
C H A P T E R

13 Coupled-resonator bandpass filters

We saw in Chapter 4 that the straightforward transformation of a prototype
lowpass filter to a bandpass filter yields a circuit with alternating parallel
resonant circuits and series resonant circuits as shown in Figure 13.1.

If the prototype lowpass filter has a response FLP(ω), the corresponding
bandpass filter will have the response FBP(ω) =FLP( |ω−ωC|), where ωC is the
center frequency. These canonical bandpass filters work perfectly – when
simulated with a network analysis program. But usually they call for impractical
component values. The inductors in the shunt branches must be smaller than the
inductors in the series branches by a factor on the order of the square of the
fractional bandwidth. For a 5% bandwidth filter, the ratio of the inductor values
would be of the order of 1:400. For a given center frequency we might be lucky
to find a high-Q inductor of any value, let alone high-Q inductors with such
different values. Low-Q (resistive) inductors make a filter lossy and change its
nominal passband shape. The series and shunt capacitor values have the same
ratio. Generally Q is not a problem with capacitors, but very small values are
impractical when they become comparable to the stray wiring capacitances.

13.1 Impedance inverters

This component value problem can be solved by transforming canonical bandpass
filters into coupled-resonator bandpass filters, which can be built with identical or
almost identical LC resonant circuits. The coupled-resonator filters have the same
filter shapes, based on prototype lowpass designs, such as Butterworth or
Chebyshev. Figure 13.2 shows some coupled-resonator fiter designs.

Figure 13.1. Conversion of a

lowpass filter to a canonical

bandpass filter.
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These filters are based on impedance inverters. Three examples of impedance
inverters are shown in Figure 13.3, a 90° length of transmission line and two
lumped LC circuits.

In every case, an impedance Z, when seen through the inverter, becomes
Z0

2/Zwhere Z0 can be called the characteristic impedance of the inverter. For the
transmission line inverter, a 90° length of line, Z0 is just the characteristic
impedance of the line. For the LC inverters, both the inductor’s reactance, XL,
and the capacitor’s reactance, XC, must be equal to the desired Z0. Like the 90°
cable, the lumped element circuits are perfect inverters only at one frequency
but, in practice, they are adequate over a considerable range. An inverted
capacitor is an inductor. An inverted inductor is a capacitor. Figure 13.4
shows an inverter (in this example, a 90° transmission line) used to invert a
parallel circuit, making an equivalent series circuit.

The mathematics of this inversion is just

Zin ¼ Z0
2Y ¼ Z0

2 1

jωLp
þ jωCp þ 1

Rp

� �
¼ 1

jωðLp=Z02Þ
þ jωðZ02CpÞ þ Z02

Rp
:

(13:1)

Let us look at four inverters which include inductors or capacitors with negative
values. For these inverters, shown in Figure 13.5, XC = Z0 or XL = Z0.

Figure 13.6 verifies the inverter action of the all-capacitor T-section inverter.
You can use this kind of reasoning to verify the inverter action of the other circuits:

Figure 13.2. Three examples of

coupled-resonator bandpass

filter circuits.

(a) (b) (c)

Figure 13.3. Three impedance

inverter circuits

90°

L L LZ C

Z0

Z Z

XC 
=

 
–Z0 XL 

=
 
Z0

(c)(b)(a)

Zin = Z 2/ Z0
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Z1 ¼ 1

jωð�CÞ þ Z (13:2)

Y2 ¼ jωC þ 1

Z1
¼ jωCZ

Z � 1=jωC
(13:3)

Zin ¼ 1

jωð�CÞ þ
1

Y2
¼ 1

ω2C2Z
¼ Z2

0

Z
: (13:4)

Because they contain negative capacitances or negative inductances, the four
inverters in Figure 13.5 might seem to be only mathematical curiosities. Not at

Figure 13.5. Impedance

inverters based on negative

value components.

–C–C

(a)

–C –C

C

(b)

–L –L

L

(c)

–L –L

L

(d)

Z1Zin Y2

–C –C

C
Z

Figure 13.6. Operation of the

T-network negative capacitor

inverter.

Z0
LP CP RP

ZIN

CS = LP / Z0
2

RS = Z0 / RP
2

LS = CPZ0
2

=

90° Y
Figure 13.4. Impedance

inverter makes a parallel circuit

appear as a series circuit.
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all; the negative elements can be absorbed by positive elements in the adjacent
circuitry as shown in Figure 13.7, where a π-section capacitor inverter is placed
between two parallel LC “tanks.”

13.2 Conversion of series resonators to parallel resonators and vice versa

Ladder network filters have alternating series and shunt branches. Let us see
how inverter pairs are used in ladder filters. Suppose we embed a series
capacitor between a pair of inverters at some point along a ladder network.

The combination of the capacitor and the inverter pair is equivalent to a shunt
inductor, as shown in Figure 13.8.

You can show just as easily that any series impedance, Zs, together with a pair
of bracketing inverters of characteristic impedance Z0 is equivalent to a shunt
admittance Yp = Z0

−2 Zs. Likewise, the combination of any shunt admittance Y
and a pair of bracketing inverters is equivalent to a series impedance Z = Z0

2Y.
Figure 13.9 illustrates this, showing how a series resonant series branch in an
ordinary bandpass filter can be replaced by a parallel resonant shunt branch
imbedded between a pair of inverters.

Likewise, a parallel resonant shunt branch can be realized as a series
resonant series branch imbedded between a pair of inverters, as shown in
Figure 13.10.

=

Z

Impedance inverters

C
Z0 Z0

Z

L = Z0 / C2

Figure 13.8. A series capacitor

between inverters is equivalent

to a shunt inductor.

Figure 13.7. Negative

capacitors absorbed into

adjacent positive capacitors.

=–C –C L2L1
C2C1

C

(a)

L1
C1–C L2C2–C

C

(b)
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13.3 Worked example: a 1% fractional bandwidth filter

Consider a 50-ohm, 1-dB Chebyshev filter with a 10-MHz center frequency and
a bandwidth of 100KHz between the 1-dB points. The filter, which results from
the straightforward lowpass to bandpass transformation (Chapter 4) is shown in
Figure 13.11 and its response is shown in Figure 13.12.
We might find 86-μH inductors with high Q at 10MHz but the 3.728 nH and

2.645 nH inductors would be tiny single turns of wire with very poor Q. To get
around these component limitations, we will convert this filter into a coupled-
resonator filter. Suppose we have in hand some adjustable 0.3 to 0.5 microhenry

2.917 pF

86.83 μH

0.003727 μH 0.002652 μH

0.09552 μF0.06796 μF 

0.003727 μH

0.06796 μF 

2.917 pF

86.83 μH

Figure 13.11. A straightforward

(but impractical) bandpass filter.

The calculated response of this

filter is shown in Figure 13.12.

Figure 13.9. A shunt resonator

between inverters is equivalent

to a series resonator.

=

Z0Z0

Figure 13.10. A series resonator

between inverters is equivalent

to a shunt resonator.

=

(a) (b)

Z0 Z0
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inductors which, at 10MHz, have very high Q (we will see later just how
much Q is required). Let us first change the working impedance of the filter so
that the parallel resonators at the end will use 0.5 μH, which is 134.1 times
the original end inductors and implies that the filter will be scaled to
50 × 134.1 = 6705 ohms. We multiply the other inductors by 134.1 and divide
the capacitors by 134.1 to get the circuit of Figure 13.13.

The parallel resonators now use the desired inductors but the series resonators
call for inductors of 11.6mH, a very large value for which we surely will not
find high Q components. Moreover, the series capacitors are only 0.02 pF, a
value far too small to be practical. We can solve this problem by using
impedance inverters to convert the series resonators into parallel resonators.
Let us use the all-capacitor π-section inverters of Figure 13.5(b) and the same
parallel resonators we used for the end sections. Figure 13.14 shows how two
inverters and the parallel resonator replace each series resonator.

We can calculate the inverter’s characteristic impedance, Z0, as follows:

Z0
2Y ¼ Z; Z0

2ð jωCp þ 1=jωLpÞ ¼ jωLS þ 1=jωCS (13:5)

Z0
2 ¼ Lp=CS ¼ 0:5�10�6=0:02175� 10�12 ¼ 47962: (13:6)

506.6 pF
0.02175 pF
11.64 mH

713 pF

0.5 μH 0.3556 μH
506.6 pF
0.5 μH

0.02175 pF

11.64 mH

Figure 13.13. Filter of

Figure 13.11, scaled from 50 to

6705 ohms.

9.9⋅106 9.95⋅106 1⋅107 1.005⋅107 1.01⋅107
–20

–10

0

10⋅log(pwr(ω))

2⋅π
ω

Figure 13.12. Calculated

response for filter of

Figure 13.11.
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For this type of inverter, we had seen that Z0 =XC, so C = 3.32 pF. We now have
our coupled-resonator filter but since it works at 6705 ohms we will add
L-section matching networks at each end to convert it back to 50 ohms. The
filter, at this point, is shown in Figure 13.15. All the resonators are now parallel
resonators. (In other situations we might use inverters to convert series reso-
nators into equivalent parallel resonators to make an all-series-resonator filter –
see Figure 13.1.)
The final clean-up step is to absorb the − 3.32 pF capacitors into the resonator

capacitors and combine the matching section inductors with the end-section
resonator inductors as shown in Figure 13.16.
The response of the finished filter is shown in Figure 13.17 and is almost identical

to the response of the prototype filter of Figure 13.11. The difference, a fraction of a
dB, occurs because the inverters work perfectly only at the center frequency.

13.4 Tubular bandpass filters

A popular bandpass filter design, the “tubular filter” is produced by many filter
manufacturers. Figure 13.18 shows the construction of a three-resonator tubular filter.

InverterInverter

Z0 Z0

LS= 11.64 mH

CS= 0 .02175 pF

=

CP= 506.6 pF

LP= 0.5 μH

Figure 13.14. Inverters

transform a 0.5-μH shunt

inductor into a 11.644-mH series

inductor.

Figure 13.15. Coupled-

resonator version of previous

bandpass filter.

0.5 μH
27.6 pF

506.6 pF

0.5 μH
506.6 pF

0.5 μH
506.6 pF

0.5 μH
506.6 pF

9.25 μH

27.6 pF

9.25 μH-C

C

C = 3.32 pF

-C

C

-C

C

-C

C

C = 3.32 pF C = 3.32 pF C = 3.32 pF

0.3558 μH
711.9 pF

-C -C -C -C

Figure 13.16. Finished coupled-

resonator filter.

27.6 pF 27.6 pF

0.4744 μH 0.5 μH 0.3558 μH 0.5 μH 0.4744 μH

3.32 pF 3.32 pF 3.32 pF 3.32 pF

503.3 pF 500.0 pF 705.3 pF 500.0 pF 503.3 pF
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The only standard electronic components are the coaxial connectors at the
ends. There are also (in this example) three inductors (wire coils), four metal
cylinders, two dielectric spacers, two (or one long) dielectric sleeves, and a
tubular metal body. Figure 13.19 shows how a coupled-resonator filter design,
of the type we have discussed, is transformed into the tubular filter design. You
can verify that Figure 13.19(d) is the circuit diagram of the tubular filter. The
three-capacitor π-sections are formed by the capacitance between the adjacent
faces of the metal cylinders and the capacitors are formed between the outside
surfaces of the cylinders and the tubular body.

Beginning with Figure 13.19(a), we have a standard coupled-resonator band-
pass filter using series resonators. In the canonical prototype for this filter, the
middle section is a parallel resonator, but this has been replaced by a series
resonator sandwiched between two impedance inverters. In (b), the center capaci-
tor has been replaced by two capacitors (each of twice the value of the original
capacitor so that, in series, the total series capacitance is the same). The capacitors
have been shifted slightly in (c) to identify a T-section capacitor network at each
side of the central inductor. Finally, in going from (c) to (d), these T-networks are
replaced by equivalent π-networks, to arrive at the circuit of the tubular filter. Any

–20

–10

0

9.9⋅106 9.95⋅106 1⋅107 1.005⋅107 1.01⋅107

2⋅π
ω

10⋅log(pwr(ω))

10⋅log(pwr(ω))

Figure 13.17. Calculated

response of the filters of

Figure 13.16 (pwr) and

Figure 13.11 (pwr).

Figure 13.18. Tubular bandpass

filter.

End cap with
coax connector

Wire coil

Dielectirc sleeves
Metal cylinders
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Metal tube
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T-network has an equivalent π-network and vice versa (Problem 13.5). These
transformations, also known as T−π and π−Tare shown in Figure 13.20. Formulas
are given for one element in each network; the others follow from symmetry.

13.5 Effects of finite Q

These calculated filter responses assume components of infinitely high Q. We
can calculate the effects of finite Q by paralleling the (lossless) inductors in our
model with resistors equal to Q times the inductor reactances at the center
frequency. If, for example, theQ is 500 (quite a high value for a coil), we would
parallel the inductors in the filter of Figure 13.15 with resistors of about 15
000 ohms. Reanalyzing the circuit response, we would find that the filter will
have a midband insertion loss of 7 dB and that the flat (within 1 dB) passband
response becomes rounded. The effect will be somewhat less for a filter with

(c)

(b)

(d)

(a)

Figure 13.19. Tubular bandpass

filter evolution.
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 Za + Zb + Zc
Z1 =

 Z1Z2 + Z2Z3 + Z3Z1

 Z3
Za =

=

Figure 13.20. Equivalent

π-section and T-section

networks.
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more gradual skirts, e.g., a 0.01 dB Chebyshev or a Butterworth filter. But the
real problem is still the small fractional bandwidth. For a filter with small
fractional bandwidth to have the ideal shape of Figure 13.17, the resonators
must be quartz or ceramic or other resonators with Qs in the thousands. An
approximate analysis predicts that the midband loss per section in a bandpass
filter will be on the order of

power transmitted

power incident
¼ 1� L0=2

Q � fractional bandwidth
� �

(13:7)

where L0 represents the inductor value in the normalized lowpass prototype
filter. For our five-section filter we can take L0 to be about 1.5 henrys. If the
inductor Q is 500, the predicted transmission of the five-section filter is 5 × 10
log[1−(1.5 /2)/(500·(1/100))] = − 10 dB, which is roughly equal to the actual
value of −7 dB.

13.6 Tuning procedures

Filters with small fractional bandwidths and sharp skirts are extremely sensitive
to component values. In the filter of Figure 13.16, for example, the resonators
must be tuned very precisely or the shape will be distorted and the overall
transmission will be lowered. (The values of the small coupling capacitors – all
that remains of the impedance inverters – are not as critical.) Usually each
resonator is adjustable by means of a variable capacitor or variable inductor. All
the adjustments interact and, if the filter is totally out of tune, it may be hard to
detect any transmission at all. A standard tuning procedure is to monitor the
input impedance of the filter while tuning the resonators, one-by-one, beginning
at input end. While resonator N is being adjusted, resonator N+1 is short
circuited. The tuning of one resonator is done to produce a maximum input
impedance while the tuning of the next is done to produce a minimum input
impedance. The procedure must sometimes be customized to account for
matching sections at the ends.

13.7 Other filter types

The coupled-resonator technique is used from HF through microwaves. Not
all RF bandpass filters, however, use the coupled-resonator technique. The
IF bandpass shape in television receivers is usually determined by a SAW
(surface acoustic wave) bandpass filter. SAW filters are FIR (finite impulse
response) filters, whereas all the LC filters we have discussed are IIR
(infinite impulse response) networks. This classification is made according

161 Coupled-resonator bandpass filters

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511626951.014 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511626951.014


to the behavior of the output voltage following a delta function (infinitely
sharp impulse) excitation. Digital filters can be designed to be either FIR or
IIR filters.

Problems

Problem 13.1. Use your network analysis program to verify that the filter of
Figure 13.16 does indeed give the response shown in Figure 13.17.

Problem 13.2. Verify that the two LC circuits in Figure 13.3 are impedance inverters.

Problem 13.3. The filter shown below was developed in Chapter 4 as an example of
the straightforward conversion from a prototype lowpass filter to a bandpass filter. This
Butterworth (maximally flat) filter has a bandwidth of 10 kHz and a center frequency of
500 kHz. Suppose you have available some 30 μH inductors with a Q of 100 at 500 kHz.
Convert the filter into a coupled-resonator filter that uses these inductors. Use your ladder
network analysis program to verify the performance of your filter.

63.72 pF1.59 mH0.3176 μH

50 ohms
50 ohms

0.3176 μH
0.319 μF

0.319 μF 

Problem 13.4. A bandpass filter is to have the following specifications:
Center frequency: 10MHz; shape: three-section 1-dB Chebyshev; bandwidth: 3KHz

(between outermost 1-dB points); source and load Impedances: 50 ohms. Since the
loaded Q of this filter is very high, 106/3000 = 333, it is important to use very high-Q
resonators. Suppose you have located some resonators (cavities, crystals, or whatever)
with adequate Q. These resonators are all identical. At 10MHz they exhibit a parallel
resonance, equivalent to a parallel LC circuit. At 10MHz, they have a susceptance slope
of 10− 6 (1mho/MHz).
(a) Find the LC equivalent circuit for these resonators (in the vicinity of 10MHz).
(b) Design the filter shown below around these resonators.
(c) Use your ladder network analysis program to verify the frequency response of your

design.

50 ohms
50 ohms

Problem 13.5. Derive expressions for Za, Zb, and Zc in terms of Z1, Z2, and Z3 for the
equivalent T and π networks shown in Figure 13.19. Hint: consider the connections
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shown below. The sketched-in wires show that YA + YB= (Z3 + Z1 || Z2)
−1. If you write the

corresponding YB + YC and YC + YA equations, then add the first two and subtract the
third, you will have the formula for YB. A similar technique yields the expressions for Z1,
Z2, and Z3.

Z
1

Z
c

Z 2

Z b

Z3

Za
1

2

3

1 2

3

Z1 || Z2 + Z3

Y = +

Y =
1

11
ZcZb

= Yb + Yc

(b)(a)

Problem 13.6. The bridge circuit shown below in (a) is the simplest network whose
resistance cannot be found immediately by series and parallel reduction. Rather than
resorting to loop or node equations, note that the circuit contains two πs and two Ts.
Replace a π by its equivalent T or a T by its equivalent π. Now find the resistance of the
network by simple reduction. The circuit at the right shows how one of the π’s can be
replaced by a T.

R3

R2R1

3
3

1
1

1
6 1

R = ?

(b)(a)

=
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