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26 Radio and radar astronomy

Radio astronomy was discovered accidentally in 1931 by Karl Jansky, a phys-
icist at Bell Telephone Laboratories. Jansky had been assigned to identify the
sources of noise encountered in a newly installed transatlantic short-wave
radiotelephone service. Using a directional receiving antenna on 20.5MHz,
he observed that one component of the noise, a wideband hiss, had a diurnal
variation that reached a maximum intensity on average four minutes earlier each
day. Jansky knew that the stars advance in just this way (in siderial time) and
deduced that the source of the hiss must be outside the solar system. His
observations showed that this “cosmic noise” came from the galactic plane
and was strongest from the direction of the galactic center (in the constellation
Sagittarius).
After Jansky, the second pioneer of radio astronomy was a radio engineer,

Grote Reber, who in 1937, built a 9-m (30-ft) parabolic reflector beside his
house in Wheaton, Illinois. This was maybe the first modern dish antenna.
Reber began his observations using a receiver at 3 GHz, which pushed the high-
frequency state of the art, because he assumed that cosmic radio noise was the
low-frequency tail of the thermally generated radiation spectrum fromwhite-hot
stars. The intensity of this radiation would increase as the square of the
frequency, so using the highest practical frequency would make detection easier
and would also make his antennamore directive. Detecting nothing at 3 GHz, he
worked his way down finally to 160MHz, where he was able to make contour
maps of the cosmic noise intensity. The radiation he and Jansky observed is now
known to be synchrotron radiation, caused by the centripetal acceleration of
fast, i.e., non-thermal, electrons spiraling in a magnetic field. By the end of
World War II, the Sun (an ordinary thermal source under low sunspot condi-
tions) had been detected at microwave frequencies. After the war, a previously-
predicted spectral line at 21 cm (1420MHz) was quickly detected. This famous
neutral hydrogen line corresponds to the energy difference between the parallel
and antiparallel orientations of the magnetic moment of the nucleus (the proton)
with respect to the magnetic moment of the spinning electron. Many radio
telescopes have been built in the decades following the war, the largest being the
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305-m (1000-ft) diameter dish built by Cornell University at Arecibo, Puerto
Rico. Discoveries in radio astronomy include some one hundred atomic recom-
bination and molecular lines, pulsars, natural masers, and the isotropic 3K
blackbody cosmic background radiation, a remnant left from the Big Bang.

26.1 Radiometry

Most of the radio sources found in nature emit wideband noise; their radiation
comes from a great number of individual radiators whose contributions add
randomly to produceGaussian noise. (A histogram of voltage samples from the
antenna terminals forms a Gaussian curve centered on zero.) Since such a signal
is itself a random process, we can only measure its average properties. The most
important of these is the average of the square of the voltage, i.e., the power. If
we take, say, several n-minute averages of the power, these averages will be
scattered around the true average. If n is made larger, the averages will be
distributed more tightly about the true average. It might not take long to measure
the receiver output power to a precision of, say, 10% or even 1%. But that is
almost never long enough to measure the power of a radio source to the same
precision or, for that matter, even to detect a source. The problem is that the
power from the source is masked by other sources of noise including receiver
noise, antenna noise, and cosmic background noise. When an astronomer is
trying to detect a source in a certain direction, the first step is to average the
power received from that direction, the on-source direction. The next step is to
measure the power from a nearby, but off-source, direction. Finally, the latter
“off” power is subtracted from the former “on” power. For weak sources (most
sources), these powers are almost identical and might correspond to a system
temperature1 of, say, 100 K. Yet the astronomer may need to detect a source that
raises the system temperature by only 10 mK. This requires that the “on” and the
“off” powers both be measured to an accuracy of, say, 3:3=

ffiffiffi
2

p ¼ 2:3 mK for a
3-sigma detection. The fractional accuracy of the “on” and “off” power meas-
urements must therefore be 0.0023/100 = 2.3· 10− 5 or about one part in 50 000
(see Problem 26.1).

If we average N samples of the squared voltage, the relative standard devia-
tion, δP/P, will be

ffiffiffiffiffiffiffiffiffi
2=N

p
if the voltage has a Gaussian distribution and if all the

samples are independent (see Problem 26.2). A signal from a channel of
bandwidth, B, can furnish 2B independent samples every second. Integrating
for a time Twe can therefore collect 2BT independent samples and the relative
standard deviation of the power measurement will therefore be

1 A system temperature of 100K, for example, means that the equivalent noise power at the receiver
input is the same as the noise power from a resistor at 100K. This equivalent noise power is
the sum of the actual noise power (sky noise from the main lobe, ground noise picked up from
back-lobes, some thermal noise if the antenna is lossy, plus a contribution representing the noise
generated in the receiver.
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δP=P ¼ ðBTÞ�1=2: (26:1)

Usually a radio astronomer expresses power in terms of antenna temperature
and would write δT/Tsystem rather than δP/P. Equation (26.1) is commonly
known as the “radiometer equation.” Note that sensitivity increases with band-
width, contrary to many communication situations where increasing the band-
width just increases the noise and decreases the signal-to-noise ratio.We arrived
at Equation (26.1) by considering digital (discrete) signal processing. It is also
common to use an analog square-law detector followed by an analog lowpass
filter, which does the averaging. When the lowpass filter is just a simple RC
integrator, an analog signal analysis shows that the radiometer equation can be
written as

δT=Tsys ¼ ð2BRCÞ�1=2: (26:2)

26.2 Spectrometry

Many sources produce “colored” noise rather than white noise, i.e., the flux
density from these sources varies with frequency. Often these variations reveal
characteristic shapes of atomic or molecular lines. Instead of just measuring the
total power, the signal is divided into adjacent frequency “bins” and the power
in each bin is measured. When a spectrum of bandwidth B is divided into n
frequency bins, each of bandwidth B/n, the radiometer equation shows that the
integration time must be increased by n. It is therefore especially important
in radio astronomy, where weak sources may require many hours of integration,
to measure the n individual spectra simultaneously rather than sequentially.
Simultaneous analysis is done with multichannel radiometers (“multiplex”
spectrum analyzers). The simplest multiplex spectrometer is just a bank of n
filters, each followed by its own square-law detector and averager. Such an
instrument is called a filterbank, but might better be called a radiometer bank.
Today, most radio spectrometry is done digitally, often using digital autocorre-
lators (see Chapter 27).

26.3 Interferometry

The classic single-dish radio telescope such as Reber’s backyard dish or the
Arecibo dish has an angular resolution which is diffraction limited; the angular
size of the beam (between half-power points) is about λ/D radians whereD is the
diameter of the dish. Such a telescope can make maps by scanning the vicinity
of a source and doing radiometric averages at each point, but the resolution
of the map is limited to λ/D. Better resolution requires a larger antenna.
Interferometry uses more than one antenna to form a beam whose size
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corresponds to the spacing between the antennas rather than their diameters.
The simplest interferometer has just two elements. The beam formed by the
two antennas together has a series of narrow lobes in one dimension. If a point
source moves across these lobes, the radiometer will trace out the lobes, just as a
point source moving across the beam of a single dish antenna traces out the
beam pattern. (Of course the interferometer’s fine lobe structure is multiplied by
the broader beam pattern of the individual antennas.) The multilobed pattern of
a two-element interferometer is unsuitable for the intensity mapping described
above but it is often used to set an upper limit on the angular size of a source.

26.3.1 Imaging interferometry

By using data from multiple antennas, it is possible to synthesize a beam that
is small in both dimensions, i.e., a beam that would correspond to a filled-
aperture antenna whose diameter is the size of the interferometer array. The
VLA (Very Large Array) at Socorro, New Mexico, is an example of such a
system. Signals from 27 antennas are transmitted up to 21 km through optical
fibers (originally through low-loss circular waveguides) to the central process-
ing laboratory. The VLBA (Very Long Baseline Array) has 10 antennas with
spacings as large as the distance from Hawaii to St. Croix in the Virgin Islands.
Its signals, together with timing information, are recorded on magnetic media
at each station and sent, physically or electronically, to New Mexico for after-
the-fact combining and processing. Imaging interferometers (phased arrays)
work essentially as follows. Suppose we have an array of antennas such as
shown in Figure 26.1. Assume the antennas are all pointed in the same direction,

say up. If the voltages from the antennas are all added together in phase, squared,
and averaged, the result is a narrow beam, pointing straight up. This process can
be written as follows:

P0 ¼
�X

n

V 2
n

�
¼

X
n;m

hVnV
�
mi: (26:3)

Now suppose we add the voltages, multiplied by a progressive phase shift, to
form a beam tilted slightly off the vertical. If we do this addition, followed by
squaring and averaging, we get the k-th beam:

Antenna i

i + 1

i – 1

i – 2

i + 2

Figure 26.1. An interferometer

antenna array.
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Pk ¼
�X

n;m

Vne
j�n;k V �e�j�m;k

�
¼

X
n;m

eið�n;k��m;kÞhVnV
�
mi: (26:4)

This is the general case; for the straight-up beam, �n,k and �m,k are both zero.
The important thing to notice is that we can multiply the signals from every
possible antenna pair and average the products first, independent of what beam
we wish to form. After averaging these pairs we can then form each beam by
weighting the averaged products with the appropriate phase factors and per-
forming the double sums. Note also that the averaged products do not have to be
measured simultaneously; we could even use one fixed antenna and one mobile
antenna and measure the average product for one baseline after another. The
VLA has 27 antennas so it can measure (27 × 26)/2 baselines simultaneously.
But, as the Earth turns, these baselines become different baselines so, over time,
it is possible to collect averaged products from a huge number of baselines. This
set of baselines is virtually the same as all the baselines one could form between
pairs of points on a dish with a radius of 21 km, and the final synthesized beam
can be as sharp and clean as if it had come from a filled dish. An array can thus
have the resolution of an enormous antenna even if it does not have the
corresponding sensitivity (collecting area). On the other hand, because the
individual antenna elements have relatively wide beams, an array has a rela-
tively wide field of view. Radio astronomers hope to have, by the year 2020, a
super large array, the SKA (see reference 5) which would have a total collecting
area of one square kilometer and provide baselines as long as 3000 km.

26.4 Radar astronomy

Ionized meteor trails produced echoes on WWII radars, but echoes from the
Moon were not observed until after the war. In January 1946, a U.S. Army
Signal Corps group headed by John H. DeWitt, Jr. observed real-time Moon
echos using modified WWII radar equipment delivering 3 kW of power at
110MHz to a 64-element dipole antenna array. In Hungary, one month later,
Zoltán Bay used similar equipment, together with electrolytic cells (“coulomb-
meters”) to do signal integration. By the end of his experiment, the on-target cell
had accumulated significantly more gas than the off-target cell. Many large
radars were built in the late 1950s, and radar echo detections from the Sun,
Venus, Mercury and Mars were made in the 1960s. Radar was used to measure
the rotation rates of Venus and Mercury. Saturn’s rings were detected in the
1970s, as were the large moons of Jupiter, many asteroids and several comets.

26.4.1 The Moon

TheMoon’s distance from the Earth, R, is 3.8 × 105 km, and it has a radar cross-
section, σ, of about 6.6 × 105 km2. This means that the power density of the
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echo’s SR, in watts per square meter, received back on the radar antenna will be
given by σ/(4πR2) times the power density incident on the target, Sinc. (Note that
this defines radar cross-section as the collecting area of an equivalent target that
isotropically scatters the intercepted incident power.) The incident power den-
sity is just Sinc = PTG/(4πR

2), where PT is the transmitter power and G is the
antenna gain. The power into the receiver, PR, is equal to SRAeff where Aeff is
the effective collecting area of the antenna. We have seen earlier that G is equal
to 4πAeff/λ

2. The Moon’s radar cross-section is about 7% of its geometric cross-
section, i.e., it is 7% as reflective as a metal sphere of the same size. An echo
from the Moon will therefore produce a power at the receiver of

PR ¼ PT
4ðπAeff=λ

2Þ
4πR2

σ
4πR2

Aeff ¼ PTA2
effσ

4πR4λ2
: (26:5)

Suppose we have a radar with a 1-kW transmitter and a modest 5-m diameter
dish antenna with an aperture efficiency of 50%. The effective area of this
antenna is therefore half of its geometric cross-section or Aeff = 0 .5 × π
(5/2)2 = 9.8m2. It is an experimental fact that σ for a planet is approximately
independent of wavelength, so we see from Equation (26.5) that the received
power is inversely proportional to λ2 (because of the fundamental antenna
relation between gain and effective area). Suppose that the wavelength is
30 cm, i.e., the frequency is 1 GHz. With this radar system, the power received
from the Moon would be

PR ¼ 1000Wð9:8m2Þ26:6� 1011 m2

4πð3:8� 108 mÞ4ð0:30mÞ2 ¼ 2:7� 10�18 W: (26:6)

Whether this amount of power is easy to detect or not depends on the noise it
competes with. Let us assume that the noise from the antenna (sky noise from
background cosmic radio sources plus some “spill-over” noise from the sur-
rounding ground) has an equivalent noise temperature, Tant = 50 K. Let us also
assume that our receiver has an equivalent noise temperature, Trcvr = 35 K. The
total equivalent input temperature is therefore given by Tsystem = 85 K and the
noise power will be kTsysB. If we make the bandwidth, B, very small we
decrease the noise power and hence detection becomes easier. But if we
make B very small we will need a very accurate prediction of the Doppler
shift caused by the relative motion of the Earth and Moon in order to tune the
return echo into the passband of the filter. Finally, the rotation of the Moon
causes a Doppler broadening of the return echo; if we make B less than 25 Hz
we will begin to exclude some of the broadened signal. Let us compromise and
use a bandwidth of 100 Hz. The signal-to-noise ratio at the receiver output will
then be given by

S=N ¼ PR

kTsysB
¼ 2:7� 10�18W

1:38� 10�23 W=Hz=K � 85K � 100Hz
¼ 23:0: (26:7)
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This SNR of 23 is large enough that the signal would be visible on an oscillo-
scope connected at the intermediate frequency (IF) voltage output; no signal
averaging would be needed. The modest radar system assumed here could be
assembled for a few thousand U.S. dollars.

26.4.2 Venus

Venus is not nearly so easy to detect, being some 280 times more distant than the
Moon. Its radar cross-section is about 20 times that of the Moon, so with the
radar system described above, the SNR of the return echo would be lower by a
factor 2804/20 or 307 million! This requires a much larger radar. The Arecibo
radar, however, has an effective antenna diameter of 200 meters and an average
power of 1 MWat 2.38 GHz. It would out-perform our Moon example radar by
a factor of (106/103) (2.38/1)2 (2002/52)2 or 1.4 × 1010. Thus, with the same
assumed bandwidth and system temperature, the Venus echo from the Arecibo
radar would have an SNR of 23 (1.4 × 1010)/(307 × 106) = 1090. This is overkill
for a simple detection but is needed for high-resolution mapping.

26.4.3 Delay-Doppler mapping

Except for the Moon, planetary targets have angular sizes much smaller than
the radar beam. Nevertheless, images of photographic quality can be made by
a technique known as delay-Doppler mapping. This method uses short pulses
(or pulse compression) to obtain adequate range resolution. The relative
motion between the radar and the target provides resolution in the transverse
direction via the Doppler effect. This was the method used to get the first
surface images of Venus, whose cloud cover kept its features hidden to optical
telescopes. The technique is essentially the same as side-looking or synthetic
aperture radar by which photographic-like images of ground targets are made
from an airborne radar with only a small dish antenna. Figure 26.2 shows how
delay-Doppler mapping works. This is a view of the planet as seen from the
radar. When a short pulse is transmitted, the first echo to return comes from
the front cap or sub-Earth point. At subsequent times the echo signal

Sub-Earth point

Constant range ring
Surface elements with the

same range and Doppler shift

Constant Doppler rings

Planet's rotation axis

Figure 26.2. Geometry for

delay-Doppler radar imaging.
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corresponds to loci of equal range that are rings on the planetary surface,
centered on the sub-Earth point. Because the planet is rotating, surface points
on the right-hand side are moving away from the radar and their echoes are
Doppler-shifted to lower frequencies. Likewise, points on the left-hand side
are up-shifted. The magnitude of the of Doppler shift is proportional to the
cross-range distance, i.e., the distance in the direction perpendicular to both
the planet’s axis of rotation and the line between the radar and the planet. Loci
of constant Doppler shift are rings parallel to the rotation axis of the planet
and to the line from the planet to the radar.

The two shaded surface elements have the same range and the same Doppler
shift. This fundamental ambiguity can be removed, at least for Venus maps
made at Arecibo, by tilting the radar beam slightly to illuminate only the
Northern or only the Southern hemisphere of Venus. Obviously this technique
requires the narrow beam provided by a very large antenna. Data taking is done
as follows: a series of IF voltage samples is read and stored separately as each
return pulse arrives. After many pulses have been received, we have a time
series for each range ring. Each series is Fourier analyzed to get the Doppler
spectrum. The magnitude of a given Doppler component corresponds to the
reflectivity of the surface element at the intersection of the range ring and the
Doppler ring.

26.4.3.1 Overspreading
The standard delay-Doppler2 method will not work when the planet is too large
and/or spins too fast. This is because the Nyquist sampling theorem requires that
the (complex) sampling rate be at least equal to the bandwidth of the signal so
that high-frequency Doppler components do not “alias” and appear as lower
frequency components (the stroboscope effect). This establishes a minimum
pulse repetition frequency (PRF). But if the depth of the planet is too large, even
the minimum PRF will result in having more than one pulse on the planet at a
time, causing the echoes from different ranges to “fold” together.

The bandwidth of the return echo (twice the highest Doppler shift) is given by
B = 2fradar 2vmax/c = 4fradrplaner Ω /c where rplanet is the radius of the planet, Ω is
its apparent angular velocity,3 fradar is the frequency of the radar, and α is the
angle between the radar beam from the Earth and the planet’s rotation axis.
Therefore, the Nyquist sampling requirement is fsample > 4fradar rplanet Ω/c. The
condition to avoid range folding is 1/fsample > 2rplanet/c. Multiplying these two
inequalities gives us 1 ≥ 8 fradar r

2
planet Ω/c

2, which imposes an upper limit on
the frequency of the radar:

2 Note that delay-Doppler mapping of space objects is the same technique as pulse-Doppler radar,
discussed in Chapter 21. But while the planet presents a “target” in every range-Doppler cell, a
pulse-Doppler surveillance radar is likely to have a target (often an airplane) in only a single range-
Doppler cell.

3 The apparent angular velocity of the planet corrects for the planet’s tilt and the relative
translational (orbital) motion of the Earth and the planet.
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fradar5
c2

8r2Ω
: (26:8)

Using Equation (26.8), the radar frequency should be less than about 1.5 GHz
for Venus and less than about 1.8 GHz for Mercury. These are practical
frequencies for conventional microwave radar technology. For Mars, however,
the radar frequency would have to be lower than 14MHz, because of the high
rotation rate. Equation (26.5) shows that such a low frequency would require an
extremely large antenna. To make matters worse, sky noise and atmospheric
noise at 14 Mz are both much higher than at microwave frequencies.
While standard delay-Doppler does not work for Mars and other overspread

targets, Mars images were made in 1988 using the VLA in NewMexico. During
the observations, Mars was illuminated with a 10-GHz signal from the JPL
NASA Solar System Radar transmitter at Goldstone, California. The resolution
of these images was only about 100 km.
A modified delay-Doppler technique, developed around 1986 for radar

probing of the ionosphere, was first used at Arecibo in 1990 to solve the
overspreading problem for Mars. This “long code” technique is used with the
2.38-GHz transmitter, which puts out a continuous wave (cw) rather than pulsed
power, but is biphase-modulated with a long pseudorandom code – for Mars, a
sequence of 10-μs bauds. The code elements shift the RF phase by zero or 180°,
equivalent to leaving the signal unchanged or changing its polarity. The length
of the sequence must be greater than 0.33 seconds (the length of a coherent
integration or “look”), though the sequence used at Arecibo repeats only every
3054 hours and can be considered totally random. To see how this technique
works, imagine first a simple point target. The echo from such an object would
be a delayed version of the code. At the receiver we sample the return echo at the
baud rate and multiply successive samples of the echo signal by successive
bauds of an identical “replica” code to undo the echo’s phase reversals. When
the replica code has the correct alignment, it undoes the phase reversals and
produces a cw signal. We can separately multiply the echo samples by the
replica code for all alignments. Identifying the alignment that produces a cw
signal gives us the distance (range) to the point target. If the point target has a
velocity component parallel to the radar beam, the recovered cw signal will be
Doppler shifted and we can determine the velocity component. Next, imagine
that the echo comes from two point reflectors, separated in time by at least one
baud (1500m in range). Again multiplying the echo by the replica code, we
would find two alignments that produce cw signals and could thereby deduce
the range and line-of-sight velocity of each target. Note, however, that the
“decoded” signal from either target contains white noise that is the signal
from the other target, randomized because the replica code is not aligned with
its echo. This “self-noise” has power equal to that of the desired signal, assum-
ing the targets have equal radar cross-sections. We can consider the range rings
on a planet to be a set of N such targets, separated in range delay by the
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baud length. (Each range ring has a Doppler spectrum.) The self-noise voltage is
therefore the sum of N voltages, which add as a random walk. The delay time
depth of Mars is 23 ms so, for a baud length of 10 μs, N = 2300. If we assume
that the signals from the rings are approximately equal in strength, the self-noise
power will be N times the signal power. Here, this factor can be reduced to 2300
(7.5/100) = 177 by lowpass filtering the data sequences before doing the
Doppler analysis, since the self-noise is spread out over a much larger band-
width (100 kHz) than the Mars echo bandwidth (7.5 kHz). This still appears
disastrous, until we remember that the self-noise is in addition to “real” noise,
i.e., cosmic noise, antenna noise, and receiver noise. Under the worst weak-
signal conditions, the self-noise is insignificant compared to the real noise so,
while the system performance will be poor, the self-noise is not to blame. Under
the best conditions, the self-noise dominates the real noise and it will determine
the integration time needed to pull the signal out of the total noise. When the
long-code technique is used with the Arecibo S-band radar system to observe
Mars, the effective signal-to-noise ratio is decreased by a factor of 5.2 or 1.7,
depending on the polarization of the echo.4 Figure 26.3 shows a signal process-
ing arrangement that produces the decoded signals for each range, does a
Fourier transform on each decoded range signal, and stores the resulting
delay-Doppler data points in an array.

Figure 26.3. Long-code delay-

Doppler method.
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4 The radar transmits a signal with circular polarization. Smooth portions of the planetary surface
create specular (mirror-like) reflections, which reverse the sense of the circular polarization.
Rough portions of the surface create multipath reflections, which cause some of the echo power
(usually less than half) to return with the same circular sense as the transmitted signal. The radar is
equipped to receive both polarizations.
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Problems

Problem 26.1. Use the radiometer equation to find howmuch time is needed to make a
3-sigma detection of a 10mK radio source if the radio telescope’s system temperature is
100K. Assume the predetection bandwidth, B, is 10MHz. A “3-sigma detection”
requires that the 0.01K contribution from the source be 3

ffiffiffi
2

p
times the δT fluctuation

predicted by the radiometer equation. (The factor
ffiffiffi
2

p
takes account of the increased

fluctuation when the “off” is subtracted from the “on”, assuming an equal time T is spent
measuring each.)

Problem 26.2. Verify that if a noise power estimator is defined as the average of N
independent samples of the squared noise voltage, the standard deviation of this estima-
tor will be σ2

ffiffiffiffiffiffiffiffiffi
2=N

p
. Assume that the probability distribution of the noise voltage is

Gaussian with zero mean and variance σ2. Hint: for a zero-mean Gaussian distribution,
the expected value of V2 is σ2 and the expected value of V4 is 3σ4.

Problem 26.3. Pulsars (rotating neutron stars) are radio sources that turn on and off
with very regular periods ranging from about 2 milliseconds to about 2 seconds. Given a
radio telescope at your disposal, howwould you go about searching for pulsars, i.e., what
kind of data processing scheme would you use to find these periodic sources?
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