CHAPTER

Radio spectrometry

Spectrometry or spectral analysis is the statistical characterization of random
(stochastic) signals such as the IF voltage in a radio astronomy receiver, as
described in Chapter 26. The spectrometers discussed in this chapter are all
multiplex spectrometers, meaning that they measure N points on the spectrum
simultaneously. This is to be distinguished from swept-frequency spectrum
analyzers, which measure spectral points sequentially. Multiplex spectrometers
are used when long integration times are needed to pull a signal out of the noise,
as in radio astronomy. They are also used for low-frequency spectrum analysis,
where narrow channel bandwidths require long measurement times to process a
sufficient number of independent samples. Most often the signal is Gaussian; if a
fine-grained histogram of samples of the signal’s amplitude is scaled to make the
area below the curve equal to unity, the average curve will be the Gaussian
probability density function, fV)=(2nc") "> exp(—F*/2¢%). You can verify
(Problem 27.1) that ¢ is the rms value of ¥, i.e., o* is the power, (V). But total
power does not completely characterize the signal. A complete description is
contained in the power spectral density function, S(w), the distribution of power
vs. frequency. A set of bandpass filters and power meters, i.e., a set of radio-
meters, serves to measure points on the spectral density function (usually called
the PSD or simply the power spectrum). However, the simplest mathematical
definition of the power spectrum uses the signal’s autocorrelation function, R(z),
a function of time delay. The value of the autocorrelation function for a given time
delay, 7, is defined as the average value of the “lagged product”

R(x) = (V(1)- V(t+1)). (27.1)

For a signal whose characteristics are unchanging (a stationary process),
R(t)=R(—1). We will see that the Fourier transform of the autocorrelation function
is the power spectral density so, directly or indirectly, we describe the signal in
terms of sine-wave basis functions, i.e., we find the magnitudes (but here not the
phases) of a set of sine waves whose superposition has the same power spectrum
as the original signal. Why are sine waves preferred to other sets of basis
functions? Often the process under study is a spectral line which shows up
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clearly in a few adjacent Fourier coefficients (frequency bins) or a Doppler shift
which just displaces the spectrum. The frequency spectrum is clearly a natural
way to represent such signals. Of course we deal with sine waves all the time as
the characteristic functions of linear systems; a sinusoidal signal of a given
frequency remains a sinusoid with the same frequency after passing through any
arbitrary chain or network of linear elements such as amplifiers, filters, and
transmission lines. A variety of instruments have been developed for spec-
trometry. In approximate historical order, these include analog filterbanks,
autocorrelators, chirp-z spectrometers, Fourier transform spectrometers, and
acousto-optical spectrometers.

27.1 Filters and filterbanks

We have already seen the analog filterbank in Chapter 26, as part of a radiometer
bank. Usually the signal is converted down to a convenient intermediate
frequency, e.g., tens of MHz, and the filters are the various LC bandpass filters
discussed earlier or crystal filters or digital filters. A traditional disadvantage of
an analog filterbank spectrometer has been that it is not “elastic,” i.e., the filters
have a fixed width; if narrower or wider filters are needed, another filterbank
must be built. With high-speed digital-to-analog conversion and fast memory,
this restriction can be lifted by using an interesting spectral expansion techni-
que. Sequences of data are read into the memory at whatever slower rate is
needed and then played back at a higher rate into a single wideband filterbank.

27.2 Autocorrelation spectrometry

Autocorrelation spectrometers estimate the power spectrum by taking pairs of
samples with a given time separation, multiplying them, and averaging these
“lagged products.” (In Fourier transform spectral analysis the samples are
multiplied by sine waves but the resulting coefficients are squared before
averaging. In both cases powers, rather than voltages, are averaged.) When
the time separation is zero, the average lagged product is just the total power.
But if we measure other lagged products as well (where the time separation is
not zero), we can indirectly find the power spectrum because the autocorrelation
function (ACF) and the power spectrum form a Fourier transform pair:

R(z)e #*"dr (27.2)

Y
S
I
|
g 8T8

R(f):L / S(w)e™ do. (27.3)
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This relation, the Wiener—Khinchin theorem, is often used to define the power
spectrum. To see that S(w) as defined by Equation (27.2) agrees with our
intuitive ideas of the power spectrum, consider the single-channel radiometer
shown in Figure 27.1. The (in situ) voltage transfer function of the bandpass
filter is defined in the frequency domain by H(w)=V,(w)/V(w). The power
response function or filter shape is therefore given by |[H(w)[?, so we expect that
the time average of (V,)* will be given by

() = / (@) [H (@) (27)" do 27.4)

where S(w) is the spectral power density function. Note that (211) 'dw = df; the
power spectral density has units of watts/Hz.

Let us now show that the output of this radiometer is indeed given by
Equation (27.4), and that S(w) is given by Equation (27.2). We can express /),
in the time domain as

1

Vs(t) = / V(()h(t—1)dt, (27.5)

—00

where /(7), the impulse response function, is the inverse Fourier transform of
H(w)." The output of the squarer is then given by

(Vz(t))2:/ /V(z’)V(t”)h(t—t’)h(t—t”)dt’dt”. (27.6)

—00 —00

Since we assume V;,(f) is a stationary process, the value of ¢ is arbitrary. Let us
pick z=0, which gives

0 0
(Va(1))? = / / VW (Y h(—h(—Ydede.  @2717)

! The impulse function, A(7), is the filter output voltage at #, in response to a delta function input
at t=0. Note that /(¢) is real and that /(f)=0 for 1<0.
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From causality, 4(f)=0 for || <0, so the upper limits of integration can be
changed from 0 to infinity. Doing this, making a change of variable, ' =+ t,
and taking the time average, we find

oo o0

() = / / VAV (¢ + ) h(—E) h(—f — D)dfdr.  (278)

—00  —00

Using the definition of the ACF, R(7)= (V(t)/(t+7)), we find

(n()) = ] R(z) / W—h(—f —D)df|de.  (279)

Applying the convolution theorem,” the Fourier transform of the term in square
brackets is |[H(w)|*. Therefore, the bracketed term is the inverse Fourier trans-
form of |H(w)|* or

/h(—t’)h(—t’—r)dt’ :% / &' |H (w)|*dr. (27.10)

Substituting this expression into Equation (27.9) produces

(h0)?) = ] R(z) %T / 7| (@) Pded| dr. 27.11)

—00

Finally, interchanging the order of integration gives us

<(V2(t))2>:_7 H(w)| _/Oo U R(1)de| (27) " doo. 27.12)

After all this effort, we can now compare Equation (27.12) with Equation (27.4)
and confirm that the power spectrum defined by Equation (27.2) agrees with
what we would expect to measure with a bandpass filter followed by a squarer
and an averager. (Don’t worry about the sign discrepancy in the ¢ term in
Equation (27.12); since V5(f) and R(7) are real, we can replace this term by ¢ 7*.)

27.2.1 Hardware autocorrelators

A hardware autocorrelator is a special-purpose parallel signal processor that
calculates an averaged ACF, usually in real time. A single Fourier transform
operation in a computer then turns the ACF into the power spectrum with the
same number of frequency bins (points on the spectrum) as the number of points

2 If H(w) is the Fourier transform of /(z), then |H(w)|* is the Fourier transform of //(2)h(t+7)dt.
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Figure 27.3. Digital

autocorrelator. on the ACF. Autocorrelators use a simple expandable architecture. Figure 27.2

shows an analog version of the autocorrelator.

Figure 27.3 shows a digital autocorrelator. The analog delay line is replaced
with a digital shift register. The analog multipliers and averagers are replaced by
digital multipliers and accumulators.

https://doi.org/10.1017/CB09780511626951.028 PubiBRBIAER Rrelsina @ Garphigdge University Press, 2010


https://doi.org/10.1017/CBO9780511626951.028

380 Radio-frequency electronics: Circuits and applications

The autocorrelators of Figures 27.2 and 27.3 produce values only for discrete
points on the ACF. But, as long as the input signal is band-limited (usually by a
bandpass “anti-aliasing” filter), the spectrum can be represented as a Fourier
series, so sampled ACF points are sufficient to compute the continuous power
spectrum. In practice, however, we cannot measure an infinite number of points
on the ACF. The spectral estimate obtained by transforming ACF points that
extend only to 7.y, i.€., by transforming an ACF “windowed” with a rectan-
gular function that is unity for 7,,,, < 7 < 7,4« and zero outside this range,
produces a function which is the true spectrum convolved by the function sin(w
Tmax)/(® Tmax)- A sharp line in the spectrum therefore appears as a broadened
line, surrounded by sidelobes. It is common to apply a smoother windowing
function such as cos(’2m 7/7,,«) to reduce the sidelobes even though the main
load will be broadened — a trade-off between spectral resolution and leakage
between channels.

27.2.2 One-bit autocorrelation

One-bit autocorrelation is a technique that greatly reduces the complexity of the
digital circuitry. The input analog voltage is fed to a comparator whose output
(one bit) indicates the sign, i.e., the polarity, of the voltage. The continuous
range of analog voltages is compressed down to just two values: plus one and
minus one. (In the digital hardware, a digital “1” indicates a value of +1 and a
digital “0” indicates a value of —1.) The correlator’s delay line shift register
needs to be only one bit wide and the one-bit x one-bit multipliers can be
exclusive NOR gates, since the output of an exclusive NOR gate is + 1 when the
inputs are the same and —1 when they are different. The integrators that follow
the multipliers are simple counters. Although the output of a one-bit correlator is
a distorted version of the actual correlation function, the distortion can be
entirely corrected. Because the input signal has Gaussian amplitude statistics,
the output of the one-bit correlator turns out to be:

p1vi(t) = (2/m) sin”'[p(7)] (27.13)

where p is the normalized autocorrelation function: p(z) = R(z)/R(0) =R(z)/c”.
This functional relation was derived during World War II by J. H. van Vleck
while studying the spectrum of clipped noise. (Jammers can have much better
power efficiency if jamming with clipped noise works as well as jamming with
noise having Gaussian amplitude statistics.)

The averaged values from a one-bit autocorrelator can, therefore, be inverted
to get the true correlation function.

p(x) = sin[(x/2)p,_y(2))- (27.14)

A straightforward proof of the van Vleck relation (Problem 27.4) proceeds from
the Gaussian bivariate probability density,
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1 —1 X12 X1X2 X22)>
X1,X3) = ex — —2p——+——1 .
S, ) 2ro10,(1 —p2)1/2 p(2(1 —p?) <012 pmaz 07?2
(27.15)

Here x; and x;, are the voltages V(t) and V(t+7), so o1 =0, . One gives up some
radiometric sensitivity for the simplification of one-bit processing; the integra-
tion time has to be increased by a factor of 1*/4 compared to a correlator using
multi-bit quantization.

Several generations of digital correlators have been used in radio astronomy.
Custom CMOS correlator chips have thousands of lag channels and clock rates
above 100 MHZ. A variety of serial and parallel multiplexing techniques are
used to combine these chips to increase the number of lag channels and to
increase input data rates to several hundred MHZ.

27.3 Fourier transform spectrometry

Fourier transform methods are more efficient than autocorrelation spectrometry
simply because the FFT (Fast Fourier Transform algorithm) is an efficient way
to compute the DFT (Discrete Fourier Transform). Processing a sequence of N
data points requires on the order of N log(N) operations for an FFT vs. N?
operations for either autocorrelation or a brute force DFT.

27.3.1 DFT spectrometer

The Fourier transform is, by itself, a spectrometer. The DFT of a sequence of
voltages, V,, is given by

N-1
we =y Vye PN (27.16)
n=0
We can write this DFT in terms of time and frequency as

N—1
Uy = D Vi,e 3, 27.17)
n=0

where 1, = n/fsamplc and @ = 27k fsampic /N. Note that the transform is equivalent
to a bank of N pairs of frequency converters with sine and cosine L.O.s. The &-th
pair multiplies the input signal by cos(w ) and sin(w,f), thus shifting the input
band to place wy at zero frequency. For every converter, N consecutive multi-
plier output values are summed so one output value is produced every N/fsample
seconds. This summation is equivalent to lowpass filtering and decimation
(reducing the sample rate). Successive values of u; are, therefore, equivalent
to (complex) voltages from the signal at and around wy, after being shifted to
zero frequency and then lowpass filtered. When the input voltage is a random

https://doi.org/10.1017/CB09780511626951.028 PubiBRBIAER Rrelsina @ Garphigdge University Press, 2010


https://doi.org/10.1017/CBO9780511626951.028

382

XpsmN +®7ﬁﬂ R

Radio-frequency electronics: Circuits and applications

Unit delays

exp(-j 2 mnk/N) N-2 | N-2 ! 0
=Wnk _______
+ Xk, m
2
l N | | —— Averager —
(a)
Unit delays
e T E——
* D] D]
exp(—j 2 7nk/N) hyq h, ho
=Wnk _____________________________
+ Xk, m
2
l N | | — Averager —

Figure 27.4. (a) One channel of
a straight DFT spectrometer
(periodogram averager);

(b) filter channel using a longer
sum and with arbitrary weights
on the inputs to the summer.
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process, uy is also a random process. Its mean is zero. The squared magnitude of
u, represents power, and the set of points, {|ux/*}, is known as a periodogram.
To estimate the power spectrum of a random process, many periodograms must
be averaged together. Figure 27.4(a) shows one channel of a straight periodo-
gram spectrometer.

A shortcoming of the DFT spectrometer (periodogram averager) is that the
equivalent filter shape of each channel is not rectangular but, instead, has a
sin(x)/x form, due to the uniform boxcar lowpass filter weights inherent in the
DFT. It therefore suffers “leakage” from adjacent and even not-so-adjacent
channels. We saw the same problem with the autocorrelation spectrometer. There
are obvious remedies for this problem. The application of a weighting function
to the input data blocks to give relatively low weight to the data points near
the beginning and end of the blocks is equivalent to tapering the weights of the
low-pass filter and therefore reduces the amplitude of the filter sidelobes. Such
weighting, however, broadens the main lobe and increases the variance of the
spectral estimates, since the spectrum is estimated mostly from the data points
around the center of the data blocks. This loss of sensitivity can be remedied by
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computing periodograms from data blocks that overlap each other and including
these periodograms in the average. (Even with uniform data weighting, there is
a loss of sensitivity when periodograms are computed only from nonoverlap-
ping blocks of data.)

27.3.2 Combined FIR filter/DFT spectrometer

An “FIR/Fourier transform” spectrometer design that fixes the problems of the
DFT spectrometer begins with the filter channel shown in Figure 27.4(b). Like
the DFT filter, this filter channel will produce one output value for every N input
samples. But now, the mixer is followed by a lowpass FIR (finite impulse
response) filter which forms a running weighted sum of H successive mixer
output values by summing the numbers, weighted by factors, 4;, at the taps of a
digital delay line.® This would be the same as the DFT filter of the periodogram
if all the weights, /,, were equal to unity and the number of taps, H, were equal
to N. Here, however, the number of taps will be an integral multiple of N,
H=RN. This can be quite a large number, e.g., H=4 x 1024 =4096, and the FIR
filter can therefore produce a nearly ideal rectangular channel response. As with
the straight DFT spectrometer, the bandwidth reduction from lowpass filtering
lets us decimate the output of the summer, keeping only one sum per N-point
block of input data. Again, the magnitudes of the output of the summer must be
squared and averaged to form an estimate of the power spectrum. Note that,
because the filter window, H, is longer than the block length, N, the blocks
processed by the filter are overlapped; while one output value is produced for
every N input samples, the output values are produced from H input samples,
where H>N. We will designate the input voltage samples as x,,.. They enter in
blocks of N samples. The output of the summer is X} ,,, where m is the block
number and &, which runs from zero to N, designates the point on the spectrum.
Defining Was W=exp(—2= j /N), inspection of Figure 27.4 allows us to write

H—1
Xk,m — Z hn Wfk(mNJrn)me+n ) (27 1 8)
n=0

Now, since M — 1, we can rewrite this equation as

H—1

ka = Z hn Wiknmeﬁ-n- (27 19)
n=0

Let us next express n as rN + p where the index r goes from 0 to R—1, where
R=H/M, and the index p goes from 0 to M—1. Using this notation, we have

3 The finite (duration) impulse response is obvious; when an input sample makes its way down
the line and falls off at the end, it no longer contributes the output. A FIR filter can be given a
desired frequency response function by selecting the tap weights to form the desired impulse
function, i.e., the Fourier transform of the desired frequency response.
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Note that Equation (27.20) is just an N-point DFT of the term in brackets, and
that this term is independent of &, the frequency index. Consider this term for the
case where H=4N. The bracketed term is given by

( ) = thNm+p + hN+pXN(m+l)+p + h2N+pXN(m+2)+/1 + h3N+pXN(m+3)+/I'
27.21)

In the first term on the right-hand side, successive samples are multiplied by /4,
through /,-. In the second term, delayed samples are multiplied by %, through
hs,—1, and so on. An architecture that forms this bracketed term is shown in
Figure 27.5. Four multipliers are used, together with three delay lines, each of
length N. The set of H FIR coefficients is split into four sections, each of which
feeds one of the four multipliers in a continuous cycle. An adder sums the
products flowing from the multipliers. This preprocessor section feeds a standard
FFT block. This architecture is called a weighted overlap-add (WOLA) filterbank.
Another way of producing the bracketed term yields the polyphase filter bank [3].

27.4 I and Q mixing

In the discussions above, it was implicit that the spectrum of the band-limited
signal voltage, V(f), extends from zero to some cutoff frequency, B. This base-
band signal can be produced from an IF signal that has been bandpass filtered
and then down-converted to put the lower edge of the passband at zero fre-
quency. For digital spectrum analysis, the sampling frequency must be at least
2B to avoid aliasing (the stroboscope effect). In the case of the DFT spectrom-
eter and the improved WOLA version, the N channels extend in frequency from
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0 to the sampling rate, i.e., from 0 to 2B. Therefore, only the first N/2 output
channels can be used, since those channels correspond to the frequency range 0
to B. (The second N/2 channels will contain the same information; channel N—k&
will have the same data as channel £.) This effective waste of half the DFT
channels can be avoided with a technique known as complex sampling. In this
technique, the IF signal of bandwidth B is down-converted into baseband “/”
and “Q” (in-phase and quadrature) channels by using two mixers having L.O.
signals cos(w.f) and sin(w.f), where @, is the center of the IF band. We can
express the original IF signal in terms of the mixer outputs, /(¢) and Q(?), as

Vie(t) = 1(¢) cos(wct) + O(¢) sin(wet). (27.22)

To find the spectral value at the point @, + A, we must multiply (mix) the IF
voltage by e ¥ * 7 Carrying out this multiplication and ignoring terms of
frequency 2w,, we find

Vie()e 0 = [1(2) — jO(r)]e M. (27.23)

The term on the right-hand side is equivalent to mixing a complex-valued signal,
1(t)—jO(?), so that the spectral point at . + p is shifted to zero frequency. The
beauty of this is that both /(f) and O(f) have bandwidth B/2, since B/2 is the
greatest separation between w, and any point in the IF band. Therefore we can
feed 1(f)—jO(?) as a sequence of complex numbers to the straight DFT spectro-
meter or the improved WOLA version and the N output values will span the entire
bandwidth B. The spectrum from A =0 to B/2 will appear in the first N/2 channels,
while the spectrum from A= —B/2 to 0 will appear in the second N/2 channels.
When / and Q mixing is used in autocorrelation spectrometry, both autocorrelation
functions and cross-correlation functions are computed from the / and Q signals.

27.5 Acousto-optical spectrometry

The acousto-optical spectrometer (AOS) uses an optical crystal which becomes
a diffraction grating by virtue of mechanical waves (sound waves at radio
frequencies) propagating through it. These waves produce corrugations in the
refractive index along the length of the crystal. The waves are launched into this
Bragg cell by an electrical-to-acoustic transducer (usually a piezoelectric crys-
tal), driven by the IF signal to be analyzed. Figure 27.6 shows how the crystal is
illuminated by a laser and how a multi-element CCD array detects (and aver-
ages) the diffraction pattern.

The linear CCD array, like those used in supermarket checkout scanners,
accumulates charge along its length at a rate given by the incident light intensity.
For read-out, the charge packets are clocked down the length of the CCD in a
bucket brigade fashion. The voltage at the end of the array, which is propor-
tional to the charge at that position, is digitized and made available to the data-
taking computer.
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Figure 27.6. Acousto-optical A figure of merit for any spectrometer is its number of frequency bins, i.e., its
spectrometer (AOS). analysis range divided by its resolution. For the AOS, the effective number of

channels is given by the time—bandwidth product of the Bragg cell. To see this
we note that the angular size (in radians) of the light incident on the CCD is
given by Ajaser/Leen, the ratio of the laser wavelength to the length of the cell, just
as the beam size for an aperture antenna with diameter D is given by A/D. The
first-order diffraction condition (so that all the rays arrive in phase at the CCD)
is given by AgratingSING = 1 X Ajaser Where Agrating is the corrugation wavelength in
the cell. NoW Agrating can be written as veen/f where vee is the sound velocity and
f1s the input RF frequency. Approximating sin 6 by 6, we find the total angular
range over the total frequency range given by AG/Af= Ajaser/Veenl- The number of
channels is then given by the range divided by resolution,

o ﬂvlascrAchcll _ Leen
vcellilaser Veell

N

Af = TAf, (27.24)

where 7'is the propagation time through the length of the cell. The quantity 7 Af
is known as the time—bandwidth product of the cell. Materials used for Bragg
cells include quartz, lithium niobate, and glass. A spectrometer for radio
astronomy might use cells with a 200-MHz bandwidth and a time-bandwidth
product of one thousand.

27.6 Chirp-z spectrometry

The chirp-z spectrometer is shown in Figure 27.7. Also known as the microscan
or compressive receiver, it uses a dispersive filter and a swept L.O. While it
appears to be a swept spectrum analyzer, it is actually a multiplex analyzer. The
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filter has a group delay characteristic that is linear with respect to frequency. In
spectrometer.

Figure 27.7, the delay is greatest for frequencies at the low end of the filter band.
The local oscillator frequency is given a linear sweep or chirp, repeated in a
sawtooth fashion with period 7. The ramp rate of the L.O. (MHz/sec) is made to
be the reciprocal of the group delay slope (seconds per megahertz) of the filter.

Consider a continuous wave (cw) input signal. Since the L.O. is swept, the
mixer output will also sweep in frequency. In the case of a high-side mixer (L.O.
frequency above the input signal frequency), the mixer output sweeps up in
frequency at the same rate as the L.O. sweep. As the L.O. sweeps upward, the
first signals entering the filter are at the filter’s low-frequency end. These
signals, as they travel through the filter, are delayed the most. Frequencies
entering the filter farther up the sweep are delayed less. But all frequencies
arrive simultaneously at the filter output, producing a single sharp output pulse.
If the input signal consists of two cw tones, there will be two output pulses per
sweep. The position of the pulses in time will indicate the frequencies of the cw
input signals. Of course this linear system can handle any combination, i.e.,
spectrum, of input signals. The output data rate from the squarer is equal to the
input data rate so additional circuitry (the digital accumulator in Figure 27.7) is
required for signal averaging.

The principal application of chirp-z spectrometers has been in electronic
warfare — as surveillance receivers to sense radar or communication signals
over a wide spectrum and with a high probability of intercept. To find the
effective number of channels in this spectrometer we can first consider the
output pulse produced by a single cw input signal. This output pulse is produced
by a coherent superposition of frequencies over the entire bandwidth, B, of the
filter. The width of this pulse is therefore given by 1/B. Dividing the total output
time 7 by the pulse width, the effective number of channels is given by 7B, the
time—bandwidth product, just as with the Bragg cell spectrometer.

Dispersive filters used for chirp-z spectrometry are usually surface acoustic
wave devices. Piezoelectric transducers convert the input signal into mechanical
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surface waves and then back again to an electrical output signal. In one design,
diffraction gratings on the surface of the crystal are arranged to make the input-
to-output path length longer for low-frequency waves than for higher frequency
waves. Surface-wave dispersive filters can have bandwidths of hundreds of
MHZ and time-bandwidth products of several hundred. Dispersive filters are
also made from charge-coupled devices (CCDs). Generically these filters are
allpass networks and the first dispersive filters were cascades of many second-
order allpass sections. (The number of sections required is equal to the time—
bandwidth product.) Note: the filters are not just allpass networks; they are
usually given some amplitude “taper,” i.e., the amplitude response is made to
roll off at the band edges, in order to eliminate the “sidelobes” of the instru-
mental function that result from uniform amplitude response. The same is done
with the AOS; the transmission of the Bragg cell is reduced near the ends.

Problems

Problem 27.1. For the Gaussian probability density, AV)=(2n6%) " exp(—V*/24%),

verify that
/f(V)dV:l and /f(V)VZdV:az.

Problem 27.2. (a) The noise-like signals observed in radio astronomy can be modeled
as a comb of delta functions in frequency space — a picket fence of sine waves. Use your
computer to generate 50 sine waves spanning the angular frequency range 1.00—1.10. Let
these frequencies be somewhat random, e.g., w,= 2n(1+0.002n +0.05 md(1)) where
rnd(1) is a random variable in the range zero to one. Give each sine wave a random
starting phase, ¢,, = 10 md(1). Plot the sum of the sine waves as a function of time for t=0
to =20 using a time interval of 0.1. This narrowband spectrum should look quite
sinusoidal but with a slowly varying phase and amplitude.

(b) Repeat this exercise but with the angular frequency range extending from 1 to 2,
i.e., w,=2n(1+0.057 + 0.05 rd(1)). This wideband spectrum should look like random
noise.

(c) In either case, (a) or (b), the resulting voltage (sum) behaves like a random variable
with Gaussian statistics. Plot a histogram of voltage samples to verify this.

Problem 27.3. Suppose a random signal is produced by applying an ideal lowpass
filter to white noise. The resulting power spectrum is flat from dc to the filter cutoff
frequency w.. Show that the normalized autocorrelation function is given by p(zr)=sin
(0 0)/(w¢T).

Problem 27.4. Derive the VanVleck relation, Equation (27.13), that gives the one-bit
autocorrelation function in terms of the (normalized) autocorrelation function. Use the
bivariate Gaussian probability density function, Equation (27.15), where x; and x,
represent the voltages V(¢) and V(¢+7), and o, =0,. Since the product sign(x;) sign(x,)
is equal to +1 in the first and third quadrants and —1 in the second and fourth quadrants,
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the expectation of sign(x;) sign(x,) is the integral of fix;,x,) over x; and x,, weighted
by +1 or —1 according to the quadrant. Hint: change to polar coordinates and keep a table
of integrals handy.

Problem 27.5. If the dispersive filter used in the chirp-z spectrometer or pulse com-
pression radar is given an impulse (delta function in time), what sort of output waveform
does it produce?
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