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23 Modulation, noise, and information

In this chapter we examine how noise degrades the accuracy of digital data
transmission and the fidelity of analog transmission. We begin with an explan-
ation of matched filtering, a subject which came up in Chapter 22.We show that,
for binary data links using matched filtering and coherent detection, the prob-
ability of error depends only on the noise level at the input of the receiver and on
the energy, but not the shape, of the transmitted pulses. We look at two example
systems: BPSK (binary phase-shift keying) with coherent detection and OOK
(on–off keying) with envelope detection. The error rates and channel capacities
(maximum error-free data rates when using forward error correction coding) are
calculated and compared with Shannon’s expression for the capacity of a band-
limited channel. Finally, traditional AM and FM are examined with respect to
their noise characteristics.

23.1 Matched filtering

We stated in Chapter 22 that, in the presence of noise, the post-detection signal-
to-noise ratio is maximized when the predetection bandpass shape of the
receiver is that of a matched filter.

A matched filter is one whose impulse response is proportional to the time-
reversed waveform of the incoming signal pulse, as will be shown below.
For example, if the input signal is a pulse whose shape is the same as the
symmetric impulse response of a root raised-cosine filter, then the receiver
should use a root raised-cosine filter or an equivalent cascade of filters.
Sometimes we deal with complicated pulses, such as the biphase coded pulses
used in pulse compression radar. In these cases, it is common to use a front-
end bandpass filter which is a matched filter for the individual subpulses,
followed by coherent detection and then a decoder which undoes the plus/
minus phase coding. Here the cascade of the front-end filter and the decoder
is equivalent to a matched filter for the coded pulses. Note that coherent
detection is down-conversion to baseband, a linear operation. We can think of

321

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.024 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.024


the entire matched filter as the actual detector, whose output samples are the
received symbols.
LetD denote the output of the receiver’s filter (which we have just defined as

the “detector” output) and let h(t) be the impulse response of this filter, a real
function. For a signal pulse unaccompanied by noise, the output from the filter
is given by

DS ¼
Z1

�1
hðtÞVSð�tÞdt; (23:1)

where we have assumed the pulse position to be such that the filter output
should be sampled at t= 0. The output signal power, in units of volts2, is given
by PS = DS

2. The noise output of the filter can be written in terms of N0, the
standard one-sided noise density, in units of volts2/Hz, as

PN ¼ N0

2

Z1

�1
HðωÞj j2dω; (23:2)

whereH(ω) is the filter transfer function, i.e., the Fourier transform of h(t). Note
that we have assumed that N0 is a constant (white noise). Using Parseval’s
theorem, we can write PN in terms of h(t):

PN ¼ N0

2

Z1

�1
hðtÞ2dt: (23:3)

With these expressions for PS and PN, we can write the output signal-to-noise
ratio as

SNR ¼ PS

PN
¼

R1
�1

hðtÞVSð�tÞdt
� �2

N0
2

R1
�1

hðtÞ2dt
: (23:4)

At this point, we invoke Schwarz’s inequality1 which gives us

SNR �

R1
�1

hðtÞ2dt R1
�1

VSð�tÞ2dt

N0
2

R1
�1

hðtÞ2dt
¼ 1

N0

Z1

�1
VSð�tÞ2dt ¼ 1

N0
2

Z1

�1
VSðtÞ2dt:

(23:5)

1 Schwarz’s inequality is written as |∫f(x)g(x)dx|2 ≤ ∫|f(x)|2dx ∫|g(x)|2dx. This can be seen by
considering the integral of fg to be the dot product of a multidimensional vector, while the integral
∫|f(x)|2dx is the length of the vector f and ∫|g(x)|2dx is the length of the vector g. For two vectors A
and B, we know that |A•B|2 ≤ |A•A||B•B|.
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Looking at Equation (23.4), we see that if h(t) = βVS(− t), where β is any
constant, then the SNR will be equal to its maximum possible value, the right-
hand expression in Equation (23.5). This is the matched filter. Note that, with a
matched filter, the signal-to-noise ratio for a pulse is independent of the pulse
shape and is simply the time integral of VS(t)

2, i.e., the energy of the pulse, ℰS,
divided by the noise spectral density N0. (N0 has units of volts

2/Hz, which is the
same as volts2 sec.) Thus, when a matched filter is used,

SNR ¼ 1

N0=2

Z1

�1
VSðtÞ2dt ¼ 2ℰ s

N0
: (23:6)

23.2 Analysis of a BPSK link

Coherent detection makes the BPSK link especially easy to analyze. The signal
at the output of the matched filter is just the sum of the signal voltage and the
noise voltage, which we will assume to have a Gaussian distribution, character-
istic of thermal noise. The detected signal voltage will be either A or −A, so the
Gaussian noise distribution will be centered at either A or −A, as shown in
Figure 23.1. The one/zero decision threshold will, of course, be set at V = 0 for
this symmetric situation.

The probability distribution for a zero (the solid curve) is the normal
Gaussian distribution function, p0 = (2πσ2)−1/2 exp[−(V+A)2/(2σ2)]. By inspec-
tion of the figure we can write

pe ¼
Z1

0

e�ðV þ AÞ2=2σ2ffiffiffiffiffiffiffiffiffiffi
2πσ2

p dU ¼
Z1

A

e�V
2=2σ2ffiffiffiffiffiffiffiffiffiffi
2πσ2

p dU ¼ 1ffiffiffiffiffi
2π

p
Z1

A
σ

e�u2=2dU :

(23:7)

Now let us relate this probability of error to the signal-to-noise ratio. We saw in
the previous section that, at the output of a matched, the ratio of the square of the
signal portion of the sampled output to the average square of the noise portion is
2ℰS/N0, where ℰS is the energy of the pulse, i.e., the time integral of the V 2

S , and

–A V

p0p(V )

0 A

p1

σ

Figure 23.1. Gaussian voltage

probability distributions for

received BPSK ones and zeros

for A = 1.5σ (SNR = 1.52). The

shaded area in the figure is the

probability pe of a transmission

error, i.e., the probability that a

received zero will be interpreted

as a one or that a received one

will be interpreted as a zero.
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N0 is the noise power density. Therefore A2=σ2 ¼ 2ℰS=N0, and we can rewrite
Equation (23.7) as

pe ¼ 1ffiffiffiffiffi
2π

p
Z 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ℰ S=N0

p e
�u2

2 du: (23:8)

We have been implicitly working at baseband, i.e., assuming that the signal (and
the noise) have been converted down from an RF carrier frequency,ω0, through
multiplying the modulated RF signal by a sine wave in phase with the (normally
suppressed) carrier. This, as we have seen, constitutes synchronous detection. In
this common situation, the matched filter is a baseband filter.
It is interesting to note that we could alternately have used a matched filter at the

RF (or some IF) frequency. In this case, the output of the filter is an RF sine wave,
multiplied by thebasebandpulse.Wecan sample this directly, but the samplingmust
be very precise, so that the samples are taken at points that, with a dc pulse,would be
at the peaks of the RF sine wave. The SNRwill be the same as for the synchronous
conversion to baseband because even though the RF bandwidth is twice the base-
band bandwidth and contains twice as much total noise power, the synchronous
sampling will respond to only half this noise, e.g., the “cosine” component.
If symbols are arriving at the rate 1/T in the minimum baseband bandwidth of

1/(2T) that eliminates intersymbol interference (see Chapter 22), then
2ℰS=N0 ¼ ðℰ S=TÞ=ðN0=½2T �Þ ¼ PS=PN ¼ SNR the signal-to-noise ratio.
This probability of error from Equation 23.8 is plotted VS. SNR in Figure 23.2.
This figure displays the well-known “dropout” effect in digital communica-

tions systems. If, for example, the input SNR drops from ten to five, a factor of
only 2, the error rate increases by a factor of 100. The probability of error for the
BPSK distributions shown in Figure 23.1, where A/σ = 1.5, is 0.067.
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Figure 23.2 Envelope

probability distributions

PðE;A; σÞ; for σ ¼
ffiffiffi
2

p

and A ¼ 0 or 1:5
ffiffiffi
2

p
:

324 Radio-frequency electronics: Circuits and applications

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.024 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.024


23.3 On–off keying with envelope detection

The BPSK system discussed above, using coherent detection, is suited for
data transmission under low signal conditions. (When there is ample signal
power, multilevel “M-ary” modulation can obviously transmit data at a
faster bit rate.) But let us now consider simple on–off keying with envelope,
i.e., noncoherent detection. Before we can calculate the probability of error,
we must find the distribution function of the output voltage from the
envelope detector.

23.3.1 Envelope probability distributions

As we have seen, the IF signal, containing random noise, is a random variable
with Gaussian probability distribution. The presence of a signal offsets the
Gaussian curve. The output of the envelope detector is also a random variable.
Let us find the probability distribution of the envelope, first without the
presence of a signal. Figure 23.3(a) shows the in-phase and quadrature compo-
nents,NI andNQ. of the IF noise voltage. The length of their vector sum isE, the
envelope voltage.

Since the I and Q noise components are uncorrelated, their joint probability
distribution is the product of their individual Gaussian distributions.

pðVI ;VQÞ ¼ e�V 2
I =2σ

2

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p � e�V 2
Q=2σ

2

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p ¼ e�ðV 2
I þ V 2

QÞ=2σ2

2πσ2
¼ e�E2=2σ2

2πσ2
:

(23:9)

To obtain the distribution in terms of E and θ, we note that

pðE; θÞEdθdE ¼ e�E2=2σ2

2πσ2
EdθdE; (23:10)

from which we identify

(b)(a)

VI

NI

VQ NQ
E

θ A

VI

NI

VQ NQ

E

θ

Figure 23.3 (a) I and Q noise

phasors alone; (b) noise phasors

together with a sine wave of

amplitude A.
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pðE; θÞ ¼ Ee�E2=2σ2

2πσ2
: (23:11)

Integrating over θ, from 0 to 2π, we find p(E), the envelope probability
distribution:

pðEÞ ¼
Z2π

0

PðE; θÞdθ ¼ Ee�E2=2σ2

σ2
: (23:12)

This function is known as the Rayleigh probability distribution. Note: for
both the I and the Q noise components, the variance is σ2. Therefore, the total
noise power, which is the expectation of E2, is 2σ2.
Nowwemust find the envelope distribution function when the IF signal is the

superposition of noise plus a sinusoidal carrier. This is shown in Figure 23.3(b).
Again, both noise voltages,NI and NQ, have Gaussian distributions, but now the
distribution for NI is centered at A, the amplitude of the carrier, so we can write

pðVI ;VQÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2πσ2

ph i�2
e½�ðVI�AÞ2þV 2

Q�=2σ2

¼ ð2πσ2Þ�1e½�ðE cosðθÞ�AÞ2þE sinðθÞ2�=2σ2 : (23:13)

Expanding the argument of the exponential on the right-hand side we have

pðVI ;VQÞ ¼ ð2πσ2Þ�1e�ðE2þA2Þ=2σ2e�2AE cosðθÞ=2σ2 : (23:14)

Following the steps used in the carrier-free case, and integrating over θ, we find

pðE;A; σÞ ¼ Ee�ðE2þA2Þ=2σ2

σ2
1

2π

Z2π

0

e�AE cosðθÞ=σ2dθ

¼ Ee�ðE2þA2Þ=2σ2

σ2
I0ðAE=σ2Þ;

(23:15)

where I0 is the modified Bessel function of order zero. This function, p(E,A,σ),
known as the Rician distribution, is plotted in Figure 23.4 for A= 0 ( the
envelope distribution of noise alone) and for A ¼ 1:5

ffiffiffi
2

p
, for the same noise

power and average transmitted power (assuming equal probabilities for trans-
mitted ones and zeros) used for the BPSK example of Figure 23.1.
Let us calculate the probability pe that a bit is received incorrectly when we

have (arbitrarily) set the decision threshold at the intersection of the ON and
OFF envelope distribution functions, which we will denote as Et. We will also
assume that we transmit, on average, equal numbers of ones and zeros. The
probability of error is, therefore, ½pe0 +½ pe1, where pe0 is the probability that a
transmitted zero is received incorrectly and pe1 is the probability that a trans-
mitted one is received incorrectly or
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peOOKðA; σÞ ¼ 1=2

Z1

Et

p0ðE;A; σÞdE þ 1=2

ZEt

0

p1ðE;A; σÞdE: (23:16)

Evaluating PeOOK for A ¼ 1:5
ffiffiffi
2

p
and σ ¼ ffiffiffi

2
p

for comparison with the BPSK
example of Figure 23.1 (same average transmitted power, but twice the noise
power (quadrature as well as in-phase components), yields PeOOK ¼ 0:34 for a
threshold Et = 2.3, compared to only .067 for PeBPSK.

Channel capacity
We have seen how to calculate the expected bit error rate as a function of the
signal and noise powers for two example situations, coherently-detected PSK
and envelope-detected on–off keying. We also know that data error rates can be
reduced by expanding (encoding) the data so that it contains redundancies.2 Of
course, the net data rate slows when redundant bits are transmitted. These
redundancies may be crude, such as transmitting a packet of data several
times, or elegant, such as the nested combination of block codes and convolu-
tional codes used in data links and digital broadcasting systems. Given a
particular communications link with an optimal encoding scheme, it is obvious
to ask howmany bits must be transmitted, on average, for each data bit, if we are
willing to tolerate a certain average data error rate. One might expect that, as the
error tolerance is reduced to zero, the optimal transmission efficiency would
also go to zero, i.e., that an infinite number of bits would have to be transmitted
for each recovered data bit, as indicated by the crossed out curve in Figure 23.5.
Shannon’s remarkable “noisy channel theorem” showed that this is not so. For
any given communications link, there must exist coding schemes that will
permit data transmission with an arbitrarily low error tolerance while still

p(E, 1.5⋅
p(E, 0, √2 )

√2, √2 )

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

E

Figure 23.4 Probability

distribution p(E,A,σ), for the

envelope of a signal that is the

sum of a sine wave of amplitude

A ¼ 1:5
ffiffiffi
2

p
plus noise with

σ = 2.

2 Making the data redundant enough so that errors can be detected and corrected at the
receiver is known as forward error correction (FEC). In reverse error correction, the receiver can
only detect errors. To make corrections, it must request repeat transmissions.
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achieving a non-zero efficiency. This situation is shown by the solid curve
Figure 23.5, which shows the efficiency for a link using an optimum error
coding scheme.
The maximum efficiency is unity if we are willing to tolerate an output error

rate of 1/2, but this is the point at which no net information is transmitted since a
one is randomly declared a one or a zero and vice versa. But as the error rate
tolerance is lowered to zero, the maximum efficiency approaches an asymptotic
nonzero value. This asymptotic maximum efficiency value is called the channel
capacity (bits/bit) and, when multiplied by the bit rate, in bits/sec, the result, in
units of bits/sec, is a rate and is also referred to as the channel capacity. (Context
usually resolves any confusion between the two.) The ususal statement of
Shannon’s theorem is that it is possible to transmit data at a rate equal to or
less than the channel capacity, with an arbitrarily low data error rate. While
Shannon’s work shows that optimum codes must exist, it does not show how to
construct then. However, it does show how to calculate the channel capacity for
a given link, the highest standard against which we can judge the efficiency of
any coding scheme proposed for the link. If the arbitrarily low data error rate is
set too low, the encoded data must be in the form of extremely long blocks.
Fortunately, acceptably low error rates can be achieved with acceptably short
data blocks.

Binary symmetric channel
The coherent BPSK link discussed above is an example of a binary symmetric
channel. The transmitted symbols are either one or zero, and every received
signal is deemed either a one or a zero. From the symmetry of Figure 23.1, it is
obvious that the probability pe that a transmitted one will be received in error as
a zero is equal to the probability that a transmitted zero will be received in error
as a one, as indicated in Figure 23.6. This figure, a sort of probability flow graph
for a binary channel, is equivalent to a 2×2 matrix whose coefficients are
probabilities. The binary symmetric channel corresponds to a symmetric chan-
nel matrix.

0

0

1

1/2
Tolerable output
error rate

Maximum transmission
efficiency: decoded bit
rate/transmission bit rate

Figure 23.5 Transmission

efficiency vs. tolerated output

error rate when using optimum

channel encoding.
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The channel capacity for this link, which depends only on pe and on pi, the
probability that the i-th transmitted bit is a one, is given by

Cðpe; piÞ ¼ pe log2ðpeÞ þ ð1� peÞ log2ð1� peÞ
�pi log2ðpiÞ � ð1� piÞ log2ð1� piÞ:

(23:17)

This expression is always greatest for pi= 1/2 (equal probability of transmitted
ones and zeros). Figure 23.7 shows C( pe,1/2) plotted versus pe.

Note that the channel capacity falls to zero at pe = 1/2, where the receiver is
equally likely to interpret a transmitted one as a zero and vice versa. Then C
rises again to unity for pe = 1, where the receiver always mistakes a one for a
zero and zero for a one. In this case, the message is transmitted faithfully,
assuming the receiver realizes that it should complement the bits. (It takes only a
single transmitted bit to resolve this ambiguity.)

The reader will find excellent treatments of information theory, channel
capacity, and coding in the texts listed at the end of this chapter but the origin
of Equation (23.17) warrants at least a brief discussion, in the limited context of
a binary channel. The discussion should at least serve to show that, while the
concepts are subtle, the mathematics is simple. In the binary channel, the
transmitter sends a symbol which is denoted either x1 (a one) or x2 (a zero).
The information in a transmitted symbol is defined as I(xi) = log2 (p(xi )

−1),
where p(xi) is the probability of xi. Note that if p(xi) is nearly one, the infor-
mation contained in xi is nearly zero. If the transmitted symbols are almost
always ones (or zeros), very little information is transmitted by sending a one
(or zero), as we would have expected the one (or the zero). But if p(xi) is a
very small number, the occurrence of xi is highly informative, as we would
not have expected it. A second definition is that of mutual information,

x = 0 y = 0

y = 1x = 1
(1–pe)

(1–pe)

pe

pe

Figure 23.6. Binary symmetric

channel: pe is the probability that

a symbol xi is wrongly received

as a symbol yj.

0 0.5 1
0

1

0.5

pe

C(pe, 0.5)

Figure 23.7 Channel capacity of

a binary symmetric channel vs.

transmission error rate,

assuming ones and zeros are

transmitted with equal

probability.
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I(xi; yj) = log2[p(xi|yj)|p(xi)], where p(xi|yj) is the conditional probability that xi
was transmitted, given that yj was received. Note that while the distribution of
transmitted symbols is generally flat (uniform), the distribution of I(xi; yj) for a
given j is not uniform, but peaked around the value of i most likely to have
resulted in yj.
The expected value of the mutual information is the sum of the I(xi; yj)’s,

weighted by their probabilities, i.e.,

hIðxi; yjÞi ¼
X
i

X
j

pðxi; yjÞIðxi; yjÞ; (23:18)

where p(xi, yj) is the joint probability of xi and yj, i.e., p(xi yj) = p(xi) p(yj|xi). For
the binary symmetric channel discussed above, p(yj, xi) = pe for i≠ j and (1− pe )
for i = j. The channel capacity is given by the maximum value of 〈I(xi; yj)〉 with
respect to the set of values p(xi), by

C ¼ maxhIðxi; yjÞi w:r:t fpðxiÞg: (23:19)

For the binary symmetric channel, the maximum occurs when equal numbers of
ones and zeros are transmitted, i.e., when p(x1) = p(x2) = 1/2. Evaluation of
Equation (23.19) yields Equation (23.17), the expression for the channel capacity.
Note that the channel capacity is based on the relative frequency of transmitted ones
and zeros and on the values of p(yj | xi), which is the conditional probability that the
receiver produces yj when the transmitter sent xi. However, to calculate the values
of I(xi; yj), we need to know p(xi | yj ), the conditional probability that when the
receiver produces yj, the transmitter had sent xi. The two conditional probabilities
are related through Bayes’ theorem: p(xi, yj) =p(xi) p(yj | xi) =p(yj) p(xi | yj).

Channel capacity of the BPSK and OOK example channels
For the BPSK example shown in Figure 23.1, with A=σ ¼ 1:5, we found the
probability of error to be pe ¼ :067. Using this value in Equation 23.17, the
channel capacity is 0.645 data bits/transmitted bit. For the comparable asym-
metric OOK channel of Figure 23.4 the two integrals in Equation 23.16 are,
respectively, the probability that a transmitted zero is received as a one and vice
versa. If we calculate the channel capacity using Equation 23.19, we find that it
maximizes at about C = 0.08, if the threshold is set at Et = 2.5 and the proportion
of transmitted zeros is 52%. In addition to low channel capacity, another
disadvantage of the OOK system is that the threshold must be changed when
either the signal or noise level changes.

Channel capacity of a bandpass channel
Shannon also presented a formula for themaximum channel capacity for a band-
limited channel with added Gaussian white noise – the channel most amenable
to analysis, and a channel often encountered in practice, for example, in space-
craft telemetry links. This formula states that the maximum channel capacity is
given by
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C ¼ B log2½1þ S=N � ¼ B log2½1þ S=ðBN0Þ� (23:20)

where S is the received signal power, N is the noise power which is equal (for
white noise) to BN0, where B is the channel bandwidth, and N0 is the noise
spectral density at the receiver in Watts/Hz. The figure of merit for any
particular modulation scheme is how close its channel capacity approaches
this ideal maximum channel capacity. To see that Equation 23.20 is reasonable
note that, when S/N is high, it is essentially the practical number of quantization
levels, n, and log2(n) converts this into bits. The bandwidth factor, B, will be the
symbol rate or close to it.

For illustration, suppose the signal power available from a spacecraft is 10−16

Watts, contained within a bandwidth of 100Hz, and the noise density at the
receiver input is 4 × 10−19 Watts/Hz. With these numbers, Equation 23.20
produces C = 181, which is the maximum rate (bits/sec) at which information
could be transmitted over the channel at an arbitrarily small error rate, if the
modulation scheme and signal coding are optimum.

Let us look at our example BPSK channel in the light of Equation 23.20. In
that example, the SNR at the output of the detector was (A/σ)2 = 1.52. If we are
using a matched filter, we saw that (A/σ)2 be equal to 2ℰ/N0. Let us assume we
transmit bits at a rate of 1/T and use receiver bandwidth of 1/(2T). The received
power is S = ℰ/T and the noise at the receiver is N0/(2T), from which we have
S/N = 2ℰ/N0. Using Equation 23.20, we see that the maximum channel capacity
will be C = 1/(2T)−1 log2(1 + 2ℰ / N0) = .850/T bits/sec. But, from the bit error
probability, a function of A/σ, we had calculated the actual channel capacity of
this BPSK link to be .645 bits/bit. If we multiply this by the bit rate, 1/T, the
channel capacity becomes .645/T bits/second. This BPSK link, therefore, has
.645/.850 = 76% of the maximum possible channel capacity.

For much larger values of S/N, we would find that, while the ideal channel
capacity increases, our BPSK channel capacity saturates at the value 1/T. This is
simply due to staying with two-level binary modulation, as opposed to N-level
PAM modulation.

Noise in analog FM and AM systems
Let us first look at the noise produced at the output of an FM receiver. The
instantaneous received signal voltage, VSIG, is accompanied by noise, VN, as
shown in Figure 23.8.

This is the same as the diagram in Figure 23.3(b), except that now we are
interested in the phase angle rather than the magnitude of the vector sum of the
signal plus noise. This “phase noise,” ϕN, will cause noise in the detected output of
an FM or PM detector. Clearly the angle ϕN becomes smaller if the signal strength
is increased. But there is another way to defeat the noise. The signal-to-noise ratio
at the detector output depends on the ratio of the signal’s modulation phase
excursions to the phase noise. If the modulation level is increased, even without
increasing the signal strength, the output signal-to-noise ratio will be improved.
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If, for example, the rms phase noise is 1/10 radian and the modulation index is 1
radian, the phase SNR is 100. If the deviation is increased to produce a modulation
index of 5 radians, the phase SNR increases to 2500. The improvement has been
obtained not by increasing the signal power but by increasing the signal bandwidth.
In the case of amplitude modulation, the SNR depends on the noise modulating the
length of the vector VSIG + VN. Since VN is fixed in any given situation, the only
way to improve the SNR in AM is to increase VSIG, i.e., increase the transmitted
power.

Analysis of the SNR improvement in FM
A quantitative analysis of the SNR improvement in FM is simpler if we take the
noise to be the background noise produced by the detector when the signal is
unmodulated, i.e., the total power in the hiss coming from the loudspeaker or
other output device. For the signal we will take an audio sine wave with 100%
modulation (maximum deviation). We can represent the noise, VN, by in-phase
(I) and quadrature (Q) noise components, VI and VQ where VI

2 + VQ
2 =VN

2 as
shown in Figure 23.8. Both VQ, and VI are phasors rotating at ω0, the frequency
of the unmodulated carrier. Their amplitudes are random and independent. The I
component of the noise is the most effective in causing amplitude fluctuations
and therefore contributes noise in AM demodulation. But it is mostly the Q
component, since it is perpendicular to VSIG, that causes angle fluctuations and
therefore contributes noise in the FM demodulation. For VN ≪ VSIG, the
instantaneous angle noise, �N(t), is just VQ(t) /VSIG radians. Since VSIG, the
carrier amplitude, is constant, the power spectrum of �n (call it S�) is propor-
tional to the power spectrum of VQ. The spectral distribution of VQ can
be assumed uniform (white) so S� is also uniform. The integral of S� over
the IF band gives the mean square phase fluctuation, 〈(�n(t))

2〉, so we can write
S� = 〈(�n(t))

2〉/BIF = 〈V2
Q(t)〉/(V

2
SIGBIF) = 〈V2

N(t)/2〉/(V
2
SIG BIF) where BIF, the

IF bandwidth, is twice the maximum deviation. An FM demodulator produces
an output spectral density proportional to the time derivative of the phase,
〈(d�n(t)/dt)

2〉. The spectral density of the noise in the (one-sided) audio band
at the detector output is therefore given by 2ωa

2S�(t), and the total noise power
is the integral of this spectral density over the output bandwidth of the detector,
i.e., the audio band (0 to Ba radians):

VSIG

VQ + VI = VN
2 22

VN
VQ

Resultant vector of
signal plus noise

VI
ΦN

Figure 23.8. Signal and noise

voltages.
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Output noise power ¼
ZBa

0

2ω2S�dω ¼ S�

ZBa

0

2ω2dω ¼ 2

3
S�Ba

3

¼ Ba
3

6koscAMAX

hVN
2i

V 2
SIG

:

(23:21)

The maximum amplitude of the sine-wave signal at the output of the detector is
koscAMAX, the maximum deviation, so the maximum signal power is just PSIG=
kosc

2AMAX
2/2. Taking the noise power from Equation (23.21), the signal-to-

noise ratio at the detector output is:

Maximum output SNR ¼ 3
koscAMAX

Ba

� �3 V 2
SIG

hVN
2i : (23:22)

Note that the output SNR improves as the cube of the ratio of the maximum
deviation to the full audio bandwidth.

Output signal-to-noise ratio for an AM signal with the same carrier power
Let us consider an AM system with the same carrier power and the same audio
bandwidth, in order to compare its output SNR to that of the FM system. Again
the modulation will be a single sine-wave tone and the amplitude of the carrier
will be VSIG. At 100% modulation, the amplitude of the sine wave modulation
envelope will also be VSIG so the audio signal power at the AM detector output
will be VSIG

2/2. For the AM system, the IF bandwidth needs to be only 2B, twice
the audio bandwidth (wide enough to accommodate the highest audio frequency
but, to minimize noise, no wider). The noise voltage at the detector output will
be V′I , the in-phase component of V′N, where the primes distinguish the noise
voltages in the AM IF band from the noise voltages in the wider FM IF band.
The noise power will be given by 〈V′I

2〉= 〈V′N
2〉/2. The SNR at the AM detector

output is therefore

AM output SNR ¼ VSIG
2

hV 0
N
2i : (23:23)

Comparison of noise, FM vs. AM under strong signal conditions
All that remains in order to compare the FM and AM systems is to note that the
ratio of the IF noise powers is just the ratio of the IF bandwidths, i.e.,

hVN
2i

hV 0
N
2i ¼

2kAmax

2Ba
¼ kAmax

Ba
: (23:24)

Using Equations (23.22)–(23.24), we can write

FMSNR

AMSNR
¼ 3kosc

2AMAX
2

Ba
2 ¼ 3ðDeviation ratioÞ2: (23:25)

333 Modulation, noise, and information

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.024 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.024


In FM broadcasting the deviation ratio is about five so the output SNR for a
maximum-amplitude audio tone will be higher with FM than with AM by a
factor of 3·52 = 75 or about 19 dB. The FM sound in television uses a deviation
ratio only 1/3 as large as that of FM broadcasting so the signal-to-noise
improvement is correspondingly less. Remember that the above analysis is
only for the situations of high signal-to-noise. When the signal is comparable
to or lower than the noise, the phase is almost totally determined by the noise
and the FM system is useless.

FM, AM and channel capacity
The improvement in a signal-to-noise ratio that is possible with wideband FM is
an example of increasing the channel capacity of a communications channel by
increasing the bandwidth.
Note that S/NO has units of bandwidth and can be considered a “natural”

bandwidth for a given N0 and S. N0 is determined by the noise added along the
channel, such as atmospheric noise and noise added by the receiver. The signal
power, S, is determined by the transmitter power, transmitter and receiver
antenna gains, and propagation loss. Channel capacity, from Equation
(23.20), vs. bandwidth is plotted in Figure 28.9. Both are normalized to S/N0.
Note that, for b> 1, the channel capacity has essentially reached an asymp-

totic value of 1.44 S/N0. If we are below the knee of the curve, we can increase
the channel capacity significantly at no cost in transmitter power by (somehow)
using more bandwidth. We have seen that FM broadcasting does just this. On
the other hand, Equation (23.20) shows that it is expensive (and ultimately
impractical) to increase channel capacity by increasing power since the log term
increases slowly.

0.01 0.1 1 10 100 1.103 1.104
0

0.5

1

1.5

c 
= 

C
N

0
/S

b = BN0/S

Figure 23.9. Channel capacity

vs. bandwidth (both are

normalized to S/N0, the “natural

bandwidth”).
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In AM, the bandwidth is fixed by the highest modulation frequency; the total
bandwidth in standard full-carrier DSB AM is twice the highest modulation
frequency. When a weak AM station is received, the signal-to-noise ratio is low
enough to put us beyond the knee of the channel capacity vs. bandwidth curve
and there would be no gain in going to a modulation scheme that increases the
bandwidth. But if the station is strong, we are probably far below the knee of the
curve. In this case, changing to FM modulation (without changing transmitter
power) can bring us up the curve where the higher channel capacity allows a
higher signal-to-noise ratio.

Problems

Problem 23.1. Show that the differential equation x2y″ + xy′ −x2y = 0 (modified
Bessel’s equation of order zero) is satisfied by the function

I0ðxÞ ¼ 1

2π

Z2π

0

ex cosðθÞdθ:

Problem 23.2. Consider an asymmetric binary channel in which the probability that a
one is correctly received is 0.9 but the probability that a zero is correctly received is 1/2.
(A transmitted zero is equally likely to be declared a zero or a one.) Suggest a simple
coding method to transmit data reliably through this channel.

Problem 23.3. Consider the situation where a rectangular pulse of length T is trans-
mitted, but the receiver instead of using a sin(1/2 ωT)/(1/2 ωT ) matched filter, uses a
rectangular filter of bandwidth β/T. The noise at the input is Gaussian. Find the value of β
that maximizes the SNR at the output of the filter. Compare this to the value that would
have been obtained if the matched filter had been used.
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