
Noise and Intermodulation

Fundamentally, a receiver is limited in sensitivity by noise that competes with the
signal we want. A receiver is also limited in handling strong signals by its
nonlinearities, which produce intermodulation products that block reception.
Noise is a random voltage or current that is present whether a signal is there or
not. We distinguish noise from interference, which is an unwanted signal
coupled into the circuit, and from fading, which is a variation in the signal level,
caused by interference between radio waves arriving by different paths. There
are many different sources of noise. Several forms are caused by bias currents. In
diodes, the random arrival times of electrons cause shot noise. Another current
noise is \jf noise, where power varies inversely with the frequency. This \ / f
noise is found in contacts, and it is associated with energy states at interfaces
called traps. It can often be reduced by improving the fabrication process.
However, even in the absence of bias currents there is noise associated with
resistors. It is called Johnson noise after John Johnson at the Bell Telephone
Laboratories, who first measured it.

14.1 Noise
On an oscilloscope, noise makes a trace appear as a band that evokes the feeling
of grass. We can write the noise as a function of time V(t), but we would not be
able to predict its value at a future time. We would expect the average over time to
be zero, because the voltage will be positive at some times, and negative at others,
and these periods cancel each other out. However, the time average of Vz(t) is not
zero, because V2(f) is positive. This means that noise has an rms value, Vrms, given
by

(14.1)

where T is an averaging time. Noise also has an average power Pn, given by

P« = V?ms/R, (14.2)

where R is the load resistance. We characterize a receiver's output by the signal-to-
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2 B 2 NOISE AND INTERMODULATION

noise ratio (SNR), given by

SNR = P/Pn, (14.3)

where P is the output signal power. Different applications require very different
signal-to-noise ratios, but a good way to compare receivers independently of the
application is to ask how much input power is needed to give a 1:1 signal-to-noise
ratio at the output. This is called the minimum detectible signal, or MDS. The MDS
is actually quite an appropriate measure for the NorCal 40A, because a 1:1 SNR is
about the lowest that can be used for receiving Morse code. We calculate the MDS
by dividing the output noise by the gain G, and write

MDS = Pn/G. (14.4)

Another approach is to measure the output noise when no signal is present. Then
we find the MDS as the input signal that doubles the output power. In the exercises,
we measure voltage instead of power, and so we will find the input signal that
raises the output voltage by a factor of \/2. For typical receivers, the MDS is small,
much less than a femtowatt. The next unit prefix down is atto, for 10~18. People
do talk about attowatts and attofarads, but not often. It is more common to give
powers in dB, using one milliwatt as the reference. For example, 10 aW is written
as -140 dBm, where "m" denotes a reference power of a milliwatt.

Noise power does not appear at one frequency only; rather it is distributed over
all frequencies. This means that we need to talk about noise power density at a
particular frequency rather than noise power. We define the noise power density N
as the noise power per unit bandwidth. The units are W/Hz. If N is constant with
frequency, we can write

Pn = NB, (14.5)

where B is the bandwidth. If N varies with frequency, we need to integrate N
over the frequency range we are interested in to find Pn. A receiver's bandwidth
is determined primarily by the bandwidths of the IF and audio filters, and a wide
range of bandwidths are used in practice. Many receivers allow an operator to
switch between narrow- and wide-bandwidth filters. Narrow filters are good for
reducing noise, but wide filters make it easier to find signals.

The MDS that we defined depends on the bandwidth, because noise power is
usually proportional to bandwidth. It is convenient to have a measure that does
not depend on the bandwidth, because the bandwidth is determined for the most
part by filters that make only a modest contribution to the receiver noise. Noise
is associated primarily with mixers and amplifiers. The noise-equivalent power, or
NEP, has the same relation to N that the MDS has to Pn. We write

NEP = N/G. (14.6)

One way to think about the NEP is that it is the noise density we would need at
the input to produce all of the noise that we observe at the output. People say it
is the noise referred to the input.
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14.2 NOISE PHASORS 2 6 3

14.2 Noise Phasors
We can use phasors for calculating how circuits affect noise just as we do for
ordinary AC voltages. We write Vn for a noise phasor. However, noise phasors
are different from ordinary phasors because we need to consider the bandwidth.
We will use a bandwidth of 1 Hz to make it easy to relate the phasors to the noise
power density N. In addition, the noise phasors are random variables, and we need
probability theory to describe them. We will state our results in terms of expected
values. If this terminology is not familiar to you, it is reasonable to think of it as an
average. We indicate an expected value with an overline. For example, for a noise
voltage Vn with a probability density function p, we write the expected value of
\Vn\

2 as

(14.7)

where dA is an element of area in the complex Vn plane. We can relate this to the
power density N by writing

N=1T W/HZ; (14*8)

where R is the resistance. The units of Vn are a little strange, V/N/HZ. We can take this
as a reminder that the noise voltage increases as the square root of the bandwidth,
in contrast to the noise power, which is proportional to the bandwidth.

We will use several arithmetic properties of expected values in our calculations.
These follow from Equation 14.7. For a constant a, we write

a\Vn\
2 = a\Vnp, (14.9)

because we can bring a scalar multiple out of an integral. Now consider that we
want to add two noise voltages V\ and V2. We can expand the expected value of

|Vi + V2\
2 = m2 + \V2\

2 + ViV* + V{V2. (14.10)

The last two terms are called correlations. Notice that the correlations are complex
conjugates, so that the sum is real. The correlations indicate when part of each
noise voltage comes from the same physical source. If the noise voltages come from
two different sources, such as two different resistors, the sources are independent,
and the correlation is zero:

ViV£=0. (14.11)

We can therefore write the power density of the sum, N, as

N = NX + N2t (14.12)

where N\ and N2 are the noise power densities for V\ and V2.
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2 B 4 NOISE AND INTERMODULATION

14.3 Nyquist's Formula

The formula for noise in resistors was first derived by Harry Nyquist, who worked
at Bell Labs with Johnson. Nyquist used a statistical physics argument similar to
the derivation of Planck's formula for blackbody radiation. In fact, you can think
of Johnson noise as blackbody radiation in a circuit. First we need to understand
why resistors have noise. You can make a resistor hot by applying a voltage or a
current, and this means that the thermal energy associated with the vibrations of
atoms couples to the voltages and currents. However, even if you do not apply a
voltage, the thermal vibrations produce noise voltages and currents through this
coupling. By this logic you would not expect a capacitor or inductor to produce
noise, because they do not get hot when you apply a voltage or current. For these
elements, the energy transfer and storage are electric and magnetic, and there is
no coupling between thermal vibrations and voltages.

Nyquist used transmission-line theory to derive his formula, but it is easier for
us to use an RLC circuit. We consider a resistor R at an absolute temperature T
that is connected to a series resonant circuit (Figure 14.1a). The connecting wires
couple the LC resonator to the vibrations of the atoms inside the resistor. Our
calculation takes several steps. First we use circuit theory to find the capacitor
voltage in terms of the resistor voltage. Then we integrate over frequency to find
the energy stored in the capacitor. In Figure 14.1a, Vn is the resistor noise voltage
phasor. We write the capacitor voltage Vc by a potential-divider formula:

1 Vn
c jcoC R + jcoL + l/(jcoC) -co2LC + jcoRC + 1 '

We can write the expected value of | Vc\2 as

\Vn\

(14.13)

(14.14)

In thermal equilibrium, the energy that is stored in the inductor and capacitor is
given by the Equipartition Theorem from classical thermodynamics, which speci-
fies that the expected value of the energy associated with a resonance is the thermal
energy kT. We last saw the thermal energy in Chapter 9 in connection with diode
and transistor currents. Here k is Boltzmann's constant, 1.38 x 10~23 J/K. We can
find the stored energy kT by multiplying by C/2 and integrating over frequency.

i
>

(a) (b)

Figure 14.1. (a) Deriving the Nyquist noise-voltage formula from an RLC cir-
cuit, (b) Calculating the available noise power density from a resistor with a
matched load.
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This gives us

(14.15)

Now we assume that the LC circuit has a very high Q. This gives the integrand a
large peak at the resonant frequency that dominates the integral. We will let the Q
be high enough that we can assume that | Vn |2 is constant over the frequency range
that is important for the integral. Later on, we will see that \Vn\

2 is independent
of frequency anyway. The high-Q assumption lets us bring \Vn\

2 out from under
the integral sign. We can write

This integral looks difficult, but it is one of a family of integrals that can be attacked
through the calculus of residues. This is an elegant technique in complex analysis
that lets one turn truly awful looking integrals into simple expressions. This one
is given as integral #3.1123 in Table of Integrals, Series, and Products by Gradshteyn
and Ryzhik, published by Academic Press:

df 1f
Jo

- co2LC + jcoRC\2 4RC

If we substitute for this integral in the previous equation, we get

(14.17)

_ \Vn\
2

which gives

]vrf = 8kTR. (14.19)

This is the Nyquist noise formula. Notice that the noise voltage is independent
of frequency. Because equipment for measuring noise invariably gives the rms
voltage, it is more common to see this formula as

Vrrm = V4kTR VA/HZ. (14.20)

We can write an elegant alternative statement of the Nyquist noise formula if
we consider the available noise power from a resistor. We can calculate this as the
power dissipated in a matching load (Figure 14.1b). The load voltage is Vn/2, and
the available power density N is given by

(14.21)

In words, the available power density from a resistor is kT, independent of the
resistance. This is so convenient that people commonly use temperature as a mea-
sure of noise power density, even when it is not Johnson noise. We call this the
effective noise temperature Te, and we write it as

Te = N/k. (14.22)
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2 B B NOISE AND INTERMODULATION

People also define a noise temperature Tn for receivers, amplifiers, mixers, and
attenuators by dividing the NEP by k to get

_ NEP _ N
"~ k ~ Gk' (14.23)

We have given the noise temperature a simple definition here, but there are
complications. The formulas depend on whether a receiver amplifies one side-
band or both. Furthermore, there are matching issues that we are neglecting, and
at very high frequencies, there are quantum-mechanical corrections. We will not
worry about these things, but you should realize that there is a lot more to this
than we cover here.

A particularly interesting example is the noise temperature of an antenna.
Antennas are not ordinarily made with resistors and thus they produce very little
noise by themselves. However, they pick up natural radio waves. A plot of an-
tenna noise for a wide range of frequencies is shown in Figure 14.2. At the op-
erating frequency of the NorCal 40A, 7 MHz, the noise temperature is extremely
high, millions of kelvins. This comes primarily from lightning in tropical thunder-
storms. At frequencies from 30 MHz to 1 GHz, the temperature is lower but still

10
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io2
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7MHz
Lightning

Cosmic
background

1 10 100 1,000 10,000 100,000
Frequency, MHz

Figure 14.2. Antenna noise temperature versus frequency. For the
frequency range from 30 MHz to 1 GHz, this is the noise tempera-
ture for a directive antenna pointed at the center of our galaxy.
For frequencies above 1 GHz, this is the noise temperature for an
antenna at a high, dry site pointed straight up. This plot is adapted
with permission from Figure 8.6 in an extremely interesting book,
Radio Astronomy, 2nd edition, by John Kraus, published by Cygnus-
Quasar. For radio astronomers, this noise is the signal. This book has
an extensive discussion of astronomical radio sources and excellent
coverage of receivers and antennas for radio astronomy.
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large, and the dominant source is the central region of our galaxy. At higher
frequencies, the noise is quite small, and carefully designed antennas that point
out to space receive the cosmic background radiation that is the dying embers of
the primordial fireball. The cosmic background radiation has a noise temperature
of3K.

A receiver designer tries to make the receiver noise lower than the antenna
noise, so that the sensitivity is limited by the antenna rather than the receiver. It is a
lot easier to do this at 7 MHz, where the antenna noise is enormous, than at 3 GHz,
where the antenna noise is very low. However, the frequency range from 1 GHz
to 10 GHz presents incredible opportunities for long-distance communication.
For example, the Voyager spacecraft, now beyond the orbit of Pluto, speaks to
us with a puny 10-W transmitter that has only slightly more power than the
NorCal 40A.

14.4 Attenuator Noise

Now we find the noise from a resistive attenuator. We can use Nyquist's formula
for this. We let I be the loss factor and Na be the output noise power density
(Figure 14.3a). Attenuators are commonly designed so that if they are terminated
with a particular resistance R at the input, the resistance looking into the output
port is also R. We will assume that this is the situation, and further assume that
the resistor and attenuator have the same temperature T. We let the output avail-
able noise power density with a resistor R at the input be N' (Figure 14.3b). The
noise AT includes noise from both the attenuator and the resistor. We can apply
Equation 14.21 directly and write the available noise power density N' as

Nf = kT. (14.24)

This noise is in two parts. There is noise from the resistor that passes through
the attenuator. This is given by kT/L. The rest is produced by the attenuator. We
write

N' = kT/L + kT(l - I/I). (14.25)

t
(a) (b)

Figure 14.3. Attenuator with a loss factor L and an output noise density
Na (a). Attenuator with an input resistance R (b).
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2 B B NOISE AND INTERMODULATION

We can identify the right term as attenuator noise, and write

Na = kT(l - 1/L). (14.26)

An attenuator with little loss has little noise. However, as the loss increases, the
noise density approaches kT. We can use Equation 14.23 to write the attenuator
noise temperature Ta as

Ta = NaL/k = T(L - 1). (14.27)

In this formula, we have multiplied by the loss I . This is equivalent to dividing
by the gain in Equation 14.23, because loss is the reciprocal of the gain.

Although these formulas have been developed for attenuators, we can apply
them to filters in the pass band if the loss in a filter is dominated by resistance in
the inductors and capacitors.

14.5 Cascading Components

We calculate the total noise in receivers by adding the noise powers from the an-
tenna and the different receiver stages. We can do this because the noise that comes
from different parts of a receiver will usually be uncorrelated. There are exceptions,
such as fluctuations in power-supply voltages that affect many components simul-
taneously. We also have to be careful to refer all the noise components to the same
place in the system before we add them. We consider an amplifier chain with three
amplifiers that are each characterized by a gain G*, an output noise density Nt, and
a noise temperature 7] (Figure 14.4). We include an antenna noise temperature Ta.

We write the output noise density N as

N = GsG2GxkTa G3N2 + N3. (14.28)

Notice that the noise from the antenna is amplified by the entire chain, but noise
from the last amplifier appears directly. Usually this means that the noise in the
early stages dominates the noise performance of a receiver. One way to see this in
the NorCal 40A is to turn up the AGC. This attenuates the mixer and filter noise,
so that only the noise from the Audio Amplifier is left. If you try this, the speaker
sound simply goes away. We can rewrite this formula to give the receiver noise

N

Figure 14.4. Finding the noise for an amplifier chain.
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Product
RF Filter RF Mixer IF Filter Detector

Antenna <

Figure 14.5. Input filters and mixers in the NorCal 40A receiver,

temperature Tr as

Tr = Ta + 7i + T2/Gl + T3/(GiG2). (14.29)

The noise-temperature contributions of the later stages are reduced by the gain of
the earlier stages.

There is an alternative to noise temperature called noise figure that is often
quoted by manufacturers. The noise figure F is related to the noise temperature
Tn by the formula

Tn/T0 = F-l, (14.30)

where To is a reference temperature, usually 290 K. For example, Philips specifies
that the SA602AN mixers in the NorCal 40A have a noise figure of 5 dB. This
corresponds to a mixer noise temperature of 630 K.

As an example, let us predict the noise temperature of the NorCal 40A. We
consider the first four elements of the receiver shown in Figure 14.5. We assume
that each filter is at a physical temperature of 290 K and has a loss factor of L = 3.2
(5 dB). Assuming that the loss in the filter is due to resistance, we write the noise
temperature of each filter using Equation 14.27:

Tf = 290(1 - l ) = 630 K. (14.31)

For the mixers, we take numbers from the data sheets, which specify a gain of
18 dB (G = 63) and a noise figure of 5 dB (Tm = 630 K).

We use Equation 14.29 to write the noise temperature Tr of the receiver as

Tr = Tf + TmL + TfL/G + TmL2/G
= 630 + 2,020 + 30 +100 = 2,780 K. (14.32)

The terms represent the contribution, in order, of the RF Filter, the RF Mixer, the
IF Filter, and the Product Detector. This corresponds to a noise figure of 10 dB,
which is 4 dB less than the measured value. The largest component is the RF
Mixer at 2,020 K. The IF Filter and the Product Detector contribute much less
because their noise temperatures are divided by the large gain of the RF Mixer.
Even though this noise temperature sounds high, antenna temperatures at 7 MHz
are much higher than this, so that the receiver noise is usually not a problem.
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14.6 Measuring Noise
We can measure the MDS of a receiver in several ways. The most direct is to
measure the output noise power and the gain, and divide. Some care is needed to
make sure the AGC is off when you measure the gain. Another approach is find
the input signal power that gives an output that is twice the original output noise
power. Here the challenge is to introduce a very small signal with a known power
level. Many function generators do not provide small signals, and an adjustable
attenuator is needed. Care must be taken to prevent the signal from leaking around
the attenuator.

For measuring the receiver noise temperature Tr, we need a noise source with
a known power density. Some function generators provide this feature. We can
adjust the noise density until the output power doubles. If it is not convenient to
vary a noise source continuously, we can use two different sources with known
effective temperatures. If a receiver has good noise performance, one can use a re-
sistor at two temperatures for this purpose. It is common to use room temperature
and the temperature of liquid nitrogen, 77 K, because the resistor can be immersed
in liquid nitrogen. We assume that two different source temperatures, 7i and T2,
are available, and that we measure the output power in each case. We write the
results as

Pi=a(Tr + 7i), (14.33)

P2 = a(Tr + T2), (14.34)

where a is a proportionality constant. The quotient of P\ and P2 is called the Y
factor. Since the Y factor is usually quoted as a number greater than one, we will
assume T\ > T2 and write

Now we can solve for the receiver noise temperature Tr to get

Tr = y l . (14.36)

14.7 Intermodulation

Earlier we studied spurious responses that result from signals that give an output at
the same audio frequency as the signal we want, even though they are at the wrong
frequency. These responses are suppressed by filters. There is a different spurious
component that is generated when there is more than one strong signal at the
input. This is illustrated in Figure 14.6, where two input signals at closely spaced
frequencies f\ and f2 are present. A nonlinear response in a mixer or amplifier
produces signals at harmonic combinations of f\ and f2. These frequencies are
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f f f f f f ~f^ Figure 14.6. Intermodulation products that are
J5 h J\ Si J? J5 J close to the input frequencies fi and f2.

called intermodulation products. Many intermodulation products are at quite dif-
ferent frequencies from the input signals, and this means that the RF Filter can
block the inputs. However, there are four products that are quite close in frequency
to the input signals, and this means that the RF Filter cannot stop them. These
are the third-order products

f3=2f,-f2, (14.37)

f$ = 2f2-f1 (14.38)

and the fifth-order products

fL=$fi-2f2, (14.39)

% = 3f2-2f!. (14.40)

These are also shown in Figure 14.6. If the receiver is tuned to these frequencies,
we may hear an interfering tone.

Now let us consider how the intermodulation products come about. We repre-
sent the response by a Taylor series

V=GvVt + G2V? + G3V? + GiV? + G5^5 + • • ., (14.41)

where Gv is the voltage gain, and the other coefficients show the non linear be-
havior. Assume that the input voltage Vt contains two frequency components at
f\ and f2:

Vi = V1 COS(2JTfit) + V2 cos(2irf2t). (14.42)

The higher-order terms, Vf,tf,..., generate intermodulation products. At low
input levels these components are below the receiver noise. However, at
higher levels, the intermodulation products increase rapidly, producing spurious
tones.

The most important intermodulation products are the third- and fifth-order
ones, because the second- and fourth-order products are relatively far away. We
will calculate third-order coefficients. For this, we need to find a large number of
cosine products. To make things simpler, we assume that V\ = V2 = V and f\ < f2.
We can interpret the product as being made up of a sum frequency and a difference
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frequency. We write

V2

V2 cos(2n ftt) = —[ COS(2TT f2t) = —

When we expand the product

V? = (V cosilnfxt) + V cos(2jtf2t))
3

(14.43)

(14.44)

we get all the possible sum and difference combinations of three frequencies
chosen from f\ and f2. There is a common coefficient of V3/4. The sum and differ-
ence frequencies often repeat, and our job is to count the number of repetitions,
rather like dice and card combinations. You should work through each of these
carefully so that you will be ready to find the fifth-order products in Problem 35.
We consider the frequencies in two groups. First are the sum frequencies. There
are four of these: 3/i, 2f\ + f2, 2f2 + f\, and ?>f2. The third harmonics 3/i and Zf2

appear once, and the mixed sums 2f\ + f2 and 2f2 + f\ appear three times each.
Now consider the difference frequencies. There also four of these: 2f\ - f2t f\, f2,
and 2f2 - f\. It may be hard to see the original frequencies f\ and f2 as arising
from a difference, but we can write

fl=fl+f2-f2

and

fi=fi+fi-fi.

(14.45)

(14.46)

The differences 2/i - f2 and 2f2 - f\ each appear three times. The original fre-
quencies fi and f2 appear nine times each. The count for each frequency is shown
in Figure 14.7 on top of each line. The presence of the original frequencies indicates
that intermodulation will modulate the original signals in addition to producing
products at other frequencies.

Notice that the coefficients for the sum frequencies form a line from Pascal's
triangle (Figure 14.8). The coefficients in the difference-frequency group are also
derived from the same line of the triangle except that they are multiplied by a
factor of three, which is itself a coefficient from the same line.

9 9

3 ;
1

/2 / , f2 2
Differences Sums

Figure 14.7. Third-order coefficients for the intermodulation products for Vt —
V[cos(27r fi t)+COS(27R f2£)]. There is a common factor of V3/4 for each coefficient.
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Figure 14.8. Pascal's triangle. The numbers in
each row are obtained by adding the pair of num-
bers above. The coefficients for third- and fifth-
order products are boxed.

14.8 Dynamic Range

To see how intermodulation products affect reception, we plot output power versus
input power for an intermodulation product and an ordinary signal (Figure 14.9).
The input for the signal is a single carrier, whereas the inputs for the intermodu-
lation product comprise two carriers of equal power. It is traditional to consider
the input power to be the power of one of the input carriers, rather than the
total. On a log scale, the slope gives the order of product. A signal with linear gain
has a 1:1 slope, whereas intermodulation products have steeper slopes. In the-
ory, third-order intermodulation products have a slope of three, and fifth-order
products have a slope of five. In practice, the situation is more complicated, be-
cause both third- and fifth-order products appear at fa and fa. Often the slope be-
comes steeper at higher power levels, because the fifth-order products overtake the

log(P)
Intercept

log(2PB) -

MDS MDI
Figure 14.9. Finding the dynamic range for a receiver. Plot of the output signal
and intermodulation product P versus the input power P, on log scales. The
outputs saturate at high levels because of the AGC. People often extrapolate
the linear portion of the curves until they intersect. Manufacturers often quote
the input or output powers associated with the intercept as a measure of the
quality of the amplifier or mixer.
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third-order products. Other amplifiers and mixers are not adequately described by
a small number of Taylor-series terms, and the slope of the intermodulation prod-
ucts may be lower than three. Computer programs that simulate intermodulation
products often assume a slope of three. It is therefore a good idea to be cautious
in interpreting the simulations and to measure the products yourself.

The MDS is the input signal power that gives an output SNR of 1:1. We can
identify it as the signal that gives a total output power, signal plus noise, of 2Pn,
where Pn is output noise. In the same way, we can identify the minimum detectible
intermodulation input. This is labeled MDI on the plot. This is the input power level
that gives a total output, tone plus noise, of 2Pn. The difference between the MDS
and the MDI is called the dynamic range. We write it as

Dynamic range = MDI - MDS. (14.47)

The dynamic range is invariably quoted in dB. It is a measure of the range of use-
ful signals for the receiver. It is the difference between signals that are just strong
enough to be heard and signals that are just strong enough to cause interfering
intermodulation products. Good receivers have a dynamic range of 100 dB. If the
noise power increases, the two curves approach each other, and the dynamic range
decreases. For example, in the NorCal 40A, antenna noise is usually 30 dB above
receiver noise, and this reduces the dynamic range considerably. Assuming that
the slope of the signal is 1:1, and that the slope of the intermodulation product is
3:1, the MDS will increase by 30 dB, while the MDI only increases by 10 dB. Thus
the dynamic range drops by 20 dB. We can get some of this dynamic range back
by adding an attenuator. For example, if we add 15 dB of attenuation, the MDS
drops by 15 dB, but the MDI falls by only 5 dB, giving us a 10-dB improvement
in dynamic range. The NorCal 40A includes an RF Gain pot to help improve the
dynamic range.

A more fundamental solution to the intermodulation problem is to use a dif-
ferent mixer. In the SA602AN, dynamic range is limited by the exponential rela-
tionship between base voltage and collector current in the bipolar transistors of
a long-tailed pair. This causes intermodulation products when the input signal
levels approach the thermal voltage, 25 mV. Diode and FET mixers have better
intermodulation performance, but they make the receiver more complex.

FURTHER READING

A good introduction to probability and random variables is given in Probability,
Random Variables, and Random Signal Principles, by Peyton Peebles, published by
McGraw-Hill. Residue calculus is covered in Theory of Functions of a Complex Vari-
able, by A. I. Markushevich, published by Chelsea Publishing Company.

PROBLEM 34 - RECEIVER RESPONSE

First we make a plot of the audio frequency response of the receiver. This response is
affected by both the IF Filter and the Audio Amplifier. Make the connections shown in

Cambridge Books Online © Cambridge University Presshttps://doi.org/10.1017/CBO9780511817502.015 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511817502.015


PROBLEMS 2 7 5
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Figure 14.10. Connections for measuring the audio frequency
response.

Figure 14.10, and set the function generator and attenuator for an input power of 100 fW
at a frequency between 7,020 and 7,030 kHz. If you work in a lab where others also
make measurements, you should set the kilohertz digit to the bench number to avoid
interference. Tune the receiver so that the output audio frequency is 620 Hz. The output
audio voltage should be near 100 mVrms. If it is appreciably lower, check the receiver
components, particularly the filter capacitors C1 and C2.

A. Readjust the attenuator and the function generator to give an audio output voltage
of 100 mVrms. Now plot the audio voltage on a log scale as the audio frequency
varies from zero to 1,200 Hz. Find the 3-dB bandwidth. This plot is a good check of
the BFO setting. If the peak of the plot is outside of the frequency range from 600 Hz
to 650 Hz, you should readjust the BFO.

For this part of the lab, you will need to work with a partner. We measure the MDS
using weak input signals from another transceiver. Function generators often have a
very limited power range, and it may be difficult to isolate a function generator from the
receiver at low power levels. To get lower input signal levels, we use another NorCal 40A
as the signal source, and run it off a battery to keep signals from coupling back through
the wall outlets.

B. Select one of the two transceivers to be the transmitter. Set the VFO Tune pot to mid
range, and plug in a battery. You will probably find it convenient to plug a switch into
the Key jack to turn the transmitter on and off. We need to reduce the power of the
transmitter. What is the peak-to-peak voltage needed to deliver —40 dBm to a 50-ft
load? To get this voltage, first set the Drive pot R13 to minimum gain. Then mistune
the Transmit Filter capacitor C39 to reduce the output power to —40 dBm. Make sure
you have the 5O-£2 load in parallel with the scope input, or else the settings will be off.

The other transceiver will act as the receiver. Make the connections shown in
Figure 14.11, with the key switch off. The RF Gain control on the receiver should be
fully clockwise for minimum attenuation. Measure the output noise voltage when the
transmitter is off with a multimeter. Set the attenuator to give an input signal of -100 dBm,

Battery -

Key switch

|

Transmitter - Attenuator Receiver -

•j Multimeter

- Speaker

Figure 14.11 . Measuring the receiver response.
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and tune the receiver for maximum audio output. Once the receiver is tuned, it is a good
idea to put the mouth of the speaker face down on the table to preserve the ears of others.

Now check the signal level at —150 dBm. This is well below the MDS, and you should
not hear any tone in the noise. The multimeter reading should be the same as it was
without any signal. Larger voltages indicate that the signal is leaking through somewhere.
Sometimes the cable between the transmitter and the attenuator is the source of this
leakage, and you may be able to reduce it by making a direct connection between the
attenuator and the transmitter. Also try moving the transmitter and battery far away from
the receiver.

C. Plot the output voltage on a log scale as the input power varies from -150 dBm to

-50 dBm.

D. What is the MDS? This would be the signal that gives an output power of 2Pn, or a
multimeter reading of V2 Vrms, where Vrms is the rms output noise voltage.

E. What is the weakest input signal that you can still hear? What is the signal-to-noise
ratio at this level?

F. A function generator that can produce noise is useful forfindingtheNEP. For example,
the HP33120A produces noise that is spread over a bandwidth of 10 MHz. With a
function-generator setting of - 3 0 dBm and an attenuator setting of 60 dB, what is
the input noise power density to the receiver? Find the NEP as the input noise density
that gives an output of 2Pn. Divide the MDS by the NEP to find the bandwidth. People
call this the noise bandwidth, because it is usually close to but not the same as the
3-dB bandwidth.

G. Now connect your receiver to an antenna. Tune to a part of the band where you do
not hear a signal. What is the output voltage? Antenna noise at 7 MHz is primarily
due to lightning, and this gives it a boom and crash sound that is different from the
steady roar of receiver noise.

H. Use the plot you made in Part C to find the MDS for antenna noise.

I. What is the antenna noise temperature?

You should retune the transmitter to full power. Make a note of your MDS for receiver
and antenna noise to use in the next problem.

PROBLEM 3B - INTERMODULATION

This problem is best done in groups of three, because two transmitters are needed. If
function generators are used instead, you need to be careful, because function gener-
ators can also produce intermodulation products. Unfortunately these products are at
the same frequencies we are interested in, and so they interfere with an intermodulation
measurement.

A. Find the coefficients and frequencies for [cos(27r/}f) + cos(27r£f)]5. You may assume
that fj is larger than f\.
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Figure 14.12. Measuring intermodulation products.

Choose two of your three transceivers to be transmitters and one to be the receiver.
Set one transmitter for 7,030 kHz, and set the other for 7,040 kHz. Set the output power
to a 5O-S2 load for each to 2 /xW. The two transmitters should be connected to a power
combiner as shown in Figure 14.12. The connector labeled "S" is the sum port. A power
combiner is different from an ordinary BNC tee. With a tee, power couples from one
transmitter to the other, causing intermodulation in each transmitter. The power combiner
isolates each transmitter from the other to prevent this. Power combiners have a combin-
ing loss of 3 dB, because half the power is dissipated in a resistor inside the combiner.
This means that the power into the attenuator at each frequency is 1 /zW. The isolation
is not perfect, but the power coupled between transmitters is usually more than 20 dB
below the power that goes to the sum port. This makes the input to the other transmitter
less than 10 nW, which is small enough to prevent transmitter intermodulation products.

B. To hear the tone at 4/ set the attenuator so that the input power for each component
is - 4 0 dBm, and tune the receiver for a signal near 7,020 kHz. Now vary the input
power with the attenuator. Plot the output audio voltage on a log scale versus the
input power in dBm. Use a wide enough input range that the output extends from
the noise floor up to 200 mVrms.

C. Now find the tone at £, and make a plot for it on the same graph.

D. From the graph and your measurement of the receiver MDS in the previous problem,
find the dynamic range of your receiver.

E. From your measurement of the antenna MDS in the previous problem, find the
antenna-limited dynamic range.

PROBLEM 36 - DEMONSTRATION

Present the transceiver that you buiIt for inspection. The construction should be complete,
and the solder connections should be neat.

A. Find a weak signal in the frequency range from 7,000 to 7,040 kHz. The receiver
filters, the VFO, and the BFO will need to be properly adjusted to receive the signal.

B. Transmit a signal with at least 2 W of power within 200 Hz of the received signal.
The sidetone should match the tone of the received signal.
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