CHAPTER

Waveguide circuits

In this chapter we examine rectangular metal waveguides and, in particular, their
most common mode of operation, the fundamental “TE;y” mode. We will also see
how the concepts developed for two-conductor transmission lines apply to wave-
guides and look at waveguide versions of some low-frequency components.

The ability of a hollow metal pipe to transmit electromagnetic waves can be
demonstrated by holding it in front of your eye. You can see through it, so, at least,
it passes electromagnetic waves of extremely short wavelengths. From a purely
dimensional analysis, you would guess correctly that the longest wavelength a pipe
could transmit must be of the order of the pipe’s transverse dimensions. It turns out
that, for propagation in a rectangular pipe, the free-space wavelength, ¢/f, must be
less than twice the longer transverse dimension and, for a circular pipe, less than
1.706' times the diameter. Waveguides have less loss and more power handling
capacity than coaxial lines of the same size and they need no center conductor nor
insulating structures to support a center conductor. Metal waveguides are used most
often in the range from 1000 MHz to 100 GHz, where they have practical dimen-
sions. Waveguides for optical frequencies are coated glass fibers.

16.1 Simple picture of waveguide propagation

A common RF engineering argument for the plausibility of transmitting electro-
magnetic waves through a hollow metal pipe is shown in Figure 16.1, where a
two-conductor transmission line evolves into a waveguide. Quarter-wave
shorted stubs are added to the line. Since a shorted quarter-wave line presents
an open circuit, these stubs do not short the line. More stubs are added to both
sides until a rectangular pipe is formed.

This plausibility argument, while not rigorous, does illustrate some impor-
tant properties of waveguide propagation in the fundamental mode (the

! The factor 1.706 is 7 /1.841, where 1.841 is the smallest root of the equation d/dx J;(x)=0 and J; (x) is
the first-order Bessel function of the first kind, a function whose shape resembles sin(x)/(x +1)2,
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Figure 16.1. Transmission line-  simplest and lowest frequency mode): the electric field, which is essentially
to-waveguide evolution. Shorted  vertical between the conductors in Figure 16.1(a), becomes perfectly vertical
?hueatr::::\r’:;lsiif)t:tl’;go notshort i the waveguide, though its magnitude must fall to zero at the waveguide’s
' sides, since the metallic walls short out any tangential electric field. And, just
as the conductors of the transmission line of Figure 16.1(a) can have any
separation and still support wave propagation, the waveguide of Figure 16.1(d)
can have any height. The width, however, is critical. The total width of the
guide must be at least A/2 to accommodate a quarter-wave stub on each side
and still have nonvanishing conductor strips, as shown in Figure 16.1(c). This
means that there is a low-frequency cutoff; wave propagation is not possible if
the wavelength is greater than 2a where a is the waveguide width (the longer

dimension).

Standard waveguide designations indicate the shape and size of the guide.
WRA430, for example, denotes “Waveguide, Rectangular,” 4.3 inches (10.9 cm)
wide. The standard width-to-height ratio is two-to-one. (While the height of the
guide can be made arbitrarily small, the waveguide will become increasingly
lossy because, for a given power, the currents increase.) One of the largest
standard waveguide sizes, WR2300, with a width of 23 inches (58.4 cm), has a
low-frequency cutoff of 257 MHz. One of the smallest, WR3, with a width of
0.03 inches (0.076 cm), has a low-frequency cutoff of 197 GHz.

For a standard (width = 2 x height) waveguide, the fundamental mode, called
the TE;, mode, is the only possible mode for frequencies above the low-frequency
cutoff and below twice the low-frequency cutoff. Other modes exist above this
one-octave range. At frequencies where higher modes are possible, these modes
can be unintentionally excited at sharp bends, robbing power from the desired
mode. This power does not couple properly to circuit elements designed for the
fundamental mode and dissipates in the walls. Whenever possible, a microwave
system designer therefore tries to use only the fundamental mode.

The essential details of this most important mode are derived and discussed
below.

16.2 Exact solution: a plane wave interference pattern matches
the waveguide boundary conditions

Exact solutions for the £ and B fields within waveguides of arbitrary shape
are normally deduced through a head-on assault using Maxwell’s equations.
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Figure 16.2. Superposition of However, for rectangular waveguides, an exact solution can be obtained indi-

two plane waves (2) producesan  rectly by setting up two plane waves in empty space.

inteﬂer_enc.e panem.(b)_ A single plane wave satisfies Maxwell’s equations inside a waveguide, but

streaming in the z-direction. One . .

(or more) columns of that cannot satisfy the boundary conditions at the metal walls. However, the super-

pattern satisfies waveguide position of two properly chosen plane waves forms a traveling interference

boundary conditions (c). Eisin  pattern which does satisfy the boundary conditions and is therefore a valid

the x-direction (coming outof  solytion to the waveguide problem. This solution technique can be compared

the page). with the “image charge” method in electrostatics, often introduced as a techni-
que to solve for the electric field when a point charge sits alone above an infinite
metal sheet. An equal but opposite charge is placed at the mirror image point
behind the sheet and the sheet is removed. The electric field lines connecting the
charges pass perpendicularly through the x—y plane, satisfying the boundary
condition that the £ field must be perpendicular when intersecting a conducting
surface. The superposition of the two fields, that of the actual charge and that of
the image charge, is the solution to the original problem.

Here we construct a solution by superposing two plane waves, identical
except for their propagation directions. Both plane waves will be polarized in
the x-direction, i.e., their electric fields are in the x-direction. Since electro-
magnetic waves in free space are transverse waves, the propagation vectors, k,
and k,” corresponding to these waves must both lie in the y—z plane, as shown
in Figure 16.2(a).

The first wave, with propagation vector ki, travels in the NNE direction,
while the other, k,, travels NNW. In (b), the plane waves are drawn as streams
with finite width. Contour lines of the electric field are perpendicular to the
directions of propagation. Figure 16.2(b) shows that, in the area where the
streams overlap, the sum of the individual electric fields produces an interfer-
ence pattern consisting of columns of cells which stream northward in the
z-direction. If we could watch two waves come together in the ocean, we

2 By definition, the propagation vector, &, is in the direction of travel, i.e., perpendicular to the
wavefront, and has magnitude |k|=27//.

https://doi.org/10.1017/CB09780511626951.017 PubiBRBIAER Rrelsying @ Garphidge University Press, 2010


https://doi.org/10.1017/CBO9780511626951.017

198 Radio-frequency electronics: Circuits and applications

would see them produce this interference pattern. As the streams leave the
overlap region, they recover their original plane wave form. In the interference
pattern, the contour lines of constant £ resemble squared-off ovals. (Remember
that E is always perpendicular to the page; the oval-like figures are contours of
field strength; they are not field lines.)

The pattern formed by a column of cells (Figure 16.2¢) solves the waveguide
problem if the width of the cells is equal to a, the width of the waveguide. Why
is this a solution? First, the electric field at the side walls is zero at all times,
satisfying the boundary condition that, at a conducting wall, there can no
parallel electric field. Second, the electric field is always in the x-direction, so
it is perpendicular where it intersects the top and bottom walls, satisfying the
boundary on those walls as well. Third, each plane wave and therefore their
sum, is a solution to Maxwell’s equations in empty space, i.e., the interior of the
waveguide. What about all the columns of cells outside the boundary of the
waveguide? We can forget them, just as we ignore the electric field on the image
charge side of the x—y plane in the electrostatic example.

Let us apply a little algebra to find the wave’s propagation vector, cutoff
frequency and phase velocity. Let k& denote the magnitude of k; and &, so that
ki =kcos(0)y + ksin() 7 and ky = —kcos(0) P + ksin(0) 2. The electric
field is the sum of the fields of the two waves, i.e.,

E(r,t) = _z—f ellr=kir) 4 %eﬂwf*"m, (16.1)
where the vector r denotes position in the y—z plane and £ is a constant equal to
the twice maximum electric field of each wave. The amplitudes, —F/(2j) and
E/(2j), have been chosen so that y=0 will be a column boundary and also to
phase the E field to be maximum at z =0 when #=0. Substituting the expressions
for k; and k,, we have

E— E<7e(jwt7k(zcos(7+ysin(f)) + ej(wtfk(zcosf}fysinf))))/(2j)
= E sin(kysin §)e/(@=cos9) (16.2)

As always, it is the real part of E that is the actual electric field. Note that all the y
dependence is contained in the expression sin(ksin(8) y). This is independent of
t, so, in the y-direction, the diffraction pattern is a standing wave. The z and ¢
dependence, however, are contained in the wave factor &/ 9 5o the entire
diffraction pattern propagates in the (+z)-direction with an effective wavevector
kguige =k cost. For a wave of a given frequency, we can find the value of 0 that
satisfies the side-wall boundary condition. Suppose that the bottom wall of the
waveguide extends from y=0 to y=a, i.e., the guide width is a. The boundary
condition at y=0 is satisfied for any value of 6, since sin(0)=0. But the
boundary condition at y=a demands that sin(ksin(@) a)=0. This will be sat-
isfied if k sin(f) a=nm, where n is an integer. Here we will let n=1, so that
sin(#) = 7/(ka) and cos(6) = (1-[x/(ka)]*)"’*. Thus the E field in the waveguide is
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Figure 16.3. Electric field
configuration in the TE,, mode. Ey)
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given by (the real part of) E = E sin(zy/a)el(® %) where = kcos(8) = k(1—-[z/
(ka)?)". Figure 16.3 shows how the magnitude of the £ field is a maximum at
the center line of the waveguide and falls to zero at the side walls.

16.2.1 Guide wavelength

From the expression for k,, we see that the spatial period along the waveguide
will be 27/k,. Solving for this length, known as the guide wavelength, we find

Aguide = I (16.3)

- &)

16.2.2 Magnetic field

Just as the electric field in the guide is the superposition of the electric fields of
two plane waves, the magnetic field is the superposition of their magnetic fields.
For a plane wave, the magnetic field is perpendicular to both the electric field
and the propagation vector,

B=kxE/c, (16.4)

where c is the speed of light. The magnetic fields of our two plane waves have
z-components as well as y-components, so the magnetic field in the waveguide
is not purely transverse with respect to the direction of propagation. In this TE ¢
mode and all other TE modes, only the electric field is purely transverse. There
are also TM modes, in which only the magnetic field is purely transverse.
Waveguides, unlike coaxial cable, have no TEM modes, in which both £ and
H fields are transverse.

We can use Equation (16.4) to find the magnetic of field each plane wave and
then sum them to get the field in the waveguide. The result is

= —<sin (2/> el@r—ke?) (16.5)
a

and
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Figure 16.4. Electric field lines
(@) and magnetic field Lines (b)
The electric lines are bundles of
vertical vectors while the
magnetic lines are stacks of
concentric loops (c.).
B T b5 :
—<=_""cos (—y) gll@r—k—g7) (16.6)
E jaw a

The form of this B field is shown in Figure 16.4(b).?

Note that the magnetic field lines are stacked concentric loops in the y-z plane
with no component normal to the walls. You can use Equations (16.5) and
(16.6) to find the exact shape of these loops (see Problem 16.4).

16.2.3 Wall currents

Wall currents, which flow on the inside surfaces of the waveguide, are deter-
mined by the tangential magnetic field. The currents are perpendicular to the B
field and their magnitude (in amperes/meter) is given by B/uq (the permeability
of free space, uo, is equal to 47-1077). The wall currents are indicated in
Figure 16.5. These currents converge or diverge from areas on the broad wall

Figure 16.5. Wall currents (solid
lines) in relation to the magnetic

field (dashed lines). /%/
2y

— ]

>}

3 The reader familiar with Maxwell’s equations can quickly derive Equations (16.5) and (16.6) from
Equation (16.2) by applying the curl £ equation, which here becomes joB,=—0E, /0z and
jwBy=OFE/0y.
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where positive charge is arriving or leaving. The E-field lines start and end at
these charge patches. Note that the currents on the narrow walls are perfectly
vertical because the tangential magnetic field has no x-component.

The fields and currents shown in Figures 16.2—16.5 are, of course, snapshots
at an instant in time. As the wave propagates, these patterns move uniformly
along the z-axis with a (phase) velocity given by vy, = w/f.

16.3 Waveguide vs. coax for low-loss power transmission

Consider a situation requiring a low-loss transmission line. Let us compare a
standard 2:1 aspect ratio waveguide to a cylindrical coaxial line. To minimize
the loss we will make both as large as possible, but here we will impose the
restriction that they are also small enough so that modes higher than the
fundamental mode cannot propagate. Appendix 16.1 shows that the diameter
of this lowest-loss coaxial line and the height of the lowest-loss waveguide are
very close to 4/2 and that the coaxial line will have 2.4 times the loss of the
waveguide and will carry only 23% as much power before breakdown.

16.4 Waveguide impedance

There are several ways to define an impedance for a waveguide. One way is to
define the voltage to be the potential difference between the top and bottom walls at
the middle of the guide and the current to be the integrated current across the top
wall. The ratio of voltage to current gives an impedance. Another definition uses
voltage and power flow. Still another method uses the ratio of electric field to
magnetic field at the center of the guide. The various definitions give Z, =377 ohms
(impedance of free space) within a factor of 2. But regardless of how impedance is
defined, there is no ambiguity in the concept of reflection coefficient. Recall that a
shunt capacitance on an ordinary (TEM) transmission line produces a reflection
coefficient on the negative j-axis of the Smith chart. The same kind of reflection is
produced in a waveguide by a short vertical post or a horizontal iris. These
obstructions are therefore called “capacitive posts” or “capacitive irises.” An iris
across the narrow dimension of the guide causes a reflection on the positive j-axis so
is called an “inductive iris.” Figure 16.6 shows examples of inductive and capaci-
tive irises. (The equivalent circuit for a thin iris is just a single shunt susceptance.)

Figure 16.6. Waveguide
irises: (a) inductive iris;
(b) capacitive iris.

| — -

(a) (b)
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The combination of an inductive and a capacitive iris (a thin wall with a hole)
is equivalent to a parallel resonant circuit. You can see how these resonant irises
could be spaced at quarter-wave intervals in a waveguide to make a coupled-
resonator filter.

16.5 Matching in waveguide circuits

Impedance matching in waveguide circuits can be done with the same techni-
ques used for ordinary transmission lines. Suppose we are using a waveguide to
supply power to some device, maybe a horn antenna, and that we have an
Load  instrument — a reflectometer or network analyzer — that can measure the reflection
coefficient looking into the waveguide. We can locate the reflection coefficient on

the complex reflection plane (Smith chart) as shown in Figure 16.7.
As we move down the guide, away from the load, the reflection coefficient
circles the center of the chart and eventually arrives at the unity conductance
Figure 16.7. A load's reflection circle. We locate this position on the guide and install the appropriate inductive
coefficient located on the Smith ~ OF capacitive iris. In practice the tuning process is sometimes very simple: we
chart. find the point at which we need to add shunt capacitance. If the reflected wave is
small (not a severe mismatch) we do not have to add much capacitance so we get
out the ball-peen hammer and dent the broad side of the guide. An expert learns

just how hard to swing the hammer.

A note on matching: suppose we join two dissimilar waveguides (perhaps of
different sizes) at a junction, which could be some kind of elbow, coupling, butt joint,
etc. Assume that the system is nominally lossless, i.e., all metal. We want to match
the junction so that a wave coming from either direction will suffer no reflection. We
carry out the above procedure on one side of the junction. Do we have to then match
the other side? No, the job has been done. Time-reversal produces an equally good
solution to Maxwell’s equations in which all the power flows in the opposite
direction. Of course this applies just as well to ordinary (TEM) transmission lines
as it does to waveguides. This simple argument fails for lossy junctions because the
time-reversed solution requires the absorptive material to produce power, but a
stronger argument, based on the reciprocity theorem leads to the same conclusion.

16.6 Three-port waveguide junctions

Two kinds of waveguide T-junctions (three-port junctions) are shown in Figure 16.8.
The series-T gets its name from the fact that the voltage of the input guide
divides between the two output guides. This works out well because the half-
height output guides have half the impedance of the input guide and the junction is
inherently matched. (The half-height guides could be increased to full-width in a
gradual taper that would not cause much reflection.) The shunt-T applies the full
input voltage across each of the output arms — not such a natural as the series-T.
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Figure 16.8. Waveguide
T-junctions. ﬁ ; § g
(b) (c) (d)

(a)

Series tees Shunt tees

16.7 Four-port waveguide junctions

The Magic T hybrid can be built using a procedure that itself seems like magic.
We start with the bare waveguide junction (nothing hidden inside) as shown in
Figure 16.9.

First we match Port 1, i.e., eliminate reflections from Port 2 when the other
ports are feeding matched, i.e., reflectionless, loads. To do this we start by
putting matched loads on Ports 2 and 3. (We do not have to put a load on Port 4
since, by symmetry, it is isolated from Port 1.*) With the loads in place we
measure the reflection at Port 1 and install the necessary iris (or dent) some-
Figure 16.9. Waveguide where down line 1. Then we do the same process on Port 4. That’s it. The two
Magic T. matches and the isolation by virtue of symmetry are sufficient. We now have a
perfectly matched Magic T hybrid.

Simple narrowband transitions from coax to waveguide have mostly been
built with empirical methods. With the aid of three-dimensional finite element
simulation programs, wideband transitions have been designed. In general, the
designer first looks at the fields on both sides and finds a mechanical structure
that causes the main features of the fields to line up. The remaining reflection
should be small and can be tuned out with a small iris or other structure whose
complexity depends on the desired bandwidth.

Rectangular waveguides, like TEM lines, can carry only one signal in each
direction. But square or round guides can have two independent waves; they are
both fundamental mode waves but they have different polarizations. To launch
or recover these two waves independently requires an orthomode coupler,
which has no TEM counterpart. The simplest orthomode couplers use coaxial
or waveguide connections mounted at right angles on the sides of the square or
round guide. Some couplers produce circular rather than rectangular polar-
izations. Wideband orthomode transitions are always needed for radio astron-
omy and their development is an active field.

4 The E field is vertical as a wave enters Port 1. Would it point left or right as it emerged from Port 4?
Since the geometry is symmetric, there is no reason to favor right or left. Hence, no wave
emerges from Port 4.
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Appendix 16.1 Lowest loss waveguide vs. lowest loss coaxial line

ry=0.260 - N f
| 1b=
[=0.072 — \ 4

F—a= —

Figure 16.10. Relative cross-

sections of lowest-loss

waveguide and coaxial cable.

For lowest loss we will make the waveguide and the coaxial line as large as
possible, but, as explained above, with the restriction that each be capable of
supporting only its fundamental mode. Our lowest loss TE, , waveguide will be
made with its width equal to the wavelength. (If it is any wider, the second mode,
TE, o, becomes possible.) We will make the height equal to half the width, i.e., the
usual aspect ratio. For air-filled coaxial line at the frequency where non-TEM
modes become possible, the inner and outer radii, 7; and r,,, satisfy the inequality
(ro + r; ) = 1.031.> The equal sign applies when r; /r,= 1/3.6. This ratio also
provides the lowest loss air-filled coaxial line for a given outer diameter (see
Appendix 16.2). Note that the characteristic impedance, Zo=60 In (7, / r;), will
be 77 ohms for this lowest-loss coaxial cable. Using this ratio of diameters,
the maximum outer diameter is given by ro = 1.03A7 '/(1+1/3.6) = 0.26). These
relative waveguide and coax cross-sections are shown in Figure 16.10.

Let us compare the losses. The amplitude of a wave propagating in the (+x)-
direction on any lossy line is proportional to exp(—ox) where «, the loss factor,
has units of inverse meters. The power is therefore proportional to exp(—2ax)
and the fractional power loss per meter is 2a. Note that 20 log(e)o = 8.686a dB/
meter. Because of the skin effect, the loss of a line is proportional to its surface
resistance which is given by

Rs = | /% ohms per square (16.7)
o

where o is the bulk dc conductivity and  is the (angular) frequency. (For copper,
Ry = 2.61 x 1077 ohms/+/Hz; for aluminum, Ry = 3.26 x 10~ ohms/+/Hz).
The loss factor for air-filled coax line is given by

R 1 1

coaX — A~ . 16.8

¢ 27y (27[1’0 + 27””i) ( )

Our lowest loss coax line has Z, =77, r,=0.264 and ;= 0.072/ so its loss becomes
R

(Oconx ) min = 0.01837. (16.9)

For air-filled rectangular waveguide in the fundamental mode the loss factor is
given by

(16.10)

5 Reference [2], p. 42.
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where 377 ohms is \/y/€, the “impedance of free space.” In our case
a=2b=1so0

Ry 5 R
(OWG)min = =0.0076=". (16.11)

S
2 337V3 A

The loss of the coax is therefore higher than that of the waveguide by a factor of
0.0183/0.0076 or about 2.4. What about power handling capacity? The break-
down of either the waveguide or the coax depends on the maximum £ field,
Eax- (For air at sea-level pressure, £« is about 30 000 volts/cm.) For rectan-
gular waveguide in the fundamental mode the power is related to the maximum
E field by

p ] 2 A
LI ab22 = 6.63 x 10%ab 22 (16.12)
Em?  4-377" I e

where Pwr is in watts, £, 1S in volts/cm, @ and b are in cm, /A is the free-space
wavelength, and A, the guide wavelength, is given by

Jg = £ . (16.13)

(- Ga))

For our waveguide Ay /Aeyorr=1/2 50 Ag = 240/ V/3 and

P
N =574 x 107%ab =574 x 10747.3/2 =237 x 10742 (16.14)
Turning to the coax, the In(r) dependence of voltage and the characteristic
impedance, Zy = (377/2x) In(r,/r;) = 60 In(r,/r;) allow us to find the power in

terms of the maximum F field:

Pwr Zor?
Emax2 - 2 * 62)2 ’ (1615)
In our case Z, =77 and r;=0.0724 so
Pwr 77 N2 —4 4
E =5 g0z (0:072)° = 0.55 x 10 i (16.16)

We see that the waveguide can handle 2.37/0.55=4.3 times the power of the
minimum loss coaxial line. The waveguide is clearly better both for loss and
power handling capacity. In high-power applications the waveguide has the
additional advantage that there are no interior surfaces needing cooling and no
mechanical spacers to center an inner conductor. (Insulating spacers in high-
power coaxial lines must fit tightly; high voltage develops across any gap. This
problem generally reduces the power-handling capacity of the coaxial line by
something like an order of magnitude.)
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Appendix 16.2 Coax dimensions for lowest loss, highest
power, and highest voltage

Lowest loss

For a given outer diameter, the characteristic impedance of a coaxial line is
increased by making the inner diameter smaller. For a given power, the current
is decreased. But the smaller inner conductor has more resistance. The R
product, i.e., the dissipation, has a minimum when the ratio of diameters is 3.6.
This follows from Equation (16.8) which can be rewritten as

R 1
x=—— 77— —— (1 16.17
eome = 5760 - 27r, In(x) (14x) ( )

where x = ry/r; . The minimum of (1+x)/In(x) occurs at x = 3.6 so the characteristic
impedance of lowest-loss air-filled coaxial line is Z,= 60 In(3.6) =77 ohms.

Highest power

From Equation (16.15) we see that to maximize the power-handling capability
of the coaxial line we must maximize the expression % 2, ie., we must
maximize In(x)/x*. The maximum occurs when In(x)=1/2 so the characteristic
impedance of the maximum power line is Zy=60/2 =30 ohms.

Maximum voltage

If the line is to withstand maximum voltage the optimum value of In(x) is 1 and
the characteristic impedance is 60 ohms. This also follows from Equation
(16.15): if we express power as Viax/(2Zo) then Vi, is proportional to Zq r;
or In(x)/x, which reaches a maximum at x=e.

Relative performance of 50-ohm coaxial line

The 50-ohm line commonly used in RF work (x=r,/r;=2.3) strikes a
compromise between lowest loss, highest power and highest voltage. For
loss, we compare (1+x)/In(x) for x=2.3 and x=3.6 to see that the 50-ohm
line will have only 10% more loss than a 77-ohm line with the same outer
diameter. For power handling, we compare In(x)/x* and find that the 50-ohm
line can carry 62% as much power as a 30-ohm line with the same outer
diameter. Finally, for voltage we compare In(x)/x and find that the 50-ohm
line can handle 98% as much voltage as a 60-ohm cable with the same outer
diameter.
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Problems

Problem 16.1. Suppose a car enters a long tunnel which is essentially a rectangular
metal tube 10 meters wide by 5 meters high. The car radio becomes silent inside the
tunnel. Was the radio more likely tuned to an AM station or an FM station?

Problem 16.2. Examine the waveguide current distribution shown in Figure 16.5 (for
the fundamental mode) and draw a sketch showing the position(s) in which a narrow slot
could be cut through the waveguide wall without affecting its operation.

Problem 16.3. Describe an experimental setup that could be used to demonstrate the
waveguide E-field and B-field distributions shown in Figure 16.4.

Problem 16.4. In the discussion just above Equation (16.2), let n=2 instead of 1. For
this choice of n (the TE,y mode), find the cutoff wavelength and the guide wavelength.
Sketch the electric and magnetic field lines.

Problem 16.5. Use Equations (16.5) and (16.6) to find the mathematical shape of the
magnetic field loops. Hint: the slope of a field line, dz/dy, is given by B,/B. Set up the
equation dz/B, = dy/B, and note that the left side contains only z while the right side
contains only y. They can therefore be integrated separately. Remember to add a constant
of integration.
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