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1 Introduction

Consider the magic of radio. Portable, even hand-held, short-wave transmitters
can reach thousands of miles beyond the horizon. Tiny microwave transmitters
riding on spacecraft return data from across the solar system. And all at the
speed of light. Yet, before the late 1800s, there was nothing to suggest that
telegraphy through empty space would be possible even with mighty dynamos,
much less with insignificantly small and inexpensive devices. The Victorians
could extrapolate from experience to imagine flight aboard a steam-powered
mechanical bird or space travel in a scaled-up Chinese skyrocket. But what
experience would have even hinted at wireless communication? The key to
radio came from theoretical physics. Maxwell consolidated the known laws of
electricity and magnetism and added the famous displacement current term,
∂D/∂t. By virtue of this term, a changing electric field produces a magnetic field,
just as Faraday had discovered that a changing magnetic field produces an
electric field. Maxwell’s equations predicted that electromagnetic waves can
break away from the electric currents that generate them and propagate inde-
pendently through empty space with the electric and magnetic field components
of the wave constantly regenerating each other.

Maxwell’s equations predict the velocity of these waves to be 1=
ffiffiffiffiffiffiffiffiffi

"0�0
p

where the constants, ε0 and μ0, can be determined by simple measurements of
the forces between static electric charges and between current-carrying wires.
The dramatic result is, of course, the experimentally-known speed of light,
3 × 108 m/sec. The electromagnetic nature of light is revealed. Hertz conducted
a series of brilliant experiments in the 1880s in which he generated and detected
electromagnetic waves with wavelengths very long compared to light. The
utilization of Hertzian waves (electromagnetic waves) to transmit information
developed hand-in-hand with the new science of electronics.

Where is radio today? AM radio, the pioneer broadcast service, still exists,
along with FM, television and two-way communication. But radio now also
includes digital broadcasting formats, radar, surveillance, navigation and broad-
cast satellites, cellular telephones, remote control devices, and wireless data
communications. Applications of radio frequency (RF) technology outside
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radio include microwave heaters, medical imaging systems, and cable tele-
vision. Radio occupies about eight decades of the electromagnetic spectrum,
as shown in Figure 1.1.

1.1 RF circuits

The circuits discussed in this book generate, amplify, modulate, filter, demo-
dulate, detect, and measure ac voltages and currents at radio frequencies. They
are the blocks from which RF systems are designed. They scale up and down in
both power and frequency. A six-section bandpass filter with a given passband
shape, for example, might be large and water-cooled in one application but
subminiature in another. Depending on the frequency, this filter might be made
of sheet metal boxes and pipes, of solenoidal coils and capacitors, or of piezo-
electric mechanical resonators, yet the underlying circuit design remains the
same. A class-C amplifier circuit might be a small section of an integrated
circuit for a wireless data link or the largest part of a multi-megawatt broadcast
transmitter. Again, the design principles are the same.
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spectrum.
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1.2 Narrowband nature of RF signals

Note that most frequency allocations have small fractional bandwidths, i.e., the
bandwidths are small compared to the center frequencies. The fractional band-
width of the signal from any given transmitter is less than 10 percent – usually
much less. It follows that the RF voltages throughout a radio system are very
nearly sinusoidal. An otherwise purely sinusoidal RF “carrier” voltage1 must be
modulated (varied in some way) to transmit information. Every type of modu-
lation (audio, video, pulse, digital coding, etc.) works by varying the amplitude
and/or the phase of the sinusoidal RF wave, called the “carrier” wave. An
unmodulated carrier has only infinitesimal bandwidth; it is a pure spectral
line. Modulation always broadens the line into a spectral band, but the energy
clusters around the carrier frequency. Oscilloscope traces of the RF voltages in a
transmitter or on a transmission line or antenna are therefore nearly sinusoidal.
Whenmodulation is present, the amplitude and/or phase of the sinusoid changes
but only over many cycles. Because of this narrowband characteristic, elemen-
tary sine wave ac circuit analysis serves for most RF work.

1.3 AC circuit analysis – a brief review

The standard method for ac circuit analysis that treats voltages and currents in
linear networks is based on the linearity of the circuit elements: inductors,
capacitors, resistors, etc. When a sinusoidal voltage or current generator drives
a circuit made of linear elements, the resulting steady-state voltages and currents
will all be perfectly sinusoidal and will have the same frequency as the gen-
erator. Normally we find the response (voltage and current amplitudes and
phases) of driven ac circuits by a mathematical artifice. We replace the given
sinusoidal generator by a hypothetical generator whose time dependence is ejωt

rather than cos(ωt) or sin(ωt). This source function has both a real and an
imaginary part since ejωt= cos(ωt) + jsin(ωt). Such a nonphysical (because it
is complex) source leads to a nonphysical (complex) solution. But the real and
imaginary parts of the solution are separately good physical solutions that
correspond respectively to the real and imaginary parts of the complex source.
The value of this seemingly indirect method of solution is that the substitution
of the complex source converts the set of linear differential equations into a set
of easily solved linear algebraic equations. When the circuit has a simple
topology, as is often the case, it can be reduced to a single loop by combining
obvious series and parallel branches. Many computer programs are available to

1 There is no low-frequency limit for radio waves but the wavelengths corresponding to audio
frequencies, hundreds to thousands of kilometers, make it inefficient to connect an audio amplifier
directly to an antenna of reasonable size. Instead, the information is impressed on a carrier wave
whose wavelength is compatible with practical antennas.
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find the currents and voltages in complicated ac circuits. Most versions of
SPICE will do this steady-state ac analysis (which is much simpler than the
transient analysis which is their primary function). Special linear ac analysis
programs for RF and microwave work such as Agilent’s ADS and MMICAD
include circuit models for strip lines, waveguides, and other RF components.
You can write your own program to analyze ladder networks (see Problem 1.3)
and to analyze most filters and matching networks.

1.4 Impedance and admittance

The coefficients in the algebraic circuit equations are functions of the complex
impedances (V/I), or admittances (I/V), of the RLC elements. The voltage across
an inductor is LdI/dt. If the current is I0e

jωt, then the voltage is (jωL)I0e
jωt. The

impedance and admittance of an inductor are therefore respectively jωL and
1/(jωL). The current into a capacitor is CdV/dt, so its impedance and admittance
are 1/(jωC) and jωC . The impedance and admittance of a resistor are just R and
1/R. Elements in series have the same current so their total impedance is the sum
of their separate impedances. Elements in parallel have the same voltage so their
total admittance is the sum of their separate admittances. The real and imaginary
parts of impedance are called resistance and reactance while the real and
imaginary parts of admittance (the reciprocal of impedance) are called conduc-
tance and susceptance.

1.5 Series resonance

A capacitor and inductor in series have an impedance Zs = jωL+1/(jωC). This
can be written as Zs = j(L/ω)(ω2− 1/[LC]), so the impedance is zero when the
(angular) frequency is 1=

ffiffiffiffiffiffiffi

LC
p

. At this resonant frequency, the series LC circuit
is a perfect short circuit (Figure 1.2). Equal voltages are developed across the
inductor and capacitor but they have opposite signs and the net voltage drop
is zero.
At resonance and in the steady state there is no transfer of energy in or out of

this combination. (Since the overall voltage is always zero, the power, IV, is
always zero.) However, the circuit does contain stored energy which simply
sloshes back and forth between the inductor and the capacitor. Note that this
circuit, by itself, is a simple bandpass filter.

=

At resonance Short circuit

Figure 1.2. Series-resonant

LC circuit.
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1.6 Parallel resonance

A capacitor and an inductor in parallel have an admittance Yp = jωC+1/(jωL) which
is zero when the (angular) frequency is 1=

ffiffiffiffiffiffi

LC
p

. At this resonant frequency, the
parallel LC circuit is a perfect open circuit (Figure 1.3) – a simple bandstop filter.

Like the series LC circuit, the parallel LC circuit stores a fixed quantity of
energy for a given applied voltage. These two simple combinations are impor-
tant building blocks in RF engineering.

1.7 Nonlinear circuits

Many important RF circuits, including mixers, modulators, and detectors, are
based on nonlinear circuit elements such as diodes and saturated transistors used
as switches. Here we cannot use the linear ejωt analysis but must use time-
domain analysis. Usually the nonlinear elements can be replaced by simple
models to explain the circuit operation. Full computer modeling can be used for
accurate circuit simulations.

Problems

Problem 1.1. A generator has a source resistance rS and an open circuit rms voltage V0.
Show that the maximum power available from the generator is given by Pmax =V0

2/(4rS)
and that this maximum power will be delivered when the load resistance, RL, is equal to
the source resistance, rS.

Problem 1.2. A passive network, for example a circuit composed of resistors, induc-
tors, and capacitors, is placed between a generator with source resistance rS and a load
resistor, RL. The power response of the network (with respect to these resistances) is
defined as the fraction of the generator’s maximum available power that reaches the load.
If the network is lossless, that is, contains no resistors or other dissipative elements, its
power response function can be found in terms of the impedance, Zin (ω) = R(ω) +jX(ω),
seen looking into the network with the load connected. Show that the expression for the
power response of the lossless network is given by

P !ð Þ ¼ 4rSR !ð Þ
R !ð Þ þ rSð Þ2þX !ð Þ2

where R = Re(Zin) and X = Im(Zin).

=At resonant frequency Open circuit

Figure 1.3. Parallel-resonant

LC circuit.

5 Introduction

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.002


Problem 1.3. Most filters and matching networks take the form of the ladder network
shown below.

Write a program whose input data is the series and shunt circuit elements and whose
output is the power response as defined in Problem 1.2.

Hints: One approach is to begin from the load resistor and calculate the input
impedance as the elements are added, one by one. When all the elements are in place,
the formula in Problem 1.2 gives the power response – as long as the load resistor is the
only resistor. The process is repeated for every desired frequency.

A better approach, which is no more complicated and which allows resistors, is the
following: Assume a current of 1 + j0 ampere is flowing into the load resistor. The voltage
at this point is therefore RL + j0 volts. Move to the left one element. If this is a series
element, the current is unchanged but the voltage is higher by IZwhere Z is the impedance
of the series element. If the element is a shunt element, the voltage remains the same but the
input current is increased by VY where Y is the admittance of the shunt element. Continue
adding elements, one at a time, updating the current and voltage.When all the elements are
accounted for, you have the input voltage and current and could calculate the total input
impedance of the network terminated by the load resistor. Instead, however, take one more
step and treat the source resistance, rS, as just another series impedance. This gives you the
voltage of the source generator, from which you can calculate the maximum power
available from the source. Since you already know the power delivered to the load,
(1)2RL, you can find the power response. Repeat this process for every desired frequency.

The ladder elements (and, optionally, the start frequency, stop frequency, frequency
increment, and source and load resistances) can be treated as data, that is, they can be
located together in a block of program statements or in a file so they can be changed
easily. For now, the program only needs to deal with six element types: series and parallel
inductors, capacitors, and resistors. Each element in the circuit file must therefore have
an identifier such as “PL”, “SL”, “PC”, “SC”, “PR”, and “SR” or 1, 2, 3, 4, 5, 6, or
whatever, plus the value of the component in henrys, farads, or ohms. Organize the
circuit file so that it begins with the element closest to RL and ends with some identifier
such as “EOF” (for “End Of File”) or some distinctive number.

An example program, which produces both tabular and graphical output, is shown below,
written inMATLAB,which produces particularly compact and readable code. The input data
(included as program statements) is for the circuit shown below, of an LC network designed to
connect a 50-ohm load to a 1000-ohm source. You will find this, or your own equivalent
program, to be a useful tool when designing matching networks and filters. In the problems
for Chapters 4, 10, 14, and 17, the program will be enhanced to plot phase response and to
handle transmission lines, transformers, and transistors, making it a powerful design tool.

rS

Series inductors, capacitors, or resistors

Parallel inductors, capacitors, or resistors

RLOAD

Ladder network topology.
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%MATLAB program to solve ladder networks
%Problem 1.3 in “Radio-Frequency Electronics”
%Save this file as “ladder.m” and run by typing “ladder” in command window
%INPUT DATA(circuit components from load end;‘SL’is series inductor,%etc.)
%—————————————————————

ckt={‘SL’,23.1e-6,‘PC’,463e-12,‘EOF’}; %‘EOF’ terminates list
Rload=50; Rsource=1000; startfreq=1e6; endfreq=2e6; freqstep= 5e4;
%—————————————————————

f=(startfreq:freqstep:endfreq); % frequency loop
w=2*pi.*f; %w is angular frequency
I=ones(size(w));V=ones(size(w))*Rload;%set up arrays for inputI(f) and V(f)
ckt_index=0; morecompsflag=1;
while morecompsflag == 1 %loop through string of components
ckt_index=ckt_index+1; %ckt_index prepared for next item in list
component=ckt{ckt_index};
morecompsflag=1-strcmp(component,‘EOF’); %zero after last component

if strcmp(component,‘PC’)==1
ckt_index=ckt_index+1; capacitance=ckt{ckt_index};
I=I+V.*(1j.*w.*capacitance);
elseif strcmp(component,‘SC’)==1
ckt_index=ckt_index+1; capacitance=ckt{ckt_index};
V=V+I./(1j.*w.*capacitance);
elseif strcmp(component,‘PL’)==1
ckt_index=ckt_index+1; inductance=ckt{ckt_index};
I=I+V./(1j.*w.*inductance);
elseif strcmp(component,‘SL’)==1
ckt_index=ckt_index+1; inductance=ckt{ckt_index};
V=V+I.*(1j.*w.*inductance);
elseif strcmp(component,‘PR’)==1
ckt_index=ckt_index+1; resistance=ckt{ckt_index};
I=I+V/resistance;
elseif strcmp(component,‘SR’)==1
ckt_index=ckt_index+1; resistance=ckt{ckt_index};
V=V+I*resistance;
end %components loop

end %frequency loop

Z=V./I; V=V+I.*Rsource;
frac=Rload./((abs(V).^2)/(4.*Rsource));
db=10/log(10)*log(frac);
heading = ‘freq(MHz) frac dB’ %print heading in command window
A=[(1E-6*f)’ frac’ db’] %print table of data in command window
plot(f,db); %graph the data
grid;xlabel(‘Frequency’);ylabel(‘dB’);title(‘Frequency response’);
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The circuit corresponding to the input data statements in the example program above is
shown below, together with the analysis results produced by the program.

Problem 1.4. (AC circuit analysis review problem.) For the circuit in the figure, derive an
expression for IR(t). Use a complex source voltage, V0ej!t , the real part of which is
V0cosð!tÞ. The impedances of C, L, and R are ðj!CÞ�1; j!L, and R, respectively. Find
the complex current through the resistor. IR(t) will be the real part of this complex current.

50
1000rS RL

LoadSource 23.1 µH

463 pF

Example circuit.
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Problem 1.5. (More AC circuit analysis review.) For the circuit in the figure, derive an
expression for IR(t). Note that the source voltage, V0sinð!t þ �Þ, is equal to the imagi-
nary part of V0ejð!tþ�Þ. Therefore, if we take the complex voltage to be V0ejð!tþ�Þ, IR(t)
will be the imaginary part of the complex current through R. Alternatively, you can let the
complex voltage source have the value �jV0ejð!tþ�Þ, the real part of which is V0sinð!tÞ.
With this source, IR(t) is the real part of the complex current through R.

C
L

IRR

V0 sin(ω t + θ)
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