frequency as the frequency where the real and the
imaginary parts in the denominator are equal. For Yf = 0, this is

ωC(Yf = 0) = 1

ZG(CGS − AVCGD)
.

Next, we apply a purely resistive feedback, Yf = Gf:

ωC(Yf = Gf) = 1 + ZGGf(1 − A′
V)

ZG(CGS − A′
VCGD)

.

Frequently, Gf � (YL + GDS) and therefore A′
V ≈ AV. The resistive feedback hence

results in a very substantial bandwidth enhancement by the factor 1 + ZGGf(1 − AV).
The low-frequency gain, however, decreases to

GV(ω → 0) = AV

1 + ZG Rf(1 − AV)
,

so that the product GV(ω → 0)ωC = const.
Larger bandwidth enhancement is possible if we allow Yf to have a negative

imaginary part. This will be treated further down.
Bandwidth enhancement using series–series feedback will be treated for the specific

example shown in Figure 5.29. This is a transadmittance stage which converts an input
voltage into an output current. The series feedback using Zf will first of all increase the
input impedance to lower the load on the preceding stage. If it is made complex, it can
be used for significant bandwidth enhancement as well.

YL

Q1

Z f

v1

i2

i1

v2

Fig. 5.29 Bandwidth enhancement using series–series feedback.
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The transadmittance of this stage is

Yt = i2

v1
= gm

1 + gm Zf

(
1 + jω

ωT

) , (5.145)

if the FET is described by the simple equivalent circuit in Figure 5.20, and using ωT =
gm/CGS.
If now Zf is a parallel RC network,

Zf = Rf

1 + jωRfCf
,

and Cf is chosen,

Cf = 1

ωT Rf
,

the frequency dependence in YT will disappear:

YT = gm

1 + gm Rf
,

at least for this simple equivalent circuit!

5.4.4 Amplifier configurations with two transistors

In the first part of this chapter, we have seen how the fundamental topologies we can
realise with a three-terminal amplifying device have very different properties in terms
of input and output admittances, as well as voltage and current gains. Further flexibility
in tailoring amplifier properties is achieved when we combine two of the fundamental
topologies. We will use generic FETs in order to help visualise the circuits. However, the
fundamental concepts apply equally to bipolar transistors – in fact, to any three-terminal
amplifying device, as was outlined in the more abstract discussion above.

Common-drain/common-source configuration
Suppose that we want to construct a buffer amplifier, which shall impose a minimal load
on a generator, yet also have a significant voltage gain. This can be achieved with the
combination of

• a common-drain stage (node 2 as the common node), providing the high input
impedance, and

• a common-source stage (node 0 as the common node), providing the voltage gain.

Figure 5.30 shows the schematic of the common-drain/common-source (CD/CS) topo-
logy. Q1 is the common-drain transistor, Q2 the common-source transistor, YL is the
load admittance and YG the generator admittance.

The two important aspects of this configuration are input admittance and voltage gain,
as discussed.

The voltage gain of the second stage is

AV,Q2 = v2

vA
≈ − g

m

Y L + Y 20
= − gm,Q2

gDS,Q2 + YL
,
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YL

v2Q2

Q1 A

vA

v1YGIG

Fig. 5.30 Schematic of a CD/CS amplifier cell. Bias arrangement has been omitted for clarity’s sake.

using Equation (5.107) with the simplifying assumptions indicated there, and the FET
equivalent circuit in Figure 5.20.

We can now calculate the input admittance of stage two:

Y1,Q2 = Y 10,Q2 + Y 12,Q2(1 − AV,Q2) = jω
[
CGS,Q2 + CGD,Q2(1 − AV,Q2)

]
.

Because Q2 is in common-source configuration, we observe the Miller effect, which
may significantly increase the capacitance seen from node A into Q2. To judge the
importance of this, consider the output admittance of transistor Q1, which appears
in parallel to Y1,Q2 at node A. We can use Equation (5.130) with the appropriate
simplifications:

Y2,Q1 ≈ Y 20,Q1 + g
m,Q1

= gDS,Q1 + gm,Q2 ≈ gm,Q1.

The admittance from node A to ground can then be written as

YA = gm,Q1 (1 + jωτA) ,

where τA is the characteristic time constant of node A:

τA = CGS,Q2

gm,Q1
+ CGD,Q2

gm,Q1
(1 − AV,Q2).

As long as (2πτA)
−1 is significantly outside of the intended frequency range of

operation, its effect can be neglected.
The concept of the characteristic time constant of internal nodes is very helpful in

high-speed design, especially when tracking down reasons for unexpected limitations
in performance.

Here, the situation may not be so bad, because the high capacitance seen into Q2 is
compensated for by the high conductance seen into the output of Q1 in its common-
drain configuration.

The voltage gain of stage Q1 is Equation (5.125):

AV,Q1 = vA

v1
=

(
1 + YL + Y 20,Q1

Y 10,Q1 + g
m,Q1

)−1

≈ gm,Q1

gm,Q1 + Y1,Q1
= 1

1 + jωτA
.
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The total voltage gain is finally

AV = AV,Q1 AV,Q2 ≈ AV,Q2

1 + jωτA
≈ AV,Q2,

if ω � τ−1
A . Again we notice the importance of the characteristic impedance of node A.

The input admittance can be calculated from Equation (5.126):

Y1 ≈ Y 12,Q1 + Y 10,Q1

1 +
g

m,Q1

Y1,Q2

= jωCGD,Q1 + jωCGS,Q1

1 + gm,Q1

Y1,Q2

.

Recall that in our case, Y1,Q2 is purely capacitive. As shown earlier, a capacitive load to
a common-drain stage leads to a negative real part in the input admittance (see Equa-
tion (5.128)). Whether this represents a problem for amplifier stability depends on the
generator admittance value YG. This should be kept in mind when investigating stability
problems.

Finally, we take a look at the overall current gain. Because the output current of
the first stage feeds the input of the second, we expect the overall current gain to be the
product of the two individual current gains. However, we have to observe that we always
counted currents positive when they flow into the device (see Figure 5.18). Then,

AI = −AI,Q1 · AI,Q2. (5.146)

The current gain of the first (common-drain) stage is given by Equation (5.129),
observing that now the load admittance is the input admittance of the second stage:

AI,Q1 = −
Y1,Q2(Y 10,Q1 + g

m,Q1
)

Y 12,Q1(Y 10,Q1 + Y 20,Q1 + Y1,Q2 + g
m,Q1

) + Y 10,Q1(Y1,Q2 + Y 20,Q1)
,

(5.147)
while the current gain of the common-source stage is given by Equation (5.112):

AI,Q2 =
(g

m,Q2
− Y 12,Q2) Y L

Y 12,Q2(Y L + g
m,Q2

+ Y 10,Q2 + Y 20,Q2) + Y 10,Q2(Y L + Y 20,Q2)
, (5.148)

where YL is the load admittance connected to the drain of Q2.
Since the explicit calculation of AI presents considerable difficulty, let us make a

number of simplifying assumptions. First, we make the two-ports unilateral, i.e. we
assume Y 12 = 0. Then, we assume that the load admittances are always much larger
than the elements Y 20 for both transistors: Y1,Q2 � Y 20,Q1, YL � Y 20,Q2. Equation
(5.146) then has a very simple solution:

AI =
g

m,Q2

Y 10,Q2

(
1 +

g
m,Q1

Y 10,Q1

)
. (5.149)

For further interpretation, turn again to our simple FET equivalent circuit (Figure 5.20),
and recall the transit (cutoff) frequency ωT ≈ gm/CGS. Equation (5.149) can then be
written as
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YL

v2Q2

Q1 A

vA
v1YGIG

Fig. 5.31 Darlington amplifier configuration.

AI = −
(ωT,Q1 ωT,Q2

ω2
+ j

ωT,Q2

ω

)
. (5.150)

Assume now that ωT,Q1 = ωT,Q2 = ωT. For ω � ωT, the current gain is now
approximately the product of the current gains of the individual devices, but rolls
off at −40 dB/decade, instead of −20 dB/decade. The frequency where |AI| = 1 is√

2/(
√

5 − 1)ωT = 1.272ωT.

Darlington amplifier
The CD/CS configuration is not quite the same as the popular Darlington [7] topology,
shown in Figure 5.31. The difference is that in the Darlington amplifier, the drain of
Q1 is connected to the drain of Q2. While the goal is similar, there are two noteworthy
differences:

• The feedback admittance of device Q1, Y 12,Q1, is now in the path between the
output and the input nodes, and not connected directly to ground as in the CD/CS
configuration. Therefore, the Miller effect will be present at the input.

• The output current of Q1 now also flows through the load. This changes the current
gain equation. Using the same strong simplifications as in deriving Equation (5.150),
we now find

AI = −
[ωT,Q1 ωT,Q2

ω2
+ j

(ωT,Q1

ω
+ ωT,Q2

ω

)]
. (5.151)

Compared to the CD/CS amplifier, the Darlington has slightly more short-circuit
current gain close to ωT. If again both transistors are equal and equally biased, the
frequency where |AI| = 1 is 2ωT. This is why this configuration is sometimes also
called fT doubler. The expression should be taken with a grain of salt. Remem-
ber that fT is derived here from current gain, and that we neglected the feedback
admittances in calculating Equation (5.151). The Miller effect disadvantage of the
Darlington stage therefore does not show up in the simplification, but can signif-
icantly affect circuit performance for small values of YL. Further, the current gain
rolls off with −40 dB/decade, which may lead to stability problems when feedback is
applied around the stage. So your mileage may vary.
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VCC

YL

Q2

Q3

Q1

A
v2v1

Fig. 5.32 Battjes fT doubler circuit.

Battjes fT Doubler
The well-known circuit shown in Figure 5.32, patented by C. R. Battjes [2], is essen-
tially a Darlington amplifier (Q1, Q2) combined with a current mirror (Q2, Q3), which
makes sure that both transistors in the signal path are operated with the same current. If
they are also of equal size, they will have the same transit frequency. The circuit shown
uses bipolar transistors (as in the patent), but the concept equally works with FETs.
Note that the input capacitance of Q3 needs to be accounted for – if Q1/Q3 and Q2 are
supposed to have the same current, then Q2 and Q3 need to have the same size, and the
effective capacitance attached to node A approximately doubles (neglecting the Miller
capacitance seen into Q2).

Cascode amplifier
The cascode amplifier is a combination of a common-source (or common-emitter) with
a common-gate (or common-base) topology. It was conceived as a way to overcome the
Miller effect and first described in 1939 using two triode tubes [21], where the cathode
of tube 2 was series-connected (‘cascaded’) to the anode of tube 1. The term cascode
hence refers to cascaded anode. Figure 5.33 shows a cascode realised using FETs.

Let us assess the input admittance first. Because Q1 is in common-source configura-
tion (node 0 grounded), we use Equation (5.109):

Y1 = Y 10,Q1 + Y 12,Q1 (1 − AV,Q1).

When calculating AV,Q1, we recognise that the load admittance is the input admittance
of Q2 at node A:

AV,Q1 = −
g

m,Q1
− Y 12,Q1

Y1,Q2 + Y 20,Q1 + Y 12,Q1
.

The input admittance Y1,Q2 is calculated using Equation (5.117), because Q2 is in
common-gate configuration:

Y1,Q2 = Y 10,Q2 + (g
m,Q2

+ Y 20,Q2)
YL + Y 12,Q2

Y L + Y 20,Q2 + Y 12,Q2
.
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YL

v2

v1

Q2

Q1

A

Fig. 5.33 Schematic of a cascode stage built with FETs (bias arrangement omitted).

Assume that g
m,Q2

� Y 20,Q2, further YL � Y 12,Q2, Y 20,Q2. Then, the input
admittance of Q2 simplifies to

Y1,Q2 ≈ Y 10,Q2 + g
m,Q2

.

With this simplification, the voltage gain of Q1 is then

AV,Q1 = −
g

m,Q1
− Y 12,Q1

Y 10,Q2 + g
m,Q2

+ Y 20,Q1 + Y 12,Q1

≈ −
g

m,Q1

Y 10,Q2 + g
m,Q2

,

further assuming that g
m,Q2

� (Y 12,Q1 + Y 20,Q1).
The input admittance of the cascode finally becomes

Y1 ≈ Y 10,Q1 + Y 12,Q1

⎛⎜⎜⎜⎜⎝1 +
g

m,Q1

g
m,Q2

1

1 + Y 10,Q2

g
m,Q2

⎞⎟⎟⎟⎟⎠ . (5.152)

Using our simple FET equivalent circuit (Figure 5.20) this finally becomes

Y1 = jω

[
CGS,Q1 + CGD,Q1

(
1 + gm,Q1

gm,Q2

1

1 + j ω
ωT

)]
.

The suppression of the Miller effect is simply explained by the low voltage gain of the
common-source stage −gm,Q1/gm,Q2 for low frequencies. Frequently, transistors Q1

and Q2 are chosen the same size, and since they share the same drain (or collector)
current, it follows that gm,Q1 = gm,Q2 and AV,Q1 = −1.
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The calculation of the output admittance starts with the output admittance of tran-
sistor Q2, which is in common-gate configuration (node 1 grounded), using Equation
(5.118):

Y2 = Y2,Q2 = Y 12,Q2 + Y 20,Q2

Y2,Q1 + Y 10,Q2

Y2,Q1 + Y 10,Q2 + Y 20,Q2 + g
m,Q2

,

where Y2,Q1 is the output admittance of transistor Q1 in common-source configuration
(see Equation (5.111)):

Y2,Q1 = Y 20,Q1 + Y 12,Q1

(
1 +

g
m,Q1

− Y 12,Q1

YG + Y 10,Q1 + Y 12,Q1

)
,

where YG is the admittance terminating the input port. We simplify the expressions by
assuming that the feedback admittances are small and the corresponding terms can be
neglected. Then Y2,Q1 ≈ Y 20,Q1 and the overall output conductance becomes

Y2 ≈ Y 20,Q2

(
1 +

g
m,Q2

+ Y 20,Q2

Y 10,Q2 + Y 20,Q1

)−1

. (5.153)

Because g
m
/Y 20 is the magnitude of the maximum voltage gain in common-

source configuration (see Equation (5.108))), an additional sensible assumption is that
g

m,Q2
� Y 20,Q2. Then,

Y2 ≈ Y 20,Q2

(
1 +

g
m,Q2

Y 10,Q2 + Y 20,Q1

)−1

. (5.154)

In our simple FET example, we finally find

Y2 ≈ gDS,Q2

(
1 + gm,Q2

gDS,Q1 + jωCGS,Q2

)−1

,

and for the quasi-static case, ω → 0:

Y2 ≈ gDS,Q2

1 + gm,Q2

gDS,Q1

.

The output admittance is therefore significantly reduced compared to the common-gate
or common-source configurations.

The voltage gain of the cascode stage, AV = AV,Q1 · AV,Q2, is

AV ≈ −
g

m,Q1

YL + Y 20,Q2
·

g
m,Q2

+ Y 20,Q2

g
m,Q2

+ Y 10,Q2
, (5.155)

neglecting the feedback admittances. In the FET example,

A ≈ gm,Q1

YL + gDS,Q2
· 1 + gDS,Q2/gm,Q2

1 + jω/ωT
,
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or provided that gm,Q2 � gDS,Q2 and ω � ωT:

AV = − gm,Q1

YL + gDS,Q2
.

In summary, the cascode configuration provides a comparable voltage gain to the
common-source topology, but its input admittance is significantly lower due to the
reduction of the Miller capacitance and its output admittance is significantly higher.

Finally, an important side effect of the cascode shall be pointed out here: the real part
of the output admittance may become negative. In practical devices, the assumption
that parameter Y 20 is purely real is not correct; a better approximation is Y 20 = gDS +
jωCDS. If we insert this into Equation (5.153) and separate real and imaginary parts,
we find that the real part becomes negative if

gDS,Q1 · gDS,Q2 < ω2CDS,Q2 · (CDS,Q1 + CGS,Q2),

assuming that gm,Q2 � gDS,Q1 along the way. Frequently, this can lead to amplifier
instabilities, but it may also be used to compensate losses in travelling-wave amplifiers,
as will be discussed later.

5.4.5 Differential amplifiers

An important component in many high-speed electronic circuits is the differential
amplifier. One of the most influential pioneers of biomedical engineering, Otto Schmitt,
is frequently held to be the father of the differential amplifier topology [34] – the ability
of the differential amplifier to reject common-mode signals at its input is crucial for
the measurement of weak bio-electric signals. Incidentally, he also invented the Schmitt
trigger circuit.

A generic differential amplifier topology realised with FETs is shown in Figure 5.34.
A first noteworthy difference between the amplifiers discussed so far is that the input
and output voltages are not referenced to ground, but to the other input and output
electrodes, respectively.

Figure 5.35 shows the small-signal representation of the differential amplifier, where
the transistors are represented using the generic small-signal equivalent circuit from
Figure 5.17. The transistors are identical.

Differential mode
Any combination of nodal input voltages vA = v′

A + v′′
A, vB = v′

B + v′′
B can be split into

a differential mode (v′
A = −v′

B, v′′
A = v′′

B = 0) and a common mode (v′′
A = v′′

B, v′
A =

v′
B = 0). First, we concentrate on the differential mode. To calculate the voltage of the

common mode v0, we first loop through vA, v1,1, v1,2 and vB:

−v′
A + v1,1 − v1,2 − v′

A = 0 → v′
A = v1,1 − v1,2

2
.

On the other hand, v0 = v′
A − v1,1 and therefore

v0 = −v1,1 + v1,2

2
.
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VDD

YLYL

V2

Q2Q1

Y0
I0

V1

Fig. 5.34 Generic differential amplifier topology.

YL YL

Y20

gm v1,1 gm v1,2

Y0

A

Y12

Y10
v1,1

v1

vA

vB

Y20

Y12

v2

v1,2Y10

v0

Fig. 5.35 Small-signal representation of the differential amplifier.

For symmetry reasons, v′
A = −v′

B also implies v1,1 = −v1,2 and hence

v0 = 0

in differential mode! The common node A constitutes a virtual ground. This is a very
important concept in high-speed circuit design, as it dramatically reduces problems with
common-node impedances, such as in bond wires to ground, which otherwise may lead
to a variety of feedback problems.
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Now that A is grounded, the two halves of the differential amplifier reduce to standard
common-source (or common-emitter) circuits which we have already analysed. The
input voltage to the left half is v1,1 = v1/2, while the right half receives v1,2 = −v1/2.

Using Equation (5.109) to calculate the common-source input admittance Y1,CS for
the individual transistors, the differential mode input admittance is

Y1,d = i1

v1
= Y1,CS

2
. (5.156)

Likewise, the output admittance is half the output admittance Y2,CS for the common-
source stage given by Equation (5.111):

Y2,d = i2

v2
= Y2,CS

2
. (5.157)

Equation (5.107) is used to calculate the common-source voltage gain AV,CS. The
differential voltage gain is then

AV,d = v2

v1
= AV,CS. (5.158)

Common mode
In common mode, both input terminals have the same potential to ground: v′′

A = v′′
B.

The individual transistors are connected in parallel then at input and output, resulting in
the equivalent circuit shown in Figure 5.36, and their y matrices can simply be added.
We arrive at an equivalent transistor Qe with the following y matrix:

[yQe] = 2

[
Y 10,1 + Y 12,1 −Y 12,1

g
m,1

− Y 12,1 Y 20,1 + Y 12,1

]
.

The parameters are those of the individual transistor. This problem can be treated using
the results of the feedback discussion (see p. 323), converting the y matrix first to a z
matrix, and adding the z matrix corresponding to Y0, which is

2YL

Qe

Y0 v2v1 =vA =vB

Fig. 5.36 Equivalent circuit of the differential amplifier under common mode excitation.
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[Zf] =

⎡⎢⎢⎣
1

Y0

1

Y0
1

Y0

1

Y0

⎤⎥⎥⎦ ,

and converting back to a y matrix.
Here, we will consider a quick solution using a simplified equivalent circuit where

we neglect both Y 12,e and Y 20,e for the transistor Qe. Let g
m,e

= 2gm,1 and Y 10,e =
2Y 10,1, as discussed. The voltage gain AV,cm for common-mode excitation is then

AV,cm = v2

v1
=

−2gm,1

(2YL)

1 + 2

Y0gm

= − gm,1

YL

(
1 + 2gm

Y0

)
≈ − Y0

2YL
, (5.159)

assuming gm,1/Y0 � 1. The output voltage here is taken between one of the output
terminals and ground – the differential output voltage for common-mode excitation is
0, provided that the circuit is perfectly symmetrical. The voltage gain under differential
excitation, but with the output voltage taken between one of the output terminals and
ground, is

AV,d,gnd = −gm,1

2YL
.

The ratio ∣∣∣∣ AV,d,gnd

AV,cm

∣∣∣∣ =
∣∣∣∣ gm,1

Y0

∣∣∣∣ (5.160)

is the common-mode rejection ratio, a measure for the suppression of common-mode
input signals. We see that Y0 should be as small as possible.

Neutralisation of differential amplifiers
The fact that the output voltages of a differential amplifier are exactly 180◦ out of phase
can be used to elegantly eliminate the effect of the feedback capacitances in the transis-
tors. This is shown in Figure 5.37. The capacitances Cn, which have to be exactly equal
to CGD, feed a current into the gate nodes of the two transistors, which is equal in mag-
nitude, but of opposite sign, compared to the currents flowing through CGD, cancelling
these capacitances.

A more complex differential amplifier example
Differential amplifiers for high-speed applications are frequently more complex and
exploit the special properties discussed in the section on basic amplifier topologies using
two transistors. Figure 5.38 shows a cell common to many high-speed differential ampli-
fiers. Transistors Q1 and Q2 are in common-collector configuration, connected to the
transistor pairs Q3, Q5 and Q4, Q6, respectively, which form a differential cascode.
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VDD

YLYL

Cn

V1

Q1 Q2 Cn

I0Y0

Fig. 5.37 Differential amplifier with neutralisation.

VCC

v1

Q1

Q3

Q5 Q6

Q2

v2

Q4

Fig. 5.38 A more complex differential amplifier example. The dashed line indicates the symmetry plane;
all nodes along this plane are virtual grounds.

All nodes along the median, which is indicated as a dashed line, are virtual grounds,
provided that the circuit is driven fully differentially. This is particularly interesting
for the bases of Q5 and Q6, because proper grounding of the base terminal can be a
problem in cascode stages – here, it is easy due to the virtual ground property. Equally,
the emitters of Q3 and Q4 are properly grounded. The DC bias voltage terminal, VCC,
is also an RF ground, facilitating RF/DC decoupling.
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YL

Q1

v1

v2

Q2

Fig. 5.39 Source-coupled amplifier schematic (bias elements omitted).

These advantages lead to an increasing use of differential topologies in micro- and
millimetre-wave circuits. Drawbacks are the increased power consumption due to the
doubled component count and the increased area consumption. Another problem may
be on-wafer testing, due to the necessity for differential probes.

5.4.6 Source-coupled amplifier

The amplifier topology shown in Figure 5.39 has, at first glance, a configuration very
similar to the differential amplifier. We immediately recognise the source-coupled pair
and the common-current source. However, the amplifier is driven single-endedly and
also has only a single output. Upon closer investigation, Q1 is in common-drain and Q2

in common-gate topology.
The idea is therefore very similar to the CD/CS amplifier discussed earlier. The

common-drain input transistor creates a low input admittance, while the common-gate
stage delivers the voltage gain. The Miller effect is eliminated, and the input is well
isolated from the output.

Compared to the CD/CS amplifier, the input admittance is higher, because the input
admittance of the common-gate transistor Q2 is much higher than that of a comparably
biased common-source transistor: Y1,Q2 ≈ Y 10,Q2 + g

m
; see Equation (5.117) with

YL � Y 20,Q2. The input admittance of the source-coupled amplifier is then

Y1 = Y 12,Q1 + Y 10,Q1

1 +
g

m,Q2
+ Y 10,Q2

g
m,Q1

+ Y 10,Q1

. (5.161)

Using our simple FET equivalent circuit, Y 10 = jωCGS and

g
m

+ Y 10 = gm

(
1 + j

ω

ωT

)
.
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If the transistors therefore have the same ωT, the input admittance is

Y1 = jω

⎛⎜⎝CGD,Q1 + CGS,Q1

1 + gm,Q2

gm,Q1

⎞⎟⎠ .

It is purely capacitive and does not show the risk of a negative real part, which the
CD/CS amplifier had posed.

The circuit can also be compared to the cascode – the source-coupled amplifier has
a lower input admittance, is non-inverting and requires a lower supply voltage than the
cascode, but the cascode requires less current, because the current through the common-
gate stage is recycled in the common-source transistor.

5.4.7 Tuned amplifiers

Tuned amplifiers are commonly used at micro- and millimetre-wave frequencies when
the fractional bandwidth is small. The fractional bandwidth is the required opera-
tional bandwidth divided by the centre frequency. For example, the 24 GHz license-free
ISM band has a total allowed spectral width of 250 MHz, so any amplifier will need
sensibly only a fractional bandwidth of 10−2. Other applications, such as emerging
ultra-wideband sensor and communications standards, will have fractional bandwidths
which are orders of magnitude larger – the design of amplifiers for such systems will be
treated in the next section (p. 350).

A typical tuned amplifier will use three fundamental circuit techniques:

(i) A resonant load – the load admittance goes through a minimum at the frequency
of operation, maximising the voltage gain for a given transconductance.

(ii) Complex conjugate match at the input, ensuring that the available power from the
source is delivered to the amplifier.

(iii) Complex conjugate match at the output, ensuring that the available power from the
amplifier is delivered to the load.

For LNAs and power amplifiers, other matching strategies may apply for the input and
output ports, respectively. These will be treated in the sections on LNA design (p. 365)
and power amplifier design (p. 376). For now, we assume that achieving the maximum
gain is our objective.

Resonant loads
Let us first investigate the resonant load, using the simple example of Figure 5.40. The
schematic also indicates the generator and the equivalent input admittance of the fol-
lowing stage – it is essential to include at least the next-stage input admittance in the
calculations, and due to feedback, the generator admittance will also have an effect,
albeit more weakly.

The admittances Y2,Q1 and Y1,Q2 can typically be represented by a conductance in
parallel with a capacitive reactance (exception – if the following stage is a common-gate
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Generator Load

LLRLCL

Q1
Y2,Q1

Y1,Q2

Fig. 5.40 Tuned amplifier stage with resonant load.

or common-base stage, the reactance may be inductive). These elements are absorbed
into the load. The resulting reactances of the tank circuit are then

GT = R−1
L + Re(Y2,Q1 + Y1,Q2)

CT = CL + 1

ω
Im(Y2,Q1 + Y1,Q2)

LT = LL.

The transfer function of the voltage gain is

AV(ω) = −g
m

GT

1

1 + j
(
ω CT

GT
− 1

ωLTGT

) , (5.162)

which has its maximum at

ω0 = 1√
LT CT

,

and its −3 dB corner points at

ω 1
2

=
√

G2
T

4C2
T

+ 1

LT CT
± GT

2CT
.

The bandwidth between the −3 dB points is therefore

�ω = ω1 − ω2 = GT

CT
. (5.163)

This equation can be used to choose the proper GT for the required bandwidth of the
amplifier.
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Using Equations (5.162) and (5.163), we find the product of the voltage gain at ω =
ω0 and the −3 dB bandwidth:

− AV(ω0) · �ω = gm

CT
, (5.164)

which is interestingly independent of frequency. This is due to simplifying assumptions,
of course. In the ansatz for Equation (5.162) we used Equation (5.107) with the assump-
tion that g

m
� Y 12, hence that feedback is negligible, which is no longer true at very

high frequencies.
A tuned tank circuit always bears the risk of amplifier instability. For the common-

source amplifier in the example, we use Equation (5.109) to calculate the input
admittance of the circuit, using the expression in Equation (5.162) for AV(ω):

Y1 = Y 10 + Y 12

⎧⎨⎩1 + g
m

GT

1

1 + j
[
ω CT

GT
− 1

LTGT

]
⎫⎬⎭

= Y 10 + Y 12 + Y 12

g
m

GT

1 − j
[
ω CT

GT
− 1

ωLTGT

]
1 +

[
ω CT

GT
− 1

ωLTGT

]2
.

If, as is usually the case, Y 12 ≈ jωCGD, the third term in the sum has a negative real
part for ω < ω0. The risk of parasitic oscillations increases with increasing peak gain.
Neutralisation measures as discussed already (p. 325) may become necessary in such
cases.

Input and output matching networks
A common requirement in microwave amplifiers is that input and output admittances
need to have a predefined value. There are two major reasons for this:

(i) If the input and output admittances are the complex conjugates of the source and
load admittances, the source’s available power is transferred to the amplifier, and
the amplifier’s available power is transferred to the load, resulting in the maximum
power gain – this value is called the maximum available gain and will be discussed
shortly.

(ii) To avoid standing waves on interconnecting transmission lines, the lines need to
be terminated by their characteristic impedances at least at one end.

The characteristic impedance of a lossless transmission line is real; hence, input and out-
put admittances are normally tuned to a purely real value where the circuit will interface
with a transmission line. For internal nodes, however, this is not necessary – in fact,
as we will see in our discussion of broadband amplifier techniques, at internal nodes
impedance matching is often abandoned altogether, in favour of increased bandwidth,
but with penalties in power gain.

Because the Smith chart (see p. 295) is the most important tool in solving matching
problems, we will conduct the matching discussions using scattering parameters.
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Most importantly, we need to translate source and load admittances as well as two-
port input and output admittances into reflection coefficients. This is easily done:

� = Y0 − Y

Y0 + Y
= Z − Z0

Z + Z0
, (5.165)

where Y0 = 1/Z0 is the normalising admittance, which is frequently 20 mS (corre-
spondingly Z0 = 50�), but can be chosen arbitrarily.

We have seen that in two-ports which are not unilateral (y12 �= 0, correspond-
ingly S12 �= 0), the input admittance depends on the load admittance, and the output
admittance depends on the source admittance. In general terms and with the two-port
expressed as a scattering matrix, the input (�1) and output (�2) reflection coefficients
are (p. 300)

�1 = S11 + S12S21�L

1 − S22�L
(5.166)

�2 = S22 + S12s21�G

1 − S11�G
, (5.167)

where �G and �L are the generator and load reflection coefficients, respectively.
For simultaneous power match at input and output ports, we need these coupled

equations to be satisfied:

�∗
G = S11 + S12S21�L

1 − S22�L

�∗
L = S22 + S12S21�G

1 − S11�G
,

where �∗ is the complex conjugate of �. Solving these equations for the necessary
generator and load reflection coefficients �G,m and �L,m, we find

�G,m = C∗
1

|C1|

⎛⎝ B1

2|C1| −
√

B2
1

|C1|2 − 1

⎞⎠ , (5.168)

with

B1 = 1 − |S22|2 + |S11|2 − |�(S)|2
C1 = S11 − �(S) S∗

22,

where �(S) is the determinant of the scattering matrix. For the load reflection
coefficients, we find likewise:

�L,m = C∗
2

|C2|

⎛⎝ B2

2|C2| −
√

B2
2

|C2|2 − 1

⎞⎠ , (5.169)

with

B2 = 1 − |S11|2 + |S22|2 − |�(S)|2
C2 = S22 − �(S) S∗

11.

Simultaneous input and output power match is not always possible, but requires a two-
port to be unconditionally stable (see p. 303).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.41 Generic L network topologies.

Generally speaking, impedance transformation can be achieved using

• reactances L, C,
• transformers,
• transmission line impedance transformation.

At micro- and millimetre-wave frequencies, ‘true’ transformers based on coils are
rarely used, because when realised on-chip using planar inductors, they tend to be very
lossy, and additionally have high parasitic capacitances. So only impedance transforma-
tions using reactive networks and transmission line impedance transformation will be
discussed here.

The most fundamental impedance transforming network is the L network, which can
have any of the shapes shown in Figure 5.41.

There is always more than one topology which achieves the desired impedance trans-
formation. This is an important observation, because other considerations need to be
taken into account also. For example, the input port may have to be DC-blocked, in
which case a topology with a series C may be suitable(cases c, d, g, or h in Figure 5.41),
or DC bias may have to be supplied through the port, in which case a series L and no
shunt L are needed (cases a or e). Likewise, it may be advantageous to ground the input
port at low frequencies, favouring a topology with a shunt L (cases b, c, or f).

Figure 5.42 shows an example of an impedance matching problem, solved using sev-
eral topologies. In all cases, the impedance in the lower left quadrant is the starting point
and the centre of the Smith chart is the target.

• Path 1 uses an L in series with the start impedance and then a shunt L.
• Path 2 also starts with a series L, but a larger one, and then uses a shunt C.
• Path 3 starts with a shunt L, and then continues with a series L.
• Path 4 starts equally with a shunt L, but a smaller one, and then uses a series C to

reach the required impedance.

The several options are best visualised using the Smith chart.
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Table 5.1 Matching a complex load (100� parallel to 2.5 pF) to 50�
using different L network topologies, f = 1 GHz

Path Components Bandwidth

1 LS,1=3.1 nH, LP,2=8.8 nH 508 MHz
2 LS,1=11 nH, CP,2=2.75 pF 547 MHz
3 LP,1=26 nH, LS,2=7.9 nH 561 MHz
4 LP,1=6.1 nH, CS,2=3.15 nH 324 MHz

j1.0

j0.5

j0.2

–j0.2

–j0.5

–j1.0
–j1.5

–j2.0

–j5.0

0 0.2 0.5 1.0 2.0 5.0

j5.0

j2.0

j1.5

2

1

3

4

Fig. 5.42 Example for multiple impedance transformation paths using L networks.

Other aspects of matching networks need to be considered as well. This shall be
done in an example, where a parallel RC load (R = 100�, C = 2.5 pF) is matched
to Z0 = 50� using the different topologies in Figure 5.42. The results are shown in
Table 5.1.

First of all, we note that the matching bandwidth, defined as the difference between
the frequencies where the reflection coefficient becomes |�| > 0.32 (return loss less
than 10 dB), is vastly different – path 4 has less than 60% of the bandwidth of the others.
Also, component values may become impractically larger for on-chip implementation –
for example, LP,1 for path 3.
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L

C1 C2

ZL
C1 C2

ZL

La Lb

Zintermediate

(a) (b)

Fig. 5.43 Example of (a) a π -type matching network and (b) its decomposition into two cascaded L
networks.

These calculations have been performed using ideal components. In practice, large-
value spiral inductors also come with considerable series resistances, which is another
aspect to consider.

π networks are an extension of L networks – they are best thought of as being sepa-
rated into two L networks, as shown in Figure 5.43. The first L network transforms to
an intermediate impedance Zintermediate, which is then transformed by the second L net-
work to the desired value. π networks offer an additional degree of freedom, so we can
additionally design for different matching bandwidths. They are additionally attractive,
because they allow the absorption of interconnect parasitics into the matching network –
e.g. bond pad parasitics on chip and in the package (or on the PCB board) can form part
of C1 and C2, while the bond wire inductance can be absorbed into L .

Other combinations of L-type networks exist and can be useful for specific matching
problems, but this is beyond the scope of this book.

Figure 5.44 shows three examples of compact tuned amplifiers in an 80 GHz fT

Si/SiGe HBT technology [6]. The amplifiers share the same basic topology – three
cascaded cascode stages with resonant loads and LC interstage matching using spiral
inductors. Additionally, inductive emitter degeneration (Equation (5.141)) is used to
assist the match by increasing the real part of the input impedance. The use of concen-
trated reactances, even at millimetre-wave frequencies, leads to an extremely compact
layout.

Transmission line segments can also be used to transform impedances. Assuming
lossless transmission lines, the input impedance looking into a transmission line of
length l and characteristic impedance Z0, terminated by an impedance ZL, is

Z1 = Z0
ZL + j Z0 tan

(
2π l

λ′
)

Z0 + j ZL tan
(
2π l

λ′
) , (5.170)

where λ′ is the wavelength on the transmission line,

λ′ = c0

f
√
εr,eff

.

A very popular example is the quarter-wavelength transformer. In case l = λ′/4, the
input impedance becomes
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Fig. 5.44 Tuned millimetre-wave amplifiers in a Si/SiGe HBT technology, using LC loads and matching
networks. (After [6])

Z1 = Z2
0

ZL
. (5.171)

In other words, to match two impedances ZA, ZB, they need to be connected with
a transmission line which is λ′/4 long and has a characteristic impedance of Z0 =√

ZA ZB. Quarter-wave transmission line sections are also called impedance inverters –
the reason is obvious from Equation (5.171).

Transmission lines open up additional possibilities in matching. This is shown in
Figure 5.45, again using the same start impedance as above:

• In path 1, a transmission line section of impedance Z0 = 50� is used first to make
the impedance real. The intermediate impedance is 14.5�; hence the quarter-wave
section must have an impedance of

√
50 · 14.5 = 26.9�.

• Path 2 first uses a series inductance to make the impedance real, the intermediate
impedance is 28.7�. The quarter-wave section then needs to have a characteristic
impedance of 37.8�.

• Path 3, finally, uses a shunt inductance to make the impedance real (Z intermediate =
100�) and a quarter-wave section with Z0 = 70.7�.

Option 2 has the widest matching bandwidth, but the transmission line in option 3 is
likely the easiest to realise.

With increasing frequency, tuned amplifiers using transmission line segments become
increasingly interesting, because spiral inductors are especially difficult to realise and
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Fig. 5.45 Matching examples using quarter-wave transmission line transformers.

model, and the main objection against the use of transmission lines – their physical
size in layout – becomes irrelevant as the wavelength shrinks. Figure 5.46 shows an
example. The IC represents a three-stage fully differential amplifier for 77 GHz auto-
motive RADAR systems, realised in a 190 GHz fT Si/SiGe BiCMOS technology [5].
The amplifier provides 16 dB gain while consuming 90 mW from a 3 V supply. Thin-
film microstrip3 lines (TFMSLs) are used here for impedance matching purposes. Due
to the high frequency, the resulting IC is still very compact (740 × 540 μm2 chip size).

5.4.8 Broadband amplifier techniques

Tuned loads and reactive impedance matching networks are not suitable for amplifiers
with large fractional bandwidths, such as those used in high-speed fibre-optic systems,
micro/millimetre-wave instruments, many military systems with high frequency abil-
ity, or impulse-radio ultra-wideband systems. All of these applications need amplifiers
where the gain must be flat over a wide frequency range (often the ratio of upper to

3 In TFMSLs, the ground plane is realised on top of the substrate. This shields the signal line from the lossy
Si substrate, but leads to very narrow signal lines.
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Fig. 5.46 Fully differential Si/SiGe HBT amplifier for 77 GHz, using tuned transmission lines. (After [5])

lower cutoff frequency exceeds the factor of two – multi-octave bandwidths), and almost
always the input and output return loss also needs to stay below a specified value over
the full frequency range.

In the following section, we will discuss some common techniques which prove use-
ful in the realisation of amplifiers with very large bandwidths using concentrated circuit
components. Discussion of distributed amplification, which is also a very important
concept for wideband amplifiers, will start on p. 354.

Shunt peaking
We have already emphasised the importance of the characteristic time constant in the
discussion of multi-stage amplifier topologies (p. 330). We will see that broadband
amplifier design always comes down to modifying these internal characteristic time
constants.

Consider the simple cascading of common-source amplifiers, shown in Figure 5.47
together with a strongly simplified equivalent circuit. The load resistance and the input
capacitance of the following stage are combined into an equivalent impedance to ground
Zeq. Using Zeq, the transadmittance of the cascaded stage can be expressed as

YT = i2

v1
= −gm,1gm,2 Zeq = − RLgm,1gm,2

1 + jωRLCGS,2
. (5.172)
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Fig. 5.47 Intermediate node of two cascaded common-source amplifiers, with small-signal equivalent
circuit.
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Fig. 5.48 Cascade connection of two common-source amplifiers with shunt peaking inductor.

Obviously, RLCGS,2 is the characteristic time constant of the intermediate node, which
limits the bandwidth to

ω1 = 1

RLCGS,2
= ωT,2

gm,2 RL
, (5.173)

using ωT = gm/CGS.
We will now partially compensate the capacitive reactance by connecting an inductor

in series with the load resistor (see Figure 5.48). The transadmittance now becomes

YT = −gm,1gm,2 Zeq

= −gm,1gm,2 RL

1 + jωL

RL

1 − ω2LCgs,2 + jωRLCgs,2
. (5.174)

Introducing

τ = L

RL
; m = R2

LCgs,2

L
= 1

ω1τ
,

we rewrite Equation (5.174) [25]:

YT = −gm,1gm,2 RL

1 + j

(
ω

ω1

)
m−1

1 −
(

ω

ω1

)2

m−1 + jω

ω1

. (5.175)

The new −3 dB cutoff frequency is

ω2 = ω1

√√√√(−m2

2
+ m + 1

)
+

√(−m2

2
+ m + 1

)2

+ m2. (5.176)
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Fig. 5.49 Normalised transadmittance of an amplifier cascade with shunt peaking versus frequency, for
different values of parameter m.

Equation (5.176) is maximum for

m = √
2,

or finally

τ = 1√
2ω1

. (5.177)

Figure 5.49 plots the normalised transadmittance YT/
(
gm,1gm,2 RL

)
versus the nor-

malised frequency, and for several values of m. We note that

• we can achieve 1.8-fold increase in bandwidth;
• the increase in bandwidth comes at the expense of gain flatness;
• however, for m = 1 + √

2, the response becomes maximally flat with only a marginal
decrease in bandwidth.

Feedback techniques
We had already seen (Figure 5.29) that a parallel RC combination in series–series feed-
back can be used to completely eliminate the dominant pole in the frequency response of
the transadmittance. Let us consider a somewhat more complicated example now where
the amplifier is loaded by a complex load formed by a resistor and a capacitor in paral-
lel – the typical equivalent circuit of a following amplification stage. The small-signal
equivalent circuit is shown in Figure 5.50. The voltage gain is

AV = −gm RL
1 + jωτS

(1 + jωτL)
[
1 + gm

GS
+ jω

(
τS + gm

GS

ω
ωT

)] , (5.178)

where

τS = RSCS; τL = RLCL; ωT = gm

CGS
.
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Fig. 5.50 Bandwidth enhancement using series–series feedback.

The enumerator term can now be used to cancel one of the denominator poles:

• If 1 + jωτL dominates, then τS = τL is the proper choice.
• If the second term dominates, then choose τS = ω−1

T . This corresponds to the solution
already discussed in Equation (5.145).

5.4.9 Distributed amplification

The amplifier topologies discussed so far employed concentrated circuit elements and
are as such not very different from topologies employed at lower frequencies. The dis-
tributed nature of components, especially interconnect lines, only comes in at the layout
stage. In the wideband amplifier technique we will discuss now, the transmission line
nature is consciously used to establish distributed amplification.

A common problem in achieving high gain at microwave frequencies is that the nec-
essary large transconductance of the amplifying device requires a large device size
(source width or emitter area), which in turn invariably increases the input capaci-
tance. In FETs, in a first-order approximation, the ratio of transconductance to input
capacitance is the transit frequency: gm/CGS = ωT. In a common-source amplifier, the
dominant time constant at the input is therefore

τ1 = ZGCGS = ZG
gm

ωT
≈ −ZG YL

AV

ωT
,

where ZG is the generator admittance YL the load admittance and AV the quasi-static
voltage gain in common-source configuration. The input time constant is therefore
directly linked to the voltage gain of the cell, for a given load admittance.

In narrowband amplifiers, we may be able to compensate for the input capaci-
tance using a matching network, as we have seen. Very wideband amplifiers, however,
preclude the use of tuned networks.

To find a way around the input capacitance limitation, we follow two fundamental
steps:

(i) Instead of using one large device, we will use several smaller ones to deliver the
needed overall transconductance.

(ii) The input (and output) capacitances will then be absorbed into an artificial
transmission line.

The second step is the most crucial one. To understand this concept, remember that
any transmission line can be modelled using a ladder-type network of concentrated
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R ′ L ′ R ′

C ′ C ′G ′ G ′

L ′

Fig. 5.51 Lumped-element equivalent circuit of a transmission line.

Generator Load

YG = Y0
YL = Y0C1 C1

L ′ L ′

C ′ C ′

Fig. 5.52 Lossless transmission line loaded with additional shunt capacitances.

elements, such as shown in Figure 5.51. The line is characterised by its distributed
inductance L ′, capacitance C ′, and the distributed series (R′) and shunt (G ′) losses. The
characteristic impedance Z0 and the propagation constant γ of the line are then:

Z0 =
√

R′ + jωL ′
G ′ + jωC ′ (5.179)

γ = √
(R′ + jωL ′)(G ′ + jωC ′). (5.180)

Note that the propagation constant γ= α+ jβ, where α is the attenuation constant and β

is the phase constant. In many cases, the losses can be neglected (R′ � ωL ′, G ′ � ωC ′)
and we obtain the simple relationships:

Z0 ≈
√

L ′
C ′ (5.181)

β = ω
√

L ′ C ′. (5.182)

This opens up a fundamental idea: any capacitance to ground can be made to disappear if
it is absorbed into a transmission line – it will simply lower the characteristic impedance,
and increase the phase constant.

Consider Figure 5.52. The lossless transmission line is loaded by additional shunt
capacitances C1. The transmission line parameters are now

Z0 =
√

L ′

C ′ + C1
l

(5.183)

β = ω

√
L ′

(
C ′ + C1

l

)
. (5.184)

The parameter l is the length of the transmission line segment between each shunt
capacitance.
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YL = Y0

YG = Y0

YL = Y0

YL = Y0

L2′

L1′ L1′

C2′

C1′ C1′

C2′

L2′ Load

Generator

Fig. 5.53 Distributed amplifier concept using FETs in common-source configuration.

Provided that L ′ and C ′ are chosen in such a way that YG = YL = Z−1
0 , the trans-

mission between generator and load is unaltered by the presence of the additional shunt
capacitances!

This observation is not new at all. Its earliest implementation is in the Pupin coils,
periodically inserted series loading coils (increasing L ′ in our example) which compen-
sate for the capacitance to ground of telegraph and telephony lines. They were invented
in 1894 by Serbian physicist Mihajlo Idvorski Pupin, following earlier suggestions by
Oliver Heaviside in 1893.

Of course, the LC combination also acts as a low-pass filter. The frequency

ωBragg = 1

l
√

L ′ (C ′ + C1/ l)
(5.185)

is called the Bragg frequency of the transmission line structure. The length l must be
chosen such that the Bragg frequency is significantly above the intended frequency of
operation.

Distributed amplifier structures using electron tubes were first described by
W. S. Percival in his 1937 patent [30].

General design procedure
We will now apply the concept to an arrangement of FETs in common-source configura-
tion along two transmission lines, connecting the inputs and outputs, as shown in Figure
5.53. Note that the transmission lines at input and output have different inductance and
capacitance per unit area. The loading capacitances are now the imaginary parts of the
input and output admittances of the common-source gain cells. Using Equations (5.109)
and (5.111) and a simplified FET equivalent circuit, we write for the shunt capacitance
loading the input line:

C1 = CGS + CGD

(
1 + gm

2Y0

)
, (5.186)
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provided that the output transmission line is terminated in its characteristic admit-
tance Y0.

The shunt capacitance loading the output transmission line is

C2 = CDS + CGD

(
1 + gm

2Y0

)
, (5.187)

where CDS is the parasitic drain–source capacitance.
The unloaded input and output transmission lines must be chosen such that

• the loaded characteristic impedances correspond to generator and load impedances
and

• the phase delays between corresponding nodes on the (loaded) input and output lines
are equal.

Assuming identical generator and load impedances, ZG = ZL = Z0, we find

Z1 =
√√√√ L ′

1

C ′
1 + C1

l1

!= Z0 (5.188)

Z2 =
√√√√ L ′

2

C ′
2 + C2

l2

!= Z0. (5.189)

The phase synchronism requirement translates into

β1 l1 = β2 l2

l1 ·
√

L ′
1

(
C ′

1 + C1

l1

)
= l2 ·

√
L ′

2

(
C ′

2 + C2

l2

)
. (5.190)

The difference in the unit amplifier cell input and output capacitances may result in
very different design parameters for the input and output transmission lines. Figure
5.54 shows this in a practical example. The distributed amplifier shown was fabricated
in an experimental Si/SiGe HFET technology [1]. The transmission lines are realised
in coplanar waveguide form. The difference in geometry for the input (gate) and output
(drain) lines is clearly visible.

In
Input line

Output line

Out

Fig. 5.54 Chip micrograph of a distributed amplifier with 32 GHz bandwidth, realised in a Si/SiGe HFET
technology (P. Abele, I. Kallfass, M. Zeuner, J. Müller, Th. Hackbarth, D. Chrastina, H.v.Känel,
U. König, and H. Schumacher, Electronics Letters, Vol. 39, pp. 1448–1449, 2003. c© 2003
IEEE).
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Cblock

Cblock

Z2, l2 Z2, l2

Z1, l1 Z1, l1

Lchoke

VDD

Cblock

Cblock

YL = Y0

YL = Y0
YL = Y0

YG = Y0
RG

VGG

Load

Generator

Fig. 5.55 Distributed amplifier with bias arrangement.

The terminating impedances for the input and output lines are placed off-chip in
this example – which brings us to a general problem we did not address so far. The
distributed amplifier concept in Figure 5.53 did not include the bias arrangement. If we
apply a gate voltage to the input and a drain voltage to the output line, a constant current
would flow through the terminating impedances attached to the ends of the transmission
lines opposite to the input and output ports – resulting in generally unacceptable power
dissipation there. The terminating impedances therefore need to be galvanically iso-
lated from the transmission lines. A more practical schematic for a distributed amplifier
would therefore look like Figure 5.55. The bias-related elements Cblock and Lchoke set
the lower cutoff frequency. If a very low lower cutoff frequency is desired, then the
on-chip realisation especially of the blocking capacitors may be a significant challenge.
Lchoke is generally placed off-chip.

Gain and loss in distributed amplifiers
Without any losses, the theoretical voltage gain of a distributed amplifier with n stages
should be

AV = n gm
Z0

2
, (5.191)

where gm is the transconductance of the individual cell and Z0 the characteristic
impedance of the output line.

So far, we assumed that the transmission lines were lossless, and that the input and
output admittances of the unit amplifier cells were purely capacitive. The latter assump-
tions particularly are too bold, of course, and we need to assess how the resistive parts
of the input and output admittances impact distributed amplifier performance.

In most calculations so far, the gate (or base) series resistance was neglected. This we
will abandon here. For the case of a FET, the input line is then loaded with an complex
admittance:
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Y1 = jωC1

1 + jωC1 RG
(5.192)

= ω2 RGC2
1

1 + ω2 R2
GC2

1

+ jω
C1

1 + ω2 R2
GC2

1

, (5.193)

where RG is the gate resistance and C1 the input capacitance as before. As long as
ω � (RGC1)

−1, losses due to RG need not be accounted for, but they will increase
strongly for higher frequencies.

For the output line, some attenuation is always present due to the real part of Y 20 in
Equation (5.111), which is gDS in FETs:

Y2 = gDS + jωC2, (5.194)

where C2 is the output capacitance as before. The loss introduced to the drain line is
hence frequency-independent.4

When the number of stages, n, is increased, the power consumption scales linearly.
However, with increasing n, the losses introduced by the amplifier cells become more
important and lead to a situation where the gain scales sub-linearly. This introduces a
practical limitation to the number of stages. For a detailed analysis, refer to Beyer et al.
(1984) [4].

Distributed amplifier variations
Matching input and output capacitances
A common problem in distributed amplifiers is that the amplifier cell input capac-
itance C1 is much larger than the output capacitance C2. In turn, the unloaded
characteristic impedance of the output line will be significantly smaller than that of
the input line. This is significant because the dispersion characteristics of the lines
depend on their geometries – different geometries lead to different dispersions, and
phase synchronism between input and output lines is increasingly lost with rising
frequency.

A simple technique is to increase the output capacitance. This can be done easily
using a transmission line stub between the amplifier cell output and the output transmis-
sion line. As the amplifier output shows a reasonably high impedance, the transmission
line stub acts capacitively when seen from the output line. Figure 5.56 shows this simple
concept, which is used in many practical amplifier examples.

The input capacitance can also be lowered by introducing a series capacitance in
the unit cell input port. This leads to a capacitive voltage division between the series
capacitor and the input impedance of the amplifier, and hence a reduction in gain, but
depending on the application, this may be tolerated for the benefit of an increased
bandwidth. To allow proper biasing, the capacitor must be bridged with a high-value
resistor which has no influence on the RF performance. The measure is shown in
Figure 5.57.

4 The loss due to additional drain (or collector) resistances can be neglected unless they are excessive.
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(a) (b)

Fig. 5.56 Distributed amplifier unit cell with increased output capacitance: (a) concept and
(b) implementation using a transmission line stub.

Fig. 5.57 Input capacitance reduction using a series capacitor.

By changing the series capacitance value along the input transmission line (lower
towards the generator and higher towards the termination), the input voltage across the
amplifying device can be made equal despite the decreasing signal on the transmission
line.

Distributed amplifiers with a cascode cell
Despite the potential of the distributed amplifier concept to eliminate input and output
capacitances by embedding them into an artificial transmission line, there are good rea-
sons to keep input and output capacitances low. One reason is that high input and output
capacitances force the unloaded characteristic impedances of the lines to be very high –
the signal-carrying lines then have to be very narrow and will exhibit high ohmic loss.
Further, a high input capacitance means that the loss due to the gate resistance will start
to matter at much lower frequencies (see Equation (5.192)).

Choosing a cascode as the amplifier unit cell is therefore a logical choice. A simplified
configuration is shown in Figure 5.58.

We had seen that the cascode gain cell is prone to producing a negative real part of
the output admittance (see p. 336). Here, this effect may be used with benefit to com-
pensate for losses on the output line, but amplifier stability has to be carefully checked,
especially at higher frequencies.
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Fig. 5.58 Cascode gain cells in a distributed amplifier structure (bias elements not shown).

CG2 CG2
RG2 RG2

RS1 RS1

ZS, lS ZS, lS

Input

Output

Off-chip
capacitor

Fig. 5.59 Practical distributed amplifier design using (Al,Ga)As/InGaAs pHEMTs (bias circuitry omitted).

Practical distributed amplifier examples
40 GHz bandwidth distributed amplifier using GaAs pHEMTs
Figure 5.59 shows the schematic diagram of a practical distributed amplifier using a
pseudomorphic HEMT process [16]. Several of the measures discussed above have been
taken here. The unit cell has a cascode topology, but additionally the input capacitance
was reduced using a series capacitor in the input line. The series capacitor is bridged
using a high-value resistor; the additional resistor to ground at the gate node improves
gain flatness at low frequencies.

The gate termination does not have a DC blocking capacitor here, because the gate
line is held at 0 V – the source resistor RS1 provides the slightly negative gate–source
voltage. Note the elaborate drain termination. This is rather typical of distributed ampli-
fiers for fibre-optic systems where a lower cutoff frequency in the kHz range is required:
a broadband termination is created using several RC networks with staggered time
constants. The largest capacitor (100 nF in this case) is necessarily placed off-chip.
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Output

VG2 bias

Fig. 5.60 Chip photo of the amplifier shown in Figure 5.59.
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Fig. 5.61 Frequency response of gain (|S21|), and input and output reflection coefficients (|S11|, |S22|)
of the distributed amplifier in Figure 5.59.

The design deliberately uses the negative real part of the cascode cell output admit-
tance to compensate for drain–line losses. RG2 and RS1 improve stability together with
the transmission line in the source lead of the cascode, which acts as a small induc-
tor and reduces the cell’s gain with increasing frequency, avoiding instability at higher
frequencies.

Figure 5.60 shows the chip micrograph of the distributed amplifier. It has six gain
stages and is implemented using standard microstrip line technology (the back of
the chip is metallised). Two adjacent stages share via the connections to ground –
this requires careful assessment of interstage cross-talk issues, but is very efficient in
reducing the necessary chip area.

The experimental frequency response (Figure 5.61), shows a very flat gain up to
about 40 GHz, where the gain drops sharply. This is a very typical feature of distributed
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amplification. Another noteworthy feature is the low reflection coefficient for both input
and output over a very wide frequency range, which is due to the distributed nature of
the input and output impedances.

The midband gain is 11 dB, the output power at 1 dB gain compression (for a
definition, see Figure 5.72 on p. 372) is 22.6 dBm measured at 20 GHz.

A distributed amplifier on Si using Si/SiGe HBTs
The distributed amplifier concept is not restricted to FETs. They can also be realised
using bipolar transitors or HBTs. In the example used here, the goal is to realise a
distributed amplifier in a production Si/SiGe HBT process on lossy substrates.

The latter issue, the lossy substrate (20�cm specific resistivity), introduces an addi-
tional complication because neither standard microstrip transmission lines (which use
the substrate as the dielectric) nor coplanar waveguides (which would equally introduce
large substrate losses) can be used. Instead, a thin-film microstrip transmission line
technique (Figure 5.62) was chosen, which creates the microstrip line entirely above
the substrate. Here, the signal line was placed in metal 3, while metal 1 acts as the
ground plane, shielding the signal completely from the lossy substrate. The thin dielec-
tric, however, leads to very narrow signal lines for the characteristic impedances in
question (50–100�) and strongly increases series resistance losses.

Furthermore, the input admittance of a bipolar transistor is not purely capacitive, as
we could safely assume for FETs. Using the hybrid π equivalent circuit of Figure 5.17,
we can estimate the admittance Y 10 for a bipolar transistor:

Y 10,bipolar ≈ IC

βf VT
+ jω

(
CJBE + τB

IC

VT

)
, (5.195)

where βf is the small-signal current gain in common-emitter configuration, τB is the
base transit time, IC is the collector current in this bias point and VT = kT/q is the
thermal voltage. The real part of Y 10 would strongly attenuate the signal travelling on
the input line and has to be eliminated.

Passivation Metal 3

Metal 1

SiO2 inter-metal dielectric

Lossy Si substrate (e.g. 20 Ωcm)

Fig. 5.62 Example of a TFMSL on a silicon substrate.
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The latter problem can be solved using a common-collector (emitter follower) input
stage (Equation (5.126)):

Y1 ≈ Y 12 + Y 10

1 + g
m

YL

.

It is evident that the input admittance is much smaller. Furthermore, we had seen in
Equation (5.128) that given a capacitive component of YL, the real part of the input
admittance becomes negative. This can be used to compensate for ohmic losses on the
input line, but always bears the risk of instability.

If a cascode gain cell is chosen, the negative real part of its output admittance can
equally be used to compensate for ohmic losses on the output line, with the same
stability caveat.

Figure 5.63 shows an example of a differential amplifier where all of these measures
have been taken [33]. It was realised in Si/SiGe HBT technology, with transistors of
fT, fmax = 80 GHz, on a 20�cm substrate.

Three cascaded emitter followers are used in the input to achieve the appropriate low
input capacitance and negative input conductance. The differential cascode gain cell
has open collector outputs which connect directly to the output transmission lines. The
capacitively shunted emitter degeneration resistors in the common-source pair improve
the bandwidth through a positive gain slope of this stage.

Note the extensive use of level shifting diodes (transistors with their base–collector
contacts tied together). This is necessary due to the low collector–emitter breakdown
voltages typical of high- fT Si/SiGe HBTs.

The unusual differential topology solves an additional problem of silicon-based
MMICs: The absence of through-the-substrate via holes makes low-inductance ground-
ing highly critical. The differential topology eases packaging by creating an on-chip

In(+)

Out(–) Out(+)

In(–)

Gnd

VCC

Fig. 5.63 Schematic of a differential distributed amplifier gain cell using Si/SiGe HBTs.
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Differential
output

Differential
input

Fig. 5.64 Chip photo of the differential distributed amplifier.

ground, as already discussed. In wideband amplifiers, it is not suitable for all system
architectures, however, due to the need for ultra-wideband baluns.

Figure 5.64 shows the chip micrograph of the structure. The chip size is 1.7 ×
0.7 mm2. The narrow width of the thin film Microstrip line is very apparent. The
differential gain is 13.6 dB and the −3 dB bandwidth is 32.2 GHz.

5.4.10 Low-noise amplifier

A very frequent requirement is the design of an amplifier with minimum noise figure –
an LNA. This is especially important in weak signal reception environments such as in
satellite receivers.

We have seen earlier that the noise figure of any two-port depends on the source
reflection coefficient presented to it (see p. 310). The parameters needed for noise-
optimum design are

(i) the noise-optimised source reflection coefficient for which the two-port noise figure
is minimal: �S,opt;

(ii) the minimum noise figure Fmin which provides the two-port noise figure under the
condition that the source reflection coefficient is the noise-optimised one: �S =
�S,opt;

(iii) the normalised equivalent noise resistance rn, which describes the sensitivity of the
noise figure F on deviations from the noise-optimised source reflection coefficient
�S,opt.

Using these parameters, the noise figure is given by

F = Fmin + 4rn
∣∣�S − �S,opt

∣∣2(
1 − |�S|2) ∣∣1 + �S,opt

∣∣2
. (5.196)

In practical two-ports using active devices, the noise parameters are also bias-dependent.
Of particular interest is the dependence of Fmin on the drain or collector current.
Qualitatively, it is shown in Figure 5.65.

An additional aspect needs to be considered – while in principle any reflection coef-
ficient |�| ≤ 1 can be transformed into any other using reactive matching networks,
practical limitations need to be considered. If the end points of the transformation are
located too far apart, the resulting matching network will either be very narrow band
(if the reacting matching elements are sufficiently low loss) or introduce significant
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Fopt

Drain or collector current I

F m
in

Fig. 5.65 Qualitative dependence of the minimum noise figure on the source or collector current.

Impedance
transformation

Scaling
Γ′S,opt

ΓS,opt

ΓS

Fig. 5.66 Noise matching example using device scaling and impedance transformation.

additional losses, which deteriorate the noise figure according to Friis’ formula. For
LNA design, this means that �S,opt should be suitably located. �S,opt can be changed by
changing the device width (‘scaling’) – a larger device width results in larger values of
YS,opt.

For a better understanding, refer to Figure 5.66. We assume that the original source
reflection coefficient �S, e.g. the feed point impedance of an antenna at resonance, is
real, and the corresponding impedance is equal to the normalising impedance of the
Smith chart, hence �S = 0. The original noise-optimised reflection coefficient �S,opt

is located too far towards the outside of the Smith chart. By choosing a larger device,
�S,opt is achieved in a location which is much closer to �S. In fact, this location is ideal
because the transformation from �S to �′

S,opt can be achieved conveniently using only
a series inductance.
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The fundamental design steps of the LNA’s input stage are hence the following:

(i) Pick a suitable device size which puts �S,opt into a convenient location with respect
to the original source reflection coefficient �S.

(ii) Adjust the bias point such that the optimum Fmin is achieved.
(iii) Design the input matching network.

Because the bias point affects �S,opt, a few iterations may be necessary.
In principle, matching for optimum noise performance (�S = �S,opt) and matching

for optimum power transfer at the input (�S = � 
in) are unrelated. A frequent require-

ment, however, is the combination of optimum noise performance and a minimum return
loss, hence � 

in ≈ �S,opt. This cannot be achieved using impedance transformation net-
works between the source and the LNA input, because that would modify �S,opt for the
resulting two-port and �in in the same way. Instead, �in can be modified in two ways
which leave �S,opt invariant:

(i) through lossless feedback;
(ii) by mismatching the output for non-unilateral two-ports, utilising the fact that the

input reflection coefficient depends also on the load reflection coefficient:

�in = S11
S21S12�L

1 − S22�L
.

Figure 5.67 summarises the individual reactive networks surrounding the LNA core,
which can be used in the design to fulfil noise and return loss specifications.

The feedback elements ZA (series or current–voltage feedback) and ZB (parallel or
voltage–current feedback) are used to set �in while leaving �S,opt invariant, as dis-
cussed. M1 provides noise match or, after suitable modification of �in using feedback
techniques, simultaneous noise and power match (minimum noise figure and minimum
input return loss). M2 can be chosen either to present the needed �L to the LNA core
for adjustment of �in (see above), or to achieve power match at the output (minimum
output return loss).

Very commonly, ZA is an inductor. As already shown in Equation (5.141) this pro-
vides an increased real part of the input impedance. Consider the case depicted in
Figure 5.68.

Z S

Z B

Z A

Z L
M1 M2

LNA
Core

Fig. 5.67 Matching and feedback networks in LNA design.
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M1

Γs,opt

Γ*
s,opt

Γin

ZA = jωL

Γs

Fig. 5.68 Simultaneous noise and power match example using inductive series feedback and an input
matching network M1.

Without any feedback or matching network, the input reflection coefficient is �in,
corresponding to an input impedance of Rin −j X in. The location indicated in the exam-
ple would be typical for a FET. The goal is now to transform �in to a new location
�′

in ≈ � 
S,opt. We connect an inductor L in series to the LNA core. Applying Equation

(5.141), we find for the input impedance of the LNA core with feedback:

Z ′
in = Rin + ωTL + j (ω0L − X in) . (5.197)

On the Smith chart, the transformation path corresponding to the effect of L can be
interpreted as first increasing the imaginary part, starting from �in and then increasing
the real part, as shown in the lower part of Figure 5.68.5

In a second step, matching network M1 (which in the example is simply a series
inductor) transforms both �′

in and �S,opt towards �S, achieving the required simultane-
ous optimisation of noise and input return loss.

For the LNA core, cascode stages (see p. 333) are very frequently being used at
microwave frequencies. This is because the aforementioned scaling, placing �S,opt in an
‘easily matchable’ location results frequently in relatively large transistors, where the
Miller effect (discussed on p. 318) can be significant – adoption of a cascode topology
is a proven way to reduce the increased input capacitance associated with the Miller
effect.

5 As an aside, you may notice that with increasing L , Fmin decreases – the associated gain Gass, however,
also decreases. The entity invariant to reactive feedback is the noise measure M = Fmin/

(
1 − G−1

ass

)
.
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Fig. 5.69 First stage of a three-stage LNA for 24 GHz using Si/SiGe HBTs.

Fig. 5.70 Layout of the three-stage 24 GHz LNA.

As a practical example, we will discuss a three-stage LNA for 24 GHz using Si/SiGe
HBTs [35]. The schematic of the first stage is shown in Figure 5.69.

Transistors Q2 and Q3 form the cascode LNA core; Q1 forms a current mirror with
Q2 to set the latter’s collector current. Q3’s base voltage is then set using the voltage
divider R4/R5. All capacitors are large-value bypass capacitances.

Inductor L1 is used to allow simultaneous noise and power match along with the
proper sizing of Q2. There is no on-chip inductance in series with the In port, because
the bond wire is used instead, efficiently including this parasitic into the design. L2
forms, together with the capacitance between the collector Q3 and ground and the input
capacitance of the following stage, a parallel resonance which provides the LNA with a
bandpass characteristic.

The other two stages are identical in topology, but due to the different source
impedances of the preceding stages, the inductive source degeneration of the common-
emitter transistor (Q2) is adjusted.

Figure 5.70 shows the layout of the three-stage amplifier. Note that the source degen-
eration inductors are constructed as two-layer stacked inductors, while the tank circuit
inductors (L2) are conventional spiral inductors.
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Fig. 5.71 Gain and noise performance of the 24 GHz LNA using Si/SiGe HBT technology.

The circuit was realised in a Si/SiGe HBT technology with fT, fmax = 80 GHz
and characterised on wafer. Results of a small-signal characterisation are shown in
Figure 5.71. The circuit shows the targeted bandpass performance with the gain peak
at 24 GHz (the intended application is in the 24 GHz ISM band). The minimum noise
figure at 24 GHz is 5.6 dB, while the 50� noise figure is slightly below 6 dB. This devi-
ation is not surprising, as the circuit was designed to provide optimum noise figure with
the bond wire parasitic included. The gain with a 50� source impedance is G50 =
21.4 dB, while the associated gain under noise match conditions is Gass = 22 dB – in
this circuit, the noise-optimised source impedance is actually slightly closer to 50�

than the input impedance.

5.4.11 Amplifier linearity

So far, we treated amplifiers as perfectly linear systems – the output signal can always
be described as a linear combination of the input signals. In reality, however, any cir-
cuit including active devices will show a non-linear behaviour and the assumption of
linearity holds only for small deviations around a given operating point.

In practice, the non-linear behaviour of amplifiers will generate nonlinear distortions,
which create non-linear deviations in time-domain signal shape, and additional spectral
components in the frequency domain which have to be reckoned with.

Single-tone excitation
A common way to treat general non-linear functions is the Taylor series expansion. A
non-linear function f (x) is expanded around x = x0 as

f (x) =
∞∑
ν=0

f (ν)(x0)

ν! (x − x0)
ν, (5.198)

where f (ν)(x0) is the νth derivative of f with respect to x in x = x0.
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Now assume that we apply a single sinusoidal signal to our non-linear system:
a(ωt) = A0 + A sin(ωt).

The output signal f (ωt) can now be described by the following Taylor series
expansion (x0 = 0):

f (ωt) = k0 A0 (5.199)

+ k1 sin(ωt)

+ k2 sin2(ωt)

+ k3 sin3(ωt)

+ . . . .

The first two lines in Equation (5.199) provide the linear response, while the following
terms are non-linear distortions. Consider that

sin2(ωt) = 1

2
[1 − cos 2ωt]

sin3(ωt) = 1

4
[3 sin(ωt) − sin(3ωt)] ,

and we find that Equation (5.199) turns into

f (ωt) = k0 A0 + k2

2
(5.200)

+
(

k1 + 3k3

4

)
sin(ωt)

− k2

2
cos(2ωt)

− k3

4
sin(3ωt)

+ . . . .

We easily see that the non-linear distortion results in new spectral components (har-
monics) being generated, which are related to the fundamental components as integer
multiples.

A simple procedure to assess an amplifier’s linearity is the single-tone excitation test.
A test generator with high spectral purity and adjustable power is connected to the
input of the amplifier, and a spectrum analyser to the output. Increasing the input power
(Pin), the power of individual spectral components at the output is recorded. Plotting the
output power levels as a function of the input power on a double-logarithmic scale, we
obtain a graph similar to the one shown in Figure 5.72.

For low power levels, the output power of the fundamental spectral line will increase
linearly with the input power. Gradually, it will, however, rise more slowly – gain sat-
uration sets in. When the power ratio between the extrapolated linear increase and the
actual curve is 1 dB, the 1 dB compression point (P−1dB) has been reached. It is a mea-
sure of the maximum power the amplifier can deliver in linear operation. Depending
on the application, it is referred to the input (e.g. LNAs) or the output (e.g. power
amplifiers).
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Fig. 5.72 Single-tone excitation test of an amplifier, showing definitions for the 1 dB compression,
second-order intercept and third-order intercept points.

The spectral power at the second harmonic increases twice as fast as the fundamental
power, before it also shows saturation. Extrapolating the curve at low input powers, we
find the single-tone second-order intercept point at the point where the extrapolation
intersects the extrapolated fundamental power.

The spectral power at the third harmonic increases three times as fast as the fun-
damental power. Its extrapolation intersects the extrapolated fundamental power at the
single-tone third-order intercept point.

The intercept points can also be referred to the input or the output, depending on the
application.

In many applications where the operational bandwidth is only a small fraction of the
carrier frequency, the generation of harmonics is not necessarily a problem, because they
can easily be removed by filtering. For example, frequency modulated (FM) transmitters
are operated under strongly non-linear conditions (class C, see p. 377), and the resulting
harmonics in the output signal are simply removed by low-pass filtering.

Two-tone excitation
An FM signal is a particularly simple example of modulation, because the resulting
signal has only a single spectral component (which varies in frequency, but that is irrel-
evant here). Most modulated signals, however, consist of many spectral components
which are present at the amplifier input simultaneously.

To understand what amplifier non-linearity will do to these signals, let us construct a
simple experiment, where the input signal is formed by two spectral components (at ω1

and ω2) of equal amplitude, applied to the input of the amplifier. The output is connected
to a spectrum analyser again. The corresponding block diagram is shown in Figure 5.73.

Again, the test generators need to have very high spectral purity.
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Fig. 5.73 Schematic representation of a two-tone excitation test of an amplifier (DUT = device under test).

Mathematically, the description of the distorted output signal becomes much more
complex. We obtain:

• Fundamental components at ω1 and ω2.
• Harmonics of the input signals (at 2ω1,2, 3ω1,2, . . .).
• Components due to the product of the two input signals – consider that

sin(ω1t) sin(ω2t) = 1

2
{cos [(ω1 − ω2)t] − cos [(ω1 + ω2)t]} . (5.201)

The multiplication term therefore produces spectral components at the sum and
difference of the two input spectral lines. These components are called two-tone
second-order intermodulation products.

• Components due to the product of a fundamental component and a second-order
harmonic

sin2(ω1t) sin(ω2t) = 1

2
[sin(ω2t) − sin(2ω1t + ω2t) + sin(2ω1t − ω2t)] (5.202)

sin2(ω2t) sin(ω1t) = 1

2
[sin(ω1t) − sin(2ω2t + ω1t) + sin(2ω2t − ω1t)] . (5.203)

These terms hence generate spectral components at 2ω1,2 ± ω2,1, which are called
two-tone third-order intermodulation products.

• Higher-order components which are neglected here.

Figure 5.74 schematically shows the spectral components generated by non-linear dis-
tortion of a two-tone signal, up to the third order. Note that second- and third-order
harmonics as well as the second-order intermodulation products are significantly far
away from the original signal and can most often be removed by filtering. Of particular
concern are two third-order intermodulation products at 2ω1−ω2 and 2ω2−ω1, because
they are close to the original spectral components and cannot be removed by filtering.

Just as in case of the single-tone excitation, we can plot the output powers at the fun-
damental tones and the close-in third-order intermodulation components as a function
of the input power. Figure 5.75 shows an example of such a measurement. The two-
tone third-order intercept point is found by extrapolating the low-power portions of the
curves, where the relationship between input and output powers has a linear shape on a
double-log plot. It can be referred to the input or the output.

Often the system requirement will be formulated in terms of the intermodulation
distance (IMD) or the dynamic range, not in terms of the intercept points.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.006


374 High-Speed Electronics and Optoelectronics

2nd order intermodulation products
3rd order intermodulation products

2nd order harmonics

S
ig

n
al

 p
o

w
er

3rd order harmonics

Frequencyω1 ω2

ωIM3,2 = 2ω2– ω1ωIM3,1 = 2ω1– ω2

Fig. 5.74 Schematic representation of spectral components generated from a two-tone excitation through
second- and third-order non-linearities.
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Fig. 5.75 Determination of the two-tone third-order intercept point.

The IMD, measured in a two-tone excitation test, is simply the power ratio between
the power level of the two carriers at the amplifier output and the highest inter-
modulation spectral lines. The most prominent ones will typically be third-order
intermodulation products. Then, the IMD can be calculated from the third-order inter-
cept point. Consider again Figure 5.75 and remember that on the double-log scale, the
Pout = f (Pin) transfer curve for the fundamental component has a slope of 1, while it
is 3 for the third-order intermodulation products. The distance between the curves for
the fundamental and the intermodulation products is the IMD on the log–log scale. The
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Fig. 5.76 Determination of the SFDR and the BDR in a two-tone excitation measurement.

powers are expressed most often in dBm6 on a logarithmic scale. Therefore,

IMD

dB
= 2

(
IIP3

dBm
− Pin

dBm

)
, (5.204)

where IIP3 is the third-order intercept point referred to the input.
On a linear scale (powers in W), the IMD can be expressed as

IMD =
(

IIP3

Pin

)2

. (5.205)

Specification of an amplifier in terms of dynamic range combines linearity and noise.
There are two definitions, which are compared in Figure 5.76.

The spurious-free dynamic range (SFDR) is the IMD at the point where the power
of the third-order intermodulation products is equal to the noise floor. The blocking
dynamic range (BDR) is the distance between the 1 dB compression point P−1dB and
the noise floor.

Adjacent channel power ratio
Modern communication systems have frequently very complex modulation schemes,
with many spectral components present. They are, therefore, very sensitive to inter-
modulation effects in non-linear amplifiers. A two-tone measurement can only give an
indication of linearity, but is no solid proof of the amplifier’s suitability.

A very realistic test is the ACPR (adjacent channel power ratio) test, which is always
specific to a certain modulation technique. Figure 5.77 shows an example for a UMTS
signal. In a first step, the integral powers within the channel bandwidth need to be cal-
culated from the spectral analysis. Then, the ACPR is calculated as the ratio of the
power in the band of operation to either the lower or higher adjacent channel. It is a

6 dBm means decibels relative to 1 mW, i.e. 0 dBm = 1 mW, 20 dBm = 100 mW, etc.
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Fig. 5.77 Example of an Adjacent Channel Power ratio (ACPR) measurement: Power spectral density
(PSD) versus frequency, with channel limits indicated.

direct measure of the interference generated by transmitter non-linearities in adjacent
channels.

5.4.12 Power amplifiers

Power amplifiers have the task of amplifying signals before they are delivered to loads,
such as antennas or cables. Critical criteria are

• maximum output power, for example measured in terms of output power at the 1 dB
compression point P−1 dB (see Figure 5.72);

• gain (either small-signal gain or large-signal gain at a given output power);
• gain and potentially phase deviation across the operational bandwidth;
• linearity, defined by parameters such as the output-referred two-tone third-order

intercept point, the IMD at a given output power, or the ACPR at a given output
power;

• efficiency – at microwave frequencies, it is customary to use the power added effi-
ciency (PAE), the ratio of the power difference between output and input to the DC
power:

P AE = Pout − Pin

PDC
= η

(
1 − 1

G

)
, (5.206)

where η is the collector or drain efficiency (η = Pout/PDC) and G the amplifier gain.

Classes of operation
Since the days of vacuum tubes, amplifier operation has been described by classes,
which describe where the amplifying devices are biased in a quiescent state.
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Fig. 5.78 HEMT drain current ID and transconductance gm as a function of the gate-source voltage VGS
with bias points for power amplifier classes A, B and C indicated.

For an understanding of the ‘classical’ classes A, B and C, refer to Figure 5.78.
The example shows the drain current and transconductance of a HEMT. For the
classification, we observe the drain current curve.

In a class A amplifier, the gate-source voltage VGS is set in the region where the
output current ID is a linear function of the input voltage VGS – the transconductance is
approximately constant. For both positive and negative half-waves of the input signal,
current will flow – the conduction angle is 360◦. In this bias point, the amplifier will
exhibit a very high linearity, but low efficiency. The theoretical maximum is 50%, but
at microwave frequencies, values of 30% would already be very satisfactory.

For class B, the device is biased at pinch-off. Only the positive half-wave of the input
signal will then generate an output current flow – the conduction angle is 180◦. The
efficiency will increase theoretically to 78.5% (π/4), and at microwave frequencies it
can still reach 60% or higher, but the deviation from a sine wave in the output current
creates non-linear distortions.

A class C amplifier has a quiescent bias point where VGS is significantly below the
threshold voltage Vth. Output current will flow only if the momentary VGS(t) > Vth,
therefore the conduction angle is <180◦. The efficiency can still be higher; however,
due to the lower conduction angle, the non-linear distortions are also increased.

Switched amplifiers
There is another interpretation of class C operation, which is helpful in understanding
the way that amplifiers in class D, E and F operate. For this, look at Figure 5.79. It
shows the output I–V characteristics of a HEMT (but this could be any FET). Provided
that the driving voltage is large enough, the transistor simply changes between two
saturated states with very different differential resistances. In the quiescent point, the
transistor is in cut-off and the differential resistance between drain and source is very
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Fig. 5.80 (a) Simple class C amplifier topology and (b) its equivalent circuit.

high. For a sufficiently high input voltage, the transistor reaches another saturated state
with small rDS.

We can, therefore, model the transistor in saturated class C operation simply by a
switch in series with its residual differential resistance rDS. Figure 5.80(a) shows a sim-
ple class C amplifier stage. The load is embedded in an LC resonant circuit which acts
as a bandpass filter to suppress the harmonic frequency components other than the fun-
damental. The RF choke (Lchoke) provides a constant current, at least on the time scale
of interest. This circuit can also be realised with an LC parallel resonant circuit, by
the way.

Replacing the choke with a constant current source, and the FET with a periodically
actuated switch and its series resistance rDS, we arrive at the equivalent circuit in Figure
5.80(b). The class C amplifier operates in this configuration by periodically shunting
current away from the load.
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Fig. 5.81 Class C amplifier: (a) power factor α and (b) drain efficiency β as a function of frequency.

A detailed analysis of class C operation is found in [17]. First, note that due to the RF
choke, the average voltage across the load is the supply voltage VDD. The peak voltage
is (1 + α)VDD and the minimum voltage (1 − α)VDD, where

α(θ) = 4 sin
(
θ
2

)
θ + sin(θ) + 2πrDS

RL

. (5.207)

Here, θ is the conduction angle. Note that for rDS → 0, αmax = α(θ = π) = 1.27 –
the maximum voltage across the transistor can, therefore, exceed the supply voltage by
a factor of 2.27.

The output power in saturated class C operation is

Pout = (αVDD)
2

2RL
. (5.208)

The drain efficiency is

η(θ) = π
rDS

RL

α2

θ − 2α sin
(
θ
2

) . (5.209)

Both the power factor α and the drain efficiency η are shown in Figure 5.81 as a function
of the conduction angle θ . Note that the output power always peaks at θ = π , but that
the efficiency has its maximum at much lower conduction angle. The normalised on-
resistance of the FET, rDS/RL, has a significant influence on both the output power and
the drain efficiency.

Class D amplifier
Above, we interpreted the class C amplifier as a resonant circuit driven by current
pulses, where for maximum efficiency the current flow angle was θ < π . We can,
of course, not only turn the current on and off, but actually reverse it, as shown
schematically in Figure 5.82.
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Fig. 5.83 Example implementations of class D amplifiers. After [17].

Instead of a single-pole, single-throw switch, the equivalent circuit shows a double-
pole, double-throw switch which periodically reverses the current through the load. The
parallel resonant circuit again eliminates all harmonic frequency components except the
fundamental one.

In practice, the switches are realised with transistors, of course. Figure 5.83 shows
two examples. In Figure 5.83(a), the current reversal is achieved using a transformer
where the current is fed into the centre tap, and the ends of the primary coil are
connected alternatingly to ground. This is a very common solution at lower frequencies.

At microwave frequencies, the transformers are difficult to realise, and in any case
they do not lend themselves easily to monolithic integration. The circuit in Figure
5.83(b) is then more practical – it avoids transformers altogether; however, now we
have four transistors to control instead of two: in this bridge configuration, transistors
Q1 and Q4, and Q2 and Q3 conduct alternately to achieve the current phase reversal
across the load.
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Fig. 5.84 Class D amplifier example using a series-fed load. After [17].

Note that in both implementations, the load floats – it has no direct ground reference,
which is often a problem for microwave systems where ground-referenced (single-
ended) transmission is more common. This can be avoided in a class D amplifier if
a series-fed load is applied. This is shown in Figure 5.84. The bandpass function is now
realised with a series resonant circuit (L0,C0), and the voltage is alternated, not the cur-
rent. Still a balun is needed at the input, unless V1(t) is already available in differential
form.

The class D amplifier output power is in saturation [17]:

Pout = 2V 2
DD

π2 RL
, (5.210)

while the drain efficiency is

η = RL

RL + rDS
, (5.211)

at least for the circuits according to Figures 5.83(a) and 5.84. rDS is again the channel
resistance of the FET for low VDS (‘on-resistance’). For the circuit in Figure 5.83(b),
the efficiency is lower because the switch resistance doubles.

Class D amplifiers place high demands on the ideality of the switches and on the
timing. This is particularly true for circuits such as in Figure 5.83(b) or 5.84, where
switches are stacked – they must never conduct at the same time, not even for brief
periods. Therefore, class D amplifiers are mostly restricted to lower RF frequencies.

Class E and F amplifiers
Class E and F amplifiers are derived from class C. The idea in a class E amplifier [38] is
to make sure that the drain-source voltage of the switching transistor (see Figure 5.80)
is zero when the transistor switches, leading to a reduction of losses due to capacitive
charging. This can be achieved by a modified output network. Consider Figure 5.85. At
first glance, it looks like a class C amplifier with a series resonant feed, with the addition
of shunt capacitor C2. Additionally, the series resonant filter is tuned to a frequency
below the intended frequency of operation ω0 by increasing L1. Adjusting L1 and C2,
the voltage-free switching condition is found and the efficiency is maximised.
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Fig. 5.85 Simplified class E amplifier schematic.

An in-depth analysis of class E operation can be found, e.g. in [8]. The inductance
L1 is chosen as

L1 = 1 + 1.153ω0C1 RL

ω2
0C1

. (5.212)

The capacitance C2 is

C2 = 2

3.467ω0π RL
. (5.213)

A problem may be that the maximum drain-source voltage is even higher than in the
class C amplifier, VDS,max ≈ 3.56VDD.

The class F amplifier increases the efficiency by appropriately terminating the har-
monics. The idea is to achieve square-wave voltage excitation with respect to the
drain-source voltage, as in case of the series-fed class D amplifier (Figure 5.84).

A well-known fact from Fourier analysis is that a square wave (rectangular sig-
nal with 50% duty cycle) in the time domain produces only odd harmonics in the
frequency domain. We must, therefore, make sure that all odd-numbered harmonics
(n = 1, 3, 5, . . . ) are still present in the drain-source voltage. The load should, therefore,
present an open to the transistors at these frequencies.

A way to achieve this is to use the transforming properties of quarter-wave transmis-
sion lines, which we discussed much earlier; see Equation (5.171) on p. 349. Assume
that a transmission line, which is a quarter wavelength long at the fundamental fre-
quency, is terminated by a short at all harmonic frequencies except the fundamental.
Then an open will appear at the input for all odd-numbered harmonics, while a short
results for all even-numbered harmonics, where the electric length of the transmission
line is a multiple of λ/2. The modification of the original class C topology (Figure 5.80)
is quite straightforward, as Figure 5.86(a) shows. λ is the wavelength at the frequency
of operation ω0. The resonant circuit formed by L0,C0 is resonant at ω0; C0 then acts
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Fig. 5.86 Topology of a class F amplifier: (a) using a quarter-wave transformer and (b) using a parallel
resonant trap tuned to the third harmonic.

as a short at the higher-order harmonics. This short is transformed into an open by the
quarter-wave transformer at all odd-numbered harmonics.

In monolithic integration, the transmission line transformer is frequently much too
long, and it may introduce significant losses. In many cases, it is perfectly acceptable to
just use the third harmonic. This is shown in Figure 5.86(b). Here, a simple parallel LC
circuit blocks the third harmonic (3ω0), while it acts as a short for all other harmonics
and the fundamental frequency.

5.5 Oscillators

Oscillators are crucial components in almost any microwave system. Their fundamental
task is to generate AC energy at a well-defined frequency from DC sources. A typical
use of an oscillator is shown in the generic receiver block diagram of Figure 5.87, where
it converts the input signal to a lower intermediate frequency. The mixer circuit, which
is also needed for the frequency translation, will be discussed in the next section.

The class of oscillators discussed here has three aspects in common:

(i) a resonator to set the frequency of oscillation,
(ii) the generation of instability to allow the onset of oscillation, and

(iii) amplitude control to establish a stable amplitude in steady state.

Simple relaxation-type oscillators, such as found in simple digital timing circuits, will
not be covered here.

5.5.1 Resonators – a brief overview

The resonator has the task of setting the oscillator’s natural frequency.
The most common resonator types are

• lumped-element LC resonators, which come in either series or parallel resonance
forms;

• transmission-line resonators;
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Fig. 5.87 Generic receiver block diagram.

• cavity resonators using waveguide elements;
• dielectric resonators, which use high εr ceramics and are typically combined with

transmission line coupling structures;
• quartz crystals and similar devices which use the piezoelectric effect to derive elec-

trical from a mechanical resonance – surface acoustic wave (SAW) and bulk acoustic
wave (BAW) resonators also fall into this category.

Other resonator types, such as the magnetically tuned YIG (yttrium iron garnet)
resonators, have only very limited use in speciality applications.

Critical aspects for resonators are

• the quality factor, which will be discussed in more detail below;
• the reproducibility of the resonant frequency – this can be a significant problem in

BAW and SAW resonators;
• the stability of the resonant frequency against changes in temperature, mechanical

shock and aging;
• the tunability of the resonant frequency – mostly established using variable capaci-

tance elements.

For fixed-frequency oscillators, quartz crystals can still be considered to be the gold
standard. Replacement of quartz resonators by elements which can be monolithically
integrated is highly desirable and a hot research topic.

Quality factor
A very generic definition of the quality factor compares the stored and the dissipated
energy in the resonator [20]:

Q = 2π
stored energy in the resonator

dissipated energy during one cycle
, (5.214)

for ω = ω0.
Let us consider RLC resonators (Figure 5.88) as an important example – via equiva-

lent circuits, other resonator types can be transferred into RLC type resonators, at least
in the immediate vicinity of the resonant frequency.
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Fig. 5.88 RLC resonator circuits: (a) parallel topology and (b) series topology.

For the parallel resonant circuit (Figure 5.88(a)) at resonance ω = ω0 = 1/
√

LC , the
impedance is purely resistive and the dissipated energy during one cycle is

Ediss = 1

2

Î 2 R
ω0
2π

= π
Î 2 R

ω0
, (5.215)

where Î is the amplitude of the sinusoidal current flowing through the resonator.
The stored energy moves back and forth between the inductor and the capacitor;

therefore, it suffices to calculate it for the capacitor:

Estored = 1

2
CV̂ 2 = 1

2
C

(
Î R

)2
. (5.216)

Inserting Equations (5.215) and (5.216) into (5.214) yields the Q factor for the parallel
RLC resonator. This quality factor is called the unloaded Q because the loading resistor
(R0) has not been taken into account:

Qu = ω0 RC = R

ω0L
= R√

L
C

. (5.217)

The loaded Q is calculated by connecting R0 in parallel to R:

Ql = ω0C
R R0

R + R0
= Qu

1 + R
R0

. (5.218)

Similarly, we can calculate the unloaded Q for the series resonator (Figure 5.88):

Qu = ω0L

R
=

√
L
C

R
, (5.219)

and the loaded Q as

Ql = Qu

1 + R0
R

. (5.220)

5.5.2 Self-excitation criteria

Early in this chapter, we considered two-port stability from the viewpoint of avoiding
parasitic oscillations in amplifiers. Now the task is to deliberately create instability in a
certain frequency range.
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Fig. 5.89 Connection of a resonator to an oscillator core. A parallel RLC resonator is chosen as an
example.

In the above resonator examples, the resonators always had a dissipative element
associated with it. In practice, this is indeed always the case as resistive and radiative
losses are never fully avoidable. In terms of the reflection coefficient seen looking into
the resonator, this means

|�res| < 1.

The stability boundary can be written as

�res�osc = 1, (5.221)

where �osc is the reflection coefficient looking into the oscillator core. Because the
reflection coefficients are generally complex entities, Equation (5.221) has to be
decomposed into a magnitude and a phase condition:

|�res| · |�osc| = 1 (5.222)

� (�res) + � (�osc) = 0. (5.223)

The oscillator core will therefore necessarily have to provide |�osc| > 1. Because we
have seen in the Smith chart discussion that for all Re(Z) = 0, . . . ,∞, |�| ≤ 1,
this means that the real part of the oscillator core input impedance will have to be
negative.

Another way of determining the proper conditions for oscillation is to use the
Barkhausen self-excitation criterion. The block diagram for this discussion is shown
in Figure 5.90. The system with positive feedback has the transfer function:

s(ω) = 1

1 − F(ω)
, (5.224)

where F(ω) is the open loop gain. Obviously, the transfer function grows beyond all
bounds – becomes unstable – for

F(ω) = 1. (5.225)

As F(ω) is a complex function, two conditions need to be fulfilled:

Re{F(ω)} = 1 (5.226)

Im{F(ω)} = 0. (5.227)
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Fig. 5.90 Barkhausen self-excitation criterion: system model with positive feedback.
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Fig. 5.91 Time-domain simulation of oscillator start-up behaviour.

5.5.3 Non-linearity in oscillators

The self-excitation criteria introduced so far assumed that the systems under investiga-
tion were all linear. In practice, however, this would not lead to the desired result of
well-controlled sinusoidal signal generation.

Using the � criterion (Equation (5.222)), the initial |�osc| should be significantly
(10–20%) higher than |�res| for the reliable onset of oscillation. However, the oscillation
amplitude would then grow beyond all bounds, or in practice until it is limited by the
supply voltage.

Fortunately, the active components we are using in the oscillator core to generate
the negative resistance all exhibit gain saturation, i.e. the differential gain decreases
with increasing signal amplitude. This leads to a self-stabilisation of the oscillation
amplitude.

Figure 5.91 shows a time-domain simulation of oscillator start-up behaviour using a
non-linear active device model (here, a Si/SiGe HBT). Note how the device linearity
leads to a steady-state oscillatory behaviour after only a few cycles. Looking carefully,
you will also notice that the initial frequency of oscillation is different from the one in
steady state – this is caused by the reactive component of the oscillator core impedance,
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which also shows a non-linear behaviour and varies as the amplitude increases. The
effect, which is undesirable, is frequently referred to as chirp.

5.5.4 Oscillator topologies

The negative resistance necessary to fulfil the condition |�osc| > 1 for the oscillator
core can be generated in a variety of ways:

• The active devices in the oscillator core could have a negative differential resistance of
its quasi-stationary I–V characteristics. Examples are tunnel diodes, Gunn diodes or
exotic devices such as real-space transfer transistors. Except for Gunn diodes, which
are still being used in inexpensive microwave modules (e.g. motion detectors), they
have no longer (or never had) any commercial significance.

• The active device could incorporate a transit-time region which leads to a phase lag
between the applied voltage and the current through the device. If this phase shift is
larger than π/2 at a given frequency, the resulting impedance at that frequency has a
negative real part. An example of such a device is the IMPact ionization Avalanche
Transit-Time (IMPATT) diode, which is still being used extensively in millimetre-
wave oscillators.

• The most common way to generate negative resistance is the use of positive feedback
around an amplifying device.

The last item will be discussed in more detail here.
There are several ways of introducing positive feedback around an amplifier. Four of

them are shown in Figure 5.92.
The configuration in Figure 5.92(a) uses magnetic coupling in a transformer around a

common-source (or common-emitter) stage. As the common-source amplifier is invert-
ing, a reversal of the winding sense in the transformer is necessary to generate the
required positive feedback. Realised with vacuum tubes, this circuit was known very
early in the history of radio and is called Armstrong (or Meissner) oscillator.

The Hartley topology (Figure 5.92(b)) uses a tapped-inductor feedback path around
a non-inverting common-drain stage. The Colpitts oscillator (Figure 5.92(c)), uses a
similar concept, but a capacitive voltage divider instead of the tapped inductor – it is
therefore easier to realise in integrated form, and probably the most popular topology
for MMIC implementations. When the inductor is replaced by a series LC circuit, the
Clapp topology results (Figure 5.92(d)).

Due to its popularity, we will examine the Colpitts topology in more detail
(Figure 5.93).

The current through capacitor C2 is

iC2 = vgs
[
gm + jω(C1 + Cgs)

]
, (5.228)

which leads to the input voltage

vin = vgs + iC2

jωC2
= vgs

(
1 + C1 + Cgs

C2
− j

gm

ωC2

)
. (5.229)
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(a) (b)

(c) (d)

Fig. 5.92 Common oscillator topologies: (a) Armstrong or Meissner, (b) Hartley, (c) Colpitts
and (d) Clapp.
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Fig. 5.93 Simple equivalent circuit of the Colpitts oscillator topology.
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The input current is

iin = vgsjω(C1 + Cgs). (5.230)

This allows us to calculate the input impedance of the oscillator core:

Z in = vin

iin
= − gm

ω2C2(C1 + Cgs)
+ 1

jω

C2(C1 + Cgs)

C1 + C2 + Cgs
. (5.231)

The negative real part of the input impedance is obvious; the imaginary part is simply
the series connection of the capacitances at the input.

Another aspect of the Colpitts oscillator is apparent: especially at high frequencies,
the capacitor C1 is not really necessary, the Cgs of the device suffices.

A very popular topology, especially for RF CMOS circuits, is the cross-coupled pair,
shown in Figure 5.94(a). It is a differential pair with the gate of each transistor connected
to the drain of the opposite transistor. Because of the 180◦ phase shift between both
branches, this forces the small-signal gate voltages to be

vgs1 = −vgs2. (5.232)

Remember that in a differential pair under perfectly differential excitation, all nodes
along the vertical centre plane are virtual grounds. Then the circuit behaviour can be
completely described using the half-circuit in Figure 5.94(b). To maintain symmetry,
C0 has been replaced by the series connection of two capacitors of 2C0, while L0 is
divided into the series connection of two inductors with L0/2.

C0

L0

Q2Q1

vgs1 vgs2

(a) (b)

2C0 L0/2

Cgs2i1

vgs2

vgs1

Q1

Fig. 5.94 (a) Simplified circuit of a cross-coupled pair oscillator and (b) its equivalent half-circuit.
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Let us now calculate the admittance seen by the resonator towards the oscillator core:

Y 1 = i1

vgs2
= gmvgs1 + vgs2jωCgs2

vgs2
(5.233)

= −gm + jωCgs2,

using Equation (5.232). The negative real part is hence −gm, and the oscillation
frequency is

ω0 = 1√
L0(C0 + Cgs)

, (5.234)

assuming Cgs1 = Cgs2 = Cgs.
Finally, negative resistance can also be generated using common-gate (or common-

base) configurations.
In the common-gate amplifier stage shown in Figure 5.95, note the inductance L0

inserted into the gate lead. We will calculate the small-signal input impedance for this
circuit. The input current is

i1 = −vgs(gm + jωCgs). (5.235)

The current through L0 is vgsjωCgs, so the input voltage v1 is (after a short calculation)

v1 = −vgs(1 − ω2L0Cgs). (5.236)

The input impedance is then, after separation into its real and imaginary parts,

Z1 = v1

i1
= gm(1 − ω2L0Cgs)

g2
m + ω2C2

gs
− jωCgs

1 − ω2L0Cgs

g2
m + ω2C2

gs
. (5.237)

Now remember that the transit frequency ωT ≈ gm/Cgs and assume that

1

L0Cgs
� ω2 � ω2

T.

VDD

RL

L0

RG
VG

v1

i1

v2

C ∞

C ∞

Fig. 5.95 Oscillator core using a common-gate stage.
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Then, we obtain

Z1 = −ω2L0

ωT
+ jωL0

ω2

ω2
T

. (5.238)

Provided that the frequency is larger than the resonant frequency of L0,Cgs, this circuit
will, therefore, also generate a negative resistance. The imaginary part is inductive.

Voltage-controlled oscillators
Electronic control of the oscillation frequency is a very common requirement. While
both variable inductance and variable capacitance concepts are in principle feasible,
variable inductance approaches suffer from poor integrability. Attempts to realise inte-
grated variable inductors using micro-electro-mechanical structures (MEMS) exist, but
have not found practical use yet.

In practical applications, variable capacitors, in turn, are always realised using varac-
tor diodes, which may build upon p–n junction diodes, Schottky diodes, or MOS diodes,
depending on the underlying semiconductor technology. In each case, the capacitance
of a blocking diode structure is varied by changing the voltage across the diode. Vari-
able capacitors using MEMS have been investigated quite extensively, but again have
not reached sufficient maturity for commercial applications so far.

The voltage-controlled oscillator (VCO) example in Figure 5.96 uses the cross-
coupled differential pair topology introduced in Figure 5.94(a). The fixed capacitor
has been replaced by two varactor diodes. The tuning voltage is connected to a virtual
ground point, which facilitates decoupling between the RF and the DC control paths.

The series resistance of the varactor diodes should not be overlooked – it may
substantially lower the overall resonator quality factor. The total quality factor can be
shown to be

L0

Vtune

vgs1 vgs2

Q1 Q2

Fig. 5.96 VCO using a cross-coupled topology.
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Qtotal = QC QL

QC + QL
, (5.239)

where

QL = ω0L

RL
=

√
L

C

1

RL
, QC = 1

ω0C RC
=

√
L

C

1

RC

are the quality factors of an inductor with series resistance RL and a capacitor with series
resistance RC, respectively, in a parallel resonant circuit. The assumption of weak losses
has been made:

ω2
0 L2

R2
L

� 1, ω2
0 R2

CC2 � 1.

5.5.5 Noise in oscillators

The noise phenomena in active devices of course also affect oscillator performance. In
principle, two things may happen:

• The oscillation amplitude may fluctuate randomly with time – amplitude noise.
• The phase of the sinusoidal signal may fluctuate randomly with time – phase noise.

Of the two, amplitude noise is the least critical. First of all, the gain compression effect
which leads to a stable oscillation condition in the first place also reduces random
amplitude fluctuations. Also, in frequency translation applications (frequency up- or
down-conversion), oscillators typically work into switch-type mixers where the oscilla-
tor amplitude has little effect on the conversion efficiency, provided it is still sufficient
for switching operation (see Section 5.6, p. 396).

For these reasons, we will restrict our discussions to phase noise, which has a much
stronger impact on system performance.

Phase noise describes the random fluctuations of the oscillator phase with time.
Mathematically,

s(t) = A sin [ωt + φ(t)] . (5.240)

In the frequency domain, these phase fluctuations are manifest in noise sidebands close
to the carrier (see Figure 5.97). The spectral power density of the noise sidebands
decreases with increasing distance to the carrier. They have a number of detrimental
effects, for example

• in transmitters, they lead to interference in nearby channels;
• in receivers, phase noise increases the perceived in-channel noise due to a phe-

nomenon known as reciprocal mixing, which is an intermodulation effect between
a strong interferer and the local oscillator noise sidebands.

The customary figure of merit for phase noise suppression is the ratio between the car-
rier power and the power of the noise sidebands in a 1 Hz bandwidth at an offset � f
from the carrier. It is typically expressed in ‘dBc/Hz’.
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Fig. 5.97 Phase noise sidebands around a carrier in the frequency domain.
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Fig. 5.98 Noise equivalent circuit of an ideal oscillator core with a lossy resonator.

To appreciate the effect of the resonator on the oscillator noise performance, con-
sider Figure 5.98. The oscillator core itself is assumed to be noiseless (a strong
over-simplification). The imaginary part of its input admittance is merged into the LC
resonator; at the resonant frequency, the oscillator core presents a real part −G which
just offsets the resonator loss G.

The resonator dissipative element, G, creates a thermal noise current whose noise
phasor is (see Equation (5.82)) 〈

|iR|2
〉
= 8kT BG,

where B is the measurement bandwidth.
The voltage v1 is iR · Zres, where Zres is the resonator impedance. Because the res-

onator losses are exactly compensated, it is the impedance of an ideal parallel LC
resonator:
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Z res = jωL

1 − ω2LC
= jωL

1 − ω2

ω2
0

. (5.241)

Taylor series expansion of the denominator, aborted after the linear term, leads to an
approximate impedance for small deviations δω from the resonance ω0:

Z res(ω0 ± �ω) ≈ ∓jω0L
2�ω
ω0

= ∓j
ω0

2�ω

1

QG
, (5.242)

using Q = R/ω0L = 1/(ω0LG).
The phasor of the noise-generated voltage v1 is then〈

|v1|2
〉
=

〈
|iR|2

〉 ∣∣Z res

∣∣2 ≈ 8kT B

G Q2
(

2�ω
ω0

)2
, (5.243)

using the approximation in Equation (5.242).
Comparing the noise power in bandwidth B to the signal power PS, finally we obtain

the phase noise suppression:

L(�ω) = 2kT B

PS

(
ω0

2�ωQ

)2

. (5.244)

Note the quadratic dependence of the phase noise suppression on the resonator Q.
In practical cases, the oscillator core is not noiseless. Furthermore, we need to take

low-frequency noise phenomena into account, which lead to a stronger increase in phase
noise close to the carrier. Leeson (1966) [26] introduced the following semi-empirical
formula, which builds upon Equation (5.244):

L(�ω) = 2FkT B

PS

[
1 +

(
ω0

2�ωQ

)2
] (

1 + 2π fc

|�ω|
)
. (5.245)

The additional factors are F – accounting for the additional noise in the oscillator core –
and fc, the cutoff frequency for low-frequency (‘1/ f ’) noise.

Figure 5.99 shows an example calculation using Equation (5.245). We clearly
distinguish three different regions:

(i) Close to the carrier, the noise power drops with −30 dB/decade. Here, the low-
frequency noise increase in the oscillator core’s active devices dominate.

(ii) Further out, the decay is −20 dB/decade, corresponding to the earlier calcula-
tions. Here, white noise sources (such as the thermal noise provided by the lossy
resonator) dominate.

(iii) Far away from the carrier, a noise floor is visible, but this is generally not very
relevant, unless F is very large.

If low phase noise oscillators are a requirement, both high quality factor resonators
and active devices with low-frequency noise are a must. In general, bipolar devices
(including HBTs) will fare much better than FETs. On-chip resonators generally have
much lower Q than off-chip resonators can achieve.
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Fig. 5.99 Simulated phase noise sideband of an oscillator using the Leeson equation.

5.6 Mixers

Mixers are generally frequency-translation components, with a variety of applications
in analogue signal processing, such as frequency shifting of signals (up and down con-
version), phase shifting, modulation and demodulation. A special class of mixers –
four-quadrant multipliers – can also be used in correlators, for example in impulse-radio
ultra-wideband receivers.

The mathematics behind mixer operation has been reviewed already in the context of
non-linear amplification (p. 370 and following). Recall that if we take a signal consisting
of two sinusoidal components of different frequencies ω1 and ω2 and feed it into a
non-linear two-port, the output h(t) can be described by a Taylor series expansion:

h(t) = k1 [a sin(ω1t) + b sin(ω2t)] + k2 [a sin(ω2t) + b sin(ω2t)]2 + . . . (5.246)

The quadratic term expands to

k2 [a sin(ω2t) + b sin(ω2t)]2 (5.247)

= k2

[
a2 sin2(ω1t) + b2 sin2(ω2t) + 2ab sin(ω1t) sin(ω2t)

]
.

The product term can be expressed as

2ab sin(ω1t) sin(ω2t) = ab {cos[(ω1 − ω2)t] − cos[(ω1 + ω2)t]} . (5.248)

Any non-linear system under two-tone excitation will therefore produce spectral compo-
nents at the sum and difference of the input signals. We also conclude that an analogue
multiplier would be the ideal mixer, because it only produces the sum and difference of
the input spectral components.

Incidentally, the interaction used here for frequency mixing purposes, was called
second-order intermodulation in the context of non-linear amplifiers.
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5.6.1 Transconductance multiplier

A simple analogue multiplier can be realised using a bipolar differential amplifier. It
utilises the fact that in bipolar transistors, the small-signal transconductance is linearly
dependent on the large-signal collector current in the operating point. Now take a differ-
ential pair Q1, Q2 with a common current source transistor Q3 (Figure 5.100). The RF
input voltage v1 is fed differentially into the top transistor pair (superimposed on the bias
voltage V0), while the oscillator current signal, ILO, is fed single-endedly into the base
of Q3. Let Q3 have a current gain B. Then, the differential output signal is

v2 = v1gm RL = v1 ILO
B RL

2VT
, (5.249)

because

gm = B ILO

2VT
.

The output voltage is therefore proportional to the product of the input voltage and the
local oscillator current.

This simple circuit, however, has a number of drawbacks. First of all, it will only
work for ILO > 0. Secondly, the input voltage has to be much smaller than VT (or
26 mV at room temperature) to fulfil the small-signal assumption. Finally, it will only
work with bipolar transistors.

RL RL

v2

Q1

Q3

V0 + v1

ILO

Q2

VCC

Fig. 5.100 Transconductance multiplier circuit.
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5.6.2 Resistive mixer

After looking at a mixer circuit which works only with bipolar transistors, let us briefly
consider a circuit which will work only with FETs. To appreciate its mode of operation,
examine the output I–V characteristics of a FET (see Figure 5.101).

At low VDS, the relationship between ID and VDS is an approximately linear one
and can therefore be accurately described by the channel conductance gDS. Assuming a
simple Statz–Curtice model for the FET:

ID (VGS, VDS) = β(VGS − VP)
2

1 + α(VGS − VP)
tanh(γ VDS),

where VP is the pinch-off or threshold voltage and α, β and γ are model parameters, we
find

gDS = γ
β(VGS − VP)

2

1 + α(VGS − VP)

[
1 − tanh2(γ VDS)

]
≈ γ

β(VGS − VP)
2

1 + α(VGS − VP)
, (5.250)

provided that tanh2(γ VDS) � 1 or γ VDS < 0.3.
Now the FET is placed in a circuit as shown in Figure 5.102. The inductor L enforces

a steady-state bias point VDS,0 = 0, but is invisible at the LO, RF or IF frequencies. The
gate bias can be set to a suitable VGS for optimum mixer operation. The FET, together
with the generator resistance of the RF port RRF, forms a resistive voltage divider whose
division ratio is modulated by the gate potential:

VDS(t) = VRF(t)

1 + gDS(t)RRF
. (5.251)

The periodic variation of gDS by the gate potential VGS = VGS,0 + VLO sin(ωLOt):

gDS = βγ
[
VGS,0 − VP + VLO sin(ωLOt)

]2 (5.252)

ID

VDS

VGS

Fig. 5.101 FET output I–V characteristics with indication of variable resistor operation.
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RF match and
filter network

IF match and
filter network

(a)

(b)

VLO

VGS,0

VRF

VIF

VDS

RRF

gDS = f(VLO) VDS
VRF,0

L ∞

Fig. 5.102 (a) Resistive mixer configuration and (b) its simplified equivalent circuit.

results in the desired mixing action (pure square law behaviour, i.e. α = 0, is
assumed here, see Equation (5.250)). Note that Equation (5.252) only holds for
VLO < VGS,0 − VP.

Frequently, the local oscillator voltage will be chosen such that VLO ≥ VGS,0 −
VP – the channel conductance is then switched between two saturated states, gDS = 0
and a high state essentially limited by the source and drain series resistances, which
were initially omitted in the simplified discussion. Under this condition, and assuming
VRF(t) = VRF sin(ωRFt), the time-dependent drain-source voltage becomes

VDS(t) = VRF sin(ωRFt)

RS + RD + RRF
[RS + RD + RRFrect(ωLOt)] . (5.253)

Since the Fourier series of the rect function is

rect(ωLOt) = 1

2
+ 2

π

[
sin(ωLOt) + sin(3ωLOt)

3
+ . . .

]
, (5.254)

this switching mode operation leads to the desired multiplication with the fundamen-
tal frequency of the local oscillator, but also with higher-order harmonics – the latter
operation is referred to as sub-harmonic pumping.

Figure 5.103 shows as an example the measured conversion gain of a resistive
mixer, as a function of the local oscillator power. At low PLO, the conversion gain
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Fig. 5.103 Measured conversion gain of a resistive mixer.

increases proportionally with the local oscillator power – the mixer acts like a mul-
tiplier. For higher PLO, the mixer enters the switching regime – the conversion gain
is roughly independent of the local oscillator power. This behaviour can be seen,
in variations, for any of the mixer circuits discussed here. In standard wireless sys-
tems, mixers are operated in the switching regime, because independence from local
oscillator power fluctuations is highly desirable. For example, it reduces the effect
of oscillator amplitude noise. There are applications, however, where operation in
the multiplier regime is wanted. An excellent example are correlation receivers for
impulse-radio ultra-wideband systems, where the formation of a cross-correlation
between the received pulse and a template pulse in the receiver calls for a true
multiplier.

The resistive mixer has the advantage of high simplicity, and, most prominently, very
high linearity with respect to the RF port. The latter is especially true when local oscil-
lator power leaking through the gate-drain capacitance is short-circuited to ground, so
that the drain potential is not modulated at the LO frequency [27].

Disadvantages are the significant required local oscillator voltage swing and the
conversion loss inherent to the voltage divider principle.

An important issue for practical mixers is port isolation – ideally, power fed into
the LO port should not be present at the RF and IF ports, and power fed into the
RF port should not be present at the IF port in downconverters, while power fed into
the IF port should not leak to the RF port in upconverters. In the resistive mixer,
the isolation between the RF and IF ports is realised by filters only, which is a
significant disadvantage. The LO-to-RF and LO-to-IF isolations are somewhat bet-
ter because the leakage path is via the gate-drain capacitance, but it may still be
too high.

Mixer concepts where port isolation is assisted by destructive interference are much
better, in this respect. They will be treated next.
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5.6.3 Single-balanced mixer

Consider the circuit in Figure 5.104. Transistor Q1 is a common-source amplifier stage
fed by the RF signal. Its load is formed by the differential pair Q2, Q3 with load resis-
tances RL. R2 and R3 are for biasing only. Q2 and Q3 are driven by the local oscillator –
but due to the balun transformer,7 their gate signals are exactly 180◦ out of phase.

Assume that the local oscillator signal is large enough so that the Q2 and Q3 are
being switched off alternately. Then, the differential voltage VIF can be written as

VIF = RL ID1 [2 · rect(ωLOt) − 1] , (5.255)

where ID1 is the drain current of Q1. Provided that Q1 is operated in the small-signal
regime, the small-signal IF output voltage is, considering the fundamental frequency
component of the local oscillator signal only,

VIF = V̂RF
4gm,1 RL

π
sinωLO sinωRFt, (5.256)

using Equation (5.254) and VRF = V̂L O sin(ωLOt).
The desired multiplication is again visible, producing spectral components at ωRF ±

ωLO.
The mixer uses a special property already discussed in the context of differen-

tial amplifiers: the common-source connection of transistors Q1 and Q2 is a virtual

RL RL

VIF

VDD

VG,23

R2

Q2

Q1

R3

VGS,1

LO

RF

Q3

Fig. 5.104 Single-balanced mixer circuit.

7 Note that baluns are drawn as transformers in this and the following circuit diagrams. At micro- and
millimetre-wave frequencies, they are rarely transformers, but may be realised using transmission line
segments, or as active baluns.
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VIF

VRF

Q1 Q2

VG

VLO

Fig. 5.105 Single-balanced upconversion mixer with FETs in shunt configuration.

ground for purely differential excitation. Therefore, the local oscillator and RF ports
are highly decoupled by virtue of destructive interference. LO-to-RF leakage is very
critical, because the local oscillator signal must not radiate via the antenna.

The circuit shown in Figure 5.105 is also a single-balanced mixer, used to upconvert
a signal at an intermediate frequency to a higher frequency (RF). As opposed to the cir-
cuit shown in Figure 5.104, where the switches were in series configuration, they are in
shunt here, alternately connecting the two ends of the top balun to ground, periodically
changing the sign of the IF signal at the RF port and thus producing the desired mul-
tiplication of the LO signal with IF. As upconversion is what we desire, a subsequent
filter will have to suppress the difference frequency and pass only the sum. Because the
RF port is connected to the virtual ground connection with respect to fully differential
excitation of Q1 and Q2, destructive interference of potential LO leakage at the IF port
will again ensure a very high LO-to-RF isolation.

5.6.4 Double-balanced mixer

The configuration shown in Figure 5.104 is a building block of the double-balanced
mixer, probably the most popular active mixer configuration in MMIC design today.
These topologies are commonly referred to as Gilbert cells [12].

In the double-balanced mixer (Figure 5.106), all signals have to be applied in a dif-
ferential fashion – this is indicated by the presence of three baluns. Transistors Q1

and Q2 form a differential amplifier, connected to another pair of differential ampli-
fiers Q3−Q6. In the original publication by Gilbert, the configuration is operated as
a true four-quadrant multiplier, while in most applications, the top four transistors are
switched by the LO signal between two states – they are jointly referred to as the switch-
ing quad. Only the latter mode shall be discussed here. In this case, the double-balanced
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Q3

VLO

VG1

VG2

Q1 Q2

I0VRF

Q4 Q5 Q6

VDD

VIF

Fig. 5.106 Double-balanced mixer with Gilbert cell topology.

Differential
amplifier

Phase-reversing
switch

IF out

ωLO

RF in

Fig. 5.107 Block diagram of a double-balanced mixer of the Gilbert cell type, partitioned into a differential
amplifier and a phase-reversing switch.

mixer can be viewed as the cascade of a differential amplifier and a phase-reversing
switch, such that the amplified RF signal changes its phase by 180◦ with the period of
the LO signal. This is shown schematically in Figure 5.107.

The big advantage of the double-balanced mixer is that all ports are now decoupled
by destructive interference. For example, the differential RF signal leakage cancels out
at both joint gate connections of the switching quad. Likewise, the LO leakage cancels
at the source connections of Q3, Q4 and Q5, Q6, respectively.

A disadvantage of the circuit shown in Figure 5.106 is the rather large voltage head-
room required. On top of the required minimum drain-source voltage of the switching
quad and the differential amplifier Q1, Q2, additional headroom is required for the cur-
rent source I0. The latter is frequently replaced by a parallel resonant circuit, tuned to
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VRF

VDD

VIF

Q3Q1

Q2Q4

VG

VLO

Fig. 5.108 Double-balanced mixer with a ring topology.

ωRF. It provides the required high impedance for the RF signal, but provides a zero DC
resistance, lowering the supply voltage requirements.

Double-balanced mixers can also be realised using resistive mixer principles (see
Section 5.6.2). This has the advantage of very low power consumption, but of course
the circuit will not be able to produce any conversion gain.

Figure 5.108 shows an example. Depending on the choice of the drain potential VDD,
this circuit can be operated as a resistive mixer (VDS low, in the linear regime), or the
transistors may act as current switches (VDS in the saturated region). The RF signal is
applied to the drains of the transistors. The LO signal alternately turns on transistors
Q1, Q2 and Q3, Q4, leading to a periodic phase reversal of RF signal at the IF port.

5.6.5 Micromixer

The micromixer concept, shown in Figure 5.109, evolved from the Gilbert multiplier
topology and was also published by B. Gilbert [13]. The transistors Q4−Q7 are the
switching quad, as before – the circuit is drawn using bipolar transistors here, but would
work as well with FETs. The topology is somewhat simplified, for example the baluns
are not included.

The local oscillator signal is again applied in differential format. The RF signal,
however, is single-ended and applied to the amplifier structure formed by the transis-
tors Q1−Q3. Q1 is a common-base amplifier stage and Q3 a common-emitter stage.
Because the former provides a non-inverting and the latter an inverting voltage gain,
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VCC

RL RL I0I0

Q4 Q5 Q6 Q7

VLO

Q1 VB1

R1

R2

VRF

Q2 Q3

R3

VIF

Fig. 5.109 Simplified micromixer topology using bipolar transistors.

the signals fed into the two branches of the switching quad are 180◦ out of phase – the
circuit doubles as an single-ended-to-differential converter. Q2 forms a current mirror
with Q3 such that the currents in both branches are equal.

Frequently, the gain of the common-base/common-source amplifier/balun is
increased by injecting additional current into the two branches. This is indicated in
Figure 5.109 by the two dashed current sources I0.

Compared to the original Gilbert multiplier, the input stage of the micromixer can be
made more linear, and can be designed to achieve a broadband match, using the resistors
R1 and R2.
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5.6.6 Diode-based mixers

While the circuit design descriptions in this chapter (and, for that matter, the whole
book) emphasise concepts with active components, the use of diodes in mixers must
be mentioned here because they are still very commonly employed, especially at
millimetre-wave frequencies where transistors lose their usefulness. The diode of choice
is the Schottky (metal–semiconductor) diode due to the absence of carrier storage effects
when switching from forward to reverse bias.

As in the case of operating a FET as a resistive or switching mixer, the principle
is the change of the differential resistance. For a diode, this is shown in Figure 5.110.
Clearly, the differential diode conductance gD = d ID/dVD is very low for bias point
A (or equally for VD < 0) and very high for bias point B. We will now use the local
oscillator again to periodically change the diode between these two states.

Consider Figure 5.111, which depicts the very popular diode ring mixer. The circuit
is very similar to the FET ring mixer shown earlier (Figure 5.108). Assume that the
RF signal is always much smaller than the local oscillator (LO) signal. Then, the diode
state will depend on the applied LO signal only. Either the left or the right diode pair
may conduct and exhibit a high differential conductance. The diode ring acts as a phase-
reversing switch, which connects the RF signal to the intermediate frequency (IF) load
with periodically alternating polarity.

Similarly, single-balanced and single-ended (unbalanced) mixer topologies can be
realised using diodes. This shall not be further expanded here.

ID/A

0.10

0.08

0.06

0.04

0.02

0.00

0.00 0.20

A

B

0.40 0.60 0.80 1.00 1.20 1.40

VD/V

Fig. 5.110 Example Schottky diode I–V characteristics, with bias point indicated for small (A) and high
(B) differential conductance.
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LO

RF

VIF

Fig. 5.111 Diode ring mixer.

A

ωIF ωimg ωLO ωRF

Fig. 5.112 The image frequency problem in downconversion mixing: ωRF and ωimg both produce
components at ωIF when mixed with ωLO.

5.6.7 Image-rejection mixer topologies

One problem inherent to any of the mixers discussed here still needs to be mentioned.
When operated as a downconverter (converting an RF signal at a higher frequency to a
lower IF), it uses the fact that the multiplication of sinusoidal signals produces a spectral
component at the difference of the two initial frequencies, as was discussed in Equation
(5.248).

2 sin(ω1t) sin(ω2t) = cos [(ω1 − ω2)t] − cos [(ω1 + ω2)t] .

Consider now a case where ω1 = ωRF is the RF signal and ω2 = ωLO is the LO
frequency, which is lower than ωRF. The difference is the IF: ωRF − ωLO = ωIF. If,
however, there is another signal present at the RF input, with a frequency ωimg = ωRF −
2ωIF, it will also mix with ωLO to produce a spectral component at the right IF: ωLO −
ωimg = ωIF. The problem is schematically shown in Figure 5.112. ωimg is called the
image frequency.
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The signal at the image frequency will now overlay the downconverted RF sig-
nal and in most cases cause unacceptable interference. The most common way to
avoid this is to make sure, by appropriate filtering, that no signal is in fact present at
ωimg.

In upconversion mixers, the image problem also applies. Upconverting a signal at
ωIF by means of an LO at a higher frequency ωRF results in two spectral components at
ωLO ± ωIF. Again, one of these components will have to be suppressed, classically by
filtering.

However, in modern receiver and transmitter concepts, there is a trend to lower IFs
where digital/analogue conversion can be achieved very inexpensively. Consequently,
the frequency distance 2ωIF between the desired signal and the image is getting smaller,
requiring very rigid filtering. The necessary filter qualities are rarely possible on chip,
which is another significant drawback, as off-chip filters are costly in production and
assembly.

A more convenient solution is the use of an image-rejection mixer. The image-
rejection mixer topology can use any of the fundamental mixer circuits we discussed.

The block diagram shown in Figure 5.113 shows a possible implementation for a
downconversion mixer. At the input, two signals shall be present, at the RF and image
frequencies:

ωRF = ωLO + ωIF, ωimg = ωLO − ωIF

The signal is split into two signals with equal amplitude, but 90◦ phase shift (in quadra-
ture). We assume that this can be done equally for the RF and the image signals – this
is a good assumption because the concept is especially important if RF and image sig-
nals are located in close spectral proximity and cannot be separated easily by filtering.
For simplicity, we assume also that both RF and image signals are sinusoidal with an
amplitude of 1.

The oscillator signal, at ωLO, shall also have an amplitude of 1. It is split into two
signals with equal amplitude and phase.

B

A

g ′1(t)g1(t)

g2(t)

ωLOωRF, ωimg

g ′2(t)

0°/–90°
0°

–90°

Fig. 5.113 Block diagram of an image reject mixer.
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Let us first consider the RF signal only (the image signal is turned off). The signal at
the output of the top mixer is

g1(t) = 1

4
sin(ωRFt) sin(ωLOt)

= 1

8
{cos[(ωRF − ωLO)t] − cos[(ωRF + ωLO)t]} .

The high frequency component at ωRF + ωLO is easily suppressed in the low-pass filter
(LP). After the low-pass filter in the upper branch,

g′
1(t) = 1

8
cos[(ωRF − ωLO)t] = 1

8
cos(ωIFt) = 1

8
sin

(
ωIFt + π

2

)
. (5.257)

In the lower branch, the RF signal is delayed by −π/2.
Using sin(ωRF − π/2) = − cos(ωRFt), we obtain at the output of the bottom

mixer:

g2(t) = −1

4
cos(ωRFt) sin(ωLOt)

= −1

8
[sin(ωRF + ωLO)t − sin(ωRF − ωLO)t] .

The high frequency component is removed in the low-pass filter:

g′
2(t) = 1

8
sin(ωIFt). (5.258)

The four-port at the right of the block diagram in Figure 5.113 is a 90◦ hybrid cou-
pler. Signals fed into the inputs emerge at outputs A and B with equal amplitude, but
the signal entering at the top experiences an additional −π/2 phase shift at output B,
while the signal entering at the bottom experiences an additional phase shift of −π/2 at
output B.

Using Equations (5.257) and (5.258), we then find at A:

1

8

[
sin

(
ωIFt + π

2

)
+ sin

(
ωIFt − π

2

)]
= 0.

At B:

1

8
[sin(ωIFt) + sin(ωIFt)] = 1

4
sin(ωIFt).

The IF signal due to the wanted (RF) signal hence only appears at output B.
Let us consider the image frequency, which is below ωLO such that ωIF = ωLO−ωimg.

Using sin(−α) = − sinα and cos(−α) = cosα, we find at the output of the upper
low-pass filter:

g′
1(t) = −1

8
sin

(
ωIFt − π

2

)
, (5.259)

while at the output of the lower low-pass filter:

g′
2(t) = −1

8
sin(ωIFt). (5.260)
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B

A

ωLO

ωRF, ωimg 0°/–90°0°/–90°

Fig. 5.114 Image reject mixer topology with quadrature LO.

ωLO,1 ωLO,2

ωRF, ωimg 0°/–90°0°/–90°

Fig. 5.115 A ‘third method’ image-rejection mixer topology using two mixing steps.

These signals combine at output A as

−1

8

[
sin

(
ωIFt − π

2

)
+ sin

(
ωIFt − π

2

)]
= −1

4
sin

(
ωIFt − π

2

)
.

At B:

−1

8
[sin(ωIFt − π) + sin(ωIFt)] = 0.

The IF signal due to the image frequency only appears at port A. The circuit in Fig-
ure 5.113 hence separates the IF components due to the RF and image signals at the
input.

The topology in Figure 5.114 serves the same purpose and was described by Hartley
already in 1928 [18]. It has the advantage that oscillators can be constructed so that they
directly generate quadrature output signals, which maintain 90◦ phase shift over a wide
frequency band.

The final topology, introduced by Weaver in 1956, eliminates the 90◦ hybrid at the
IF, but uses a second down-conversion step [39]. It is shown in Figure 5.115.

While it requires two additional mixers and low-pass filters plus an extra LO, it
eliminates the need for the IF hybrid which, for low IFs, is very difficult to integrate.
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5.6.8 Mixer noise figure

The existence of an image frequency also complicates the noise figure assessment of
mixers; while the intended signal is present at only one frequency (ωRF), noise present
at the image frequency ωimg is also converted to the IF and decreases the signal-to-noise
ratio at the mixer output.

In principle, noise figure definitions for mixers use Friis’ definition of the two-port
noise figure (Equation (5.71)); the noise figure is calculated as the quotient of the signal-
to-noise ratios at the input and the output of the two-port, assuming that the noise
temperature of the input is T0 = 290 K.

The issue here is how to calculate the signal-to-noise ratio at the input.
We may consider the signal-to-noise ratio only for the RF frequency. If the signal

power is S, the signal-to-noise ratio before the mixer is

SNRinp = S

kT0� f
, (5.261)

where � f is the measurement bandwidth.
The mixer noise sources are combined in an equivalent noise source kTn� f , placed

at the input. Tn is the noise temperature of the mixer.
Generally, the mixer’s gain at the RF and the image frequency can have different

values, which we call GRF and G img, respectively.8

The image frequency also contributes a noise power of kT0� f . The signal-to-noise
ratio at the output is then

SNRout = GRFS

k� f [GRF(T0 + Tn) + G imgT0] . (5.262)

The ratio of the expressions (5.261) and (5.262) is called the single-sideband noise
figure:

FSSB = 1 + Tn

T0
+ G img

GRF
(5.263)

We may also simply apply Equation (5.73), developed originally for two-ports, to the
mixer. The result is the IEEE single-sideband noise figure:

FSSB,IEEE = 1 + Tn

T0
(5.264)

The IEEE definition is similar to (5.263), provided that G img � GRF. However, we can
also calculate the signal-to-noise ratio before the mixer taking the thermal noise at the
image frequency into account. Then,

SNRinp = S

2kT0� f
. (5.265)

8 Note that all gains are available gains, i.e. power match is assumed for all ports.
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Now using (5.265) and (5.262) to calculate the noise figure, we obtain the double-
sideband noise figure:

FDSB = FSSB

2
= FSSB,IEEE + Gimg

GRF

2
. (5.266)

On a logarithmic scale, FSSB is thus 3 dB larger than FDSB.
For the assessment of receiver systems, FSSB is the appropriate entity because we

need to compare signal-to-noise ratios at the intended frequency only. However, mea-
surements of mixer noise figure invariably yield FDSB, unless the image frequency is
suppressed at the input of the mixer by appropriate filtering. When using mixer noise
figure data, this has to be carefully observed.

5.7 Baluns, unbals and hybrids

In the preceding sections, reference was frequently made to mysterious building blocks
which convert signals from single-end to differential (two signals of equal amplitude,
but 180◦ out of phase), or splitting a signal into two parts ‘in quadrature’ (90◦ out of
phase). Due to their importance, they also deserve a brief section of their own.

The term balun is a contraction of balanced to unbalanced, describing the function
this component performs; they convert a balanced (differential) signal, which can be
understood as two ground-referenced signals of equal amplitude, but 180◦ phase differ-
ence, to an unbalanced signal, which is a single ground-referenced form. The unbal does
exactly the opposite – it converts an unbalanced signal to a balanced (differential) one.

5.7.1 Passive baluns and unbals

Passive baluns and unbals are essentially the same components, operated in different
directions. Therefore, it is common to call them by the name ‘balun’ only, irrespective
of the actual role.

A very common balun/unbal at lower RF frequencies is the centre-tapped transformer
(Figure 5.116). Due to the symmetric centre tap of the secondary winding, the balanced
output voltage is formed by two voltages v1 and v̄1 of equal amplitude, but opposite
phase. At lower frequencies, the centre-tapped transformer balun is frequently con-
structed as a toroidal transformer, using ring-shaped magnetic cores. As the frequency
of operation increases, this will rapidly not be possible anymore as the useful frequency

Vunbal Vbal

v1

v1

Fig. 5.116 Center-tapped transformer as a balun/unbal.
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Port impedance Z1

2 Z2

L1

L1

C1

C1

Fig. 5.117 Lumped-element balun circuit.

range of the core material is exceeded and also the parasitic capacitances of the windings
become excessive.

A rather straightforward balun implementation is shown in Figure 5.117. It uses a
combination of LC low-pass and high-pass filters to provide phase shifts of −90◦ and
+90◦, respectively, at the design frequency ω0. It can provide impedance transformation
at the same time. Both high-pass and low-pass filters provide the 90◦ phase shifts if

L1C1 = 1

ω2
0

. (5.267)

At this frequency, they need to additionally fulfil:

L1

C1
= 2Z1 Z2 (5.268)

to transform between the single-ended port impedance Z1 and the differential port
impedance 2Z2. Solving Equations (5.267) and (5.268) yields

L1 =
√

Z1 Z2

ω0
(5.269)

C1 = L1

2Z1 Z2
. (5.270)

As all lumped-element transformation circuits, the lumped-element balun will be quite
narrow band.

At microwave frequencies, a rather large number of possible implementations of
transmission line baluns exist. We will restrict our discussion to one example.

A very popular transmission line balun, whose operation is also quite easy to
understand, is the rat-race coupler structure shown in Figure 5.118. It consists of a trans-
mission line ring with a circumference of 1.5 times the wavelength λ, with four ports
arranged as shown in Figure 5.118. If equal power distribution to the coupled ports
is desired, the transmission line ring must have a characteristic impedance of

√
2Z0,

where Z0 is the port impedance. If we feed a signal into port 1, it will split into two par-
tial signals, which travel clockwise and counter-clockwise through the ring. They will
interfere constructively at port 3, 2 and 3, while the phase difference is π at port 4, lead-
ing to destructive interference there. The signal at port 3 lags port 1 by π/2, while the
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2

1

λ /4

λ /4

λ /4

3λ /4
2Z0

4

3

Fig. 5.118 A 180◦ hybrid (‘rat race’) coupler structure.

signal at port 2 leads port 1 by π/2 (well, it lags by 3π/2, but that is the same). Because
port 4 is decoupled, and we have equal power distribution, the scattering parameters
with respect to port 1 are then:

S21 = +j
1√
2

S31 = −j
1√
2

S41 = 0.

The phase difference between ports 2 and 3 is π or 180◦ – a single-ended signal into
port 1 is converted into a differential signal between ports 2 and 3. The component is
reciprocal, of course – a differential signal applied between ports 2 and 3 will combine
into a single-ended signal out of port 1.

The rat-race coupler has another interesting property – a signal inserted into port 4
will split into in-phase components out of ports 2 and 3, while port 1 is isolated. In
scattering matrix terms,

S24 = −j
1√
2

S34 = −j
1√
2

S14 = 0.

5.7.2 Active baluns and unbals

A major disadvantage of the passive baluns discussed so far is their narrow bandwidth of
operation, and at lower frequencies their potentially large chip area consumption, due to
either the size of the transmission line segments or the size of the necessary reactances.

Active circuits can provide balanced-to-unbalanced and unbalanced-to-balanced-
conversions over a wide operational bandwidth, and often in a very small chip area.
They are, therefore, frequently used in IC implementations of microwave circuits.
Disadvantages are the additional noise due to the active components, potential non-
linearities and the added power consumption, which can be considerable if high linearity
is required.
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VDD

Q1
Vin,1

Vin,2

VGG1

VGG3

VGG2

Vout

Q3

Q2

Q4

Q5

Fig. 5.119 Active balun circuit.

Figure 5.119 shows a typical active balun conversion circuit. Transistors Q1−Q3

form a differential amplifier, which is used here to suppress any common-mode com-
ponents between the input voltages Vin,1 and Vin,2. Transistors Q4 and Q5 form the
balun proper – Q4 acts in common-drain (source follower) configuration, while Q5 is in
common-source configuration, both working against the common single-ended output.

The simplest active unbal (Figure 5.120), uses a transistor which is simultaneously
configured in common-source and common-drain topology. Output 1 is at the source,
hence the voltage gain is in good approximation +1. Output 2 is at the drain, and the
resistors R1 and R2 must be chosen such that the voltage gain is −1, leading to the
desired balanced output signal Vout. Quasistatically, this is very simple – the small-
signal output voltage vout,2 is

vout,2 = −R1
vout,1

R2
,

so that for equal magnitudes of vout,1 and vout,2,

R1 = R2.

For higher frequencies, the performance deteriorates, especially due to leakage through
the transistor’s gate-drain capacitance. The useful range can be extended by cascading
a differential amplifier with good common-mode rejection.

Figure 5.121 shows an alternative active unbal, which uses common-source and
common-gate amplifiers in parallel. Q1 is a common-gate topology, with a quasi-static
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VDD

Vin

R1

Q1

R2

Vout,2

Vout,1

C ∞

C ∞

Fig. 5.120 Active unbal using a transistor in common-source/common-drain configuration.

VDD

VGG1

Q1

Q2

R1 R2

Vout,1

Vout,2

Vin

Fig. 5.121 Active unbal using a combination of common-source and common-gate topologies.

small-signal gain of gm R1,9 while Q2 is a common-source amplifier with a voltage gain
of −gm R2. Provided R1 = R2 and equal transistor transconductances gm, both output
voltages will have the same magnitude, but opposite phase: Vout,1 = Vout,2.

Compared to the earlier circuit (Figure 5.120), this circuit has the advantage that
the input impedance is significantly reduced, leading to a higher bandwidth, while the
output impedances are equal for both ports.

9 Neglecting the transistor output conductance.
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5.7.3 Quadrature generation

The generation of two signals with 90◦ phase shift is another very frequent task, as we
have seen in the discussion of image-rejection mixer topologies.

The simplest generation of quadrature signals is realised using the simple RC network
shown in Figure 5.122. The output voltages are

VQ = V0
1

1 + jωR1C1
(5.271)

VI = V0
jωR1C1

1 + jωR1C1
. (5.272)

At ω0 = 1/(R1C1), VQ lags V0 by 45◦, while VI leads V0 by 45◦ – VQ and VI are hence
in quadrature. The 90◦ phase difference between VQ and VI is maintained over a wide
frequency range, but the amplitudes are equal only at ω0. Note also that this is a lossy
network – at ω0, |VI| = |VQ| = V0/

√
2.

The polyphase filter family, an example of which is shown in Figure 5.123, uses
also passive RC elements to generate quadrature output signals from a differential input

V0

C1

R1

R1

V1

C1

VQ

Fig. 5.122 Quadrature generation using a simple RC network.

V0 VI

VQ

VI

VQ

V0

Fig. 5.123 RC polyphase network for differential quadrature generation.
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signal. It is very frequently used in fully differential receiver concepts. All RC filters
have significant loss and should therefore not be used in noise-critical signal paths –
a common use is for quadrature generation from differential LOs, or in quadrature IF
combiners at the output of image-rejection mixers such as the one shown in Figure
5.114. An in-depth description of polyphase filter operation can be found in [3].

Another common quadrature generator, this time using transmission lines, is the 90◦
hybrid, shown in Figure 5.124.

All transmission line segments are electrically a quarter wavelength long. A signal
fed into port 1 will emerge at 2 with 90◦ phase lag, and with 180◦ at port 3. The signals
at 2 and 3 are hence in quadrature. The signal from port 1 will interfere destructively at
port 4, which is hence ideally decoupled, provided that 2 and 3 are terminated with the
proper impedance Z0.

Quadrature signals can also be generated digitally where linear operation is not
mandated – following an oscillator.

The circuit depicted in Figure 5.125(a) needs a clock frequency at four times the
intended output frequency. As state changes occur only on the rising edge of the clock, it

Z0

Z0

Z0

Z0

Z0

Z0 Z0

2

Z0

2

21

4 3

Fig. 5.124 Transmission line 90◦ hybrid.

Q

(a) (b)

Q

Q

I
Q

Q

QD

D

Q

Q

Q

D

D

fclock

fclock

fout =
fclock

4

I

Q

fout =
fclock

2

Fig. 5.125 Quadrature signal generation using flipflops.
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is insensitive to the clock’s duty cycle. However, the very high clock frequency require-
ment makes it unsuitable for many applications. The circuit in Figure 5.125(b) needs
only twice the output frequency as a clock, but as it triggers on both the rising and the
falling edges of the clock, it is very sensitive to the clock’s duty cycle. The time delay
in the inverter may lead to additional problems as the clock frequency increases.

Finally, quadrature clock signals may also be generated in special oscillator circuits.
This, however, shall be beyond the scope of this book.

5.8 Problems

(1) Demonstrate that the power delivered to a load of arbitrary impedance can be
expressed as the difference in the squared magnitudes of the incident and reflected
normalised power waves – see Equation (5.3).

(2) Consider a two-port whose scattering matrix is known. Calculate the power deliv-
ered to an arbitrary load ZL as a function of the available power of the generator,
whose source impedance shall be equal to the normalising impedance Z0.

(3) You have to design a common-source amplifier with a FET technology whose
transit frequency fT is 50 GHz. The load resistance of the amplifier is given
to be 100�, the voltage gain shall be AV = −10. Calculate the input capaci-
tance – hint: use the common rule of thumb that CGD ≈ 0.1 · CGS. You may also
neglect gDS.

(4) Consider the circuit in Figure 5.126. The transistors Q1 and Q2 shall have a
transconductance of gm = 20 mS and a transit frequency fT = 50 GHz. Calculate
the input admittance of this circuit.

VDD

R1 = R2 = 50 Ω

R3 = 100 Ω

Vout,1

Vout,2

VGG1

Vin

C

Q1

Q2

∞

C ∞

C ∞

C ∞

Fig. 5.126 Active unbal circuit for Problem 4.
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(5) Suggest a simple one-transistor circuit capable of creating an impedance (ref-
erenced to ground) with a real part Re{Z1} = −400� at f = 10 GHz.
The FET technology you are using has an fT of 100 GHz and the transistor
transconductance shall be gm = 50 mS.

(6) The circuit in Figure 5.127 shall be used to realise a wideband voltage amplifier
stage. The transistor Q1 has an fT = 10 GHz and transconductance of gm =
100 mS in a bias point ID = 10 mA, VGS = −0.5 V and VDD is 10 V. The voltage
gain shall be aV = −10.
(a) Calculate R3.
(b) What is the optimum choice for C1 with respect to maximum bandwidth, if

the transistor can be modelled using the simple equivalent circuit in Figure
5.20?

(c) Calculate R2.
(d) What is VDS under these circumstances?

VDD

R2

v2
v1

C1

Q1

R3R1

C ∞

Fig. 5.127 Simple wideband amplifier.

(7) Consider the circuit in Figure 5.32. Given that all transistors have the same size,
why do Q1 and Q2 have the same collector current, provided that the current
gain β � 1? Let now IC = 5 mA for all transistors, β = 100, fT = 50 GHz,
RL = 100�. Draw the small-signal equivalent circuit and calculate the input
impedance and the voltage gain.

(8) Discuss three different ways of eliminating the feedback capacitance in ampli-
fiers.

(9) The impedance seen in the input of a common-source amplifier stage at f =
10 GHz is Z1 = (5 − j159)�. The output admittance of the preceding stage
is Y2 = 10 + j3 mS. Suggest a suitable matching network so that the available
power is transferred from the first to the second stage. Hint: the Smith chart is
very helpful here.

(10) You have the task to design a simple distributed amplifier. The transistors to use
have a transconductance gm = 400 mS and fT = 70 GHz. The gain cell shall be a
simple common-source stage. The gate width of each transistor is WG = 100 μm.
For the drain-gate capacitance, use CDG = 0.1CGS.
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The unloaded gate line has a characteristic impedance Zu = 80� and an
inductance per unit length of L ′ = 0.8 nH mm−1.

Calculate the necessary length of the gate line segments so that the character-
istic impedance of the loaded gate line is 50�. The drain line shall equally have
this impedance.

(11) In the schematic in Figure 5.63, identify the function of each of the transistors
shown. What is the purpose of the RC combination attached to the emitters of
two of the transistors?

(12) A communications system can tolerate a minimum third-order intermodulation
distance of 60 dB; the maximum input power is −20 dBm. What is the necessary
input-referred third-order intercept point?

(13) Explain why a high resonator quality factor is especially important in oscillator
using active devices with little low-frequency noise, such as Si/SiGe HBTs.

(14) Show how the Hartley image reject topology (Figure 5.114) achieves separation
of the signal and image frequencies to output A and B.

References

[1] Abele P., Kallfass I., Zeuner M. et al. (2003). 32 GHz MMIC distributed amplifier based on
n-channel SiGe MODFETs. Electron. Lett. 39, 1448–1449.

[2] Battjes C. R. (1980). Monolithic wideband amplifier. USA Patent 4, 236, 119.
[3] Behbahani F., Kishigami Y., Leete J., Abidi A. (2001). CMOS mixers and polyphase filters

for large image rejection. IEEE J. Solid-State Circ. 36, 873–887.
[4] Beyer J., Prasad S. N., Becker R., Nordman J., Hohenwarter G. (1984). MESFET distributed

amplifier design guidelines. IEEE Trans. Microw. Theory Tech. MTT-32, 268–275.
[5] Chartier S., Schleicher B., Korndörfer F., Glisic S., Fischer G., Schumacher H. (2007). A

fully integrated fully differential low-noise amplifier for short range automotive radar using
a SiGe:C BiCMOS technology. In Proc. 2nd European Microwave IC Conference (EuMIC),
Munich, Germany, 8–10 October, 2007.

[6] Chartier S., Sönmez E., Schumacher H. (2006). Millimeter-wave amplifiers using a 0.8 μm
Si/SiGe HBT technology. In Proc. Silicon Monolithic Integrated Circuits in RF Systems,
San Diego, CA, 18–20 January 2006. IEEE.

[7] Darlington S. (1953). Semiconductor translating device. USA Patent 2, 663, 806.
[8] Ellinger F. (2007). Radio Frequency Integrated Circuits and Technologies, 1st edn. Springer.
[9] Fleming J. A. (1905). Instrument for converting alternating electric currents into continuous

currents. USA Patent 803, 684.
[10] Forest L. D. (1908). Space telegraphy. USA Patent 879, 532.
[11] Friis H. T. (1944). Noise figure of radio receivers. Proc. IRE 32, 7, 419–422.
[12] Gilbert B. (1968). A precise four-quadrant multiplier with subnanosecond response. IEEE

J. Solid-State Circ. 3, 365–373.
[13] Gilbert B. (1997). The Micromixer: a highly linear variant of the Gilbert mixer using a

bisymmetric class-AB input stage. IEEE J. Solid-State Circ. 32, 1412–1423.
[14] Gonzalez G. (1997). Microwave Transistor Amplifiers, Analysis and Design. Prentice Hall.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626517.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626517.006


422 High-Speed Electronics and Optoelectronics

[15] Gupta M. S. (1992). Power gain in feedback amplifiers, a classic revisited. IEEE Trans.
Microw. Theory Tech. MTT-40, 5 (May), 864–879.

[16] Häfele M., Trasser A., Beilenhoff K., Schumacher H. (2005). A GaAs distributed amplifier
with an output voltage of 8.5 Vpp for 40 Gb/s modulators. Proc. 13th GAAS Symposium,
Paris, France, 3–4 October 2005, 345–348.

[17] Hagen J. B. (1996). Radio-Frequency Electronics, 1st edn. Cambridge University Press.
[18] Hartley R. V. L. (1928). Modulation system. USA Patent 1, 666, 206.
[19] Haus H., Adler R. (1958). Optimum noise performance of linear amplifiers. Proc. IRE 46,

1519–1533.
[20] Hoffmann M. (1997). Hochfrequenztechnik, 1st edn. Springer Berlin Heidelberg.
[21] Hunt F., Hickman R. (1939). On electronic voltage stabilizers. Rev. Sci. Instrum. 10, 1

(January), 6–21.
[22] Kline R. (1993). Harold Black and the negative-feedback amplifier. IEEE Contr. Syst.

Mag. 13, 4, 82–85.
[23] Ku W. H. (1966). Unilateral gain and stability criteria of active two ports in terms of

scattering parameters. Proc. IEEE 54, 11 (November), 1617–1618.
[24] Kurokawa K. (1965). Power waves and the scattering matrix. IEEE Trans. Microw. Theory

Tech. MTT-13, 3 (March), 194–202.
[25] Lee T. H. (1997). The Design of CMOS Radio-Frequency Integrated Circuits, 1st edn.

Cambridge University Press, 181.
[26] Leeson D. (1966). A simple model for feedback oscillator noise spectrum. Proc. IEEE 54,

329–330.
[27] Maas S. A. (1987). A GaAs MESFET mixer with very low intermodulation. IEEE Trans.

Microw. Theory Tech. MTT-35, 425–429.
[28] Mason S. J. (1954). Power gain in feedback amplifiers. Trans. IRE, Prof. Group on Circ.

Theory CT-1, 2 (June), 20–25.
[29] Miller J. (1920). Dependence of the input impedance of a three-electrode vacuum tube upon

the load in the plate circuit. Scientific Papers of the Bureau of Standards 15 (351), 367–385.
[30] Percival W. S. (1937). Thermionic valve circuits. Britain Patent 460, 562.
[31] Rothe H., Dahlke W. (1955). Theorie rauschender Vierpole. AEÜ 9, 117–121.
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