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4 Basic filters

Bandpass filters are key elements in radio circuits, for example, in radio
receivers, to select the desired station. Here we will discuss lumped-element
filters made of inductors and capacitors. We will first look at lowpass filters, and
then see how they serve as prototypes for conversion to bandpass filters. We
begin with the well-established lowpass filter prototypes – Butterworth,
Chebyshev, Bessel, etc. These lowpass prototypes are simple LC ladder net-
works with series inductors and shunt capacitors, as shown in Figure 4.1.

An n-section lowpass filter has n components (capacitors plus inductors). The
end components can be either series inductors, as shown above, or shunt
capacitors, or one of each. Since they contain no (intentional) resistance, these
filters are reflective filters; outside the passband, it is mismatch that keeps power
from reaching the load. The ladder network can be redrawn as a cascade of
voltage dividers as in Figure 4.2.

Figure 4.1. Lowpass ladder

network.

Figure 4.2. Ladder network as a

cascade of voltage dividers.
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At high frequencies the division ratio increases so the load is increasingly
isolated from the source. For frequencies well above cutoff, each circuit element
contributes 6 dB of attenuation per octave (20 dB per decade). Within the
passband, an ideal lowpass filter provides a perfect match between the load
and the source. Filters with many sections approach this ideal. When the source
and load impedances have no reactance (either built-in or parasitic) it is
theoretically possible to have a perfect match across a wide band.

4.1 Prototype lowpass filter designs

The Butterworth filter is maximally flat, that is, it is designed so that at zero
frequency the first 2n− 1 derivatives with respect to frequency of the power
transfer function are zero. The final condition (needed to determine the values of
n elements) is the specification of the cutoff frequency, f0, often specified as the
3-dB or half-power frequency. The frequency response of the Butterworth filter
turns out to be

Vout

Vin

����

����

2

¼ 1

1þ ðf =f0Þ2n
: (4:1)

While it is the flattest filter, the Butterworth filter does not have skirts as sharp as
those of the Chebyshev filter. The trade-off is that the Chebyshev filters have
some passband ripple. The design criterion for the Chebyshev filter is that these
ripples all have equal depth. The response is given by

Vout

Vin

����

����

2

¼ 1

1þ ðV�2
r � 1Þ cosh2 n cosh�1ðf =f0Þ

� � ; (4:2)

where Vr is the height above zero of the ripple valley (in voltage) relative to the
height of the peaks.

You will find tables of filter element values in many handbooks and text-
books. Two tables from Matthaei , Young an d Jones [2] are given in Appe ndix
4.1 at the end of this chapte r. These tables are for normaliz ed filters, i.e., the
cutoff frequency1 is 1 radian/sec (1/2πHz). The value of the n-th component is
gn farads or henrys, depending on whether the filter begins with a capacitor or
with an inductor. The proper source impedance is 1 + j0 ohms. This is also the
proper load impedance except for the even-order Chebyshev filters, where it is
1/gn+1 + j0 ohms. Figure 4.3 shows plotted power responses of a Butterworth
filter and several Chebyshev filters.

1 The cutoff frequency for the Butterworth filters is the half-power (3 db) point. For an n-dB
Chebyshev filter it is the highest frequency for which the response is down by n dB (see
Figure 4.3).
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4.2 A lowpass filter example

As an example, we will look at the three-section Butterworth lowpass filter.
From the table, the filter has values of 1H, 2 F, and 1H (Figure 4.4a) or 1F, 2H,
and 1F (Figure 4.4b). The (identical) responses for these two filters are given in
Table 4.1 and plotted in Figure 4.5. Note that they work as advertised; the 3-dB
point is at 0.159Hz.
Suppose we need a three-section Butterworth that is 5 kHz wide and works

between a 50-ohm generator and a 50-ohm load. We can easily find the element
values by scaling the prototype. The values of the inductors are just multiplied
by 50 (we need 50 times the reactance) and divided by 2π·5000 (we need to
reach that reactance at 5 kHz, not 1 radian/sec). Similarly, the capacitor values
are divided by 50 and divided by 2π·5000. Figure 4.6 shows the circuit resulting
from scaling the values of Figure 4.4b.
The response of the scaled filter is shown below in Table 4.2 and Figure 4.7.
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Figure 4.3. Butterworth and

Chebyshev responses.
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Figure 4.4. Equivalent three-

section Butterworth lowpass

filters.
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Figure 4.5. Plotted response of

filters of Figure 4.4.

Table 4.1 Frequency response for filters of Figure 4.4.

Frequency (Hz) Power
Response
(dB)

0.00 1.000 − 0.0
0.0321 0.000 − 0.0
0.0640 0.996 − 0.02
0.095 0.955 − 0.20
0.1270 0.792 − 1.01
0.1590 0.500 − 3.01
0.1910 0.251 − 6.00
0.2230 0.117 − 9.31
0.2540 0.056 − 12.5
0.2860 0.029 − 15.4
0.3180 0.015 − 18.1
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4.3 Lowpass-to-bandpass conversion

Here we will see how to convert lowpass filters into bandpass filters. Remember
how the lowpass filters work: as frequency increases, the series arms (inductors),
which are short circuits at dc, begin to pick up reactance. Likewise, the shunt arms
(capacitors), which are open circuits at dc, begin to pick up susceptance. Both
effects impede the signal transmission, as we have seen. To convert these lowpass
filters in the most direct way to bandpass filters, we can replace the inductors by
series LC combinations and the capacitors by parallel LC combinations. The series
combinations are made to resonate (have zero impedance) at the center frequency

Table 4.2 Response of the scaled lowpass filter of Figure 4.6.

Frequency (Hz) Power Response (dB)

0 1.000 − 0.0
1000 1.000 − 0.0
2000 0.996 − 0.02
3000 0.956 − 0.20
4000 0.793 − 1.01
5000 0.500 − 3.01
8000 0.056 − 12.5
6000 0.251 − 6.00
7000 0.117 − 9.31
9000 0.029 − 15.4
10000 0.015 − 18.1

3.18 mH

0.637 μF
0.637 μF 50 ohms

50 ohms

Figure 4.6. Filter of Figure 4.4(b),

after conversion to 50ohms and

5 kHz cutoff frequency.
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Figure 4.7. Plotted response of

the scaled lowpass filter of

Figure 4.6.
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of the desired bandpass filter, just as the inductors had zero impedance at dc, the
“center frequency” of the prototype lowpass filter. It is important to note that as we
move away from resonance, a series LC arm picks up reactance at twice the rate of
the inductor alone. This is easy to see: The reactance of the series arm is given by

Xseries ¼ ωL� 1

ωC
: (4:3)

Differentiating with respect to ω, we find

dX

dω
¼ Lþ 1

ω2C
: (4:4)

At ω=ω0,

dX

dω
¼ Lþ 1

ω0
2C

¼ 2L: (4:5)

As we move off resonance, the inductor and the capacitor provide equal
contributions to the reactance. Likewise, the parallel LC circuits, which replace
the capacitors in the prototype lowpass filter, pick up susceptance at twice the
rate of their capacitors. With this in mind, let us convert our 5-kHz lowpass filter
into a bandpass filter. Suppose we want the center frequency to be 500 kHz and
the bandwidth to be 10 kHz. As we move up from the center frequency, the
series arms must pick up a reactance at the same rate the inductors picked up a
reactance in the prototype lowpass filter. Similarly, the shunt arms must pick up
susceptance at the same rate the capacitors picked up susceptance in the proto-
type. This will cause the bandpass filter to have the same shape above the center
frequency as the prototype had above dc. If the 3-dB point of the prototype filter
was 5 kHz, the upper 3-dB point of the bandpass filter will be at 5 kHz above the
center frequency. The bandpass filter, however, will have a mirror-image
response as we go below the center frequency. (Below center frequency the
reactances and susceptances change sign but the response remains the same.)

Let us calculate the component values. As we leave center frequency, the series
circuits will get equal amounts of reactance from the L and theC, as explained above.
Therefore the series inductor values should be exactly half what they were in the low
pass prototype.Note: nomatter howhighwemake the center frequency, the values of
the inductors are reduced only by a factor of 2 from the those of the scaled lowpass
filter. The series capacitors are chosen to resonate at the center frequencywith the new
(half-value) series inductors. The values of the parallel arms are determined similarly;
theparallel capacitorsmust havehalf thevalue theyhad in theprototype lowpass filter.
Finally, the parallel inductors are chosen to resonatewith the new (half-value) parallel
capacitors. These simple conversions yield the bandpass filter shown in Figure 4.8.

The response of this bandpass filter is given below in Table 4.3 and Figure 4.9.
While this theoretical filter works perfectly (since its components are lossless),

the component values are impractical; typical real components with these values
would be too lossy to achieve the calculated filter shape.When a bandpass filter is
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to have a large fractional bandwidth (bandwidth divided by center frequency) this
direct conversion from lowpass to bandpass can be altogether satisfactory. It is
when the fractional bandwidth is small, as in this example, that the direct
conversion gets into trouble.2 We will see later that the problem is solved by

Table 4.3 Response of the bandpass filter of Figure 4.8.

Frequency (kHz) Power Response (dB)

490 0.014 − 18.1
492 0.053 − 12.8
494 0.241 − 6.19
496 0.785 − 1.05
498 0.996 − 0.18
500 1.000 − 0.00
502 0.996 − 1.16
504 0.801 − 0.966
506 0.260 − 5.84
508 0.059 − 12.9
510 0.016 − 17.9

50 ohms
1.59 mH

50 ohms

0.319 μF

63.72 pF

0.319 μF

0.3176 μH 0.3176 μH

Figure 4.8. Bandpass filter.
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Figure 4.9. Plotted response for

Table 4.3.

2 The component problem with the straightforward lowpass-to-bandpass conversion is that the values
of the series inductors are very different from the values of the parallel inductors. (The same is true
of the capacitors, but high-Q capacitors can usually be found.) In the above example, the inductors
differ by a factor of about 5000 and it is normally impossible to find high-Q components over this
range. (Low-Q inductors, of course, make the filter lossy and, if not accounted for, distort the bandpass
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transforming the prototype lowpass filters into somewhat more complicated
bandpass circuits known as coupled resonator filters. Those filters retain the
desired shape (Butterworth, Chebyshev, etc.) and can serve, in turn, as prototypes
for filters made from quartz or ceramic resonators and for filters made with
resonant irises (thin aperture plates that partially block a waveguide).

Appendix 4.1. Component values for normalized lowpass filters3

Figure 4.10. Definition of

prototype filter parameters, g1,

g2, …, gn, gn+1. The prototype

circuit (a) and its dual (b) give

the same response.

or

or

(a)

(b)

L=g2

L=g1 L=g3

L=gn

C=gn

L=gn

C=g3

C=g2

C=gnG=gn+1 R=gn+1

G=gn+1R=gn+1

C=g1R=1

R=1

Table A4.1 Element values for Butterworth (maximally flat) lowpass filters (the 3-dB point is at ω = 1 radian/sec).

Value of n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 2.000 1.000
2 1.414 1.414 1.000
3 1.000 2.000 1.000 1.000
4 0.7654 1.848 1.848 0.7654 1.000
5 0.6180 1.618 2.000 1.618 0.6180 1.000
6 0.5176 1.414 1.932 1.932 1.414 0.5176 1.000
7 0.4450 1.247 1.802 2.000 1.802 1.247 0.4450 1.000
8 0.3902 1.111 1.663 1.962 1.962 1.663 1.111 0.3902 1.000
9 0.3473 1.000 1.532 1.879 2.000 1.879 1.532 1.000 0.3473 1.000

10 0.3129 0.9080 1.414 1.782 1.975 1.975 1.782 1.414 0.9080 0.3129 1.000

shape.) The inductors in coupled-resonator filters are all of about the same value. If a high-Q
inductor can be found, the coupled resonator filter is designed for whatever impedance calls for that
value of inductor and then transformers or matching sections are used at each end to convert to the
desired impedance.

3 From Matthaei, Young, and Jones [2].
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Table A4.2 Element values for Chebyshev lowpass filters (for a filter with N-dB ripple, the last N-dB

point is at ω = 1 radian/sec).

Value of n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

0.01-dB ripple
1 0.0960 1.0000
2 0.4488 0.4077 1.1007
3 0.6291 0.9702 0.6291 1.0000
4 0.7128 1.2003 1.3212 0.6476 1.1007
5 0.7563 1.3049 1.5773 1.3049 0.7563 1.0000
6 0.7813 1.3600 1.6896 1.5350 1.4970 0.7098 1.1007
7 0.7969 1.3924 1.7481 1.6331 1.7481 1.3924 0.7969 1.0000
8 0.8072 1.4130 1.7824 1.6833 1.8529 1.6193 1.5554 0.7333 1.1007
9 0.8144 1.4270 1.8043 1.7125 1.9057 1.7125 1.8043 1.4270 0.8144 1.0000

10 0.8196 1.4369 1.8192 1.7311 1.9362 1.7590 1.9055 1.6527 1.5817 0.7446 1.1007
0.1-dB ripple
1 0.3052 1.0000
2 0.8430 0.6220 1.3554
3 1.0315 1.1474 1.0315 1.0000
4 1.1088 1.3061 1.7703 0.8180 1.3554
5 1.1468 1.3712 1.9750 1.3712 1.1468 1.0000
6 1.1681 1.4039 2.0562 1.5170 1.9029 0.8618 1.3554
7 1.1811 1.4228 2.0966 1.5733 2.0966 1.4228 1.1811 1.0000
8 1.1897 1.4346 2.1199 1.6010 2.1699 1.5640 1.9444 0.8778 1.3554
9 1.1956 1.4425 2.1345 1.6167 2.2053 1.6167 2.1345 1.4425 1.1956 1.0000

10 1.1999 1.4481 2.1444 1.6265 2.2253 1.6418 2.2046 1.5821 1.9628 0.8853 1.3554
0.2-dB ripple
1 0.4342 1.0000
2 1.0378 0.6745 1.5386
3 1.2275 1.1525 1.2275 1.0000
4 1.3028 1.2844 1.9761 0.8468 1.5386
5 1.3394 1.3370 2.1660 1.3370 1.3394 1.0000
6 1.3598 1.3632 2.2394 1.4555 2.0974 0.8838 1.5386
7 1.3722 1.3781 2.2756 1.5001 2.2756 1.3781 1.3722 1.0000
8 1.3804 1.3875 2.2963 1.5217 2.3413 1.4925 2.1349 0.8972 1.5386
9 1.3860 1.3938 2.3093 1.5340 2.3728 1.5340 2.3093 1.3938 1.3860 1.0000

10 1.3901 1.3983 2.3181 1.5417 2.3904 1.5536 2.3720 1.5066 2.1514 0.9034 1.5386
0.5-dB ripple
1 0.6986 1.0000
2 1.4029 0.7071 1.9841
3 1.5963 1.0967 1.5963 1.0000
4 1.6703 1.1926 2.3661 0.8419 1.9841
5 1.7058 1.2296 2.5408 1.2296 1.7058 1.0000
6 1.7254 1.2479 2.6064 1.3137 2.4758 0.8696 1.9841
7 1.7372 1.2583 2.6381 1.3444 2.6381 1.2583 1.7372 1.0000
8 1.7451 1.2647 2.6564 1.3590 2.6964 1.3389 2.5093 0.8796 1.9841
9 1.7504 1.2690 2.6678 1.3673 2.7239 1.3673 2.6678 1.2690 1.7504 1.0000

10 1.7543 1.2721 2.6754 1.3725 2.7392 1.3806 2.7231 1.3485 2.5239 0.8842 1.9841
1.0-dB ripple
1 1.0177 1.0000
2 1.8219 0.6850 2.6599
3 2.0236 0.9941 2.0236 1.0000
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Problems

Problem 4.1. Design a five-element lowpass filter with a Chebyshev 0.5-dB ripple
shape. Let the input and output impedances be 100 ohms. Use parallel capacitors at the
ends. The bandwidth (from dc to the last 0.5-dB point) is to be 100 kHz. Use Table A4.2
to find the values of the prototype 1 ohm, 1 rad/sec filter and then alter these values for
100 ohms and 100 kHz.

C1 C3 C1

L2 L2

100
100

Table A4.2 (cont.)

Value of n g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

4 2.0991 1.0644 2.8311 0.7892 2.6599
5 2.1349 1.0911 3.0009 1.0911 2.1349 1.0000
6 2.1546 1.1041 3.0634 1.1518 2.9367 0.8101 2.6599
7 2.1664 1.1116 3.0934 1.1736 3.0934 1.1116 2.1664 1.0000
8 2.1744 1.1161 3.1107 1.1839 3.1488 1.1696 2.9685 0.8175 2.6599
9 2.1797 1.1192 3.1215 1.1897 3.1747 1.1897 3.1215 1.1192 2.1797 1.0000

10 2.1836 1.1213 3.1286 1.1933 3.1890 1.1990 3.1738 1.1763 2.9824 0.8210 2.6599
2.0-dB ripple
1 1.5296 1.0000
2 2.4881 0.6075 4.0957
3 2.7107 0.8327 2.7107 1.0000
4 2.7925 0.8806 3.6063 0.6819 4.0957
5 2.8310 0.8985 3.7827 0.8985 2.8310 1.0000
6 2.8521 0.9071 3.8467 0.9393 3.7151 0.6964 4.0957
7 2.8655 0.9119 3.8780 0.9535 3.8780 0.9119 2.8655 1.0000
8 2.8733 0.9151 3.8948 0.9605 3.9335 0.9510 3.7477 0.7016 4.0957
9 2.8790 0.9171 3.9056 0.9643 3.9598 0.9643 3.9056 0.9171 2.8790 1.0000

10 2.8831 0.9186 3.9128 0.9667 3.9743 0.9704 3.9589 0.9554 3.7619 0.7040 4.0957
3.0-dB ripple
1 1.9953 1.0000
2 3.1013 0.5339 5.8095
3 3.3487 0.7117 3.3487 1.0000
4 3.4389 0.7483 4.3471 0.5920 5.8095
5 3.4817 0.7618 4.5381 0.7618 3.4817 1.0000
6 3.5045 0.7685 4.6061 0.7929 4.4641 0.6033 5.8095
7 3.5182 0.7723 4.6386 0.8039 4.6386 0.7723 3.5182 1.0000
8 3.5277 0.7745 4.6575 0.8089 4.6990 0.8018 4.4990 0.6073 5.8095
9 3.5340 0.7760 4.6692 0.8118 4.7272 0.8118 4.6692 0.7760 3.5340 1.0000

10 3.5384 0.7771 4.6768 0.8136 4.7425 0.8164 4.7260 0.8051 4.5142 0.6091 5.8095
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Problem 4.2. Use the results of Problem 4.1 to design a five-element bandpass filter
with a Chebyshev 0.5-dB ripple shape. Let the input and output impedances remain at
100 ohms. The center frequency is to be 5MHz and the total bandwidth (between outside
0.5-dB points) is to be 200 kHz.

100

C11

L11

L22 C22

C33
L33

L22 C22

C11 100
L11

Problem 4.3. Convert the filter of Problem 4.2 to operate at 50 ohms by adding an L-
section matching network at each end. Test the filter design using your ladder network
analysis program, sweeping from 4.5 to 5.5MHz in steps of 20KHz.

C11

L11

L22 C22

C33 L33

L22

C11 L11

L0

C0
C0

L0
50

C22

Problem 4.4. The one-section bandpass filter shown below uses a single parallel
resonator. In its prototype lowpass filter, the resonator is a single shunt capacitor.
Show that the frequency response of this filter is given by

P

Pmax
¼ 1

1þ Q2ðf =f0 � f0=f Þ2

where f0 is the resonant frequency of the LC combination and Q is defined as R/(ω0L),
where R is the parallel combination of RS and RL.

RS RLC L

Problem 4.5. Highpass filters are derived from lowpass filters by changing inductors
to capacitors and vice versa and replacing the component values in the prototype lowpass
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tables by their reciprocals. (A 2-F capacitor, for example, would become a 0.5-H
inductor.) The prototype highpass response at ω will be equal to the prototype lowpass
response at 1/ω. Convert the lowpass filter of Figure 4.4(b) into a highpass filter.
(Answer: 1H, 0.5 F, 1H.) Next, scale it to have a cutoff frequency of 5 kHz and to
operate at 50 ohms. Finally, convert the scaled filter into a bandstop filter with a stopband
10 kHz wide, centered at 500 kHz.

Problem 4.6. Enhance your ladder network analysis program (Problem 1.3) to display
not just the amplitude response of a network, but also the phase response (phase angle of
the output voltage minus phase angle of the input voltage). Calculate the phase response
of the Butterworth filter in Figure 4.4(a). Note: ladder networks belong to a class of
networks (“minimum phase networks”) for which the amplitude response uniquely
determines the phase response and vice versa. In Chapter 12 we will encounter “allpass”
filters which are not in this class; phase varies with frequency while amplitude remains
constant.

Example answer: For the MATLAB program listing in Problem 1.3, simply insert the
following two lines ahead of the last two lines in the original program.

figure(3); plot(-180/pi*angle(Vgen));
grid; xlabel(‘Frequency’);ylabel(‘degrees’);title(‘Phase response’);
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