CHAPTER

] 3 Coupled-resonator bandpass filters

We saw in Chapter 4 that the straightforward transformation of a prototype
lowpass filter to a bandpass filter yields a circuit with alternating parallel
resonant circuits and series resonant circuits as shown in Figure 13.1.

Figure 13.1. Conversion of a I _ R _
lowpass filter to a canonical
bandpass filter. ; ; ={>

If the prototype lowpass filter has a response Fip(w), the corresponding
bandpass filter will have the response Fgp(w)=Fp( |w—wcl|), where wc is the
center frequency. These canonical bandpass filters work perfectly — when
simulated with a network analysis program. But usually they call for impractical
component values. The inductors in the shunt branches must be smaller than the
inductors in the series branches by a factor on the order of the square of the
fractional bandwidth. For a 5% bandwidth filter, the ratio of the inductor values
would be of the order of 1:400. For a given center frequency we might be lucky
to find a high-Q inductor of any value, let alone high-Q inductors with such
different values. Low-Q (resistive) inductors make a filter lossy and change its
nominal passband shape. The series and shunt capacitor values have the same
ratio. Generally Q is not a problem with capacitors, but very small values are
impractical when they become comparable to the stray wiring capacitances.

13.1 Impedance inverters

This component value problem can be solved by transforming canonical bandpass
filters into coupled-resonator bandpass filters, which can be built with identical or
almost identical LC resonant circuits. The coupled-resonator filters have the same
filter shapes, based on prototype lowpass designs, such as Butterworth or
Chebyshev. Figure 13.2 shows some coupled-resonator fiter designs.
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153 Coupled-resonator bandpass filters

These filters are based on impedance inverters. Three examples of impedance
inverters are shown in Figure 13.3, a 90° length of transmission line and two

lumped LC circuits.
Figure 13.2. Three examples of
coupled-resonator bandpass

filter circuits.

_____________________________________________________
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Figure 13.3. Three impedance
inverter circuits

In every case, an impedance Z, when seen through the inverter, becomes
74217 where Z, can be called the characteristic impedance of the inverter. For the
transmission line inverter, a 90° length of line, Z, is just the characteristic
impedance of the line. For the LC inverters, both the inductor’s reactance, Xj,
and the capacitor’s reactance, X, must be equal to the desired Z,. Like the 90°
cable, the lumped element circuits are perfect inverters only at one frequency
but, in practice, they are adequate over a considerable range. An inverted
capacitor is an inductor. An inverted inductor is a capacitor. Figure 13.4
shows an inverter (in this example, a 90° transmission line) used to invert a
parallel circuit, making an equivalent series circuit.

The mathematics of this inversion is just

1 ) 1 . Zy?
I =20°Y =7 | — +joC +— ) =———— +jw(Z,C,) + =—.
in 0 0 (JCULp ] p Rp jCO(Lp/Z()z) ] ( 0 p) Rp
(13.1)

Let us look at four inverters which include inductors or capacitors with negative
values. For these inverters, shown in Figure 13.5, X =Z, or X =Z,.

Figure 13.6 verifies the inverter action of the all-capacitor T-section inverter.
You can use this kind of reasoning to verify the inverter action of the other circuits:
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Figure 13.4. Impedance > )
inverter makes a parallel circuit 90° Y | Ls=Gp2y
L | )
appear as a series circuit. Z, _|| }TQZYS\_\/\/\/77
|
= : Cs=Lp/ Zo2
|
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Figure 13.5. Impedance
inverters based on negative
value components.

Figure 13.6. Operation of the -C -C
T-network negative capacitor || [
inverter. | . | l | : |
i i ¢ i
e ] z
A L
z, w1
Z L .z (13.2)
| =~ .
jo(=C)
. 1 joCZ
o=joCH+ -=——"—7— 13.3
2=t = 1 jwC (13.3)
1 1 1 - Zé

= — = =—. 13.4
jo(=C) * Y, w?C?Z Z (13.4)

Because they contain negative capacitances or negative inductances, the four
inverters in Figure 13.5 might seem to be only mathematical curiosities. Not at
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Figure 13.7. Negative
capacitors absorbed into
adjacent positive capacitors. all; the negative elements can be absorbed by positive elements in the adjacent

circuitry as shown in Figure 13.7, where a z-section capacitor inverter is placed
between two parallel LC “tanks.”

13.2 Conversion of series resonators to parallel resonators and vice versa

Ladder network filters have alternating series and shunt branches. Let us see
how inverter pairs are used in ladder filters. Suppose we embed a series
capacitor between a pair of inverters at some point along a ladder network.

Figure 13.8. A series capacitor
between inverters is equivalent
to a shunt inductor.

Impedance inverters

The combination of the capacitor and the inverter pair is equivalent to a shunt
inductor, as shown in Figure 13.8.

You can show just as easily that any series impedance, Z;, together with a pair
of bracketing inverters of characteristic impedance Z; is equivalent to a shunt
admittance I/ID:Z{2 Z. Likewise, the combination of any shunt admittance Y
and a pair of bracketing inverters is equivalent to a series impedance Z=Z,’Y.
Figure 13.9 illustrates this, showing how a series resonant series branch in an
ordinary bandpass filter can be replaced by a parallel resonant shunt branch
imbedded between a pair of inverters.

Likewise, a parallel resonant shunt branch can be realized as a series
resonant series branch imbedded between a pair of inverters, as shown in
Figure 13.10.
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Figure 13.9. A shunt resonator
between inverters is equivalent
to a series resonator.

o

(a) (b)
Figure 13.10. A series resonator

between inverters is equivalent
to a shunt resonator.

13.3 Worked example: a 1% fractional bandwidth filter

Consider a 50-ohm, 1-dB Chebyshev filter with a 10-MHz center frequency and
a bandwidth of 100 KHz between the 1-dB points. The filter, which results from
the straightforward lowpass to bandpass transformation (Chapter 4) is shown in
Figure 13.11 and its response is shown in Figure 13.12.

We might find 86-pH inductors with high Q at 10 MHz but the 3.728 nH and
2.645 nH inductors would be tiny single turns of wire with very poor Q. To get
around these component limitations, we will convert this filter into a coupled-
resonator filter. Suppose we have in hand some adjustable 0.3 to 0.5 microhenry

Figure 13.11. A straightforward 2.917 pF 2.917 pF
(but impractical) bandpass filter. 86.83 uH 86.83 uH

The calculated response of this l 1000 I I l

filter is shown in Figure 13.12.

0.06796 uF 0.09552 uF 0.06796 uF
0.003727 pH 0.002652 pH 0.003727 pH
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Figure 13.12. Calculated
response for filter of
Figure 13.11.

Figure 13.13. Filter of
Figure 13.11, scaled from 50 to
6705 ohms.

Coupled-resonator bandpass filters

0 T~
10-log(pwr(w)) -10 — =
20 | | |
9.9-10% 9.95-10® 1-107 1.005-107 1.01-107
2T
0.02175 pF 713 0.02175 pF
pF
Sl o

inductors which, at 10 MHz, have very high O (we will see later just how
much Q is required). Let us first change the working impedance of the filter so
that the parallel resonators at the end will use 0.5 uH, which is 134.1 times
the original end inductors and implies that the filter will be scaled to
50 x 134.1=6705 ohms. We multiply the other inductors by 134.1 and divide
the capacitors by 134.1 to get the circuit of Figure 13.13.

The parallel resonators now use the desired inductors but the series resonators
call for inductors of 11.6 mH, a very large value for which we surely will not
find high Q components. Moreover, the series capacitors are only 0.02 pF, a
value far too small to be practical. We can solve this problem by using
impedance inverters to convert the series resonators into parallel resonators.
Let us use the all-capacitor z-section inverters of Figure 13.5(b) and the same
parallel resonators we used for the end sections. Figure 13.14 shows how two
inverters and the parallel resonator replace each series resonator.

We can calculate the inverter’s characteristic impedance, Z, as follows:
Z0*Y = Z; Zo*(jwCy + 1/jwlL,) = jwLs + 1/joCs (13.5)

Zy* = L,/Cs = 0.5x107°/0.02175 x 1072 = 4796 (13.6)
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Figure 13.14. Inverters
transform a 0.5-«H shunt
inductor into a 11.644-mH series

Radio-frequency electronics: Circuits and applications

Inverter Inverter

BT

T —

He

inductor.
Cp=506.6 pF Lg=11.64 mH
Lp=0.5 puH Cs=0.02175 pF
Figure 13.15. Coupled-
resonator version of previous
bandpass filter.
0B5MH _ __ ___ 05uH —____ ¢ 03558 UH__ _ _ _ _ 05MUH —_____ 0.5 uH 27
: 6 pF
276pF5066pF' C  Isoe6pF! € 17119pFI o Ig5pe6 pF' 506.6 pF p
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27.6 pF 3.32 pF 3.32 pF 3.32 pF 3.32 pF 27.6 pF
I Il Il
J_ J_ il J_ L J_ L J_
0.4744 uH 0.5 uH 0.3558 uH 0.5 uH 0.4744 pH
503.3 pF 500.0 pF 705.3 pF 500.0 pF 503.3 pF

Figure 13.16. Finished coupled-
resonator filter.

For this type of inverter, we had seen that Z,=X¢, so C=3.32 pF. We now have
our coupled-resonator filter but since it works at 6705 ohms we will add
L-section matching networks at each end to convert it back to 50 ohms. The
filter, at this point, is shown in Figure 13.15. All the resonators are now parallel
resonators. (In other situations we might use inverters to convert series reso-
nators into equivalent parallel resonators to make an all-series-resonator filter —
see Figure 13.1.)

The final clean-up step is to absorb the —3.32 pF capacitors into the resonator
capacitors and combine the matching section inductors with the end-section
resonator inductors as shown in Figure 13.16.

The response of the finished filter is shown in Figure 13.17 and is almost identical
to the response of the prototype filter of Figure 13.11. The difference, a fraction of a
dB, occurs because the inverters work perfectly only at the center frequency.

13.4 Tubular bandpass filters

A popular bandpass filter design, the “tubular filter” is produced by many filter
manufacturers. Figure 13.18 shows the construction of a three-resonator tubular filter.
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Figure 13.17. Ca-lculated 0 ~_T~_
response of the filters of
Figure 13.16 (pwr) and
Figure 13.11 (pwr).
10:-log(pwr(w))
-10 — —
10-log(pwr(w))
-20 ' '
9.9-106 9.95-106  1-107  1.005-107 1.01-107
v
2

The only standard electronic components are the coaxial connectors at the
ends. There are also (in this example) three inductors (wire coils), four metal
cylinders, two dielectric spacers, two (or one long) dielectric sleeves, and a
tubular metal body. Figure 13.19 shows how a coupled-resonator filter design,
of the type we have discussed, is transformed into the tubular filter design. You
can verify that Figure 13.19(d) is the circuit diagram of the tubular filter. The
three-capacitor z-sections are formed by the capacitance between the adjacent
faces of the metal cylinders and the capacitors are formed between the outside
surfaces of the cylinders and the tubular body.

End cap with Dielectirc spacer
coax connector @/ Metal cylinders
/ / W Dielectirc sleeves ~ Metal tube
o] ) o ) o 1B\ 3D

Wire coil \ \

Figure 13.18. Tubular bandpass
filter.
Beginning with Figure 13.19(a), we have a standard coupled-resonator band-

pass filter using series resonators. In the canonical prototype for this filter, the
middle section is a parallel resonator, but this has been replaced by a series
resonator sandwiched between two impedance inverters. In (b), the center capaci-
tor has been replaced by two capacitors (each of twice the value of the original
capacitor so that, in series, the total series capacitance is the same). The capacitors
have been shifted slightly in (c) to identify a T-section capacitor network at each
side of the central inductor. Finally, in going from (c) to (d), these T-networks are
replaced by equivalent z-networks, to arrive at the circuit of the tubular filter. Any
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Figure 13.19. Tubular bandpass
filter evolution.

Figure 13.20. Equivalent
m-section and T-section
networks.

Radio-frequency electronics: Circuits and applications

(0) oL ”I“E B o T
(b) °—/m—||—_|_—|\|—/?—|(|—_|_—|
(a) o—TO} T~ T |~ —o
Loy 1 :
=
3 3
Z1 _ ZaZb Za Z1ZZ + 2223 + 2321
Zy+ 2y + 2, Z3

T-network has an equivalent z-network and vice versa (Problem 13.5). These
transformations, also known as T—z and 7—T are shown in Figure 13.20. Formulas
are given for one element in each network; the others follow from symmetry.

13.5 Effects of finite Q
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These calculated filter responses assume components of infinitely high Q. We
can calculate the effects of finite Q by paralleling the (lossless) inductors in our
model with resistors equal to O times the inductor reactances at the center
frequency. If, for example, the O is 500 (quite a high value for a coil), we would
parallel the inductors in the filter of Figure 13.15 with resistors of about 15
000 ohms. Reanalyzing the circuit response, we would find that the filter will
have a midband insertion loss of 7 dB and that the flat (within 1 dB) passband
response becomes rounded. The effect will be somewhat less for a filter with


https://doi.org/10.1017/CBO9780511626951.014

161 Coupled-resonator bandpass filters

more gradual skirts, e.g., a 0.01 dB Chebyshev or a Butterworth filter. But the
real problem is still the small fractional bandwidth. For a filter with small
fractional bandwidth to have the ideal shape of Figure 13.17, the resonators
must be quartz or ceramic or other resonators with Os in the thousands. An
approximate analysis predicts that the midband loss per section in a bandpass
filter will be on the order of

povertnnited _ o i) (037

power incident B Q - fractional bandwidth
where L, represents the inductor value in the normalized lowpass prototype
filter. For our five-section filter we can take L to be about 1.5 henrys. If the
inductor Q is 500, the predicted transmission of the five-section filter is 5% 10
log[1—(1.5 /2)/(500-(1/100))] =— 10 dB, which is roughly equal to the actual
value of =7 dB.

13.6 Tuning procedures

Filters with small fractional bandwidths and sharp skirts are extremely sensitive
to component values. In the filter of Figure 13.16, for example, the resonators
must be tuned very precisely or the shape will be distorted and the overall
transmission will be lowered. (The values of the small coupling capacitors — all
that remains of the impedance inverters — are not as critical.) Usually each
resonator is adjustable by means of a variable capacitor or variable inductor. All
the adjustments interact and, if the filter is totally out of tune, it may be hard to
detect any transmission at all. A standard tuning procedure is to monitor the
input impedance of the filter while tuning the resonators, one-by-one, beginning
at input end. While resonator N is being adjusted, resonator N+1 is short
circuited. The tuning of one resonator is done to produce a maximum input
impedance while the tuning of the next is done to produce a minimum input
impedance. The procedure must sometimes be customized to account for
matching sections at the ends.

13.7 Other filter types

The coupled-resonator technique is used from HF through microwaves. Not
all RF bandpass filters, however, use the coupled-resonator technique. The
IF bandpass shape in television receivers is usually determined by a SAW
(surface acoustic wave) bandpass filter. SAW filters are FIR (finite impulse
response) filters, whereas all the LC filters we have discussed are IIR
(infinite impulse response) networks. This classification is made according
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Problems
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to the behavior of the output voltage following a delta function (infinitely
sharp impulse) excitation. Digital filters can be designed to be either FIR or
IR filters.

Problem 13.1. Use your network analysis program to verify that the filter of
Figure 13.16 does indeed give the response shown in Figure 13.17.

Problem 13.2. Verify that the two LC circuits in Figure 13.3 are impedance inverters.

Problem 13.3. The filter shown below was developed in Chapter 4 as an example of
the straightforward conversion from a prototype lowpass filter to a bandpass filter. This
Butterworth (maximally flat) filter has a bandwidth of 10 kHz and a center frequency of
500 kHz. Suppose you have available some 30 puH inductors with a Q of 100 at 500 kHz.
Convert the filter into a coupled-resonator filter that uses these inductors. Use your ladder
network analysis program to verify the performance of your filter.

0.3176 uH 1.59 mH  63.72 pF 0.319 uF

0.319 uF | 0.3176 uH
1 ]

50 ohms
50 ohms

Problem 13.4. A bandpass filter is to have the following specifications:

Center frequency: 10 MHz; shape: three-section 1-dB Chebyshev; bandwidth: 3 KHz
(between outermost 1-dB points); source and load Impedances: 50 ohms. Since the
loaded Q of this filter is very high, 10%/3000=333, it is important to use very high-Q
resonators. Suppose you have located some resonators (cavities, crystals, or whatever)
with adequate Q. These resonators are all identical. At 10 MHz they exhibit a parallel
resonance, equivalent to a parallel LC circuit. At 10 MHz, they have a susceptance slope
of 10”® (1 mho/MHz).

(a) Find the LC equivalent circuit for these resonators (in the vicinity of 10 MHz).

(b) Design the filter shown below around these resonators.

(c) Use your ladder network analysis program to verify the frequency response of your
design.

|
50 ohms J_

FTHEITE -

+

+ e

Problem 13.5. Derive expressions for Z,, Z, and Z in terms of Z;, Z,, and Z for the
equivalent 7 and 7 networks shown in Figure 13.19. Hint: consider the connections
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shown below. The sketched-in wires show that Y, + Y= (Z;+ Z, || Z,)"". If you write the
corresponding Yz + Y and Y + Y, equations, then add the first two and subtract the
third, you will have the formula for Y. A similar technique yields the expressions for Z,
Z,, and Z.

(a) (b)

Problem 13.6. The bridge circuit shown below in (a) is the simplest network whose
resistance cannot be found immediately by series and parallel reduction. Rather than
resorting to loop or node equations, note that the circuit contains two zs and two 7.
Replace a 7 by its equivalent Tor a 7 by its equivalent z. Now find the resistance of the
network by simple reduction. The circuit at the right shows how one of the z’s can be
replaced by a T.

(a) (b)
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