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10 Transmission lines

We draw circuit diagrams with “lumped”components: ideal R’s, C’s, L’s, tran-
sistors, etc., connected by lines that represent zero-length wires. But all real wires,
if not much shorter than the shortest relevant wavelength, are themselves com-
plicated circuit elements; the current is not the same everywhere along such a
wire, nor is voltage uniform, even if the wire has no resistance. On the other hand,
when interconnections are made with transmission lines, which are well-
understood circuit elements, we can accurately predict circuit behavior. In this
section we will consider two-conductor lines such as coaxial cables and open
parallel wire lines. “Microstrip lines” (conducting metal traces on an insulation
layer over a metal ground plane) behave essentially in the same way, but they
have some subtle complications, which are mentioned in Appendix 10.1.

10.1 Characteristic impedance

The first thing one learns about transmission lines is that they have a parameter
known as characteristic impedance, denoted Z0. How “real” is characteristic
impedance? If we connect an ordinary dc ohmmeter to the end of a 50-ohm
cable will it indicate 50 ohms? Yes, if the cable is very long, so that a reflection
from the far end does not arrive back at the meter before we finish the measure-
ment. Otherwise, the meter will simply measure whatever is connected to the far
end, which could be short, an open circuit, or a resistance. However, using a
pulse generator and an oscilloscope, you can easily make an ohmmeter set-up
that is fast enough that, even for a short cable, you can determine Vin and Iin and
then calculate Vin/Iin = Z0.

To make a theoretical determination of Z0, we first model the transmission
line as a ladder network made of shunt capacitors and series inductors, as shown
in Figure 10.1.

=
Lδz LδzLδz

Cδz Cδz Cδz

Figure 10.1. Transmission line

model – a ladder network of

infinitesimal LC sections.
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To see that this model is reasonable, consider Figure 10.2(a), which shows the
electric field lines in a length of coaxial cable connected to a voltage source. The
field lines are radial and their number is obviously proportional to the length of
the cable, so that capacitance per unit length is a constant. Likewise, a current
through the cable (b) sets up a magnetic field, so another characteristic of the
cable is its inductance per unit length. We will follow common convention and
use the symbols C and L to denote capacitance and inductance per unit length.
That convention is obvious when capacitors and inductors are labeled, respec-
tively, Cδz and Lδz, where δz is a short increment of length along the z-axis, i.e.,
parallel to the cable.
Every increment of a transmission line contributes series inductance and

shunt capacitance; the ladder network shown in Figure 10.1 models a real
transmission line in the limit that δz goes to zero. For some situations, e.g.,
baseband telephony and digital data transmission through long cables, the
model must also include series and shunt resistance. At radio frequencies,
however, the series reactance is usually much greater than the series resistance
and the shunt reactance is usually much less than the shunt resistance so both
resistances can be neglected. (See Problem 10.3.)
To see that Z0

2 = L/C, consider the circuit of Figure 10.3, where we have
added another infinitesimal LC section to the model transmission line, which is
either infinitely long or terminated with a resistance equal to the characteristic
impedance, so as to appear infinitely long. After adding the section, the line is
still infinitely long and the impedance looking into it must still be Z0. If the
voltage and current at the input of the line were V and I, they will be modified
to become V+δV and I+δ I at the input to the new section. (This does not imply
an increase in power; V+δV and I+δ I are merely phase-shifted versions of V
and I.)
Since the impedance looking into the line must stay the same, we have

V þ δV
I þ δI

¼ V

I
; (10:1)

Figure 10.2. Capacitance and

inductance per unit length.

I

I

Magnetic field

Equivalent circuitEquivalent circuit

Electric field

LdzCdz

dzdz

(b)(a)
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from which δV/δI=V/I = Z0.
Using this, and substituting δI= (Cδz) dV/dt and δV = (Lδz) d/dt(I+δI) and

ignoring the vanishingly small δz δI term, we have

Z0 ¼ δV
δI

¼ Lδz ðjωIÞ
Cδz ðjωV Þ ¼

L

C
Z�1
0 : (10:2)

Looking at the first and last terms of this equation, we see that Z0 = (L/C)1/2.
Note: you can verify that, because δV and δI are infinitesimal, the above
equations are the same if the network starts with a capacitor instead an inductor.

To evaluate Z0, it is sufficient to know either L or C, since it follows from
electrodynamics that they are related by LC = εr/c

2 where εr is the dielectric
constant (relative to vacuum), and c is the speed of light. This relation between L
and C holds for any two-conductor structure with translational symmetry such
as an unlikely transmission line consisting of a square inner conductor inside a
triangular outer conductor.

For a coaxial transmission line, C= 2πεrε0 /ln(b/a) farads/meter, where a and
b are the inner and outer radii and ε0, the “permittivity of free space,” is equal to
(4π× 10–7c2)− 1. Using this, together with the relation LC = εr/c

2, gives us
Z0 = (εr)

− 1/2 60 ln (b/a). Note that Z0 depends on the ratio a/b, but not on the
size of the cable.

10.2 Waves and reflected waves on transmission lines

We will use a simple ac analysis to show that an applied sinusoidal voltage
causes a spatial voltage sine wave to propagate down the line: Let us apply a
voltage ejωt and find the voltage drop across an incremental length of line (see
Figure 10.4).

Since we already know the input impedance is Z0, the input current must be
V/Z0 and the voltage across the inductor can be written δV = − (V/Z0) (jωLδz).
But this is just the differential equation

dV

dz
¼ �jω

L

Z0
V ¼ �jω

ffiffiffiffiffiffiffi
LC

p
V : (10:3)

LδzLδz

CδzCδz

I + δI

Z0 Z0

V

δI

IV + δV

Figure 10.3. Adding another

infinitesimal section must leave

Z0 unchanged.
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The solution to this familiar equation is

V ¼ Vf e
�jω

ffiffiffiffiffi
LC

p
z ¼ Vf e

�jkz where k ¼ ω
ffiffiffiffiffiffiffi
LC

p
; (10:4)

where Vf is a constant, the amplitude. The constant k is known as the propaga-
tion constant and is the number of radians the wave progresses per unit length.
The wave therefore repeats in a distance (the wavelength) given by λ= 2π/k.
Since V/I = Z0, the current along the line is also a wave: I= (Vf /Z0)e

−jkz. If we
include the otherwise implicit multiplicative time dependence factor ejωt, the
voltage is

V ¼ Vf e
jωte�jkz ¼ Vf e

jðωt�kzÞ: (10:5)

This is just a sine wave running in the forward z-direction. The complex
exponential now contains space as well as time but, as always, the physical
voltage is the real part, i.e., Re[ Vf e

j(ωt − kx)] which is a weighted superposition of
sin(ωt− kz) and cos(ωt− kz). For a point of constant phase, ωt− kz= constant,
we have δz/δt = ω/k. This velocity, ω=k ¼ c=

ffiffiffiffi
εr

p
, is known as the phase

velocity, vphase. Figure 10.5 shows a forward-running wave on a coaxial cable.
The electric and magnetic field lines are drawn only at the points where they
reach their peak values. A graph shows the spatial distribution. Everything has
the same phase, i.e., the voltage, current, and charge density all rise and fall
together along the z-axis. Note that a wave of amplitude V transfers power at a
rate |V|2/(2Z0).
A transmission line can equally well support waves running in the negative

z-direction. If we had assumed a current in the (−z)-direction, the phase
would progress as ωt+ kz. A transmission line in a circuit operating at a
frequency ω will, in general, have both a forward wave and a reverse wave.
The waves have complex amplitudes, Vf and Vr, each containing magnitude
and phase. Of course both waves have the same frequency and propagation
constant. We regard current as positive when it is in the (+z)-direction, so the
current of a forward wave is If (z,t) =Vf(z,t)/Z0, but the current of a reverse
wave is Ir (z,t) = −Vr(z,t)/Z0, since the reverse wave is traveling in the (−z)-

LδzLδz
Cδz Cδz

Z0

V = ejωt

V + δV

l + δl

Figure 10.4. Finding the change

in voltage, δ V, over a distance δ z.
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direction. Together, the forward and reverse waves are, in general, equivalent
to a stationary (standing) wave plus a single propagating wave.

Note also that the phase velocity is independent of ω; there is no
dispersion in this kind of lossless transmission line. Therefore, if we apply
an arbitrary voltage waveform, Varb(t), at the input to the line, this waveform,
considered as a Fourier superposition of sine waves, will propagate down the
line without distortion. At any point z, the voltage will be Varb(t − z/vphase),
a delayed but undistorted version of the input signal. For example, if, at
t= 0, we connect a dc voltage to the line, a step function propagates down
the line.

The electrical length of a line is the phase change imparted by the line. For
example, a “quarter wave line” imparts a 90° phase shift, kl = π/2, and therefore
l ¼ π=ð2kÞ ¼ πc=ð2ω ffiffiffiffi

εr
p Þ ¼ ðc=f Þ=ð4 ffiffiffiffi

εr
p Þ ¼ 1=4ðλ0= ffiffiffiffi

εr
p Þ, where λ0 is the

wavelength in free space.

Standing waves
When both a forward and a reverse wave are present on a transmission line
the voltage along the line, which is the sum of the contributions from the
two waves, forms an interference pattern or standing wave. To see this, let
V(z,t) =Vfe

j(ωt−kz) +Vre
j(ωt + kz). The real parts of these two rotating phasors will

be in phase at points along the transmission line which are separated by λ/2. At
these points, the magnitude of the sum will be |Vf| + |Vr|. Halfway between
these points, the real parts of the phasors will be out of phase and the
magnitude of the sum will be ||Vf|− |Vr||. The ratio of these maximum and
minimum voltage magnitudes is called the voltage standing wave ratio:
VSWR= (|Vf| + |Vr|)/||Vf|− |Vr||. If |Vf| = |Vr| there is only a standing wave and
the VSWR is infinite. When |Vf|≠ |Vr|, the weaker one, along with an equal
portion of the stronger one, form a standing wave, leaving the remainder of the
stronger one as a travelling wave.

(b)(a)

Z

Figure 10.5. Forward wave on a

transmission line.
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10.3 Modification of an impedance by a transmission line

From the discussion above, you can see that a transmission line terminated by a
resistor of value Z0 will always present an input impedance of Z0. But a piece of
transmission line that is terminated with an arbitrary impedance, Z≠ Z0, as
shown in Figure 10.6, will produce a modified (“transformed”) impedance, Z′.
This figure shows a line of length lwhose right-hand end (z= 0) is connected to

some impedance ZL (L denotes “load”). Assume that some constant ac source
produces a constant incident wave traveling to the right,Vfe

−jkz (wewill not bother
writing the always present factor ejωt), and that ZL causes a constant reflected
wave, Γ Vfe

jkz, to travel to the left.1 The factor Γ is known as the reflection
coefficient. At any point, z, the voltage on the line is V(z) =Vf e

−jkz + Γ Vf e
jkz. The

corresponding current is I(z) = (Vf/Z0)(e
−jkz−Γejkz). The minus sign occurs

because the current in the reflected wave flows in the negative z-direction. At
the right-hand end (z= 0), the load ensures that V(0)/I(0) =ZL. This will give us Γ:

V ð0Þ
Ið0Þ ¼ ZL ¼ ð1þ GÞ

ð1� GÞ=Z0 so
ZL
Z0

¼ ð1þ GÞ
ð1� GÞ and G ¼ ðZL � Z0Þ

ðZL þ Z0Þ :
(10:6)

Putting this expression in Equation (10.6) for Γ, together with the expressions
for V(z) and I(z), we can immediately find V(−l)/I(−l) which is what we are after,
i.e., Z′, the input impedance at a point l to the left of the load:

Z 0 ¼ V ð�lÞ
Ið�lÞ ¼ e�jkð�lÞ þ Gejkð�lÞ

e�jkð�lÞ=Z0 � Gejkð�lÞ=Z0

¼ Z0
ðZL þ Z0Þejkl þ ðZL � Z0Þe�jkl

ðZL þ Z0Þejkl � ðZL � Z0Þe�jkl

or

Z 0 ¼ Z0
ZL þ jZ0 tanðklÞ
Z0 þ jZL tanðklÞ : (10:7)

Z ′ ZL ZL

z = –l z = 0

Z0

V(z) = e–jkz + Γejkz

I(z) = e–jkz  –  Γejkz

Z0Z0

z

Figure 10.6. An impedance is

modified when seen through a

transmission line.

1 Since everything is linear, superposition holds and the incident and reflected waves do not
collide or interact in any way. They simply pass through one another unaltered. At any point, the
current is the sum of their currents and the voltage is the sum of their voltages.
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This important result, the modification of an impedance ZL by a length l of
transmission line, is not hard to remember; it has no minus signs and is
symmetric. Just remember (1+j tan)/(1+j tan). Once you have written this
framework, you will remember how to put in the coefficients. Some important
special cases are listed below:

* If ZL = Z0, then Z′ = Z0 for any length of line.
* If ZL = 0 (a short) then Z′ = jZ0tan(kl), a pure reactance, which is inductive2

for kl < π/2, then capacitive, etc.
* If ZL = infinity (an open circuit) then Z′ = Z0/jtan(kl) which is capacitive for

kl < π/2, then inductive, etc.
* An impedance is left unchanged by a line of arbitrary Z0 whose length is a

half-wave (kz= π) or any integral multiple of a half-wave.
* Aquarter-wave line (kz= π/2) or an oddmultiple of a quarter-wave line, inverts

an impedance: Z′=Z0
2/ZL. A short is transformed into an open and an open

into a short, an inductor is transformed into a capacitor and vice versa, etc.

10.4 Transmission line attenuation

In a lossy transmission line, i.e., a line that causes attenuation of the signal, the
e−jkz or ejkz spatial dependence of the wave is replaced by e−jkz e−αz= e−j(k−jα)z

(forward wave) or ejkz eαz= ej(k−jα)z (reverse wave), where α is the attenuation
constant. In a distance 1/α, the amplitude falls by a factor 1/e and the power falls
by a factor (1/e)2. Note that k for a lossless line is simply replaced by k − jα, i.e.,
the propagation constant becomes complex. You can put this complex k into the
“tan tan” formula to see how an impedance is modified by a lossy cable.

Transmission line attenuation is usually expressed in units of dB/meter. To
find α for a line whose loss is AL dB/m, note that, since the amplitude falls by a
factor e−α·1 in 1 meter, we can write −AL = 10 log (e− α·1)2 = − 20α log(e) from
which α =AL/(20 log(e)).

10.5 Impedance specified by reflection coefficient

We have seen that an impedance Z produces a reflection coefficient given by
Γ= (Z − Z0) / (Z+ Z0). This relation is easily inverted, Z = Z0(1+Γ)/(1−Γ), so
there is a one-to-one mapping between Z and Γ. In antenna and microwave
work, especially when using S-parameter analysis (Chapter 28), it is customary
to think in terms of Γ, rather than Z.

One big advantage of working in the complex Γ-plane is that the modification
of an impedance (represented by its equivalent Γ) is extremely simple. The

2 Note that “inductive” does not mean equivalent to a lumped inductor since Z0tan(kl) =Z0tan(ωl/
vphase) is not proportional to ω, except for small kl. Likewise, a short open-ended line is not
equivalent to a lumped capacitor, except for small ωl/vphase.
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reflection coefficient for the given impedance as seen through a length l of
transmission line is just

G0 ¼ Ge�j2kl; (10:8)

which means we simply rotate the point clockwise around the origin (Γ= 0) by
an angle 2kl to give Γ′, the modified reflection coefficient. This is easy to see:
when we add a length of cable, the incident wave’s phase is delayed by kl getting
to the end of the cable and the reflected wave is delayed by the same kl getting
back again. The effect of a cable is therefore to rotate the complex number Γ
clockwise by an angle 2kl.3 (Since the time dependence is ejωt, the round-trip
time delay is a clockwise displacement.) Keep in mind that the Γ-plane is a
complex plane but that it is not the R+ jX plane. Let us look at a few special
points in the Γ-plane.

1. The center of the plane, Γ= 0, corresponds to a reflected wave of zero
amplitude, so this point represents the impedance Z0 +j0.

2. The magnitude of Γ (radius from the origin) must be less than or equal to
unity for passive impedances. Otherwise the reflected wave would have
more power than the incident wave.

3. The point Γ= −1+j0 corresponds to Z= 0, a short circuit.
4. The point Γ= 1+j0 corresponds to Z =∞, an open circuit.
5. Points on the circle |Γ| = 1 correspond to pure reactances, Z = 0+jX. All points

inside this circle map to impedances with positive nonzero R.
6. The point Γ = 0+j1 corresponds to an inductance, Z = 0+jZ0. All points in

the top half of the Γ-plane are “inductive,” i.e., Z =R+j|X| or, equivalently,
Y =G −j|B|.

7. The point Γ= 0−j1 corresponds to a capacitance, Z = 0−jZ0. All points in the
bottom half of the Γ-plane are “capacitive,” i.e., Z =R−j|X| or, equivalently,
Y =G+j|B|.

These special cases of mapping of Z into Γ are shown in Figure 10.7.
In the Γ-plane, if you plot Γ=R+ jX, where R is a constant and X varies, you

will get a circle centered on the real axis and tangent to the line Re(Γ) = 1. For
every value of R there is one of these “resistance circles.” The resistance circle
for R= 0 is the unit circle in the Γ-plane. The resistance circle for R =∞ is a
circle of zero radius at the point Γ= 1+j0. Likewise, if you plot Γ(R+jX) where X
is a constant and R varies, you will get “reactance circles” centered on the line
Re(Γ) = 1 and tangent to the line Im(Γ) = 0. These circles are shown in
Figure 10.8.
If you now trim the circles to leave only the portions within the |Γ| = 1 circle

(corresponding to passive impedances, i.e., impedances whose real part is

3 If the line is lossy, the magnitude of Γ decreases as it rotates around the origin, forming a spiral.
For a long enough length of lossy line, Γ spirals all the way into the origin producing Z=Z0, no
matter what value of Z terminates the far end of the cable.
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positive) you are left with a useful piece of graph paper, the famous Smith chart,
shown in Figure 10.9.

The circular R and X “axes” on the Smith chart allow you to locate the Γ-point
that corresponds to Z=R+jX. We have already seen that when we have located an
impedance on the Γ-plane, we can find how that impedance is modified by a
length of transmission line (whose Z0 is the same as the Z0 used to draw the
chart) by rotating the point clockwise around the origin. We simply rotate the
point clockwise around the origin by an angle equal to twice the electrical length
of the line. The values of R and X corresponding to the rotated point can be read

Re(Γ)

Reflection plane

Z = Z0 + j0

Z = 0 – jZ0

Z = infinity
(Open ckt)

Z = 0 + j0

(Short ckt)

Γ = 0 + j1

Γ = 0 + j0

Γ = –1 + j0 Γ = 1 + j0

=1Γ

Γ = 0 – j1

Im(Γ)

Z = 0 + jZ0

Figure 10.7. Impedances

mapped into the reflection

plane.

Re(Γ) = 1
Im(Γ)

Constant resistance
(Resistance circles)

Constant reactance
(Reactance circles)

Re(Γ)

Inductive reactance

Capacitive reactance

=1Γ

Figure 10.8. Loci of constant

resistance and of constant

reactance – circles in the

Γ-plane.
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off the chart’s R and X “axes.” We can also use the chart to find how an
impedance is modified by adding a series R or series X. In this operations, the
Smith chart can be considered something of a calculator. Note that the Smith
chart can also be made with G and B “axes”. As you might guess, these produce
“G circles” and “B circles” as shown in Figure 10.10.
Sometimes the Smith chart containsG and B circles as well as R and X circles.

This full-blown chart, which can be quite dense, is shown in Figure 10.11.
Again, remember the Smith chart is actually a rectangular graph of Γ; the x-axis
is Re(Γ) and the y-axis is Im(Γ). Because only the area inside the circle |Γ| = 1,
i.e., x2+y2 = 1, is used, the Smith chart resembles a polar graph. And, indeed,
when we rotate a point around the origin to how a transmission line modifies an
impedance, we are using it in a polar fashion. Sometimes the Smith chart is
scaled for a specific Z0 (usually 50 ohms or 75 ohms). Other charts are normal-
ized; the R= 1 circle would be the 50-ohm circle if we are dealing with 50-ohm
cable, etc.

Re (Γ)

Im (Γ)

Inductive

Capacitive

Figure 10.9. The Smith chart –

resistance and reactance circles

on the Γ-plane.

Re(Γ)

Reflection plane

Im(Γ)

Constant conductance
(Conductance circles)

Constant susceptance
(Susceptance circles)

= 1Γ

Figure 10.10. Conductance and

susceptance circles.
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10.6 Transmission lines used to match impedances

Designing a matching network becomes an exercise in moving from a given Γ
to a desired Γ′ in the reflection plane. Working graphically, it is often easy to
find a matching strategy. Let us use the Smith chart and revisit the 1000-ohm-to-
50-ohm matching circuit example of Chapter 2.

I. The starting impedance, 1000 ohms, and the final target impedance,
50 ohms, are indicated on the chart in Figure 10.12. Also shown is the
50-ohm circle. We can use a (50-ohm) transmission line to move along the
dashed circle until we reach the 50-ohm circle. Now we have R = 50 plus a
capacitive reactance. A series inductor will cancel the capacitive reactance,
taking us to Z= 50+j0 (the center of the chart).

II. Another solution (Figure 10.13) would be to use a longer piece of cable to
circle most of the chart, hitting the 50-ohm circle in the top half of the plane.
At this point we have Z = 50 + jX where X is positive (inductive). We can
add a series capacitor to cancel this X and again arrive at Z= 50 + j0.

Im(  )

Re(  )

Figure 10.11. Smith chart with

R, X, G, and B circles.

Figure 10.12. Conversion from

1000 ohms to 50 ohms –

transmission line and inductor

circuit.

Z = 50 + j0

R = 50

X = 212.5

Z0 = 50

1000

Z = 50 + j0

1/2 (25.2°)
       = 12.6°Z = 1000 + j0

25.2°
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III. So far we have only used series elements. Let us now start by traveling
around to the G = 1/50 circle. Then we can add a shunt element to reach the
center of the chart. The first intersection of theG = 1/50 circle is in the lower
half-plane (capacitive) so, to get from this point to the center, we need a
shunt inductor. Instead of a lumped inductor we might use a shorted length
of transmission, as shown in Figure 10.14, to make a matching circuit using
only transmission line elements.

IV. Figure 10.15 shows a solution that uses no transmission line.We start on the
G = 1/1000 circle, at G = 0. If we apply shunt reactance we can move along
this circle. Let us pick shunt inductance which will move us upward along
theG circle to the 50-ohm circle. We now have R = 50, but there is inductive
reactance. As in the above example, we can now cancel the inductance
reactance with a series capacitor. This is just the L-network found in
Chapter 2.

V. If we had used shunt capacitance rather than shunt inductance, we
would have moved downward to the 50-ohm circle, as shown in
Figure 10.16. The remaining series capacitance can be cancelled with
an inductor. This produces an L-network where the positions of the L
and C are reversed.

334.8°

Z = 50 + j0

R = 50

Z0 = 50

Z = 50 + j0

X = –212.5

Z = 1000 + j0
334.8°/2
= 167.4°

1000

Figure 10.13. Transmission line

and capacitor matching circuit.

Z 0 = 50

1000

Z = 50 + j0

Z = 50 + j0

Z = 1000 + j0

G = 1/50

Figure 10.14. Series and shunt

transmission line matching

circuit.

112 Radio-frequency electronics: Circuits and applications

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.011


In these examples, our final impedance was at the center of the chart (Z= 50+ j0),
but you can see that these techniques allow us to transform any point on the chart
(i.e., any impedance) into any other point on the chart (any other impedance).

The Smith chart is a favorite because it handles networks that include trans-
mission lines as well as inductors and capacitors. If we did not care about

Z = 50 + j0

X = 1000 + j0

R = 50

G = 1/1000

1000
Z = 50 + j0

Figure 10.15. LC matching

network.

Z = 50 + j0

X =1000 + j0

R = 50

G = 1/1000

1000Z = 50 + j0

Figure 10.16. CL matching

network.

–X

+R
Constant G circle

Constant B circle

Constant R line

Constant X line

Figure 10.17. An impedance-

admittance chart.
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transmission lines, then any chart that maps R, X into G, B would do. For
example, take the R, X plane (half-plane, since we will exclude negative R).
Draw in the curves forG = constant and B = constant. The resulting chart, shown
in Figure 10.17, can be used to design lumped element L, C,R ladder networks,
such as the networks of Figures 10.15 and 10.16.

Appendix 10.1. Coaxial cable – Electromagnetic analysis

This chapter began with a derivation of Z0 based on an equivalent lumped-
element circuit model of a transmission line. That derivation required only
elementary ac circuit theory, but is a rather indirect approach to what is really
a problem in electromagnetics. Even then, some electromagnetic theory is
needed to derive the expressions for capacitance and inductance per unit length.
An electromagnetic analysis of a coaxial transmission line is presented here

for the reader who has some familiarity withMaxwell’s equations. Wemake use
of the fact that the propagation velocity of a TEM wave4 is given by v= (με)− 1/2,
where μ is the magnetic permeability and ε is the electrical permitivity of the
material through which the fields propagate.5

To find the impedance of the coaxial line, we will first assume that the current
on the inner conductor is given by I = I0 cos(ωt−kz), which is a wave traveling in
the (+z)-direction. This is illustrated in Figure 10.18.

We will then proceed to find the charge density, the electric field, and then the
voltage, which will have the form V0 cos(ωt−kz). Once we have the voltage, the

dz

a
rb

Outer conductor

Inner conductor

Gaussian pillbox

Figure 10.18. Transmission line

element.

4 In a TEM wave, by definition, both the electric field and the magnetic field are transverse, i.e.,
perpendicular to the direction along which the wave propagates. In most applications of coaxial
cables and parallel-wire transmission lines, the wavelength is much greater than the transverse
dimensions of the line and only TEM waves can propagate. Waves in free space are also TEM
waves.

5 To find the propagation velocity of a TEMwave: The variables t and z appear in Ex, Ey, Bx, and By

only in the factor ej(ωt-kz). Using the condition Ez= 0, the x-component of the Maxwell equation
curl(E) = −∂B/∂t gives us Bx =−(k/ω)Ey. Likewise, using the condition Bz = 0, the y-component of
the Maxwell equation curl(B/μ) = ∂(εE)/∂t gives us Bx=−(ωμε/k)Ey. Equating these two
expressions for Bx gives k

2 =ω2με.
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characteristic impedance is simply given by V0/I0. (Note that the current in the
outer conductor is just the negative of the current in the inner conductor.)

Consider an incremental segment of the inner conductor from z to z + δz. The
rate at which charge accumulates on this element is ∂/∂t (ρL)δz, where ρL is the
charge per unit length. But the rate at which charge accumulates in δz is nothing
more than the difference between the current flowing into δz and the current
flowing out of δz. Therefore, we can write

∂ρL
∂t

¼ �∂I
∂z

¼ �k I0 sinðωt � kzÞ: (10:9)

Integrating dρL/dt with respect to time gives us the linear charge density
(coulombs/meter):

ρlðz; tÞ ¼
1

ω
kI0 cosðωt � kzÞð Þ ¼ kI0

ω
cosðωt � kzÞ: (10:10)

Now that we know the charge density, we can find the electric field. The field is
radial with field lines like spokes of a wheel. Imagining a Gaussian “pillbox” of
radius r and height δz around the center conductor, we use Gauss’s law: the
integral of the E field over the sidewall surface must be equal to the enclosed
charge divided by ε:

Eðr; z; tÞð2πrδzÞ ¼ 1

ε
ρlðz; tÞδz: (10:11)

Substituting for λ and solving for E, we have

Eðr; z; tÞ ¼ kI0 cosðωt � kzÞ
2πrεω

: (10:12)

Integrating this electric field from r = a to r= b gives us the voltage between the
inner and outer conductors:

V ðz; tÞ ¼
Zb

a

Eðr; z; tÞdr ¼ kI0 cosðωt � kzÞ lnðb=aÞ
2πεω

: (10:13)

Finally, we divide V(z,t) by I(z,t) to get the characteristic impedance:

Z0 ¼ V ðz; tÞ
Iðz; tÞ ¼ k lnðb=aÞ

2πεω
¼ lnðb=aÞ

2πεv
¼ 1

2π

μ

ε

� �1=2
lnðb=aÞ; (10:14)

which is the same as the result we obtained using the δL δC ladder network
equivalent circuit.

This derivation (as well as the LC derivation) for Z0 is for TEMwaves, where
bothE andH are perpendicular to z. For TEM solutions to exist, the line must be
uniformly filled with homogenous dielectric material or vacuum. The dielectric
can be lossy, but the metal conductors must, strictly speaking, have no resist-
ance. In practice, these conditions are usually not satisfied perfectly, and the
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waves will be slightly different from the TEM waves corresponding to ideal
conditions. In particular, the waves will have a small Ez or Hz field, or both.
Microstrip lines are a case of nonuniform dielectric; some of the E-field lines
arch through the air above the conductor, before plunging through the dielectric
to the ground plane. The wave must have a unique phase velocity, but (με)− 1/2

has one value in the air and another value in the dielectric. The waves, therefore,
cannot be TEM. They turn out to have both Ez and Hz components. Known as
quasi-TEMwaves, they show some frequency dependence in both Z0 and vphase,
which can be important at millimeter-wave frequencies. Closed form expres-
sions have not been derived for a microstrip; designers find Z0 and vphase
vs. frequency by using graphs or approximate formulas based on numerical
solutions of Maxwell’s equations.

Problems

Problem 10.1. A common 50-ohm coaxial cable, RG214, has a shunt capacitance of
30.8 pF/ft. Calculate the series inductance per ft and the propagation velocity.

Problem 10.2. (a) Use the “tan tan” formula to show that a short length, δz, of
transmission line, open-circuited at the far end, behaves as a capacitor, i.e., that it
has a positive susceptance, directly proportional to frequency. Express the value of
this capacitor in terms of the cable’s capacitance per unit length. (Hint: tan(θ)≈ θ
for small θ.)

(b) Show that a short length, δz, of transmission line, short-circuited at the far end, acts
as an inductor, i.e., that it has a negative susceptance inversely proportional to frequency.
Express the value of this inductor in terms of the cable’s inductance/unit length.

Problem 10.3. (a) Find a formula for the characteristic impedance of a lossy cable
where the loss can be due to a series resistance per unit length, R, as well as a parallel
conductance per unit length,G. R represents the ohmic loss of the metal conductors while
G represents dielectric loss.

δx

Cδx
Lδx

Rδx

Gδx

Z0Z0

Hint: You can generalize the result for the lossless cable by simply replacing L by
L+R/(jω) and C by C+G/(jω).

(b) Find the formula for the propagation constant k of this lossy cable. Hint: apply the
substitutions given above to the formula k ¼ ω

ffiffiffiffiffiffiffi
LC

p
. What distance (in wavelengths) is

required to reduce by 1/e the power of a signal at frequency ω1 if R/(ω1) = 0.01L?
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Problem 10.4. If the (sinusoidal) voltage, V, and current, I, at the right-hand end of a
transmission line are given, find the corresponding voltage, V′, and current, I′, at the left-
hand end.

V

I

V ′

I ′
Z0

θ

Hint: assume the (complex) voltage on the line is given by V(�) =VFe
−j� + VRe

j�. The
corresponding current is given by Z0I(�) =VFe

−j�−VRe
j�. Let �= 0 at the right-hand end.

Show that VF = (V+IZ0)/2 and VR = (V− IZ0)/2. Then show that, at the left-hand end,
where �= −θ, that V′= Vcosθ +IZ0 j sinθ and I′=Icosθ + jsinθ V/Z0.

Problem 10.5. Use the results of Problem 10.4 to upgrade your ladder network
analysis program (Problem 1.3) to handle another type of element, a series lossless
transmission line. Three parameters are necessary to specify the line. These could be the
characteristic impedance, the physical length, and the velocity of propagation. For
convenience in later problems, however, let the three parameters be the characteristic
impedance (Z0), the electrical length (θ0) in degrees for a particular frequency, and that
frequency (f0). A 50-ohm cable that has an electrical length of 80° at 10MHZ would
appear in the circuit file as “TL, 50, 80, 10E6.” For any frequency, f, the electrical length
is then θ = θ0f/f0.

Example answer: For the MATLAB program shown in Problem 1.3, insert the
following lines of code in “elseif chain”:

elseif strcmp(component,′TL′)==1
ckt_index=ckt_index+1; Z0=ckt{ckt_index}; %characteristic impedance
ckt_index=ckt_index+1; refdegrees=ckt{ckt_index};%electrical length
ckt_index=ckt_index+1; reffreq =ckt{ckt_index}; %at ref. frequency
eleclength= pi/180*f(i)*(refdegrees/reffreq);
Iold=I; I=I*(cos(eleclength))+ V*(1j/Z0*sin(eleclength));
V=V*(cos(eleclength))+ 1j*Z0*Iold*(sin(eleclength));

Problem 10.6. Use your program to analyze the circuit of Figure 10.13. Assume a
design frequency, say 1MHZ, in order to determine the value of the capacitor. Run
the analysis from 0 to 2MHz. Then make the transmission line 360° longer and
repeat the analysis. What form will the response take if the transmission line is made
very long?

Problem 10.7. A 50-ohm transmission line is connected in parallel with an equal
length transmission line of 75 ohms, i.e., at each end the inner conductors are connected
and the outer conductors are connected. The cables have equal phase velocities. Show
that the characteristic impedance of this composite transmission line is given by (50·75)/
(50+75), i.e., the characteristic impedances add like parallel resistors.
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Problem 10.8. In the circuit shown below, the impedance, Z, is modified by a trans-
mission line in parallel with a lumped impedance, Z1, which could be an R, C, or L or a
network.

Z1

θ, Zθ

Z ′

Z

Show that the admittance looking in from the left, Y′ = 1/Z′, is given by

1

Z 0 ¼ Y 0 ¼ Y0

Y þ jY0 tan θ þ 2Y1 � 2Y1
cos θ

þ j
YY1
Y0

tan θ

� �

Y0 þ jY tan θ þ ðjY1 tan θÞ :

Hint: extend the argument used in the text to find Z′ for a cable without a bridging
lumped element. Assume a forward and reverse wave in the cable with amplitudes 1 and
Γ. The voltage on the cable is then V(z) = ejωt (e−jkz + Γejkz) and the current is
I(z) =Z0

− 1ejωt (e−jkz − Γejkz). The current into Z is the sum of the current from the cable
and the current from Z1 while the current into the circuit is the sum of the current into the
cable and the current into Z1.

Problem 10.9. Using a 50-ohm network analyzer, it is found that a certain device,
when tested at 1GHz, has a (complex) reflection coefficient of 0.6 at an angle of −22°
(standard polar coordinates: the positive x-axis is at 0° and angles increase in the
counterclockwise direction).
(a) Calculate the impedance, R+jX.
(b) Find the component values for both the equivalent series RsCs circuit and the

equivalent parallel RpCp circuit that, at 1GHz, represent the device.

Problem 10.10. The circuit below matches a 1000-ohm load to a 50-ohm source at a
frequency of 10MHz. The characteristic impedance of the cable is 50 ohms.

Z0 = 50

1000Z = 50 + j0
C RL

(a) Make a Smith chart sketch that shows the derivation of this circuit.
(b) Find the length of the (shortest) cable and the value of the capacitor. Specify the

length in degrees and the capacitance in picofarads. Calculate these values rather
than reading them from an accurately drawn Smith chart.

(c) Use your ladder network analysis program (Problems 1.3 and 10.5) to find the
transmission from 9MHz to 11MHz in steps of 0.1MHz.
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Problem 10.11. Find a transmission line element to replace the capacitor in the circuit
of Problem 10.9.

Problem 10.12. Suppose that a transmission line has small shunt susceptance (capaci-
tive or inductive) at a point z. By itself, this will cause a small reflection. If an identical
shunt reactance is placed one quarter-wave from the first, its reflection will compensate
the first and the cable will have essentially perfect transmission. Show that this is the case
(a) analytically, using the “tan tan” formula for Z′ and B′, and (b) graphically, using the
Smith chart (the area around the center of the chart).

Problem 10.13. Find the size and position of the constant resistance circles on the
normalized Smith chart. Use the following procedure:

We have z(x) = r + jx where x is a variable and r is a constant. This vertical line in
the z-plane maps into the ρ-plane via the equation ρ(x) = [z(x)− 1]/[z(x) +1]. We want to
show that the locus of points in the ρ-plane is a circle with radius 1/(r+1) centered at
[r/(r+1) , 0].

Assume that the locus will be a circle centered on the real axis at [a,0]. Write the
equation |ρ(x)− a| = radius. This equation has the form

½NReðxÞ þ jNImðxÞ�=½DReðxÞ þ jDImðxÞ�j j ¼ radius; (1)

whereNRe(x) andNIm(x) are the real and imaginary parts of the numerator andDRe(x) and
DIm(x) are the real and imaginary parts of the denominator. If every point on the circle is
to have the same value of r, the radius of the circle must be independent of x.

ρðxÞ � aj j2 ¼ ½ðNReðxÞÞ2 þ ðNImðxÞÞ2�=½ðDReðxÞÞ2 þ ðDImðxÞÞ2� ¼ radius2

¼ function only of r:
(2)

In this case, the way to satisfy Equation (2) is to set NRe(x)/DRe(x) = −NIm(x) / DIm(x).
This will let us find a and radius. Other ways to make the radius constant will produce

circles on which both r and x vary.

119 Transmission lines

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.011



