
Transmission Lines

Cables allow us to transmit electrical signals from one circuit to another. For
example, we might attach coaxial cable between a function generator and an
oscilloscope (Figure 4.1a) and plastic-coated twin lead between an antenna and
a television (Figure 4.1b). Usually, when we analyze the circuit, we assume that
the voltage at one end of the cable is the same as the voltage at the other end and
that the current at the beginning is the same as the current at the end. This is
appropriate if the frequency is low. However, at high frequencies the cable itself
begins to have an effect. A fundamental limitation is the speed of light. If the
voltage at one end of the cable changes appreciably in less time than it takes
light to propagate to the other end, we should expect the voltage to be different
at the two ends. Another way of saying this is that we would expect the voltages
at the ends to be different when the length of the cable becomes an appreciable
fraction of a wavelength.

4.1 Distributed Capacitance and Inductance

However, even when the cable is considerably shorter than a wavelength, it can
have a large effect. We found in Problem 3 that a cable has capacitance. This
capacitance is associated with the charges that the voltages on the line induce.
We can take the capacitance into account in a circuit by adding a capacitance
between the wires (Figure 4.1c). Some of the current will return through this ca-
pacitance. This means that the current at the end of the cable will not be the
same as the current at the beginning. This is apparently a violation of Kirchhoff;s
current law. In addition, the cable has inductance. The inductance comes from
the magnetic field that the currents make. We can include this effect by adding a
series inductor (Figure 4.1c). There will be a voltage drop across the inductance,
so that the voltage at the end of the cable will not be the same as at the be-
ginning. This is an apparent violation of Kirchhoffs voltage law. Now we have
an equivalent circuit for our cable with a series inductance and a parallel capaci-
tance. There is another effect, resistance in the wires, that we will take into account
later.

It is not obvious whether the inductance or capacitance is more important. It
depends on the load impedance. If the impedance is high, the current is relatively
small, and the inductance has little effect. However, the capacitive current will
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Figure 4.1. (a) Connecting a function generator to an oscilloscope with coaxial cable, and
coaxial-cable construction (inset), (b) Connecting an antenna to a television with twin lead,
and twin-lead construction (inset), (c) An equivalent circuit for the cable that includes a series
inductance and a shunt capacitance.

be relatively important. For example, let us assume that we are making a coaxial-
cable connection to an oscilloscope with an input resistance of 1 M£2 and a parallel
capacitance of 20 pF. This is a relatively high impedance, and it is usually more
important to consider the effect of the cable capacitance than the inductance. The
capacitance of a typical coaxial cable is 100 pF/m. A one-meter cable increases
the capacitance of the oscilloscope connection from 20 pF to 120 pF, and we
would notice delays that are much larger than we would expect without the cable.
However, if the load impedance is small, the load current will be large, and the
inductance will be more important.

Our circuit model is really a simplification. We cannot really say that the in-
ductor should go before the capacitor, or the other way around, because the ca-
pacitance and inductance are spread out along the cable. This capacitance and in-
ductance are called distributed elements to distinguish them from ordinary lumped
capacitors and inductors. There is an elegant approach to calculate the effect of dis-
tributed elements, called transmission-line theory. We will derive the transmission-
line theory by analyzing a network of small inductors and capacitors.
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4.2 TELEGRAPHISTS EQUATIONS

4.2 Telegraphist's Equations

Our transmission line will have two parallel conductors with uniform cross sec-
tion. We assume that they are long enough that we need not worry about the
ends. We do not assume anything about the shape of the conductors - they could
be two adjacent wires, or they could be coaxial. They should not touch each
other, because then there would be just one conductor. We divide the line into
small sections of length / (Figure 4.2a). Each of these sections has an inductor L/
and a capacitor Q associated with it. We can draw a network that represents our
transmission line and define voltages and currents (Figure 4.2b). We can write the
inductor voltage as

Vn+1 - Vn = -Li
din1+1

dt

and the capacitor current as

dVn
In+\ — In = — dt'

(4.1)

(4.2)

When we draw a model for a transmission line with small inductors and capacitors,
we are implicitly assuming that the inductance and capacitance are proportional
to the length. This can be shown by electromagnetic theory. If the inductance and
capacitance are proportional to the length, then we can let L and C be equal to
the proportionality constants and write

L=L,/l,

C = Ci/l.

(4.3)

(4.4)

Here L and C are called the distributed inductance and capacitance. These are the
fundamental quantities that characterize a transmission line. They are determined
by the shape of the conductors and the nature of the insulators. The units of dis-
tributed inductance are henries per meter, and the units of distributed capacitance

/
(a) (b)

Figure 4.2. Dividing a transmission line into sections of length / (a). Representing the
transmission line as a network of inductors and capacitors (b). This kind of network is
called a ladder network.
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are farads per meter. We can rewrite our equations in terms of L and C as

= _L U * L f (4 5)

/ at
(4.6)

Notice that if we take the limit as / approaches 0, the quotients on the left become
derivatives with respect to distance. To be more precise, these are partial derivatives,
since the current and voltage are also functions of time. We will let our distance
variable be z. In the limit, the equations become

— = - ! — , (4.7)

— = -C—. (4.8)

Here we use the partial derivative sign, d (which is a funny d), to show that we are
taking a derivative with respect to a particular variable. These formulas are known
as the telegraphist's equations or transmission-line equations. They were developed
by Oliver Heaviside for telegraph cables more than one hundred years ago. They
are extremely important in science and engineering. Similar equations describe
radio waves, light, sound, and heat. Consequently, once you understand how to
work with the equations, you can solve a wide variety of problems.

The telegraphist's equations predict the propagation of waves. We can derive a
wave equation by differentiating the first formula with respect to z and the second
with respect to t:

d2V d2l
Jz2=-Lm-z> <4-9>
3 2 / d2V

mz—CW (4-10)

We can eliminate / between these two formulas to get the voltage wave equation,

£?-«£?• (4.1D

4.3 Waves
We can write a voltage wave in the form V(z- vt), where V is a voltage function and
i; is the velocity. We will consistently use an upper-case V for voltage and a lower-
case v for velocity to keep them distinct. We will assume that V is a pulse function
centered around z = 0 at t = 0 (Figure 4.3a). Some time to later, we sketch the func-
tion again (Figure 4.3b). We get the same pulse, displaced to the right by an amount
z = vt0. The wave moves in the +z direction, and we call this a forward wave. We
can write a voltage wave that propagates in the - z direction in the form V{z+ vt).
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Figure 4.3. A forward wave of the form V(z- vt). At t = O, the wave peaks at z = 0 (a).
At time £ = fo later, the wave has moved a distance z = vto to the right (b).

This is a reverse wave. We can have both a forward and a reverse wave on a trans-
mission line at the same time. The reverse wave is often the reflection from a load.

Now we can show that these wave functions satisfy Equation 4.11. We substitute
a forward wave V(z - vt) into the equation, and use the chain rule to write the
partial derivatives in terms of the second derivative of V, which we write as V"\

32V
V" LC-L = V = LC^=LCvV. (4.12)

This gives us

t; = 1/VIC. (4.13)

This formula allows us to predict the velocity if we know L and C. For coaxial
cable, the velocity is typically 2/3 the speed of light, or 2 x 108 m/s. The twin lead
that is commonly used for connecting FM and TV antennas has a velocity of 4/5
the speed of light, or 2.4 x 108 m/s.

Now we can use our transmission-line equations to relate the current to the
voltage. The wave equation for current is the same as that for the voltage; thus the
solutions are also waves with the same velocity. We can use the chain rule again
to rewrite Equation 4.7 as

V = vW. (4.14)

Notice that both the voltage and the current appear only as derivatives. When we
integrate this equation we will have arbitrary constants, which correspond to con-
stant voltages and currents on the line. We will neglect these, because we already
know how transmission lines work at DC. We integrate this formula, setting the
integration constants to zero, and substitute for v from Equation 4.13 to find the
ratio of the voltage to the current:

(4.15)

This ratio of voltage and current in a forward wave is called the characteristic
impedance, and it is written as Zo:

(4.16)
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7 6 TRANSMISSION LINES

Coaxial cables usually have a characteristic impedance of 50 £2 or 75 £1, whereas
twin lead is typically 300 Q. If we know Zo and v for a transmission line, we can
work backwards and calculate L and C. Using Equation 4.13 and Equation 4.16
we can write

L = Z0/v, (4.17)

C = l/(Zov). (4.18)

We can repeat this analysis for a reverse wave of the form V(z+ vt). Equation 4.12
does not change, and so the velocity is the same for a reverse wave as it is for a
forward wave. This makes sense, because we have not assumed anything about
the line that would make the wave go faster in one direction than the other. We
can find the ratio of the voltage and current by substituting into Equation 4.7,
and we find

V = -vW. (4.19)

We integrate to find that

V/I = -yfL/C. (4.20)

This tells us that the ratio of voltage and current in a reverse wave changes sign.
We can write formulas that relate the voltage and current as

V+/I+ = +Z0, (4.21)

V-/I- = -Z o , (4.22)

where the + subscript is for a forward wave and the - subscript is for a reverse
wave. Figure 4.4 shows how these voltages and currents look.

We can understand why the ratio changes sign if we consider the power. Power
is positive if it flows to the right and negative if it flows to the left. For a forward
wave the power is

P+(t) = V+(t)I+(t) = V*(t)/Zo. (4.23)

< Return current Return c u r r e n t • •

(a) (b)

Figure 4.4. Voltages and currents on a transmission line for a forward wave (a) and a
reverse wave (b). Both V+ and VL. are taken to be positive. The current /+ is positive and it
flows to the right in the top conductor. In addition there is a return current in the bottom
conductor. The current /_ is negative and it flows to the left in the top conductor.
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4.4 PHASORS FOR WAVES 77

This is a positive number, indicating that power flows to the right, in the direction
of propagation. Notice that the power does not depend on the sign of the voltage.
For a reverse wave, the voltage-current ratio changes sign, and we have

P.(t) = V.(t)I.(t) = -V?(t)/Zb. (4.24)

This is a negative number, and so power flows to the left, again in the direction
of propagation. The sign change reverses the direction of power flow.

4.4 Phasors for Waves
We found that signals that vary in time as cosines can be described in a simple
way by phasors, and this allows many circuits to be solved by algebra alone. Waves
generated by cosine signals can also be represented by phasors. Let us consider a
forward wave of the form

V(z -vt) = A cos(cot - pz), (4.25)

where p (the Greek letter beta) is called the phase constant, because it determines
the phase. The units of p are radians per meter. We can write the corresponding
expression for a reverse wave by changing the - signs to + signs. You should work
through the details to show that the cosine expression actually has the correct
form to be a forward wave. If we compare the right and left sides of the equation,
we find that we can write the following expression for v:

v = co/p. (4.26)

In addition, the wave is periodic in z, and its wavelength, written as X, given by

k = InIp. (4.27)

To convert to phasors, we start by writing the wave as the real part of a complex
exponential,

V = A cos(cot - pz) = Re[A exp+/ (cot - pz)]. (4.28)

We can rewrite the equation as

V = Re[A exp(-jpz) exp(jcot)]. (4.29)

In phasor notation, we consider the complex factor of exp(jcot), given by

V = A exp(-jpz). (4.30)

It is interesting to plot the locus for wave phasors in the complex plane. For
example, consider a forward wave given by

V+ = exp(-jpz). (4.31)
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Figure 4.5. Plotting the loci of wave phasors in the complex plane. A forward wave,
V+ = exp(-/£z) (a), and a reverse wave, V_ = exp(+/£z) (b). The phasor for the forward wave
rotates clockwise as z increases, and the phasor for the reverse wave rotates counterclockwise.

This path is shown in Figure 4.5a. The phase lags as z increases, and the phasor
traces out a clockwise circle. For comparison, in Figure 4.5b we also plot the locus
for a reverse wave,

F_ = exp(+jpz). (4.32)

We see a progressive phase lead as z increases and a counterclockwise circle. Notice
that for both waves, the magnitude is constant but the phase varies along the line.

Now we can develop power formulas for phasor waves. We write the complex
power P as

p = vr/2,

where V and / are phasors. For a forward wave, we have

P _ v+n = v+vf = w+\2

+ 2 2Z0 2Z0 '

(4.33)

(4.34)

assuming that Zo is real. The power is real and positive. For a reverse wave, the
sign of the impedance changes and we get

I 2

(4.35)
V.I* VL.V*

and the average power is negative.

4.5 General Lines

We have seen that phasors allow us to define impedances and admittances for
circuit elements. This makes it natural to consider a transmission line with a
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Figure 4.6. General transmission lines, (a) A transmission line with distributed series
impedance Z and parallel admittance Y. It is traditional to use a thin rectangle as
the symbol for impedances and admittances, because they could be combinations
of capacitors, resistors, and inductors. We can consider an LC transmission line as
a special case with Z = jcoL and Y — jcoC. (b) The distributed circuit elements for a
transmission line with series resistance R and parallel conductance G.

distributed series impedance and a distributed parallel admittance. We will an-
alyze a transmission line having a distributed impedance Z, with units of ohms
per meter, and an admittance Y, with units of Siemens per meter (Figure 4.6a). We
can follow the same limiting procedure that we used for LC transmission lines to
derive more general telegraphist's equations:

^ = -ZI, (4.36)

Tz=~YV' (437)

Now consider a forward wave with a voltage V and current / that vary as exp(-/kz).
We use k here rather than p because we want to allow for the possibility that k will
be complex, k is called the propagation constant. It is traditional to characterize the
real and imaginary parts of k by writing

jk = a + )p, (4.38)

where a is the Greek letter alpha. The forward wave phasor is then of the form

exp(- yfcz) = exp(-az - )pz). (4.39)

We can see that a determines the loss of the wave as it propagates, and for this
reason, it is called the attenuation constant. It should be positive, or else the wave
will grow instead of decay. The units of a are given their own name, nepers/m.
The word neper is pronounced "neeper," and it is derived from a Latin version
of the name Napier. John Napier was the Scottish mathematician who invented
logarithms. Since we often quote losses in decibels, we need to figure out how to
convert between nepers and dB. An attenuation of 1 neper corresponds to a voltage
reduction by a factor of e. This means we can relate dB and nepers by the formula

OdB/m = OTnepers/m • 20 Iog10(e) = 8.686 • anepers/m. (4.40)

Now we return to the general telegraphist's equations, assuming forward waves of
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the form exp(-jkz). The equations become

jkV=ZI, (4.41)

jkl = YV. (4.42)

In addition, if we let the ratio of V to / be Zo, we get

jkZ0 = Z, (4.43)

jk/Zo = Y. (4.44)

We can write the solutions as

jk = VzF, (4.45)
Zo = yfZY, (4.45)

In general, all these quantities are complex, and there are two complex roots
differing only in sign. It can be difficult to choose the correct sign. Ordinarily, we
should choose the sign of jk so that a is positive, to keep the wave from growing as
it propagates. In addition, ZQ should have a positive real part to keep the average
power positive.

As an example, let us consider loss in transmission lines. Loss is associated with
either the metal or the insulator. We can model the metal loss as a distributed series
resistance R, with units of £2/m (Figure 4.6b). In practice, R is not a constant but
usually increases as the square root of the frequency because of an electromagnetic
phenomenon called the skin effect. We can write the distributed impedance Z as

Z = jcoL + R. (4.47)

We can take the insulator loss into account by a distributed parallel conductance G
with units of S/m. The conductance also varies with frequency. In practical trans-
mission lines, G is often small enough that it can be neglected. With conductance,
the distributed admittance Y becomes

Y = jcoC + G. (4.48)

When we substitute these into our formulas for jk and Zo, we get

jk = JijcoL + R)(jcoC + G), (4.49)

Zo = y/UoL + R)/(jcoC + G). (4.50)

In both formulas, the correct root is the one with a positive real part.

4.6 Dispersion
The velocity v and the attenuation constant a may vary with frequency. This fre-
quency variation is called dispersion, and it is a problem. For example, if v depends
on frequency, then different frequency components travel at different velocities
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and one part of a message interferes with another. If a increases with frequency,
then we lose the high-frequency information in our signal. There is in principle a
simple solution to this problem, however, that was discovered by Oliver Heaviside.
If the transmission-line parameters can be adjusted to satisfy

R/L = G/C (4.51)

then the attenuation and velocity become constants. Equation 4.49 can be written
as

( 4 . 5 2 )

The terms in parentheses are the same, and so we can rewrite this as

jk=jco-jLC(l + -AT), (4.53)

or

v = co/p = 1/VTC (4.54)

and

a = VRG. (4.55)

The velocity is the same as that of a lossless line and is independent of frequency.
There is loss, but it is independent of frequency, and an amplifier can compensate
for it. The impedance is also independent of frequency. Equation 4.50 can be
written as

(4.56)

Again the terms in parentheses are the same, and so we have

Zo = y/L/C, (4.57)

as it is in a line with no loss.
The telephone company uses an approach like this in phone lines. Typically R

is considerably larger than coL and this causes v and a to depend strongly on
frequency. In practice, Heaviside's zero-dispersion condition is hard to satisfy, be-
cause G is usually close to zero. However, we can come close to zero dispersion by
making coL much larger than R. The phone company does this by adding inductor
coils to the lines, usually 88-mH inductors at intervals of one mile. To see how this
works, consider a line where coL^>R and G = 0. This is a large-reactance approxi-
mation. We start with the exact formula and derive approximate expressions for
Zo and jk:

Zo = y/(jcoL + R)/(jcoC) « /L/C (4.58)
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and

jk = y/(jcoL + R)jcoC « jcoVLC + {R/2)y/CJL, (4.59)

where we have used the first-order Taylor-series formula

VT+z«l+z/2, (4.60)

which holds when \z\ < 1. From Equation 4.59, we can write a and v as

a = R/(2Z0), (4.61)

v = (O/p = 1/VZC. (4.62)

These are independent of frequency. As an example, in SO-Q coaxial cable at 5 MHz,
the series resistance might be 0.5 ft/m and the inductance 250 nH/m. The reac-
tance coL is 7.9 Q/m, and thus the high-reactance approximation is justified. The
loss is given by

a = R/(2Zo) = 0.005 nepers/m. (4.63)

Now consider a high-resistance line, where i? > coL. We write

jk = y/(jcoL + R)jcoC « JjcoRC. (4.64)

The square root of an imaginary number has an angle of 45°. This means that a
and p are equal. We can write

a = y/coRC/2, (4.65)

v = y/2a>/(RC). (4.66)

Because both a and v vary as y/co, the line is highly dispersive. As an histori-
cal example, we can analyze the first transatlantic telegraph cable, laid in 1865.
This cable was 3,600 km long and weighed 5,000 tons. The insulator was a veg-
etable gum called gutta-percha. For this cable L = 460 nH/m, C = 75 pF/m, and
R = 7 m£2/m. At a frequency of 2.4 kHz, coL = R, and so the high-resistance as-
sumption is well satisfied for frequencies below 100 Hz. At 12 Hz, we can write
a and v as

a = y/coRC/2 = 4.4 x 10"3 nepers /km, (4.67)

v = y/2o)l{RC) = 17,000 km/s. (4.68)

The loss for the entire line is al = 140 dB and the delay is l/v = 210 ms. For com-
parison, at 3 Hz, the loss in dB and the delay change by a factor of 2, to 70 dB
and 420 ms. Thus the 12-Hz component attenuates 70 dB more than the 3-Hz
component. In addition, the 12-Hz component arrives 210 ms ahead of the 3-Hz
component. In order to improve these characteristics, the signalling speed had to
be drastically reduced, to about one word per minute, which was twenty times
slower than hoped for. You might be interested to know that the renowned physi-
cist, Lord Kelvin, did this analysis, but the project chief ignored it. His name was
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Dr. Whitehouse (a medical doctor), and he said, "In electricity, there is seldom
any need of any mathematical or other abstractions,... and the formulas may for
all practical purposes be dispensed with." The end was tragic. The cable operators
thought they could improve the signalling rate by increasing the voltage, and
they drove the line with 2-kV pulses. The insulation was not good enough to take
this large voltage, and within two weeks, a short developed, somewhere along the
3,600-km line.

4.7 Reflections

Until now, we have not worried about what happens at the end of a transmission
line. However, most of the time we are really more interested in what is going on
at the ends than we are in the middle, because our sources and loads are usually
at the ends. First we consider a transmission line with a load (Figure 4.7). Let
the line impedance be real and be given by ZQ and the load impedance be Z.
Assume a forward wave V+ is incident on the load. The effect of the load will be
to make a reflected wave V-. We will see that the amplitude of the reflected wave
is determined by how different Z is from Zo.

We call the ratio of \L to V+ the reflection coefficient. It is given by

P=V-/V+, (4.69)

where p is the Greek letter rho. Notice that p is a voltage reflection coefficient.
Sometimes we need a current reflection coefficient, pi, defined in a dual way as

Pi = I-/I+. (4.70)

The current reflection coefficient has the same magnitude as the voltage reflec-
tion coefficient because the voltages and currents in the waves are proportional.
However, since the current in the reverse wave changes sign, we can write

Pi = -P. (4.71)

The load voltage V is also proportional to the incident voltage, and this ratio is
called the transmission coefficient. We write this as R:

r = V/V+. (4.72)

Now we can find a simple formula that relates p and r. The load voltage V is the

y
Figure 4.7. Reflection and transmission at a load.
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sum of the incident wave V+ and the reflected wave VL. We can write

If we divide by V+, we get

(4.73)

(4.74)

This is an important expression, because it means that p and r are not indepen-
dent - we can calculate one if we know the other.

Next we can find formulas that relate p to Z. We can write an expression for the
load current / as the sum of the current in the incident wave J+ and the current
in the reflected wave /_:

/ = /+ + /-.

Now divide this formula into Equation 4.73 to get

V ^ V+ + V. ^ V 1 + V-/V+

We can substitute for all these ratios and rewrite the formula as

Z = 1 + p
ZO 1 — p

(4.75)

(4.76)

(4.77)

This formula lets us calculate Z if we know p. Microwave instruments measure
reflection coefficient rather than impedance, and we can use this formula to see
what Z really is. We can also solve for p as

Z-Zp
P = Z+Zo

* (4.78)

This is one of a family called bilinear transforms, and because of this it turns out
that the loci of constant resistance, reactance, conductance, and susceptance are
circles or straight lines. It is typical to plot p in the complex plane (Figure 4.8).

Short
circuit

Inductive
reactive load

Open circuit

Z=Z0+jX

Figure 4.8. Plot of p in the complex plane.

Capacitive
reactive

load
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These plots are usually called Smith charts, after Philip Smith, the engineer at Bell
Labs who thought of this approach.

Let us consider some special cases and see what the reflection coefficients are.
When Z = Zo, the load is said to be matched. The reflection coefficient is 0; hence
there is no reflection. We use this idea in the lab when we work with oscilloscopes
and fast signals, where we may see ringing on waveforms from repeated reflections.
If we put a matching resistor in parallel with the oscilloscope input we can stop the
ringing. When Z is real, then p is also real. This means that if the load is a resistor R,
then p lies along the real axis. If R > Zo, then p is positive, and the reflected wave
has the same phase as the incident wave. If R < Zo, then p is negative, and the
reflected wave is 180° out of phase with the incident wave. At the extremes, a
short circuit has a reflection coefficient of - 1 , and an open circuit has a reflection
coefficient of +1. Now consider a reactive load, with Z = jX. We can write

The absolute values of the real and imaginary parts of the numerator and denom-
inator are the same, and so the magnitudes of the numerator and denominator
are the same. This means that the reflection coefficient lies on the unit circle. The
inductive reactances are along the top half. Let us start at X = 0 and consider the
locus as X increases. When X = 0, the load is a short, and p = - 1 . As X increases
we move clockwise along the top half of the unit circle. When X = Zo, we are at
the top, and as X approaches oo, we reach p = 1. The capacitive reactances are
along the bottom half. One other interesting case to consider is an impedance of
the form Z = Zo+jX. This locus appears in Figure 4.8 as a dashed circle that passes
through p =0 and p = +1.

4.8 Available Power

We can find the transmission coefficient T by combining Equation 4.74 and
Equation 4.78 to get

^ T . (4.80)

Notice that T can be larger than one. For an open-circuited load, r = 2, so that the
transmitted voltage is twice as large as the incident voltage. We can use this fact
to find the Thevenin equivalent circuit for a transmission line. The open-circuit
voltage Vo is given by

V0 = 2V+. (4.81)

The look-back resistance Rs is just the characteristic impedance of the cable. We get

Rs = Zo. (4.82)

This gives us the Thevenin circuit shown in Figure 4.9.

Cambridge Books Online © Cambridge University Presshttps://doi.org/10.1017/CBO9780511817502.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511817502.005


S B TRANSMISSION LINES

Figure 4.9. Thevenin equivalent circuit for a transmission line
with a characteristic impedance Zo and an incident wave V+.

There is more to this result than might appear at first. The Thevenin circuit
produces the same voltages and currents in a load as the transmission line. How-
ever, another way to see this is to note that the transmission line produces the
same results as the Thevenin circuit. We can turn things around, and think of the
transmission line as an equivalent source. From this point of view, it is easy to
calculate the maximum power from a Thevenin source. The power in the incident
wave is given by Equation 4.34 as

V2

P = j±-, (4.83)
2Z

where we have taken V+ to be real. This is the power that is delivered to a matched
load, where there is no reflection. It is the maximum power that can be delivered
to any load. In terms of the Thevenin parameters, we can rewrite this as

P+ = ^ . (4.84)

We call V£/(8RS) the available power from a Thevenin source. This is the AC version
of the DC formula we derived in Problem 1. It is a good idea to learn it, because
we will use it repeatedly. The formula is for peak voltages, but in the lab, we use
peak-to-peak voltages, which are twice as large. In addition, function generators
read half the open-circuit voltage. Usually these factors of two cancel, and this
makes it easy to apply the formula.

4.9 Resonance

We found in the last chapter that when we combine inductors and capacitors,
we make resonant circuits. Because a cable has both inductance and capacitance,
it can also resonate. An open-circuited transmission line turns out to be much
more interesting than an ordinary open circuit. It shows the effects of delays and
reflections and can even be used as a filter. To start, we connect a function generator
to a transmission line with the same impedance (Figure 4.10a). We assume that
the line is long enough that we do not have to worry about reflections from
the far end. We represent the generator by a Thevenin equivalent circuit, with
open-circuit voltage Vo and impedance ZO. The forward voltage V+ is given by

V+ = Vo/2. (4.85)
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V+ = Vo/2 VJ2

(£/2)exp (-./#)

(a) (b)

Figure 4.10. Connecting a sine-wave generator to a long transmission line (a) and to an
open-circuited line (b).

Now cut the transmission line at some point, leaving the end open-circuited
(Figure 4.10b). Starting with the forward voltage at the generator, we can calculate
the other voltages on the line by multiplying by phase factors and the reflection
coefficient. The forward voltage at the end is given by (Vo/2) exp(-//*/), where / is
the length of the line. The reflection coefficient of an open circuit is +1; thus the
reflected reverse wave is also (Vo/2) exp(-jpi). The total voltage V is

V =V+ + V- = Vo exp(-jpi). (4.86)

This makes sense. It is just the Thevenin voltage with a phase lag due to the
transmission line. At low frequencies p approaches zero, and V approaches the
Thevenin voltage Vo.

The generator voltage is more surprising. The reflected wave propagates back to
the generator where it is absorbed without further reflection. There is an additional
phase lag due to the line, so that the reverse wave at the generator is given by

(4.87)

The total voltage at the generator Vg is given by

Vg=V+ + V. = Vo/2 + (Vo/2) exp(-j2pl). (4.88)

We can write this in terms of a cosine by pulling out a factor of exp(- //?/):

Vg = Vo exp(-jpi) cos(pi). (4.89)

Notice that the phase of Vg is the same as the phase of V (Equation 4.86). In fact,
the phase is the same everywhere along the line. We call this a standing wave.
However, the magnitude of Vg depends on the length of the line. You should
notice that Vg is zero when / = k/4. In a measurement, we see a resonance at the
frequency where the line is a quarter of a wavelength long. This seems mysterious,
because the generator output voltage is zero at the same time the voltage at the
other end is Vo. However, we do have a current at the generator and we can think
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Figure 4.11. Reactance of a section of open-circuited transmis-
sion line.

of it as pumping the resonance. We can write the current as

Ig = V+/Zo - V./Zo = //, exp(-/ (4.90)

where Js = Vo/Z0 is the short-circuit current for the generator. When / = A./4, Ig = Is-
As far as the generator is concerned, a quarter-wave section of open-circuited
line looks like a short. The current is the short-circuit current, and the voltage is
zero.

In an open-circuited line, the generator current and voltage are 90° out of
phase, and this means that the impedance is reactive. Energy is stored in the
waves propagating back and forth. We can find the reactance X by taking the
ratio of the generator voltage and current:

X% (4 91)

This formula is plotted in Figure 4.11. The curve shows that the line can be used
as either an inductor or a capacitor, depending on the length and the frequency.

The figure also shows that an open-circuited line can be used as a resonant
circuit. When the reactance is zero, we effectively have a series resonance. When
the reactance becomes very large, we have a parallel resonance. When you study
the series resonance in the lab, you will see that the input voltage does not really
go to zero as the theory predicts, because of loss in the line.

Transmission-line resonators are usually not very practical for filters at frequen-
cies in the MHz range, because the lines turn out to be inconveniently long. For
example, if we wanted a series resonance at 5 MHz, we would need a 10-meter
cable. However, at the frequencies for microwave radars, in the GHz range, the re-
quired length might be a few millimeters, and transmission-line elements are very
easy to use. There is a simple transmission line called microstrip, which is just a
printed-circuit board with a ground plane on the back (Figure 4.12). To make your
circuits on this board, you do not even need capacitors or inductors; you can just
etch the copper on the top in the shape that you want. For example, let us suppose
that we want to make a filter that can stop signals at a particular frequency. This
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Metal conductor

Dielectric

Ground plane

.Metal
Input — •

i circuit"'"™

—•Output

0 /(A/4)
Frequency

(a) (b)

Figure 4.12. Microstrip transmission line (a), and notch filter (b).

/

is called a notch filter. We can add a parallel open-circuited section of transmis-
sion line that is a quarter of a wavelength long at the notch frequency. At this
frequency, the reactance of the open-circuited line is zero, so that it is effectively
a short circuit across the line.

4.10 Quality Factor

We characterize a resonance by a quality factor Q, given in the last chapter as

—,
1 a

(4.92)

where E is the stored energy and Pa is the average power lost. In a transmission
line, stored energy is in the form of power propagating down the line. We can
write

E = P+(l/v), (4.93)

where P+ is the power in the forward wave and l/v is the delay time for the cable.
Next we calculate the dissipated power Pa. As the forward wave travels along the
transmission line, the voltage decays by a factor of exp(-a/). Because the power
is proportional to the square of the voltage, it decays as exp(-2a/). The lost power
can thus be written

Pa = P+ - P+ exp(-Zal)) * 2alP+.

Here we are using the first-order Taylor series approximation

exp(*) as 1 + x,

(4.94)

(4.95)
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which is valid when |*| «: 1. When we substitute for E and Pa into Equation 4.92,
we get

Q = 4 = A . (4.96)
Pa 2a

We have calculated Q in terms of the forward wave only. However, the result is
the same for a reverse wave. Thus the formula can be applied to a resonator as a
whole. A typical Q for a transmission-line resonator is between 10 and 100.

4 .11 Lines with Loads

We have found that the impedance of an open-circuited line depends strongly
on the length of the line and the frequency. We can also find formulas for lines
with loads. Let us consider a section of length / connected to a load with a re-
flection coefficient p(0) (Figure 4.13). We will calculate the reflection coefficient
at the other end of the line. To start, let the forward wave at the input be V+. We
can write the forward wave at the load as V+ exp(-/£/). To find the reverse wave
at the load, we multiply the forward wave by the reflection coefficient, p(0), to
give p(0) V+ exp(-//*/). We can write the reverse wave at the input VL as

(4.97)

The reflection coefficient at the generator p(l) is given by

p(l) = V-/ V+ = exp(-/2#)p(0). (4.98)

The magnitude of the reflection coefficient does not change, only the phase. No-
tice that the reflection coefficient at the input lags the reflection coefficient at the
load. There are actually two phase lags. One comes from the propagation of the
forward wave from the generator to the load, and the other from the propaga-
tion of the reflected wave from the load back to the generator. When we plot the
reflection coefficient in the complex plane (Figure 4.14), the locus is a clockwise
circle.

p(0)V+exp(-j2fil)

Load
|p(0)

Figure 4.13. Reflection coefficient calculation for a lossless line
with a load.
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Pit)

Increasing /

Figure 4.14. Locus of the reflection co-
efficient as the length increases.

If the transmission line is a half wavelength long, the reflection coefficient is
the same as the load reflection coefficient,

p(k/2) = p(0). (4.99)

This means that at this frequency, the transmission line has no effect except for
a propagation delay. This idea is used to make protective covers for radars on
airplanes. The cover is called a radome or half-wave window. The problem with
mounting a radar antenna on the front of an airplane is that it will blow away
unless it is protected. If the covering is made a half wavelength thick, the waves
go right through it.

The other interesting length to consider is a quarter wavelength. When the line
is a quarter wavelength long, the reflection coefficient changes sign. We can write

p(A./4) = - (4.100)

Changing the sign of the reflection coefficient transforms the impedance. We can
write the impedance at the generator end, Z(A/4), with Equation 4.77 as

Z(k/4) l+p(X/4) 1-/0(0) Zo

Zo l -p (V4) l+p(0) Z(0);

where Z(0) is the load impedance. We can rewrite this expression as

Z(X/4) Zp
Zo Z(0)'

(4.101)

(4.102)

One way to understand this formula is to define a normalized impedance, which is
the impedance scaled to Zo. We will use lower-case letters for normalized imped-
ance and write

z = Z/ZQ.

The normalized admittance is given by

y=l/z=YZ0.

(4.103)

(4.104)
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In terms of normalized impedances, Equation 4.102 becomes

(4.105)

This means that we can think of the quarter-wave transmission line as an impe-
dance inverter. We will study other impedance inverters in the next chapter. We
will see that we can make excellent band-pass niters by combining impedance
inverters and resonators. Another application of quarter-wave sections is in elimi-
nating reflections. We know that if the load resistance is different from the charac-
teristic impedance of a cable, there will be a reflection. We can use a quarter-wave
section to transform the impedance of a load to match the cable. To see this,
rewrite Equation 4.102 as

Zo = VZ(V4)Z(0). (4.106)

In words, the characteristic impedance of the transmission line is the geometric
mean of the load impedance Z(0) and the transformed impedance Z(A/4). This
means that if we choose Zo to be the geometric mean of the load resistance Ri
and the source resistance RSf all of the available power from the source will be
delivered to the load. We write the matching condition as

Zo = T/RJII. (4.107)

This idea is also used in optics. Lenses are coated with matching layers that
are a quarter-wavelength thick to eliminate reflections from the surface of the
lens. Typically several layers are used so that the reflections can be reduced for
the full range of wavelengths we can see. These are called antireflection, or AR,
coatings.

FURTHER READING

The classic textbook is Fields and Waves in Communication Electronics by Simon Ramo,
John Whinnery, and Theodore Van Duzer, published by Wiley. It is comprehensive,
covering this material and much more. There is an excellent discussion of distributed
inductance and capacitance and the skin effect. Paul Nahin has also written a terrific
biography, Oliver Heaviside: Sage in Solitude, published by the IEEE Press, that touches
directly on many of these topics. Heaviside was an English engineer who helped
develop transmission-line theory, Laplace transforms, and the notation that we use
for vector calculus and for Maxwell's equations. Nahin also tells the sad story of the
failure of the first transatlantic cable.

PROBLEM 1O- COAXIAL CABLE

Coaxial cable has many advantages for transmitting electrical signals. It can be used from
DC to very high frequencies (cables are available that operate as high as 100 GHz). A
common laboratory cable is RG58/U, costing about a dollar per meter. The shield is a
weave of fine tinned-copper wires around an insulating polyethylene tube. This cable
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Input „ -
Function generator o—(- )
Scope channel 1 o — \ /

10-m cable
Output-v. vsuipui

)to Scope channel 2
- * 1 o with 50-Q termination

Ground

Figure 4.15. Measuring the velocity v.

typically has twist-lock BNC connectors. (A short note is needed on abbreviations. BNC
stands for "Bayonet Neill Concelman," after the Bell Laboratories engineers Paul Neill
and Carl Concelman, who developed the connector. RG/U is "radio-guide/universal/' and
different varieties come with different identifying numbers.) RG58 coax and BNC connec-
tors are commonly used up to a frequency of 1 GHz. In this problem, you will measure
the velocity and characteristic impedance for the cable and use these to calculate the
distributed inductance and capacitance.

A. First measure the velocity on a 10-m cable with the connections in Figure 4.15. Set
the function generator for 5-V pulses with a width of 50 ns that repeat at a frequency
of 20 kHz. To measure the delay accurately, we need a fast time scale on the scope.
A convenient scale is 10 ns per division. You should be able to see an incident pulse
on channel 1 and a delayed pulse on channel 2. Measure the delay, and calculate the
velocity v. Express v as a fraction of the speed of light c, where c = 3.00 x 108 m/s.

B. Disconnect the 10-meter cable and plug an antenna cable into the channel-1 tee.
Now your pulses are sent up to the antenna. At the antenna, the pulses are reflected
and come back down the cable. Use the delay to deduce the length of the antenna
cable, assuming that the velocity is the same as before.

C. Next we find the characteristic impedance Z$ with the circuit shown in Figure 4.16.
The voltage is measured by a tee connection to channel 1 of the oscilloscope. The cur-
rent is measured through a 1:1 transformer. We will study transformers in Chapter 6,
but for now you should know that the 1-Q resistor effectively appears in series for
our signals. This means that the voltage on channel 2 is numerically equal to the
current in amperes. The transformer is needed to avoid a short to the scope ground.
Measure the voltage and current in the middle of the pulse and calculate ZO.

Input o
Function generator

10-m cable °
with 50-Q termination

Scope channel 2
< oro (current)

° Scope channel 1
(voltage)

Metal box (ground)

Figure 4.16. Circuit for measuring the characteristic impedance Zo.
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D. Now remove the 50-ft load from the end of the cable so that the cable is open-
circuited. Sketch and interpret the voltage and current waveforms.

E. Use your measurements of v and ZQ to calculate L and C.

PROBLEM 1 1 - WAVES

A. We saw that for either a forward wave or a reverse wave alone, the magnitude remains
the same at different positions, but the phase changes. We call this a traveling wave.
However, if both a forward wave and a reverse wave are present at the same time,
we need to add the two phasors, and the locus changes dramatically. Sketch the
locus as z varies when both a forward voltage wave exp(-jfiz) and a reverse wave
exp(+jfiz) are present. How does the locus change if the reverse wave becomes
—exp(+/ /?z)? Sketch the new locus. How does the locus change if the reverse wave
becomes pexp(+jfiz), where \p\ < 1 ? The standing wave ratio (SWR) is defined as
the ratio of the maximum magnitude to the minimum magnitude. Find a formula for
the SWR in terms of \p\. The SWR is often used to characterize connectors, filters,
and antennas.

B. We analyzed a transmission line by breaking it up into short sections and letting
the length of the sections go to zero. We found a formula for the characteristic
impedance, which is the ratio of the voltage and current in a forward wave. This
would be the impedance we would measure at the input of a transmission line
that is sufficiently long that we do not have to consider the effect of the far end. It
is interesting to consider the impedance of a ladder network of discrete cascaded
components (Figure 4.17). We let the impedance of the series element be Z and
the admittance of the parallel element be Y. We will assume that the number of
elements is large enough that we do not need to consider the effect of the far end.
Find the input impedance ZQ of the discrete line in terms of Z and Y. One way
to approach this problem is to consider that adding another Z and Y section at
the beginning should not change the input impedance. You can use this fact to
find ZQ.

C. Suppose we want to transmit voice signals over 100 km of cable with L = 250 nH/m
and C = 100 pF/m. The distributed resistance at voice frequencies is 50 m£2/m. The
distributed conductance may be neglected. Using the high-resistance approximation,
calculate the total loss in dB and the delay in ms at 500 Hz, 1 kHz, and 2 kHz.

Figure 4.17. A discrete transmission line with lumped series
impedance Z and parallel admittance Y.
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D. Now add 100-mH series inductor coils at 1-km intervals. You may assume that the
added inductance is effectively distributed uniformly along the line, and you may
neglect the resistance of the coils. Using Equations 4.49 and 4.50, calculate the
total loss in dB and the delay in ms at 500 Hz, 1 kHz, and 2 kHz. For comparison,
calculate the total loss and delay using the high-reactance approximation.

PROBLEM 12 - RESOWAMCE

A. We will consider an open-circuited section of transmission line connected to a gen-
erator (Figure 4.18). Let the attenuation constant of the line be a and the phase
constant be p. Derive an expression for the ratio \ Vg/ V\ at the first series reso-
nant frequency. Find a first-order approximation for the ratio, assuming that a is
small.

B. Now we find a. Make the connections shown in Figure 4.19, with the end of the
cable connected to channel 2 of the oscilloscope. Do not use a 5O-£2 load. Use an
amplitude setting of 1 Vpp. Adjust the frequency to find the first series resonance
where | Vg\ is a minimum. Use the ratio | Vg/ V\ to calculate a.

C. Next we use the resonant frequency to find the velocity. Because the scope capaci-
tance shifts the resonance, you should disconnect the cable from channel 2 for this
part. Readjust the frequency for resonance. Use the frequency and the length to cal-
culate the cable velocity v. How large was the frequency shift caused by the scope
capacitance? Calculate the frequency shift that you would expect, using the scope
and cable capacitance.

D. Next we consider the bandwidth. For a series resonance, we defined the half-power
frequencies // and fu where R and X are equal and the load voltage changed by a
factor of >/2. Here the load is effectively the distributed resistance of the cable and
we do not have access to the resistance by itself. However, at resonance, the cable
resistance is only a few ohms, and the function generator current is very close to the
short-circuit current /s = VO/ZQ. The voltage | Vg\ will be a minimum at the resonant

O
Figure 4.18. Open-circuited section of transmis-
sion line connected to a generator.

10-m cable
Input s ^ r \ v Output

Function generator o — f - J V—o Scope channel 2
Scope channel 1 o — e ^ - e — o JJ0 IQ^

' -Ground —"""

Figure 4.19. Measuring the attenuation constant a.
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Figure 4.20. Variation of | Vg | near the resonant
frequency. Vm is the voltage minimum at reso-

E.

frequency and will increase as we move away from it. At fu and f\, where the input
resistance and reactance are equal, | Vg\ will rise by a factor of V2. One way to
make the measurement is to first measure \ Vg\ at resonance and then reduce the
amplitude setting by y/l. Now measure the frequencies f\ and fu that give the same
value of | Vg\ that you measured before. What Qdoes this bandwidth indicate?

Now calculate the Q that you expect from the energy formula

P
Q= 2a

(4.108)
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