ARRENDIX

Fourier Series

We can interpret the waveforms we see in terms of components at different
frequencies. For example, we might consider a voltage V(t) that is the sum of
three cosine components:

V(t) = a; coslwit) + a» cosiwyt) + a3 cos(wst). B.1)

We can include a DC term as a special case if we assume that one of the
frequencies is zero. Representing a function in terms of its frequency components
is helpful in understanding how the filter in a Class-C or Class-D amplifier operates.
We also use the frequency components to define the relationship between

DC and AC currents in oscillators and to predict mixer output frequencies.

B.1 FOURIER COEFFICIENTS

If a function is periodic, it has a special representation called a Fourier series,
where each frequency component is a harmonic of the fundamental frequency.
We will leave the discussion of why a function can be written in a Fourier series
to a mathematics text, but we will see how to find the coefficients. We start by
writing the function as an infinite sum of cosines and sines:

V(t) = ap + a1 cos(wt) + by sin(wt) + az cos(2wt) + by sin(2wt) + - - -, (B.2)

where ay, ay, by, a2, and b, are the Fourier coefficients. For our functions we can
simplify this sum. Notice that if we change the sign of ¢, the cosine terms do not
change. We say that the cosine is an even function. In contrast, the sine is an odd
function, and it changes sign. It turns out that the functions that we are interested
in are even, and for this reason we do not need the sine terms. This means that
we can write our series as

(oo
V() =) an cos(nowt). (B.3)
n=0
Now we can find a formula for the Fourier coefficients. To do this we need to
use a remarkable property of the integrals of cosine products. Let us consider the
integral I,,,,, where

+T/2
 —— / cos(mwt) cos(nwt) dt, (B.4)
-T2
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where T is the period, given by
T=2n/w. (B.5)

There are several possibilities. If m and »n are O, the integrand is just 1, and the
integral is T. If m and n are positive, and m = n, the integrand is cos?(mwt), and
the integral is 7/2. If m # n, then we rewrite the product as a sum of cosines

1 +7T/2
Lim= = / (cos[(m + n)wt] + cosf(m — n)wt]) dt. (B.6)
2J 112

The integrals of cosines are sine functions. These are periodic, also, so that they
have the same value at each limit, and the integrals will vanish. This means that
if we integrate the product of two different harmonics over a period, the integral
is zero. We say that different harmonics are orthogonal. We can summarize these
results as follows:
T form=n=290,
Lim = | T/2 form=n=>0, (B.7)
0 form#n.

Now consider the integral V;, of the function V(t), defined by
+T/2
Vo= / V(t) cos(nwt) dt. (B.8)
-T/2
We substitute for V(t) from Equation B.3 to obtain
+T/2
V= f (Z a cOs(mot) | cos(nwt) dt. (B.9)
-2 \%

I have used m as the index in the sum rather than » to keep them distinct. Let us
bring the cosine factor cos(nwt) inside the sum. This gives us

2 \5

+T/2
V, = f (Z Ay cOS(mwt) cos(nwt)) dt. (B.10)

We can do this integral by taking the integral of each of the terms in the sum
separately and adding. We write

+T/2
V,= ; am ( f_ - cos(rmwt) cos(nwt) dt) = ; amIym. (B.11)

The integrals are zero except where m = n. This means that we are only left with
one term in the sum, given by

Tao ifn=0,
Ta,/2 ifn>0.

(B.12)
I have replaced a,, with a,, because m = n for this term. We can invert this to find

1 +T/2
fo =7 / Vit dt. (B.13)
-T2
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This is the DC component, and we can think if it as just the average value of V(t).
For n > 0, we have

2 +T/2
ap = — / V(t) cos(nwt) dt. (B.14)
T/ 12

Doing the integrals to find the Fourier coefficients requires practice. You should
fill in the details of the following examples.

B.2 SQUARE WAVE

Now we find the Fourier coefficients for a square wave with voltages of +1 and
—1 (Figure B.1a). The average value is zero, and so there is no DC component. The
AC components are given by

2 +T/2
ap = — / V(t) cos(nwt) dt. (B.15)
T /112

If n is even, the integral over the time the square wave is positive is zero, and so
is the integral over the time that the square wave is negative. This means a, is
zero if n is even. If n is odd, the integrals over the positive part of the square
wave are the same as the integrals over the negative part. You should sketch the
cosines and the square wave to convince yourself of this. This means that we can
write ’

_ 4 [sin(not) T4 _ 2 [sin(nwt) T4
e -2

an =
"TT|  hoe n

—T/a -T/4

The sines evaluate to +1 or —1, and we can write the first four coefficients as

a = +i, (B.17)
b4
4
a5 = -7, (B.18)
4
as =+, (B.19)
4
@ == (B.20)
+1 +V
-mal | |74 - , -
] o t —-T/4 0 +T/4 t
-1
(@ (b)

Figure B.1. Square waves for Fourier analysis (a), and pulse train with rectangular
pulses with 50% duty cycle (b).
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There are only odd harmonics, and the coefficients alternate in sign. The coeffi-
cients decrease as 1/n. We can write the Fourier series for the square wave as

(B.21)

4
V() = - (cos(a)t) - 3 S

cos(3wt) + cos(Swt) . )
We use these coefficients for studying mixers in Chapter 12.
We can also use this series to deduce the coefficients for rectangular pulses
whose width is half the period (Figure B.1b). We say these pulses have a duty cycle
of 50%. The DC component is half the pulse height V},,. The other components are
the same as for the square wave, except that they need to be multiplied by V;,/2
to take the pulse height into account. This means that we can write the series for
the rectangular pulses with a 50% duty cycle as

V(t) = Yon + Znﬁ (cos(wt) -

(B.22)

2

cos(3wt) + cos(Swt) _
3 5 ’

We use this series in analyzing a Class-D amplifier in Chapter 10 and in finding
the channel spacing for pulsed transmissions in Chapter 12.

B.3 RECTIFIED COSINE

The voltage for the Class-C amplifier that we study in Chapter 10 looks like a
rectified cosine (Figure B.2a). We use the first two terms of the Fourier series to
find the relationship between the AC and DC components. We can write the
DC term as

1 (T4
a = — / Vin cos(wt) dt = V,,/m (B.23)
T J 14

and the fundamental component as
2 T/4
@ == Viu cOs%(wt) dt = Vi/2. (B.24)
TJ 114

The fundamental frequency component is half of the original cosine. This makes
sense, because the cosine is only on during half the cycle. The harmonics are

VSR YA .

Figure B.2. Rectified cosine for Fourier analysis (a), and narrow pulses (b).
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given by

2 T/4
an = — f Vin cos(wt) cos(nwt) dt
T J_ 14

Vm T/4
=T / m(cos[(n — Dot] + cos[(n + Dwt]) dt. (B.25)

If n is odd and greater than 1, the integrals are zero. It may help to sketch the
cosines to see this. If n is even, we can write

_ Vm [sin[(n -Dowt] sin[(n+ 1)wt]]T/4

2 n-1 n+1

an= 5= (B.26)

~T/4 )

The sines evaluate to +1 or —1, and we can write the first four harmonics as

a = +2§:ﬂ, (B.27)
a3 = —fsl;", (B.28)
a6 = +§_:—;' (B.29)
g = —-Z%. (B.30)

There are only even harmonics, and the coefficients alternate in sign. The coeffi-
cients decrease as 1/(n?> — 1). We can write the series as

2V (cos(Zwt) _ cos(4wt) + cos(6wt) _
3 15 35 ’

Ve Vi
V() = — + - cos(wt) + -

(B.31)

B.4 NARROW PULSES

As a final example, let us find the Fourier coefficients of narrow pulses of cur-
rent (Figure B.2b). In Chapter 11, we use these coefficients to find the large-signal
transconductance of a JFET and the output voltage in bipolar oscillators. We will
let the total charge in each pulse be Q. We will assume that the pulses are narrow
enough so that, for the harmonics we are interested in, the cosine will be equal to
one over the entire pulse. We can write the DC term as

a = —

1 +T/2
T./:T/Z Idt=Qf (B.32)

and the AC terms as
2 +T/2
ay, = = f I(t) cos(nwt) dt = 2Qf. (B.33)
T J 112

We write the series as

I(t) = Qf (1 + 2(cos(wt) + cos(2wt) + cos(Bwt) + - - ). (B.34)
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All harmonic components are present, and the coefficients are all the same. This
is an idealization, and in practice the higher-order harmonics will begin to drop
off when the pulse width is no longer narrower than the cosine. In the oscillators
in Chapter 11, we compare the DC component a¢ and the fundamental AC com-
ponent a;. We can see that

ay/ag = 2. (B.35)

In words, the peak value of the fundamental component is twice the DC compo-
nent. In measurements, we would likely use the peak-to-peak value of the funda-
mental, and this is four times the DC component.

FURTHER READING

The idea of representing functions in terms of frequency components is a central
theme in electrical engineering, mathematics, and physics. These are called spectral
representations, and they may be in the form of a series such as the Fourier series,
or an integral such as the Laplace transform, or a combination of the two. Signals
and Systems, by Oppenheim and Willsky, published by Prentice-Hall, gives a good
overview of these series and transforms.
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