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2 Impedance matching

Matching normally means the use of a lossless (nonresistive) network between a
signal source and a load in order tomaximize the power transferred to the load. This
presupposes that the source is not capable of supplying infinite power, i.e., that the
source is not just an ideal voltage generator or an ideal current generator. Rather, the
source is assumed to be an ideal voltage generator in series with a source impe-
dance, i.e., a Thévenin equivalent circuit, or an ideal current generator in parallel
with a source admittance, a Norton equivalent circuit. Note that these equivalent
circuits are themselves equivalent; each can be converted into the form of the other.
An antenna that is feeding a receiver is an example of an ac signal source connected
to a load. Figure 2.1 shows the simplest situation, a dc generator driving a resistive
load. The generator is represented in Thévenin style (a) and in Norton style (b).

You can see the equivalence by inspection: the generators have the same
open-circuit voltage and the same short-circuit current. Maximum power is
transferred when the load resistance is made equal to the source resistance. You
can show this by differentiating the expression for the power, Pload = [VS RL/
(RL+RS)]

2/RL. Figure 2.2 plots the relative transferred power (Pwr/MaxPwr) as
a function of the normalized load resistance (r =RL/RS). In (a) the scales are
linear and in (b) the scales are logarithmic so the relative power is expressed in
dB. Note that RL can differ by a factor of 10 from RS and the power transferred is
still 33% of the maximum value.
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Figure 2.1. DC generator

driving a resistive load,
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2.1 Transformer matching

In the case of an ac source, a transformer can make the load resistance match
(equal) the source resistance (and vice versa) as shown in Figure 2.3. The
impedance is transformed by the square of the turns ratio.1

The ac situation often has a complication: the source and/or the load may be
reactive, i.e., have an unavoidable built-in reactance. An example of a reactive
load is an antenna; most antennas are purely resistive at only one frequency.
Above this resonant frequency they usually look like a resistance in series with an
inductor and below the resonant frequency they look like a resistance in series
with a capacitor. An obvious way to deal with this is first to cancel the reactance to
make the load and/or source impedance purely resistive and then use a trans-
former to match the resistances. In the circuit of Figure 2.4, an inductor cancels

RL
RS

Figure 2.3. Transformer

converts RL to RS for maximum

power transfer.
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Figure 2.2. Relative power

transfer as a function of RL/RS, (=r)
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Figure 2.4. A series reactor

makes the load a pure

resistance.

1 Let the secondary winding be the load side. Then Vsec = Vpri Nsec/Npri. For energy to be conserved,
VpriIpri = VsecIsec. Therefore Isec = Ipri Npri/Nsec and Vpri/Ipri = (Vsec/Isec) (Npri/Nsec)

2 or
Zpri = Zsec(Npri/Nsec)

2.
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the reactance of a capacitive (but not purely capacitive) load. If we are working at
60Hz, we would say the inductor corrects the load’s power factor.
From the standpoint of the load, the matching network converts the source

impedance, RS + j0, into the complex conjugate of the load impedance. When a
matching network is used between two devices, each device will look into an
impedance that is the complex conjugate of its own impedance. As a result, the
reactances cancel and the resistances are equal. Whenever the source and/or
load have a reactive component, the match will be frequency dependent, i.e.,
away from the design frequency the match will not be perfect. In fact, with
reactive sources and/or reactive loads, any lossless matching circuit will be
frequency dependent – a filter of some kind – whether we like it or not.

2.2 L-networks

More often than not, matching circuits use no transformers (i.e., no coupled
inductors). Figure 2.5 shows a two-element L-network (in this figure, a rotated
letter L) that will match a source to a load resistor whose resistance is smaller
than the source resistance. The trick is to put a reactor, XP, in parallel with the
larger resistance. Consider a specific example: RS = 1000 and RL = 50.
The impedance of the left-hand side is given by

Zleft ¼ Rleft þ jXleft ¼ 1000 jXP

1000þ jXP
¼ ð1000jXPÞð1000� jXPÞ

ð1000þ jXPÞð1000� jXPÞ

¼ 10002jXP þ 1000X 2
P

10002 þ X 2
P

: (2:1)

We can pick the value of XP so that the real part of Zleft will be 50 ohms, i.e.,
equal to the load resistance. Using Equation (2.1), we find that X2

P = 52 628 so
we can pick either XP = 229 (an inductor) or XP =−229 (a capacitor). The left-
hand side now has the correct equivalent series resistance, 50 ohms, but it is
accompanied by an equivalent series reactance, Xleft, given by the imaginary
part of Equation (2.1). We can cancel Xleft by inserting a series reactor, XS, equal
to −Xleft. Figure 2.6 shows the matching circuits that result when XP is an
inductor and when XP is a capacitor.

jXP

z LEFT

50

RS = 1000

jXS

Figure 2.5. Two reactors in an

L-network match RL to RS.
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The final step is to find the values of L and C that produce the specified
reactances at the given frequency. For the circuit of Figure 2.6(b), ωL = 218.
Suppose the design frequency is 1.5MHz (ω = 2π·1.5·106), near the top of the
AM broadcast band. Then L = 23.1 µH and C = 462 pF. Note that the values of
the two reactors are completely determined by the source and load resistances.
Except for the choice of which element is to be an inductor and which is to be a
capacitor, there are no free parameters in this two-element matching circuit. The
match is perfect at the design frequency but, away from that frequency, we must
accept the resulting frequency response. The frequency responses (fractional
power reaching the load vs. frequency) for the two circuits of Figure 2.6 are
plotted in Figure 2.7. Note that around the design frequency, i.e., around the
resonant peak, the curves are virtually identical. Otherwise, the complete cutoff
at very low frequencies of Figure 2.6a and the complete cutoff at very high
frequencies of Figure 2.6b can be predicted from inspection of the circuits.

Quick design procedure for L-networks

If you remember only that the parallel reactance goes across the larger resistance
you will be able to repeat the steps used above and design L-networks. But if
you are doing these things often it may be worth memorizing the following “Q
factor” for L-network design:

50
1000

X = 229

X = –218 

(a)

50
1000

X = 218

X = –229

(b)

Figure 2.6. The two realizations

for the L-network of Figure 2.5.
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Figure 2.7. Frequency response

(power vs. frequency) for the

L-networks of Figure 2.6.
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QEL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rhigh

Rlow
� 1

r
: (2:2)

You can verify (Problem 2.6) that the ratios Rhigh/Xparallel and Xseries/Rlow are
both equal to this factor, QEL. Remember the definition of QEL and these ratios
immediately give you the L-network reactance values. You can also verify that,
when QEL is large, the two elements in an L-network have nearly equal and
opposite reactances, i.e., together they resonate at the design frequency. In this
case the magnitude of the reactances is given by the geometric mean of Rhigh and
Rlow (especially easy to remember).
When the ratio of the source resistance to the load resistance is much different

from unity, an L-network produces a narrowband match, i.e., the match will be
good only very close to the design frequency. Conversely, when the impedance
ratio is close to unity, the match is wide. The width of any resonance phenom-
enon is described by a factor, the effective Q (or circuit Q or just Q), which is
equal to the center frequency divided by the two-sided 3-dB bandwidth (the
difference between the half-power points). Equivalently,Qeff is the reciprocal of
the fractional bandwidth. When an ideal voltage generator drives a simple RLC
series circuit, Qeff is given by X/R where X is either XL or XC at the center
frequency (since they are equal). The L-network matching circuit is equivalent
to a simple series RLC circuit, but QEL is twice Qeff because the nonzero source
resistance is also in series; the matching circuit makes the effective source
resistance equal to the load resistance so the loop’s total series resistance is
twice the load resistance. As a result, the fractional bandwidth is given by 1/Qeff =
2/QEL. In many applications the bandwidth of the match is important and the
match provided by the L-network (which is completely determined by the source
and load resistances) may be too narrow or too wide. When matching an antenna
to a receiver, for example, one wants a narrow bandwidth so that signals from
strong nearby stations won’t overload the receiver. In another situation the signal
produced by a modulated transmitter might have more bandwidth than the
L-network would pass. Networks described below solve these problems.

2.3 Higher Q – pi and T-networks

HigherQ can be obtained with back-to-back L-networks, each one transforming
down to a center impedance that is lower than either the generator or the source
resistance. The resulting pi-network is shown in Figure 2.8.
With the simple L-networks we had QEL ¼ ffiffiffiffiffi

19
p ¼ 4:4. In this pi-network

both the 1000-ohm source and the 50-ohm load are matched down to a
center impedance of 10 ohms (a free parameter). The bandwidth is
equivalent to that of an L-network with QEL = 11.95. When RHIGH ≫ RLOW,
the pi-network has a bandwidth equivalent to that of an L-network with QEL ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RHIGH=RCENTER

p
. Again, the fractional bandwidth is given by 1/Qeff = 2/QEL.
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The response of this pi-network is shown in Figure 2.9 together with the
responses of the L-networks of Figure 2.6.

You can guess that we could just aswell have used “front-to-front”L-networks,
each one transforming up to a center impedance that is higher than both the source
and load impedances. This produces the T-network of Figure 2.10. Note that both
the pi-network and the T-network have a free parameter (the center impedance)
which gives us some control over the frequency response while still providing a
perfect match at the center or design frequency.

2.4 Lower Q – the double L-network

In a double L-network (Figure 2.11) the first stage transforms to an impedance
value between the source and load impedances. The second stage takes it the

X = 99.5

1000 50 =

Z = 10 + j0Z = 10 + J0
Pi-network

X = –100.5
X = –25

X = 119.5X = 20
Figure 2.8. Pi-network (back-to-

back L-networks) provides

higher Q.
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Figure 2.9. Response of the

pi-network of Figure 2.8

compared with the L-networks of

Figure 2.6.

Figure 2.10. The T-network,

like the pi-network, provides

higher Q.
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rest of the way. The process can, of course, be done in smaller steps with any
number of cascaded networks. A long chain of L-networks forms an artificial
transmission line that tapers in impedance to produce a frequency-independent
match. Real transmission lines (i.e., lines with distributed L and C) are some-
times physically tapered to provide this kind of impedance transformation.
A tapered transmission line is sometimes called a transformer, since, like the
transformer in Figure 2.3, it provides frequency-independent matching.

2.5 Equivalent series and parallel circuits

To design the L-network we used the fact that a two-element parallel XR circuit,
where 1/Z = 1/Rparallel + 1/jXparallel, has an equivalent series circuit, where
Z = Rseries + jXseries. Conversion between equivalent series and parallel repre-
sentations is used so often it is worth a few more words. If you are given, for
example, an antenna or a black box with two terminals and you make measure-
ments at a single frequency you can only determine whether the box is “capaci-
tive,” i.e., equivalent to an RC combination, or is “inductive,” i.e., equivalent to
an RL combination. Suppose it is capacitive. Then you can represent it equally
well as a series circuit where Z = Rseries + 1/jωCseries or as a parallel circuit where
1/Z = 1/Rparallel + jωCparallel. As long as you’re working only at (or never very far
from) the single frequency, either representation is equally valid, even if the box
contains a complicated circuit with discrete resistors, capacitors, inductors,
transmission lines, metallic and resistive structures, etc. If you measure the
impedance at more than one frequency you might determine that the box does
indeed contain a simple parallel RC or series RC circuit or that its impedance
variation at least resembles that of a simple parallel circuit more than it
resembles that of a simple series circuit.

2.6 Lossy components and efficiency of matching networks

So far we have considered networks made of ideal inductors and capacitors.
Real components, however, are lossy due to the finite conductivity of metals,
lossy dielectrics or magnetic materials, and even radiation. Power dissipated in
nonideal components is power that does not reach the load so, with lossy
components, we must consider a matching network’s efficiency. As explained
above, a lossy reactor can be modeled as an ideal L or C together with either

OR
etc.

Figure 2.11. Double L-network

for lower Q (wider bandwidth).
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a series or parallel resistor. Normally we can make the approximation that the
values of L or C and the value of the associated resistor are constant throughout
the band of interest. Let us consider the efficiency of the L-network that uses a
series inductor and a parallel capacitor. We shall assume that the loss in the
capacitor is negligible compared to the loss in the inductor. (This is very often
the case with lumped components.) We shall model the lossy inductor as an
ideal inductor in series with a resistor of value rS. The ratio of the inductive
reactance, XL, to this resistance value is the quality factor, QU, where the
subscript denotes “unloaded Q” or component Q. (Less series resistance cer-
tainly implies a higher quality component.) Note that this resistance, like the
inductor, is in series with the load resistor so the same current, I, flows through
both. The power delivered to the load is I2RL and the power dissipated in rS is
I2rS. Using the relations XS = QELRload and QU = XS /rS , we find the efficiency
of the match is given by

η ¼ Efficiency ¼ Power Out

Power In
¼ I2RL

I2RL þ I2rS
¼ 1

1þ QEL=QU
: (2:3)

Efficiency is maximized by maximizing the ratio QU/QEL, i.e., the ratio of
unloaded Q to loaded Q. If we model the lossy inductor as a parallel LR circuit
and define the unloaded Q as rP/X we would get the same expression for
efficiency (Problem 2.7). Likewise, if the loss occurs in the capacitor we will
also get this expression, as long as we define the unloaded Q of the capacitor
again as parallel resistance over parallel reactance or as series reactance over
series resistance. When the load resistance is very different from the source
resistance, the effective Q of an L-network will be high so, for high efficiency,
the unloaded Q of the components must be very high. The double L-network,
with its lower loaded Q’s, can be used to provide higher efficiency.

Q factor summary

Loaded Q, the Q factor associated with circuits, can be either high or low
depending on the application. Narrowband filters have high loaded Q.
Wideband matching circuits have low loaded Q. Loaded Q is therefore not a
measure of quality. Unloaded Q, however, which specifies the losses in com-
ponents, is indeed a measure of quality since lowering component losses always
increases circuit efficiency.

Problems

Problem 2.1. A nominal 47-ohm, 1
4-watt carbon resistor with 1.5inch wire leads is

measured at 100MHz to have an impedance of 48+j39 ohms. Find the component
values for (a) an equivalent series RL circuit, and (b) an equivalent parallel RL
circuit.
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Problem 2.2. (a) Design an L-network to match a 50-ohm generator to a 100-ohm load
at a frequency of 1.5MHz. Let the parallel element be an inductor. Use your circuit
analysis program (Problem 1.3) to find the frequency response of this circuit from 1MHz
to 2MHz in steps of 50kHz.

(b) Same as (a), but let the parallel element be a capacitor.

Problem 2.3. Design a double L matching network for the generator, source, and
frequency of Problem 2.2(a). For maximum bandwidth, let the intermediate impedance
be the geometric mean of the source impedance and the load impedance, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�100p

.
Use your circuit analysis program (Problem 1.3) to find the response as in Problem 2.2.

Problem 2.4. Suppose the only inductors available for building the networks of
Problems 2.2(a) and 2.3 have aQU (unloadedQ) of 100 at 1.5MHz. Assume the capacitors
have no loss. Calculate the efficiencies of the matching networks at 1.5 MHz. Check your
results using your circuit analysis program.

Problem 2.5. The diagram below shows a network that allows a 50-ohm generator to
feed two loads (which might be antennas). The network divides the power such that the
top load receives twice as much power as the bottom load. The generator is matched,
i.e., it sees 50 ohms. Find the values of XL1 , XL2 and XC. Hint: transform each load first
with an L-section network and then combine the two networks into the circuit shown.

Problem 2.6. Verify the prescription given for calculating the values of an L-network:
XP=± R/Q and XS=∓ rQ where R> r and Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R=r � 1
p

.

Problem 2.7. At a single frequency, a lossy inductor can be modeled as a lossless
inductor in series with a resistance or as a lossless inductor in parallel with a resistance.
Convert the series combination rS, LS to its equivalent parallel combination rP, LP and
show that QU defined as XS/rS is equal to QU defined as rP/XP.

C
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50

50

50
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