
C H A P T E R

20 Antennas and radio wave
propagation

While discussing transmitter and receiver circuitry we did not have to know
much about antennas or propagation. It sufficed to know only that a voltage
applied to the terminals of a transmitting antenna causes a proportional voltage
to appear very shortly thereafter at the terminals of a receiving antenna. To be
more exact, it was sufficient to know that everything between the terminals of
the two antennas is equivalent to a linear two-port network. Here we will
consider the transmission through this propagation link.

When an ac source (transmitter) is connected to an antenna (practically any
metal structure) the resulting current has a component that is in phase with the
applied voltage. The impedance of the antenna therefore has a real part, a
resistance, and draws power from the source. If the antenna is efficient, most
of the power flows away from the antenna in the form of (energy-bearing)
electromagnetic waves and only a small fraction of the power will be dissipated
by ohmic heating of the antenna itself. The impedance will also generally have a
nonzero imaginary part, a reactance. If the reactance is zero at the operating
frequency the antenna is said to be resonant, just as an RLC circuit is purely
resistive at its resonant frequency. An external tuning network (an antenna
tuner) can be used to cancel the reactance and also transform the resistance to a
value that matches a receiver’s input impedance or to a value that draws a
desired amount of power from a transmitter.

20.1 Electromagnetic waves

As an electromagnetic wave propagates away from the transmitting antenna, it
takes on a spherical wavefront. By the time it reaches a distant receiving antenna,
the wavefront has a very large radius of curvature and is essentially a plane wave.
TheE andH vectors (electric and magnetic fields, measured respectively in volts/
m and amperes/m) both lie in the plane of the wavefront, i.e., they are transverse
to the direction of propagation as shown in Figure 20.1. The fields are in phase
with each other; they rise and fall together in space and time.
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The ratio of the electric field strength to themagnetic field strength in free space
is given by E/H =(μ0/ε0)

1/2= 120π =377 ohms. This ratio is known as the “impe-
dance of free space.” These fields are perpendicular to each other and their vector
cross-product, E×H, points in the direction of propagation. A continuous
monochromatic wave has sinusoidal spatial components, E0e

−jkz and H0e
−jkz,

as shown in the figure. The wavenumber, k, is defined as 2π/λ radians per
meter. The phase velocity, ω/k, is given by c = (μ0ε0)

− 1/2= 3× 108m/s (the speed
of light).

20.1.1 Propagation in a vacuum

Static electric and magnetic fields are always associated with sources, i.e.,
electric field lines terminate on electric charges and magnetic field lines
encircle current filaments. But when an antenna launches an electromagnetic
wave, the field lines break away from the sources, reconnecting into closed
loops, and the wave becomes autonomous. For a vacuum, Maxwell’s curl
equations are

r� E ¼ �μ0jωH ; (20:1a)

r�H ¼ e0jωE: (20:1b)

The right-hand sides of these equations are like sources; the E-field is pro-
duced by the changing H-field and the H-field is produced by the changing
E-field. You can verify the statements made above about plane waves by
writing the E-field shown in Figure 20.1 as E = x̂E0e

j(ωt−kz) and substituting it
into Equation (20.1a) to get H. You can then verify that H satisfies Equation
(20.1b).
Electromagnetic waves are produced by electric charges undergoing accel-

eration. Time-varying currents contain accelerating charges. A sinusoidally
time-varying current distribution on an antenna launches sinusoidal electro-
magnetic waves. The time-averaged power density or “energy flux” of the
waves is given by S =½(E ×H) = ½E2/377 watts/m2, where E and H are the
(peak) field amplitudes and the factor ½ is the time average of cos2(ωt). At a
receiving antenna, the fields from an incident wave produce currents that result
in a voltage at the antenna terminals.

x

y

z
E field

H field

Direction of propagation

Figure 20.1. An electromagnetic

wave – the E and H fields are

transverse to the direction of

propagation.
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20.2 Radiation from a current element

Just as Maxwell’s equations can be manipulated to yield back Coulomb’s law
(which gives the E-field from an elementary point charge) and Ampere’s law
(which gives the H-field from a constant current element), they can also be
stirred together to yield the E and H fields produced by a time-varying current
element. The E and H fields produced by an antenna are superpositions of the
E and H fields from every elemental ac current element on the antenna.
Consider an ac current element in the z-direction, as shown in Figure 20.2.

This element has length δl and carries a current I0 cos(ωt) which, as usual, we
express as I0e

jωt. At the observation point, r, the magnetic field is given by

δH ¼ I0δl
4π

jk sinðθÞe jðωt�krÞ

r
þ sinðθÞe jðωt�krÞ

r2

� �
; (20:2)

where k =ω/c and θ is the angle between the current element δl and the vector r.
Equation (20.2) is Ampere’s law, generalized for an elemental current with a
sinusoidal time variation. The direction of δH is given by δl× r (into the page).
The first term in the bracket falls off slowly as 1/r and is the radiation term. The
second term falls off quickly as 1/r2 and corresponds to near-field stored energy;
j is just a phase factor since j= ejπ/2. The normally implicit ejωt term is included
here to highlight the wave term, ejωt−kr. If we let the frequency approach
zero, the radiation term vanishes (since k goes to zero), the second term
becomes sin(θ)/r2 and Equation (20.2) reduces to Ampere’s law (also known
as the Biot – Savart law) for calculating the magnetic field produced by a dc
current element.

Figure 20.3 shows the radiation pattern (antenna pattern) obtained from
the radiation term in Equation (20.2) (the first term in the bracket). This is a
surface plot where the distance from the origin to any point on the surface is
proportional to the power radiated in that direction, i.e., proportional to |H|2 at
a large constant value of r. We do not have to work out the E-field sepa-
rately, since we already know that, in the far field, E is perpendicular to both
H and k and that its magnitude (in volts/m) is 377 times the magnitude of H
(in amps/m).1

In this chapter we are interested in radiation far from the antenna, so we can
ignore the near-field (second) term in Equation (20.2). At any observation point,
theH-field is the integral of the contributions from every current element in any
given antenna. For a wire antenna, we would evaluate a line integral. For a
reflector antenna, we would have a surface integral, summing up the contribu-
tions from the current flowing on each element of the surface.

I0ejω t dl

z r

θ

Figure 20.2. An elemental

sinusoidal ac current element.

1 If we do need to know E in the 1/r2(near field) region, we can calculate the curl of H from
Equation (20.3) and plug that into Equation (20.2) to get E.
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20.3 Dipole antenna

A short dipole antenna (shorter than, say, λ/20) will have the same radiation
pattern as the elemental dipole since we can consider it to be a string of
elemental dipoles, short enough that the phase paths from every one to the
observation point are essentially the same. Thus, the string is equivalent to a
single elemental dipole of strength Iδ l = ∑Iiδli. We can calculate the power
radiated by a single elemental dipole by integrating the average energy flux
density, ½EH, over the surface of a bounding sphere to include the power
radiated in every direction. Using the radiation term in Equation (20.2) for H,
we have

δH ¼ I0δl
4π

jk sinðθÞe jðωt�krÞ

r

� �
; (20:3)

Total Pwr ¼
Z
ð1=2ÞEHdS ¼

Z
ð1=2Þ μ0=�0ð Þ1=2H2r2dW

¼ ð1=2Þ μ0=�0ð Þ1=2ðI0kδl=ð4πÞÞ2
Z

sin2ðθÞ
r2

r2dW

¼ ð1=2Þ μ0=�0ð Þ1=2ðI0kδl=ð4πÞÞ2
Zπ

0

2π sin3ðθÞdθ

¼ ð1=2Þ120πðI0ð2π=λÞδl=ð4πÞÞ28π=3
¼ 40π2ðI0δl=λÞ2:

(20:4)

It turns out that the current distribution for a short dipole is a triangle function
(actually the almost linear ramp portion of a sine function near zero), as shown
in Figure 20.4.

Figure 20.3. Elementary dipole

radiation pattern (surface of

constant field strength).
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The average current for a short dipole is therefore half the input current, so the
power radiated is

Pshort dipole ¼ 40π2
Iin
2
l=λ

� �2

; (20:5)

where Iin is the peak input current and l is the length of the dipole. The input
power must be equal to ½ Iin

2R, where R is the real part of the antenna’s input
impedance, known as the radiation resistance. For the short dipole, we can
therefore write

Rshort dipole ¼ 2Pshort dipole=Iin
2 ¼ 20π2ðl=λÞ2: (20:6)

For a short dipole with l= 0.05λ, R = 0.49 ohms. The imaginary part of the input
impedance is negative and large, corresponding to a series capacitance with a
low value. An antenna tuning network that increases the low value of R and
tunes out the high value of capacitive reactance will need at least one high-value
inductor. However, the limitedQ of practical inductors will introduce losses that
result in very low efficiency. A counterpart to the elemental dipole is the
elemental current loop or elemental magnetic dipole (as opposed to elemental
electric dipole). The loop is assumed to have constant current and its radiation
pattern is the same as the pattern of the elemental dipole. A very small loop
antenna has an extremely low radiation resistance and a high positive (induc-
tive) reactance. It is an inefficient antenna in that its ohmic resistance is usually
higher than its radiation resistance.

In practice, most dipoles have an overall length of λ/2. At this resonant length,
the impedance of a thin wire dipole seen at the center gap is 73.1 + j0 ohms, an
entirely practical value. Resonant loops, with a circumference of the order of a
wavelength, are also practical antennas. While transmission line arguments can

(b)(a)
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<I(z)

I

Transmission
line

z

0

4

4
λ

4
–λ

I

I(z)

I

Transmission
line

zFigure 20.4. (a) A short dipole

has a triangular current

distribution. (b) A half-wave

dipole has a sinusoidal current

distribution.
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be used to show that the current distribution on a wire dipole is nearly sinus-
oidal, going to zero at the open ends, rigorous calculations of current distribu-
tions on arbitrary antennas require elaborate self-consistent treatments of the
currents and fields. A benchmark problem is the fat dipole antenna shown in
Figure 20.5(b). This “monopole” is really a dipole, since the ground plane
induces an image monopole as shown in Figure 20.5(a).
This geometry is appealingly simple; the radiating element, as it enters the

hole in the ground plane, becomes the center conductor of a coaxial line. You
can find theoretical and experimental plots of input impedance of this antenna in
most standard antenna textbooks. You can also model this dipole if you have
access to a program for three-dimensional electromagnetic field simulation,
such as Ansoft’s HFSS.

20.4 Antenna directivity and gain

The radiation from any antenna is always stronger in some directions than in
others; no antenna can be an isotropic radiator.2 Let the energy flux (W/m2)
produced in a given direction be denoted as S(θ,�,r), where we are using
standard polar coordinates. As before, the integral of S over an enclosing sphere
will be the total radiated power transmitted, PRAD:Z

Sðθ; ’; rÞr2dW ¼ PRAD: (20:7)

(b)(a)

h

d

Ground plane

Coaxial
transmission line

Image
monopole

Monopole

Figure 20.5. Fat monopole

geometry.

2 It is topologically impossible to have a constant tangential vector field on the surface of a sphere, a
theorem sometimes expressed as “You cannot comb the hair smooth on a billiard ball.” Thus, in
the far field of an antenna (at a distance greater than the square of the largest physical dimension of
the antenna divided by the wavelength), where the E and B fields are transverse (tangent to the
surface of a sphere surrounding the antenna), the fields cannot be everywhere constant. The
radiation pattern of an antenna, therefore, cannot be isotropic.
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For any given direction, the ratio of the flux to the average flux is defined as the
directivity of the antenna

Dðθ;Φ; rÞ ¼ Sðθ;Φ; rÞ
PRAD=ð4πr2Þ : (20:8)

An equivalent statement is that the directivity is the factor by which the flux in
the strongest direction exceeds the flux from a hypothetical isotropic antenna
radiating the same total power. We know that the radiation flux eventually falls
off as r− 2. For large r, then, the far-field directivity, D, is a function only of the
polar coordinates θ and �. Combining Equations (20.7) and (20.8), we see that
the average directivity of an antenna is unity:

1

4π

Z
Dðθ;ΦÞdW ¼ 1: (20:9)

Directive gain,G(θ,�,r), has the same definition as the directivity except that the
radiated power is replaced by Pinc, the power incident on the antenna terminals:

Gðθ;Φ; rÞ ¼ Sðθ;Φ; rÞ
Pinc=ð4πr2Þ : (20:10)

If an antenna has no ohmic losses and its feedpoint impedance matches the
transmission line impedance (so that no power is reflected), all the incident
power will be radiated and the directive gain will be equal to the directivity. In
most antennas used for transmitting, the losses are no more than a few percent
and the distinction between directivity and gain is unimportant.3 The maximum
value of an antenna’s directive gain is simply called the gain. A transmitter
connected to an antenna having a gain of 20 dB will produce a directed signal
100 times more powerful than if it were connected to a hypothetical lossless
isotropic radiator.

Since we have already calculated the total power radiated by an elemental
dipole (Equation 20.4), we can easily calculate its directivity. The maximum
flux density, calculated from Equation (20.3), is Smax = (60/π)[ I0k δ l /(4πr)]

2,
where we have substituted 120π for (μ0/ε0)

1/2. Dividing Smax by the average flux
density, Savg = total power/(4πr2), yields a directivity of 1.5. As explained
above, this will also be the directivity of a short dipole. The directivity of a
half-wave dipole is 1.64 and its radiation pattern differs little from that of the
elemental dipole.

3 Small inefficient antennas are adequate for low-frequency receivers. Even though antenna losses add
noise at the receiver input, signal strengths in the AM broadcast band and short-wave bands must
already be considerably higher than this added noise in order to exceed the noise power from static
(atmospheric electricity). Even with an inefficient antenna, the total power delivered to the receiver is
much greater than the thermal noise added by the antenna and by the receiver itself.
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20.5 Effective capture area of an antenna

The distance between transmitting and receiving antennas is generally so large
that a plane wave can be assumed incident on the receiving antenna. The energy
extracted from the incident wave is, of course, proportional to the average
energy flux density, ½E×H W/m2. The proportionality constant is called the
effective area (capture area) of the receiving antenna. It turns out, as shown
below, that the effective area is proportional to gain:

Aeff : ¼ Gλ2=4π: (20:11)

Since gain and effective area are proportional, there is really no distinction
between transmitting antennas and receiving antennas; the best transmitting
antenna (most gain) is also the best receiving antenna (most capture area). A
standard derivation of Equation (20.11) begins by applying the reciprocity
theorem4 to a system of two arbitrary antennas. The two antennas, as shown
in Figure 20.6, need not be identical. We can suppose they are both matched to
the same impedance value and that we have both a generator and a receiver that
match this impedance. First we connect the generator to Antenna 1 and measure
the power from Antenna 2.
If we now interchange the generator and load, the reciprocity theorem states

that the power delivered to the load will be unchanged. Expressing this in terms
of gain and effective area, we have G1Aeff 2 = G2Aeff 1 or G1/Aeff 1 = G2/Aeff 2,
from which we see that the ratio of gain to effective area has the same constant
value for any and all antennas. We can pick any conveniently simple antenna

Figure 20.6. Reciprocity:

received power is unchanged

when source and load are

interchanged.

4 The remarkable reciprocity theorem finds application in mechanics, optics, and acoustics
as well as electrical engineering.

266 Radio-frequency electronics: Circuits and applications

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.021 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.021


and use electromagnetic theory to calculate its gain and effective area. When
this is done, it is found that the ratio of gain to effective area is 4π/λ2. A half-
wave dipole antenna has a maximum gain of 1.64. Its effective area is therefore
1.64 λ2/4π. If the dipole is made of thin wire, it has no real physical area, only a
length, yet it has a nonzero effective area and can extract energy from an
incident electromagnetic wave. Note that even a very short dipole has nearly
the same effective area as a half-wave dipole. The effective area of a microwave
dish antenna can approach its physical area, as we will see below, but normally
it is from 50 to 80 percent of the physical area. This fraction, known as aperture
efficiency, is usually set not by ohmic losses but rather by the illumination
pattern of the primary feed antenna. A perfectly uniform illumination pattern
(and no ohmic loss) produces an aperture efficiency of unity. The Arecibo radio
telescope dish uses an aperture 700 ft in diameter (area = 35 800m2). Its aperture
efficiency is about 70% at λ= 12 cm (the wavelength used there for radar
astronomy) so its gain, using Equation (20.11), is G = 4π(0.70 × 35 800)/
(0.12)2= 22 × 106 or 73 dB.

20.6 Reflector and horn antennas

Radar antennas and satellite TV dishes are familiar examples of reflector
antennas. From a transmitting standpoint, a primary or “feed” antenna illumi-
nates the reflector. Currents induced in the metallic surface of the reflector
become secondary radiators and their radiation forms the beam of the antenna.
The larger the dish, the more directive the antenna, as we will see. These
antennas are examples of “aperture antennas;” one can readily identify the
aperture (usually circular) from which the radiation emanates, as if from a
searchlight.

Let us use Equation (20.3) to calculate the radiation from a large flat
rectangular metal plate on which there is a surface current density, JS, which
has the same amplitude and phase at every point.5 For surface current, JSdxdy
replaces I0dl in Equation (20.3). To find the antenna pattern we integrate over
the plate, summing up the contributions from each element of area. These are
phasor contributions and the far field is actually an interference pattern. Once
we have calculated the antenna pattern, we will integrate the power over a
bounding sphere, as we did for the elemental dipole, to determine the total
power radiated. With this, we can then calculate the gain.

Figure 20.7 shows the geometry for this antenna. The size of the plate is 2a by
2b. Radiation will be strongest in the z-direction, perpendicular to the plate. We

5 Such a current distribution could be established by illuminating the plate with radiation from a
dipole far out in front of the plate, though this would not be an efficient feed antenna, since the
plate would intercept only a small fraction of the dipole’s radiation.
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will assume that both a and b are much greater than λ, anticipating that this will
form a very concentrated beam.6

The vector from the center of the plate to a distant observation point is
denoted by r, and the vector from the center of the aperture to an arbitrary
point x,y on the aperture is denoted by R. Again using the first term (the
radiation term) of Equation (20.3), we see that the contribution to the distant
H field from an element of area at the center of the plate is given by δH= JS dxdy
jk(4πr)−1cos(θ)ej(ωt−kr) where, as always, k= 2π/λ and k is directed from the
plate to the point r. Note that the sin(θ) factor in Equation (20.3) is here cos(θ)
because the current is perpendicular, not parallel, to the z-axis. We will replace
this cos(θ) by unity, anticipating that, when both a and b are much greater than λ,
the pattern will be highly concentrated around the θ= 0 direction. Away from
the origin, radiation to the point r from any other point on the plate will be
shifted in phase by k⋅R radians, as shown by the inset in Figure 20.7. Using
standard polar coordinates, this phase shift is given by

k⋅R ¼ xk2 þ yky ¼ k sinðθÞ½x cosð�Þ þ y sinð�Þ�: (20:12)

If we assume a uniform field over the aperture, the field at r, θ, � can now be
written as

Hðr; θ; �Þ ¼ jkJSejωðt�krÞ

4πr

Zb

�b

Za

�a

e jk�Rdxdy

¼ jkJSe jωðt�krÞ

4πr

Zb

�b

Za

�a

e jkθðx cos�þy sin�Þdxdy; (20:13)

dx
x dy

y

R

R

k (Direction of propagation)

kz

2a

2b

Origin
x,y

k•R

θ

φ

Figure 20.7. Rectangular

aperture antenna geometry.

6 When used at a wavelength of 12 cm, the 210-m diameter illumination on the dish at Arecibo
forms a beam whose width between half-power points is only 12/21 000 radians or 0.03 degree, a
“pencil beam.”
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where we have replaced sin(θ) by θ, again anticipating that the power will
be negligible except for the region close to θ= 0. Evaluating the integral we
find

Hðr; θ; �Þ ¼ jkJSabejωðt�krÞ

4πr
sinðkaθ cosð�ÞÞ
kaθ cosð�Þ

sinðkbθ sinð�ÞÞ
kbθ sinð�Þ

� �
: (20:14)

Since the average power density (watts/m2) is given by EH = ½(μ0/ε0)
1/2H2, the

antenna pattern is proportional to the square of the term in brackets. Figure 20.8
shows the pattern, which has a strong central main lobe surrounded by side-
lobes, which for this (sin(x)/x)2 power pattern are 13.3 dB below the peak of the
main beam.

This plot uses rectangular “sky coordinates,” u and v, measured in radians,
where u = θsin(�) and v = θsin(�). The term in brackets is, therefore, sin(kau)/
(kau) sin(kbv)/(kbv). This plot was made for a square aperture; a rectangular
aperture produces an elongated beam. For a< b, the beam is broader in the
u-direction than in the v-direction. We can integrate the power density of the
pattern to get the total average power:

Pwr ¼ 1=2

ffiffiffiffiffi
μ0
e0

r
jJSkabe jωðt�krÞ

4πr

����
����
2ZZ

r2
sinðkauÞ
kau

sinðkbvÞ
kbv

� �2

dudv

¼ 1=2

ffiffiffiffiffi
μ0
e0

r
Jskab

4π

� �2 π2

k2ab
: (20:15)
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This let us calculate the gain:

G ¼ 1=2

ffiffiffiffiffi
μ0
�0

r
Hðr; 0; 0Þj j2 � Pwr

4πr2
¼ 4πð4abÞ

λ2
¼ 4πA

λ2
: (20:16)

This example antenna serves to establish the relationship between gain and
effective area, G = 4π Aeff /λ

2, as long as we can argue that the effective area
(capture area) is equal to the actual physical area. To argue this case, consider
that a wave transmitted by this antenna is essentially a plane wave as it leaves
the large aperture (as contrasted with the spherical wave emitted by a small
antenna). Therefore, if we invoke time reversal, the wave entering the antenna
would be a plane wave, just as if it had come from a distant transmitting antenna.
Since the time-reversed wave is completely “absorbed” by the antenna, the
effective area is equal to the physical area, 4ab.
The integral in Equation (20.13) is just a two-dimensional Fourier transform

of the aperture illumination. In this example, we used uniform illumination, so
we have transformed the shape of the aperture with uniform weighting. The
aperture can have any shape. For example, a circular plate of radius a ≫ λ
produces a field pattern proportional to J1(kaθ)/(kaθ), where J1 is the first-order
Bessel function of the first kind. (The function J1(x) resembles sin(x)[x+1]− 1/2).
For any given aperture, uniform illumination produces the highest gain. But
“tapered” illumination, where the current density is less near the edges of the
aperture, is often used because it reduces the amplitude of the sidelobes.
A simple microwave horn antenna is essentially a waveguide funnel, fed at

the small end, as shown in Figure 20.9. The other end fans out, usually in both
transverse directions, to form a large aperture. The beam radiated from the
aperture is comparable to the beam radiated from a dish antenna having equal
area. The field distribution in the aperture plane is the same as the field at any
cross-section in the waveguide, expanded to fill the aperture.
The horn antenna has no secondary radiators in its aperture plane. Of course

there are currents on the inside walls of the waveguide and, in principle,
Equation (20.3) can be used to calculate the radiation pattern far out in front
of the horn. A much simpler way to find the radiation pattern is to use Huygen’s
principle, where the aperture field is regarded as a source, a two-dimensional

Aperture planes

(b)(a)

Figure 20.9. Horn and dish

antenna aperture planes.
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array of wavelets, each of which re-radiates as if it were a current element.7 If
you know the E-field (or H-field) in the aperture plane, the squared magnitude
of its two-dimensional Fourier transform yields the radiation pattern, just as the
squared magnitude of the transform of the currents on a metal plate yielded the
radiation pattern in the above example. This analysis technique is also applied to
dish antennas. Ray-tracing methods (geometric optics) are used to find the
phase and amplitude of the field at an aperture plane – usually just in front of
the dish. This field is then regarded as a Huygen’s source; its Fourier transform
gives the far-field pattern without requiring an intermediate calculation of the
currents on the reflector surface. This Fourier transform method is also applied
to systems having multiple antennas, such as arrays of dish antennas, used
together as an interferometer to form an extremely narrow beam.

20.7 Polarization

The elementary dipole of Figure 20.2 produces radiation with linear polar-
ization; at any observation point the electric field vector has a fixed direction
and an amplitude that oscillates sinusoidally. A dipole receiving antenna would
have to be placed parallel to the incoming polarization. If placed perpendicular
to the incoming E vector, it would pick up no signal. In all the preceding
discussions, we have implicitly assumed that the polarization of a receiving
antenna was matched to that of a transmitting antenna. Circular polarization
can be produced with an antenna made of crossed dipoles. The dipoles are fed
by signals that are equal in amplitude but 90° out of phase. This results in a
transmitted E vector that rotates in the plane perpendicular to the direction of
propagation. At any observation point, the magnitude of the E vector remains
constant, but the vector rotates one turn for every period of the wave. A 90°
hybrid can be used as a power splitter to feed the two dipoles. An identical
antenna (a pair of crossed dipoles with a 90° hybrid as a combiner) makes a
polarization-matched receiving antenna. Note that a single dipole can serve as a
receiving antenna for circular polarization, but it collects only half the available
power. If the incoming E field, viewed from the receiving position, rotates in the
counterclockwise sense, the radiation has, by definition, right-hand circular
polarization (RCP). If the cables from the receiving antennas were to be
interchanged at the hybrid, the resulting LCP antenna would have the wrong
handedness and could receive no power from an RCP transmitting antenna. The
most general polarization is elliptical, which is an admixture of linear and
circular. Linear and circular polarizations are just special cases of elliptical
polarization.

7 See Reference [1] for a theoretical justification of Huygen’s principle.
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20.8 A spacecraft radio link

Consider the following example of a spacecraft telemetry link for which
we wish to find the maximum range. Suppose we have a 1-W telemetry trans-
mitter aboard a spacecraft and that the data rate requires a channel capacity
corresponding to a signal-to-noise ratio of at least unity in a 1-Hz bandwidth.
This link uses a frequency of 3GHz (10 cm wavelength). The transmitting
antenna on the spacecraft is a 2-m diameter dish. The ground station antenna
is a 10-m diameter dish, as shown in Figure 20.10. Assume that both these
dish antennas have an effective area equal to 60% of their physical apertures.
Assume also that there is no pointing error, i.e., the antennas always point
directly at each other and that the system temperature of the ground station
receiver is 25K. (The system temperature is the sum of the equivalent
receiver noise temperature, the antenna noise temperature, and the sky noise
temperature.)

1. What is the equivalent input noise power of the receiver? Boltzmann’s
constant, k, is 1.38 × 10− 23W/Hz/K, so the equivalent input noise power,
kTB, is 1.38 × 10− 23 × 25 × 1 = 3.45 × 10− 22W.

2. What is the effective area of the receiving antenna? The physical aperture is
πR2 so the effective area is 0.60 πR2 = 0.60π52 = 47.1m2.

3. What is the gain of the transmitting antenna? The physical aperture is πR2

and the aperture efficiency is 0.60 so the effective aperture is 0.60 π(12)
= 1.88m2. The gain is 4πAeff /λ

2= 4π(1.88) /(0.12) = 2369.
4. What is the maximum range, R, in kilometers for the spacecraft

to maintain the required signal-to-noise ratio? Here we simply set
Pnoise =Preceived = Arcvr Ptrans.Gtrans/ (4πR2) from which we have R2=
(4π)− 1Ptrans. Gtrans/Pnoise. Using the parameters calculated above, we have

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ�1�1�2369=ð3:45� 10�22Þ

q
¼7:4�1011m ¼ 740� 106km.

This is roughly the mean distance to Jupiter.

Earth

1-watt transmitter
on spacecraft

10 meter diam. antenna

2 meter diam. antennaFigure 20.10. A spacecraft

telemetry link.
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20.9 Terrestrial radio links

VHF and UHF two-way radios used by cellular phones, emergency vehicles,
etc. have transmitters with several watts of power but their range is limited by
the curvature of the Earth to only a few miles or tens of miles. (Radio waves
do not propagate through the highly conductive Earth though they do
diffract slightly, so the radio horizon is somewhat beyond the optical
horizon.) Mobile radios also use antennas that have gains only of the order of
unity so they do not have to be pointed accurately – or even at all. Finally, in
ground-to-ground radio links, the signal usually arrives from an angle near the
horizon; the receiving antenna will pick up noise from the ground (thermal
radiation). In these systems, then, extremely low-noise receivers are of no
benefit. Broadcasting stations for FM and television also use VHF and UHF
frequencies so their range is also essentially line-of-sight. Long-distance prop-
agation in AM and short-wave broadcasting depends on reflection from the
ionosphere.

20.10 The ionosphere

At altitudes above about 60 km the atmosphere is ionized by ultraviolet radia-
tion from the Sun; electrons are stripped from the neutral particles (mostly
oxygen atoms and O2 and N2 molecules) to produce a mixed electron and ion
gas. During the day the density of this ionized gas is highest at around 250 km,
the peak of the “F-region.” Above the peak the ionization is less because the
thinner atmosphere presents fewer particles to be ionized. Below the peak the
ionization is less because the denser atmosphere exhausts the supply of ultra-
violet photons; the electrons they produce quickly encounter nearby ions
and recombine. At night, without sunlight, the ionization rate is zero.
Recombination quickly neutralizes the ionization at the lowest altitudes, around
100 km, and depletes the F-region until sunrise.

20.10.1 Wave propagation in the ionosphere

An electromagnetic wave induces electric currents in the electron gas of the iono-
sphere. (The electrons, by virtue of their low mass, are accelerated by the incident
wave tomuch higher velocities than the ions, so the ion contribution to the current is
negligible.) The effective dielectric constant of an electron gas is not difficult to
calculate from Maxwell’s equations. (We will see that this dielectric constant
becomes imaginary below a certain critical frequencywhich depends on the electron
density; below this frequency, then, electromagnetic waves cannot propagate
through the plasma.)No longer in avacuum,wemust use thegeneral curlH equation
which includes the real electric current, J, in addition to the displacement current:
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r�H ¼ J þ �0
∂E
∂t

: (20:17)

The electrons are in rapid thermal motion, but this motion is random and
contributes nothing to the current. Yet all the electrons near any given point
are accelerated equally and move together to produce a net current, J = Nev,
where N is the electron density, e is the electron charge, and v is the component
of velocity imparted by the electric field. We will neglect the weak v ×B force
from the magnetic field so Newton’s second law of motion is just mdv/dt = F =
eE. For a sinusoidal time dependence, ejωt, we can write this equation of motion
as m(jωv) = eE. Substituting J = Nev = Ne2E/ (jωm) in Equation (20.17) gives

r�H ¼ Ne2E
jωm

þ jω�0E ¼ jω�0 1� Ne2

�0mω2

� �
E: (20:18)

Note that the term in brackets is the relative dielectric constant and that it
becomes negative for low frequencies, in particular for ω2< ωp

2 where ωp
2=

Ne2/(ε0m). This happens because the conduction current (the electron current)
becomes greater than the displacement current. The total current (conduction
current plus displacement current) changes sign and has the wrong polarity to
source the H field of a traveling wave. This critical frequency, ωp, is known as
the plasma frequency. (If the local charge neutrality of an electron–ion gas is
disturbed, the densities will oscillate at this frequency the way a spring and mass
system oscillates at its resonant frequency.) For a wave to propagate in the
plasma, the dielectric constant must be positive; only waves with frequencies
lower than the plasma frequency will be reflected. The free-electron gas that
gives metals their conductivity is dense enough to reflect visible light but the
alkali metals (lithium, sodium, etc.) have relatively lower electron densities and
are transparent in the ultraviolet.

20.10.2 Reflection of waves from the ionosphere

The reflection of radio waves is normally a process of refraction because the
waves are not vertically incident on the ionosphere. As they travel obliquely
upward, the dielectric constant decreases so the phase velocity increases, caus-
ing the propagation vector, which is perpendicular to the wavefront, to turn
around gradually. This is shown in Figure 20.11.
For signal strength calculations over an ionospheric path the ionosphere can

be considered a specular mirror and field strengths can be calculated by taking
the inverse square of the total path length of the ray.

20.10.3 Daytime vs. nighttime propagation

Short-wave broadcasts from distant transmitters on the higher frequency bands
are not heard at night because the ionospheric electron density is too low for
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reflection, i.e., the waves cannot get turned around sufficiently. On the other
hand, low-frequency stations, such as those in the AM broadcasting band, are
received from great distances only at night. During the day their energy is
dissipated in the lower ionosphere through collisions between the accelerated
electrons and neutral atoms and molecules. Why don’t higher frequency waves
suffer this daytime attenuation in the lower ionosphere? Consider a low-
frequency and a high-frequency wave of equal power, that is, equal field
strengths. Both cause the ionospheric electrons to execute synchronized sinus-
oidal motion as described above. But the low-frequency wave, because its
period is long, will produce higher electron velocities; we saw above that
v=Ee/(jωm). The average kinetic energy of each electron is therefore mhv2i/2 =
m[Ee/(ωm)]2/4 where E is the amplitude of the electric field. All the electrons in
the lower ionosphere suffer collisions with the neutral particles (which are
present since the ionization is not 100%). The average collision leaves the
electron with a random velocity, i.e., its share of the synchronized sinusoidal
motion is lost. The frequency of collisions does not depend on the frequency of
the electromagnetic wave (or on there being any electromagnetic wave present
at all) so the rate of energy loss is inversely proportional to the square of ω, the
wave frequency, and long-distance AM listeners have to wait for nighttime.

20.11 Other modes of propagation

Besides reflection by the ionosphere, there are a number of other ways that an
electromagnetic wave can get around the curvature of the Earth. These include
scattering from the ionized trails of meteors entering the Earth’s atmosphere,
scattering from irregularities in the ionosphere even when the ionosphere is
otherwise not dense enough to turn the waves around by refraction, scattering

Increasing electron density
Increasing phase velocityAltitudeAltitude

Ground level

200 km

100 km

0 106

Electron concentration (cm–3)
Ray path showing successive wave fronts

In a unit time interval the
top of the wave front advances
farther than does the bottom

Figure 20.11. Ionospheric

refraction.
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from density irregularities in the neutral atmosphere (i.e., fluctuations in the
index of propagation), and ducting beneath atmospheric temperature inversion
layers.

Problems

Problem 20.1. The voltage at the terminals of a receiving antenna is proportional to the
E field of an incident electromagnetic wave. The “effective length” (or effective height
if the antenna is vertical) is defined as the open-circuit voltage at the terminals divided
by the incident E field: volts / (volts/meter) = meters. Show that the effective length is
given by

effective length ¼ ð4RAeff=Z0Þ1=2;

where R, the radiation resistance, is the real part of the antenna impedance, Aeff is the
effective area ( Aeff = G·λ2/(4π)), and Z0 = 377 ohms = (μ0/�0)

1/2, the impedance of free
space. Find the effective length of a half-wave dipole (G= 1.6 and R= 73 ohms).

Problem 20.2. Suppose we have a 1-W transmitter connected to a dipole antenna
which is aligned to provide the maximum signal strength at a distant receiving antenna.
Needing more signal strength, we obtain a second, identical dipole and, using a power
splitter, feed each dipole with ½W. We space the second far enough from each other so
that they do not interact. We make sure that both antennas are aligned toward the receiver
and we also make sure that the cables from the power splitter have equal length. At the
receiving antenna, each transmitting antenna provides a field amplitude that is less than
the original field by 1=

ffiffiffi
2

p
. But the two signals are in phase so the total amplitude is

increased by 2=
ffiffiffi
2

p ¼ ffiffiffi
2

p
. Squaring this we see that the received signal strength is

doubled. Have we gotten something for nothing? Could we repeat this process to
increase the received power even more?

Problem 20.3. Let the individual antennas of Problem 20.2 be AM broadcast towers
with omnidirectional patterns and vertical polarization. Suppose the spacing between
these antennas is λ/2. As before, they are fed symmetrically, that is, with the same power
and same the phase. Find the radiation pattern in the horizontal plane: make a polar plot
of the relative field strength vs. azimuth angle for a distance far from the antennas. Hint:
at any observation point in the horizontal plane at a distance r from the center of the line
joining the two antennas, the total voltage is the sum of the contributions from the two
antennas, ej�1 and ej�2 . The phases π1 and π2 are the phase path lengths corresponding to
r1 and r2, the distances from the observation point to the respective antennas. These phase
paths are just 2πr1/λ and 2πr2/λ. The field strength is given by ðjej�1 þ ej�2 jÞ.
Problem 20.4. Consider a pair of crossed dipoles. The first dipole points in the z-
direction and carries a current cos(ωt). The second dipole points in the x-direction and
carries a current sin(ωt). Find the type of polarization and the relative power density of
the radiation in the +z, −z, +x, −x, +y, and −y directions. If you have a program like
MATLAB or Mathcad, make a three-dimensional surface plot, like Figure 20.3, for
which the distance from any point on the surface to the origin is proportional to the
radiation power in that direction.
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