CHAPTER

Transmission lines

We draw circuit diagrams with “lumped”’components: ideal R’s, C’s, L’s, tran-
sistors, etc., connected by lines that represent zero-length wires. But all real wires,
if not much shorter than the shortest relevant wavelength, are themselves com-
plicated circuit elements; the current is not the same everywhere along such a
wire, nor is voltage uniform, even if the wire has no resistance. On the other hand,
when interconnections are made with transmission lines, which are well-
understood circuit elements, we can accurately predict circuit behavior. In this
section we will consider two-conductor lines such as coaxial cables and open
parallel wire lines. “Microstrip lines” (conducting metal traces on an insulation
layer over a metal ground plane) behave essentially in the same way, but they
have some subtle complications, which are mentioned in Appendix 10.1.

10.1 Characteristic impedance

The first thing one learns about transmission lines is that they have a parameter
known as characteristic impedance, denoted Z,. How “real” is characteristic
impedance? If we connect an ordinary dc ohmmeter to the end of a 50-ohm
cable will it indicate 50 ohms? Yes, if the cable is very long, so that a reflection
from the far end does not arrive back at the meter before we finish the measure-
ment. Otherwise, the meter will simply measure whatever is connected to the far
end, which could be short, an open circuit, or a resistance. However, using a
pulse generator and an oscilloscope, you can easily make an ohmmeter set-up
that is fast enough that, even for a short cable, you can determine V;, and /;, and
then calculate Viy/I;, = Z,.

To make a theoretical determination of Z,, we first model the transmission
line as a ladder network made of shunt capacitors and series inductors, as shown
in Figure 10.1.
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Figure 10.2. Capacitance and
inductance per unit length.

To see that this model is reasonable, consider Figure 10.2(a), which shows the
electric field lines in a length of coaxial cable connected to a voltage source. The
field lines are radial and their number is obviously proportional to the length of
the cable, so that capacitance per unit length is a constant. Likewise, a current
through the cable (b) sets up a magnetic field, so another characteristic of the
cable is its inductance per unit length. We will follow common convention and
use the symbols C and L to denote capacitance and inductance per unit length.
That convention is obvious when capacitors and inductors are labeled, respec-
tively, Cdz and Loz, where oz is a short increment of length along the z-axis, i.e.,
parallel to the cable.

Every increment of a transmission line contributes series inductance and
shunt capacitance; the ladder network shown in Figure 10.1 models a real
transmission line in the limit that dz goes to zero. For some situations, e.g.,
baseband telephony and digital data transmission through long cables, the
model must also include series and shunt resistance. At radio frequencies,
however, the series reactance is usually much greater than the series resistance
and the shunt reactance is usually much less than the shunt resistance so both
resistances can be neglected. (See Problem 10.3.)

To see that Z,>=L/C, consider the circuit of Figure 10.3, where we have
added another infinitesimal LC section to the model transmission line, which is
either infinitely long or terminated with a resistance equal to the characteristic
impedance, so as to appear infinitely long. After adding the section, the line is
still infinitely long and the impedance looking into it must still be Z,. If the
voltage and current at the input of the line were Vand 7, they will be modified
to become V+JV and /+0 [ at the input to the new section. (This does not imply
an increase in power; V+JV and /40 I are merely phase-shifted versions of V'
and /.)

Since the impedance looking into the line must stay the same, we have

V+ov vV

Taol 1 (10.1)
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Figure 10.3. Adding another
infinitesimal section must leave }_’ 2 }—> Z
Z, unchanged. Y I
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from which 6V/ol=VII=Z,.

Using this, and substituting 6/=(Codz) dV/dt and 6V=(Ldz) d/d#([+o]) and
ignoring the vanishingly small 0z 6/ term, we have

oV Loz(joI) L __,
Zy :E:—Céz(jwV) :EZO . (10.2)

Looking at the first and last terms of this equation, we see that Z, = (L/C)">.
Note: you can verify that, because dV and d/ are infinitesimal, the above
equations are the same if the network starts with a capacitor instead an inductor.

To evaluate Z,, it is sufficient to know either L or C, since it follows from
electrodynamics that they are related by LC=¢,/c* where &, is the dielectric
constant (relative to vacuum), and c is the speed of light. This relation between L
and C holds for any two-conductor structure with translational symmetry such
as an unlikely transmission line consisting of a square inner conductor inside a
triangular outer conductor.

For a coaxial transmission line, C=2zxe&, /In(b/a) farads/meter, where a and
b are the inner and outer radii and &, the “permittivity of free space,” is equal to
(4rx1077¢*) "', Using this, together with the relation LC=g/c?, gives us
Zo=(&;) " 60 In (b/a). Note that Z, depends on the ratio a/h, but not on the
size of the cable.

10.2 Waves and reflected waves on transmission lines

We will use a simple ac analysis to show that an applied sinusoidal voltage
causes a spatial voltage sine wave to propagate down the line: Let us apply a
voltage ¢’ and find the voltage drop across an incremental length of line (see
Figure 10.4).

Since we already know the input impedance is Z, the input current must be
V/Zy and the voltage across the inductor can be written 0V = — (V/Zy) (jowLoz).
But this is just the differential equation

dv L
— = —jo—V = —joVLCV. 10.3
&= “7 Jo (10.3)
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Figure 10.4. Finding the change
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The solution to this familiar equation is
V = Ve VG = e where k = wVILC, (10.4)

where V;is a constant, the amplitude. The constant & is known as the propaga-
tion constant and is the number of radians the wave progresses per unit length.
The wave therefore repeats in a distance (the wavelength) given by 1=2x/k.
Since V/I=Z,, the current along the line is also a wave: / =(Vf/Zo)e7ij. If we
include the otherwise implicit multiplicative time dependence factor ¢, the
voltage is

v erjwte_jkz _ erj(wt—kz). (10.5)

This is just a sine wave running in the forward z-direction. The complex
exponential now contains space as well as time but, as always, the physical
voltage is the real part, i.e., Re[ V‘,-ej(‘“’*/“)] which is a weighted superposition of
sin(w? — kz) and cos(wt—kz). For a point of constant phase, wf—kz = constant,
we have 0z/0t = w/k. This velocity, w/k = c/\/&, is known as the phase
velocity, Vphase- Figure 10.5 shows a forward-running wave on a coaxial cable.
The electric and magnetic field lines are drawn only at the points where they
reach their peak values. A graph shows the spatial distribution. Everything has
the same phase, i.e., the voltage, current, and charge density all rise and fall
together along the z-axis. Note that a wave of amplitude V transfers power at a
rate |V[*/(2Z,).

A transmission line can equally well support waves running in the negative
z-direction. If we had assumed a current in the (—z)-direction, the phase
would progress as wt+kz. A transmission line in a circuit operating at a
frequency w will, in general, have both a forward wave and a reverse wave.
The waves have complex amplitudes, Vyand V,, each containing magnitude
and phase. Of course both waves have the same frequency and propagation
constant. We regard current as positive when it is in the (+z)-direction, so the
current of a forward wave is I (z,£)=V{z,t)/Z,, but the current of a reverse
wave is I, (z,f)=—V,(z,t)/Z,, since the reverse wave is traveling in the (—z)-
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Figure 10.5. Forward wave on a
transmission line.

direction. Together, the forward and reverse waves are, in general, equivalent
to a stationary (standing) wave plus a single propagating wave.

Note also that the phase velocity is independent of w; there is no
dispersion in this kind of lossless transmission line. Therefore, if we apply
an arbitrary voltage waveform, V,,(7), at the input to the line, this waveform,
considered as a Fourier superposition of sine waves, will propagate down the
line without distortion. At any point z, the voltage will be Vy(f—2/Vphase),
a delayed but undistorted version of the input signal. For example, if, at
t=0, we connect a dc voltage to the line, a step function propagates down
the line.

The electrical length of a line is the phase change imparted by the line. For
example, a “quarter wave line” imparts a 90° phase shift, k&/=7/2, and therefore
I =n/(2k) = nc/Qw\/&) = (c/f)/(4\/er) = 1/4(A0/ /&), Where A is the

wavelength in free space.

Standing waves

When both a forward and a reverse wave are present on a transmission line
the voltage along the line, which is the sum of the contributions from the
two waves, forms an interference pattern or standing wave. To see this, let
Wz, 0)= Ve ")+ 1,61 %) The real parts of these two rotating phasors will
be in phase at points along the transmission line which are separated by /2. At
these points, the magnitude of the sum will be |Vj+|V,|. Halfway between
these points, the real parts of the phasors will be out of phase and the
magnitude of the sum will be ||V){—|V,||. The ratio of these maximum and
minimum voltage magnitudes is called the voltage standing wave ratio:
VSWR=(V|+|V.)[Vi=IV,|. If |Vj=]|V,| there is only a standing wave and
the VSWR is infinite. When |V #|V,|, the weaker one, along with an equal
portion of the stronger one, form a standing wave, leaving the remainder of the
stronger one as a travelling wave.
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10.3 Modification of an impedance by a transmission line

From the discussion above, you can see that a transmission line terminated by a
resistor of value Z, will always present an input impedance of Z,. But a piece of
transmission line that is terminated with an arbitrary impedance, Z # Z,, as
shown in Figure 10.6, will produce a modified (“transformed”) impedance, Z'.

This figure shows a line of length / whose right-hand end (z=0) is connected to
some impedance Z; (L denotes “load”). Assume that some constant ac source
produces a constant incident wave traveling to the right, Vjefjkz (we will not bother
writing the always present factor ¢), and that Z; causes a constant reflected
wave, I’ V,e’kz, to travel to the left.' The factor /" is known as the reflection
coefficient. At any point, z, the voltage on the line is V(z)= erfjkz +I erjkz. The
corresponding current is /(z)= (Vj/ZO)(efij— I'¢*®). The minus sign occurs
because the current in the reflected wave flows in the negative z-direction. At
the right-hand end (z=0), the load ensures that /(0)/1(0)=Z; . This will giveus I":

) _  (14T1) Z_(+0) o (Z-Z)
0 A0 * noa-n ™ N @)
(10.6)

Putting this expression in Equation (10.6) for I, together with the expressions
for V(z) and I(z), we can immediately find V(—/)/I(—/) which is what we are after,
i.e., Z', the input impedance at a point / to the left of the load:

V=D e iK1 | Teik(-1)
1(—1) e k(=D /Z() — Fejk<—'>/Zo
(ZL + Zo)ejkl + (ZL — Z())efjkl
=7 - -
(ZL -+ Z())G]kl — (ZL - Z())efjkl
or
, ZL +_]ZO tan(kl)
' =7y———.

Zy+ 721 tan(kl) (10.7)

Figure 10.6. An impedance is 72| 7=0

modified when seen through a L *

transmission line. V(z) = eikz 4 Teikz
[ L
|—>( ) Z :—»
4

@)= e - el
4 2

! Since everything is linear, superposition holds and the incident and reflected waves do not
collide or interact in any way. They simply pass through one another unaltered. At any point, the
current is the sum of their currents and the voltage is the sum of their voltages.
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This important result, the modification of an impedance Z; by a length / of
transmission line, is not hard to remember; it has no minus signs and is
symmetric. Just remember (1+j tan)/(1+j tan). Once you have written this
framework, you will remember how to put in the coefficients. Some important
special cases are listed below:

e IfZ, =7, then Z'=Z, for any length of line.

e IfZ; =0 (ashort) then Z' = jZytan(kl), a pure reactance, which is inductive?
for kI <#/2, then capacitive, etc.

e If Z; =infinity (an open circuit) then Z'= Zy/jtan(kl) which is capacitive for
kl<m/2, then inductive, etc.

e An impedance is left unchanged by a line of arbitrary Z, whose length is a
half-wave (kz=) or any integral multiple of a half-wave.

e A quarter-wave line (kz=7/2) or an odd multiple of a quarter-wave line, inverts
an impedance: Z'=Z,%/Z;. A short is transformed into an open and an open
into a short, an inductor is transformed into a capacitor and vice versa, etc.

10.4 Transmission line attenuation

In a lossy transmission line, i.e., a line that causes attenuation of the signal, the
¢ % or ¢ spatial dependence of the wave is replaced by e I ¢ * = ¢ k%=
(forward wave) or ¢ ¢ =el* %7 (reverse wave), where « is the attenuation
constant. In a distance 1/a, the amplitude falls by a factor 1/e and the power falls
by a factor (1/e)*. Note that k for a lossless line is simply replaced by k—ja, i.e.,
the propagation constant becomes complex. You can put this complex & into the
“tan tan” formula to see how an impedance is modified by a lossy cable.

Transmission line attenuation is usually expressed in units of dB/meter. To
find a for a line whose loss is A} dB/m, note that, since the amplitude falls by a
factor ¢ “! in 1 meter, we can write —4; =10 log (e “")? =—20a log(e) from
which a=A41/(20 log(e)).

10.5 Impedance specified by reflection coefficient

We have seen that an impedance Z produces a reflection coefficient given by
I'=(Z-2y) / (Z+Z,). This relation is easily inverted, Z=Z,(1+I')/(1-T), so
there is a one-to-one mapping between Z and I. In antenna and microwave
work, especially when using S-parameter analysis (Chapter 28), it is customary
to think in terms of I, rather than Z.

One big advantage of working in the complex I'-plane is that the modification
of an impedance (represented by its equivalent I') is extremely simple. The

2 Note that “inductive” does not mean equivalent to a lumped inductor since Zotan(k7) = Zytan(cw!/
Vphase) 18 Not proportional to e, except for small /. Likewise, a short open-ended line is not
equivalent to a lumped capacitor, except for small //vypase-
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reflection coefficient for the given impedance as seen through a length / of
transmission line is just

" =Te (10.8)

which means we simply rotate the point clockwise around the origin (I'=0) by
an angle 2kl to give I'', the modified reflection coefficient. This is easy to see:
when we add a length of cable, the incident wave’s phase is delayed by 4/ getting
to the end of the cable and the reflected wave is delayed by the same 4/ getting
back again. The effect of a cable is therefore to rotate the complex number I'
clockwise by an angle 2k (Since the time dependence is &, the round-trip
time delay is a clockwise displacement.) Keep in mind that the I'-plane is a
complex plane but that it is not the R+jX plane. Let us look at a few special
points in the I'-plane.

1. The center of the plane, I'=0, corresponds to a reflected wave of zero
amplitude, so this point represents the impedance Z, +j0.

2. The magnitude of I (radius from the origin) must be less than or equal to
unity for passive impedances. Otherwise the reflected wave would have
more power than the incident wave.

3. The point I'=—1+j0 corresponds to Z=0, a short circuit.

4. The point I'=1+j0 corresponds to Z= 0o, an open circuit.

5. Points on the circle |I'| = 1 correspond to pure reactances, Z= 0+jX. All points
inside this circle map to impedances with positive nonzero R.

6. The point I' =0+j1 corresponds to an inductance, Z = 0+jZ,. All points in
the top half of the I'-plane are “inductive,” i.e., Z= R+j|X] or, equivalently,
Y=G—jB|.

7. The point I'=0—j1 corresponds to a capacitance, Z=0—jZ,. All points in the
bottom half of the I'-plane are “capacitive,” i.e., Z=R—j|X] or, equivalently,
Y=G+j|Bl.

These special cases of mapping of Z into I" are shown in Figure 10.7.

In the I'plane, if you plot I'=R +j.X, where R is a constant and X varies, you
will get a circle centered on the real axis and tangent to the line Re(I') =1. For
every value of R there is one of these “resistance circles.” The resistance circle
for R=0 is the unit circle in the I'-plane. The resistance circle for R=oc0 is a
circle of zero radius at the point I' = 1+j0. Likewise, if you plot I'(R+j.X) where X
is a constant and R varies, you will get “reactance circles” centered on the line
Re(I)=1 and tangent to the line Im(I')=0. These circles are shown in
Figure 10.8.

If you now trim the circles to leave only the portions within the [I'| =1 circle
(corresponding to passive impedances, i.e., impedances whose real part is

3 If the line is lossy, the magnitude of I" decreases as it rotates around the origin, forming a spiral.
For a long enough length of lossy line, I spirals all the way into the origin producing Z=Z,, no
matter what value of Z terminates the far end of the cable.
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Figure 10.7. Impedances Im(I)
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positive) you are left with a useful piece of graph paper, the famous Smith chart,
shown in Figure 10.9.

The circular R and X “axes” on the Smith chart allow you to locate the I'-point
that corresponds to Z=R+j.X. We have already seen that when we have located an
impedance on the I'-plane, we can find how that impedance is modified by a
length of transmission line (whose Zj is the same as the Z; used to draw the
chart) by rotating the point clockwise around the origin. We simply rotate the
point clockwise around the origin by an angle equal to twice the electrical length
of the line. The values of R and X corresponding to the rotated point can be read
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Figure 10.9. The Smith chart -
resistance and reactance circles
on the I™-plane.

Figure 10.10. Conductance and
susceptance circles.

Radio-frequency electronics: Circuits and applications
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off the chart’s R and X “axes.” We can also use the chart to find how an
impedance is modified by adding a series R or series X. In this operations, the
Smith chart can be considered something of a calculator. Note that the Smith
chart can also be made with G and B “axes”. As you might guess, these produce
“G circles” and “B circles” as shown in Figure 10.10.

Sometimes the Smith chart contains G and B circles as well as R and X circles.
This full-blown chart, which can be quite dense, is shown in Figure 10.11.
Again, remember the Smith chart is actually a rectangular graph of T'; the x-axis
is Re(T") and the y-axis is Im(I"). Because only the area inside the circle [[]=1,
i.e., x>+y*=1, is used, the Smith chart resembles a polar graph. And, indeed,
when we rotate a point around the origin to how a transmission line modifies an
impedance, we are using it in a polar fashion. Sometimes the Smith chart is
scaled for a specific Z, (usually 50 ohms or 75 ohms). Other charts are normal-
ized; the R=1 circle would be the 50-ohm circle if we are dealing with 50-ohm
cable, etc.

https://doi.org/10.1017/CB09780511626951.011 PubiBRBIAGR Rrelsying @ Garphidge University Press, 2010


https://doi.org/10.1017/CBO9780511626951.011

11 Transmission lines

Figure 10.11. Smith chart with
R, X, G, and B circles.

Re(p)

10.6 Transmission lines used to match impedances

Designing a matching network becomes an exercise in moving from a given I'
to a desired I'"" in the reflection plane. Working graphically, it is often easy to
find a matching strategy. Let us use the Smith chart and revisit the 1000-ohm-to-
50-ohm matching circuit example of Chapter 2.

—_—

=12.6°

1/2 (25.2°) ‘4_

1000

Figure 10.12. Conversion from
1000 ohms to 50 ohms -
transmission line and inductor
circuit.

I. The starting impedance, 1000 ohms, and the final target impedance,
50 ohms, are indicated on the chart in Figure 10.12. Also shown is the
50-ohm circle. We can use a (50-ohm) transmission line to move along the
dashed circle until we reach the 50-ohm circle. Now we have R =50 plus a
capacitive reactance. A series inductor will cancel the capacitive reactance,
taking us to Z=150+j0 (the center of the chart).

II. Another solution (Figure 10.13) would be to use a longer piece of cable to
circle most of the chart, hitting the 50-ohm circle in the top half of the plane.
At this point we have Z=50+ jX where X is positive (inductive). We can
add a series capacitor to cancel this X and again arrive at Z=50 +0.
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Figure 10.13. Transmission line
and capacitor matching circuit.

— 3348°2 —
=167.4°
X=-212.5

Figure 10.14. Series and shunt
transmission line matching
circuit.

I.

Iv.

So far we have only used series elements. Let us now start by traveling
around to the G=1/50 circle. Then we can add a shunt element to reach the
center of the chart. The first intersection of the G =1/50 circle is in the lower
half-plane (capacitive) so, to get from this point to the center, we need a
shunt inductor. Instead of a lumped inductor we might use a shorted length
of transmission, as shown in Figure 10.14, to make a matching circuit using
only transmission line elements.

Figure 10.15 shows a solution that uses no transmission line. We start on the
G =1/1000 circle, at G=0. If we apply shunt reactance we can move along
this circle. Let us pick shunt inductance which will move us upward along
the G circle to the 50-ohm circle. We now have R =50, but there is inductive
reactance. As in the above example, we can now cancel the inductance
reactance with a series capacitor. This is just the L-network found in
Chapter 2.

If we had used shunt capacitance rather than shunt inductance, we
would have moved downward to the 50-ohm circle, as shown in
Figure 10.16. The remaining series capacitance can be cancelled with
an inductor. This produces an L-network where the positions of the L
and C are reversed.
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Figure 10.15. LC matching
network.

Figure 10.16. CL matching
network.

Figure 10.17. An impedance-
admittance chart.

Transmission lines
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| Constant Xline
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In these examples, our final impedance was at the center of the chart (Z=50+j0),
but you can see that these techniques allow us to transform any point on the chart
(i.e., any impedance) into any other point on the chart (any other impedance).
The Smith chart is a favorite because it handles networks that include trans-
mission lines as well as inductors and capacitors. If we did not care about
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transmission lines, then any chart that maps R, X into G, B would do. For
example, take the R, X plane (half-plane, since we will exclude negative R).
Draw in the curves for G = constant and B = constant. The resulting chart, shown
in Figure 10.17, can be used to design lumped element L, C,R ladder networks,
such as the networks of Figures 10.15 and 10.16.

Appendix 10.1. Coaxial cable - Electromagnetic analysis

This chapter began with a derivation of Z; based on an equivalent lumped-
element circuit model of a transmission line. That derivation required only
elementary ac circuit theory, but is a rather indirect approach to what is really
a problem in electromagnetics. Even then, some electromagnetic theory is
needed to derive the expressions for capacitance and inductance per unit length.

An electromagnetic analysis of a coaxial transmission line is presented here
for the reader who has some familiarity with Maxwell’s equations. We make use
of the fact that the propagation velocity of a TEM wave® is given by v=(ue)” "2,
where u is the magnetic permeability and ¢ is the electrical permitivity of the
material through which the fields propagate.’

To find the impedance of the coaxial line, we will first assume that the current
on the inner conductor is given by /= I, cos(wt—kz), which is a wave traveling in
the (+z)-direction. This is illustrated in Figure 10.18.

Figure 10.18. Transmission line
element.

Inner conductor

\ Outer conductor
Gaussian pillbox

We will then proceed to find the charge density, the electric field, and then the
voltage, which will have the form ¥ cos(wt—kz). Once we have the voltage, the

In a TEM wave, by definition, both the electric field and the magnetic field are transverse, i.e.,
perpendicular to the direction along which the wave propagates. In most applications of coaxial
cables and parallel-wire transmission lines, the wavelength is much greater than the transverse
dimensions of the line and only TEM waves can propagate. Waves in free space are also TEM
waves.

To find the propagation velocity of a TEM wave: The variables ¢ and z appear in E,, E,, B,, and B,
only in the factor &) Using the condition E.=0, the x-component of the Maxwell equation
curl(E)=—0B/0t gives us B, =—(klw)E,. Likewise, using the condition B,=0, the y-component of
the Maxwell equation curl(B/u) = 0(¢E)/0t gives us B, =—(wue/k)E,. Equating these two
expressions for B, gives K= w’ue.

[
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characteristic impedance is simply given by Vy/l,. (Note that the current in the
outer conductor is just the negative of the current in the inner conductor.)

Consider an incremental segment of the inner conductor from z to z + dz. The
rate at which charge accumulates on this element is /0t (py )dz, where py is the
charge per unit length. But the rate at which charge accumulates in Jz is nothing
more than the difference between the current flowing into Jz and the current
flowing out of dz. Therefore, we can write

opp _ 0l

Er —k Iy sin(wt — kz). (10.9)
Integrating dp;/d¢ with respect to time gives us the linear charge density
(coulombs/meter):
1 kly
pi(z,t) = — (kly cos(wt — kz)) = — cos(wt — kz). (10.10)
1) 1)

Now that we know the charge density, we can find the electric field. The field is
radial with field lines like spokes of a wheel. Imagining a Gaussian “pillbox” of
radius 7 and height Jz around the center conductor, we use Gauss’s law: the
integral of the E field over the sidewall surface must be equal to the enclosed
charge divided by &:

1
E(r,z,t)(2ardz) = —p,(z, t)dz. (10.11)
€

Substituting for 1 and solving for £, we have

E(r,z,1) = ocostot = k2) (10.12)

2nrem

Integrating this electric field from »=a to »= b gives us the voltage between the
inner and outer conductors:

b
Vizt) = / E(r,z, t)dr = 0.008(@! — k) In(b/a) (10.13)

2wew

a

Finally, we divide V{(z,7) by I(z,¢) to get the characteristic impedance:

V(z,t) kln(b/a) In(b/a) 1 su\1/2
L= I(z,1) T 2mew | 2mev 27 (g> In(b/a), (10.14)
which is the same as the result we obtained using the 0L JC ladder network
equivalent circuit.

This derivation (as well as the LC derivation) for Z, is for TEM waves, where
both E and H are perpendicular to z. For TEM solutions to exist, the line must be
uniformly filled with homogenous dielectric material or vacuum. The dielectric
can be lossy, but the metal conductors must, strictly speaking, have no resist-
ance. In practice, these conditions are usually not satisfied perfectly, and the
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waves will be slightly different from the TEM waves corresponding to ideal
conditions. In particular, the waves will have a small E, or H. field, or both.
Microstrip lines are a case of nonuniform dielectric; some of the E-field lines
arch through the air above the conductor, before plunging through the dielectric
to the ground plane. The wave must have a unique phase velocity, but (ue) '’
has one value in the air and another value in the dielectric. The waves, therefore,
cannot be TEM. They turn out to have both E, and H, components. Known as
quasi-TEM waves, they show some frequency dependence in both Zy and vypase,
which can be important at millimeter-wave frequencies. Closed form expres-
sions have not been derived for a microstrip; designers find Z, and vppaee
vs. frequency by using graphs or approximate formulas based on numerical
solutions of Maxwell’s equations.

Problems

Problem 10.1. A common 50-ohm coaxial cable, RG214, has a shunt capacitance of
30.8 pF/ft. Calculate the series inductance per ft and the propagation velocity.

Problem 10.2. (a) Use the “tan tan” formula to show that a short length, Jz, of
transmission line, open-circuited at the far end, behaves as a capacitor, i.e., that it
has a positive susceptance, directly proportional to frequency. Express the value of
this capacitor in terms of the cable’s capacitance per unit length. (Hint: tan(0) ~ 6
for small 6.)

(b) Show that a short length, dz, of transmission line, short-circuited at the far end, acts
as an inductor, i.e., that it has a negative susceptance inversely proportional to frequency.
Express the value of this inductor in terms of the cable’s inductance/unit length.

Problem 10.3. (a) Find a formula for the characteristic impedance of a lossy cable
where the loss can be due to a series resistance per unit length, R, as well as a parallel
conductance per unit length, G. R represents the ohmic loss of the metal conductors while
G represents dielectric loss.

4 4

T —

Gdx 777|— CSx

| dx |
| |

Hint: You can generalize the result for the lossless cable by simply replacing L by
L+R/(jw) and C by C+G/(jw).

(b) Find the formula for the propagation constant & of this lossy cable. Hint: apply the
substitutions given above to the formula k = w+/LC. What distance (in wavelengths) is
required to reduce by 1/e the power of a signal at frequency w; if R/(w;)=0.01L?
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Problem 10.4. If the (sinusoidal) voltage, ¥, and current, /, at the right-hand end of a
transmission line are given, find the corresponding voltage, V7, and current, /', at the left-
hand end.

' "

Hint: assume the (complex) voltage on the line is given by V(¢)= Vye I° + Vge!®. The
corresponding current is given by Zyl(¢)= Ve 9 — Ve, Let ¢ =0 at the right-hand end.
Show that Vg=(V+1Zy)/2 and Vg =(V—1Zy)/2. Then show that, at the left-hand end,
where ¢=—6, that V'= Vcosf +1Z j sinf and I'=Icosf + jsiné V/Z,.

Problem 10.5. Use the results of Problem 10.4 to upgrade your ladder network
analysis program (Problem 1.3) to handle another type of element, a series lossless
transmission line. Three parameters are necessary to specify the line. These could be the
characteristic impedance, the physical length, and the velocity of propagation. For
convenience in later problems, however, let the three parameters be the characteristic
impedance (Z,), the electrical length (6) in degrees for a particular frequency, and that
frequency (fy). A 50-ohm cable that has an electrical length of 80° at 10 MHZ would
appear in the circuit file as “TL, 50, 80, 10E6.” For any frequency, f, the electrical length
is then 8= 0y//f).

Example answer: For the MATLAB program shown in Problem 1.3, insert the
following lines of code in “elseif chain”:

elseif strcmp (component,'TL')==1

ckt_index=ckt_index+1; ZzO=ckt{ckt_index}; %characteristic impedance
ckt_index=ckt_index+1; refdegrees=ckt{ckt_index};%electrical length
ckt_index=ckt_index+1l; reffreq=ckt{ckt_index}; satref. frequency
eleclength=pi/180"f (i) (refdegrees/reffreq) ;

I0ld=I; I=I"(cos(eleclength))+V*(1j/zZ0"sin(eleclength));
V=V"(cos(eleclength))+13"20"Iold* (sin(eleclength));

Problem 10.6. Use your program to analyze the circuit of Figure 10.13. Assume a
design frequency, say 1 MHZ, in order to determine the value of the capacitor. Run
the analysis from 0 to 2MHz. Then make the transmission line 360° longer and
repeat the analysis. What form will the response take if the transmission line is made
very long?

Problem 10.7. A 50-ohm transmission line is connected in parallel with an equal
length transmission line of 75 ohms, i.e., at each end the inner conductors are connected
and the outer conductors are connected. The cables have equal phase velocities. Show
that the characteristic impedance of this composite transmission line is given by (50-75)/
(50+75), i.e., the characteristic impedances add like parallel resistors.
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Problem 10.8. In the circuit shown below, the impedance, Z, is modified by a trans-
mission line in parallel with a lumped impedance, Z;, which could be an R, C, or L or a
network.

Z’—»l

Show that the admittance looking in from the left, Y’ =1/7', is given by

2Y; YY

Y +iYotan6+ (2Y, ——L +i—"Ltano
i*Y/*Y cos 6 Yo
z Yo +jY tan @ + (jY; tan )

Hint: extend the argument used in the text to find Z' for a cable without a bridging
lumped element. Assume a forward and reverse wave in the cable with amplitudes 1 and
I. The voltage on the cable is then V(z)=¢" (¢ 7 + T&*) and the current is
I(2)=Zy 'é*" (7 — '), The current into Z is the sum of the current from the cable
and the current from Z; while the current into the circuit is the sum of the current into the
cable and the current into Z;.

Problem 10.9. Using a 50-ohm network analyzer, it is found that a certain device,

when tested at 1 GHz, has a (complex) reflection coefficient of 0.6 at an angle of —22°

(standard polar coordinates: the positive x-axis is at 0° and angles increase in the

counterclockwise direction).

(a) Calculate the impedance, R+jX.

(b) Find the component values for both the equivalent series R Cy circuit and the
equivalent parallel R,C, circuit that, at 1 GHz, represent the device.

Problem 10.10. The circuit below matches a 1000-ohm load to a 50-ohm source at a
frequency of 10 MHz. The characteristic impedance of the cable is 50 ohms.

O Z,=50

’_, c /47 R,
Z-50+0 1000

(a) Make a Smith chart sketch that shows the derivation of this circuit.
(b) Find the length of the (shortest) cable and the value of the capacitor. Specify the
length in degrees and the capacitance in picofarads. Calculate these values rather

than reading them from an accurately drawn Smith chart.
(c) Use your ladder network analysis program (Problems 1.3 and 10.5) to find the
transmission from 9 MHz to 11 MHz in steps of 0.1 MHz.
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Problem 10.11. Find a transmission line element to replace the capacitor in the circuit
of Problem 10.9.

Problem 10.12. Suppose that a transmission line has small shunt susceptance (capaci-
tive or inductive) at a point z. By itself, this will cause a small reflection. If an identical
shunt reactance is placed one quarter-wave from the first, its reflection will compensate
the first and the cable will have essentially perfect transmission. Show that this is the case
(a) analytically, using the “tan tan” formula for Z' and B’, and (b) graphically, using the
Smith chart (the area around the center of the chart).

Problem 10.13. Find the size and position of the constant resistance circles on the
normalized Smith chart. Use the following procedure:

We have z(x)=r + jx where x is a variable and r is a constant. This vertical line in
the z-plane maps into the p-plane via the equation p(x)=[z(x) — 1]/[z(x) +1]. We want to
show that the locus of points in the p-plane is a circle with radius 1/(7+1) centered at
[7/(++1),0].

Assume that the locus will be a circle centered on the real axis at [a,0]. Write the
equation |p(x) — a| =radius. This equation has the form

|[NRe(x) + JNim (x)]/ [Dre (x) +J Dim (x)]| = radius, (M

where Ngre(x) and Ny (x) are the real and imaginary parts of the numerator and Dg.(x) and
Dim(x) are the real and imaginary parts of the denominator. If every point on the circle is
to have the same value of 7, the radius of the circle must be independent of x.

p(x) = al’ = [(Nre(x)* + (N (x))’]/ [(Dre(x))* + (Dim(x))°] = radius®
= function only of 7.

(2
In this case, the way to satisfy Equation (2) is to set Nre(x)/Dre(x) == Nim(x) / Dim(x).

This will let us find @ and radius. Other ways to make the radius constant will produce
circles on which both r and x vary.
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