
Filters

So far the filters we have made have had only two elements: a capacitor and a
resistor or inductor. We can improve the response of our filters by adding more
elements. This allows us to make the pass band flatter and the roll-off steeper.
Multielement filters behave somewhat like transmission lines, and we need to
have the right input and output resistance to avoid problems with reflections.
Analyzing these filters by hand is quite difficult, but the calculations are easy on
a computer. For this we will use a computer program called Puff, which is
included with this book. Instructions for running the program are given in
Appendix C.

5.1 Ladder Filters

We will consider ladder networks with alternating series and shunt elements like
the discrete transmission line we studied in Problem 11. If the series elements are
inductors and the shunt elements are capacitors, then the circuit acts as a low-pass
filter (Figure 5.1a, b). At low frequencies, the impedance of the inductors and the
admittance of the capacitors are small, and the input signal passes through to the
output with little loss. In contrast, at high frequencies the inductors begin to act
as voltage dividers and the capacitors as current dividers. This reduces the power
transmitted to the load. We can also make high-pass filters with series capacitors
and shunt inductors (Figure 5.1c, d).

Many different filters have been developed, giving a wide choice of amplitude,
phase, pass-band, and stop-band characteristics. We will focus on amplitude and
consider two different types - the Butterworth filter, which gives a flat pass band,
and the Chebyshev filter, which gives an excellent roll-off. Mathematically, we
write the loss factor L for the Butterworth low-pass filter as

L = Pi/P = l + (f/fc)
2n, (5.1)

where the input power Pz is the available power from the source, P is the output
power delivered to the load, and fc is the 3-dB cut-off frequency. This is shown in
Figure 5.2a. The loss characteristic is quite flat in the pass band. In fact, the first
2M- 1 frequency derivatives are zero at f = 0. For this reason, people call these
maximally flat filters. When we are well into the stop band, the loss factor can be
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(a) (b)

O-

(c) (d)

Figure 5.1. Low-pass (a, b) and high-pass (c, d) ladder filters. Often inductors are
larger and more expensive than capacitors, and so filters that use fewer inductors,
like (a) and (c), are more common. The number of elements is called the order of the
filter. These are all fifth-order filters.

Ripple

fc f fc

(a) (b)

Figure 5.2. Butterworth (a) and Chebyshev (b) filter characteristics.

written approximately as

(5.2)

This means that the loss increases by 6n dB each time the frequency doubles. We
say that the loss increases by 6 dB per octave per element.

It turns out that we can get a faster roll-off if we allow a ripple in the pass band.
The Chebyshev filter takes advantage of this (Figure 5.2b). Its loss is given by

= l+ctC2n(f/fc), (5.3)

where a is the ripple size and Cn(x) is the Chebyshev polynomial of order n. Cheby-
shev polynomials have the interesting property that they oscillate between - 1
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Order

0
1
2
3
4

5
6
7

Polynomial

1

x

2 x 2 - 1
4x3 - 3x
8x4 - 8x2 + 1
16x5 - 20x3 + 5x
32x6 - 48x4 + 18x2 _ 1
64x7-112x5 + S6x 3 -7*

(a) (b)

Figure 5.3. The Chebyshev polynomials (a), and plots of Clt C3, and C5 (b).

and +1 as * varies from - 1 and +1. The first two polynomials are given by

Co = 1, (5.4)

d = x. (5.5)

We can calculate the rest from the following formula:

Q(x) = 2xQ-i(x) - Q_2(x). (5.6)

You need to calculate the polynomials in order to use this formula. Figure 5.3a
gives the Chebyshev polynomials through order 7.

We will use only the odd-order polynomials, because the even-order polynomi-
als are for filters with different source and load resistances. The odd-order polyno-
mials are 0 when x is zero, and then oscillate between +1 and - 1 , finally ending
up at +1 when x = 1 (Figure 5.3b). This is really rather surprising, considering how
large the coefficients of the polynomials are. For example, the cubic coefficient in
C5 is 20. However, the different terms offset each other as long as x < 1. Now
consider what this means for the loss. Each time the Chebyshev polynomial hits
either +1 or - 1 , the loss factor becomes 1 + a. This means that in the pass band,
the loss factor swings between 1 and 1 + a repeatedly. For this reason we call this
an equal-ripple filter. This happens once for C\, twice for C3, and three times for C5.
This is shown in Figure 5.2b for a fifth-order filter. The last time the loss factor is
1 + a is when f=fc,a.t the pass-band edge. As the frequency increases above fc,
the loss factor increases sharply, and the filter rolls off rapidly. The roll-off advan-
tage for the Chebyshev filters comes from the large leading coefficient, given by
2n-1. By comparison, this coefficient for Butterworth filters is 1. In dB terms, the
loss factor of the Chebyshev filter in the stop band is 6(n - 1) dB larger than that
of a Butterworth filter with the same pass-band loss. For example, for fifth-order
filters this is 24 dB, a considerable improvement.
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5.2 Filter Tables

A good way to start a filter design is to consult a table that lists component values
for different filters. With these values, you can simulate the filter response on a
computer, and from there you can make adjustments to account for the avail-
able components. Manufacturers make only a limited range of capacitor values.
Inductors also must have an integral number of turns. In practice, however, the
turns can be squeezed to increase the inductance somewhat, or spread to reduce
it. Also, the components themselves have loss, and this effect can be included in
the computer simulations. Finally, it is a good idea to see the effect of compo-
nent variation. Chebyshev filters are particularly sensitive to this. Deriving the
formulas for the tables is quite difficult, and so I will just give the results. These
formulas are for filters with the same source and load resistance, and we will use
this resistance for normalizing. The normalized susceptances and reactances for a
Butterworth filter at fc are given by

where i is an index for the components and n is the order of the filter. These values
are given in Table 5.1a through seventh order.

Calculating the values for a Chebyshev filter is quite involved. We usually
specify a maximum ripple loss in dB in the pass band. In practice, these speci-
fications vary over a wide range from 0.01 dB to 1 dB. We relate this loss Lr to
a by

1 + a = 10L'/1°. (5.8)

We calculate an auxiliary quantity p as

( 5 9 )

where sinh is the hyperbolic sine function and tant r 1 is the inverse of the hyper-
bolic tangent. We calculate the Chebyshev components in order, starting with

ci=a!/p, (5.10)

where a\ is given by Equation 5.7. Then we proceed sequentially to c2 and the
rest, using the formula

c. -
[fS2 + sinz[(i-l)ji/

The Chebyshev components for 0.2-dB ripple are given in Table 5.1b.
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Table 5.1. Component Values for Ladder Filters.

Order

1
2
3
4
5
6
7

Order

1
3
5
7

a.

2
V2
1
0.765
0.618
0.518
0.445

C i

0.434
1.228
1.339
1.372

V2
2
1.848
1.618
y/2
1.247

c ,

1.153
1.337
1.378

S 3

1
1.848
2
1.932
1.802

c ,

1.228
2.166
2.275

0.765
1.618
1.932
2

(a)

c,

1.337
1.500

as

0.618

1.802

c 5

1.339
2.275

0.518
1.247

c 6

1.378

0.445

c7

1.372

(b)

Note: The values for Butterworth filters from Equation 5.7 are given
in (a), and for Chebyshev filters with a ripple of 0.2 dB from Equation
5.11 in (b). These are the normalized susceptances of the shunt elements
at fct and the normalized reactances of the series elements. People call
these immittance values to indicate that the numbers can be used for ei-
ther susceptance or reactance. Any of the filters shown in Figure 5.1 can
be designed from these tables. For a low-pass filter, the series elements
are inductors, and the shunt elements are capacitors. For a high-pass
filter, the series elements are capacitors and the shunt elements are in-
ductors, and the reactances and susceptances are negative. Because the
values are symmetric, we can count from either end. Start with either a
series element or a shunt element, and alternate throughout the filter.
One warning: By tradition, fc for a Butterworth filter means the 3-dB
frequency, but for Chebyshev filters, fc is defined by the frequency that
gives the maximum ripple, 0.2 dB in this case.

5.3 Examples

Using the tables is surprisingly complicated, and it is a good idea to simulate filters
on the computer to make sure that you actually get the characteristics you want.
To show how the tables work, we will go through several examples in detail. Let us
assume that we need a filter for a 5O-£2 antenna cable with a 3-dB cut-off frequency
of 10 MHz and a loss of at least 20 dB at 20 MHz. A fourth-order Butterworth filter
with a cut-off frequency of 10 MHz should have a loss at 20 MHz of

1(20 MHz) = 6N = 24 dB, (5.12)
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P3
^1 ^3

610nH 1.47«H

(a) (b)

Figure 5.4. Designing a 50-ft low-pass Butterworth filter with fc = 10 MHz. Denning
the normalized reactances for the series elements and the normalized susceptances
for the shunt elements (a), and the component values (b).

which is sufficient. We start with the filter structure in Figure 5.4a. There are
two series inductors and two shunt capacitors. From Table 5.1a, we can write the
normalized reactance of the first inductor as

Xl = ai = 0.765. (5.13)

We can find the actual reactance Xi at 10 MHz by multiplying by the characteristic
impedance of the cable, ZO = 50 £2. This gives us

(5.14)

and the inductance L\ is given by

(5.15)

Now we proceed to the other values. From the table, the normalized susceptance
of the first shunt capacitor is given by

b2=a2 = 1.848. (5.16)

We can find the actual susceptance B2 at 10 MHz by dividing by Zo. This gives us

B2 = b2/Z0 = 37mS, (5.17)

and the capacitance C2 is given by

C2 = £2M = 590 pF. (5.18)

The inductance L3 is given by

L3 = a3Zo/a>c = 1.47 /iH, (5.19)

and finally

Figure 5.4b shows the complete filter.
Now consider a high-pass filter with a 3-dB cut-off frequency of 10 MHz and

a loss at 5 MHz of at least 20 dB. Figure 5.5a shows the structure, with series
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-J*i

Q C3

420pF 172pF

-A £ "A
430nHl LOtyH

(a) (b)

Figure 5.5. Designing a high-pass Butterworth filter. Defining the normalized reac-
tances for the series elements and the normalized susceptances for the shunt ele-
ments (a), and the final component values (b).

capacitors and shunt inductors. We use the same table values as before. This time
the reactances and susceptances are negative. We write

1
C,=

L2 =

L4 =

=430nH,

= 172pF,

Zp = 1.04/*H.

(5.21)

(5.22)

(5.23)

(5.24)

These values are shown in Figure 5.5b.
Figure 5.6 shows a simulation of the loss of these two filters with the computer

program Puff. The response of these two filters is complementary, and they cross
at the 3-dB level at 10 MHz. One interesting fact is that the filters show reciprocity.
This means that it does not matter which end we use for the input. This is not
obvious, because the filters are not symmetric end to end, but it is easily checked
on the computer by swapping the input and output. We will see another example
of reciprocity when we study antennas in Chapter 15.

10 15
Frequency, MHz

20

Figure 5.6. Puff simulation for the low-pass Butterworth filter in
Figure 5.4b and the high-pass Butterworth filter in Figure 5.5b.
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5.4 Band-Pass Filters

The ladder structure can also be used for band-pass and band-stop filters. For band-
pass filters, the series elements are series resonant circuits, and the parallel elements
are parallel resonant circuits (Figure 5.7a). Each of the elements is resonant at
the center frequency fo, so that the signal passes through unaffected. For band-
stop filters, it is the other way around (Figure 5.7b), and the resonant circuits
are arranged to block the signal at fo. We can make Butterworth and Chebyshev
filters with the same tables as before. For the band-pass filter, we find the series
inductors and shunt capacitors as we did in the low-pass filter, except we use the
filter bandwidth Aco instead of coc in the reactance and susceptance calculations.
For the band-stop filter, the values for the series capacitances and shunt inductors
are calculated like the ones in the high-pass filters, but with Aco instead of coc.

As an example, let us design a second-order band-pass Butterworth filter for
7 MHz, by adding a parallel resonant element to the series resonant circuit that
we tested in Problem 8. The series resonant circuit had a 15-/xH inductor and a
variable capacitor that was adjusted for resonance at 7 MHz. This means that we
can write

(5.25)

and

(5.26)

For the first element, Table 5.1a gives us the value

ai = \/2. (5.27)

This is the normalized reactance of L\ evaluated at Aco, and therefore we write

AcoL\ = CI\ZO (5.28)

so that

Aco = aiZo/Li = 4.71 x 106 radians/s. (5.29)

(a) (b)

Figure 5.7. Band-pass filter (a), and band-stop filter (b). These are second-order
filters.
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In hertz, this is

Af= Aco/(2n) = 750 kHz. (5.30)

Thus the 3-dB bandwidth of the filter is 750 kHz. Now we find C2. We write

(5.31)

(5.32)

(5.33)

and substitute for Aco from Equation 5.29 to get

C2 = Li/Zg = 6.0 nF,

where we have used the fact that a\ = a2. The inductance L2 is given by

L2 = ^ ! - = 86nH.

These component values are shown in Figure 5.8a.
We plot the response of the filter for two different loss scales. Figure 5.9 shows

the response from 0 to 3 dB. For comparison, I have plotted the loss for the

15/*H 34.5pF
172nH

86nH T 6.0nF 3.00nF

-3

£ 7.

1(a) (b)

Figure 5.8. Component values for second-order, 7-MHz Butterworth band-pass (a)
and band-stop (b) filters. The 3-dB bandwidth for each filter is fc = 750 kHz.

Frequency, MHz

Figure 5.9. Puff simulation for the 2-element band-pass Butter-
worth filter in Figure 5.8a showing the range from 0 to 3 dB. The
3-dB bandwidth is 750 kHz, as predicted by Equation 5.30. Also
shown is a plot for the series resonant element alone for compari-
son.
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Series
resonance

\ 2-element
Butterworth

Frequency, MHz

Figure 5.10. The same Puff simulation as in Figure 5.9, but with
the range extended to 20 dB to show how the 2-element Butter-
worth filter rolls off much faster than the single resonant circuit.

series resonant circuit alone. This plot shows that near the center frequency,
the response of the Butterworth filter is flatter than the series resonant circuit.
Figure 5.10 is the same simulation with the loss scale extended to 20 dB. This
shows that the Butterworth filter rolls off much more quickly than the series res-
onant circuit.

As a final example, we design a 2-element band-stop Butterworth filter with a
3-dB bandwidth of Af = 750 kHz centered on 7 MHz. We use the circuit shown
in Figure 5.7b. We write

Ci =

Li =

= 3.00nF,

= 172nH,

(5.34)

(5.35)

L2 =

C2 =

= 7.5/*H,

= 69pF.

(5.36)

(5.37)

These component values are shown in Figure 5.8b. The response of this filter is
shown in Figure 5.11, together with the band-pass filter plot for comparison.

One thing to notice about the 2-element Butterworth filters is that the immit-
tance values a\ and a2 are equal. This means that the normalized reactance of
the series components is the same as the normalized susceptance of the shunt
components. This gives us a way to recognize this filter in a circuit. The RF Fil-
ter in the NorCal 40A is a second-order Butterworth band-pass filter. We will
study it in Problem 16. In addition, we can think of the IF Filter as a cascade
of a pair of these band-pass filters. The IF Filter is a critical circuit in the receiver.
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Frequency, MHz

Figure 5.11. Puff simulation for the 2-element band-stop Butter-
worth filter in Figure 5.8b with the band-pass filter in Figure 5.8a
shown for comparison.

It uses high-Q quartz-crystal resonators to achieve an extremely narrow band-
width.

5.5 Crystals
Crystal quartz is an important material in electronics. Quartz crystals allow watches
to keep precise time, and they control the master oscillators in microprocessor
systems. In radios, they set oscillation frequencies and act as extremely narrow-
band filters. This crucial role may seem surprising, because quartz is an insula-
tor. However, quartz has several interesting properties. It is piezoelectric, which
means that when we apply a voltage across it, it moves. The piezoelectric ef-
fect allows us to couple electrical signals to mechanical vibrations. This works
both ways. Voltages cause motion, and motion causes voltages. For example, gas
stoves and water heaters often use piezoelectric starters. In a piezoelectric starter,
a force deforms the crystal, causing a large voltage across the contacts to make a
spark.

Quartz mechanical resonators have very high Qs in the range of 50,000 to
100,000. The main loss is not within the quartz itself, but to the air and the sup-
ports for the crystal. These Qs are much higher than those of LC and transmission-
line resonators, which are limited by metal resistance and are usually 100 or less.
The resonant frequencies are in the range from 1 kHz to 100 MHz. Chemically,
quartz is silicon dioxide. The raw material for quartz is sand, and this means that
quartz crystals can be manufactured inexpensively. In addition, quartz crystals
can be cut precisely so that the resonant frequencies change only slightly with
temperature. The orientation in our crystals is called an AT cut, and this gives a
temperature coefficient as low as 1 part in a million per degree Celsius. In a clock,

Cambridge Books Online © Cambridge University Presshttps://doi.org/10.1017/CBO9780511817502.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511817502.006


1 0 B FILTERS

Quartz

Motion \

Metal film
contact

(a) (b) (c)

Figure 5.12. (a) Quartz crystal with metal contacts. The thickness needed for AT-cut quartz
in the lowest shear mode is approximately 1.67 mm/f, where f is the frequency in MHz.
(b) Structure of a material with a piezoelectric effect. The center of balance of the positive and
negative charge is the same, (c) The charge movement when a force is applied. The charge
movement causes the center of balance for the positive and negative charges to separate. The
+ indicates the center of positive charge, and the - the center of negative charge.

this corresponds to an error of one second per day for a 10°C change in tem-
perature. This stability is also important for transceivers, because the frequency
should not shift when the temperature changes. Figure 5.12a shows the structure.
A thin wafer of quartz has evaporated metal film contacts on each side. A voltage
between the metal contacts creates a vertical electric field E between the plates,
which causes a horizontal shear movement in the crystal.

The details of the piezoelectric effect are complicated, but we can say qualita-
tively why it happens. Inside a solid, different atoms carry different charges. For
example, in quartz the oxygen atoms have a net negative charge, and the silicon
atoms have a net positive charge. In Figure 5.12b, we show the charged atoms in
a triangular arrangement. The center of balance of the positive charges and the
center of balance of the negative charges are in the same position, indicated by
the dot. When a force is applied, the charge centers separate (Figure 5.12c). This
causes a voltage across the material.

In circuit terms, a crystal has both a series and a parallel resonance. Figure 5.13a
shows the schematic symbol for a crystal, and Figure 5.13b shows an equivalent
circuit. It includes a series RLC circuit. However, this does not represent an elec-
trical effect, but a mechanical one. I and C are called motional inductance and

10-

(a)

p

(b)

Figure 5.13. Schematic symbol for a crystal (a), and the equivalent cir-
cuit (b).
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motional capacitance to make this clear. Here L accounts for the crystal density, C
the stiffness, and R the loss during mechanical vibration. The parallel capacitance
Cp, in contrast, is purely electrical. It arises from the capacitance between the two
metal contacts, and it is usually a few picofarads. Cp gives the crystal a paral-
lel resonance a few kilohertz above the series resonance. This affects filters that
have wide pass bands that extend clear to the parallel resonance. You can ig-
nore it in the filter that you make, which has a pass band of only a few hundred
hertz.

5.6 Impedance Inverters
The band-pass filter that we designed requires both series and parallel resonant
circuits. This is a problem if we try to make a narrow-band filter, because we need
high-Q circuits. We can make excellent high-Q series resonant circuits with quartz
crystals, but we do not have equivalent high-Q parallel resonant circuits. However,
there are circuits that act as impedance inverters that effectively turn a series
resonance into a parallel resonance. This allows us to make a band-pass filter with
impedance inverters and series resonant quartz crystals. We have already studied
one impedance-inverter circuit. We saw in the last chapter that a quarter-wave
transmission line acts as an inverter. However, at our frequencies, a quarter-wave
cable would be quite long. Fortunately, we can also make an impedance inverter
with inductors and capacitors. This circuit is shown in Figure 5.14.

To see how this circuit works, write the input impedance Z\ as

After some arithmetic, this simplifies to

X2

3

( 5 -3 8 )

(5.39)

If we define impedances normalized to the inverter reactance X, we can rewrite
this as

Zi = 1/z/. (5.40)

The normalized input impedance is the inverse of the normalized load impedance.
We could also say that the normalized input admittance is equal to the normalized

Figure 5.14. Impedance inverter with a load Z,.
The reactances of the inductors and the capaci-
tor are the same.
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Inverter
X

A/
-J*e

(a) (b)

Figure 5.15. Inverter in front of a series resonant circuit (a), and the equivalent parallel
resonant circuit (b). All quantities are normalized to the inverter reactance X.

load impedance:

(5.41)

Notice that this kind of formula only makes sense for normalized quantities, be-
cause impedance and admittance ordinarily have different units. Also, for the
inverter to work, we must be near the frequency where the reactances of the in-
ductors and capacitors are equal. This is a reasonable assumption in crystal filters
because the bandwidths are so narrow.

Now consider what happens when we put an inverter in front of a series reso-
nant circuit (Figure 5.15a). We write the input admittance y* with Equation 5.41
as

Yt = M - j*c + r. (5.42)

Now let us compare this with the admittance of the parallel resonant circuit shown
in Figure 5.15b. We can write this as

y = lbc - jbi+ g.

If we compare these formulas, the two circuits are equivalent if

bc = xh

(5.43)

(5.44)

bi = xc, (5.45)

g = r. (5.46)

This means that the combination of the inverter and the series resonant circuit
behaves as a parallel resonant circuit.

Now we can understand the IF Filter in the NorCal 40A. The circuit is shown
in Figure 5.16a. It is called a Cohn filter, after the American engineer, Seymour
Cohn, who invented it. In the figure, all five capacitors are identical. The shunt
capacitors act as impedance inverters. To make a proper impedance inverter we
need series inductors to go with the shunt capacitors. We could include the in-
ductors, but we can get an equivalent effect by adding capacitors at each end of
the filter. To see how this works, consider that if we add a series combination of an
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X
(a)

X
(b)

HftW
Inv. Inv. Lav.

(c)

T
X

T
X

(d)

Figure 5.1 6. Fourth-order Cohn filter used as the IF Filter in the NorCal 40A (a).
Adding series LC pairs on each side of the inverter capacitors (b). Redrawing the
circuit to show the inverters (c). The equivalent band-pass filter circuit (d).

inductor and a capacitor with the same reactance, there will be no change in the
circuit behavior. In Figure 5.16b, we add these series LC pairs on each side of the
inverter capacitors. I have enclosed them in dotted lines to indicate that no real
components are added and that the behavior of the circuit does not change. Now
we associate the inductors with the shunt capacitors to form inverters, and re-
draw the circuit in Figure 5.16c. This effectively leaves the two inside crystals with
two extra series capacitors, and the two outside crystals with one extra capacitor.
This is indicated with the dotted lines. Series capacitors increase the resonant fre-
quency, and to make sure that all the crystals have the same resonant frequency,
we add a capacitor at each end. Finally we go through the circuit, removing the

Cambridge Books Online © Cambridge University Presshttps://doi.org/10.1017/CBO9780511817502.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511817502.006


1 1 2 FILTERS

inverters and swapping series and parallel circuits, one by one. A crystal inverted

once becomes a parallel resonant circuit, a crystal inverted twice is a series circuit,

and three times, a parallel circuit. We get the equivalent band-pass filter shown

in Figure 5.16d.

FURTHER READING

The ARRL Handbook, published annually by the American Radio Relay League, has

extensive filter tables. This book also has an excellent discussion of quartz crystals.

Wes Hayward's book Radio Frequency Design, also published by the American Radio

Relay League, gives the formulas for the Butterworth and Chebyshev filter compo-

nents. Useful information on the hyperbolic functions is given in Tables of Integrals

and Other Mathematical Data, by Herbert Dwight, published by McMillan. For more

depth on the mathematics of filter and inverter design, see Foundations for Microwave

Engineering, by Robert Collin, published by McGraw-Hill.

PROBLEM 13 - HARMONIC FILTER

The Power Amplifier in the NorCal 40A produces a 7-MHz carrier with 2 watts of power.
In addition, the amplifier produces a small amount of power at the harmonic frequencies
14, 21, and 28 MHz. Signals at the wrong frequencies are called spurious emissions, or
spurs for short. Spurs are bad, because they interfere with other radio services. The FCC
sets limits on spurs. For HF transmitters with an output of less than 5 W, each spur must
be at least 30 dB below the carrier.

The NorCal 40A has a low-pass ladder filter to reduce the harmonics, consisting of the
toroidal inductors L7 and L8 and the disk capacitors C45, C46, and C47 (Figure 5.17).
The inductors use the same T37-2 cores as the Transmit Filter. These are the cores with
red paint. However, they have only 18 turns, and this lets us use thicker wire (#26 instead
of #28) to accommodate the large transmitter currents. Start with a 30-cm piece of wire for
each core. Solder in the filter components, leaving the C45 leads partly exposed so that
you can attach test hooks. Also solder on the BNC Antenna jack J1. The two small pins
are the electrical connections, and the two large pins are the mechanical connections.
Solder all four pins to the board.

Attach the function generator across C45 with test hooks, making sure the ground
clip is connected to the ground lead of the capacitor. Connect the oscilloscope with a
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Figure 5.17. NorCal 40A Harmonic Filter.
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coaxial cable to the Antenna jack J1. You should use a parallel 50-ft termination on the

scope.

A. Set the function-generator amplitude to 10 Vpp. We do not have a direct measure-
ment of the incident voltage V+i, but it is reasonable to use the amplitude setting
on the function generator, 10 Vpp. This makes it convenient to calculate the loss L
in dB by the formula

L = 20log(10/V)dB, (5.47)

where V is the peak-to-peak output voltage. Measure the output voltage at 7 MHz
and 14 MHz, and express L in dB at these frequencies.

B. From the manufacturer's inductance constant, A i = 4.0 nH/turn2, calculate the in-

ductance of 17 and L8.

C. Now use Puff to simulate the filterresponsefrom0to28MHz (the fourth harmonic).
Instructions for installing and running the program are given in Appendix C. The
design frequency f d should be 7 MHz. In the F2 Plot Window, set up an S21 plot to
see the loss. 101 points is sufficient. You should choose the y axis carefully so that
the curve does not drop off the bottom. Find the loss in dB at 7 and 14 MHz. Make
a screen dump.

In addition to reducing the harmonics, the filter sets the load impedance for the Power
Amplifier. The output power of amplifiers often varies inversely with the impedance, so
that halving the impedance can double the output power. In addition, having a small
inductive component often improves the efficiency, by helping the amplifier approach a
Class-E operating condition, where little power is lost in switching the transistor on and
off.

D. Puff allows you to measure the input impedance of the filter conveniently. Plot the
reflection coefficient sn , and move the cursor to the sn line in the F2 Plot Window.
Then type = , and the impedance will appear in the Message Box. Find the input
impedance of the filter.

E. Assume that we would like to double the output power. You should adjust the com-
ponents in the filter so that the impedance is cut in half. There are many components
that you could change, but to make the problem specific, try varying only L7 and C46.
For the capacitor, you should stick to values in the standard 5% series, where the
first two digits of the capacitance come from this list: 10, 11,12,13,15,16,18, 20,
22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91. Otherwise you would
not be able to buy the capacitors. For the inductor, use only values that you can get
by adding or subtracting turns from your cores. What values of 17 and C46 give an
impedance closest to half the original impedance?

F. We can improve the harmonic rejection by allowing more ripple. Using the filter
table, design a 5th-order, 0.2-dB ripple Chebyshev filter with fc = 8 MHz. Specify
the closest 5% capacitor values and the closest number of turns that you can get
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with T37-2 cores. Simulate your design with Puff and make a plot of IS211. What is
the loss in dB at 14 MHz?

PHOBLEIV! 4 - IF FIL1ER

The IF Filter in the NorCal 40A is a 4-element Cohn filter (Figure 5.18). Study the endpaper
to see how this filter is connected in the receiver. The filter uses crystals for microprocessor
clocks. These are quite inexpensive, costing only about a dollar, but unfortunately, as they
come from the dealer, the resonant frequencies are not nearly close enough together to
make a good filter. Wilderness Radio sorts crystals for the NorCal 40A so that they match
within 20 Hz. You need six matched crystals in all, four for the IF Filter now, and two for
mixer oscillators later.

A. First we measure the resonant frequency of one of the crystals with the setup in
Figure 5.19. The function generator should be set to a 4,913,500-Hz sine wave with
an amplitude setting of 0.5 Vpp. You should set up the function generator so that
you can change the frequency in intervals of 1 Hz. Because the crystals have a series

XI X2 X3 X4

capacitors
270pF

O

HKh4h-0rDHH
_L _L ci3

T C T oC10 CllT

Figure 5.18. The IF Filter in the NorCal 40A.

Function
generator
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Trigger

Figure 5.19. Setup for testing crystals.
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50Q-
Scope

Figure 5.20. Equivalent circuit for the crys-
tal and generator.

resonance, we can recognize the resonant frequency by a dip in the oscilloscope
voltage as we vary the frequency. Find the frequency to the nearest hertz that gives
the minimum voltage on the scope.

B. Next we will find the components of an equivalent circuit for a crystal, starting with
the resistance. Use the equivalent circuit shown in Figure 5.20. Record the output
voltage V at resonance and use it to calculate the crystal resistance R.

C. When we shift the frequency off resonance, the scope voltage will increase. Calculate
the scope voltage Vx that we would expect when the crystal reactance is equal to R.
Notice that this is not simply V2 times the minimum voltage, because the crystal
resistance is comparable to the resistance of the function generator. Now measure
the upper and lower frequencies fuand f\ that give a scope voltage equal to Vx.
Calculate the Q of the crystal from the bandwidth Af= fu — f\ and the resonant
frequency fo. You need to be careful about the Q here. The crystal Q only includes
the resistance of the crystal. It is different from the circuit Q, which also includes
the resistance of the generator and is lower because of it. Often people call the
crystal Q the unloaded Q, and the circuit Q the loaded Q.

D. Now calculate the equivalent inductance and capacitance of the crystal. One thing
that you need to be careful about here is that we do not have a precise measurement
of either L or C individually, but we know their product extremely precisely through
the resonant frequency. For one of the components you should use only the number
of significant digits that makes sense from your scope measurement, but for the other
you will need to use six significant digits, so that the product will give the correct
resonant frequency. Check with a calculator that the product of your L and C values
gives the resonant frequency correctly to six digits. Otherwise the filter pass band
will shift clear off the screen in the Putf simulation.

E. Make a model of the Cohn filter with Puff, using the equivalent circuit model for the
crystal that you have developed and 270-pF capacitors. You should use a range of
2.5 kHz for frequency and 0 to 60 dB for |S2i |. The design impedance zd should be
200 Q. Make a plot of |s2i |.

F. Investigate the effect of changing the port impedance zd to 50 Q. Make a plot of |S211
and describe the behavior qualitatively.

G. Return the port impedance to 200 Q, and investigate the effect of changing the
capacitors to 200 pF. Make a screen dump and describe the behavior qualita-
tively.
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Figure 5.21. Crystal metal cases and the ground connections.

H. In your simulation, return the capacitance to 270 pF. What is the minimum loss in dB

in the pass band?

I. One important job of the IF Filter is to reject interference at the upper-sideband fre-
quency, 1,240 Hz above the signal frequency. We hear the upper-sideband frequency
as a tone of the same pitch as the signal, and so our ears cannot distinguish the in-
terference from the signal. This is called a spurious response. The upper-sideband
frequency is a difficult spur to reject, because it is so close to the signal. In the Puff
simulation, what is the upper-sideband rejection?

Now build the filter. Solder in the 270-pF disk capacitors (C9 through C13). Slide a
plastic crystal spacer onto the leads of each of the four crystals, all the way up against the
metal case. Now install the filter crystals (X1 through X4) close to the board. The metal
cases of the crystals are not connected to the leads, or to any other part of the circuit
yet. We say that the cases are floating. It is a bad idea to leave large pieces of metal
in a circuit floating, because signals can couple capacitively through the metal pieces
between different parts of the circuit and end up where you do not want them. To avoid
this coupling, we connect each can to ground. There is a small ground hole in the board
between the crystals to make this easy. Use bare #22 wire to connect the crystal cans.
Figure 5.21 shows how you can do this. Connect the cans with a wire running along the
top. It may help to gently bend the cans toward each other until the space between them
is small. You should use large solder beads, and make sure that the top of the cans get
quite hot so that the solder beads stick well to the cans. If the cases are not hot enough,
the wire and solder will pop off the cans. Then solder a wire to the ground hole, hook
the other end to the top wire, and solder them together.

The filter is designed for a 200-ft generator and load. We will add resistors to give
the function generator and scope this resistance (Figure 5.22). For the load, solder a
2OO-£2 resistor from the left L4 hole (connecting to C13 at the filter output) to the left C14
hole, which is a ground connection. Connect the scope across the 2OO-£2 resistor. The
scope connection should be as short as possible, or else the capacitance of the cable
will affect the shape of the filter response. The best thing to do is to use a BNC barrel
adapter to connect directly to channel 1, and to let the board dangle off the front of
the scope. For the function-generator connection, solder one end of a 15O-£2 resistor to
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Figure 5.22. Resistor connections to the crystal filter.

the number-3 hole of T3. Attach the function-generator red lead to the other end of the

150-ft resistor (Figure 5.22). The ground lead can be attached to C10 on the ground

side.

J. With an amplitude setting of 0.5 Vpp, measure the minimum loss in dB of the filter

to compare with the Piv/f simulation.

K. Next we make a plot of the loss in dB versus frequency. Because we will need to
measure very small signals, it is a good idea to switch in a 10-MHz low-pass filter
on the oscilloscope if one is available. Much of the noise that blurs the scope trace
is at frequencies greater than 10 MHz, and so this will make the trace sharper at low
voltage levels. It does, however, reduce the reading somewhat even at 4.9 MHz; thus
our plot will be a relative plot. Increase the function-generator amplitude setting to
2.0 V to get a bigger signal. Even though this increases power, it is safe because the
power is no longer going into a single crystal, but rather divides between the four
crystals and the resistors. Measure the output voltage V over a 2,500-Hz bandwidth
centered on the pass band. You should plot the loss L relative to the maximum
voltage Vm in dB, by the formula

Z. = 20log(Vm/V)dB. (5.48)

Use a 60-dB scale, with 0 dB at the top. Use judgment in choosing the frequency
intervals. Often 50 Hz is a good spacing in the pass band, and 100 Hz is a good
spacing in the stop band. You may need to increase the bandwidth beyond 2,500 Hz
if the pass band is not centered in your plot. What is the upper-sideband rejection
that you measure? When you have finished the plot, remove and discard the two
resistors and remove the solder from the holes with solder wick.

After the signal passes through the IF Filter, it goes to the Product Detector, which con-
verts the signal to a 620-Hz audio signal. The product detector is based on an integrated
circuit, or IC, made by Philips, the SA602AN. We will have much more to say about the
SA602AN later, because it is the most important IC in the transceiver. We use three of
them: the Product Detector and the RF Mixer in the receiver and the Transmit Mixer in
the transmitter. The SA602AN has a large input impedance, listed in the data sheets as
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Figure 5.23. LC matching network for connecting the IF Filter to the
SA602AN.

1.5 kft shunted by 3 pF. This is a bad load impedance for the crystal filter, which should
see about 200 Q. The NorCal 40A has an LC circuit (L4 and C14) that transforms the
input of the SA602AN to near 200 Q (Figure 5.23).

L. Calculate the resistance R and the reactance X that the matching network and the
SA602AN present to the IF Filter. Notice that the result is not precisely 200 Q. Our
choice of components is limited to the values that a manufacturer makes. If you
could specify any value for L4 and C14, what values would you use to transform the
input impedance of the SA602AN to 200 ft? Solder L4 and C14 into the circuit.
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