

[image: cover image]

 The Common Lisp Cookbook

 Diving into the programmable programming language

 The Common Lisp Cookbook contributors

 © 2023 December, 13th, vindarel vindarel@mailz.org. This e-book is free of charge, but you can pay what you want for it.

The Common Lisp Cookbook
	Home
	Content	Getting started
	Language basics
	Advanced topics
	Outside world
	Download in EPUB
	Translations

	Other CL Resources
	Further remarks
	License
	Getting started with Common Lisp	Install an implementation	With your package manager
	With the asdf-vm package manager
	With Roswell
	With Docker
	On Windows

	Start a REPL
	Libraries	Some terminology
	Install Quicklisp
	Install libraries
	Advanced dependencies management

	Working with projects	Creating a new project
	How to load an existing project

	More settings
	See also
	Credits

	Editor support	Emacs	Installing SLIME
	Using Emacs as an IDE

	Vim & Neovim
	Pulsar (ex Atom)
	VSCode	Using VSCode with Alive

	JetBrains - NEW in Jan, 2023!
	Eclipse
	Lem
	Sublime Text
	LispWorks (proprietary)
	Geany (experimental)
	Notebooks
	REPLs
	Others

	Emacs	Using Emacs as an IDE	Why Use Emacs?
	Emacs Lisp vs Common Lisp
	Finding one’s way into Emacs’ built-in documentation
	Working with Lisp Code
	Lisp Documentation in Emacs - Learning About Lisp Symbols
	Miscellaneous
	Questions/Answers
	Appendix
	See also

	Using VSCode with Alive	Prerequisites
	Recipes
	Optional Custom Configurations

	LispWorks review	LispWorks features	Free edition limitations
	Licencing model

	LispWorks IDE	The editor
	Keybindings
	Searching keybindings by name
	Tweaking the IDE
	The listener
	The stepper. Breakpoints.
	The class browser
	The function call browser
	The Process Browser
	Saving images
	Misc

	Using LispWorks from Emacs and Slime
	See also

	Functions	Named functions: defun
	Arguments	Base case: required arguments
	Optional arguments: &optional
	Named parameters: &key
	Default values to key parameters
	Was a key parameter specified?
	Variable number of arguments: &rest
	Defining key arguments, and allowing more: &allow-other-keys

	Return values	Multiple return values: values, multiple-value-bind and nth-value

	Anonymous functions: lambda
	Calling functions programmatically: funcall and apply	Referencing functions by name: single quote ' or sharpsign-quote #'?

	Higher order functions: functions that return functions
	Closures
	setf functions
	Currying	Concept
	With the Alexandria library

	Documentation

	Data structures	Lists	Building lists. Cons cells, lists.
	Circular lists
	car/cdr or first/rest (and second… to tenth)
	last, butlast, nbutlast (&optional n)
	reverse, nreverse
	append
	push (item, place)
	pop
	nthcdr (index, list)
	car/cdr and composites (cadr, caadr…) - accessing lists inside lists
	destructuring-bind (parameter*, list)
	Predicates: null, listp
	ldiff, tailp, list*, make-list, fill, revappend, nreconc, consp, atom
	member (elt, list)
	Replacing objects in a tree: subst, sublis

	Sequences	Predicates: every, some,…
	Functions
	mapping (map, mapcar, remove-if[-not],…)
	Flatten a list (Alexandria)
	Creating lists with variables
	Comparing lists

	Set	intersection of lists
	Remove the elements of list-b from list-a (set-difference)
	Join two lists with uniq elements (union)
	Remove elements that are in both lists (set-exclusive-or)
	Add an element to a set (adjoin)
	Check if this is a subset (subsetp)

	Fset - immutable data structure
	Arrays and vectors	Create an array, one or many dimensions
	Access: aref (array i [j …])
	Sizes
	Vectors
	Transforming a vector to a list.

	Hash Table	Creating a Hash Table
	Adding an Element to a Hash Table
	Getting a value from a Hash Table
	Testing for the Presence of a Key in a Hash Table
	Deleting from a Hash Table
	Deleting a Hash Table
	Traversing a Hash Table
	Counting the Entries in a Hash Table
	Printing a Hash Table readably
	Thread-safe Hash Tables
	Performance Issues: The Size of your Hash Table

	Alist	Definition
	Construction
	Access
	Insert and remove entries
	Update entries

	Plist
	Structures	Creation
	Slot access
	Setting
	Predicate
	Single inheritance
	Limitations

	Tree	Sycamore - purely functional weight-balanced binary trees

	Controlling how much of data to print (*print-length*, *print-level*)
	Appendix A - generic and nested access of alists, plists, hash-tables and CLOS slots
	Appendix B - accessing nested data structures

	Strings	Creating strings
	Accessing Substrings
	Accessing Individual Characters
	Remove or replace characters from a string
	Concatenating Strings
	Processing a String One Character at a Time
	Reversing a String by Word or Character
	Dealing with unicode strings	Sorting unicode strings alphabetically
	Breaking strings into graphenes, sentences, lines and words

	Controlling Case	With the format function

	Trimming Blanks from the Ends of a String
	Converting between Symbols and Strings
	Converting between Characters and Strings
	Finding an Element of a String
	Finding a Substring of a String
	Converting a String to a Number	To an integer: parse-integer
	Extracting many integers from a string: ppcre:all-matches-as-strings
	To any number: read-from-string
	To a float: the parse-float library

	Converting a Number to a String
	Comparing Strings
	String formatting	Structure of format
	Basic primitive: ~A or ~a (Aesthetics)
	Newlines: ~% and ~&
	Tabs
	Justifying text / add padding on the right
	Justifying decimals
	Iteration
	Formatting a format string (~v, ~?)
	Conditional Formatting

	Capturing what is is printed into a stream
	Cleaning up strings	Removing accentuated letters
	Removing punctuation

	Appendix	All format directives

	See also

	Numbers	Introduction	Integer types
	Rational types
	Floating point types
	Complex types

	Reading numbers from strings
	Converting numbers	Convert float to rational
	Convert rational to integer

	Rounding floating-point and rational numbers
	Comparing numbers
	Operating on a series of numbers
	Working with Roman numerals
	Generating random numbers
	Bit-wise Operation

	Loop, iteration, mapping	Introduction: loop, iterate, for, mapcar, series
	Recipes	Looping forever, return
	Looping a fixed number of times
	Looping an infinite number of times, cycling over a circular list
	Iterate’s for loop
	Looping over a list
	Looping over a vector
	Looping over a hash-table
	Looping over two lists in parallel
	Nested loops
	Computing an intermediate value
	Loop with a counter
	Ascending, descending order, limits
	Steps
	Loop and conditionals
	Begin the loop with a clause (initially)
	Terminate the loop with a test (until, while)
	Loop, print and return a result
	Named loops and early exit
	Count
	Summation
	max, min
	Destructuring, aka pattern matching against the list or dotted pairs

	Iterate unique features lacking in loop	No rigid order for clauses
	Accumulating clauses can be nested
	Finders: finding
	Control flow: next-iteration
	Generators
	Variable backtracking (previous) VS parallel binding
	More clauses
	Iterate is extensible

	Custom series scanners
	Shorter series expressions
	Loop gotchas
	Iterate gotchas
	Appendix: list of loop keywords
	Credit and references	Loop
	Iterate
	Series
	Others

	Multidimensional arrays	Creating	Random numbers

	Accessing elements	Row major indexing
	Infix syntax

	Element-wise operations	Vectorising expressions
	Calling BLAS
	Reductions

	Linear algebra	Matrix multiplication
	Matrix inverse
	Singular value decomposition

	Matlisp	Creating tensors
	Element access
	Element-wise operations

	Dates and Times	Built-in time functions	Universal Time
	Internal Time

	The local-time library	Create timestamps (encode-timestamp, universal-to-timestamp)
	Get today’s date (now, today)
	Add or substract times (timestamp+, timestamp-)
	Modify timestamps with any offset (adjust-timestamp)
	Compare timestamps (timestamp<, timestamp<, timestamp= …)
	Find the minimum or maximum timestamp
	Maximize or minimize a timestamp according to a time unit (timestamp-maximize-part, timestamp-minimize-part)
	Querying timestamp objects (get the day, the day of week, the days in month…)
	Formatting time strings (format, format-timestring, +iso-8601-format+)
	Defining format strings (format-timestring (:year “-” :month “-” :day))
	Parsing time strings
	Misc

	Pattern Matching	Common destructuring patterns	cons
	list, list*
	vector, vector*
	Class and structure pattern
	type, satisfies
	assoc, property, alist, plist
	Array, simple-array, row-major-array patterns

	Logic based patterns	and, or
	not

	Guards
	Nesting patterns
	See more

	Regular Expressions	PPCRE	Looking for matching patterns: scan, create-scanner
	Extracting information
	Replacing text: regex-replace, regex-replace-all
	Syntactic sugar

	See more

	Input/Output	Redirecting the Standard Output of your Program
	Faithful Output with Character Streams	CLISP
	AllegroCL
	LispWorks
	Example

	Fast Bulk I/O

	Files and Directories	Getting the components of a pathname
	Testing whether a file exists
	Expanding a file or a directory name with a tilde (~)
	Turning a pathname into a string with Windows’ directory separator
	Creating directories
	Deleting directories
	Merging files and directories
	Get the current working directory (CWD)
	Get the current directory relative to a Lisp project
	Setting the current working directory
	Opening a file
	Reading files
	Writing content to a file
	Getting file attributes (size, access time,…)
	Listing files and directories

	Error and exception handling	Ignoring all errors, returning nil
	Catching any condition (handler-case)
	Catching a specific condition
	handler-case VS handler-bind
	Defining and making conditions
	Signaling (throwing) conditions: error, warn, signal	Conditions hierarchy
	Custom error messages (:report)

	Inspecting the stacktrace
	Restarts, interactive choices in the debugger	Using assert’s optional restart
	Defining restarts (restart-case)
	Changing a variable with restarts
	Calling restarts programmatically (handler-bind, invoke-restart)
	Using other restarts (find-restart)
	Hiding and showing restarts

	Handling conditions (handler-bind)
	Running some code, condition or not (“finally”) (unwind-protect)
	Conclusion
	Resources
	See also

	Packages	Creating a package	Accessing symbols from a package
	Exporting symbols
	Importing symbols from another package
	Importing all symbols
	About “use”-ing packages being a bad practice

	List all Symbols in a Package (do-external-symbols)
	Package nickname	Nickname Provided by Packages
	Package locks

	See also

	Macros	How Macros Work	Quote
	Macroexpand
	Note: Slime tips
	Macros VS functions
	Evaluation context

	Backquote and comma
	Getting Macros Right	Gensym

	What Macros are For
	See also

	Fundamentals of CLOS	Classes and instances	Diving in
	Defining classes (defclass)
	Creating objects (make-instance)
	Slots
	find-class, class-name, class-of
	Subclasses and inheritance
	Multiple inheritance
	Redefining and changing a class
	Pretty printing
	Classes of traditional lisp types
	Introspection
	See also

	Methods	Diving in
	Generic functions (defgeneric, defmethod)
	Multimethods
	Controlling setters (setf-ing methods)
	Dispatch mechanism and next methods
	Method qualifiers (before, after, around)
	Other method combinations
	Debugging: tracing method combination
	Difference between defgeneric and defmethod: redefinition
	Removing a method

	MOP	Metaclasses
	Controlling the initialization of instances (initialize-instance)
	Controlling the update of instances (update-instance-for-redefined-class)
	Controlling the update of instances to new classes (update-instance-for-different-class)

	Type System	Values Have Types, Not Variables
	Type Hierarchy
	Checking Types
	Type Specifier
	Defining New Types
	Run-time type Checking
	Compile-time type checking	Declaring the type of variables
	Composing types
	Declaring the input and output types of functions
	Declaring &key parameters
	Declaring &rest parameters
	Declaring class slots types
	Alternative type checking syntax: defstar, serapeum
	Limitations

	See also

	TCP/UDP programming with sockets	TCP/IP
	UDP/IP
	Credit

	Interfacing with your OS	Accessing Environment variables
	Accessing the command line arguments	Basics
	Parsing command line arguments

	Running external programs	Synchronously
	Asynchronously
	Input and output from subprocess
	Capturing standard and error output
	Running visual commands (htop)

	Piping
	Get Lisp’s current Process ID (PID)

	Foreign Function Interfaces	Example: Calling ‘gethostname’ from CLISP
	Example: Calling ‘gethostname’ from Allegro CL

	Threads, concurrency, parallelism	Introduction	Why bother?
	What is Concurrency? What is Parallelism?

	Bordeaux threads	Installing Bordeaux Threads
	Checking for thread support in Common Lisp
	Basics — list current thread, list all threads, get thread name
	Create a thread: print a message onto the top-level
	Print a message onto the top-level — fixed
	Print a message onto the top-level — read-time eval macro
	Modify a shared resource from multiple threads
	Modify a shared resource from multiple threads — fixed using locks
	Modify a shared resource from multiple threads — using atomic operations
	Joining on a thread, destroying a thread
	Timeouts
	Useful functions

	SBCL threads	Basics — list current thread, list all threads, get thread name
	Update a global variable from a thread
	Print a message onto the top-level using a thread
	Print a message onto the top-level — better
	Modify a shared resource from multiple threads
	Modify a shared resource from multiple threads — fixed using locks
	Modify a shared resource from multiple threads — using atomic operations
	Joining on a thread, destroying a thread example
	Useful functions

	Wrap-up
	Parallel programming with lparallel	Installation
	Preamble - get the number of cores
	Common Setup
	Using channels and queues
	Killing tasks
	Using promises and futures
	Using cognates - parallel equivalents of Common Lisp counterparts
	Error handling

	Monitoring and controlling threads with Slime
	References

	Defining Systems	ASDF
	Simple examples	Loading a system definition
	Loading a system
	Testing a system
	Designating a system
	How to write a trivial system definition
	How to write a trivial testing definition

	Create a project skeleton

	Debugging	Print debugging
	Logging
	Using the powerful REPL
	Inspect and describe
	Trace	Trace options
	Trace options: break
	Trace options: trace on conditions, trace if called from another function
	Tracing method invocation

	The interactive debugger	Compile with maximum debugging information

	Step	Resume a program execution from anywhere in the stack

	Break	Breakpoints in Slime

	Advise and watch
	Cross-referencing
	SLY stepper and SLY stickers
	Unit tests
	Remote debugging
	References

	Performance Tuning and Tips	Finding Bottlenecks	Acquiring Execution Time
	Know your Lisp’s statistical profiler
	Use flamegraphs and other tracing profilers
	Checking Assembly Code

	Using Declare Expression	Speed and Safety
	Type Hints
	More on Type Declaration with declaim
	Declaring function types
	Code Inline

	Optimizing Generic Functions	Using Static Dispatch

	Block compilation

	Scripting. Command line arguments. Executables.	Scripting with Common Lisp	Quickloading dependencies from a script

	Building a self-contained executable	With SBCL - Images and Executables
	With ASDF
	With Deploy - ship foreign libraries dependencies
	With Roswell or Buildapp
	For web apps
	Size and startup times of executables per implementation
	Building a smaller binary with SBCL’s core compression

	Parsing command line arguments	Declaring options
	Top-level command
	Testing options parsing on the REPL
	Handling options
	Main entry point

	Catching a C-c termination signal
	Continuous delivery of executables
	See also
	Credit

	Testing the code	Testing with FiveAM	Install and load
	Defining suites (def-suite, def-suite*)
	Defining tests
	Running tests
	Custom and shorter tests explanations
	Fixtures
	Random checking
	ASDF integration
	Running tests on the terminal
	Testing report customization

	Interactively fixing unit tests
	Code coverage	Generating an html test coverage output

	Continuous Integration	GitHub Actions, Circle CI, Travis… with CI-Utils
	Gitlab CI
	SourceHut

	Emacs integration: running tests using Slite
	References
	See also

	Database Access and Persistence	The Mito ORM and SxQL	Overview
	Connecting to a DB
	Models
	Migrations
	Queries
	Triggers
	Inflation/Deflation
	Eager loading
	Schema versioning
	Introspection
	Testing

	See also

	GUI toolkits	Introduction	Tk (Ltk and nodgui)
	Qt4 (Qtools)
	Gtk+3 (cl-cffi-gtk)
	IUP (lispnik/IUP)
	Nuklear (Bodge-Nuklear)

	Getting started	Tk
	Qt4
	Gtk3
	IUP
	Nuklear

	Conclusion

	Web development	Overview
	Installation
	Simple webserver	Serve local files

	Access your server from the internet	Hunchentoot

	Routing	Simple routes
	Accessing GET and POST parameters
	Accessing a JSON request body

	Error handling	Hunchentoot
	Clack

	Weblocks - solving the “JavaScript problem”©
	Templates	Djula - HTML markup
	Spinneret - lispy templates

	Serve static assets	Hunchentoot

	Connecting to a database	Checking a user is logged-in
	Encrypting passwords

	Runnning and building	Running the application from source
	Building a self-contained executable
	Continuous delivery with Travis CI or Gitlab CI
	Multi-platform delivery with Electron

	Deployment	Deploying manually
	Systemd: Daemonizing, restarting in case of crashes, handling logs
	With Docker
	With Guix
	Running behind Nginx
	Deploying on Heroku and other services

	Monitoring
	Connecting to a remote Lisp image
	Hot reload
	See also
	Credits

	Web Scraping	HTTP Requests
	Parsing and extracting content with CSS selectors
	Async requests

	WebSockets	The websocket-driver Concept
	Defining Handlers for Chat Server Logic
	Defining A Server
	A Quick HTML Chat Client
	Check it out!
	All The Code

	APPENDIX: Contributors

 	
 Cover

 	
 Table of contents

Home

Cookbook, n. a book containing recipes and other information about the preparation and cooking of food.

A Cookbook is an invaluable resource, as it shows how to do various things in a clear fashion without all the theoretical context. Sometimes you just need to look things up. While cookbooks can never replace proper documentation such as the HyperSpec or books such as Practical Common Lisp, every language deserves a good cookbook, Common Lisp included.

The CL Cookbook aims to tackle all sort of topics, for the beginner as for the more advanced developer.

Content

Getting started

	License

	Getting started

	How to install a Common Lisp implementation

	How to start a Lisp REPL

	How to install third-party libraries with Quicklisp

	How to work with projects

	Editor support

	Using Emacs as an IDE

	The LispWorks IDE

	Using VSCode with Alive

Language basics

	Functions

	Data Structures

	Strings

	Regular Expressions

	Numbers

	Loops, iteration, mapping

	Multidimensional Arrays

	Dates and Times

	Pattern Matching

	Input/Output

	Files and Directories

	CLOS (the Common Lisp Object System)

Advanced topics

	Packages

	Defining Systems

	Error and condition handling

	Debugging

	Macros and Backquote

	Type System

	Concurrency and Parallelism

	Performance Tuning

	Testing and Continuous Integration

	Scripting. Building executables

Outside world

	Interfacing with your OS

	Databases

	Foreign Function Interfaces

	GUI programming

	Sockets

	WebSockets

	Web development

	Web Scraping

Download in EPUB

The Cookbook is also available in EPUB (and PDF) format.

You can download it directly in EPUB and PDF, and you can pay what you want to further support its development:

 Donate and download the EPUB version

Thank you!

Translations

The Cookbook has been translated to:

	Chinese simplified (Github)

	Portuguese (Brazilian) (Github)

Other CL Resources

	lisp-lang.org: success stories, tutorials and style guide

	Awesome-cl, a curated list of libraries

	List of Lisp Communities

	Lisp Koans - a language learning exercise, which guides the learner progressively through many language features.

	Learn X in Y minutes - Where X = Common Lisp - Small Common Lisp tutorial covering the essentials.

	Common Lisp Libraries Read the Docs - the documentation of popular libraries ported to the modern and good looking Read The Docs style.

	lisp-tips

	Articulate Common Lisp, an initiation manual for the uninitiated

	Lisp and Elements of Style by Nick Levine

	Pascal Costanza’s Highly Opinionated Guide to Lisp

	Cliki, Common Lisp’s wiki

	📹 Common Lisp programming: from novice to effective developer, a video course on the Udemy platform (paywall), by one of the main Cookbook contributor. “Thanks for supporting my work on Udemy. You can ask me for a free coupon if you are a student.” vindarel

and also: Common Lisp Pitfalls by Jeff Dalton.

Books

	Practical Common Lisp by Peter Seibel

	Common Lisp Recipes by Edmund Weitz, published in 2016,

	Common Lisp: A Gentle Introduction to Symbolic Computation by David S. Touretzky

	Successful Lisp: How to Understand and Use Common Lisp by David B. Lamkins

	On Lisp by Paul Graham

	Common Lisp the Language, 2nd Edition by Guy L. Steele

	A Tutorial on Good Lisp Style by Peter Norvig and Kent Pitman

Advanced books

	Loving Lisp - the Savy Programmer’s Secret Weapon by Mark Watson

	Programming Algorithms - A comprehensive guide to writing efficient programs with examples in Lisp.

Specifications

	The Common Lisp HyperSpec by Kent M. Pitman (also available in Dash, Zeal and Velocity)

	The Common Lisp Community Spec - a new rendering produced from the ANSI specification draft, that everyone has the right to edit.

Further remarks

This is a collaborative project that aims to provide for Common Lisp something similar to the Perl Cookbook published by O’Reilly. More details about what it is and what it isn’t can be found in this thread from comp.lang.lisp.

If you want to contribute to the CL Cookbook, please send a pull request in or file a ticket!

Yes, we’re talking to you! We need contributors - write a chapter that’s missing and add it, find an open question and provide an answer, find bugs and report them, (If you have no idea what might be missing but would like to help, take a look at the table of contents of the Perl Cookbook.) Don’t worry about the formatting, just send plain text if you like - we’ll take care about that later.

Thanks in advance for your help!

The pages here on Github are kept up to date. You can also download a up to date zip file for offline browsing. More info can be found at the Github project page.

License

Redistribution and use of the “Common Lisp Cookbook” in its original form (HTML) or in ‘derived’ forms (PDF, Postscript, RTF and so forth) with or without modification, are permitted provided that the following condition is met:

	Redistributions must reproduce the above copyright notice, this and the following disclaimer in the document itself and/or other materials provided with the distribution.

IMPORTANT: This document is provided by the Common Lisp Cookbook Project “as is” and any expressed or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the Common Lisp Cookbook Project be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this documentation, even if advised of the possibility of such damage.

LispCookbook Github Group addendum: this document is now managed in a modified format.

Copyright: 2015-2022 LispCookbook Github Group 2002-2007 The Common Lisp Cookbook Project, # Foreword

Cookbook, n. a book containing recipes and other information about the preparation and cooking of food.

The Common Lisp Cookbook is a collaborative resource to help you learn Common Lisp the language, its ecosystem and to get you started in a wide range of programming areas. It can be used by Lisp newcomers as a tutorial (getting started, functions, etc) and by everybody as a reference (loop!).

We hope that these EPUB and PDF versions make the learning experience even more practical and enjoyable.

Vincent “vindarel” Dardel, for the Cookbook contributors

Getting started with Common Lisp

We’ll begin with presenting easy steps to install a development environment and to start a new Common Lisp project.

Want a 2-clicks install? Then get Portacle, a portable and multi-platform Common Lisp environment. It ships Emacs, SBCL (the implementation), Quicklisp (package manager), SLIME (IDE) and Git. It’s the most straightforward way to get going!

Install an implementation

With your package manager

If you don’t know which implementation of Common Lisp to use, try SBCL:

apt-get install sbcl

Common Lisp has been standardized via an ANSI document, so it can be implemented in different ways. See Wikipedia’s list of implementations.

The following implementations are packaged for Debian and most other popular Linux distributions:

	Steel Bank Common Lisp (SBCL)

	Embeddable Common Lisp (ECL), which compiles to C,

	CLISP

Other well-known implementations include:

	ABCL, to interface with the JVM,

	ClozureCL, a good implementation with very fast build times (see this Debian package for Clozure CL),

	CLASP, that interoperates with C++ libraries using LLVM for compilation to native code,

	AllegroCL (proprietary)

	LispWorks (proprietary)

and older implementations:

	CMUCL, originally developed at Carnegie Mellon University, from which SBCL is derived, and

	GNU Common Lisp

	and there is more!

With the asdf-vm package manager

The asdf-vm tool can be used to manage a large ecosystem of runtimes and tools.

	Steel Bank Common Lisp (SBCL) is available via this plugin for asdf-vm

With Roswell

Roswell is:

	an implementation manager: it makes it easy to install a Common Lisp implementation (ros install ecl), an exact version of an implementation (ros install sbcl/1.2.0), to change the default one being used (ros use ecl),

	a scripting environment (helps to run Lisp from the shell, to get the command line arguments,…),

	a script installer,

	a testing environment (to run tests, including on popular Continuous Integration platforms),

	a building utility (to build images and executables in a portable way).

You’ll find several ways of installation on its wiki (Debian package, Windows installer, Brew/Linux Brew,…).

With Docker

If you already know Docker, you can get started with Common Lisp pretty quickly. The clfoundation/cl-devel image comes with recent versions of SBCL, CCL, ECL and ABCL, plus Quicklisp installed in the home (/home/cl), so than we can ql:quickload libraries straight away.

Docker works on GNU/Linux, Mac and Windows.

The following command will download the required image (around 1.0GB compressed), put your local sources inside the Docker image where indicated, and drop you into an SBCL REPL:

docker run --rm -it -v /path/to/local/code:/home/cl/common-lisp/source clfoundation/cl-devel:latest sbcl

We still want to develop using Emacs and SLIME, so we need to connect SLIME to the Lisp inside Docker. See slime-docker, which is a library that helps on setting that up.

On Windows

All implementations above can be installed on Windows.

Portacle is multiplatform and works on Windows.

You can also try:

	ρEmacs, a preconfigured distribution of GNU Emacs specifically for Microsoft Windows. It ships with many CL implementations: CCL, SBCL, CLISP, ABCL and ECL, and also has components for other programming languages (Python, Racket, Java, C++…).

	Corman Lisp, for Windows XP, Windows 2000, Windows ME or Windows NT. It is fully integrated with the Win32 API, and all the Windows API functions are readily available from Lisp.

Start a REPL

Just launch the implementation executable on the command line to enter the REPL (Read Eval Print Loop), i.e. the interactive interpreter.

Quit with (quit) or ctr-d (on some implementations).

Here is a sample session:

user@debian:~$ sbcl
This is SBCL 1.3.14.debian, an implementation of ANSI Common Lisp.
More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.
It is mostly in the public domain; some portions are provided under
BSD-style licenses. See the CREDITS and COPYING files in the
distribution for more information.
* (+ 1 2)

3
* (quit)
user@debian:~$

You can slightly enhance the REPL (the arrow keys do not work, it has no history,…) with rlwrap:

apt-get install rlwrap

and:

rlwrap sbcl

But we’ll setup our editor to offer a better experience instead of working in this REPL. See editor-support.

Lisp is interactive by nature, so in case of an error we enter the debugger. This can be annoying in certain cases, so you might want to use SBCL’s --disable-debugger option.

TIP: The CLISP implementation has a better default REPL for the terminal (readline capabilities, completion of symbols). You can even use clisp -on-error abort to have error messages without the debugger. It’s handy to try things out, but we recommend to set-up your editor and to use SBCL or CCL.

TIP: By adding the -c switch to rlwrap, you can autocomplete file names.

Libraries

Common Lisp has thousands of libraries available under a free software license. See:

	Quickdocs - the library documentation hosting for CL.

	the Awesome-cl list, a curated list of libraries.

	Cliki, the Common Lisp wiki.

Some terminology

	In the Common Lisp world, a package is a way of grouping symbols together and of providing encapsulation. It is similar to a C++ namespace, a Python module or a Java package.

	A system is a collection of CL source files bundled with an .asd file which tells how to compile and load them. There is often a one-to-one relationship between systems and packages, but this is in no way mandatory. A system may declare a dependency on other systems. Systems are managed by ASDF (Another System Definition Facility), which offers functionalities similar to those of make and ld.so, and has become a de facto standard.

	A Common Lisp library or project typically consists of one or several ASDF systems (and is distributed as one Quicklisp project).

Install Quicklisp

Quicklisp is more than a package manager, it is also a central repository (a dist) that ensures that all libraries build together.

It provides its own dist but it is also possible to build our own.

To install it, we can either:

1- run this command, anywhere:

curl -O https://beta.quicklisp.org/quicklisp.lisp

and enter a Lisp REPL and load this file:

sbcl --load quicklisp.lisp

or

2- install the Debian package:

apt-get install cl-quicklisp

and load it, from a REPL:

(load "/usr/share/common-lisp/source/quicklisp/quicklisp.lisp")

Then, in both cases, still from the REPL:

(quicklisp-quickstart:install)

This will create the ~/quicklisp/ directory, where Quicklisp will maintain its state and downloaded projects.

If you wish, you can install Quicklisp to a different location. For instance, to install it to a hidden folder on Unix systems:

(quicklisp-quickstart:install :path "~/.quicklisp")

If you want Quicklisp to always be loaded in your Lisp sessions, run (ql:add-to-init-file): this adds the right stuff to the init file of your CL implementation. Otherwise, you have to run (load "~/quicklisp/setup.lisp") in every session if you want to use Quicklisp or any of the libraries installed through it.

It adds the following in your (for example) ~/.sbclrc:

#-quicklisp
 (let ((quicklisp-init (merge-pathnames
 "quicklisp/setup.lisp"
 (user-homedir-pathname))))
 (when (probe-file quicklisp-init)
 (load quicklisp-init)))

Install libraries

In the REPL:

(ql:quickload "system-name")

For example, this installs the “str” string manipulation library:

(ql:quickload "str")

and voilà. You can use it right away:

(str:title-case "HELLO LISP!")

SEE MORE: To understand the package:a-symbol notation, read the packages page, section “Accessing symbols from a package”.

We can install more than one library at once. Here we install cl-ppcre for regular-expressions, and Alexandria, a utility library:

(ql:quickload '("str" "cl-ppcre" "alexandria"))

Anytime you want to use a third-party library in your Lisp REPL, you can run this ql:quickload command. It will not hit the network a second time if it finds that the library is already installed on your file system. Libraries are by default installed in ~/quicklisp/dist/quicklisp/.

Note also that dozens of Common Lisp libraries are packaged in Debian. The package names usually begin with the cl- prefix (use apt-cache search --names-only "^cl-.*" to list them all).

For example, in order to use the cl-ppcre library, one should first install the cl-ppcre package.

Then, in SBCL, it can be used like this:

(require "asdf")
(require "cl-ppcre")
(cl-ppcre:regex-replace "fo+" "foo bar" "frob")

Here we pretend we don’t have Quicklisp installed and we use require to load a module that is available on the file system. In doubt, you can use ql:quickload.

See Quicklisp’s documentation for more commands. For instance, see how to upgrade or rollback your Quicklisp’s distribution.

Advanced dependencies management

You can drop Common Lisp projects into any of those folders:

	~/quicklisp/local-projects

	~/common-lisp,

	~/.local/share/common-lisp/source,

A library installed here is automatically available for every project.

For a complete list, see the values of:

(asdf/source-registry:default-user-source-registry)

and

asdf:*central-registry*

Providing our own version of a library. Cloning projects.

Given the property above, we can clone any library into the ~/quicklisp/local-projects/ directory and it will be found by ASDF (and Quicklisp) and available right-away:

(asdf:load-system "system")

or

(ql:quickload "system")

The practical different between the two is that ql:quickload first tries to fetch the system from the Internet if it is not already installed.

Note that symlinks in local-projects to another location of your liking works too.

How to work with local versions of libraries

If we need libraries to be installed locally, for only one project, or in order to easily ship a list of dependencies with an application, we can use Qlot or CLPM.

Quicklisp also provides Quicklisp bundles. They are self-contained sets of systems that are exported from Quicklisp and loadable without involving Quicklisp.

At last, there’s Quicklisp controller to help us build dists.

Working with projects

Now that we have Quicklisp and our editor ready, we can start writing Lisp code in a file and interacting with the REPL.

But what if we want to work with an existing project or create a new one, how do we proceed, what’s the right sequence of defpackage, what to put in the .asd file, how to load the project into the REPL ?

Creating a new project

Some project builders help to scaffold the project structure. We like cl-project that also sets up a tests skeleton.

In short:

(ql:quickload "cl-project")
(cl-project:make-project #P"./path-to-project/root/")

it will create a directory structure like this:

|-- my-project.asd
|-- my-project-test.asd
|-- README.markdown
|-- README.org
|-- src
| `-- my-project.lisp
`-- tests
 `-- my-project.lisp

Where my-project.asd resembles this:

(asdf:defsystem "my-project"
 :version "0.1.0"
 :author ""
 :license ""
 :depends-on () ;; <== list of Quicklisp dependencies
 :components ((:module "src"
 :components
 ((:file "my-project"))))
 :description ""
 :long-description
 #.(read-file-string
 (subpathname *load-pathname* "README.markdown"))
 :in-order-to ((test-op (test-op "my-project-test"))))

and src/my-project.lisp this:

(defpackage footest
 (:use :cl))
(in-package :footest)

	ASDF documentation: defining a system with defsystem

How to load an existing project

You have created a new project, or you have an existing one, and you want to work with it on the REPL, but Quicklisp doesn’t know it. How can you do ?

Well first, if you create it or clone it into one of ~/common-lisp, ~/.local/share/common-lisp/source/ or ~/quicklisp/local-projects, you’ll be able to (ql:quickload …) it with no further ado.

Otherwise you’ll need to compile and load its system definition (.asd) first. In SLIME with the slime-asdf contrib loaded, type C-c C-k (slime-compile-and-load-file) in the .asd, then you can (ql:quickload …) it.

You can use (asdf:load-asd "my-project.asd") programmatically instead of C-c C-k.

Usually you want to “enter” the system in the REPL at this stage:

(in-package :my-project)

Lastly, you can compile or eval the sources (my-project.lisp) with C-c C-k or C-c C-c (slime-compile-defun) in a form, and see its result in the REPL.

Another solution is to use ASDF’s list of known projects:

;; startup file like ~/.sbclrc
(pushnew "~/path-to/project/" asdf:*central-registry* :test #'equal)

and since ASDF is integrated into Quicklisp, we can quickload our project right away.

Happy hacking !

More settings

You might want to set SBCL’s default encoding format to utf-8:

(setf sb-impl::*default-external-format* :utf-8)

You can add this to your ~/.sbclrc.

If you dislike the REPL to print all symbols upcase, add this:

(setf *print-case* :downcase)

Warning: This might break the behaviour of some packages like it happened with Mito. Avoid doing this in production.

See also

	cl-cookieproject - a project skeleton for a ready-to-use project with an entry point and unit tests. With a src/ subdirectory, some more metadata, a 5AM test suite, a way to build a binary, an example CLI args parsing, Roswell integration.

	Source code organization, libraries and packages: https://lispmethods.com/libraries.html

Credits

	https://wiki.debian.org/CommonLisp

	http://articulate-lisp.com/project/new-project.html

Editor support

The editor of choice is still Emacs, but it is not the only one.

Emacs

SLIME is the Superior Lisp Interaction Mode for Emacs. It has support for interacting with a running Common Lisp process for compilation, debugging, documentation lookup, cross-references, and so on. It works with many implementations.

Portacle is a portable and multi-platform Common Lisp environment. It ships Emacs, SBCL, Quicklisp, SLIME and Git.

[image: Portacle with an open Slime REPL]

Installing SLIME

SLIME is in the official GNU ELPA repository of Emacs Lisp packages (in Emacs24 and forward). Install with:

M-x package-install RET slime RET

Since SLIME is heavily modular and the defaults only do the bare minimum (not even the SLIME REPL), you might want to enable more features with

(slime-setup '(slime-fancy slime-quicklisp slime-asdf))

For more details, consult the documentation (also available as an Info page).

Now you can run SLIME with M-x slime and/or M-x slime-connect.

See also:

	https://wikemacs.org/wiki/SLIME - configuration examples and extensions.

Using Emacs as an IDE

See “Using Emacs as an IDE”.

Vim & Neovim

Slimv is a full-blown environment for Common Lisp inside of Vim.

Vlime is a Common Lisp dev environment for Vim (and Neovim), similar to SLIME for Emacs and SLIMV for Vim.

[image: The Slimv plugin with an open REPL]

cl-neovim makes it possible to write Neovim plugins in Common Lisp.

quicklisp.nvim is a Neovim frontend for Quicklisp.

Slimv_box brings Vim, SBCL, ABCL, and tmux in a Docker container for a quick installation.

See also:

	Lisp in Vim demonstrates usage and compares both Slimv and Vlime

Pulsar (ex Atom)

See SLIMA. This package allows you to interactively develop Common Lisp code, turning Atom, or now Pulsar, into a pretty good Lisp IDE. It features:

	REPL

	integrated debugger

	(not a stepping debugger yet)

	jump to definition

	autocomplete suggestions based on your code

	compile this function, compile this file

	function arguments order

	integrated profiler

	interactive object inspection.

It is based on the Swank backend, like Slime for Emacs.

[image: The SLIMA extension for Atom with an open Lisp REPL]

VSCode

Alive makes VSCode a powerful Common Lisp development. It hooks directly into the Swank server that Emacs Slime uses and is fully compatible with VSCode’s ability to develop remotely in containers, WSL, Remote machines, etc. It has no dependencies beyond a version of Common Lisp on which to run the Swank server. It can be configured to run with Quicklisp, CLPM, and Roswell. It currently supports:

	Syntax highlighting

	Code completion

	Code formatter

	Jump to definition

	Snippets

	REPL integration

	Interactive Debugger

	REPL history

	Inline evaluation

	Macro expand

	Disassemble

	Inspector

	Hover Text

	Rename function args and let bindings

	Code folding

[image: The Alive VSCode plugin showing the interactive debugger.]

commonlisp-vscode extension works via the cl-lsp language server and it’s possible to write LSP client that works in other editors. It depends heavily on Roswell. It currently supports:

	running a REPL

	evaluate code

	auto indent,

	code completion

	go to definition

	documentation on hover

[image: The VSCode extension with a Lisp REPL, code completion and a mini-map.]

Using VSCode with Alive

See Using VSCode with Alive.

JetBrains - NEW in Jan, 2023!

SLT is a new (published on January, 2023) plugin for the suite of JetBrains’ IDEs. It uses a modified SLIME/Swank protocol to commmunicate with SBCL, providing IDE capabilities for Common Lisp.

It has a very good user guide.

At the time of writing, for its version 0.4, it supports:

	REPL

	symbol completion

	send expressions to the REPL

	interactive debugging, breakpoints

	documentation display

	cross-references

	find symbol by name, global class/symbol search

	inspector (read-only)

	graphical threads list

	SDK support, automatic download for Windows users

	multiple implementations support: SBCL, CCL, ABCL and AllegroCL.

[image: SLT, a good Common Lisp plugin for JetBrains IDEs.]

Eclipse

Dandelion is a plugin for the Eclipse IDE.

Available for Windows, Mac and Linux, built-in SBCL and CLISP support and possibility to connect other environments, interactive debugger with restarts, macro-expansion, parenthesis matching,…

[image: Dandelion, a simple Common Lisp plugin for Eclipse]

Lem

Lem is an editor tailored for Common Lisp development. Once you install it, you can start developing. Its interface resembles Emacs and SLIME (same shortcuts). It comes with an ncurses and an SDL2 frontend, and other programming modes thanks to its built-in LSP client: Python, Go, Rust, JS, Nim, Scheme, HTML, CSS, plus a directory mode, a vim layer, and more.

[image: Lem running in a SDL2 GUI.]

It can be started as a REPL right away in the terminal. Run it with:

lem --eval "(lem-lisp-mode:start-lisp-repl t)"

So you probably want a shell alias:

alias ilem='lem --eval "(lem-lisp-mode:start-lisp-repl t)"'

[image: Lem running in the terminal with the Lisp REPL full screen, showing a completion window.]

Sublime Text

Sublime Text has now good support for Common Lisp.

First install the “SublimeREPL” package and then see the options in Tools/SublimeREPL to choose your CL implementation.

Then Slyblime ships IDE-like features to interact with the running Lisp image. It is an implementation of SLY and it uses the same backend (SLYNK). It provides advanced features including a debugger with stack frame inspection.

[image: A Lisp REPL in Sublime Text]

LispWorks (proprietary)

LispWorks is a Common Lisp implementation that comes with its own Integrated Development Environment (IDE) and its share of unique features, such as the CAPI GUI toolkit. It is proprietary and provides a free limited version.

You can read our LispWorks review here.

[image: The LispWorks listener and the editor in the Mate desktop environment]

Geany (experimental)

Geany-lisp is an experimental lisp mode for the Geany editor. It features completion of symbols, smart indenting, jump to definition, compilation of the current file and highlighting of errors and warnings, a REPL, and a project skeleton creator.

[image: The Geany Lisp plugin showing compilation warnings]

Notebooks

common-lisp-jupyter is a Common Lisp kernel for Jupyter notebooks.

You can see a live Jupyter notebook written in Lisp here. It is easy to install (Roswell, repo2docker and Docker recipes).

[image: A Jupyter notebook running a Common Lisp kernel, exploring the Lorentz system of differential equations, showing a colorful 3D plot with interactive controls (note: the code in the screenshot is actually not Lisp!)]

There is also Darkmatter, a notebook-style Common Lisp environment, built in Common Lisp.

REPLs

cl-repl is an ipython-like REPL. It supports symbol completion, magic and shell commands, editing command in a file and a simple debugger.

You might also like sbcli, an even simpler REPL with readline capabilities. It handles errors gracefully instead of showing a debugger.

[image: cl-repl 0.4.1 runnning in the terminal, built with Roswell, featuring multi-line prompts and syntax highlighting.]

Others

There are some more editors out there, more or less discontinued, and free versions of other Lisp vendors, such as Allegro CL.

Emacs

Using Emacs as an IDE

This page is meant to provide an introduction to using Emacs as a Lisp IDE.

Note: Portacle is a portable and multi-platform CL development environment, a straightforward way to get going.

[bookmark: Slide-2]

Why Use Emacs?

	Emacs has fantastic support for working with Lisp code

	Not tying yourself into a single CL vendor’s editor

	Runs on virtually every OS and CL implementation

	Extensible: awesome-emacs.

	Can be customized to do many common tasks

	Built-in support for different source code version control systems

	Vast number of add-on packages

	Emacs will probably always be around

	Emacs works well either with a mouse or without a mouse

	Emacs works well either in GUI mode or in the terminal

	Emacs has a large user base with multiple newsgroups

	Benefits of using Emacs far outweigh the effort spent in learning it

	Because Org-mode

	Because Magit

	Because Emacs Rocks !

[bookmark: Slide-3]

Emacs Lisp vs Common Lisp

	Learning Emacs Lisp is useful and similar (but different from CL):

	Dynamic scope is everywhere

	There are no reader (or reader-related) functions

	Does not support all the types that are supported in CL

	Incomplete implementation of CLOS (with the add-on EIEIO package)

	Not all of CL is supported

	No numerical tower support

	Some good Emacs Lisp learning resources:

	An Introduction to Programming in Emacs Lisp

	Writing GNU Emacs Extensions

	Wikemacs

[bookmark: Slide-slime]

SLIME: Superior Lisp Interaction Mode for Emacs

SLIME is the goto major mode for CL programming.

	Pros:

	Provides REPL which is hooked to implementation directly in Emacs

	Has integrated Common Lisp debugger with Emacs interface

	Interactive object-inspector in Emacs buffer

	Has its own minor mode which enhances lisp-mode in many ways

	Supports every common Common Lisp implementation

	Readily available from MELPA

	Actively maintained

	Symbol completion

	Cross-referencing

	Can perform macroexpansions

	Cons:

	Installing SLIME without MELPA can be tricky

	Setup:

	Installing it from MELPA is straightforward. Search package-list-packages for ‘slime’ and click to install. If MELPA is configured correctly, it will install itself and all dependencies.

	Enable the desired contribs (SLIME does very little by defaults), e.g. (slime-setup '(slime-fancy slime-quicklisp slime-asdf)).

	Run SLIME with M-x slime.

Check out this video tutorial ! (and the author’s channel, full of great stuff)

SLIME fancy, contrib packages and other extensions

SLIME’s functionalities live in packages and so-called contrib modules must be loaded to add further functionalities. The default slime-fancy includes:

	slime-autodoc

	slime-c-p-c

	slime-editing-commands

	slime-fancy-inspector

	slime-fancy-trace

	slime-fontifying-fu

	slime-fuzzy

	slime-mdot-fu

	slime-macrostep

	slime-presentations

	slime-references

	slime-repl

	slime-scratch

	slime-package-fu

	slime-trace-dialog

SLIME also has some nice extensions like Helm-SLIME which features, among others:

	Fuzzy completion,

	REPL and connection listing,

	Fuzzy-search of the REPL history,

	Fuzzy-search of the apropos documentation.

REPL interactions

From the SLIME REPL, press , to prompt for commands. There is completion over the available systems and packages. Examples:

	,load-system

	,reload-system

	,in-package

	,restart-inferior-lisp

and many more.

With the slime-quicklisp contrib, you can also ,ql to list all systems available for installation.

SLY: Sylvester the Cat’s Common Lisp IDE

SLY is a SLIME fork that contains the following improvements:

	Completely redesigned REPL based on Emacs’s own full-featured comint.el

	Live code annotations via a new sly-stickers contrib

	Consistent interactive button interface. Everything can be copied to the REPL.

	Multiple inspectors with independent history

	Regexp-capable M-x sly-apropos

	Contribs are first class SLY citizens, enabled by default, loaded with ASDF on demand.

	Support for NAMED-READTABLES, macrostep.el and quicklisp.

Finding one’s way into Emacs’ built-in documentation

Emacs comes with built-in tutorials and documentation. Moreover, it is a self-documented and self-discoverable editor, capable of introspection to let you know about the current keybindings, to let you search about function documentation, available variables,source code, tutorials, etc. Whenever you ask yourself questions like “what are the available shortcuts to do x” or “what does this keybinding really do”, the answer is most probably a keystroke away, right inside Emacs. You should learn a few keybindings to be able to discover Emacs with Emacs flawlessly.

The help on the topic is here:

	Help page: commands for asking Emacs about its commands

The help keybindings start with either C-h or F1. Important ones are:

	C-h k <keybinding>: what function does this keybinding call?

	C-h f <function name>: what keybinding is linked to this function?

	C-h a <topic>: show a list of commands whose name match the given topic. It accepts a keyword, a list of keywords or a regular expression.

	C-h i: show the Info page, a menu of major topics.

Some Emacs packages give even more help.

More help and discoverability packages

Sometimes, you start typing a key sequence but you can’t remember it completely. Or, you wonder what other keybindings are related. Comes which-key-mode. This packages will display all possible keybindings starting with the key(s) you just typed.

For example, I know there are useful keybindings under C-x but I don’t remember which ones… I just type C-x, I wait for half a second, and which-key shows all the ones available.

Just try it with C-h too!

See also Helpful, an alternative to the built-in Emacs help that provides much more contextual information.

Learn Emacs with the built-in tutorial

Emacs ships its own tutorial. You should give it a look to learn the most important keybindings and concepts.

Call it with M-x help-with-tutorial (where M-x is alt-x).

[bookmark: Slide-9]

Working with Lisp Code

In this short tutorial we’ll see how to:

	edit Lisp code

	evaluate and compile Lisp code

	search Lisp code

Packages for structured editing

In addition to the built-in Emacs commands, you have several packages at your disposal that will help to keep the parens and/or the indentation balanced. The list below is somewhat sorted by age of the extension, according to the history of Lisp editing:

	Paredit - Paredit is a classic. It defines the must-have commands (move, kill, split, join a sexp,…). (visual tutorial)

	Smartparens - Smartparens not only deals with parens but with everything that comes in pairs (html tags,…) and thus has features for non-lispy languages.

	Lispy - Lispy reimagines Paredit with the goal to have the shortest bindings (mostly one key) that only act depending on the point position.

	Paxedit - Paxedit adds commands based on the context (in a symbol, a sexp,…) and puts efforts on whitespace cleanup and context refactoring.

	Parinfer - Parinfer automatically fixes the parens depending on the indentation, or the other way round (or both !).

We personally advice to try Parinfer and the famous Paredit, then to go up the list. See explanations and even more on Wikemacs.

[bookmark: Slide-10]

Editing

Emacs has, of course, built-in commands to deal with s-expressions.

Forward/Backward/Up/Down movement and selection by s-expressions

Use C-M-f and C-M-b (forward-sexp and backward-sexp) to move in units of s-expressions.

Use C-M-t to swap the first addition sexp and the second one. Put the cursor on the open parens of “(+ x” in defun c and press

Use C-M-@ to highlight an entire sexp. Then press C-M-u to expand the selection “upwards” and C-M-d to move forward down one level of parentheses.

Deleting s-expressions

Use C-M-k (kill-sexp) and C-M-backspace (backward-kill-sexp) (but caution: this keybinding may restart the system on GNU/Linux).

For example, if point is before (progn (I’ll use [] as an indication where the cursor is):

(defun d ()
 (if t
 (+ 3 3)
 [](progn
 (+ 1 1)
 (if t
 (+ 2 2)
 (+ 3 3)))
 (+ 4 4)))

and you press C-M-k, you get:

(defun d ()
 (if t
 (+ 3 3)
 []
 (+ 4 4)))

Indenting s-expressions

Indentation is automatic for Lisp forms.

Pressing TAB will indent incorrectly indented code. For example, put the point at the beginning of the (+ 3 3) form and press TAB:

(progn
(+ 3 3))

you correctly get

(progn
 (+ 3 3))

Use C-M-q (slime-reindent-defun) to indent the current function definition:

;; Put the cursor on the open parens of "(defun ..."
;; and press "C-M-q" to indent the code:
(defun e ()
"A badly indented function."
(let ((x 20))
(loop for i from 0 to x
do (loop for j from 0 below 10
do (print j))
(if (< i 10)
(let ((z nil))
(setq z (format t "x=~d" i))
(print z))))))

;; This is the result:

(defun e ()
 "A badly indented function (now correctly indented)."
 (let ((x 20))
 (loop for i from 0 to x
 do (loop for j from 0 below 10
 do (print j))
 (if (< i 10)
 (let ((z nil))
 (setq z (format t "x=~d" i))
 (print z))))))

You can also select a region and call M-x indent-region.

Support for parenthesis

Use M-(to insert a pair of parenthesis (()) and the same keybinding with a prefix argument, C-u M-(, to enclose the expression in front of the cursor with a pair of parens.

For example, we start with the cursor before the first paren:

CL-USER> |(- 2 2)

Press C-u M-(to enclose it with parens:

CL-USER> (|(- 2 2))
;; now write anything.
CL-USER> (zerop (- 2 2))

With a numbered prefix argument (C-u 2 M-(), wrap around this number of s-expressions.

Additionnaly, use M-x check-parens to spot malformed s-exps and C-c C-] (slime-close-all-parens-in-sexp) to insert the required number of closing parenthesis.

Code completion

Use the built-in C-c TAB to complete symbols in SLIME. You can get tooltips with company-mode.

In the REPL, it’s simply TAB.

Use Emacs’ hippie-expand, bound to M-/, to complete any string present in other open buffers.

Hiding/showing code

Use C-x n n (narrow-to-region) and C-x n w to widen back.

See also code folding.

Comments

Insert a comment, comment a region with M-;, adjust text with M-q.

[bookmark: Slide-11]

Evaluating and Compiling Lisp in SLIME

Compile the entire buffer by pressing C-c C-k (slime-compile-and-load-file).

Compile a region with M-x slime-compile-region.

Compile a defun by putting the cursor inside it and pressing C-c C-c (slime-compile-defun).

To evaluate rather than compile:

	evaluate the sexp before the point by putting the cursor after its closing paren and pressing C-x C-e (slime-eval-last-expression). The result is printed in the minibuffer.

	similarly, use C-c C-p (slime-pprint-eval-last-expression) to eval and pretty-print the expression before point. It shows the result in a new “slime-description” window.

	evaluate a region with C-c C-r,

	evaluate a defun with C-M-x,

	type C-c C-e (slime-interactive-eval) to get a prompt that asks for code to eval in the current context. It prints the result in the minibuffer. With a prefix argument, insert the result into the current buffer.

	type C-c C-j (slime-eval-last-expression-in-repl), when the cursor is after the closing parenthesis of an expression, to send this expression to the REPL and evaluate it.

See also other commands in the menu.

EVALUATION VS COMPILATION

There are a couple of pragmatic differences when choosing between compiling or evaluating. In general, it is better to compile top-level forms, for two reasons:

	Compiling a top-level form highlights warnings and errors in the editor, whereas evaluation does not.

	SLIME keeps track of line-numbers of compiled forms, but when a top-level form is evaluated, the file line number information is lost. That’s problematic for code navigation afterwards.

eval is still useful to observe results from individual non top-level forms. For example, say you have this function:

(defun foo ()
 (let ((f (open "/home/mariano/test.lisp")))
 ...))

Go to the end of the OPEN expression and evaluate it (C-x C-e), to observe the result:

=> #<SB-SYS:FD-STREAM for "file /mnt/e6b00b8f-9dad-4bf4-bd40-34b1e6d31f0a/home/marian/test.lisp" {1003AAAB53}>

Or on this example, with the cursor on the last parentheses, press C-x C-e to evaluate the let:

(let ((n 20))
 (loop for i from 0 below n
 do (print i)))

You should see numbers printed in the REPL.

See also eval-in-repl to send any form to the repl.

[bookmark: Slide-12]

Searching Lisp Code

Standard Emacs text search (isearch forward/backward, regexp searches, search/replace)

C-s does an incremental search forward (e.g. - as each key is the search string is entered, the source file is searched for the first match. This can make finding specific text much quicker as you only need to type in the unique characters. Repeat searches (using the same search characters) can be done by repeatedly pressing C-s

C-r does an incremental search backward

C-s RET and C-r RET both do conventional string searches (forward and backward respectively)

C-M-s and C-M-r both do regular expression searches (forward and backward respectively)

M-% does a search/replace while C-M-% does a regular expression search/replace

Finding occurrences (occur, grep)

Use M-x grep, rgrep, occur…

See also interactive versions with helm-swoop, helm-occur, ag.el.

Go to definition

Put the cursor on any symbol and press M-. (slime-edit-definition) to go to its definition. Press M-, to come back.

Go to symbol, list symbols in current source

Use C-u M-. (slime-edit-definition with a prefix argument, also available as M-- M-.) to autocomplete the symbol and navigate to it. This command always asks for a symbol even if the cursor is on one. It works with any loaded definition. Here’s a little demonstration video.

You can think of it as a imenu completion that always work for any Lisp symbol. Add in Slime’s fuzzy completion for maximum powerness!

Crossreferencing: find who’s calling, referencing, setting a symbol

Slime has nice cross-referencing facilities. For example, you can ask what calls a particular function, what expands a macro, or where a global variable is being used.

Results are presented in a new buffer, listing the places which reference a particular entity. From there, we can press Enter to go to the corresponding source line, or more interestingly we can recompile the place at point by pressing C-c C-c on that line. Likewise, C-c C-k will recompile all the references. This is useful when modifying macros, inline functions, or constants.

The bindings are the following (they are also shown in Slime’s menu):

	C-c C-w c (slime-who-calls) callers of a function

	C-c C-w m (slime-who-macroexpands) places where a macro is expanded

	C-c C-w r (slime-who-references) global variable references

	C-c C-w b (slime-who-bind) global variable bindings

	C-c C-w s (slime-who-sets) global variable setters

	C-c C-w a (slime-who-specializes) methods specialized on a symbol

And when the slime-asdf contrib is enabled, C-c C-w d (slime-who-depends-on) lists dependent ASDF systems

And a general binding: M-? or **M-_** (slime-edit-uses) combines all of the above, it lists every kind of references.

[bookmark: Slide-13]

Lisp Documentation in Emacs - Learning About Lisp Symbols

Argument lists

When you put the cursor on a function, SLIME will show its signature in the minibuffer.

Documentation lookup

The main shortcut to know is:

	C-c C-d d shows the symbols’ documentation on a new window (same result as using describe).

Other bindings which may be useful:

	C-c C-d f describes a function

	C-c C-d h looks up the symbol documentation in CLHS by opening the web browser. But it works only on symbols, so there are two more bindings:

	C-c C-d # for reader macros

	C-c C-d ~ for format directives

You can enhance the help buffer with the Slime extension slime-doc-contribs. It will show more information in a nice looking buffer.

Inspect

You can call (inspect 'symbol) from the REPL or call it with C-c I from a source file.

Macroexpand

Use C-c M-m to macroexpand a macro call

Consult the Hyper Spec (CLHS) offline

The Common Lisp Hyper Spec is the official online version of the ANSI Common Lisp standard. We can start browsing it from starting points: a shortened table of contents of highlights, a symbols index, a glossary, a master index.

Since January of 2023, we have the Common Lisp Community Spec: https://cl-community-spec.github.io/pages/index.html, a new web rendering of the specification. It is a more modern rendering:

	it has a search box

	it has syntax highlihgting

	it is hosted on GitHub and we have the right to modify it: https://github.com/fonol/cl-community-spec

If you want other tools to do a quick look-up of symbols on the CLHS, since the official website doesn’t have a search bar, you can use: * Xach’s website search utility: https://www.xach.com/clhs?q=with-open-file * the l1sp.org website: http://l1sp.org/search?q=with-open-file, * and we can use Duckduckgo’s or Brave Search’s !clhs “bang”.

We can browse the CLHS offline with Dash on MacOS, Zeal on GNU/Linux and Velocity on Windows.

But we can also browse it offline from Emacs. We have to install a CL package and to configure the Emacs side with one command:

(ql:quickload "clhs")
(clhs:install-clhs-use-local)

Then add this to your Emacs configuration:

(load "~/quicklisp/clhs-use-local.el" 'noerror)

Now, you can use C-c C-d h to look-up the symbol at point in the HyperSpec. This will open your browser, but look at its URL starting with “file://home/”: it opens a local file.

Other commands are available:

	when you want to look-up a reader macro, such as #' (sharpsign-quote) or ((left-parenthesis), use M-x common-lisp-hyperspec-lookup-reader-macro, bound to C-c C-d #.

	to look-up a format directive, such as ~A, use M-x common-lisp-hyperspec-format, bound to C-c C-d ~.

	of course, you can TAB-complete on Emacs’ minibuffer prompt to see all the available format directives.

	you can also look-up glossary terms (for example, you can look-up “function” instead of “defun”), use M-x common-lisp-hyperspec-glossary-term, bound to C-c C-d g.

Miscellaneous

Synchronizing packages

C-c ~ (slime-sync-package-and-default-directory): When run in a buffer with a lisp file it will change the current package of the REPL to the package of that file and also set the current directory of the REPL to the parent directory of the file.

Calling code

C-c C-y (slime-call-defun): When the point is inside a defun and C-c C-y is pressed,

(I’ll use [] as an indication where the cursor is)

(defun foo ()
 nil[])

then (foo []) will be inserted into the REPL, so that you can write additional arguments and run it.

If foo was in a different package than the package of the REPL, (package:foo) or (package::foo) will be inserted.

This feature is very useful for testing a function you just wrote.

That works not only for defun, but also for defgeneric, defmethod, defmacro, and define-compiler-macro in the same fashion as for defun.

For defvar, defparameter, defconstant: [] *foo* will be inserted (the cursor is positioned before the symbol so that you can easily wrap it into a function call).

For defclass: (make-instance ‘class-name).

Inserting calls to frames in the debugger

C-y in SLDB on a frame will insert a call to that frame into the REPL, e.g.,

(/ 0) =>
…
1: (CCL::INTEGER-/-INTEGER 1 0)
…

C-y will insert (CCL::INTEGER-/-INTEGER 1 0).

(thanks to Slime tips)

Exporting symbols

C-c x (slime-export-symbol-at-point) from the slime-package-fu contrib: takes the symbol at point and modifies the :export clause of the corresponding defpackage form. It also exports the symbol. When called with a negative argument (C-u C-c x) it will remove the symbol from :export and unexport it.

M-x slime-export-class does the same but with symbols defined by a structure or a class, like accessors, constructors, and so on. It works on structures only on SBCL and Clozure CL so far. Classes should work everywhere with MOP.

Customization

There are different styles of how symbols are presented in defpackage, the default is to use uninterned symbols (#:foo). This can be changed:

to use keywords:

(setq slime-export-symbol-representation-function
 (lambda (n) (format ":%s" n)))

or strings:

(setq slime-export-symbol-representation-function
 (lambda (n) (format "\"%s\"" (upcase n))))

Project Management

ASDF is the de-facto build facility. It is shipped in most Common Lisp implementations.

	ASDF

	ASDF best practices

Searching Quicklisp libraries

From the REPL, we can use ,ql to install a package known by name already.

In addition, we can use the Quicklisp-systems Slime extension to search, browse and load Quicklisp systems from Emacs.

Questions/Answers

utf-8 encoding

You might want to set this to your init file:

(set-language-environment "UTF-8")
(setenv "LC_CTYPE" "en_US.UTF-8")

and for Sly:

(setf sly-lisp-implementations
 '((sbcl ("/usr/local/bin/sbcl") :coding-system utf-8-unix)
))

This will avoid getting ascii stream decoding errors when you have non-ascii characters in files you evaluate with SLIME.

Default cut/copy/paste keybindings

I am so used to C-c, C-v and friends to copy and paste text that the default Emacs shortcuts don’t make any sense to me.

Luckily, you have a solution! Install cua-mode and you can continue to use these shortcuts.

;; C-z=Undo, C-c=Copy, C-x=Cut, C-v=Paste (needs cua.el)
(require 'cua) (CUA-mode t)

Appendix

All Slime REPL shortcuts

Here is the reference of all Slime shortcuts that work in the REPL.

To see them, go in a REPL, type C-h m and go to the Slime REPL map section.

REPL mode defined in ‘slime-repl.el’:
Major mode for interacting with a superior Lisp.
key binding
 -

C-c Prefix Command
C-j slime-repl-newline-and-indent
RET slime-repl-return
C-x Prefix Command
ESC Prefix Command
SPC slime-space
 (that binding is currently shadowed by another mode)
, slime-handle-repl-shortcut
DEL backward-delete-char-untabify
<C-down> slime-repl-forward-input
<C-return> slime-repl-closing-return
<C-up> slime-repl-backward-input
<return> slime-repl-return

C-x C-e slime-eval-last-expression

C-c C-c slime-interrupt
C-c C-n slime-repl-next-prompt
C-c C-o slime-repl-clear-output
C-c C-p slime-repl-previous-prompt
C-c C-s slime-complete-form
C-c C-u slime-repl-kill-input
C-c C-z other-window
C-c ESC Prefix Command
C-c I slime-repl-inspect

M-RET slime-repl-closing-return
M-n slime-repl-next-input
M-p slime-repl-previous-input
M-r slime-repl-previous-matching-input
M-s previous-line

C-c C-z run-lisp
 (that binding is currently shadowed by another mode)

C-M-x lisp-eval-defun

C-M-q indent-sexp

C-M-q prog-indent-sexp
 (that binding is currently shadowed by another mode)

C-c M-e macrostep-expand
C-c M-i slime-fuzzy-complete-symbol
C-c M-o slime-repl-clear-buffer

All other Slime shortcuts

Here are all the default keybindings defined by Slime mode.

To see them, go in a .lisp file, type C-h m and go to the Slime section.

Commands to compile the current buffer’s source file and visually
highlight any resulting compiler notes and warnings:
C-c C-k - Compile and load the current buffer’s file.
C-c M-k - Compile (but not load) the current buffer’s file.
C-c C-c - Compile the top-level form at point.

Commands for visiting compiler notes:
M-n - Goto the next form with a compiler note.
M-p - Goto the previous form with a compiler note.
C-c M-c - Remove compiler-note annotations in buffer.

Finding definitions:
M-.
- Edit the definition of the function called at point.
M-,
- Pop the definition stack to go back from a definition.

Documentation commands:
C-c C-d C-d - Describe symbol.
C-c C-d C-a - Apropos search.
C-c M-d - Disassemble a function.

Evaluation commands:
C-M-x - Evaluate top-level from containing point.
C-x C-e - Evaluate sexp before point.
C-c C-p - Evaluate sexp before point, pretty-print result.

Full set of commands:
key binding
 -

C-c Prefix Command
C-x Prefix Command
ESC Prefix Command
SPC slime-space

C-c C-c slime-compile-defun
C-c C-j slime-eval-last-expression-in-repl
C-c C-k slime-compile-and-load-file
C-c C-s slime-complete-form
C-c C-y slime-call-defun
C-c ESC Prefix Command
C-c C-] slime-close-all-parens-in-sexp
C-c x slime-export-symbol-at-point
C-c ~ slime-sync-package-and-default-directory

C-M-a slime-beginning-of-defun
C-M-e slime-end-of-defun
M-n slime-next-note
M-p slime-previous-note

C-M-, slime-previous-location
C-M-. slime-next-location

C-c TAB completion-at-point
C-c RET slime-expand-1
C-c C-p slime-pprint-eval-last-expression
C-c C-u slime-undefine-function
C-c ESC Prefix Command

C-c C-b slime-interrupt
C-c C-d slime-doc-map
C-c C-e slime-interactive-eval
C-c C-l slime-load-file
C-c C-r slime-eval-region
C-c C-t slime-toggle-fancy-trace
C-c C-v Prefix Command
C-c C-w slime-who-map
C-c C-x Prefix Command
C-c C-z slime-switch-to-output-buffer
C-c ESC Prefix Command
C-c : slime-interactive-eval
C-c < slime-list-callers
C-c > slime-list-callees
C-c E slime-edit-value
C-c I slime-inspect

C-x C-e slime-eval-last-expression
C-x 4 Prefix Command
C-x 5 Prefix Command

C-M-x slime-eval-defun
M-, slime-pop-find-definition-stack
M-. slime-edit-definition
M-? slime-edit-uses
M-_ slime-edit-uses

C-c M-c slime-remove-notes
C-c M-e macrostep-expand
C-c M-i slime-fuzzy-complete-symbol
C-c M-k slime-compile-file
C-c M-q slime-reindent-defun

C-c M-m slime-macroexpand-all

C-c C-v C-d slime-describe-presentation-at-point
C-c C-v TAB slime-inspect-presentation-at-point
C-c C-v C-n slime-next-presentation
C-c C-v C-p slime-previous-presentation
C-c C-v C-r slime-copy-presentation-at-point-to-repl
C-c C-v C-w slime-copy-presentation-at-point-to-kill-ring
C-c C-v ESC Prefix Command
C-c C-v SPC slime-mark-presentation
C-c C-v d slime-describe-presentation-at-point
C-c C-v i slime-inspect-presentation-at-point
C-c C-v n slime-next-presentation
C-c C-v p slime-previous-presentation
C-c C-v r slime-copy-presentation-at-point-to-repl
C-c C-v w slime-copy-presentation-at-point-to-kill-ring
C-c C-v C-SPC slime-mark-presentation

C-c C-w C-a slime-who-specializes
C-c C-w C-b slime-who-binds
C-c C-w C-c slime-who-calls
C-c C-w RET slime-who-macroexpands
C-c C-w C-r slime-who-references
C-c C-w C-s slime-who-sets
C-c C-w C-w slime-calls-who
C-c C-w a slime-who-specializes
C-c C-w b slime-who-binds
C-c C-w c slime-who-calls
C-c C-w d slime-who-depends-on
C-c C-w m slime-who-macroexpands
C-c C-w r slime-who-references
C-c C-w s slime-who-sets
C-c C-w w slime-calls-who

C-c C-d C-a slime-apropos
C-c C-d C-d slime-describe-symbol
C-c C-d C-f slime-describe-function
C-c C-d C-g common-lisp-hyperspec-glossary-term
C-c C-d C-p slime-apropos-package
C-c C-d C-z slime-apropos-all
C-c C-d # common-lisp-hyperspec-lookup-reader-macro
C-c C-d a slime-apropos
C-c C-d d slime-describe-symbol
C-c C-d f slime-describe-function
C-c C-d g common-lisp-hyperspec-glossary-term
C-c C-d h slime-documentation-lookup
C-c C-d p slime-apropos-package
C-c C-d z slime-apropos-all
C-c C-d ~ common-lisp-hyperspec-format
C-c C-d C-# common-lisp-hyperspec-lookup-reader-macro
C-c C-d C-~ common-lisp-hyperspec-format

C-c C-x c slime-list-connections
C-c C-x n slime-next-connection
C-c C-x p slime-prev-connection
C-c C-x t slime-list-threads

C-c M-d slime-disassemble-symbol
C-c M-p slime-repl-set-package

C-x 5 . slime-edit-definition-other-frame

C-x 4 . slime-edit-definition-other-window

C-c C-v M-o slime-clear-presentations

See also

	Common Lisp REPL exploration guide - a concise and curated set of highlights to find one’s way in the REPL.

Using VSCode with Alive

The Alive extension makes VSCode a powerful Common Lisp development platform. Alive hooks directly into the Swank server that Emacs Slime uses and is fully compatible with VSCode’s ability to develop remotely in containers, WSL, Remote machines, etc. It has no dependencies beyond a version of Common Lisp running on the target platform that can run the Swank server. It currently supports:

	Syntax highlighting

	Code completion

	Code formatter

	Jump to definition

	Snippets

	REPL integration

	Interactive Debugger

	REPL history

	Inline evaluation

	Macro expand

	Disassemble

	Inspector

	Hover Text

	Rename function args and let bindings

	Code folding

Prerequisites

The Alive extension in VSCode is compatible with ANSI Common Lisp, and these instructions should work for any of them as long as the Alive REPL starts up successfully. The examples all use SBCL.

	VsCode with command line installed running the Alive extension.

	SBCL

Connect VSCode to a REPL

	Inside of VSCode, open a lisp file that you want to edit.

	If you don’t have one, create a new one called hello.lisp

	Inside of VSCode, open the Command Palette on the menu at the top where it says View/Command Palette and start an instance of SBCL running a Swank server attached to your VSCode REPL by choosing: Alive: Start REPL And Attach.

	You will see a small window pop up that says REPL Connected

	If you don’t get a REPL Connected message, open up VSCode’s Output on the menu at the top where it says View:Output and choose Swank Trace from the pulldown. This output is the output from the running lisp image and will get you started on figuring out what might be going wrong.

Congrats, You now have a VSCode instance running a REPL attached to a Swank server running on port 4005 of a running SBCL image. You can now evaluate statements in your file and they will be processed in your running SBCL instance.

To disconnect your REPL and shut down your SBCL instance, open the Command Palette on the menu at the top where it says View/Command Palette and choose: Alive: Detach from REPL

There are keybindings for every operation, feel free to explore and modify those as needed.

Recipes

All recipes assume you have a file open in VSCode running with an attached REPL unless otherwise stated.

When evaluating an expression, you choose the expression to evaluate by putting your cursor anywhere in or immediately following the s-expression that you wish to evaluate.

Evaluate a statement in-line

	In your open file in your editor window, enter:

(+ 2 2)

	Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Inline Eval

	You will see a small pop up that says => 4 (3 bits, #x4, #o4, #b100), which is the result

Evaluating a statement in-line is exactly the same as sending it to the REPL. The only difference is how it is displayed.

Evaluate a statement

	In your open file in your editor window, enter:

(+ 2 2)

	Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Send To REPL

	You will see the expression show up in the REPL along with the result.

CL-USER>
(+ 2 2)
4
CL-USER>

Compile a file

	In your open file in your editor window, enter:

(+ 2 2)

	Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Compile

	You will see details about the compile in your repl, and a fasl file in your filesystem.

CL-USER>

; compiling file "/Users/jason/Desktop/hello.lisp" (written 14 SEP 2021 04:24:37 AM):

; wrote /Users/jason/Desktop/hello.fasl

; compilation finished in 0:00:00.001

Use the Interactive Debugger to abort

	In your open file in your editor window, enter:

(defun divide (x y)
 (/ x y))

	Put your cursor after the last parenthesis if it isn’t already there. Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Inline Eval to load your define function into your image.

	In your open file, add another new line and enter:

(divide 1 0)

	Put your cursor after the last parenthesis if it isn’t already there. Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Inline Eval to run your divide function in your image.

	You will see the Interactive Debugger pop up. In the Restarts section, choose option 2 to Abort.

	You’re now back to your editor and still-running REPL and can continue like it never happened.

Use the Interactive Debugger to fix a problem at runtime

	In your open file in your editor window, enter:

(defun divide (x y)
 (assert (not (zerop y))
 (y)
 "The second argument can not be zero.")
 (/ x y))

	Put your cursor after the last parenthesis if it isn’t already there. Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Inline Eval to load your define function into your image.

	In your open file, add another new line and enter:

(divide 1 0)

	Put your cursor after the last parenthesis if it isn’t already there. Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Inline Eval to run your divide function in your image.

	You will see the Interactive Debugger pop up. In the Restarts section, choose option 0 to “Retry assertion with new value for Y”.

	In the popup menu, enter `y’

	In the next popup menu, enter 1

	You should now see a small pop up that says => 1 (1 bit, #x1, #o1, #b1), which is the result of the new value. You’re now back to your editor and still-running REPL after crashing out into the debugger, having it let you change the value that caused the crash, and then proceeding like you never typed that bad 0 value.

More ideas for what can be done with the debugger can be found on the error handling page.

Expand a macro

	In your open file in your editor window, enter:

(loop for x in '(a b c d e) do
 (print x))

	Put your cursor after the last parenthesis if it isn’t already there. Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Macro Expand to expand the for-loop macro.

	You should see something like this:

(BLOCK NIL
 (LET ((X NIL)
 (#:LOOP-LIST-559
 (SB-KERNEL:THE* (LIST :USE-ANNOTATIONS T
 :SOURCE-FORM '(A B C D E))
 '(A B C D E))))
 (DECLARE (IGNORABLE #:LOOP-LIST-559)
 (IGNORABLE X))
 (TAGBODY
 SB-LOOP::NEXT-LOOP
 (SETQ X (CAR #:LOOP-LIST-559))
 (SETQ #:LOOP-LIST-559 (CDR #:LOOP-LIST-559))
 (PRINT X)
 (IF (ENDP #:LOOP-LIST-559)
 (GO SB-LOOP::END-LOOP))
 (GO SB-LOOP::NEXT-LOOP)
 SB-LOOP::END-LOOP)))

Disassemble a function

	In your open file in your editor window, enter:

(defun hello (name)
 (format t "Hello, ~A~%" name))

	Put your cursor after the last parenthesis if it isn’t already there. Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Inline Eval to load the function into your image.

	Put your cursor after the last parenthesis if it isn’t already there. Open the Command Palette on the menu at the top View/Command Palette and choose Alive: Disassemble print out the machine code of your compiled function.

	It will start something like this:

; disassembly for HELLO
; Size: 172 bytes. Origin: #x70052478B4 ; HELLO
; 8B4: AC0A40F9 LDR R2, [THREAD, #16] ; binding-stack-pointer
; 8B8: 4C0F00F9 STR R2, [CFP, #24]
; 8BC: AC4642F9 LDR R2, [THREAD, #1160] ; tls: *STANDARD-OUTPUT*
; 8C0: 9F8501F1 CMP R2, #97
; 8C4: 61000054 BNE L0
; 8C8: 4AFDFF58 LDR R0, #x7005247870 ; '*STANDARD-OUTPUT*
; 8CC: 4C1140F8 LDR R2, [R0, #1]
; 8D0: L0: 4C1700F9 STR R2, [CFP, #40]
; 8D4: E0031BAA MOV NL0, CSP
; 8D8: 7A0701F8 STR CFP, [CSP], #16
; 8DC: EAFCFF58 LDR R0, #x7005247878 ; "Hello, "
; 8E0: 4B1740F9 LDR R1, [CFP, #40]
; 8E4: B6FBFF58 LDR LEXENV, #x7005247858 ; #<SB-KERNEL:FDEFN WRITE-STRING>
; 8E8: 970080D2 MOVZ NARGS, #4
; 8EC: FA0300AA MOV CFP, NL0
; 8F0: DE9240F8 LDR LR, [LEXENV, #9]
; 8F4: C0033FD6 BLR LR
; 8F8: 3B039B9A CSEL CSP, OCFP, CSP, EQ
; 8FC: E0031BAA MOV NL0, CSP
; 900: 7A0701F8 STR CFP, [CSP], #16
; 904: 4A2F42A9 LDP R0, R1, [CFP, #32]
; 908: D6FAFF58 LDR LEXENV, #x7005247860 ; #<SB-KERNEL:FDEFN PRINC>
; 90C: 970080D2 MOVZ NARGS, #4
; 910: FA0300AA MOV CFP, NL0
; 914: DE9240F8 LDR LR, [LEXENV, #9]
; 918: C0033FD6 BLR LR
; 91C: 3B039B9A CSEL CSP, OCFP, CSP, EQ
; 920: E0031BAA MOV NL0, CSP
; 924: 7A0701F8 STR CFP, [CSP], #16
; 928: 2A4981D2 MOVZ R0, #2633
; 92C: 4B1740F9 LDR R1, [CFP, #40]
; 930: D6F9FF58 LDR LEXENV, #x7005247868 ; #<SB-KERNEL:FDEFN WRITE-CHAR>
; 934: 970080D2 MOVZ NARGS, #4
; 938: FA0300AA MOV CFP, NL0
; 93C: DE9240F8 LDR LR, [LEXENV, #9]
; 940: C0033FD6 BLR LR
; 944: 3B039B9A CSEL CSP, OCFP, CSP, EQ
; 948: EA031DAA MOV R0, NULL
; 94C: FB031AAA MOV CSP, CFP
; 950: 5A7B40A9 LDP CFP, LR, [CFP]
; 954: BF0300F1 CMP NULL, #0
; 958: C0035FD6 RET
; 95C: E00120D4 BRK #15 ; Invalid argument count trap

Create a skeleton Common Lisp system

This recipe creates a new Common Lisp System, so it does not need a running REPL.

	Create a folder called experiment for your new project

	Open vscode in your newly created directory

cd experiment
code .

	Create new Common Lisp System.

	Inside of VSCode, Open Command Palette on the menu at the top View/Command Palette and generate a system skeleton: Alive: System Skeleton

	The previous command should have generated the following directory structure:

	experiment.asd

	src/

	app.lisp

	test/

	all.lisp

The content of those files is as follows:

experiment.asd:

(in-package :asdf-user)

(defsystem "experiment"
 :class :package-inferred-system
 :depends-on ("experiment/src/app")
 :description ""
 :in-order-to ((test-op (load-op "experiment/test/all")))
 :perform (test-op (o c) (symbol-call :test/all :test-suite)))

(defsystem "experiment/test"
 :depends-on ("experiment/test/all"))

(register-system-packages "experiment/src/app" '(:app))
(register-system-packages "experiment/test/all" '(:test/all))

src/app.lisp:

(defpackage :app
 (:use :cl))

(in-package :app)

test/all.lisp:

(defpackage :test/all
 (:use :cl
 :app)
 (:export :test-suite))

(in-package :test/all)

(defun test-suite ()
 (format T "Test Suite~%"))

Optional Custom Configurations

Configuring VSCode Alive to work with Quicklisp

Assuming that you have quicklisp installed and configured to load on init, quicklisp just works.

Configuring VSCode Alive to work with CLPM in the default context

Assuming that you have CLPM installed and configured, modify your vscode settings to look like this:

	Add the following to to your VSCode settings:

 "alive.swank.startupCommand":[
 "clpm",
 "exec",
 "--",
 "sbcl",
 "--eval",
 "(asdf:load-system :swank)",
 "--eval",
 "(swank:create-server)"
],

This will start up sbcl in the default clpm context

Configuring VSCode Alive to work with CLPM using a bundle clpmfile

Assuming that you have CLPM installed and configured and a bundle configured in the root of your home directory that contains swank as a dev dependency, modify your vscode settings to look like this:

	Add the following to your VSCode settings:

 "alive.swank.startupCommand":[
 "clpm",
 "bundle",
 "exec",
 "--",
 "sbcl",
 "--eval",
 "(asdf:load-system :swank)",
 "--eval",
 "(swank:create-server)"
],

This will start up sbcl in your bundle’s clpm context

Configuring VSCode Alive to work with Roswell

Assuming that you have Roswell installed, modify your vscode settings to look like this:

 "alive.swank.startupCommand": [
 "ros",
 "run",
 "--eval",
 "(require :asdf)",
 "--eval",
 "(asdf:load-system :swank)",
 "--eval",
 "(swank:create-server)"
]

Connecting VSCode Alive to a Docker container

These instructions will work for remote connections, wsl connections, and github Codespaces as well using the Remote - SSH and Remote - WSL, and Github Codespaces extensions, respectively assuming you have the extensions installed. For this example, make sure you have the Containers extension installed and configured.

	Pull a docker image that has sbcl installed, in this example, we’ll use the latest clfoundations sbcl.

docker pull clfoundation/sbcl

	Run bash in the docker image to start it up and keep it running.

docker run -it clfoundation/sbcl bash

	In the VSCode Side Bar, click the Remote Explorer icon.

	In the list of Dev Containers, right click on clfoundation/sbcl and choose Attach to Container.

	In the VSCode Side Bar of the new VSCode window that opens up, click on Explorer. You may need to tell it to view the files in your container if it isn’t already showing them.

	Once you’re viewing the files in the container, right click in the VSCode Side Bar and choose New File. Name the file hello.lisp

	In the VSCode Site Bar, click the Extensions icon

	Click the Install in Container... button for the Alive plugin

	Open up your hello.lisp file and follow the “Connect VSCode to a REPL” instructions at the beginning of these recipes

	You now have VSCode running a REPL hooked to a Slime server running on an SBCL image in a docker container.

LispWorks review

LispWorks is a Common Lisp implementation that comes with its own Integrated Development Environment (IDE) and its share of unique features, such as the CAPI GUI toolkit. It is proprietary and provides a free limited version.

Here, we will mainly explore its IDE, asking ourselves what it can offer to a seasoned lisper used to Emacs and Slime. The short answer is: more graphical tools, such as an easy to use graphical stepper, a tracer, a code coverage browser or again a class browser. Setting and using breakpoints was easier than on Slime.

LispWorks also provides more integrated tools (the Process browser lists all processes running in the Lisp image and we can stop, break or debug them) and presents many information in the form of graphs (for example, a graph of function calls or a graph of all the created windows).

[image: LispWorks’ listener and editor in the Mate desktop environment]LispWorks’ listener and editor in the Mate desktop environment

LispWorks features

We can see a matrix of LispWorks features by edition and platform here: http://www.lispworks.com/products/features.html.

We highlight:

	32-bit, 64-bit and ARM support on Windows, MacOS, Linux, Solaris, FreeBSD,

	CAPI portable GUI toolkit: provides native look-and-feel on Windows, Cocoa, GTK+ and Motif.

	comes with a graphical “Interface Builder” (think QtCreator) (though not available on MacOS (nor on mobile))

	LispWorks for mobile runtime, for Android and iOS,

	optimized application delivery: LispWorks can use a tree shaker to remove unused lisp code from the delivered applicatiion, thus shipping lighter binaries than existing open-source implementations.

	ability to deliver a dynamic library,

	a Java interface, allowing to call from Lisp to Java or the other way around,

	an Objective-C and Cocoa interface, with drag and drop and multi-touch support,

	a Foreign Language Interface,

	TCP/UDP sockets with SSL & IPv6 support,

	natived threads and symmetric multiprocessing, unicode support, and all other Common Lisp features, and all other LispWorks Enterprise features.

And, of course, a built-in IDE.

LispWorks is used in diverse areas of the industry. They maintain a list of success stories. As for software that we can use ourselves, we find ScoreCloud amazing (a music notation software: you play an instrument, sing or whistle and it writes the music) or OpenMusic (opensource composition environment).

Free edition limitations

The download instructions and the limitations are given on the download page.

The limitations are the following:

	There is a heap size limit which, if exceeded, causes the image to exit. A warning is provided when the limit is approached.

What does it prevent us to do? As an illustration, we can not load this set of libraries together in the same image:

(ql:quickload '("alexandria" "serapeum" "bordeaux-threads"
 "lparallel" "dexador" "hunchentoot" "quri"
 "cl-ppcre" "mito"))

	There is a time limit of 5 hours for each session, after which LispWorks Personal exits, possibly without saving your work or performing cleanups such as removing temporary files. You are warned after 4 hours of use.

	It is impossible to build a binary. Indeed, the functions save-image, deliver (the function to create a stand-alone executable), and load-all-patches are not available.

	Initialization files are not loaded. If you are used to initializing Quicklisp from your ~/.sbclrc on Emacs, you’ll have to load an init file manually every time you start LispWorks ((load #p"~/.your-init-file)).

For the record, the snippet provided by Quicklisp to put in one’s startup file is the following:

;; provided you installed quicklisp in ~/quicklisp/
(let ((quicklisp-init (merge-pathnames "quicklisp/setup.lisp"
 (user-homedir-pathname))))
 (when (probe-file quicklisp-init)
 (load quicklisp-init)))

You’ll have to paste it to the listener window (with the C-y key, y as “yank”).

	Layered products that are part of LispWorks Professional and Enterprise Editions (CLIM, KnowledgeWorks, Common SQL and LispWorks ORB) are not included. But we can try the CAPI toolkit.

The installation process requires you to fill an HTML form to receive a download link, then to run a first script that makes you accept the terms and the licence, then to run a second script that installs the software.

Licencing model

LispWorks actually comes in four paid editions. It’s all explained by themselves here: http://www.lispworks.com/products/lispworks.html. In short, there is:

	a Hobbyist edition with save-image and load-all-patches, to apply updates of minor versions, without the obvious limitations, for non-commercial and non-academic use,

	a HobbyistDV edition with the deliver function to create executables (still for non-commercial and non-academic uses),

	a Professional edition, with the deliver function, for commercial and academic uses,

	an Enterprise one, with their enterprise modules: the Common SQL interface, LispWorks ORB, KnowledgeWorks.

At the time of writing, the licence of the hobbyist edition costs 750 USD, the pro version the double. They are bought for a LW version, per platform. They have no limit of time.

NB: Please double check their upstream resources and don’t hesitate to contact them.

LispWorks IDE

The LispWorks IDE is self-contained, but it is also possible to use LispWorks-the-implementation from Emacs and Slime (see below). The IDE runs inside the Common Lisp image, unlike Emacs which is an external program that communicates with the Lisp image through Swank and Slime. User code runs in the same process.

The editor

The editor offers what’s expected: a TAB-completion pop-up, syntax highlighting, Emacs-like keybindings (including the M-x extended command). The menus help the discovery.

We personally found the editing experience a bit “raw”. For example:

	indention after a new line is not automatic, one has to press TAB again.

	the auto-completion is not fuzzy.

	there are no plugins similar to Paredit (there is a brand new (2021) Paredit for LispWorks) or Lispy, nor a Vim layer.

We also had an issue, in that the go-to-source function bound to M-. did not work out for built-in Lisp symbols. Apparently, LispWorks doesn’t provide much source code, and mostly code of the editor. Some other commercial Lisps, like Allegro CL, provide more source code

The editor provides an interesting tab: Changed Definitions. It lists the functions and methods that were redefined since, at our choosing: the first edit of the session, the last save, the last compile.

See also:

	the Editor User Guide.

Keybindings

Most of the keybindings are similar to Emacs, but not all. Here are some differences:

	to compile a function, use C-S-c (control, shift and c), instead of C-c C-c.

	to compile the current buffer, use C-S-b (instead of C-c C-k).

Similar ones include:

	C-g to cancel what you’re doing,

	C-x C-s to save the current buffer,

	M-w and C-y to copy and paste,

	M-b, M-f, C-a, C-e… to move around words, to go to the beginning or the end of the line,

	C-k to kill until the end of the line, C-w to kill a selected region,

	M-. to find the source of a symbol,

	C-x C-e to evaluate the current defun,

	…

Some useful functions don’t have a keybinding by default, for example:

	clear the REPL with M-x Clear Listener

	Backward Kill Line

It is possible to use classical keybindings, à la KDE/Gnome. Go to the Preferences menu, Environment and in the Emulation tab.

There is no Vim layer.

Searching keybindings by name

It is possible to search for a keybinding associated to a function, or a function name from its keybinding, with the menu (Help -> Editing -> Key to Command / Command to Key) or with C-h followed by a key, as in Emacs. For example type C-h k then enter a keybinding to get the command name. See more with C-h ?.

Tweaking the IDE

It is possible to change keybindings. The editor’s state is accessible from the editor package, and the editor is built with the CAPI framework, so we can use the capi interface too. Useful functions include:

`
editor:bind-key
editor:defcommand
editor:current-point
editor:with-point ;; save point location
editor:move-point
editor:*buffer-list*
editor:*in-listener* ;; returns T when we are in the REPL
…

Here’s how you can bind keys:

;; Indent new lines.
;; By default, the point is not indented after a Return.
(editor:bind-key "Indent New Line" #\Return :mode "Lisp")

;; Insert pairs.
(editor:bind-key "Insert Parentheses For Selection" #\(:mode "Lisp")
(editor:bind-key "Insert Double Quotes For Selection"
 #\"
 :mode "Lisp")

Here’s how to define a new command. We make the) key to go past the next closing parenthesis.

(editor:defcommand "Move Over ()" (p)
 "Move past the next close parenthesis.
Any indentation preceeding the parenthesis is deleted."
 "Move past the next close parenthesis."
 ;; thanks to Thomas Hermann
 ;; https://github.com/ThomasHermann/LispWorks/blob/master/editor.lisp
 (declare (ignore p))
 (let ((point (editor:current-point)))
 (editor:with-point ((m point))
 (cond ((editor::forward-up-list m)
 (editor:move-point point m)
 (editor::point-before point)
 (loop (editor:with-point ((back point))
 (editor::back-to-indentation back)
 (unless (editor:point= back point)
 (return)))
 (editor::delete-indentation point))
 (editor::point-after point))
 (t (editor:editor-error))))))

(editor:bind-key "Move Over ()" #\) :mode "Lisp")

And here’s how you can change indentation for special forms:

(editor:setup-indent "if" 1 4 1)

See also:

	a list of LispWork keybindings: https://www.nicklevine.org/declarative/lectures/additional/key-binds.html

The listener

The listener is the REPL we are expecting to find, but it has a slight difference from Slime.

It doesn’t evaluate the input line by line or form by form, instead it parses the input while typing. So we get some errors instantly. For example, we type (abc. So far so good. Once we type a colon to get (abc:, an error message is printed just above our input:

Error while reading: Reader cannot find package ABC.

CL-USER 1 > (abc:

Indeed, now abc: references a package, but such a package doesn’t exist.

Its interactive debugger is primarily textual but you can also interact with it with graphical elements. For example, you can use the Abort button of the menu bar, which brings you back to the top level. You can invoke the graphical debugger to see the stacktraces and interact with them. See the Debugger button at the very end of the toolbar.

If you see the name of your function in the stacktraces (you will if you wrote and compiled your code in a file, and not directly wrote it in the REPL), you can double-click on its name to go back to the editor and have it highlight the part of your code that triggered the error.

NB: this is equivalent of pressing M-v in Slime.

It is possible to choose the graphical debugger to appear by default, instead of the textual one.

The listener provides some helper commands, not unlike Slime’s ones starting with a comma ,:

CL-USER 1 > :help

:bug-form <subject> &key <filename>
 Print out a bug report form, optionally to a file.
:get <variable> <command identifier>
 Get a previous command (found by its number or a symbol/subform within it) and put it in a variable.
:help Produce this list.
:his &optional <n1> <n2>
 List the command history, optionally the last n1 or range n1 to n2.
:redo &optional <command identifier>
 Redo a previous command, found by its number or a symbol/subform within it.
:use <new> <old> &optional <command identifier>
 Do variant of a previous command, replacing old symbol/subform with new symbol/subform.

The stepper. Breakpoints.

The stepper is one of the areas where LispWorks shines.

When your are writing code in the editor window, you can set breakpoints with the big red “Breakpoint” button (or by calling M-x Stepper Breakpoint). This puts a red mark in your code.

The next time your code is executed, you’ll get a comprehensive Stepper pop-up window showing:

	your source code, with an indicator showing what expression is being evaluated

	a lower pane with two tabs:

	the backtrace, showing the intermediate variables, thus showing their evolution during the execution of the program

	the listener, in the context of this function call, where you can evaluate expressions

	and the menu bar with the stepper controls: you can step into the next expression, step on the next function call, continue execution until the position of the cursor, continue the execution until the next breakpoint, etc.

That’s not all. The non-visual, REPL-oriented stepper is also nice. It shows the forms that are being evaluated and their results.

In this example, we use :s to “step” though the current form and its subforms. We are using the usual listener, we can write any Lisp code after the prompt (the little -> here), and we have access to the local variables (X).

CL-USER 4 > (defun my-abs (x)
 (cond ((> x 0) x) ((< x 0) (- x)) (t 0)))
CL-USER 5 > (step (my-abs -5))
(MY-ABS -5) -> :s
 -5 -> :s
 -5
 (COND ((> X 0) X) ((< X 0) (- X)) (T 0)) <=> (IF (> X 0) (PROGN X) (IF (< X 0) (- X) (PROGN 0)))
 ;; Access to the local variables:
 (IF (> X 0) (PROGN X) (IF (< X 0) (- X) (PROGN 0))) -> (format t "Is X equal to -5? ~a~&" (if (equal x -5) "yes" "no"))
Is X equal to -5? yes
 (IF (> X 0) (PROGN X) (IF (< X 0) (- X) (PROGN 0))) -> :s
 (> X 0) -> :s
 X -> :s
 -5
 0 -> :s
 0
 NIL
 (IF (< X 0) (- X) (PROGN 0)) -> :s
 (< X 0) -> :s
 X -> :s
 -5
 0 -> :s
 0
 T
 (- X) -> :s
 X -> :s
 -5
 5
 5
 5
5

Here are the available stepper commands (see :?):

:s Step this form and all of its subforms (optional +ve integer arg)
:st Step this form without stepping its subforms
:si Step this form without stepping its arguments if it is a function call
:su Step up out of this form without stepping its subforms
:sr Return a value to use for this form
:sq Quit from the current stepper level
:bug-form <subject> &key <filename>
 Print out a bug report form, optionally to a file.
:get <variable> <command identifier>
 Get a previous command (found by its number or a symbol/subform within it) and put it in a variable.
:help Produce this list.
:his &optional <n1> <n2>
 List the command history, optionally the last n1 or range n1 to n2.
:redo &optional <command identifier>
 Redo a previous command, found by its number or a symbol/subform within it.
:use <new> <old> &optional <command identifier>
 Do variant of a previous command, replacing old symbol/subform with new symbol/subform.

The class browser

The class browser allows us to examine a class’s slots, parent classes, available methods, and some more.

Let’s create a simple class:

(defclass person ()
 ((name :accessor name
 :initarg :name
 :initform "")
 (lisper :accessor lisperp
 :initform t)))

Now call the class browser:

	use the “Class” button from the listener,

	or use the menu Expression -> Class,

	or put the cursor on the class and call M-x Describe class.

It is composed of several panes:

	the class hierarchy, showing the superclasses on the left and the subclasses on the right, with their description to the bottom,

	the superclasses viewer, in the form of a simple schema, and the same for subclasses,

	the slots pane (the default),

	the available initargs,

	the existing generic functions for that class

	and the class precedence list.

The Functions pane lists all methods applicable to that class, so we can discover public methods provided by the CLOS object system: initialize-instance, print-object, shared-initialize, etc. We can double-click on them to go to their source. We can choose not to include the inherited methods too (see the “include inherited” checkbox).

You’ll find buttons on the toolbar (for example, Inspect a generic function) and more actions on the Methods menu, such as a way to see the functions calls, a menu to undefine or trace a function.

See more:

	Chapter 8 of the documentation: the Class Browser

The function call browser

The function call browser allows us to see a graph of the callers and the callees of a function. It provides several ways to filter the displayed information and to further inspect the call stack.

NB: The Slime functions to find such cross-references are slime-who-[calls, references, binds, sets, depends-on, specializes, macroexpands].

After loading a couple packages, here’s a simple example showing who calls the string-trim function.

[image: The function call browser]The function call browser

It shows functions from all packages, but there is a select box to restrict it further, for example to the “current and used” or only to the current packages.

Double click on a function shown in the graph to go to its source. Again, as in many LispWorks views, the Function menu allows to further manipulate selected functions: trace, undefine, listen (paste the object to the Listener)…

The Text tab shows the same information, but textually, the callers and callees side by side.

We can see cross references for compiled code, and we must ensure the feature is on. When we compile code, LispWorks shows a compilation output likes this:

;;; Safety = 3, Speed = 1, Space = 1, Float = 1, Interruptible = 1
;;; Compilation speed = 1, Debug = 2, Fixnum safety = 3
;;; Source level debugging is on
;;; Source file recording is on
;;; Cross referencing is on

We see that cross referencing is on. Otherwise, activate it with (toggle-source-debugging t).

See more:

	Chapter 15: the function call browser

The Process Browser

The Process Browser shows us a list of all threads running. The input area allows to filter by name. It accepts regular expressions. Then we can stop, inspect, listen, break into these processes.

[image: “The process browser”]“The process browser”

See more:

	Chapter 28: the Process Browser

Saving images

Saving images with LispWorks is different than with SBCL:

	we can save an image now, or schedule snapshots later in time

	the new created image becomes the default core image for our LispWorks environment

	the REPL session is saved

	the windows configuration is saved

	threads are saved

So, effectively, we can save an image and have our development environment back to the same state, effectively allowing to take snapshots of our current work and to continue where we left of.

For example, we can start a game from the REPL, play a little bit in its window, save an image, and when restored we will get the game and its state back.

Misc

We like the Search Files functionality. It is like a recursive grep, but we get a typical LispWorks graphical window that displays the results, allows to double-click on them and that offers some more actions.

Last but not least, have a look at the compilation conditions browser. LispWorks puts all warnings and errors into a special browser when we compile a system. From now on we can work on fixing them and see them disappear from the browser. That helps keeping track of warnings and errors during development.

Using LispWorks from Emacs and Slime

To do that, you have two possibilities. The first one is to start LispWorks normally, start a Swank server and connect to it from Emacs (Swank is the backend part of Slime).

First, let’s load the dependencies:

(ql:quickload "swank")
;; or
(load "~/.emacs.d/elpa/slime-20xx/swank-loader.lisp")

Start a server:

(swank:create-server :port 9876)
;; Swank started at port: 9876.
9876

From Emacs, run M-x slime-connect, choose localhost and 9876 for the port.

You should be connected. Check with: (lisp-implementation-type). You are now able to use LispWorks’ features:

(setq button
 (make-instance 'capi:push-button
 :data "Button"))
(capi:contain button)

The second possibility is to create a non-GUI LispWorks image, with Swank loaded, and to run this image from SLIME or SLY. For example, to create a so-called console image with multiprocessing enabled:

(in-package "CL-USER")
(load-all-patches)
(save-image "~/lw-console"
 :console t
 :multiprocessing t
 :environment nil)

and run LispWorks like this to create the new image ~/lw-console:

lispworks-7-0-0-x86-linux -build /tmp/resave.lisp

However: console is implemented only for Windows and Mac.

See LispWorks’ documentation.

See also

	LispWorks IDE User Guide (check out the sections we didn’t cover)

	LispWorks on Wikipedia

	the Awesome LispWorks list

	Real Image-based approach in Common Lisp - differences between SBCL and LispWorks.

Functions

[bookmark: return]

Named functions: defun

Creating named functions is done with the defun keyword. It follows this model:

(defun <name> (list of arguments)
 "docstring"
 (function body))

The return value is the value returned by the last expression of the body (see below for more). There is no “return xx” statement.

So, for example:

(defun hello-world ()
 ;; ^^ no arguments
 (print "hello world!"))

Call it:

(hello-world)
;; "hello world!" <-- output
;; "hello world!" <-- a string is returned.

Arguments

Base case: required arguments

Add in arguments like this:

(defun hello (name)
 "Say hello to `name'."
 (format t "hello ~a !~&" name))
;; HELLO

(where ~a is the most used format directive to print a variable aesthetically and ~& prints a newline)

Call the function:

(hello "me")
;; hello me ! <-- this is printed by `format`
;; NIL <-- return value: `format t` prints a string
;; to standard output and returns nil.

If you don’t specify the right amount of arguments, you’ll be trapped into the interactive debugger with an explicit error message:

(hello)

invalid number of arguments: 0

Optional arguments: &optional

Optional arguments are declared after the &optional keyword in the lambda list. They are ordered, they must appear one after another.

This function:

(defun hello (name &optional age gender) …)

must be called like this:

(hello "me") ;; a value for the required argument,
 ;; zero optional arguments
(hello "me" "7") ;; a value for age
(hello "me" 7 :h) ;; a value for age and gender

Named parameters: &key

It is not always convenient to remember the order of the arguments. It is thus possible to supply arguments by name: we declare them using &key <name>, we set them with :name <value> in the function call, and we use name as a regular variable in the function body. They are nil by default.

(defun hello (name &key happy)
 "If `happy' is `t', print a smiley"
 (format t "hello ~a " name)
 (when happy
 (format t ":)~&")))

The following calls are possible:

(hello "me")
(hello "me" :happy t)
(hello "me" :happy nil) ;; useless, equivalent to (hello "me")

and this is not valid: (hello "me" :happy):

odd number of &KEY arguments

A similar example of a function declaration, with several key parameters:

(defun hello (name &key happy lisper cookbook-contributor-p) …)

it can be called with zero or more key parameters, in any order:

(hello "me" :lisper t)
(hello "me" :lisper t :happy t)
(hello "me" :cookbook-contributor-p t :happy t)

Last but not least, you would quickly realize it, but we can choose the keys programmatically (they can be variables):

(let ((key :happy)
 (val t))
 (hello "me" key val))
;; hello me :)
;; NIL

Mixing optional and key parameters

It is generally a style warning, but it is possible.

(defun hello (&optional name &key happy)
 (format t "hello ~a " name)
 (when happy
 (format t ":)~&")))

In SBCL, this yields:

; in: DEFUN HELLO
; (SB-INT:NAMED-LAMBDA HELLO
; (&OPTIONAL NAME &KEY HAPPY)
; (BLOCK HELLO (FORMAT T "hello ~a " NAME) (WHEN HAPPY (FORMAT T ":)~&"))))
;
; caught STYLE-WARNING:
; &OPTIONAL and &KEY found in the same lambda list: (&OPTIONAL (NAME "John") &KEY
; HAPPY)
;
; compilation unit finished
; caught 1 STYLE-WARNING condition

We can call it:

(hello "me" :happy t)
;; hello me :)
;; NIL

Default values to key parameters

In the lambda list, use pairs to give a default value to an optional or a key argument, like (happy t) below:

(defun hello (name &key (happy t))

Now happy is true by default.

Was a key parameter specified?

You can skip this tip for now if you want, but come back later to it as it can turn handy.

We saw that a default key parameter is nil by default ((defun hello (name &key happy) …)). But how can be distinguish between “the value is NIL by default” and “the user wants it to be NIL”?

We saw how to use a tuple to set its default value:

&key (:happy t)

To answer our question, use a triple like this:

&key (happy t happy-p)

where happy-p serves as a predicate variable (using -p is only a convention, give it the name you want) to know if the key was supplied. If it was, then it will be T.

So now, we will print a sad face if :happy was explicitely set to NIL. We don’t print it by default.

(defun hello (name &key (happy nil happy-p))
 (format t "Key supplied? ~a~&" happy-p)
 (format t "hello ~a " name)
 (when happy-p
 (if happy
 (format t ":)")
 (format t ":("))))

Variable number of arguments: &rest

Sometimes you want a function to accept a variable number of arguments. Use &rest <variable>, where <variable> will be a list.

(defun mean (x &rest numbers)
 (/ (apply #'+ x numbers)
 (1+ (length numbers))))

(mean 1)
(mean 1 2) ;; => 3/2 (yes, it is printed as a ratio)
(mean 1 2 3 4 5) ;; => 3

Defining key arguments, and allowing more: &allow-other-keys

Observe:

(defun hello (name &key happy)
 (format t "hello ~a~&" name))

(hello "me" :lisper t)
;; => Error: unknown keyword argument

whereas

(defun hello (name &key happy &allow-other-keys)
 (format t "hello ~a~&" name))

(hello "me" :lisper t)
;; hello me

We might need &allow-other-keys when passing around arguments or with higher level manipulation of functions.

Here’s a real example. We define a function to open a file that always uses :if-exists :supersede, but still passes any other keys to the open function.

(defun open-supersede (f &rest other-keys &key &allow-other-keys)
 (apply #'open f :if-exists :supersede other-keys))

In the case of a duplicated :if-exists argument, our first one takes precedence.

Return values

The return value of the function is the value returned by the last executed form of the body.

There are ways for non-local exits (return-from <function name> <value>), but they are usually not needed.

Common Lisp has also the concept of multiple return values.

Multiple return values: values, multiple-value-bind and nth-value

Returning multiple values is not like returning a tuple or a list of results ;) This is a common misconception.

Multiple values are specially useful and powerful because a change in them needs little to no refactoring.

(defun foo (a b c)
 a)

This function returns a.

(defvar *res* (foo :a :b :c))
;; :A

We use values to return multiple values:

(defun foo (a b c)
 (values a b c))

(setf *res* (foo :a :b :c))
;; :A

Observe here that *res* is still :A.

All functions that use the return value of foo need not to change, they still work. If we had returned a list or an array, this would be different.

multiple-value-bind

We destructure multiple values with multiple-value-bind (or mvb+TAB in Slime for short) and we can get one given its position with nth-value:

(multiple-value-bind (res1 res2 res3)
 (foo :a :b :c)
 (format t "res1 is ~a, res2 is ~a, res2 is ~a~&"
 res1 res2 res3))
;; res1 is A, res2 is B, res2 is C
;; NIL

Its general form is

(multiple-value-bind (var-1 .. var-n) expr
 body)

The variables var-n are not available outside the scope of multiple-value-bind.

With nth-value:

(nth-value 0 (values :a :b :c)) ;; => :A
(nth-value 2 (values :a :b :c)) ;; => :C
(nth-value 9 (values :a :b :c)) ;; => NIL

Look here too that values is different from a list:

(nth-value 0 '(:a :b :c)) ;; => (:A :B :C)
(nth-value 1 '(:a :b :c)) ;; => NIL

Note that (values) with no values returns… no values at all.

multiple-value-list

While we are at it: multiple-value-list turns multiple values to a list:

(multiple-value-list (values 1 2 3))
;; (1 2 3)

The reverse is values-list, it turns a list to multiple values:

(values-list '(1 2 3))
;; 1
;; 2
;; 3

Anonymous functions: lambda

Anonymous functions are created with lambda:

(lambda (x) (print x))

We can call a lambda with funcall or apply (see below).

If the first element of an unquoted list is a lambda expression, the lambda is called:

((lambda (x) (print x)) "hello")
;; hello

Calling functions programmatically: funcall and apply

funcall is to be used with a known number of arguments, when apply can be used on a list, for example from &rest:

(funcall #'+ 1 2)
(apply #'+ '(1 2))

Referencing functions by name: single quote ' or sharpsign-quote #'?

In the example above, we used #', but a single quote also works, and we can encounter it in the wild. Which one to use?

It is generally safer to use #', because it respects lexical scope. Observe:

(defun foo (x)
 (* x 100))

(flet ((foo (x) (1+ x)))
 (funcall #'foo 1))
;; => 2, as expected

;; But:

(flet ((foo (x) (1+ x)))
 (funcall 'foo 1))
;; => 100

#' is actually the shorthand for (function …):

(function +)
;; #<FUNCTION +>

(flet ((foo (x) (1+ x)))
 (print (function foo))
 (funcall (function foo) 1))
;; #<FUNCTION (FLET FOO) {1001C0ACFB}>
;; 2

Using function or the #' shorthand allows us to refer to local functions. If we pass instead a symbol to funcall, what is called is always the function named by that symbol in the global environment.

In addition, #' catches the function by value. If the function is redefined, bindings that refered to this function by #' will still run its original behaviour.

Let’s assign a function to a parameter:

(defparameter *foo-caller* #'foo)
(funcall *foo-caller* 1)
;; => 100

Now, if we redefine foo, the behaviour of *foo-caller* will not change:

(defun foo (x) (1+ x))
;; WARNING: redefining CL-USER::FOO in DEFUN
;; FOO

(funcall *foo-caller* 1)
;; 100 ;; and not 2

If we bind the caller with 'foo, a single quote, the function will be resolved at runtime:

(defun foo (x) (* x 100)) ;; back to original behavior.
(defparameter *foo-caller-2* 'foo)
;; *FOO-CALLER-2*
(funcall *foo-caller-2* 1)
;; 100

;; We change the definition:
(defun foo (x) (1+ x))
;; WARNING: redefining CL-USER::FOO in DEFUN
;; FOO

;; We try again:
(funcall *foo-caller-2* 1)
;; 2

The behaviour you want depends on your use case. Generally, using sharpsign-quote is less surprising. But if you are running a tight loop and you want live-update mechanisms (think a game or live visualisations), you might want to use a single quote so that your loop picks up the user’s new function definition.

Higher order functions: functions that return functions

Writing functions that return functions is simple enough:

(defun adder (n)
 (lambda (x) (+ x n)))
;; ADDER

Here we have defined the function adder which returns an object of type function.

To call the resulting function, we must use funcall or apply:

(adder 5)
;; #<CLOSURE (LAMBDA (X) :IN ADDER) {100994ACDB}>
(funcall (adder 5) 3)
;; 8

Trying to call it right away leads to an illegal function call:

((adder 3) 5)
In: (ADDER 3) 5
 ((ADDER 3) 5)
Error: Illegal function call.

Indeed, CL has different namespaces for functions and variables, i.e. the same name can refer to different things depending on its position in a form that’s evaluated.

;; The symbol foo is bound to nothing:
CL-USER> (boundp 'foo)
NIL
CL-USER> (fboundp 'foo)
NIL
;; We create a variable:
CL-USER> (defparameter foo 42)
FOO
* foo
42
;; Now foo is "bound":
CL-USER> (boundp 'foo)
T
;; but still not as a function:
CL-USER> (fboundp 'foo)
NIL
;; So let's define a function:
CL-USER> (defun foo (x) (* x x))
FOO
;; Now the symbol foo is bound as a function too:
CL-USER> (fboundp 'foo)
T
;; Get the function:
CL-USER> (function foo)
#<FUNCTION FOO>
;; and the shorthand notation:
* #'foo
#<FUNCTION FOO>
;; We call it:
(funcall (function adder) 5)
#<CLOSURE (LAMBDA (X) :IN ADDER) {100991761B}>
;; and call the lambda:
(funcall (funcall (function adder) 5) 3)
8

To simplify a bit, you can think of each symbol in CL having (at least) two “cells” in which information is stored. One cell - sometimes referred to as its value cell - can hold a value that is bound to this symbol, and you can use boundp to test whether the symbol is bound to a value (in the global environment). You can access the value cell of a symbol with symbol-value.

The other cell - sometimes referred to as its function cell - can hold the definition of the symbol’s (global) function binding. In this case, the symbol is said to be fbound to this definition. You can use fboundp to test whether a symbol is fbound. You can access the function cell of a symbol (in the global environment) with symbol-function.

Now, if a symbol is evaluated, it is treated as a variable in that its value cell is returned (just foo). If a compound form, i.e. a cons, is evaluated and its car is a symbol, then the function cell of this symbol is used (as in (foo 3)).

In Common Lisp, as opposed to Scheme, it is not possible that the car of the compound form to be evaluated is an arbitrary form. If it is not a symbol, it must be a lambda expression, which looks like (lambdalambda-list _form*_).

This explains the error message we got above - (adder 3) is neither a symbol nor a lambda expression.

If we want to be able to use the symbol *my-fun* in the car of a compound form, we have to explicitly store something in its function cell (which is normally done for us by the macro defun):

;;; continued from above
CL-USER> (fboundp '*my-fun*)
NIL
CL-USER> (setf (symbol-function '*my-fun*) (adder 3))
#<CLOSURE (LAMBDA (X) :IN ADDER) {10099A5EFB}>
CL-USER> (fboundp '*my-fun*)
T
CL-USER> (*my-fun* 5)
8

Read the CLHS section about form evaluation for more.

Closures

Closures allow to capture lexical bindings:

(let ((limit 3)
 (counter -1))
 (defun my-counter ()
 (if (< counter limit)
 (incf counter)
 (setf counter 0))))

(my-counter)
0
(my-counter)
1
(my-counter)
2
(my-counter)
3
(my-counter)
0

Or similarly:

(defun repeater (n)
 (let ((counter -1))
 (lambda ()
 (if (< counter n)
 (incf counter)
 (setf counter 0)))))

(defparameter *my-repeater* (repeater 3))
;; *MY-REPEATER*
(funcall *my-repeater*)
0
(funcall *my-repeater*)
1
(funcall *my-repeater*)
2
(funcall *my-repeater*)
3
(funcall *my-repeater*)
0

See more on Practical Common Lisp.

setf functions

A function name can also be a list of two symbols with setf as the first one, and where the first argument is the new value:

(defun (setf <name>) (new-value <other arguments>)
 body)

This mechanism is particularly used for CLOS methods.

A silly example:

(defparameter *current-name* ""
 "A global name.")

(defun hello (name)
 (format t "hello ~a~&" name))

(defun (setf hello) (new-value)
 (hello new-value)
 (setf *current-name* new-value)
 (format t "current name is now ~a~&" new-value))

(setf (hello) "Alice")
;; hello Alice
;; current name is now Alice
;; NIL

[bookmark: curry]

Currying

Concept

A related concept is that of currying which you might be familiar with if you’re coming from a functional language. After we’ve read the last section that’s rather easy to implement:

CL-USER> (defun curry (function &rest args)
 (lambda (&rest more-args)
 (apply function (append args more-args))))
CURRY
CL-USER> (funcall (curry #'+ 3) 5)
8
CL-USER> (funcall (curry #'+ 3) 6)
9
CL-USER> (setf (symbol-function 'power-of-ten) (curry #'expt 10))
#<Interpreted Function "LAMBDA (FUNCTION &REST ARGS)" {482DB969}>
CL-USER> (power-of-ten 3)
1000

With the Alexandria library

Now that you know how to do it, you may appreciate using the implementation of the Alexandria library (in Quicklisp).

(ql:quickload "alexandria")

(defun adder (foo bar)
 "Add the two arguments."
 (+ foo bar))

(defvar add-one (alexandria:curry #'adder 1) "Add 1 to the argument.")

(funcall add-one 10) ;; => 11

(setf (symbol-function 'add-one) add-one)
(add-one 10) ;; => 11

Documentation

	functions: http://www.lispworks.com/documentation/HyperSpec/Body/t_fn.htm#function

	ordinary lambda lists: http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

	multiple-value-bind: http://clhs.lisp.se/Body/m_multip.htm

Data structures

We hope to give here a clear reference of the common data structures. To really learn the language, you should take the time to read other resources. The following resources, which we relied upon, also have many more details:

	Practical CL, by Peter Seibel

	CL Recipes, by E. Weitz, full of explanations and tips,

	the CL standard with a nice TOC, functions reference, extensive descriptions, more examples and warnings (i.e: everything). PDF mirror

	a Common Lisp quick reference

Don’t miss the appendix and when you need more data structures, have a look at the awesome-cl list and Quickdocs.

Lists

Building lists. Cons cells, lists.

A list is also a sequence, so we can use the functions shown below.

The list basic element is the cons cell. We build lists by assembling cons cells.

(cons 1 2)
;; => (1 . 2) ;; representation with a point, a dotted pair.

It looks like this:

[o|o]--- 2
 |
 1

If the cdr of the first cell is another cons cell, and if the cdr of this last one is nil, we build a list:

(cons 1 (cons 2 nil))
;; => (1 2)

It looks like this:

[o|o]---[o|/]
 | |
 1 2

(ascii art by draw-cons-tree).

See that the representation is not a dotted pair ? The Lisp printer understands the convention.

Finally we can simply build a literal list with list:

(list 1 2)
;; => (1 2)

or by calling quote:

'(1 2)
;; => (1 2)

which is shorthand notation for the function call (quote (1 2)).

Circular lists

A cons cell car or cdr can refer to other objects, including itself or other cells in the same list. They can therefore be used to define self-referential structures such as circular lists.

Before working with circular lists, tell the printer to recognise them and not try to print the whole list by setting *print-circle* to T:

(setf *print-circle* t)

A function which modifies a list, so that the last cdr points to the start of the list is:

(defun circular! (items)
 "Modifies the last cdr of list ITEMS, returning a circular list"
 (setf (cdr (last items)) items))

(circular! (list 1 2 3))
;; => #1=(1 2 3 . #1#)

(fifth (circular! (list 1 2 3)))
;; => 2

The list-length function recognises circular lists, returning nil.

The reader can also create circular lists, using Sharpsign Equal-Sign notation. An object (like a list) can be prefixed with #n= where n is an unsigned decimal integer (one or more digits). The label #n# can be used to refer to the object later in the expression:

'#42=(1 2 3 . #42#)
;; => #1=(1 2 3 . #1#)

Note that the label given to the reader (n=42) is discarded after reading, and the printer defines a new label (n=1).

Further reading

	Let over Lambda section on cyclic expressions

car/cdr or first/rest (and second… to tenth)

(car (cons 1 2)) ;; => 1
(cdr (cons 1 2)) ;; => 2
(first (cons 1 2)) ;; => 1
(first '(1 2 3)) ;; => 1
(rest '(1 2 3)) ;; => (2 3)

We can assign any new value with setf.

last, butlast, nbutlast (&optional n)

return the last cons cell in a list (or the nth last cons cells).

(last '(1 2 3))
;; => (3)
(car (last '(1 2 3))) ;; or (first (last …))
;; => 3
(butlast '(1 2 3))
;; => (1 2)

In Alexandria, lastcar is equivalent of (first (last …)):

(alexandria:lastcar '(1 2 3))
;; => 3

reverse, nreverse

reverse and nreverse return a new sequence.

nreverse is destructive. The N stands for non-consing, meaning it doesn’t need to allocate any new cons cells. It might (but in practice, does) reuse and modify the original sequence:

(defparameter mylist '(1 2 3))
;; => (1 2 3)
(reverse mylist)
;; => (3 2 1)
mylist
;; => (1 2 3)
(nreverse mylist)
;; => (3 2 1)
mylist
;; => (1) in SBCL but implementation dependent.

append

append takes any number of list arguments and returns a new list containing the elements of all its arguments:

(append (list 1 2) (list 3 4))
;; => (1 2 3 4)

The new list shares some cons cells with the (3 4):

http://gigamonkeys.com/book/figures/after-append.png

nconc is the recycling equivalent.

push (item, place)

push prepends item to the list that is stored in place, stores the resulting list in place, and returns the list.

(defparameter mylist '(1 2 3))
(push 0 mylist)
;; => (0 1 2 3)

(defparameter x ’(a (b c) d))
;; => (A (B C) D)
(push 5 (cadr x))
;; => (5 B C)
x
;; => (A (5 B C) D)

push is equivalent to (setf place (cons item place)) except that the subforms of place are evaluated only once, and item is evaluated before place.

There is no built-in function to add to the end of a list. It is a more costly operation (have to traverse the whole list). So if you need to do this: either consider using another data structure, either just reverse your list when needed.

pop

a destructive operation.

nthcdr (index, list)

Use this if first, second and the rest up to tenth are not enough.

car/cdr and composites (cadr, caadr…) - accessing lists inside lists

They make sense when applied to lists containing other lists.

(caar (list 1 2 3)) ==> error
(caar (list (list 1 2) 3)) ==> 1
(cadr (list (list 1 2) (list 3 4))) ==> (3 4)
(caadr (list (list 1 2) (list 3 4))) ==> 3

destructuring-bind (parameter*, list)

It binds the parameter values to the list elements. We can destructure trees, plists and even provide defaults.

Simple matching:

(destructuring-bind (x y z) (list 1 2 3)
 (list :x x :y y :z z))
;; => (:X 1 :Y 2 :Z 3)

Matching inside sublists:

(destructuring-bind (x (y1 y2) z) (list 1 (list 2 20) 3)
 (list :x x :y1 y1 :y2 y2 :z z))
;; => (:X 1 :Y1 2 :Y2 20 :Z 3)

The parameter list can use the usual &optional, &rest and &key parameters.

(destructuring-bind (x (y1 &optional y2) z) (list 1 (list 2) 3)
 (list :x x :y1 y1 :y2 y2 :z z))
;; => (:X 1 :Y1 2 :Y2 NIL :Z 3)

(destructuring-bind (&key x y z) (list :z 1 :y 2 :x 3)
 (list :x x :y y :z z))
;; => (:X 3 :Y 2 :Z 1)

The &whole parameter is bound to the whole list. It must be the first one and others can follow.

(destructuring-bind (&whole whole-list &key x y z)
 (list :z 1 :y 2 :x 3)
 (list :x x :y y :z z :whole whole-list))
;; => (:X 3 :Y 2 :Z 1 :WHOLE-LIST (:Z 1 :Y 2 :X 3))

Destructuring a plist, giving defaults:

(example from Common Lisp Recipes, by E. Weitz, Apress, 2016)

(destructuring-bind (&key a (b :not-found) c
 &allow-other-keys)
 ’(:c 23 :d "D" :a #\A :foo :whatever)
 (list a b c))
;; => (#\A :NOT-FOUND 23)

If this gives you the will to do pattern matching, see pattern matching.

Predicates: null, listp

null is equivalent to not, but considered better style.

listp tests whether an object is a cons cell or nil.

and sequences’ predicates.

ldiff, tailp, list*, make-list, fill, revappend, nreconc, consp, atom

(make-list 3 :initial-element "ta")
;; => ("ta" "ta" "ta")

(make-list 3)
;; => (NIL NIL NIL)
(fill * "hello")
;; => ("hello" "hello" "hello")

member (elt, list)

Returns the tail of list beginning with the first element satisfying eqlity.

Accepts :test, :test-not, :key (functions or symbols).

(member 2 '(1 2 3))
;; (2 3)

Replacing objects in a tree: subst, sublis

subst and subst-if search and replace occurences of an element or subexpression in a tree (when it satisfies the optional test):

(subst 'one 1 '(1 2 3))
;; => (ONE 2 3)

(subst '(1 . one) '(1 . 1) '((1 . 1) (2 . 2)) :test #'equal)
;; ((1 . ONE) (2 . 2))

sublis allows to replace many objects at once. It substitutes the objects given in alist and found in tree with their new values given in the alist:

(sublis '((x . 10) (y . 20))
 '(* x (+ x y) (* y y)))
;; (* 10 (+ 10 20) (* 20 20))

sublis accepts the :test and :key arguments. :test is a function that takes two arguments, the key and the subtree.

(sublis '((t . "foo"))
 '("one" 2 ("three" (4 5)))
 :key #'stringp)
;; ("foo" 2 ("foo" (4 5)))

Sequences

lists and vectors (and thus strings) are sequences.

Note: see also the strings page.

Many of the sequence functions take keyword arguments. All keyword arguments are optional and, if specified, may appear in any order.

Pay attention to the :test argument. It defaults to eql (for strings, use :equal).

The :key argument should be passed either nil, or a function of one argument. This key function is used as a filter through which the elements of the sequence are seen. For instance, this:

(find x y :key 'car)

is similar to (assoc* x y): It searches for an element of the list whose car equals x, rather than for an element which equals x itself. If :key is omitted or nil, the filter is effectively the identity function.

Example with an alist (see definition below):

(defparameter my-alist (list (cons 'foo "foo")
 (cons 'bar "bar")))
;; => ((FOO . "foo") (BAR . "bar"))
(find 'bar my-alist)
;; => NIL
(find 'bar my-alist :key 'car)
;; => (BAR . "bar")

For more, use a lambda that takes one parameter.

(find 'bar my-alist :key (lambda (it) (car it)))

(find 'bar my-alist :key ^(car %))
(find 'bar my-alist :key (lm (it) (car it)))

Predicates: every, some,…

every, notevery (test, sequence): return nil or t, respectively, as soon as one test on any set of the corresponding elements of sequences returns nil.

(defparameter foo '(1 2 3))
(every #'evenp foo)
;; => NIL
(some #'evenp foo)
;; => T

with a list of strings:

(defparameter str '("foo" "bar" "team"))
(every #'stringp str)
;; => T
(some (lambda (it) (= 3 (length it))) str)
;; => T

some, notany (test, sequence): return either the value of the test, or nil.

Functions

See also sequence functions defined in Alexandria: starts-with, ends-with, ends-with-subseq, length=, emptyp,…

length (sequence)

elt (sequence, index) - find by index

beware, here the sequence comes first.

count (foo sequence)

Return the number of elements in sequence that match foo.

Additional paramaters: :from-end, :start, :end.

See also count-if, count-not (test-function sequence).

subseq (sequence start, [end])

(subseq (list 1 2 3) 0)
;; (1 2 3)
(subseq (list 1 2 3) 1 2)
;; (2)

However, watch out if the end is larger than the list:

(subseq (list 1 2 3) 0 99)
;; => Error: the bounding indices 0 and 99
;; are bad for a sequence of length 3.

To this end, use alexandria-2:subseq*:

(alexandria-2:subseq* (list 1 2 3) 0 99)
;; (1 2 3)

subseq is “setf”able, but only works if the new sequence has the same length of the one to replace.

sort, stable-sort (sequence, test [, key function])

These sort functions are destructive, so one may prefer to copy the sequence with copy-seq before sorting:

(sort (copy-seq seq) :test #'string<)

Unlike sort, stable-sort guarantees to keep the order of the argument. In theory, the result of this:

(sort '((1 :a) (1 :b)) #'< :key #'first)

could be either ((1 :A) (1 :B)), either ((1 :B) (1 :A)). On my tests, the order is preserved, but the standard does not guarantee it.

find, position (foo, sequence) - get index

also find-if, find-if-not, position-if, position-if-not (test sequence). See :key and :test parameters.

(find 20 '(10 20 30))
;; 20
(position 20 '(10 20 30))
;; 1

search and mismatch (sequence-a, sequence-b)

search searches in sequence-b for a subsequence that matches sequence-a. It returns the position in sequence-b, or NIL. It has the from-end, end1, end2 and the usual test and key parameters.

(search '(20 30) '(10 20 30 40))
;; 1
(search '("b" "c") '("a" "b" "c"))
;; NIL
(search '("b" "c") '("a" "b" "c") :test #'equal)
;; 1
(search "bc" "abc")
;; 1

mismatch returns the position where the two sequences start to differ:

(mismatch '(10 20 99) '(10 20 30))
;; 2
(mismatch "hellolisper" "helloworld")
;; 5
(mismatch "same" "same")
;; NIL
(mismatch "foo" "bar")
;; 0

substitute, nsubstitute[if,if-not]

Return a sequence of the same kind as sequence with the same elements, except that all elements equal to old are replaced with new.

(substitute #\o #\x "hellx") ;; => "hello"
(substitute :a :x '(:a :x :x)) ;; => (:A :A :A)
(substitute "a" "x" '("a" "x" "x") :test #'string=)
;; => ("a" "a" "a")

sort, stable-sort, merge

(see above)

replace (sequence-a, sequence-b, &key start1, end1)

Destructively replace elements of sequence-a with elements of sequence-b.

The full signature is:

(replace sequence1 sequence2
 &rest args
 &key (start1 0) (end1 nil) (start2 0) (end2 nil))

Elements are copied to the subseqeuence bounded by START1 and END1, from the subsequence bounded by START2 and END2. If these subsequences are not of the same length, then the shorter length determines how many elements are copied.

(replace "xxx" "foo")
"foo"

(replace "xxx" "foo" :start1 1)
"xfo"

(replace "xxx" "foo" :start1 1 :start2 1)
"xoo"

(replace "xxx" "foo" :start1 1 :start2 1 :end2 2)
"xox"

remove, delete (foo sequence)

Make a copy of sequence without elements matching foo. Has :start/end, :key and :count parameters.

delete is the recycling version of remove.

(remove "foo" '("foo" "bar" "foo") :test 'equal)
;; => ("bar")

see also remove-if[-not] below.

remove-duplicates, delete-duplicates (sequence)

remove-duplicates returns a new sequence with uniq elements. delete-duplicates may modify the original sequence.

remove-duplicates accepts the following, usual arguments: from-end test test-not start end key.

(remove-duplicates '(:foo :foo :bar))
(:FOO :BAR)

(remove-duplicates '("foo" "foo" "bar"))
("foo" "foo" "bar")

(remove-duplicates '("foo" "foo" "bar") :test #'string-equal)
("foo" "bar")

mapping (map, mapcar, remove-if[-not],…)

If you’re used to map and filter in other languages, you probably want mapcar. But it only works on lists, so to iterate on vectors (and produce either a vector or a list, use (map 'list function vector).

mapcar also accepts multiple lists with &rest more-seqs. The mapping stops as soon as the shortest sequence runs out.

map takes the output-type as first argument ('list, 'vector or 'string):

(defparameter foo '(1 2 3))
(map 'list (lambda (it) (* 10 it)) foo)

reduce (function, sequence). Special parameter: :initial-value.

(reduce '- '(1 2 3 4))
;; => -8
(reduce '- '(1 2 3 4) :initial-value 100)
;; => 90

Filter is here called remove-if-not.

Flatten a list (Alexandria)

With Alexandria, we have the flatten function.

Creating lists with variables

That’s one use of the backquote:

(defparameter *var* "bar")
;; First try:
'("foo" *var* "baz") ;; no backquote
;; => ("foo" *VAR* "baz") ;; nope

Second try, with backquote interpolation:

`("foo" ,*var* "baz") ;; backquote, comma
;; => ("foo" "bar" "baz") ;; good

The backquote first warns we’ll do interpolation, the comma introduces the value of the variable.

If our variable is a list:

(defparameter *var* '("bar" "baz"))
;; First try:
`("foo" ,*var*)
;; => ("foo" ("bar" "baz")) ;; nested list
`("foo" ,@*var*) ;; backquote, comma-@ to
;; => ("foo" "bar" "baz")

E. Weitz warns that “objects generated this way will very likely share structure (see Recipe 2-7)”.

Comparing lists

We can use sets functions.

Set

We show below how to use set operations on lists.

A set doesn’t contain twice the same element and is unordered.

Most of these functions have recycling (modifying) counterparts, starting with “n”: nintersection,… They all accept the usual :key and :test arguments, so use the test #'string= or #'equal if you are working with strings.

For more, see functions in Alexandria: setp, set-equal,… and the FSet library, shown in the next section.

intersection of lists

What elements are both in list-a and list-b ?

(defparameter list-a '(0 1 2 3))
(defparameter list-b '(0 2 4))
(intersection list-a list-b)
;; => (2 0)

Remove the elements of list-b from list-a (set-difference)

(set-difference list-a list-b)
;; => (3 1)
(set-difference list-b list-a)
;; => (4)

Join two lists with uniq elements (union)

(union list-a list-b)
;; => (3 1 0 2 4) ;; order can be different in your lisp

Remove elements that are in both lists (set-exclusive-or)

(set-exclusive-or list-a list-b)
;; => (4 3 1)

Add an element to a set (adjoin)

A new set is returned, the original set is not modified.

(adjoin 3 list-a)
;; => (0 1 2 3) ;; <-- nothing was changed, 3 was already there.

(adjoin 5 list-a)
;; => (5 0 1 2 3) ;; <-- element added in front.

list-a
;; => (0 1 2 3) ;; <-- original list unmodified.

Check if this is a subset (subsetp)

(subsetp '(1 2 3) list-a)
;; => T

(subsetp '(1 1 1) list-a)
;; => T

(subsetp '(3 2 1) list-a)
;; => T

(subsetp '(0 3) list-a)
;; => T

Fset - immutable data structure

You may want to have a look at the FSet library (in Quicklisp).

Arrays and vectors

Arrays have constant-time access characteristics.

They can be fixed or adjustable. A simple array is neither displaced (using :displaced-to, to point to another array) nor adjustable (:adjust-array), nor does it have a fill pointer (fill-pointer, that moves when we add or remove elements).

A vector is an array with rank 1 (of one dimension). It is also a sequence (see above).

A simple vector is a simple array that is also not specialized (it doesn’t use :element-type to set the types of the elements).

Create an array, one or many dimensions

make-array (sizes-list :adjustable bool)

adjust-array (array, sizes-list, :element-type, :initial-element)

Access: aref (array i [j …])

aref (array i j k …) or row-major-aref (array i) equivalent to (aref i i i …).

The result is setfable.

(defparameter myarray (make-array '(2 2 2) :initial-element 1))
myarray
;; => #3A(((1 1) (1 1)) ((1 1) (1 1)))
(aref myarray 0 0 0)
;; => 1
(setf (aref myarray 0 0 0) 9)
;; => 9
(row-major-aref myarray 0)
;; => 9

Sizes

array-total-size (array): how many elements will fit in the array ?

array-dimensions (array): list containing the length of the array’s dimensions.

array-dimension (array i): length of the ith dimension.

array-rank number of dimensions of the array.

(defparameter myarray (make-array '(2 2 2)))
;; => MYARRAY
myarray
;; => #3A(((0 0) (0 0)) ((0 0) (0 0)))
(array-rank myarray)
;; => 3
(array-dimensions myarray)
;; => (2 2 2)
(array-dimension myarray 0)
;; => 2
(array-total-size myarray)
;; => 8

Vectors

Create with vector or the reader macro #(). It returns a simple vector.

(vector 1 2 3)
;; => #(1 2 3)
#(1 2 3)
;; => #(1 2 3)

vector-push (foo vector): replace the vector element pointed to by the fill pointer by foo. Can be destructive.

vector-push-extend (foo vector [extension-num])t

vector-pop (vector): return the element of vector its fill pointer points to.

fill-pointer (vector). setfable.

and see also the sequence functions.

Transforming a vector to a list.

If you’re mapping over it, see the map function whose first parameter is the result type.

Or use (coerce vector 'list).

Hash Table

Hash Tables are a powerful data structure, associating keys with values in a very efficient way. Hash Tables are often preferred over association lists whenever performance is an issue, but they introduce a little overhead that makes assoc lists better if there are only a few key-value pairs to maintain.

Alists can be used sometimes differently though:

	they can be ordered

	we can push cons cells that have the same key, remove the one in front and we have a stack

	they have a human-readable printed representation

	they can be easily (de)serialized

	because of RASSOC, keys and values in alists are essentially interchangeable; whereas in hash tables, keys and values play very different roles (as usual, see CL Recipes for more).

[bookmark: create]

Creating a Hash Table

Hash Tables are created using the function make-hash-table. It has no required argument. Its most used optional keyword argument is :test, specifying the function used to test the equality of keys.

Note: see shorter notations in the Serapeum or Rutils libraries. For example, Serapeum has dict, and Rutils a #h reader macro.

[bookmark: add]

Adding an Element to a Hash Table

If you want to add an element to a hash table, you can use gethash, the function to retrieve elements from the hash table, in conjunction with setf.

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'one-entry *my-hash*) "one")
"one"
CL-USER> (setf (gethash 'another-entry *my-hash*) 2/4)
1/2
CL-USER> (gethash 'one-entry *my-hash*)
"one"
T
CL-USER> (gethash 'another-entry *my-hash*)
1/2
T

With Serapeum’s dict, we can create a hash-table and add elements to it in one go:

(defparameter *my-hash* (dict :one-entry "one"
 :another-entry 2/4))
;; =>
 (dict
 :ONE-ENTRY "one"
 :ANOTHER-ENTRY 1/2
)

[bookmark: get]

Getting a value from a Hash Table

The function gethash takes two required arguments: a key and a hash table. It returns two values: the value corresponding to the key in the hash table (or nil if not found), and a boolean indicating whether the key was found in the table. That second value is necessary since nil is a valid value in a key-value pair, so getting nil as first value from gethash does not necessarily mean that the key was not found in the table.

Getting a key that does not exist with a default value

gethash has an optional third argument:

(gethash 'bar *my-hash* "default-bar")
;; => "default-bar"
;; NIL

Getting all keys or all values of a hash table

The Alexandria library (in Quicklisp) has the functions hash-table-keys and hash-table-values for that.

(ql:quickload "alexandria")
;; […]
(alexandria:hash-table-keys *my-hash*)
;; => (BAR)

[bookmark: test]

Testing for the Presence of a Key in a Hash Table

The first value returned by gethash is the object in the hash table that’s associated with the key you provided as an argument to gethash or nil if no value exists for this key. This value can act as a generalized boolean if you want to test for the presence of keys.

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'one-entry *my-hash*) "one")
"one"
CL-USER> (if (gethash 'one-entry *my-hash*)
 "Key exists"
 "Key does not exist")
"Key exists"
CL-USER> (if (gethash 'another-entry *my-hash*)
 "Key exists"
 "Key does not exist")
"Key does not exist"

But note that this does not work if nil is amongst the values that you want to store in the hash.

CL-USER> (setf (gethash 'another-entry *my-hash*) nil)
NIL
CL-USER> (if (gethash 'another-entry *my-hash*)
 "Key exists"
 "Key does not exist")
"Key does not exist"

In this case you’ll have to check the second return value of gethash which will always return nil if no value is found and T otherwise.

CL-USER> (if (nth-value 1 (gethash 'another-entry *my-hash*))
 "Key exists"
 "Key does not exist")
"Key exists"
CL-USER> (if (nth-value 1 (gethash 'no-entry *my-hash*))
 "Key exists"
 "Key does not exist")
"Key does not exist"

[bookmark: del]

Deleting from a Hash Table

Use remhash to delete a hash entry. Both the key and its associated value will be removed from the hash table. remhash returns T if there was such an entry, nil otherwise.

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'first-key *my-hash*) 'one)
ONE
CL-USER> (gethash 'first-key *my-hash*)
ONE
T
CL-USER> (remhash 'first-key *my-hash*)
T
CL-USER> (gethash 'first-key *my-hash*)
NIL
NIL
CL-USER> (gethash 'no-entry *my-hash*)
NIL
NIL
CL-USER> (remhash 'no-entry *my-hash*)
NIL
CL-USER> (gethash 'no-entry *my-hash*)
NIL
NIL

[bookmark: del-tab]

Deleting a Hash Table

Use clrhash to delete a hash table. This will remove all of the data from the hash table and return the deleted table.

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'first-key *my-hash*) 'one)
ONE
CL-USER> (setf (gethash 'second-key *my-hash*) 'two)
TWO
CL-USER> *my-hash*
#<hash-table :TEST eql :COUNT 2 {10097BF4E3}>
CL-USER> (clrhash *my-hash*)
#<hash-table :TEST eql :COUNT 0 {10097BF4E3}>
CL-USER> (gethash 'first-key *my-hash*)
NIL
NIL
CL-USER> (gethash 'second-key *my-hash*)
NIL
NIL

[bookmark: traverse]

Traversing a Hash Table

If you want to perform an action on each entry (i.e., each key-value pair) in a hash table, you have several options:

You can use maphash which iterates over all entries in the hash table. Its first argument must be a function which accepts two arguments, the key and the value of each entry. Note that due to the nature of hash tables you can’t control the order in which the entries are provided by maphash (or other traversing constructs). maphash always returns nil.

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (setf (gethash 'first-key *my-hash*) 'one)
ONE
CL-USER> (setf (gethash 'second-key *my-hash*) 'two)
TWO
CL-USER> (setf (gethash 'third-key *my-hash*) nil)
NIL
CL-USER> (setf (gethash nil *my-hash*) 'nil-value)
NIL-VALUE
CL-USER> (defun print-hash-entry (key value)
 (format t "The value associated with the key ~S is ~S~%"
 key value))
PRINT-HASH-ENTRY
CL-USER> (maphash #'print-hash-entry *my-hash*)
The value associated with the key FIRST-KEY is ONE
The value associated with the key SECOND-KEY is TWO
The value associated with the key THIRD-KEY is NIL
The value associated with the key NIL is NIL-VALUE

You can also use with-hash-table-iterator, a macro which turns (via macrolet) its first argument into an iterator that on each invocation returns three values per hash table entry - a generalized boolean that’s true if an entry is returned, the key of the entry, and the value of the entry. If there are no more entries, only one value is returned - nil.

;;; same hash-table as above
CL-USER> (with-hash-table-iterator (my-iterator *my-hash*)
 (loop
 (multiple-value-bind (entry-p key value)
 (my-iterator)
 (if entry-p
 (print-hash-entry key value)
 (return)))))
The value associated with the key FIRST-KEY is ONE
The value associated with the key SECOND-KEY is TWO
The value associated with the key THIRD-KEY is NIL
The value associated with the key NIL is NIL-VALUE
NIL

Note the following caveat from the HyperSpec: “It is unspecified what happens if any of the implicit interior state of an iteration is returned outside the dynamic extent of the with-hash-table-iterator form such as by returning some closure over the invocation form.”

And there’s always loop:

;;; same hash-table as above
CL-USER> (loop for key being the hash-keys of *my-hash*
 do (print key))
FIRST-KEY
SECOND-KEY
THIRD-KEY
NIL
NIL
CL-USER> (loop for key being the hash-keys of *my-hash*
 using (hash-value value)
 do (format t "The value associated with the key ~S is ~S~%"
 key value))
The value associated with the key FIRST-KEY is ONE
The value associated with the key SECOND-KEY is TWO
The value associated with the key THIRD-KEY is NIL
The value associated with the key NIL is NIL-VALUE
NIL
CL-USER> (loop for value being the hash-values of *my-hash*
 do (print value))
ONE
TWO
NIL
NIL-VALUE
NIL
CL-USER> (loop for value being the hash-values of *my-hash*
 using (hash-key key)
 do (format t "~&~A -> ~A" key value))
FIRST-KEY -> ONE
SECOND-KEY -> TWO
THIRD-KEY -> NIL
NIL -> NIL-VALUE
NIL

Traversing keys or values

To map over keys or values we can again rely on Alexandria with maphash-keys and maphash-values.

[bookmark: count]

Counting the Entries in a Hash Table

No need to use your fingers - Common Lisp has a built-in function to do it for you: hash-table-count.

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (hash-table-count *my-hash*)
0
CL-USER> (setf (gethash 'first *my-hash*) 1)
1
CL-USER> (setf (gethash 'second *my-hash*) 2)
2
CL-USER> (setf (gethash 'third *my-hash*) 3)
3
CL-USER> (hash-table-count *my-hash*)
3
CL-USER> (setf (gethash 'second *my-hash*) 'two)
TWO
CL-USER> (hash-table-count *my-hash*)
3
CL-USER> (clrhash *my-hash*)
#<EQL hash table, 0 entries {48205F35}>
CL-USER> (hash-table-count *my-hash*)
0

Printing a Hash Table readably

With print-object (non portable)

It is very tempting to use print-object. It works under several implementations, but this method is actually not portable. The standard doesn’t permit to do so, so this is undefined behaviour.

(defmethod print-object ((object hash-table) stream)
 (format stream "#HASH{~{~{(~a : ~a)~}~^ ~}}"
 (loop for key being the hash-keys of object
 using (hash-value value)
 collect (list key value))))

gives:

;; WARNING:
;; redefining PRINT-OBJECT (#<STRUCTURE-CLASS COMMON-LISP:HASH-TABLE>
;; #<SB-PCL:SYSTEM-CLASS COMMON-LISP:T>) in DEFMETHOD
;; #<STANDARD-METHOD COMMON-LISP:PRINT-OBJECT (HASH-TABLE T) {1006A0D063}>

and let’s try it:

(let ((ht (make-hash-table)))
 (setf (gethash :foo ht) :bar)
 ht)
;; #HASH{(FOO : BAR)}

With a custom function (portable way)

Here’s a portable way.

This snippets prints the keys, values and the test function of a hash-table, and uses alexandria:alist-hash-table to read it back in:

;; https://github.com/phoe/phoe-toolbox/blob/master/phoe-toolbox.lisp
(defun print-hash-table-readably (hash-table
 &optional
 (stream *standard-output*))
 "Prints a hash table readably using ALEXANDRIA:ALIST-HASH-TABLE."
 (let ((test (hash-table-test hash-table))
 (*print-circle* t)
 (*print-readably* t))
 (format stream "#.(ALEXANDRIA:ALIST-HASH-TABLE '(~%")
 (maphash (lambda (k v) (format stream " (~S . ~S)~%" k v)) hash-table)
 (format stream ") :TEST '~A)" test)
 hash-table))

Example output:

#.(ALEXANDRIA:ALIST-HASH-TABLE
'((ONE . 1))
 :TEST 'EQL)
#<HASH-TABLE :TEST EQL :COUNT 1 {10046D4863}>

This output can be read back in to create a hash-table:

(read-from-string
 (with-output-to-string (s)
 (print-hash-table-readably
 (alexandria:alist-hash-table
 '((a . 1) (b . 2) (c . 3))) s)))
;; #<HASH-TABLE :TEST EQL :COUNT 3 {1009592E23}>
;; 83

With Serapeum (readable and portable)

The Serapeum library has the dict constructor, the function pretty-print-hash-table and the toggle-pretty-print-hash-table switch, all which do not use print-object under the hood.

CL-USER> (serapeum:toggle-pretty-print-hash-table)
T
CL-USER> (serapeum:dict :a 1 :b 2 :c 3)
(dict
 :A 1
 :B 2
 :C 3
)

This printed representation can be read back in.

[bookmark: size]

Thread-safe Hash Tables

The standard hash-table in Common Lisp is not thread-safe. That means that simple access operations can be interrupted in the middle and return a wrong result.

Implementations offer different solutions.

With SBCL, we can create thread-safe hash tables with the :synchronized keyword to make-hash-table: http://www.sbcl.org/manual/#Hash-Table-Extensions.

If nil (the default), the hash-table may have multiple concurrent readers, but results are undefined if a thread writes to the hash-table concurrently with another reader or writer. If t, all concurrent accesses are safe, but note that clhs 3.6 (Traversal Rules and Side Effects) remains in force. See also: sb-ext:with-locked-hash-table.

(defparameter *my-hash* (make-hash-table :synchronized t))

But, operations that expand to two accesses, like the modify macros (incf) or this:

(setf (gethash :a *my-hash*) :new-value)

need to be wrapped around sb-ext:with-locked-hash-table:

Limits concurrent accesses to HASH-TABLE for the duration of BODY. If HASH-TABLE is synchronized, BODY will execute with exclusive ownership of the table. If HASH-TABLE is not synchronized, BODY will execute with other WITH-LOCKED-HASH-TABLE bodies excluded – exclusion of hash-table accesses not surrounded by WITH-LOCKED-HASH-TABLE is unspecified.

(sb-ext:with-locked-hash-table (*my-hash*)
 (setf (gethash :a *my-hash*) :new-value))

In LispWorks, hash-tables are thread-safe by default. But likewise, there is no guarantee of atomicity between access operations, so we can use with-hash-table-locked.

Ultimately, you might like what the cl-gserver library proposes. It offers helper functions around hash-tables and its actors/agent system to allow thread-safety. They also maintain the order of updates and reads.

Performance Issues: The Size of your Hash Table

The make-hash-table function has a couple of optional parameters which control the initial size of your hash table and how it’ll grow if it needs to grow. This can be an important performance issue if you’re working with large hash tables. Here’s an (admittedly not very scientific) example with CMUCL pre-18d on Linux:

CL-USER> (defparameter *my-hash* (make-hash-table))
MY-HASH
CL-USER> (hash-table-size *my-hash*)
65
CL-USER> (hash-table-rehash-size *my-hash*)
1.5
CL-USER> (time (dotimes (n 100000)
 (setf (gethash n *my-hash*) n)))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.27 seconds of real time
 0.25 seconds of user run time
 0.02 seconds of system run time
 0 page faults and
 8754768 bytes consed.
NIL
CL-USER> (time (dotimes (n 100000)
 (setf (gethash n *my-hash*) n)))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.05 seconds of real time
 0.05 seconds of user run time
 0.0 seconds of system run time
 0 page faults and
 0 bytes consed.
NIL

The values for hash-table-size and hash-table-rehash-size are implementation-dependent. In our case, CMUCL chooses and initial size of 65, and it will increase the size of the hash by 50 percent whenever it needs to grow. Let’s see how often we have to re-size the hash until we reach the final size…

CL-USER> (log (/ 100000 65) 1.5)
18.099062
CL-USER> (let ((size 65))
 (dotimes (n 20)
 (print (list n size))
 (setq size (* 1.5 size))))
(0 65)
(1 97.5)
(2 146.25)
(3 219.375)
(4 329.0625)
(5 493.59375)
(6 740.3906)
(7 1110.5859)
(8 1665.8789)
(9 2498.8184)
(10 3748.2275)
(11 5622.3413)
(12 8433.512)
(13 12650.268)
(14 18975.402)
(15 28463.104)
(16 42694.656)
(17 64041.984)
(18 96062.98)
(19 144094.47)
NIL

The hash has to be re-sized 19 times until it’s big enough to hold 100,000 entries. That explains why we saw a lot of consing and why it took rather long to fill the hash table. It also explains why the second run was much faster - the hash table already had the correct size.

Here’s a faster way to do it: If we know in advance how big our hash will be, we can start with the right size:

CL-USER> (defparameter *my-hash* (make-hash-table :size 100000))
MY-HASH
CL-USER> (hash-table-size *my-hash*)
100000
CL-USER> (time (dotimes (n 100000)
 (setf (gethash n *my-hash*) n)))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.04 seconds of real time
 0.04 seconds of user run time
 0.0 seconds of system run time
 0 page faults and
 0 bytes consed.
NIL

That’s obviously much faster. And there was no consing involved because we didn’t have to re-size at all. If we don’t know the final size in advance but can guess the growth behaviour of our hash table we can also provide this value to make-hash-table. We can provide an integer to specify absolute growth or a float to specify relative growth.

CL-USER> (defparameter *my-hash* (make-hash-table :rehash-size 100000))
MY-HASH
CL-USER> (hash-table-size *my-hash*)
65
CL-USER> (hash-table-rehash-size *my-hash*)
100000
CL-USER> (time (dotimes (n 100000)
 (setf (gethash n *my-hash*) n)))
Compiling LAMBDA NIL:
Compiling Top-Level Form:

Evaluation took:
 0.07 seconds of real time
 0.05 seconds of user run time
 0.01 seconds of system run time
 0 page faults and
 2001360 bytes consed.
NIL

Also rather fast (we only needed one re-size) but much more consing because almost the whole hash table (minus 65 initial elements) had to be built during the loop.

Note that you can also specify the rehash-threshold while creating a new hash table. One final remark: Your implementation is allowed to completely ignore the values provided for rehash-size and rehash-threshold…

Alist

Definition

An association list is a list of cons cells.

This simple example:

(defparameter *my-alist* (list (cons 'foo "foo")
 (cons 'bar "bar")))
;; => ((FOO . "foo") (BAR . "bar"))

looks like this:

[o|o]---[o|/]
 | |
 | [o|o]---"bar"
 | |
 | BAR
 |
[o|o]---"foo"
 |
FOO

Construction

We can construct an alist like its representation:

(setf *my-alist* '((:foo . "foo")
 (:bar . "bar")))

The constructor pairlis associates a list of keys and a list of values:

(pairlis '(:foo :bar)
 '("foo" "bar"))
;; => ((:BAR . "bar") (:FOO . "foo"))

Alists are just lists, so you can have the same key multiple times in the same alist:

(setf *alist-with-duplicate-keys*
 '((:a . 1)
 (:a . 2)
 (:b . 3)
 (:a . 4)
 (:c . 5)))

Access

To get a key, we have assoc (use :test 'equal when your keys are strings, as usual). It returns the whole cons cell, so you may want to use cdr or second to get the value, or even assoc-value list key from Alexandria.

(assoc :foo *my-alist*)
;; (:FOO . "foo")
(cdr *)
;; "foo"

(alexandria:assoc-value *my-alist* :foo)
;; "foo"
;; (:FOO . "FOO")
;; It actually returned 2 values.

There is assoc-if, and rassoc to get a cons cell by its value:

(rassoc "foo" *my-alist*)
;; NIL
;; bummer! The value "foo" is a string, so use:
(rassoc "foo" *my-alist* :test #'equal)
;; (:FOO . "foo")

If the alist has repeating (duplicate) keys, you can use remove-if-not, for example, to retrieve all of them.

(remove-if-not
 (lambda (entry)
 (eq :a entry))
 alist-with-duplicate-keys
 :key #'car)

Insert and remove entries

To add a key, we push another cons cell:

(push (cons 'team "team") *my-alist*)
;; => ((TEAM . "team") (FOO . "foo") (BAR . "bar"))

We can use pop and other functions that operate on lists, like remove:

(remove :team *my-alist*)
;; ((:TEAM . "team") (FOO . "foo") (BAR . "bar"))
;; => didn't remove anything
(remove :team *my-alist* :key 'car)
;; ((FOO . "foo") (BAR . "bar"))
;; => returns a copy

Remove only one element with :count:

(push (cons 'bar "bar2") *my-alist*)
;; ((BAR . "bar2") (TEAM . "team") (FOO . "foo") (BAR . "bar"))
;; => twice the 'bar key

(remove 'bar *my-alist* :key 'car :count 1)
;; ((TEAM . "team") (FOO . "foo") (BAR . "bar"))

;; because otherwise:
(remove 'bar *my-alist* :key 'car)
;; ((TEAM . "team") (FOO . "foo"))
;; => no more 'bar

Update entries

Replace a value:

my-alist
;; => '((:FOO . "foo") (:BAR . "bar"))
(assoc :foo *my-alist*)
;; => (:FOO . "foo")
(setf (cdr (assoc :foo *my-alist*)) "new-value")
;; => "new-value"
my-alist
;; => '((:foo . "new-value") (:BAR . "bar"))

Replace a key:

my-alist
;; => '((:FOO . "foo") (:BAR . "bar")))
(setf (car (assoc :bar *my-alist*)) :new-key)
;; => :NEW-KEY
my-alist
;; => '((:FOO . "foo") (:NEW-KEY . "bar")))

In the Alexandria library, see more functions like hash-table-alist, alist-plist,…

Plist

A property list is simply a list that alternates a key, a value, and so on, where its keys are symbols (we can not set its :test). More precisely, it first has a cons cell whose car is the key, whose cdr points to the following cons cell whose car is the value.

For example this plist:

(defparameter my-plist (list 'foo "foo" 'bar "bar"))

looks like this:

[o|o]---[o|o]---[o|o]---[o|/]
 | | | |
FOO "foo" BAR "bar"

We access an element with getf (list elt) (it returns the value) (the list comes as first element),

we remove an element with remf.

(defparameter my-plist (list 'foo "foo" 'bar "bar"))
;; => (FOO "foo" BAR "bar")
(setf (getf my-plist 'foo) "foo!!!")
;; => "foo!!!"

Structures

Structures offer a way to store data in named slots. They support single inheritance.

Classes provided by the Common Lisp Object System (CLOS) are more flexible however structures may offer better performance (see for example the SBCL manual).

Creation

Use defstruct:

(defstruct person
 id name age)

At creation slots are optional and default to nil.

To set a default value:

(defstruct person
 id
 (name "john doe")
 age)

Also specify the type after the default value:

(defstruct person
 id
 (name "john doe" :type string)
 age)

We create an instance with the generated constructor make- + <structure-name>, so make-person:

(defparameter *me* (make-person))
me
#S(PERSON :ID NIL :NAME "john doe" :AGE NIL)

note that printed representations can be read back by the reader.

With a bad name type:

(defparameter *bad-name* (make-person :name 123))

Invalid initialization argument:
 :NAME
in call for class #<STRUCTURE-CLASS PERSON>.
 [Condition of type SB-PCL::INITARG-ERROR]

We can set the structure’s constructor so as to create the structure without using keyword arguments, which can be more convenient sometimes. We give it a name and the order of the arguments:

(defstruct (person (:constructor create-person (id name age)))
 id
 name
 age)

Our new constructor is create-person:

(create-person 1 "me" 7)
#S(PERSON :ID 1 :NAME "me" :AGE 7)

However, the default make-person does not work any more:

(make-person :name "me")
;; debugger:
obsolete structure error for a structure of type PERSON
[Condition of type SB-PCL::OBSOLETE-STRUCTURE]

Slot access

We access the slots with accessors created by <name-of-the-struct>- + slot-name:

(person-name *me*)
;; "john doe"

we then also have person-age and person-id.

Setting

Slots are setf-able:

(setf (person-name *me*) "Cookbook author")
(person-name *me*)
;; "Cookbook author"

Predicate

A predicate function is generated:

(person-p *me*)
T

Single inheritance

Use single inheritance with the :include <struct> argument:

(defstruct (female (:include person))
 (gender "female" :type string))
(make-female :name "Lilie")
;; #S(FEMALE :ID NIL :NAME "Lilie" :AGE NIL :GENDER "female")

Note that the CLOS object system is more powerful.

Limitations

After a change, instances are not updated.

If we try to add a slot (email below), we have the choice to lose all instances, or to continue using the new definition of person. But the effects of redefining a structure are undefined by the standard, so it is best to re-compile and re-run the changed code.

(defstruct person
 id
 (name "john doe" :type string)
 age
 email)

gives an error and we drop in the debugger:

attempt to redefine the STRUCTURE-OBJECT class PERSON
incompatibly with the current definition
 [Condition of type SIMPLE-ERROR]

Restarts:
 0: [CONTINUE] Use the new definition of PERSON, invalidating already-loaded code and instances.
 1: [RECKLESSLY-CONTINUE] Use the new definition of PERSON as if it were compatible, allowing old accessors to use new instances and allowing new accessors to use old instances.
 2: [CLOBBER-IT] (deprecated synonym for RECKLESSLY-CONTINUE)
 3: [RETRY] Retry SLIME REPL evaluation request.
 4: [*ABORT] Return to SLIME's top level.
 5: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING {1002A0FFA3}>)

If we choose restart 0, to use the new definition, we lose access to *me*:

me
obsolete structure error for a structure of type PERSON
 [Condition of type SB-PCL::OBSOLETE-STRUCTURE]

There is also very little introspection. Portable Common Lisp does not define ways of finding out defined super/sub-structures nor what slots a structure has.

The Common Lisp Object System (which came after into the language) doesn’t have such limitations. See the CLOS section.

	structures on the hyperspec

	David B. Lamkins, “Successful Lisp, How to Understand and Use Common Lisp”.

Tree

tree-equal, copy-tree. They descend recursively into the car and the cdr of the cons cells they visit.

Sycamore - purely functional weight-balanced binary trees

https://github.com/ndantam/sycamore

Features:

	Fast, purely functional weight-balanced binary trees.

	Leaf nodes are simple-vectors, greatly reducing tree height.

	Interfaces for tree Sets and Maps (dictionaries).

	Ropes

	Purely functional pairing heaps

	Purely functional amortized queue.

Controlling how much of data to print (*print-length*, *print-level*)

Use *print-length* and *print-level*.

They are both nil by default.

If you have a very big list, printing it on the REPL or in a stacktrace can take a long time and bring your editor or even your server down. Use *print-length* to choose the maximum of elements of the list to print, and to show there is a rest with a ... placeholder:

(setf *print-length* 2)
(list :A :B :C :D :E)
;; (:A :B ...)

And if you have a very nested data structure, set *print-level* to choose the depth to print:

(let ((*print-level* 2))
 (print '(:a (:b (:c (:d :e))))))
;; (:A (:B #)) <= *print-level* in action
;; (:A (:B (:C (:D :E))))
;; => the list is returned,
;; the let binding is not in effect anymore.

print-length will be applied at each level.

Reference: the HyperSpec.

Appendix A - generic and nested access of alists, plists, hash-tables and CLOS slots

The solutions presented below might help you getting started, but keep in mind that they’ll have a performance impact and that error messages will be less explicit.

	the access library (battle tested, used by the Djula templating system) has a generic (access my-var :elt) (blog post). It also has accesses (plural) to access and set nested values.

	rutils as a generic generic-elt or ?,

Appendix B - accessing nested data structures

Sometimes we work with nested data structures, and we might want an easier way to access a nested element than intricated “getf” and “assoc” and all. Also, we might want to just be returned a nil when an intermediary key doesn’t exist.

The access library given above provides this, with (accesses var key1 key2…).

Strings

The most important thing to know about strings in Common Lisp is probably that they are arrays and thus also sequences. This implies that all concepts that are applicable to arrays and sequences also apply to strings. If you can’t find a particular string function, make sure you’ve also searched for the more general array or sequence functions. We’ll only cover a fraction of what can be done with and to strings here.

ASDF3, which is included with almost all Common Lisp implementations, includes Utilities for Implementation- and OS- Portability (UIOP), which defines functions to work on strings (strcat, string-prefix-p, string-enclosed-p, first-char, last-char, split-string, stripln).

Some external libraries available on Quicklisp bring some more functionality or some shorter ways to do.

	str defines trim, words, unwords, lines, unlines, concat, split, shorten, repeat, replace-all, starts-with?, ends-with?, blankp, emptyp, …

	Serapeum is a large set of utilities with many string manipulation functions.

	cl-change-case has functions to convert strings between camelCase, param-case, snake_case and more. They are also included into str.

	mk-string-metrics has functions to calculate various string metrics efficiently (Damerau-Levenshtein, Hamming, Jaro, Jaro-Winkler, Levenshtein, etc),

	and cl-ppcre can come in handy, for example ppcre:replace-regexp-all. See the regexp section.

Last but not least, when you’ll need to tackle the format construct, don’t miss the following resources:

	the official CLHS documentation

	a quick reference

	a CLHS summary on HexstreamSoft

	the list of all format directives at the end of this document.

	plus a Slime tip: type C-c C-d ~ plus a letter of a format directive to open up its documentation. Use TAB-completion to list them all. Again more useful with ivy-mode or helm-mode.

Creating strings

A string is created with double quotes, all right, but we can recall these other ways:

	using format nil doesn’t print but returns a new string (see more examples of format below):

(defparameter *person* "you")
(format nil "hello ~a" *person*) ;; => "hello you"

	make-string count creates a string of the given length. The :initial-element character is repeated count times:

(make-string 3 :initial-element #\♥) ;; => "♥♥♥"

Accessing Substrings

As a string is a sequence, you can access substrings with the SUBSEQ function. The index into the string is, as always, zero-based. The third, optional, argument is the index of the first character which is not a part of the substring, it is not the length of the substring.

(defparameter *my-string* (string "Groucho Marx"))
MY-STRING
(subseq *my-string* 8)
"Marx"
(subseq *my-string* 0 7)
"Groucho"
(subseq *my-string* 1 5)
"rouc"

You can also manipulate the substring if you use SUBSEQ together with SETF.

* (defparameter *my-string* (string "Harpo Marx"))
MY-STRING
* (subseq *my-string* 0 5)
"Harpo"
* (setf (subseq *my-string* 0 5) "Chico")
"Chico"
* *my-string*
"Chico Marx"

But note that the string isn’t “stretchable”. To cite from the HyperSpec: “If the subsequence and the new sequence are not of equal length, the shorter length determines the number of elements that are replaced.” For example:

* (defparameter *my-string* (string "Karl Marx"))
MY-STRING
* (subseq *my-string* 0 4)
"Karl"
* (setf (subseq *my-string* 0 4) "Harpo")
"Harpo"
* *my-string*
"Harp Marx"
* (subseq *my-string* 4)
" Marx"
* (setf (subseq *my-string* 4) "o Marx")
"o Marx"
* *my-string*
"Harpo Mar"

Accessing Individual Characters

You can use the function CHAR to access individual characters of a string. CHAR can also be used in conjunction with SETF.

* (defparameter *my-string* (string "Groucho Marx"))
MY-STRING
* (char *my-string* 11)
#\x
* (char *my-string* 7)
#\Space
* (char *my-string* 6)
#\o
* (setf (char *my-string* 6) #\y)
#\y
* *my-string*
"Grouchy Marx"

Note that there’s also SCHAR. If efficiency is important, SCHAR can be a bit faster where appropriate.

Because strings are arrays and thus sequences, you can also use the more generic functions AREF and ELT (which are more general while CHAR might be implemented more efficiently).

* (defparameter *my-string* (string "Groucho Marx"))
MY-STRING
* (aref *my-string* 3)
#\u
* (elt *my-string* 8)
#\M

Each character in a string has an integer code. The range of recognized codes and Lisp’s ability to print them is directed related to your implementation’s character set support, e.g. ISO-8859-1, or Unicode. Here are some examples in SBCL of UTF-8 which encodes characters as 1 to 4 8 bit bytes. The first example shows a character outside the first 128 chars, or what is considered the normal Latin character set. The second example shows a multibyte encoding (beyond the value 255). Notice the Lisp reader can round-trip characters by name.

* (stream-external-format *standard-output*)

:UTF-8
* (code-char 200)

#\LATIN_CAPITAL_LETTER_E_WITH_GRAVE
* (char-code #\LATIN_CAPITAL_LETTER_E_WITH_GRAVE)

200
* (code-char 2048)
#\SAMARITAN_LETTER_ALAF

* (char-code #\SAMARITAN_LETTER_ALAF)
2048

Check out the UTF-8 Wikipedia article for the range of supported characters and their encodings.

Remove or replace characters from a string

There’s a slew of (sequence) functions that can be used to manipulate a string and we’ll only provide some examples here. See the sequences dictionary in the HyperSpec for more.

remove one character from a string:

* (remove #\o "Harpo Marx")
"Harp Marx"
* (remove #\a "Harpo Marx")
"Hrpo Mrx"
* (remove #\a "Harpo Marx" :start 2)
"Harpo Mrx"
* (remove-if #'upper-case-p "Harpo Marx")
"arpo arx"

Replace one character with substitute (non destructive) or replace (destructive):

* (substitute #\u #\o "Groucho Marx")
"Gruuchu Marx"
* (substitute-if #_ #'upper-case-p "Groucho Marx")
"_roucho _arx"
* (defparameter *my-string* (string "Zeppo Marx"))
MY-STRING
* (replace *my-string* "Harpo" :end1 5)
"Harpo Marx"
* *my-string*
"Harpo Marx"

Concatenating Strings

The name says it all: CONCATENATE is your friend. Note that this is a generic sequence function and you have to provide the result type as the first argument.

* (concatenate 'string "Karl" " " "Marx")
"Karl Marx"
* (concatenate 'list "Karl" " " "Marx")
(#\K #\a #\r #\l #\Space #\M #\a #\r #\x)

With UIOP, use strcat:

* (uiop:strcat "karl" " " marx")

or with the library str, use concat:

* (str:concat "foo" "bar")

If you have to construct a string out of many parts, all of these calls to CONCATENATE seem wasteful, though. There are at least three other good ways to construct a string piecemeal, depending on what exactly your data is. If you build your string one character at a time, make it an adjustable VECTOR (a one-dimensional ARRAY) of type character with a fill-pointer of zero, then use VECTOR-PUSH-EXTEND on it. That way, you can also give hints to the system if you can estimate how long the string will be. (See the optional third argument to VECTOR-PUSH-EXTEND.)

* (defparameter *my-string* (make-array 0
 :element-type 'character
 :fill-pointer 0
 :adjustable t))
MY-STRING
* *my-string*
""
* (dolist (char '(#\Z #\a #\p #\p #\a))
 (vector-push-extend char *my-string*))
NIL
* *my-string*
"Zappa"

If the string will be constructed out of (the printed representations of) arbitrary objects, (symbols, numbers, characters, strings, …), you can use FORMAT with an output stream argument of NIL. This directs FORMAT to return the indicated output as a string.

* (format nil "This is a string with a list ~A in it"
 '(1 2 3))
"This is a string with a list (1 2 3) in it"

We can use the looping constructs of the FORMAT mini language to emulate CONCATENATE.

* (format nil "The Marx brothers are:~{ ~A~}."
 '("Groucho" "Harpo" "Chico" "Zeppo" "Karl"))
"The Marx brothers are: Groucho Harpo Chico Zeppo Karl."

FORMAT can do a lot more processing but it has a relatively arcane syntax. After this last example, you can find the details in the CLHS section about formatted output.

* (format nil "The Marx brothers are:~{ ~A~^,~}."
 '("Groucho" "Harpo" "Chico" "Zeppo" "Karl"))
"The Marx brothers are: Groucho, Harpo, Chico, Zeppo, Karl."

Another way to create a string out of the printed representation of various object is using WITH-OUTPUT-TO-STRING. The value of this handy macro is a string containing everything that was output to the string stream within the body to the macro. This means you also have the full power of FORMAT at your disposal, should you need it.

* (with-output-to-string (stream)
 (dolist (char '(#\Z #\a #\p #\p #\a #\, #\Space))
 (princ char stream))
 (format stream "~S - ~S" 1940 1993))
"Zappa, 1940 - 1993"

Processing a String One Character at a Time

Use the MAP function to process a string one character at a time.

* (defparameter *my-string* (string "Groucho Marx"))
MY-STRING
* (map 'string (lambda (c) (print c)) *my-string*)
#\G
#\r
#\o
#\u
#\c
#\h
#\o
#\Space
#\M
#\a
#\r
#\x
"Groucho Marx"

Or do it with LOOP.

* (loop for char across "Zeppo"
 collect char)
(#\Z #\e #\p #\p #\o)

Reversing a String by Word or Character

Reversing a string by character is easy using the built-in REVERSE function (or its destructive counterpart NREVERSE).

*(defparameter *my-string* (string "DSL"))
MY-STRING
* (reverse *my-string*)
"LSD"

There’s no one-liner in CL to reverse a string by word (like you would do it in Perl with split and join). You either have to use functions from an external library like SPLIT-SEQUENCE or you have to roll your own solution.

Here’s an attempt with the str library:

* (defparameter *singing* "singing in the rain")
SINGING
* (str:words *SINGING*)
("singing" "in" "the" "rain")
* (reverse *)
("rain" "the" "in" "singing")
* (str:unwords *)
"rain the in singing"

And here’s another one with no external dependencies:

* (defun split-by-one-space (string)
 "Returns a list of substrings of string
 divided by ONE space each.
 Note: Two consecutive spaces will be seen as
 if there were an empty string between them."
 (loop for i = 0 then (1+ j)
 as j = (position #\Space string :start i)
 collect (subseq string i j)
 while j))
SPLIT-BY-ONE-SPACE
* (split-by-one-space "Singing in the rain")
("Singing" "in" "the" "rain")
* (split-by-one-space "Singing in the rain")
("Singing" "in" "the" "" "rain")
* (split-by-one-space "Cool")
("Cool")
* (split-by-one-space " Cool ")
("" "Cool" "")
* (defun join-string-list (string-list)
 "Concatenates a list of strings
and puts spaces between the elements."
 (format nil "~{~A~^ ~}" string-list))
JOIN-STRING-LIST
* (join-string-list '("We" "want" "better" "examples"))
"We want better examples"
* (join-string-list '("Really"))
"Really"
* (join-string-list '())
""
* (join-string-list
 (nreverse
 (split-by-one-space
 "Reverse this sentence by word")))
"word by sentence this Reverse"

Dealing with unicode strings

We’ll use here SBCL’s string operations. More generally, see SBCL’s unicode support.

Sorting unicode strings alphabetically

Sorting unicode strings with string-lessp as the comparison function isn’t satisfying:

(sort '("Aaa" "Ééé" "Zzz") #'string-lessp)
;; ("Aaa" "Zzz" "Ééé")

With SBCL, use sb-unicode:unicode<:

(sort '("Aaa" "Ééé" "Zzz") #'sb-unicode:unicode<)
;; ("Aaa" "Ééé" "Zzz")

Breaking strings into graphenes, sentences, lines and words

These functions use SBCL’s sb-unicode: they are SBCL specific.

Use sb-unicode:sentences to break a string into sentences according to the default sentence breaking rules.

Use sb-unicode:lines to break a string into lines that are no wider than the :margin keyword argument. Combining marks will always be kept together with their base characters, and spaces (but not other types of whitespace) will be removed from the end of lines. If :margin is unspecified, it defaults to 80 characters

(sb-unicode:lines "A first sentence. A second somewhat long one." :margin 10)
;; => ("A first"
 "sentence."
 "A second"
 "somewhat"
 "long one.")

See also sb-unicode:words and sb-unicode:graphenes.

Tip: you can ensure these functions are run only in SBCL with a feature flag:

#+sbcl
(runs on sbcl)
#-sbcl
(runs on other implementations)

Controlling Case

Common Lisp has a couple of functions to control the case of a string.

* (string-upcase "cool")
"COOL"
* (string-upcase "Cool")
"COOL"
* (string-downcase "COOL")
"cool"
* (string-downcase "Cool")
"cool"
* (string-capitalize "cool")
"Cool"
* (string-capitalize "cool example")
"Cool Example"

These functions take the :start and :end keyword arguments so you can optionally only manipulate a part of the string. They also have destructive counterparts whose names starts with “N”.

* (string-capitalize "cool example" :start 5)
"cool Example"
* (string-capitalize "cool example" :end 5)
"Cool example"
* (defparameter *my-string* (string "BIG"))
MY-STRING
* (defparameter *my-downcase-string* (nstring-downcase *my-string*))
MY-DOWNCASE-STRING
* *my-downcase-string*
"big"
* *my-string*
"big"

Note this potential caveat: according to the HyperSpec,

for STRING-UPCASE, STRING-DOWNCASE, and STRING-CAPITALIZE, string is not modified. However, if no characters in string require conversion, the result may be either string or a copy of it, at the implementation’s discretion.

This implies that the last result in the following example is implementation-dependent - it may either be “BIG” or “BUG”. If you want to be sure, use COPY-SEQ.

* (defparameter *my-string* (string "BIG"))
MY-STRING
* (defparameter *my-upcase-string* (string-upcase *my-string*))
MY-UPCASE-STRING
* (setf (char *my-string* 1) #\U)
#\U
* *my-string*
"BUG"
* *my-upcase-string*
"BIG"

With the format function

The format function has directives to change the case of words:

To lower case: ~(~)

(format t "~(~a~)" "HELLO WORLD")
;; => hello world

Capitalize every word: ~:(~)

(format t "~:(~a~)" "HELLO WORLD")
Hello World
NIL

Capitalize the first word: ~@(~)

(format t "~@(~a~)" "hello world")
Hello world
NIL

To upper case: ~@:(~)

Where we re-use the colon and the @:

(format t "~@:(~a~)" "hello world")
HELLO WORLD
NIL

Trimming Blanks from the Ends of a String

Not only can you trim blanks, but you can get rid of arbitrary characters. The functions STRING-TRIM, STRING-LEFT-TRIM and STRING-RIGHT-TRIM return a substring of their second argument where all characters that are in the first argument are removed off the beginning and/or the end. The first argument can be any sequence of characters.

* (string-trim " " " trim me ")
"trim me"
* (string-trim " et" " trim me ")
"rim m"
* (string-left-trim " et" " trim me ")
"rim me "
* (string-right-trim " et" " trim me ")
" trim m"
* (string-right-trim '(#\Space #\e #\t) " trim me ")
" trim m"
* (string-right-trim '(#\Space #\e #\t #\m) " trim me ")

Note: The caveat mentioned in the section about Controlling Case also applies here.

Converting between Symbols and Strings

The function INTERN will “convert” a string to a symbol. Actually, it will check whether the symbol denoted by the string (its first argument) is already accessible in the package (its second, optional, argument which defaults to the current package) and enter it, if necessary, into this package. It is beyond the scope of this chapter to explain all the concepts involved and to address the second return value of this function. See the CLHS chapter about packages for details.

Note that the case of the string is relevant.

* (in-package "COMMON-LISP-USER")
#<The COMMON-LISP-USER package, 35/44 internal, 0/9 external>
* (intern "MY-SYMBOL")
MY-SYMBOL
NIL
* (intern "MY-SYMBOL")
MY-SYMBOL
:INTERNAL
* (export 'MY-SYMBOL)
T
* (intern "MY-SYMBOL")
MY-SYMBOL
:EXTERNAL
* (intern "My-Symbol")
|My-Symbol|
NIL
* (intern "MY-SYMBOL" "KEYWORD")
:MY-SYMBOL
NIL
* (intern "MY-SYMBOL" "KEYWORD")
:MY-SYMBOL
:EXTERNAL

To do the opposite, convert from a symbol to a string, use SYMBOL-NAME or STRING.

* (symbol-name 'MY-SYMBOL)
"MY-SYMBOL"
* (symbol-name 'my-symbol)
"MY-SYMBOL"
* (symbol-name '|my-symbol|)
"my-symbol"
* (string 'howdy)
"HOWDY"

Converting between Characters and Strings

You can use COERCE to convert a string of length 1 to a character. You can also use COERCE to convert any sequence of characters into a string. You can not use COERCE to convert a character to a string, though - you’ll have to use STRING instead.

* (coerce "a" 'character)
#\a
* (coerce (subseq "cool" 2 3) 'character)
#\o
* (coerce "cool" 'list)
(#\c #\o #\o #\l)
* (coerce '(#\h #\e #\y) 'string)
"hey"
* (coerce (nth 2 '(#\h #\e #\y)) 'character)
#\y
* (defparameter *my-array* (make-array 5 :initial-element #\x))
MY-ARRAY
* *my-array*
#(#\x #\x #\x #\x #\x)
* (coerce *my-array* 'string)
"xxxxx"
* (string 'howdy)
"HOWDY"
* (string #\y)
"y"
* (coerce #\y 'string)
#\y can't be converted to type STRING.
 [Condition of type SIMPLE-TYPE-ERROR]

Finding an Element of a String

Use find, position, and their …-if counterparts to find characters in a string, with the appropriate :test parameter:

(find #\t "Tea time." :test #'equal)
#\t
* (find #\t "Tea time." :test #'equalp)
#\T
* (find #\z "Tea time." :test #'equalp)
NIL
* (find-if #'digit-char-p "Tea time.")
#\1
* (find-if #'digit-char-p "Tea time." :from-end t)
#\0

(position #\t "Tea time." :test #'equal)
4 ;; <= the first lowercase t
(position #\t "Tea time." :test #'equalp)
0 ;; <= the first capital T
(position-if #'digit-char-p "Tea time is at 5'00.")
15
(position-if #'digit-char-p "Tea time is at 5'00." :from-end t)
18

Or use count and friends to count characters in a string:

(count #\t "Tea time." :test #'equal)
1 ;; <= equal ignores the capital T
(count #\t "Tea time." :test #'equalp)
2 ;; <= equalp counts the capital T
(count-if #'digit-char-p "Tea time is at 5'00.")
3
(count-if #'digit-char-p "Tea time is at 5'00." :start 18)
1

Finding a Substring of a String

The function search can find substrings of a string.

* (search "we" "If we can't be free we can at least be cheap")
3
* (search "we" "If we can't be free we can at least be cheap"
 :from-end t)
20
* (search "we" "If we can't be free we can at least be cheap"
 :start2 4)
20
* (search "we" "If we can't be free we can at least be cheap"
 :end2 5 :from-end t)
3
* (search "FREE" "If we can't be free we can at least be cheap")
NIL
* (search "FREE" "If we can't be free we can at least be cheap"
 :test #'char-equal)
15

Converting a String to a Number

To an integer: parse-integer

CL provides the parse-integer function to convert a string representation of an integer to the corresponding numeric value. The second return value is the index into the string where the parsing stopped.

(parse-integer "42")
42
2
(parse-integer "42" :start 1)
2
2
(parse-integer "42" :end 1)
4
1
(parse-integer "42" :radix 8)
34
2
(parse-integer " 42 ")
42
3
(parse-integer " 42 is forty-two" :junk-allowed t)
42
3
(parse-integer " 42 is forty-two")

Error in function PARSE-INTEGER:
 There's junk in this string: " 42 is forty-two".

parse-integer doesn’t understand radix specifiers like #X, nor is there a built-in function to parse other numeric types. You could use read-from-string in this case.

Extracting many integers from a string: ppcre:all-matches-as-strings

We show this in the Regular Expressions chapter but while we are on this topic, you can find it super useful:

* (ppcre:all-matches-as-strings "-?\\d+" "42 is 41 plus 1")
;; ("42" "41" "1")

* (mapcar #'parse-integer *)
;; (42 41 1)

To any number: read-from-string

Be aware that the full reader is in effect if you’re using this function. This can lead to vulnerability issues. You should use a library like parse-number or parse-float instead.

(read-from-string "#X23")
35
4
(read-from-string "4.5")
4.5
3
(read-from-string "6/8")
3/4
3
(read-from-string "#C(6/8 1)")
#C(3/4 1)
9
(read-from-string "1.2e2")
120.00001
5
(read-from-string "symbol")
SYMBOL
6
(defparameter *foo* 42)
FOO
(read-from-string "#.(setq *foo* \"gotcha\")")
"gotcha"
23
foo
"gotcha"

To a float: the parse-float library

There is no built-in function similar to parse-integer to parse other number types. The external library parse-float does exactly that. It doesn’t use read-from-string so it is safe to use.

(ql:quickload "parse-float")
(parse-float:parse-float "1.2e2")
;; 120.00001
;; 5

LispWorks also has a parse-float function.

See also parse-number.

Converting a Number to a String

The general function WRITE-TO-STRING or one of its simpler variants PRIN1-TO-STRING or PRINC-TO-STRING may be used to convert a number to a string. With WRITE-TO-STRING, the :base keyword argument may be used to change the output base for a single call. To change the output base globally, set print-base which defaults to 10. Remember in Lisp, rational numbers are represented as quotients of two integers even when converted to strings.

(write-to-string 250)
"250"
(write-to-string 250.02)
"250.02"
(write-to-string 250 :base 5)
"2000"
(write-to-string (/ 1 3))
"1/3"
*

Comparing Strings

The general functions EQUAL and EQUALP can be used to test whether two strings are equal. The strings are compared element-by-element, either in a case-sensitive manner (EQUAL) or not (EQUALP). There’s also a bunch of string-specific comparison functions. You’ll want to use these if you’re deploying implementation-defined attributes of characters. Check your vendor’s documentation in this case.

Here are a few examples. Note that all functions that test for inequality return the position of the first mismatch as a generalized boolean. You can also use the generic sequence function MISMATCH if you need more versatility.

(string= "Marx" "Marx")
T
(string= "Marx" "marx")
NIL
(string-equal "Marx" "marx")
T
(string< "Groucho" "Zeppo")
0
(string< "groucho" "Zeppo")
NIL
(string-lessp "groucho" "Zeppo")
0
(mismatch "Harpo Marx" "Zeppo Marx" :from-end t :test #'char=)
3

String formatting

The format function has a lot of directives to print strings, numbers, lists, going recursively, even calling Lisp functions, etc. We’ll focus here on a few things to print and format strings.

The need of our examples arise when we want to print many strings and justify them. Let’s work with this list of movies:

(defparameter movies '(
 (1 "Matrix" 5)
 (10 "Matrix Trilogy swe sub" 3.3)
))

We want an aligned and justified result like this:

 1 Matrix 5
10 Matrix Trilogy swe sub 3.3

We’ll use mapcar to iterate over our movies and experiment with the format constructs.

(mapcar (lambda (it)
 (format t "~a ~a ~a~%" (first it) (second it) (third it)))
 movies)

which prints:

1 Matrix 5
10 Matrix Trilogy swe sub 3.3

Structure of format

Format directives start with ~. A final character like A or a (they are case insensitive) defines the directive. In between, it can accept coma-separated options and parameters.

Print a tilde with ~~, or 10 with ~10~.

Other directives include:

	R: Roman (e.g., prints in English): (format t "~R" 20) => “twenty”.

	$: monetary: (format t "~$" 21982) => 21982.00

	D, B, O, X: Decimal, Binary, Octal, Hexadecimal.

	F: fixed-format Floating point.

	P: plural: (format nil "~D famil~:@P/~D famil~:@P" 7 1) => “7 families/1 family”

Basic primitive: ~A or ~a (Aesthetics)

(format t "~a" movies) is the most basic primitive.

(format nil "~a" movies)
;; => "((1 Matrix 5) (10 Matrix Trilogy swe sub 3.3))"

Newlines: ~% and ~&

~% is the newline character. ~10% prints 10 newlines.

~& does not print a newline if the output stream is already at one.

Tabs

with ~T. Also ~10T works.

Also i for indentation.

Justifying text / add padding on the right

Use a number as parameter, like ~2a:

(format nil "~20a" "yo")
;; "yo "

(mapcar (lambda (it)
 (format t "~2a ~a ~a~%" (first it) (second it) (third it)))
 movies)

1 Matrix 5
10 Matrix Trilogy swe sub 3.3

So, expanding:

(mapcar (lambda (it)
 (format t "~2a ~25a ~2a~%" (first it) (second it) (third it)))
 movies)

1 Matrix 5
10 Matrix Trilogy swe sub 3.3

text is justified on the right (this would be with option :).

Justifying on the left: @

Use a @ as in ~2@A:

(format nil "~20@a" "yo")
;; " yo"

(mapcar (lambda (it)
 (format nil "~2@a ~25@a ~2a~%" (first it) (second it) (third it)))
 movies)

 1 Matrix 5
10 Matrix Trilogy swe sub 3.3

Justifying decimals

In ~,2F, 2 is the number of decimals and F the floats directive: (format t "~,2F" 20.1) => “20.10”.

With ~2,2f:

(mapcar (lambda (it)
 (format t "~2@a ~25a ~2,2f~%" (first it) (second it) (third it)))
 movies)

 1 Matrix 5.00
10 Matrix Trilogy swe sub 3.30

And we’re happy with this result.

Iteration

Create a string from a list with iteration construct ~{str~}:

(format nil "~{~A, ~}" '(a b c))
;; "A, B, C, "

using ~^ to avoid printing the comma and space after the last element:

(format nil "~{~A~^, ~}" '(a b c))
;; "A, B, C"

~:{str~} is similar but for a list of sublists:

(format nil "~:{~S are ~S. ~}" '((pigeons birds) (dogs mammals)))
;; "PIGEONS are BIRDS. DOGS are MAMMALS. "

~@{str~} is similar to ~{str~}, but instead of using one argument that is a list, all the remaining arguments are used as the list of arguments for the iteration:

(format nil "~@{~S are ~S. ~}" 'pigeons 'birds 'dogs 'mammals)
;; "PIGEONS are BIRDS. DOGS are MAMMALS. "

Formatting a format string (~v, ~?)

Sometimes you want to justify a string, but the length is a variable itself. You can’t hardcode its value as in (format nil "~30a" "foo"). Enters the v directive. We can use it in place of the comma-separated prefix parameters:

(let ((padding 30))
 (format nil "~va" padding "foo"))
;; "foo "

Other times, you would like to insert a complete format directive at run time. Enters the ? directive.

(format nil "~?" "~30a" '("foo"))
;; ^ a list

or, using ~@?:

(format nil "~@?" "~30a" "foo")
;; ^ not a list

Of course, it is always possible to format a format string beforehand:

(let* ((length 30)
 (directive (format nil "~~~aa" length)))
 (format nil directive "foo"))

Conditional Formatting

Choose one value out of many options by specifying a number:

(format nil "~[dog~;cat~;bird~:;default~]" 0)
;; "dog"

(format nil "~[dog~;cat~;bird~:;default~]" 1)
;; "cat"

If the number is out of range, the default option (after ~:;) is returned:

(format nil "~[dog~;cat~;bird~:;default~]" 9)
;; "default"

Combine it with ~:* to implement irregular plural:

(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 0)
;; => "I saw zero elves."
(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 1)
;; => "I saw one elf."
(format nil "I saw ~r el~:*~[ves~;f~:;ves~]." 2)
;; => "I saw two elves."

Capturing what is is printed into a stream

Inside (with-output-to-string (mystream) …), everything that is printed into the stream mystream is captured and returned as a string:

(defun greet (name &key (stream t))
 ;; by default, print to standard output.
 (format stream "hello ~a" name))

(let ((output (with-output-to-string (stream)
 (greet "you" :stream stream))))
 (format t "Output is: '~a'. It is indeed a ~a, aka a string.~&" output (type-of output)))
;; Output is: 'hello you'. It is indeed a (SIMPLE-ARRAY CHARACTER (9)), aka a string.
;; NIL

Cleaning up strings

The following examples use the cl-slug library which, internally, iterates over the characters of the string and uses ppcre:regex-replace-all.

(ql:quickload "cl-slug")

Then it can be used with the slug prefix.

Its main function is to transform a string to a slug, suitable for a website’s url:

(slug:slugify "My new cool article, for the blog (V. 2).")
;; "my-new-cool-article-for-the-blog-v-2"

Removing accentuated letters

Use slug:asciify to replace accentuated letters by their ascii equivalent:

(slug:asciify "ñ é ß ğ ö")
;; => "n e ss g o"

This function supports many (western) languages:

slug:*available-languages*
((:TR . "Türkçe (Turkish)") (:SV . "Svenska (Swedish)") (:FI . "Suomi (Finnish)")
 (:UK . "українська (Ukrainian)") (:RU . "Ру́сский (Russian)") (:RO . "Română (Romanian)")
 (:RM . "Rumàntsch (Romansh)") (:PT . "Português (Portuguese)") (:PL . "Polski (Polish)")
 (:NO . "Norsk (Norwegian)") (:LT . "Lietuvių (Lithuanian)") (:LV . "Latviešu (Latvian)")
 (:LA . "Lingua Latīna (Latin)") (:IT . "Italiano (Italian)") (:EL . "ελληνικά (Greek)")
 (:FR . "Français (French)") (:EO . "Esperanto") (:ES . "Español (Spanish)") (:EN . "English")
 (:DE . "Deutsch (German)") (:DA . "Dansk (Danish)") (:CS . "Čeština (Czech)")
 (:CURRENCY . "Currency"))

Removing punctuation

Use (str:remove-punctuation s) or (str:no-case s) (same as (cl-change-case:no-case s)):

(str:remove-punctuation "HEY! What's up ??")
;; "HEY What s up"

(str:no-case "HEY! What's up ??")
;; "hey what s up"

They strip the punctuation with one ppcre unicode regexp ((ppcre:regex-replace-all "[^\\p{L}\\p{N}]+" where p{L} is the “letter” category and p{N} any kind of numeric character).

Appendix

All format directives

All directives are case-insensivite: ~A is the same as ~a.

$ - Monetary Floating-Point
% - Newline
& - Fresh-line
(- Case Conversion
) - End of Case Conversion
* - Go-To
/ - Call Function
; - Clause Separator
< - Justification
< - Logical Block
> - End of Justification
? - Recursive Processing
A - Aesthetic
B - Binary
C - Character
D - Decimal
E - Exponential Floating-Point
F - Fixed-Format Floating-Point
G - General Floating-Point
I - Indent
Missing and Additional FORMAT Arguments
Nesting of FORMAT Operations
Newline: Ignored Newline
O - Octal
P - Plural
R - Radix
S - Standard
T - Tabulate
W - Write
X - Hexadecimal
[- Conditional Expression
] - End of Conditional Expression
^ - Escape Upward
_ - Conditional Newline
{ - Iteration
| - Page
} - End of Iteration
~ - Tilde

See also

	Pretty printing table data, in ASCII art, a tutorial as a Jupyter notebook.

Numbers

Common Lisp has a rich set of numerical types, including integer, rational, floating point, and complex.

Some sources:

	Numbers in Common Lisp the Language, 2nd Edition

	Numbers, Characters and Strings in Practical Common Lisp

Introduction

Integer types

Common Lisp provides a true integer type, called bignum, limited only by the total memory available (not the machine word size). For example this would overflow a 64 bit integer by some way:

* (expt 2 200)
1606938044258990275541962092341162602522202993782792835301376

For efficiency, integers can be limited to a fixed number of bits, called a fixnum type. The range of integers which can be represented is given by:

* most-positive-fixnum
4611686018427387903
* most-negative-fixnum
-4611686018427387904

Functions which operate on or evaluate to integers include:

	isqrt, which returns the greatest integer less than or equal to the exact positive square root of natural.

* (isqrt 10)
3
* (isqrt 4)
2

	gcd to find the Greatest Common Denominator

	lcm for the Least Common Multiple.

Like other low-level programming languages, Common Lisp provides literal representation for hexadecimals and other radixes up to 36. For example:

* #xFF
255
* #2r1010
10
* #4r33
15
* #8r11
9
* #16rFF
255
* #36rz
35

Rational types

Rational numbers of type ratio consist of two bignums, the numerator and denominator. Both can therefore be arbitrarily large:

* (/ (1+ (expt 2 100)) (expt 2 100))
1267650600228229401496703205377/1267650600228229401496703205376

It is a subtype of the rational class, along with integer.

Floating point types

See Common Lisp the Language, 2nd Edition, section 2.1.3.

Floating point types attempt to represent the continuous real numbers using a finite number of bits. This means that many real numbers cannot be represented, but are approximated. This can lead to some nasty surprises, particularly when converting between base-10 and the base-2 internal representation. If you are working with floating point numbers then reading What Every Computer Scientist Should Know About Floating-Point Arithmetic is highly recommended.

The Common Lisp standard allows for several floating point types. In order of increasing precision these are: short-float, single-float, double-float, and long-float. Their precisions are implementation dependent, and it is possible for an implementation to have only one floating point precision for all types.

The constants short-float-epsilon, single-float-epsilon, double-float-epsilon and long-float-epsilon give a measure of the precision of the floating point types, and are implementation dependent.

Floating point literals

When reading floating point numbers, the default type is set by the special variable *read-default-float-format*. By default this is SINGLE-FLOAT, so if you want to ensure that a number is read as double precision then put a d0 suffix at the end

* (type-of 1.24)
SINGLE-FLOAT

* (type-of 1.24d0)
DOUBLE-FLOAT

Other suffixes are s (short), f (single float), d (double float), l (long float) and e (default; usually single float).

The default type can be changed, but note that this may break packages which assume single-float type.

* (setq *read-default-float-format* 'double-float)
* (type-of 1.24)
DOUBLE-FLOAT

Note that unlike in some languages, appending a single decimal point to the end of a number does not make it a float:

* (type-of 10.)
(INTEGER 0 4611686018427387903)

* (type-of 10.0)
SINGLE-FLOAT

Floating point errors

If the result of a floating point calculation is too large then a floating point overflow occurs. By default in SBCL (and other implementations) this results in an error condition:

* (exp 1000)
; Evaluation aborted on #<FLOATING-POINT-OVERFLOW {10041720B3}>.

The error can be caught and handled, or this behaviour can be changed, to return +infinity. In SBCL this is:

* (sb-int:set-floating-point-modes :traps '(:INVALID :DIVIDE-BY-ZERO))

* (exp 1000)
#.SB-EXT:SINGLE-FLOAT-POSITIVE-INFINITY

* (/ 1 (exp 1000))
0.0

The calculation now silently continues, without an error condition.

A similar functionality to disable floating overflow errors exists in CCL:

* (set-fpu-mode :overflow nil)

In SBCL the floating point modes can be inspected:

* (sb-int:get-floating-point-modes)
(:TRAPS (:OVERFLOW :INVALID :DIVIDE-BY-ZERO) :ROUNDING-MODE :NEAREST
 :CURRENT-EXCEPTIONS NIL :ACCRUED-EXCEPTIONS NIL :FAST-MODE NIL)

Arbitrary precision

For arbitrary high precision calculations there is the computable-reals library on QuickLisp:

* (ql:quickload :computable-reals)
* (use-package :computable-reals)

* (sqrt-r 2)
+1.41421356237309504880...

* (sin-r (/r +pi-r+ 2))
+1.00000000000000000000...

The precision to print is set by *PRINT-PREC*, by default 20

* (setq *PRINT-PREC* 50)
* (sqrt-r 2)
+1.41421356237309504880168872420969807856967187537695...

Complex types

There are 5 types of complex number: The real and imaginary parts must be of the same type, and can be rational, or one of the floating point types (short, single, double or long).

Complex values can be created using the #C reader macro or the function complex. The reader macro does not allow the use of expressions as real and imaginary parts:

* #C(1 1)
#C(1 1)

* #C((+ 1 2) 5)
; Evaluation aborted on #<TYPE-ERROR expected-type: REAL datum: (+ 1 2)>.

* (complex (+ 1 2) 5)
#C(3 5)

If constructed with mixed types then the higher precision type will be used for both parts.

* (type-of #C(1 1))
(COMPLEX (INTEGER 1 1))

* (type-of #C(1.0 1))
(COMPLEX (SINGLE-FLOAT 1.0 1.0))

* (type-of #C(1.0 1d0))
(COMPLEX (DOUBLE-FLOAT 1.0d0 1.0d0))

The real and imaginary parts of a complex number can be extracted using realpart and imagpart:

* (realpart #C(7 9))
7
* (imagpart #C(4.2 9.5))
9.5

Complex arithmetic

Common Lisp’s mathematical functions generally handle complex numbers, and return complex numbers when this is the true result. For example:

* (sqrt -1)
#C(0.0 1.0)

* (exp #C(0.0 0.5))
#C(0.87758255 0.47942555)

* (sin #C(1.0 1.0))
#C(1.2984576 0.63496387)

Reading numbers from strings

The parse-integer function reads an integer from a string.

The parse-float library provides a parser which cannot evaluate arbitrary expressions, so should be safer to use on untrusted input:

* (ql:quickload :parse-float)
* (use-package :parse-float)

* (parse-float "23.4e2" :type 'double-float)
2340.0d0
6

See the strings section on converting between strings and numbers.

Converting numbers

Most numerical functions automatically convert types as needed. The coerce function converts objects from one type to another, including numeric types.

See Common Lisp the Language, 2nd Edition, section 12.6.

Convert float to rational

The rational and rationalize functions convert a real numeric argument into a rational. rational assumes that floating point arguments are exact; rationalize exploits the fact that floating point numbers are only exact to their precision, so can often find a simpler rational number.

Convert rational to integer

If the result of a calculation is a rational number where the numerator is a multiple of the denominator, then it is automatically converted to an integer:

* (type-of (* 1/2 4))
(INTEGER 0 4611686018427387903)

Rounding floating-point and rational numbers

The ceiling, floor, round and truncate functions convert floating point or rational numbers to integers. The difference between the result and the input is returned as the second value, so that the input is the sum of the two outputs.

* (ceiling 1.42)
2
-0.58000004

* (floor 1.42)
1
0.41999996

* (round 1.42)
1
0.41999996

* (truncate 1.42)
1
0.41999996

There is a difference between floor and truncate for negative numbers:

* (truncate -1.42)
-1
-0.41999996

* (floor -1.42)
-2
0.58000004

* (ceiling -1.42)
-1
-0.41999996

Similar functions fceiling, ffloor, fround and ftruncate return the result as floating point, of the same type as their argument:

* (ftruncate 1.3)
1.0
0.29999995

* (type-of (ftruncate 1.3))
SINGLE-FLOAT

* (type-of (ftruncate 1.3d0))
DOUBLE-FLOAT

Comparing numbers

See Common Lisp the Language, 2nd Edition, Section 12.3.

The = predicate returns T if all arguments are numerically equal. Note that comparison of floating point numbers includes some margin for error, due to the fact that they cannot represent all real numbers and accumulate errors.

The constant single-float-epsilon is the smallest number which will cause an = comparison to fail, if it is added to 1.0:

* (= (+ 1s0 5e-8) 1s0)
T
* (= (+ 1s0 6e-8) 1s0)
NIL

Note that this does not mean that a single-float is always precise to within 6e-8:

* (= (+ 10s0 4e-7) 10s0)
T
* (= (+ 10s0 5e-7) 10s0)
NIL

Instead this means that single-float is precise to approximately seven digits. If a sequence of calculations are performed, then error can accumulate and a larger error margin may be needed. In this case the absolute difference can be compared:

* (< (abs (- (+ 10s0 5e-7)
 10s0))
 1s-6)
T

When comparing numbers with = mixed types are allowed. To test both numerical value and type use eql:

* (= 3 3.0)
T

* (eql 3 3.0)
NIL

Operating on a series of numbers

Many Common Lisp functions operate on sequences, which can be either lists or vectors (1D arrays). See the section on mapping.

Operations on multidimensional arrays are discussed in this section.

Libraries are available for defining and operating on lazy sequences, including “infinite” sequences of numbers. For example

	Clazy which is on QuickLisp.

	folio2 on QuickLisp. Includes an interface to the

	Series package for efficient sequences.

	lazy-seq.

Working with Roman numerals

The format function can convert numbers to roman numerals with the ~@r directive:

* (format nil "~@r" 42)
"XLII"

There is a gist by tormaroe for reading roman numerals.

Generating random numbers

The random function generates either integer or floating point random numbers, depending on the type of its argument.

* (random 10)
7

* (type-of (random 10))
(INTEGER 0 4611686018427387903)
* (type-of (random 10.0))
SINGLE-FLOAT
* (type-of (random 10d0))
DOUBLE-FLOAT

In SBCL a Mersenne Twister pseudo-random number generator is used. See section 7.13 of the SBCL manual for details.

The random seed is stored in *random-state* whose internal representation is implementation dependent. The function make-random-state can be used to make new random states, or copy existing states.

To use the same set of random numbers multiple times, (make-random-state nil) makes a copy of the current *random-state*:

* (dotimes (i 3)
 (let ((*random-state* (make-random-state nil)))
 (format t "~a~%"
 (loop for i from 0 below 10 collecting (random 10)))))

(8 3 9 2 1 8 0 0 4 1)
(8 3 9 2 1 8 0 0 4 1)
(8 3 9 2 1 8 0 0 4 1)

This generates 10 random numbers in a loop, but each time the sequence is the same because the *random-state* special variable is dynamically bound to a copy of its state before the let form.

Other resources:

	The random-state package is available on QuickLisp, and provides a number of portable random number generators.

Bit-wise Operation

Common Lisp also provides many functions to perform bit-wise arithmetic operations. Some commonly used ones are listed below, together with their C/C++ equivalence.

	
Common Lisp

	
C/C++

	
Description

	
(logand a b c)

	
a & b & c

	
Bit-wise AND of multiple operands

	
(logior a b c)

	
a | b | c

	
Bit-wise OR of multiple operands

	
(lognot a)

	
~a

	
Bit-wise NOT of single operands

	
(logxor a b c)

	
a ^ b ^ c

	
Bit-wise exclusive or (XOR) of multiple operands

	
(ash a 3)

	
a << 3

	
Bit-wise left shift

	
(ash a -3)

	
a >> 3

	
Bit-wise right shift

Negative numbers are treated as two’s-complements. If you have forgotten this, please refer to the Wiki page.

For example:

* (logior 1 2 4 8)
15
;; Explanation:
;; 0001
;; 0010
;; 0100
;; | 1000
;; -------
;; 1111

* (logand 2 -3 4)
0

;; Explanation:
;; 0010 (2)
;; 1101 (two's complement of -3)
;; & 0100 (4)
;; -------
;; 0000

* (logxor 1 3 7 15)
10

;; Explanation:
;; 0001
;; 0011
;; 0111
;; ^ 1111
;; -------
;; 1010

* (lognot -1)
0
;; Explanation:
;; 11 -> 00

* (lognot -3)
2
;; 101 -> 010

* (ash 3 2)
12
;; Explanation:
;; 11 -> 1100

* (ash -5 -2)
-2
;; Explanation
;; 11011 -> 110

Please see the CLHS page for a more detailed explanation or other bit-wise functions.

Loop, iteration, mapping

Introduction: loop, iterate, for, mapcar, series

loop is the built-in macro for iteration.

Its simplest form is (loop (print "hello")): this will print forever.

A simple iteration over a list is:

(loop for x in '(1 2 3)
 do (print x))

It prints what’s needed but returns nil.

If you want to return a list, use collect:

(loop for x in '(1 2 3)
 collect (* x 10))
;; (10 20 30)

The Loop macro is different than most Lisp expressions in having a complex internal domain-specific language that doesn’t use s-expressions. So you need to read Loop expressions with half of your brain in Lisp mode, and the other half in Loop mode. You love it or you hate it.

Think of Loop expressions as having four parts: expressions that set up variables that will be iterated, expressions that conditionally terminate the iteration, expressions that do something on each iteration, and expressions that do something right before the Loop exits. In addition, Loop expressions can return a value. It is very rare to use all of these parts in a given Loop expression, but you can combine them in many ways.

iterate is a popular iteration macro that aims at being simpler, “lispier” and more predictable than loop, besides being extensible. However it isn’t built-in, so you have to import it:

(ql:quickload “iterate”) (use-package :iterate)

Iterate looks like this:

(iter (for i from 1 to 5)
 (collect (* i i)))

(if you use loop and iterate in the same package, you might run into name conflicts)

Iterate also comes with display-iterate-clauses that can be quite handy:

(display-iterate-clauses '(for))
;; FOR PREVIOUS &OPTIONAL INITIALLY BACK Previous value of a variable
;; FOR FIRST THEN Set var on first, and then on subsequent iterations
;; ...

Much of the examples on this page that are valid for loop are also valid for iterate, with minor modifications.

for is an extensible iteration macro that is often shorter than loop, that “unlike loop is extensible and sensible, and unlike iterate does not require code-walking and is easier to extend”.

It has the other advantage of having one construct that works for all data structures (lists, vectors, hash-tables…): in doubt, just use for… over:

(for:for ((x over <your data structure>))
 (print …))

You also have to quickload it:

(ql:quickload “for”)

We’ll also give examples with mapcar and map, and eventually with their friends mapcon, mapcan, maplist, mapc and mapl which E. Weitz categorizes very well in his “Common Lisp Recipes”, chap. 7. The one you are certainly accustomed to from other languages is mapcar: it takes a function, one or more lists as arguments, applies the function on each element of the lists one by one and returns a list of result.

(mapcar (lambda (it) (+ it 10)) '(1 2 3))
(11 12 13)

map is generic, it accepts list and vectors as arguments, and expects the type for its result as first argument:

(map 'vector (lambda (it) (+ it 10)) '(1 2 3))
;; #(11 12 13)
(map 'list (lambda (it) (+ it 10)) #(1 2 3))
;; (11 12 13)
(map 'string (lambda (it) (code-char it)) '#(97 98 99))
;; "abc"

The other constructs have their advantages in some situations ;) They either process the tails of lists, or concatenate the return values, or don’t return anything. We’ll see some of them.

If you like mapcar, use it a lot, and would like a quicker and shorter way to write lambdas, then you might like one of those lambda shorthand libraries.

Here is an example with cl-punch:

(mapcar ^(* _ 10) '(1 2 3))
;; (10 20 30)

and voilà :) We won’t use this more in this recipe, but feel free to do.

Last but not least, you might like series, a library that describes itself as combining aspects of sequences, streams, and loops. Series expressions look like operations on sequences (= functional programming), but can achieve the same high level of efficiency as a loop. Series first appeared in “Common Lisp the Language”, in the appendix A (it nearly became part of the language). Series looks like this:

(collect
 (mapping ((x (scan-range :from 1 :upto 5)))
 (* x x)))
;; (1 4 9 16 25)

series is good, but its function names are different from what we find in functional languages today. You might like the “Generators The Way I Want Them Generated” library. It is a lazy sequences library, similar to series although younger and not as complete, with a “modern” API with words like take, filter, for or fold, and that is easy to use.

(range :from 20)
;; #<GTWIWTG::GENERATOR! {1001A90CA3}>

(take 4 (range :from 20))
;; (20 21 22 23)

At the time of writing, GTWIWTG is licensed under the GPLv3.

Recipes

Looping forever, return

(loop
 (print "hello"))

return can return a result:

(loop for i in '(1 2 3)
 when (> i 1)
 return i)
2

Looping a fixed number of times

dotimes

(dotimes (n 3)
 (print n))
;; =>
;; 0
;; 1
;; 2
;; NIL

Here dotimes returns nil. There are two ways to return a value. First, you can set a result form in the lambda list:

(dotimes (n 3 :done)
 ;; ^^^^^ result form. It can be a s-expression.
 (print n))
;; =>
;; 0
;; 1
;; 2
;; :DONE

Or you can use return with return values:

(dotimes (i 3)
 (if (> i 1)
 (return :early-exit!)
 (print i)))
;; =>
;; 0
;; 1
;; :EARLY-EXIT!

loop… repeat

(loop repeat 10
 do (format t "Hello!~%"))

This prints 10 times “hello” and returns nil.

(loop repeat 10 collect (random 10))
;; (5 1 3 5 4 0 7 4 9 1)

with collect, this returns a list.

Series

(iterate ((n (scan-range :below 10)))
 (print n))

Looping an infinite number of times, cycling over a circular list

First, as shown above, we can simply use (loop ...) to loop infinitely. Here we show how to loop on a list forever.

We can build an infinite list by setting its last element to the list itself:

(loop with list-a = '(1 2 3)
 with infinite-list = (setf (cdr (last list-a)) list-a)
 for item in infinite-list
 repeat 8
 collect item)
;; (1 2 3 1 2 3 1 2)

Illustration: (last '(1 2 3)) is (3), a list, or rather a cons cell, whose car is 3 and cdr is NIL. See the data-structures chapter for a reminder. This is the representation of (list 3):

[o|/]
 |
 3

The representation of (list 1 2 3):

[o|o]---[o|o]---[o|/]
 | | |
 1 2 3

By setting the cdr of the last element to the list itself, we make it recur on itself.

A notation shortcut is possible with the #= syntax:

(defparameter *list-a* '#1=(1 2 3 . #1#))
(setf *print-circle* t) ;; don't print circular lists forever
list-a

If you need to alternate only between two values, use for … then:

(loop repeat 4
 for up = t then (not up)
 do (print up))
T
NIL
T
NIL

Iterate’s for loop

For lists and vectors:

(iter (for item in '(1 2 3))
 (print item))
(iter (for i in-vector #(1 2 3))
 (print i))

or, a generalized iteration clause for lists and vectors, use in-sequence (you’ll pay a speed penalty).

Looping over a hash-table is also straightforward:

(let ((h (let ((h (make-hash-table)))
 (setf (gethash 'a h) 1)
 (setf (gethash 'b h) 2)
 h)))
 (iter (for (k v) in-hashtable h)
 (print k)))
;; b
;; a

In fact, take a look here, or (display-iterate-clauses '(for)) to know about iterating over

	symbols in-package

	forms - or lines, or whatever-you-wish - in-file, or in-stream

	elements in-sequence - sequences can be vectors or lists

Looping over a list

dolist

(dolist (item '(1 2 3))
 (print item))

dolist returns nil.

loop

with in, no surprises:

(loop for x in '(a b c)
 do (print x))
;; A
;; B
;; C
;; NIL

(loop for x in '(a b c)
 collect x)
;; (A B C)

With on, we loop over the cdr of the list:

(loop for i on '(1 2 3) do (print i))
;; (1 2 3)
;; (2 3)
;; (3)

mapcar

(mapcar (lambda (x)
 (print (* x 10)))
 '(1 2 3))
10
20
30
(10 20 30)

mapcar returns the results of the lambda function as a list.

Series

(iterate ((item (scan '(1 2 3))))
 (print item))

scan-sublists is the equivalent of loop for ... on:

(iterate ((i (scan-sublists '(1 2 3))))
 (print i))

Looping over a vector

loop: across

(loop for i across #(1 2 3) do (print i))

Series

(iterate ((i (scan #(1 2 3))))
 (print i))

Looping over a hash-table

We create a hash-table:

(defparameter h (make-hash-table))
(setf (gethash 'a h) 1)
(setf (gethash 'b h) 2)

Looping over keys and values

Looping over keys:

(loop for k being the hash-key of h do (print k))
;; b
;; a

Looping over values uses the same concept but with the hash-value keyword instead of hash-key:

(loop for k being the hash-value of h do (print k))
;; 1
;; 2

Looping over key-values pairs:

(loop for k
 being the hash-key
 using (hash-value v) of h
 do (format t "~a ~a~%" k v))
b 2
a 1

iterate

Use in-hashtable:

(iter (for (key value) in-hashtable h)
 (collect (list key value)))

for

the same with for:

(for:for ((it over h))
 (print it))
(A 1)
(B 2)
NIL

maphash

The lambda function of maphash takes two arguments: the key and the value:

(maphash (lambda (key val)
 (format t "key: ~a val:~a~&" key val))
 h)
;; key: A val:1
;; key: B val:2
;; NIL

See also with-hash-table-iterator.

dohash

Only because we like this topic, we introduce another library, trivial-do. It has the dohash macro, that ressembles dolist:

(dohash (key value h)
 (format t "key: ~A, value: ~A~%" key value))

Series

(iterate (((k v) (scan-hash h)))
 (format t "~&~a ~a~%" k v))

Looping over two lists in parallel

loop

(loop for x in '(a b c)
 for y in '(1 2 3)
 collect (list x y))
;; ((A 1) (B 2) (C 3))

To return a flat list, use nconcing instead of collect:

(loop for x in '(a b c)
 for y in '(1 2 3)
 nconcing (list x y))
(A 1 B 2 C 3)

If a list is smaller than the other one, loop stops at the end of the small one:

(loop for x in '(a b c)
 for y in '(1 2 3 4 5)
 collect (list x y))
;; ((A 1) (B 2) (C 3))

We could loop over the biggest list and manually access the elements of the smaller one by index, but it would quickly be inefficient. Instead, we can tell loop to extend the short list.

(loop for y in '(1 2 3 4 5)
 for x-list = '(a b c) then (cdr x-list)
 for x = (or (car x-list) 'z)
 collect (list x y))
;; ((A 1) (B 2) (C 3) (Z 4) (Z 5))

The trick is that the notation for … = … then (cdr …) (note the = and the role of then) shortens our intermediate list at each iteration (thanks to cdr). It will first be '(a b c), the initial value, then we will get the cdr: (2 3), then (3), then NIL. And both (car NIL) and (cdr NIL) return NIL, so we are good.

mapcar

(mapcar (lambda (x y)
 (list x y))
 '(a b c)
 '(1 2 3))
;; ((A 1) (B 2) (C 3))

or simply:

(mapcar #'list
 '(a b c)
 '(1 2 3))
;; ((A 1) (B 2) (C 3))

Return a flat list:

(mapcan (lambda (x y)
 (list x y))
 '(a b c)
 '(1 2 3))
;; (A 1 B 2 C 3)

Series

(collect
 (#Mlist (scan '(a b c))
 (scan '(1 2 3))))

A more efficient way, when the lists are known to be of equal length:

(collect
 (mapping (((x y) (scan-multiple 'list
 '(a b c)
 '(1 2 3))))
 (list x y)))

Return a flat list:

(collect-append ; or collect-nconc
 (mapping (((x y) (scan-multiple 'list
 '(a b c)
 '(1 2 3))))
 (list x y)))

Nested loops

loop

(loop for x from 1 to 3
 collect (loop for y from 1 to x
 collect y))
;; ((1) (1 2) (1 2 3))

To return a flat list, use nconcing instead of the first collect.

iterate

(iter outer
 (for i below 2)
 (iter (for j below 3)
 (in outer (collect (list i j)))))
;; ((0 0) (0 1) (0 2) (1 0) (1 1) (1 2))

Series

(collect
 (mapping ((x (scan-range :from 1 :upto 3)))
 (collect (scan-range :from 1 :upto x))))

Computing an intermediate value

Use =.

With for:

(loop for x from 1 to 3
 for y = (* x 10)
 collect y)
;; (10 20 30)

With with, the difference being that the value is computed only once:

(loop for x from 1 to 3
 for y = (* x 10)
 with z = x
 collect (list x y z))
;; ((1 10 1) (2 20 1) (3 30 1))

The HyperSpec defines the with clause like this:

with-clause::= with var1 [type-spec] [= form1] {and var2 [type-spec] [= form2]}*

so it turns out we can specify the type before the = and chain the with with and:

(loop for x from 1 to 3
 for y integer = (* x 10)
 with z integer = x
 collect (list x y z))

(loop for x upto 3
 with foo = :foo
 and bar = :bar
 collect (list x foo bar))

We can also give for a then clause that will be called at each iteration:

(loop repeat 3
 for intermediate = 10 then (incf intermediate)
 do (print intermediate))
10
11
12

Here’s a trick to alternate a boolean:

(loop repeat 4
 for up = t then (not up)
 do (print up))

T
NIL
T
NIL

Loop with a counter

loop

Iterate through a list, and have a counter iterate in parallel. The length of the list determines when the iteration ends. Two sets of actions are defined, one of which is executed conditionally.

* (loop for x in '(a b c d e)
 for y from 1

 when (> y 1)
 do (format t ", ")

 do (format t "~A" x)
)

A, B, C, D, E
NIL

We could also write the preceding loop using the IF construct.

* (loop for x in '(a b c d e)
 for y from 1

 if (> y 1)
 do (format t ", ~A" x)
 else do (format t "~A" x)
)

A, B, C, D, E
NIL

Series

By iterating on multiple series in parallel, and using an infinite range, we can make a counter.

(iterate ((x (scan '(a b c d e)))
 (y (scan-range :from 1)))
 (when (> y 1) (format t ", "))
 (format t "~A" x))

Ascending, descending order, limits

loop

from… to…:

(loop for i from 0 to 10
 do (print i))
;; 0 1 2 3 4 5 6 7 8 9 10

from… below…: this stops at 9:

(loop for i from 0 below 10
 do (print i))

Similarly, use from 10 downto 0 (10…0) and from 10 above 0 (10…1).

Series

:from ... :upto, including the upper limit:

(iterate ((i (scan-range :from 0 :upto 10)))
 (print i))

:from ... :below, excluding the upper limit:

(iterate ((i (scan-range :from 0 :below 10)))
 (print i))

Steps

loop

with by:

(loop for i from 1 to 10 by 2
 do (print i))

if you use by (1+ (random 3)), the random is evaluated only once, as if it was in a closure:

(let ((step (random 3)))
 (loop for i from 1 to 10 by (+ 1 step)
 do (print i)))

The step must always be a positive number. If you want to count down, see above.

Series

with :by:

(iterate ((i (scan-range :from 1 :upto 10 :by 2)))
 (print i))

Loop and conditionals

loop

with if, else and finally:

(loop repeat 10
 for x = (random 100)
 if (evenp x)
 collect x into evens
 else
 collect x into odds
 finally (return (values evens odds)))

(42 82 24 92 92)
(55 89 59 13 49)

Combining multiple clauses in an if body requires special syntax (and do, and count):

 (loop repeat 10
 for x = (random 100)
 if (evenp x)
 collect x into evens
 and do (format t "~a is even!~%" x)
 else
 collect x into odds
 and count t into n-odds
 finally (return (values evens odds n-odds)))

46 is even!
8 is even!
76 is even!
58 is even!
0 is even!
(46 8 76 58 0)
(7 45 43 15 69)
5

iterate

Translating (or even writing!) the above example using iterate is straight-forward:

(iter (repeat 10)
 (for x = (random 100))
 (if (evenp x)
 (progn
 (collect x into evens)
 (format t "~a is even!~%" x))
 (progn
 (collect x into odds)
 (count t into n-odds)))
 (finally (return (values evens odds n-odds))))

Series

The preceding loop would be done a bit differently in Series. split sorts one series into multiple according to provided boolean series.

(let* ((number (#M(lambda (n) (random 100))
 (scan-range :below 10)))
 (parity (#Mevenp number)))
 (iterate ((n number) (p parity))
 (when p (format t "~a is even!~%" n)))
 (multiple-value-bind (evens odds) (split number parity)
 (values (collect evens)
 (collect odds)
 (collect-length odds))))

Note that although iterate and the three collect expressions are written sequentially, only one iteration is performed, the same as the example with loop.

Begin the loop with a clause (initially)

(loop initially
 (format t "~a " 'loop-begin)
 for x below 3
 do (format t "~a " x))
;; LOOP-BEGIN 0 1 2

initially also exists with iterate.

Terminate the loop with a test (until, while)

loop

(loop for x in '(1 2 3 4 5)
 until (> x 3)
 collect x)
;; (1 2 3)

the same, with while:

(loop for x in '(1 2 3 4 5)
 while (< x 4)
 collect x)

Series

We truncate the series with until-if, then collect from its result.

(collect
 (until-if (lambda (i) (> i 3))
 (scan '(1 2 3 4 5))))

Loop, print and return a result

loop

do and collect can be combined in one expression

(loop for x in '(1 2 3 4 5)
 while (< x 4)
 do (format t "x is ~a~&" x)
 collect x)
x is 1
x is 2
x is 3
(1 2 3)

Series

By mapping, we can perform a side effect and also collect items

(collect
 (mapping ((x (until-if (complement (lambda (x) (< x 4)))
 (scan '(1 2 3 4 5)))))
 (format t "x is ~a~&" x)
 x))

Named loops and early exit

loop

The special loop named foo syntax allows you to create a loop that you can exit early from. The exit is performed using return-from, and can be used from within nested loops.

;; useless example
(loop named loop-1
 for x from 0 to 10 by 2
 do (loop for y from 0 to 100 by (1+ (random 3))
 when (< x y)
 do (return-from loop-1 (values x y))))
0
2

Sometimes, you want to return early but execute the finally clause anyways. Use loop-finish.

(loop for x from 0 to 100
 do (print x)
 when (>= x 3)
 return x
 finally (print :done)) ;; <-- not printed
;; 0
;; 1
;; 2
;; 3
;; 3

(loop for x from 0 to 100
 do (print x)
 when (>= x 3)
 do (loop-finish)
 finally (print :done)
 (return x))
;; 0
;; 1
;; 2
;; 3
;; :DONE
;; 3

It is most needed when some computation must take place in the finally clause.

Loop shorthands for when/return

Several actions provide shorthands for combinations of when/return:

* (loop for x in '(foo 2)
 thereis (numberp x))
T

* (loop for x in '(foo 2)
 never (numberp x))
NIL

* (loop for x in '(foo 2)
 always (numberp x))
NIL

They correspond to the functions some, notany and every:

(some #'numberp '(foo 2))
(notany #'numberp '(foo 2))
(every #'numberp '(foo 2))

Series

A block is manually created and returned from.

(block loop-1
 (iterate ((x (scan-range :from 0 :upto 10 :by 2)))
 (iterate ((y (scan-range :from 0 :upto 100 :by (1+ (random 3)))))
 (when (< x y)
 (return-from loop-1 (values x y))))))

Count

loop

(loop for i from 1 to 3 count (oddp i))
;; 2

Series

(collect-length (choose-if #'oddp (scan-range :from 1 :upto 3)))

Summation

loop

(loop for i from 1 to 3 sum (* i i))
;; 14

Summing into a variable:

(loop for i from 1 to 3
 sum (* i i) into total
 do (print i)
 finally (print total))
1
2
3
14

Series

(collect-sum (#M(lambda (i) (* i i))
 (scan-range :from 1 :upto 3)))

max, min

loop

(loop for i from 1 to 3 maximize (mod i 3))
;; 2

and minimize.

Series

(collect-max (#M(lambda (i) (mod i 3))
 (scan-range :from 1 :upto 3)))

and collect-min.

Destructuring, aka pattern matching against the list or dotted pairs

loop

(loop for (a b) in '((x 1) (y 2) (z 3))
 collect (list b a))
;; ((1 X) (2 Y) (3 Z))

(loop for (x . y) in '((1 . a) (2 . b) (3 . c)) collect y)
;; (A B C)

Use nil to ignore a term:

(loop for (a nil) in '((x 1) (y 2) (z 3))
 collect a)
;; (X Y Z)

Iterating 2 by 2 over a list

To iterate over a list, 2 items at a time we use a combination of on, by and destructuring.

We use on to loop over the rest (the cdr) of the list.

(loop for rest on '(a 2 b 2 c 3)
 collect rest)
;; ((A 2 B 2 C 3) (2 B 2 C 3) (B 2 C 3) (2 C 3) (C 3) (3))

We use by to skip one element at every iteration ((cddr list) is equivalent to (rest (rest list)))

(loop for rest on '(a 2 b 2 c 3) by #'cddr
 collect rest)
;; ((A 2 B 2 C 3) (B 2 C 3) (C 3))

Then we add destructuring to bind only the first two items at each iteration:

(loop for (key value) on '(a 2 b 2 c 3) by #'cddr
 collect (list key (* 2 value)))
;; ((A 2) (B 4) (C 6))

Series

In general, with destructuring-bind:

(collect
 (mapping ((l (scan '((x 1) (y 2) (z 3)))))
 (destructuring-bind (a b) l
 (list b a))))

But for alists, scan-alist is provided:

(collect
 (mapping (((a b) (scan-alist '((1 . a) (2 . b) (3 . c)))))
 b))

Iterate unique features lacking in loop

iterate has some other things unique to it.

If you are a newcomer in Lisp, it’s perfectly OK to keep this section for later. You could very well spend your career in Lisp without resorting to those features… although they might turn out useful one day.

No rigid order for clauses

loop requires that all for clauses appear before the loop body, for example before a while. It’s ok for iter to not follow this order:

(iter (for x in '(1 2 99)
 (while (< x 10))
 (for y = (print x))
 (collect (list x y)))

Accumulating clauses can be nested

collect, appending and other accumulating clauses can appear anywhere:

(iter (for x in '(1 2 3))
 (case x
 (1 (collect :a))
 ;; ^^ iter keyword, nested in a s-expression.
 (2 (collect :b))))

Finders: finding

iterate has finders.

A finder is a clause whose value is an expression that meets some condition.

We can use finding followed by maximizing, minimizing or such-that.

Here’s how to find the longest list in a list of lists:

(iter (for elt in '((a) (b c d) (e f)))
 (finding elt maximizing (length elt)))
=> (B C D)

The rough equivalent in LOOP would be:

(loop with max-elt = nil
 with max-key = 0
 for elt in '((a) (b c d) (e f))
 for key = (length elt)
 do
 (when (> key max-key)
 (setf max-elt elt
 max-key key))
 finally (return max-elt))
=> (B C D)

There could be more than one such-that clause:

 (iter (for i in '(7 -4 2 -3))
 (if (plusp i)
 (finding i such-that (evenp i))
 (finding (- i) such-that (oddp i))))
;; => 2

We can also write such-that #'evenp and such-that #'oddp.

Control flow: next-iteration

It is like “continue” and loop doesn’t have it.

Skips the remainder of the loop body and begins the next iteration of the loop.

iterate also has first-iteration-p and (if-first-time then else).

See control flow.

Generators

Use generate and next. A generator is lazy, it goes to the next value when said explicitly.

(iter (for i in '(1 2 3 4 5))
 (generate c in-string "black")
 (if (oddp i) (next c))
 (format t "~a " c))
;; b b l l a
;; NIL

Variable backtracking (previous) VS parallel binding

iterate allows us to get the previous value of a variable:

(iter (for el in '(a b c d e))
 (for prev-el previous el)
 (collect (list el prev-el)))
;; => ((A NIL) (B A) (C B) (D C) (E D))

In this case however we can do it with loop’s parallel binding and, which is unsupported in iterate:

(loop for el in '(a b c d e)
 and prev-el = nil then el
 collect (list el prev-el))

More clauses

	in-string can be used explicitly to iterate character by character over a string. With loop, use across.

(iter (for c in-string "hello")
 (collect c))
;; => (#\h #\e #\l #\l #\o)

	loop offers collecting, nconcing, and appending. iterate has these and also adjoining, unioning, nunioning, and accumulating.

(iter (for el in '(a b c a d b))
 (adjoining el))
;; => (A B C D)

(adjoin is a set operation)

	loop has summing, counting, maximizing, and minimizing. iterate also includes multiplying and reducing. reducing is the generalized reduction builder:

(iter (with dividend = 100)
 (for divisor in '(10 5 2))
 (reducing divisor by #'/ initial-value dividend))
;; => 1

Iterate is extensible

(defmacro dividing-by (num &keys (initial-value 0))
 `(reducing ,num by #'/ initial-value ,initial-value))

(iter (for i in '(10 5 2))
 (dividing-by i :initial-value 100))
=> 1

but there is more to it, see the documentation.

We saw libraries extending loop, for example CLSQL, but they are full of feature flag checks (#+(or allegro clisp-aloop cmu openmcl sbcl scl)) and they call internal modules (ansi-loop::add-loop-path, sb-loop::add-loop-path etc).

Custom series scanners

If we often scan the same type of object, we can write our own scanner for it: the iteration itself can be factored out. Taking the example above, of scanning a list of two-element lists, we’ll write a scanner that returns a series of the first elements and a series of the second.

(defun scan-listlist (listlist)
 (declare (optimizable-series-function 2))
 (map-fn '(values t t)
 (lambda (l)
 (destructuring-bind (a b) l
 (values a b)))
 (scan listlist)))

(collect
 (mapping (((a b) (scan-listlist '((x 1) (y 2) (z 3)))))
 (list b a)))

Shorter series expressions

Consider this series expression:

(collect-sum (mapping ((i (scan-range :length 5)))
 (* i 2)))

It’s a bit longer than it needs to be, the mapping form’s only purpose is to bind the variable i, and i is used in only one place. Series has a “hidden feature” that allows us to simplify this expression to the following:

(collect-sum (* 2 (scan-range :length 5)))

This is called implicit mapping and can be enabled in the call to series::install:

(series::install :implicit-map t)

When using implicit mapping, the #M reader macro demonstrated above becomes redundant.

Loop gotchas

	the keyword it, often used in functional constructs, can be recognized as a loop keyword. Don’t use it inside a loop.

Iterate gotchas

It breaks on the function count:

(iter (for i from 1 to 10)
 (sum (count i '(1 3 5))))

It doesn’t recognize the built-in count function and instead signals a condition.

It works in loop:

(loop for i from 1 to 10
 sum (count i '(1 3 5 99)))
;; 3

Appendix: list of loop keywords

Name Clause

named

Variable Clauses

initially finally for as with

Main Clauses

do collect collecting append
appending nconc nconcing into count
counting sum summing maximize return loop-finish
maximizing minimize minimizing doing
thereis always never if when
unless repeat while until

These don’t introduce clauses:

= and it else end from upfrom
above below to upto downto downfrom
in on then across being each the hash-key
hash-keys of using hash-value hash-values
symbol symbols present-symbol
present-symbols external-symbol
external-symbols fixnum float t nil of-type

But note that it’s the parsing that determines what is a keyword. For example in:

(loop for key in hash-values)

Only for and in are keywords.

©Dan Robertson on Stack Overflow.

Credit and references

Loop

	Tutorial for the Common Lisp Loop Macro by Peter D. Karp

	Common Lisp’s Loop Macro Examples for Beginners by Yusuke Shinyama

	Section 6.1 The LOOP Facility, of the draft Common Lisp Standard (X3J13/94-101R) - the (draft) standard provides background information on Loop development, specification and examples. Single PDF file available

	26. Loop by Jon L White, edited and expanded by Guy L. Steele Jr. - from the book “Common Lisp the Language, 2nd Edition”. Strong connection to the draft above, with supplementing comments and examples.

Iterate

	The Iterate Manual -by Jonathan Amsterdam and Luís Oliveira

	iterate - Pseudocodic Iteration - by Shubhamkar Ayare

	Loop v Iterate - SabraOnTheHill

	Comparing loop and iterate - by Stephen Bach (web archive)

Series

	Common Lisp the Language (2nd Edition) - Appendix A. Series

	SERIES for Common Lisp - Richard C. Waters

Others

	See also: more functional constructs (do-repeat, take,…)

Multidimensional arrays

Common Lisp has native support for multidimensional arrays, with some special treatment for 1-D arrays, called vectors. Arrays can be generalised and contain any type (element-type t), or they can be specialised to contain specific types such as single-float or integer. A good place to start is Practical Common Lisp Chapter 11, Collections by Peter Seibel.

A quick reference to some common operations on arrays is given in the section on Arrays and vectors.

Some libraries available on Quicklisp for manipulating arrays:

	array-operations maintained by @Symbolics defines functions generate, permute, displace, flatten, split, combine, reshape. It also defines each, for element-wise operations. This is a fork of bendudson/array-operations which is a fork of tpapp/array-operations, the original author.

	cmu-infix includes array indexing syntax for multidimensional arrays.

	lla is a library for linear algebra, calling BLAS and LAPACK libraries. It differs from most CL linear algebra packages in using intuitive function names, and can operate on native arrays as well as CLOS objects.

This page covers what can be done with the built-in multidimensional arrays, but there are limitations. In particular:

	Interoperability with foreign language arrays, for example when calling libraries such as BLAS, LAPACK or GSL.

	Extending arithmetic and other mathematical operators to handle arrays, for example so that (+ a b) works when a and/or b are arrays.

Both of these problems can be solved by using CLOS to define an extended array class, with native arrays as a special case. Some libraries available through quicklisp which take this approach are:

	matlisp, some of which is described in sections below.

	MGL-MAT, which has a manual and provides bindings to BLAS and CUDA. This is used in a machine learning library MGL.

	cl-ana, a data analysis package with a manual, which includes operations on arrays.

	Antik, used in GSLL, a binding to the GNU Scientific Library.

A relatively new but actively developed package is MAGICL, which provides wrappers around BLAS and LAPACK libraries. At the time of writing this package is not on Quicklisp, and only works under SBCL and CCL. It seems to be particularly focused on complex arrays, but not exclusively. To install, clone the repository in your quicklisp local-projects directory e.g. under Linux/Unix:

$ cd ~/quicklisp/local-projects
$ git clone https://github.com/rigetticomputing/magicl.git

Instructions for installing dependencies (BLAS, LAPACK and Expokit) are given on the github web pages. Low-level routines wrap foreign functions, so have the Fortran names e.g magicl.lapack-cffi::%zgetrf. Higher-level interfaces to some of these functions also exist, see the source directory and documentation.

Taking this further, domain specific languages have been built on Common Lisp, which can be used for numerical calculations with arrays. At the time of writing the most widely used and supported of these are:

	Maxima

	Axiom

CLASP is a project which aims to ease interoperability of Common Lisp with other languages (particularly C++), by using LLVM. One of the main applications of this project is to numerical/scientific computing.

Creating

The function CLHS: make-array can create arrays filled with a single value

* (defparameter *my-array* (make-array '(3 2) :initial-element 1.0))
MY-ARRAY
* *my-array*
#2A((1.0 1.0) (1.0 1.0) (1.0 1.0))

More complicated array values can be generated by first making an array, and then iterating over the elements to fill in the values (see section below on element access).

The array-operations library provides generate, a convenient function for creating arrays which wraps this iteration.

* (ql:quickload :array-operations)
To load "array-operations":
 Load 1 ASDF system:
 array-operations
; Loading "array-operations"

(:ARRAY-OPERATIONS)

* (aops:generate #'identity 7 :position)
#(0 1 2 3 4 5 6)

Note that the nickname for array-operations is aops. The generate function can also iterate over the array subscripts by passing the key :subscripts. See the Array Operations manual on generate for more examples.

Random numbers

To create an 3x3 array containing random numbers drawn from a uniform distribution, generate can be used to call the CL random function:

* (aops:generate (lambda () (random 1.0)) '(3 3))
#2A((0.99292254 0.929777 0.93538976)
 (0.31522608 0.45167792 0.9411855)
 (0.96221936 0.9143338 0.21972346))

An array of Gaussian (normal) random numbers with mean of zero and standard deviation of one, using the alexandria package:

* (ql:quickload :alexandria)
To load "alexandria":
 Load 1 ASDF system:
 alexandria
; Loading "alexandria"

(:ALEXANDRIA)

* (aops:generate #'alexandria:gaussian-random 4)
#(0.5522547885338768d0 -1.2564808468164517d0 0.9488161476129733d0
 -0.10372852118266523d0)

Note that this is not particularly efficient: It requires a function call for each element, and although gaussian-random returns two random numbers, only one of them is used.

For more efficient implementations, and a wider range of probability distributions, there are packages available on Quicklisp. See CLiki for a list.

Accessing elements

To access the individual elements of an array there are the aref and row-major-aref functions.

The aref function takes the same number of index arguments as the array has dimensions. Indexing is from 0 and row-major as in C, but not Fortran.

* (defparameter *a* #(1 2 3 4))
A
* (aref *a* 0)
1
* (aref *a* 3)
4
* (defparameter *b* #2A((1 2 3) (4 5 6)))
B
* (aref *b* 1 0)
4
* (aref *b* 0 2)
3

The range of these indices can be found using array-dimensions:

* (array-dimensions *a*)
(4)
* (array-dimensions *b*)
(2 3)

or the rank of the array can be found, and then the size of each dimension queried:

* (array-rank *a*)
1
* (array-dimension *a* 0)
4
* (array-rank *b*)
2
* (array-dimension *b* 0)
2
* (array-dimension *b* 1)
3

To loop over an array nested loops can be used, such as:

* (defparameter a #2A((1 2 3) (4 5 6)))
A
* (destructuring-bind (n m) (array-dimensions a)
 (loop for i from 0 below n do
 (loop for j from 0 below m do
 (format t "a[~a ~a] = ~a~%" i j (aref a i j)))))

a[0 0] = 1
a[0 1] = 2
a[0 2] = 3
a[1 0] = 4
a[1 1] = 5
a[1 2] = 6
NIL

A utility macro which does this for multiple dimensions is nested-loop:

(defmacro nested-loop (syms dimensions &body body)
 "Iterates over a multidimensional range of indices.

 SYMS must be a list of symbols, with the first symbol
 corresponding to the outermost loop.

 DIMENSIONS will be evaluated, and must be a list of
 dimension sizes, of the same length as SYMS.

 Example:
 (nested-loop (i j) '(10 20) (format t '~a ~a~%' i j))

 "
 (unless syms (return-from nested-loop `(progn ,@body))) ; No symbols

 ;; Generate gensyms for dimension sizes
 (let* ((rank (length syms))
 ;; reverse our symbols list,
 ;; since we start from the innermost.
 (syms-rev (reverse syms))
 ;; innermost dimension first:
 (dims-rev (loop for i from 0 below rank
 collecting (gensym)))
 ;; start with innermost expression
 (result `(progn ,@body)))
 ;; Wrap previous result inside a loop for each dimension
 (loop for sym in syms-rev for dim in dims-rev do
 (unless (symbolp sym)
 (error "~S is not a symbol. First argument to nested-loop must be a list of symbols" sym))
 (setf result
 `(loop for ,sym from 0 below ,dim do
 ,result)))
 ;; Add checking of rank and dimension types,
 ;; and get dimensions into gensym list.
 (let ((dims (gensym)))
 `(let ((,dims ,dimensions))
 (unless (= (length ,dims) ,rank)
 (error "Incorrect number of dimensions: Expected ~a but got ~a" ,rank (length ,dims)))
 (dolist (dim ,dims)
 (unless (integerp dim)
 (error "Dimensions must be integers: ~S" dim)))
 ;; dimensions reversed so that innermost is last:
 (destructuring-bind ,(reverse dims-rev) ,dims
 ,result)))))

so that the contents of a 2D array can be printed using:

* (defparameter a #2A((1 2 3) (4 5 6)))
A
* (nested-loop (i j) (array-dimensions a)
 (format t "a[~a ~a] = ~a~%" i j (aref a i j)))

a[0 0] = 1
a[0 1] = 2
a[0 2] = 3
a[1 0] = 4
a[1 1] = 5
a[1 2] = 6
NIL

[Note: This macro is available in this fork of array-operations, but not Quicklisp]

Row major indexing

In some cases, particularly element-wise operations, the number of dimensions does not matter. To write code which is independent of the number of dimensions, array element access can be done using a single flattened index via row-major-aref. The array size is given by array-total-size, with the flattened index starting at 0.

* (defparameter a #2A((1 2 3) (4 5 6)))
A
* (array-total-size a)
6
* (loop for i from 0 below (array-total-size a) do
 (setf (row-major-aref a i) (+ 2.0 (row-major-aref a i))))
NIL
* a
#2A((3.0 4.0 5.0) (6.0 7.0 8.0))

Infix syntax

The cmu-infix library provides some different syntax which can make mathematical expressions easier to read:

* (ql:quickload :cmu-infix)
To load "cmu-infix":
 Load 1 ASDF system:
 cmu-infix
; Loading "cmu-infix"

(:CMU-INFIX)

* (named-readtables:in-readtable cmu-infix:syntax)
(("COMMON-LISP-USER" . #<NAMED-READTABLE CMU-INFIX:SYNTAX {10030158B3}>)
 ...)

* (defparameter arr (make-array '(3 2) :initial-element 1.0))
ARR

* #i(arr[0 1] = 2.0)
2.0

* arr
#2A((1.0 2.0) (1.0 1.0) (1.0 1.0))

A matrix-matrix multiply operation can be implemented as:

(let ((A #2A((1 2) (3 4)))
 (B #2A((5 6) (7 8)))
 (result (make-array '(2 2) :initial-element 0.0)))

 (loop for i from 0 to 1 do
 (loop for j from 0 to 1 do
 (loop for k from 0 to 1 do
 #i(result[i j] += A[i k] * B[k j]))))
 result)

See the section below on linear algebra, for alternative matrix-multiply implementations.

Element-wise operations

To multiply two arrays of numbers of the same size, pass a function to each in the array-operations library:

* (aops:each #'* #(1 2 3) #(2 3 4))
#(2 6 12)

For improved efficiency there is the aops:each* function, which takes a type as first argument to specialise the result array.

To add a constant to all elements of an array:

* (defparameter *a* #(1 2 3 4))
A
* (aops:each (lambda (it) (+ 42 it)) *a*)
#(43 44 45 46)
* *a*
#(1 2 3 4)

Note that each is not destructive, but makes a new array. All arguments to each must be arrays of the same size, so (aops:each #'+ 42 *a*) is not valid.

Vectorising expressions

An alternative approach to the each function above, is to use a macro to iterate over all elements of an array:

(defmacro vectorize (variables &body body)
 ;; Check that variables is a list of only symbols
 (dolist (var variables)
 (if (not (symbolp var))
 (error "~S is not a symbol" var)))

 ;; Get the size of the first variable, and create a new array
 ;; of the same type for the result
 `(let ((size (array-total-size ,(first variables))) ; Total array size (same for all variables)
 (result (make-array (array-dimensions ,(first variables)) ; Returned array
 :element-type (array-element-type ,(first variables)))))
 ;; Check that all variables have the same sizeo
 ,@(mapcar (lambda (var) `(if (not (equal (array-dimensions ,(first variables))
 (array-dimensions ,var)))
 (error "~S and ~S have different dimensions" ',(first variables) ',var)))
 (rest variables))

 (dotimes (indx size)
 ;; Locally redefine variables to be scalars at a given index
 (let ,(mapcar (lambda (var) (list var `(row-major-aref ,var indx))) variables)
 ;; User-supplied function body now evaluated for each index in turn
 (setf (row-major-aref result indx) (progn ,@body))))
 result))

[Note: Expanded versions of this macro are available in this fork of array-operations, but not Quicklisp]

This can be used as:

* (defparameter *a* #(1 2 3 4))
A
* (vectorize (*a*) (* 2 *a*))
#(2 4 6 8)

Inside the body of the expression (second form in vectorize expression) the symbol *a* is bound to a single element. This means that the built-in mathematical functions can be used:

* (defparameter a #(1 2 3 4))
A
* (defparameter b #(2 3 4 5))
B
* (vectorize (a b) (* a (sin b)))
#(0.9092974 0.28224 -2.2704074 -3.8356972)

and combined with cmu-infix:

* (vectorize (a b) #i(a * sin(b)))
#(0.9092974 0.28224 -2.2704074 -3.8356972)

Calling BLAS

Several packages provide wrappers around BLAS, for fast matrix manipulation.

The lla package in quicklisp includes calls to some functions:

Scale an array

scaling by a constant factor:

* (defparameter a #(1 2 3))
* (lla:scal! 2.0 a)
* a
#(2.0d0 4.0d0 6.0d0)

AXPY

This calculates a * x + y where a is a constant, x and y are arrays. The lla:axpy! function is destructive, modifying the last argument (y).

* (defparameter x #(1 2 3))
A
* (defparameter y #(2 3 4))
B
* (lla:axpy! 0.5 x y)
#(2.5d0 4.0d0 5.5d0)
* x
#(1.0d0 2.0d0 3.0d0)
* y
#(2.5d0 4.0d0 5.5d0)

If the y array is complex, then this operation calls the complex number versions of these operators:

* (defparameter x #(1 2 3))
* (defparameter y (make-array 3 :element-type '(complex double-float)
 :initial-element #C(1d0 1d0)))
* y
#(#C(1.0d0 1.0d0) #C(1.0d0 1.0d0) #C(1.0d0 1.0d0))

* (lla:axpy! #C(0.5 0.5) a b)
#(#C(1.5d0 1.5d0) #C(2.0d0 2.0d0) #C(2.5d0 2.5d0))

Dot product

The dot product of two vectors:

* (defparameter x #(1 2 3))
* (defparameter y #(2 3 4))
* (lla:dot x y)
20.0d0

Reductions

The reduce function operates on sequences, including vectors (1D arrays), but not on multidimensional arrays. To get around this, multidimensional arrays can be displaced to create a 1D vector. Displaced arrays share storage with the original array, so this is a fast operation which does not require copying data:

* (defparameter a #2A((1 2) (3 4)))
A
* (reduce #'max (make-array (array-total-size a) :displaced-to a))
4

The array-operations package contains flatten, which returns a displaced array i.e doesn’t copy data:

* (reduce #'max (aops:flatten a))

An SBCL extension, array-storage-vector provides an efficient but not portable way to achieve the same thing:

* (reduce #'max (array-storage-vector a))
4

More complex reductions are sometimes needed, for example finding the maximum absolute difference between two arrays. Using the above methods we could do:

* (defparameter a #2A((1 2) (3 4)))
A
* (defparameter b #2A((1 3) (5 4)))
B
* (reduce #'max (aops:flatten
 (aops:each
 (lambda (a b) (abs (- a b))) a b)))
2

This involves allocating an array to hold the intermediate result, which for large arrays could be inefficient. Similarly to vectorize defined above, a macro which does not allocate can be defined as:

(defmacro vectorize-reduce (fn variables &body body)
 "Performs a reduction using FN over all elements in a vectorized expression
 on array VARIABLES.

 VARIABLES must be a list of symbols bound to arrays.
 Each array must have the same dimensions. These are
 checked at compile and run-time respectively.
 "
 ;; Check that variables is a list of only symbols
 (dolist (var variables)
 (if (not (symbolp var))
 (error "~S is not a symbol" var)))

 (let ((size (gensym)) ; Total array size (same for all variables)
 (result (gensym)) ; Returned value
 (indx (gensym))) ; Index inside loop from 0 to size

 ;; Get the size of the first variable
 `(let ((,size (array-total-size ,(first variables))))
 ;; Check that all variables have the same size
 ,@(mapcar (lambda (var) `(if (not (equal (array-dimensions ,(first variables))
 (array-dimensions ,var)))
 (error "~S and ~S have different dimensions" ',(first variables) ',var)))
 (rest variables))

 ;; Apply FN with the first two elements (or fewer if size < 2)
 (let ((,result (apply ,fn (loop for ,indx below (min ,size 2) collecting
 (let ,(map 'list (lambda (var) (list var `(row-major-aref ,var ,indx))) variables)
 (progn ,@body))))))

 ;; Loop over the remaining indices
 (loop for ,indx from 2 below ,size do
 ;; Locally redefine variables to be scalars at a given index
 (let ,(mapcar (lambda (var) (list var `(row-major-aref ,var ,indx))) variables)
 ;; User-supplied function body now evaluated for each index in turn
 (setf ,result (funcall ,fn ,result (progn ,@body)))))
 ,result))))

[Note: This macro is available in this fork of array-operations, but not Quicklisp]

Using this macro, the maximum value in an array A (of any shape) is:

* (vectorize-reduce #'max (a) a)

The maximum absolute difference between two arrays A and B, of any shape as long as they have the same shape, is:

* (vectorize-reduce #'max (a b) (abs (- a b)))

Linear algebra

Several packages provide bindings to BLAS and LAPACK libraries, including:

	lla

	MAGICL

A longer list of available packages is on CLiki’s linear algebra page.

In the examples below the lla package is loaded:

* (ql:quickload :lla)

To load "lla":
 Load 1 ASDF system:
 lla
; Loading "lla"
.
(:LLA)

Matrix multiplication

The lla function mm performs vector-vector, matrix-vector and matrix-matrix multiplication.

Vector dot product

Note that one vector is treated as a row vector, and the other as column:

* (lla:mm #(1 2 3) #(2 3 4))
20

Matrix-vector product

* (lla:mm #2A((1 1 1) (2 2 2) (3 3 3)) #(2 3 4))
#(9.0d0 18.0d0 27.0d0)

which has performed the sum over j of A[i j] * x[j]

Matrix-matrix multiply

* (lla:mm #2A((1 2 3) (1 2 3) (1 2 3)) #2A((2 3 4) (2 3 4) (2 3 4)))
#2A((12.0d0 18.0d0 24.0d0) (12.0d0 18.0d0 24.0d0) (12.0d0 18.0d0 24.0d0))

which summed over j in A[i j] * B[j k]

Note that the type of the returned arrays are simple arrays, specialised to element type double-float

* (type-of (lla:mm #2A((1 0 0) (0 1 0) (0 0 1)) #(1 2 3)))
(SIMPLE-ARRAY DOUBLE-FLOAT (3))

Outer product

The array-operations package contains a generalised outer product function:

* (ql:quickload :array-operations)
To load "array-operations":
 Load 1 ASDF system:
 array-operations
; Loading "array-operations"

(:ARRAY-OPERATIONS)
* (aops:outer #'* #(1 2 3) #(2 3 4))
#2A((2 3 4) (4 6 8) (6 9 12))

which has created a new 2D array A[i j] = B[i] * C[j]. This outer function can take an arbitrary number of inputs, and inputs with multiple dimensions.

Matrix inverse

The direct inverse of a dense matrix can be calculated with invert

* (lla:invert #2A((1 0 0) (0 1 0) (0 0 1)))
#2A((1.0d0 0.0d0 -0.0d0) (0.0d0 1.0d0 -0.0d0) (0.0d0 0.0d0 1.0d0))

e.g

* (defparameter a #2A((1 2 3) (0 2 1) (1 3 2)))
A
* (defparameter b (lla:invert a))
B
* (lla:mm a b)
#2A((1.0d0 2.220446049250313d-16 0.0d0)
 (0.0d0 1.0d0 0.0d0)
 (0.0d0 1.1102230246251565d-16 0.9999999999999998d0))

Calculating the direct inverse is generally not advisable, particularly for large matrices. Instead the LU decomposition can be calculated and used for multiple inversions.

* (defparameter a #2A((1 2 3) (0 2 1) (1 3 2)))
A
* (defparameter b (lla:mm a #(1 2 3)))
B
* (lla:solve (lla:lu a) b)
#(1.0d0 2.0d0 3.0d0)

Singular value decomposition

The svd function calculates the singular value decomposition of a given matrix, returning an object with slots for the three returned matrices:

* (defparameter a #2A((1 2 3) (0 2 1) (1 3 2)))
A
* (defparameter a-svd (lla:svd a))
A-SVD
* a-svd
#S(LLA:SVD
 :U #2A((-0.6494608633564334d0 0.7205486773948702d0 0.24292013188045855d0)
 (-0.3744175632000917d0 -0.5810891192666799d0 0.7225973455785591d0)
 (-0.6618248071322363d0 -0.3783451320875919d0 -0.6471807210432038d0))
 :D #S(CL-NUM-UTILS.MATRIX:DIAGONAL-MATRIX
 :ELEMENTS #(5.593122609997059d0 1.2364443401235103d0
 0.43380279311714376d0))
 :VT #2A((-0.2344460799312531d0 -0.7211054639318696d0 -0.6519524104506949d0)
 (0.2767642134809678d0 -0.6924017945853318d0 0.6663192365460215d0)
 (-0.9318994611765425d0 -0.02422116311440764d0 0.3619070730398283d0)))

The diagonal matrix (singular values) and vectors can be accessed with functions:

(lla:svd-u a-svd)
#2A((-0.6494608633564334d0 0.7205486773948702d0 0.24292013188045855d0)
 (-0.3744175632000917d0 -0.5810891192666799d0 0.7225973455785591d0)
 (-0.6618248071322363d0 -0.3783451320875919d0 -0.6471807210432038d0))

* (lla:svd-d a-svd)
#S(CL-NUM-UTILS.MATRIX:DIAGONAL-MATRIX
 :ELEMENTS #(5.593122609997059d0 1.2364443401235103d0 0.43380279311714376d0))

* (lla:svd-vt a-svd)
#2A((-0.2344460799312531d0 -0.7211054639318696d0 -0.6519524104506949d0)
 (0.2767642134809678d0 -0.6924017945853318d0 0.6663192365460215d0)
 (-0.9318994611765425d0 -0.02422116311440764d0 0.3619070730398283d0))

Matlisp

The Matlisp scientific computation library provides high performance operations on arrays, including wrappers around BLAS and LAPACK functions. It can be loaded using quicklisp:

* (ql:quickload :matlisp)

The nickname for matlisp is m. To avoid typing matlisp: or m: in front of each symbol, you can define your own package which uses matlisp (See the PCL section on packages):

* (defpackage :my-new-code
 (:use :common-lisp :matlisp))
#<PACKAGE "MY-NEW-CODE">

* (in-package :my-new-code)

and to use the #i infix reader (note the same name as for cmu-infix), run:

* (named-readtables:in-readtable :infix-dispatch-table)

Creating tensors

* (matlisp:zeros '(2 2))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.000 0.000
 0.000 0.000
>

Note that by default matrix storage types are double-float. To create a complex array using zeros, ones and eye, specify the type:

* (matlisp:zeros '(2 2) '((complex double-float)))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: (COMPLEX DOUBLE-FLOAT)>| #(2 2)
 0.000 0.000
 0.000 0.000
>

As well as zeros and ones there is eye which creates an identity matrix:

* (matlisp:eye '(3 3) '((complex double-float)))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: (COMPLEX DOUBLE-FLOAT)>| #(3 3)
 1.000 0.000 0.000
 0.000 1.000 0.000
 0.000 0.000 1.000
>

Ranges

To generate 1D arrays there are the range and linspace functions:

* (matlisp:range 1 10)
#<|<SIMPLE-DENSE-TENSOR: (INTEGER 0 4611686018427387903)>| #(9)
 1 2 3 4 5 6 7 8 9
>

The range function rounds down it’s final argument to an integer:

* (matlisp:range 1 -3.5)
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: SINGLE-FLOAT>| #(5)
 1.000 0.000 -1.000 -2.000 -3.000
>
* (matlisp:range 1 3.3)
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: SINGLE-FLOAT>| #(3)
 1.000 2.000 3.000
>

Linspace is a bit more general, and the values returned include the end point.

* (matlisp:linspace 1 10)
#<|<SIMPLE-DENSE-TENSOR: (INTEGER 0 4611686018427387903)>| #(10)
 1 2 3 4 5 6 7 8 9 10
>

* (matlisp:linspace 0 (* 2 pi) 5)
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(5)
 0.000 1.571 3.142 4.712 6.283
>

Currently linspace requires real inputs, and doesn’t work with complex numbers.

Random numbers

* (matlisp:random-uniform '(2 2))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.7287 0.9480
 2.6703E-2 0.1834
>

(matlisp:random-normal '(2 2))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.3536 -1.291
 -0.3877 -1.371
>

There are functions for other distributions, including random-exponential, random-beta, random-gamma and random-pareto.

Reader macros

The #d and #e reader macros provide a way to create double-float and single-float tensors:

* #d[1,2,3]
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(3)
 1.000 2.000 3.000
>

* #d[[1,2,3],[4,5,6]]
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 1.000 2.000 3.000
 4.000 5.000 6.000
>

Note that the comma separators are needed.

Tensors from arrays

Common lisp arrays can be converted to Matlisp tensors by copying:

* (copy #2A((1 2 3)
 (4 5 6))
 '#.(tensor 'double-float))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 1.000 2.000 3.000
 4.000 5.000 6.000
>

Instances of the tensor class can also be created, specifying the dimensions. The internal storage of tensor objects is a 1D array (simple-vector) in a slot store.

For example, to create a double-float type tensor:

(make-instance (tensor 'double-float)
 :dimensions (coerce '(2) '(simple-array index-type (*)))
 :store (make-array 2 :element-type 'double-float))

Arrays from tensors

The array store can be accessed using slots:

* (defparameter vec (m:range 0 5))
* vec
#<|<SIMPLE-DENSE-TENSOR: (INTEGER 0 4611686018427387903)>| #(5)
 0 1 2 3 4
>
* (slot-value vec 'm:store)
#(0 1 2 3 4)

Multidimensional tensors are also stored in 1D arrays, and are stored in column-major order rather than the row-major ordering used for common lisp arrays. A displaced array will therefore be transposed.

The contents of a tensor can be copied into an array

* (let ((tens (m:ones '(2 3))))
 (m:copy tens 'array))
#2A((1.0d0 1.0d0 1.0d0) (1.0d0 1.0d0 1.0d0))

or a list:

* (m:copy (m:ones '(2 3)) 'cons)
((1.0d0 1.0d0 1.0d0) (1.0d0 1.0d0 1.0d0))

Element access

The ref function is the equivalent of aref for standard CL arrays, and is also setf-able:

* (defparameter a (matlisp:ones '(2 3)))

* (setf (ref a 1 1) 2.0)
2.0d0
* a
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 1.000 1.000 1.000
 1.000 2.000 1.000
>

Element-wise operations

The matlisp-user package, loaded when matlisp is loaded, contains functions for operating element-wise on tensors.

* (matlisp-user:* 2 (ones '(2 3)))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 3)
 2.000 2.000 2.000
 2.000 2.000 2.000
>

This includes arithmetic operators ‘+’, ‘-’, ’*‘,’/’ and ‘expt’, but also sqrt,sin,cos,tan, hyperbolic functions, and their inverses. The #i reader macro recognises many of these, and uses the matlisp-user functions:

* (let ((a (ones '(2 2)))
 (b (random-normal '(2 2))))
 #i(2 * a + b))
#<|<BLAS-MIXIN SIMPLE-DENSE-TENSOR: DOUBLE-FLOAT>| #(2 2)
 0.9684 3.250
 1.593 1.508
>

* (let ((a (ones '(2 2)))
 (b (random-normal '(2 2))))
 (macroexpand-1 '#i(2 * a + b)))
(MATLISP-USER:+ (MATLISP-USER:* 2 A) B)

Dates and Times

Common Lisp provides two different ways of looking at time: universal time, meaning time in the “real world”, and run time, meaning time as seen by your computer’s CPU. We will deal with both of them separately.

[bookmark: univ]

Built-in time functions

Universal Time

Universal time is represented as the number of seconds that have elapsed since 00:00 of January 1, 1900 in the GMT time zone. The function get-universal-time returns the current universal time:

CL-USER> (get-universal-time)
3220993326

Of course this value is not very readable, so you can use the function decode-universal-time to turn it into a “calendar time” representation:

CL-USER> (decode-universal-time 3220993326)
6
22
19
25
1
2002
4
NIL
5

NB: in the next section we’ll use the local-time library to get more user-friendy functions, such as (local-time:universal-to-timestamp (get-universal-time)) which returns @2021-06-25T09:16:29.000000+02:00.

This call to decode-universal-time returns nine values: seconds, minutes, hours, day, month, year, day of the week, daylight savings time flag and time zone. Note that the day of the week is represented as an integer in the range 0..6 with 0 being Monday and 6 being Sunday. Also, the time zone is represented as the number of hours you need to add to the current time in order to get GMT time.

So in this example the decoded time would be 19:22:06 of Friday, January 25, 2002, in the EST time zone, with no daylight savings in effect. This, of course, relies on the computer’s own clock, so make sure that it is set correctly (including the time zone you are in and the DST flag). As a shortcut, you can use get-decoded-time to get the calendar time representation of the current time directly:

CL-USER> (get-decoded-time)

is equivalent to

CL-USER> (decode-universal-time (get-universal-time))

Here is an example of how to use these functions in a program (but frankly, use the local-time library instead):

CL-USER> (defconstant *day-names*
 '("Monday" "Tuesday" "Wednesday"
 "Thursday" "Friday" "Saturday"
 "Sunday"))
DAY-NAMES

CL-USER> (multiple-value-bind
 (second minute hour day month year day-of-week dst-p tz)
 (get-decoded-time)
 (format t "It is now ~2,'0d:~2,'0d:~2,'0d of ~a, ~d/~2,'0d/~d (GMT~@d)"
 hour
 minute
 second
 (nth day-of-week *day-names*)
 month
 day
 year
 (- tz)))
It is now 17:07:17 of Saturday, 1/26/2002 (GMT-5)

Of course the call to get-decoded-time above could be replaced by (decode-universal-time n), where n is any integer number, to print an arbitrary date. You can also go the other way around: the function encode-universal-time lets you encode a calendar time into the corresponding universal time. This function takes six mandatory arguments (seconds, minutes, hours, day, month and year) and one optional argument (the time zone) and it returns a universal time:

CL-USER> (encode-universal-time 6 22 19 25 1 2002)
3220993326

Note that the result is automatically adjusted for daylight savings time if the time zone is not supplied. If it is supplied, than Lisp assumes that the specified time zone already accounts for daylight savings time, and no adjustment is performed.

Since universal times are simply numbers, they are easier and safer to manipulate than calendar times. Dates and times should always be stored as universal times if possible, and only converted to string representations for output purposes. For example, it is straightforward to know which of two dates came before the other, by simply comparing the two corresponding universal times with <.

Internal Time

Internal time is the time as measured by your Lisp environment, using your computer’s clock. It differs from universal time in three important respects. First, internal time is not measured starting from a specified point in time: it could be measured from the instant you started your Lisp, from the instant you booted your machine, or from any other arbitrary time point in the past. As we will see shortly, the absolute value of an internal time is almost always meaningless; only differences between internal times are useful. The second difference is that internal time is not measured in seconds, but in a (usually smaller) unit whose value can be deduced from internal-time-units-per-second:

CL-USER> internal-time-units-per-second
1000

This means that in the Lisp environment used in this example, internal time is measured in milliseconds.

Finally, what is being measured by the “internal time” clock? There are actually two different internal time clocks in your Lisp:

	one of them measures the passage of “real” time (the same time that universal time measures, but in different units), and

	the other one measures the passage of CPU time, that is, the time your CPU spends doing actual computation for the current Lisp process.

On most modern computers these two times will be different, since your CPU will never be entirely dedicated to your program (even on single-user machines, the CPU has to devote part of its time to processing interrupts, performing I/O, etc). The two functions used to retrieve internal times are called get-internal-real-time and get-internal-run-time respectively. Using them, we can solve the above problem about measuring a function’s run time, which is what the time built-in macro does.

CL-USER> (time (sleep 1))
Evaluation took:
 1.000 seconds of real time
 0.000049 seconds of total run time (0.000044 user, 0.000005 system)
 0.00% CPU
 2,594,553,447 processor cycles
 0 bytes consed

The local-time library

The local-time library (GitHub) is a very handy extension to the somewhat limited functionalities as defined by the standard.

In particular, it can

	print timestamps in various standard or custom formats (e.g. RFC1123 or RFC3339)

	parse timestrings,

	perform time arithmetic,

	convert Unix times, timestamps, and universal times to and from.

We present below what we find the most useful functions. See its manual for the full details.

It is available in Quicklisp:

CL-USER> (ql:quickload "local-time")

Create timestamps (encode-timestamp, universal-to-timestamp)

Create a timestamp with encode-timestamp, giving it its number of nanoseconds, seconds, minutes, days, months and years:

(local-time:encode-timestamp 0 0 0 0 1 1 1984)
@1984-01-01T00:00:00.000000+01:00

The complete signature is:

encode-timestamp nsec sec minute hour day month year &key timezone offset into

The offset is the number of seconds offset from UTC of the locale. If offset is not specified, the offset will be guessed from the timezone. If a timestamp is passed as the into argument, its value will be set and that timestamp will be returned. Otherwise, a new timestamp is created.

Create a timestamp from a universal time with universal-to-timestamp:

(get-universal-time)
3833588757
(local-time:universal-to-timestamp (get-universal-time))
@2021-06-25T07:45:59.000000+02:00

You can also parse a human-readable time string:

(local-time:parse-timestring "1984-01-01")
@1984-01-01T01:00:00.000000+01:00

But see the section on parsing timestrings for more.

Get today’s date (now, today)

Use now or today:

(local-time:now)
@2019-11-13T20:02:13.529541+01:00

(local-time:today)
@2019-11-13T01:00:00.000000+01:00

“today” is the midnight of the current day in the UTC zone.

To compute “yesterday” and “tomorrow”, see below.

Add or substract times (timestamp+, timestamp-)

Use timestamp+ and timestamp-. Each takes 3 arguments: a date, a number and a unit (and optionally a timezone and an offset):

(local-time:now)
@2021-06-25T07:19:39.836973+02:00

(local-time:timestamp+ (local-time:now) 1 :day)
@2021-06-26T07:16:58.086226+02:00

(local-time:timestamp- (local-time:now) 1 :day)
@2021-06-24T07:17:02.861763+02:00

The available units are :sec :minute :hour :day :year.

This operation is also possible with adjust-timestamp, which can do a bit more as we’ll see right in the next section (it can do many operations at once).

(local-time:timestamp+ (today) 3 :day)
@2021-06-28T02:00:00.000000+02:00

(local-time:adjust-timestamp (today) (offset :day 3))
@2021-06-28T02:00:00.000000+02:00

Here’s yesterday and tomorrow defined from today:

(defun yesterday ()
 "Returns a timestamp representing the day before today."
 (timestamp- (today) 1 :day))

(defun tomorrow ()
 "Returns a timestamp representing the day after today."
 (timestamp+ (today) 1 :day))

Modify timestamps with any offset (adjust-timestamp)

adjust-timestamp’s first argument is the timestamp we operate on, and then it accepts a full &body changes where a “change” is in the form (offset :part value):

Please point to the previous Monday:

(local-time:adjust-timestamp (today) (offset :day-of-week :monday))
@2021-06-21T02:00:00.000000+02:00

We can apply many changes at once. Travel in time:

(local-time:adjust-timestamp (today)
 (offset :day 3)
 (offset :year 110)
 (offset :month -1))
@2131-05-28T02:00:00.000000+01:00

There is a destructive version, adjust-timestamp!.

Compare timestamps (timestamp<, timestamp<, timestamp= …)

These should be self-explanatory.

timestamp< time-a time-b
timestamp<= time-a time-b
timestamp> time-a time-b
timestamp>= time-a time-b
timestamp= time-a time-b
timestamp/= time-a time-b

Find the minimum or maximum timestamp

Use timestamp-minimum and timestamp-maximum. They accept any number of arguments.

(local-time:timestamp-minimum (local-time:today)
 (local-time:timestamp- (local-time:today) 100 :year))
@1921-06-25T02:00:00.000000+01:00

If you have a list of timestamps, use (apply #'timestamp-minimum <your list of timestamps>).

Maximize or minimize a timestamp according to a time unit (timestamp-maximize-part, timestamp-minimize-part)

We can answer quite a number of questions with this handy function.

Here’s an example: please give me the last day of this month:

(let ((in-february (local-time:parse-timestring "1984-02-01")))
 (local-time:timestamp-maximize-part in-february :day))

@1984-02-29T23:59:59.999999+01:00

Querying timestamp objects (get the day, the day of week, the days in month…)

Use:

timestamp-[year, month, day, hour, minute, second, millisecond, microsecond,
 day-of-week (starts at 0 for sunday),
 millenium, century, decade]

Get all the values at once with decode-timestamp.

Bind a variable to a value of your choice with this convenient macro:

(local-time:with-decoded-timestamp (:hour h)
 (now)
 (print h))

8
8

You can of course bind each time unit (:sec :minute :day) to its variable, in any order.

See also (days-in-month <month> <year>).

Formatting time strings (format, format-timestring, +iso-8601-format+)

local-time’s date representation starts with @. We can format them as usual, with the aesthetic directive for instance, to get a usual date representation.

(local-time:now)
@2019-11-13T18:07:57.425654+01:00

(format nil "~a" (local-time:now))
"2019-11-13T18:08:23.312664+01:00"

We can use format-timestring, which can be used like format (thus it takes a stream as first argument):

(local-time:format-timestring nil (local-time:now))
"2019-11-13T18:09:06.313650+01:00"

Here nil returns a new string. t would print to *standard-output*.

But format-timestring also accepts a :format argument. We can use predefined date formats as well as give our own in s-expression friendly way (see next section).

Its default value is +iso-8601-format+, with the output shown above. The +rfc3339-format+ format defaults to it.

With +rfc-1123-format+:

(local-time:format-timestring nil (local-time:now) :format local-time:+rfc-1123-format+)
"Wed, 13 Nov 2019 18:11:38 +0100"

With +asctime-format+:

(local-time:format-timestring nil (local-time:now) :format local-time:+asctime-format+)
"Wed Nov 13 18:13:15 2019"

With +iso-week-date-format+:

(local-time:format-timestring nil (local-time:now) :format local-time:+iso-week-date-format+)
"2019-W46-3"

Putting all this together, here is a function that returns Unix times as a human readable string:

(defun unix-time-to-human-string (unix-time)
 (local-time:format-timestring
 nil
 (local-time:unix-to-timestamp unix-time)
 :format local-time:+asctime-format+))

(unix-time-to-human-string (get-universal-time))
"Mon Jun 25 06:46:49 2091"

Defining format strings (format-timestring (:year “-” :month “-” :day))

We can pass a custom :format argument to format-timestring.

The syntax consists of a list made of symbols with special meanings (:year, :day…), strings and characters:

(local-time:format-timestring nil (local-time:now) :format '(:year "-" :month "-" :day))
"2019-11-13"

The list of symbols is available in the documentation: https://common-lisp.net/project/local-time/manual.html#Parsing-and-Formatting

There are :year :month :day :weekday :hour :hour12 :min :sec :msec, long and short notations (:long-weekday for “Monday”, :short-weekday for “Mon.”, :minimal-weekday for “Mo.” as well as :long-month for “January” and :short-month for “Jan.”), gmt offset, timezone markers, :ampm, :ordinal-day (1st, 23rd), iso numbers and more.

The +rfc-1123-format+ itself is defined like this:

(defparameter +rfc-1123-format+
 ;; Sun, 06 Nov 1994 08:49:37 GMT
 '(:short-weekday ", " (:day 2) #\space :short-month #\space (:year 4) #\space
 (:hour 2) #\: (:min 2) #\: (:sec 2) #\space :gmt-offset-hhmm)
 "See the RFC 1123 for the details about the possible values of the timezone field.")

We see the form (:day 2): the 2 is for padding, to ensure that the day is printed with two digits (not only 1, but 01). There could be an optional third argument, the character with which to fill the padding (by default, #\0).

Parsing time strings

Use parse-timestring to parse timestrings, in the form 2019-11-13T18:09:06.313650+01:00. It works in a variety of formats by default, and we can change parameters to adapt it to our needs.

To parse more formats such as “Thu Jul 23 19:42:23 2013” (asctime), we’ll use the cl-date-time-parser library.

The parse-timestring docstring is:

Parses a timestring and returns the corresponding timestamp. Parsing begins at start and stops at the end position. If there are invalid characters within timestring and fail-on-error is T, then an invalid-timestring error is signaled, otherwise NIL is returned.

If there is no timezone specified in timestring then offset is used as the default timezone offset (in seconds).

Examples:

(local-time:parse-timestring "2019-11-13T18:09:06.313650+01:00")
;; @2019-11-13T18:09:06.313650+01:00

(local-time:parse-timestring "2019-11-13")
;; @2019-11-13T01:00:00.000000+01:00

This custom format fails by default: “2019/11/13”, but we can set the :date-separator to “/”:

(local-time:parse-timestring "2019/11/13" :date-separator #\/)
;; @2019-11-13T19:42:32.394092+01:00

There is also a :time-separator (defaulting to #\:) and :date-time-separator (#\T).

Other options include:

	the start and end positions

	fail-on-error (defaults to t)

	(allow-missing-elements t)

	(allow-missing-date-part allow-missing-elements)

	(allow-missing-time-part allow-missing-elements)

	(allow-missing-timezone-part allow-missing-elements)

	(offset 0)

Now a format like "“Wed Nov 13 18:13:15 2019” will fail. We’ll use the cl-date-time-parser library:

(cl-date-time-parser:parse-date-time "Wed Nov 13 18:13:15 2019")
;; 3782657595
;; 0

It returns the universal time which, in turn, we can ingest with the local-time library:

(local-time:universal-to-timestamp *)
;; @2019-11-13T19:13:15.000000+01:00

Misc

To find out if it’s Alice anniversary, use timestamp-whole-year-difference time-a time-b.

Pattern Matching

The ANSI Common Lisp standard does not include facilities for pattern matching, but libraries existed for this task and Trivia became a community standard.

For an introduction to the concepts of pattern matching, see Trivia’s wiki.

Trivia matches against a lot of lisp objects and is extensible.

The library is in Quicklisp:

(ql:quickload "trivia")

For the following examples, let’s use the library:

(use-package :trivia)

Common destructuring patterns

cons

(match '(1 2 3)
 ((cons x y)
 ; ^^ pattern
 (print x)
 (print y)))
;; |-> 1
;; |-> (2 3)

list, list*

list is a strict pattern, it expects the length of the matched object to be the same length as its subpatterns.

(match '(something 2 3)
 ((list a b _)
 (values a b)))
SOMETHING
2

Without the _ placeholder, it would not match:

(match '(something 2 3)
 ((list a b)
 (values a b)))
NIL

The list* pattern is flexible on the object’s length:

(match '(something 2 3)
 ((list* a b)
 (values a b)))
SOMETHING
(2 3)

(match '(1 2 . 3)
 ((list* _ _ x)
 x))
3

However pay attention that if list* receives only one object, that object is returned, regardless of whether or not it is a list:

(match #(0 1 2)
 ((list* a)
 a))
#(0 1 2)

This is related to the definition of list* in the HyperSpec: http://clhs.lisp.se/Body/f_list_.htm.

vector, vector*

vector checks if the object is a vector, if the lengths are the same, and if the contents matches against each subpatterns.

vector* is similar, but called a soft-match variant that allows if the length is larger-than-equal to the length of subpatterns.

(match #(1 2 3)
 ((vector _ x _)
 x))
;; -> 2

(match #(1 2 3 4)
 ((vector _ x _)
 x))
;; -> NIL : does not match

(match #(1 2 3 4)
 ((vector* _ x _)
 x))
;; -> 2 : soft match.

<vector-pattern> : vector | simple-vector
 bit-vector | simple-bit-vector
 string | simple-string
 base-string | simple-base-string | sequence
(<vector-pattern> &rest subpatterns)

Class and structure pattern

There are three styles that are equivalent:

(defstruct foo bar baz)
(defvar *x* (make-foo :bar 0 :baz 1)

(match *x*
 ;; make-instance style
 ((foo :bar a :baz b)
 (values a b))
 ;; with-slots style
 ((foo (bar a) (baz b))
 (values a b))
 ;; slot name style
 ((foo bar baz)
 (values bar baz)))

type, satisfies

The type pattern matches if the object is of type. satisfies matches if the predicate returns true for the object. A lambda form is acceptable.

assoc, property, alist, plist

All these patterns first check if the pattern is a list. If that is satisfied, then they obtain the contents, and the value is matched against the subpattern.

Array, simple-array, row-major-array patterns

See https://github.com/guicho271828/trivia/wiki/Type-Based-Destructuring-Patterns#array-simple-array-row-major-array-pattern !

Logic based patterns

We can combine any pattern with some logic.

and, or

The following:

(match x
 ((or (list 1 a)
 (cons a 3))
 a))

matches against both (1 2) and (4 . 3) and returns 2 and 4, respectively.

not

It does not match when subpattern matches. The variables used in the subpattern are not visible in the body.

Guards

Guards allow us to use patterns and to verify them against a predicate.

The syntax is guard + subpattern + a test form, and the body.

(match (list 2 5)
 ((guard (list x y) ; subpattern1
 (= 10 (* x y))) ; test-form
 :ok))

If the subpattern is true, the test form is evaluated, and if it is true it is matched against subpattern1.

Nesting patterns

Patterns can be nested:

(match '(:a (3 4) 5)
 ((list :a (list _ c) _)
 c))

returns 4.

See more

See special patterns: place, bind and access.

Regular Expressions

The ANSI Common Lisp standard does not include facilities for regular expressions, but a couple of libraries exist for this task, for instance: cl-ppcre.

See also the respective Cliki: regexp page for more links.

Note that some CL implementations include regexp facilities, notably CLISP and ALLEGRO CL. If in doubt, check your manual or ask your vendor.

The description provided below is far from complete, so don’t forget to check the reference manual that comes along with the CL-PPCRE library.

PPCRE

CL-PPCRE (abbreviation for Portable Perl-compatible regular expressions) is a portable regular expression library for Common Lisp with a broad set of features and good performance. It has been ported to a number of Common Lisp implementations and can be easily installed (or added as a dependency) via Quicklisp:

(ql:quickload "cl-ppcre")

Basic operations with the CL-PPCRE library functions are described below.

Looking for matching patterns: scan, create-scanner

The scan function tries to match the given pattern and on success returns four multiple-values values - the start of the match, the end of the match, and two arrays denoting the beginnings and ends of register matches. On failure returns NIL.

A regular expression pattern can be compiled with the create-scanner function call. A “scanner” will be created that can be used by other functions.

For example:

(let ((ptrn (ppcre:create-scanner "(a)*b")))
 (ppcre:scan ptrn "xaaabd"))

will yield the same results as:

(ppcre:scan "(a)*b" "xaaabd")

but will require less time for repeated scan calls as parsing the expression and compiling it is done only once.

Extracting information

CL-PPCRE provides several ways to extract matching fragments.

all-matches, all-matches-as-strings

The function all-matches-as-strings is very handy: it returns a list of matches:

(ppcre:all-matches-as-strings "\\d+" "numbers: 1 10 42")
;; => ("1" "10" "42")

The function all-matches is similar, but it returns a list of positions:

(ppcre:all-matches "\\d+" "numbers: 1 10 42")
;; => (9 10 11 13 14 16)

Look carefully: it actually return a list containing the start and end positions of all matches: 9 and 10 are the start and end for the first number (1), and so on.

If you wanted to extract integers from this example string, simply map parse-integer to the result:

CL-USER> (ppcre:all-matches-as-strings "\\d+" "numbers: 1 10 42")
;; ("1" "10" "42")
CL-USER> (mapcar #'parse-integer *)
(1 10 42)

The two functions accept the usual :start and :end key arguments. Additionnaly, all-matches-as-strings accepts a :sharedp argument:

If SHAREDP is true, the substrings may share structure with TARGET-STRING.

scan-to-strings, register-groups-bind

The scan-to-strings function is similar to scan but returns substrings of target-string instead of positions. This function returns two values on success: the whole match as a string plus an array of substrings (or NILs) corresponding to the matched registers.

The register-groups-bind function tries to match the given pattern against the target string and binds matching fragments with the given variables.

(ppcre:register-groups-bind (first second third fourth)
 ("((a)|(b)|(c))+" "abababc" :sharedp t)
 (list first second third fourth))
;; => ("c" "a" "b" "c")

CL-PPCRE also provides a shortcut for calling a function before assigning the matching fragment to the variable:

(ppcre:register-groups-bind
 (fname lname (#'parse-integer date month year))
 ("(\\w+)\\s+(\\w+)\\s+(\\d{1,2})\\.(\\d{1,2})\\.(\\d{4})"
 "Frank Zappa 21.12.1940")
 (list fname lname date month year))
;; => ("Frank" "Zappa" 21 12 1940)

Replacing text: regex-replace, regex-replace-all

(ppcre:regex-replace "a" "abc" "A") ;; => "Abc"
;; or
(let ((pat (ppcre:create-scanner "a")))
 (ppcre:regex-replace pat "abc" "A"))

Syntactic sugar

You might like to use CL-PPCRE with the cl-interpol library. cl-interpol is a library for Common Lisp which modifies the reader in a way that introduces interpolation within strings similar to Perl, Scala, or Unix Shell scripts.

In addition to loading the CL-INTERPOL library, initialization call must be made to properly configure the Lisp reader. This is accomplished by either calling the enable-interpol-syntax function from the REPL or placing that call in the source file before using any of its features:

(interpol:enable-interpol-syntax)

In this mode you can write regular expressions in-between #?/ and /.

See more

	cl-ppcre on common-lisp-libraries.readthedocs.io and read on: do-matches, do-matches-as-strings, do-register-groups, do-scans, parse-string, regex-apropos, quote-meta-chars, split…

Input/Output

[bookmark: redir]

Redirecting the Standard Output of your Program

You do it like this:

(let ((*standard-output* <some form generating a stream>))
 ...)

Because *STANDARD-OUTPUT* is a dynamic variable, all references to it during execution of the body of the LET form refer to the stream that you bound it to. After exiting the LET form, the old value of *STANDARD-OUTPUT* is restored, no matter if the exit was by normal execution, a RETURN-FROM leaving the whole function, an exception, or what-have-you. (This is, incidentally, why global variables lose much of their brokenness in Common Lisp compared to other languages: since they can be bound for the execution of a specific form without the risk of losing their former value after the form has finished, their use is quite safe; they act much like additional parameters that are passed to every function.)

If the output of the program should go to a file, you can do the following:

(with-open-file (*standard-output* "somefile.dat"
 :direction :output
 :if-exists :supersede)
 ...)

WITH-OPEN-FILE opens the file - creating it if necessary - binds *STANDARD-OUTPUT*, executes its body, closes the file, and restores *STANDARD-OUTPUT* to its former value. It doesn’t get more comfortable than this![bookmark: faith]

Faithful Output with Character Streams

By faithful output I mean that characters with codes between 0 and 255 will be written out as is. It means, that I can (PRINC (CODE-CHAR 0..255) s) to a stream and expect 8-bit bytes to be written out, which is not obvious in the times of Unicode and 16 or 32 bit character representations. It does not require that the characters ä, ß, or þ must have their CHAR-CODE in the range 0..255 - the implementation is free to use any code. But it does require that no #\Newline to CRLF translation takes place, among others.

Common Lisp has a long tradition of distinguishing character from byte (binary) I/O, e.g. READ-BYTE and READ-CHAR are in the standard. Some implementations let both functions be called interchangeably. Others allow either one or the other. (The simple stream proposal defines the notion of a bivalent stream where both are possible.)

Varying element-types are useful as some protocols rely on the ability to send 8-Bit output on a channel. E.g. with HTTP, the header is normally ASCII and ought to use CRLF as line terminators, whereas the body can have the MIME type application/octet-stream, where CRLF translation would destroy the data. (This is how the Netscape browser on MS-Windows destroys data sent by incorrectly configured Webservers which declare unknown files as having MIME type text/plain - the default in most Apache configurations).

What follows is a list of implementation dependent choices and behaviours and some code to experiment.

CLISP

On CLISP, faithful output is possible using

:external-format
(ext:make-encoding :charset 'charset:iso-8859-1
 :line-terminator :unix)

You can also use (SETF (STREAM-ELEMENT-TYPE F) '(UNSIGNED-BYTE 8)), where the ability to SETF is a CLISP-specific extension. Using :EXTERNAL-FORMAT :UNIX will cause portability problems, since the default character set on MS-Windows is CHARSET:CP1252. CHARSET:CP1252 doesn’t allow output of e.g. (CODE-CHAR #x81):

;*** - Character #\u0080 cannot be represented in the character set CHARSET:CP1252

Characters with code > 127 cannot be represented in ASCII:

;*** - Character #\u0080 cannot be represented in the character set CHARSET:ASCII

AllegroCL

#+(AND ALLEGRO UNIX) :DEFAULT (untested) - seems enough on UNIX, but would not work on the MS-Windows port of AllegroCL.

LispWorks

:EXTERNAL-FORMAT '(:LATIN-1 :EOL-STYLE :LF) (confirmed by Marc Battyani)

Example

Here’s some sample code to play with:

(defvar *unicode-test-file* "faithtest-out.txt")

(defun generate-256 (&key (filename *unicode-test-file*)
 #+CLISP (charset 'charset:iso-8859-1)
 external-format)
 (let ((e (or external-format
 #+CLISP (ext:make-encoding :charset charset
 :line-terminator :unix))))
 (describe e)
 (with-open-file (f filename :direction :output
 :external-format e)
 (write-sequence
 (loop with s = (make-string 256)
 for i from 0 to 255
 do (setf (char s i) (code-char i))
 finally (return s))
 f)
 (file-position f))))

;(generate-256 :external-format :default)
;#+CLISP (generate-256 :external-format :unix)
;#+CLISP (generate-256 :external-format 'charset:ascii)
;(generate-256)

(defun check-256 (&optional (filename *unicode-test-file*))
 (with-open-file (f filename :direction :input
 :element-type '(unsigned-byte 8))
 (loop for i from 0
 for c = (read-byte f nil nil)
 while c
 unless (= c i)
 do (format t "~&Position ~D found ~D(#x~X)." i c c)
 when (and (= i 33) (= c 32))
 do (let ((c (read-byte f)))
 (format t "~&Resync back 1 byte ~D(#x~X) - cause CRLF?." c c)))
 (file-length f)))

#| CLISP
(check-256 *unicode-test-file*)
(progn (generate-256 :external-format :unix) (check-256))
; uses UTF-8 -> 385 bytes

(progn (generate-256 :charset 'charset:iso-8859-1) (check-256))

(progn (generate-256 :external-format :default) (check-256))
; uses UTF-8 + CRLF(on MS-Windows) -> 387 bytes

(progn (generate-256 :external-format
 (ext:make-encoding :charset 'charset:iso-8859-1 :line-terminator :mac)) (check-256))
(progn (generate-256 :external-format
 (ext:make-encoding :charset 'charset:iso-8859-1 :line-terminator :dos)) (check-256))
|#

[bookmark: bulk]

Fast Bulk I/O

If you need to copy a lot of data and the source and destination are both streams (of the same element type), it’s very fast to use READ-SEQUENCE and WRITE-SEQUENCE:

(let ((buf (make-array 4096 :element-type (stream-element-type input-stream))))
 (loop for pos = (read-sequence buf input-stream)
 while (plusp pos)
 do (write-sequence buf output-stream :end pos)))

Files and Directories

We’ll see here a handful of functions and libraries to operate on files and directories.

In this chapter, we use mainly namestrings to specify filenames. In a recipe or two we also use pathnames.

Many functions will come from UIOP, so we suggest you have a look directly at it:

	UIOP/filesystem

	UIOP/pathname

Of course, do not miss:

	Files and File I/O in Practical Common Lisp

Getting the components of a pathname

File name (sans directory)

Use file-namestring to get a file name from a pathname:

(file-namestring #p"/path/to/file.lisp") ;; => "file.lisp"

File extension

The file extension is called “pathname type” in Lisp parlance:

(pathname-type "~/foo.org") ;; => "org"

File basename

The basename is called the “pathname name” -

(pathname-name "~/foo.org") ;; => "foo"
(pathname-name "~/foo") ;; => "foo"

If a directory pathname has a trailing slash, pathname-name may return nil; use pathname-directory instead -

(pathname-name "~/foo/") ;; => NIL
(first (last (pathname-directory #P"~/foo/"))) ;; => "foo"

Parent directory

(uiop:pathname-parent-directory-pathname #P"/foo/bar/quux/")
;; => #P"/foo/bar/"

Testing whether a file exists

Use the function probe-file which will return a generalized boolean - either nil if the file doesn’t exists, or its truename (which might be different from the argument you supplied).

For more portability, use uiop:probe-file* or uiop:file-exists-p which will return the file pathname (if it exists).

$ ln -s /etc/passwd foo

* (probe-file "/etc/passwd")
#p"/etc/passwd"

* (probe-file "foo")
#p"/etc/passwd"

* (probe-file "bar")
NIL

Expanding a file or a directory name with a tilde (~)

For portability, use uiop:native-namestring:

(uiop:native-namestring "~/.emacs.d/")
"/home/me/.emacs.d/"

It also expand the tilde with files and directories that don’t exist:

(uiop:native-namestring "~/foo987.txt")
:: "/home/me/foo987.txt"

On several implementations (CCL, ABCL, ECL, CLISP, LispWorks), namestring works similarly. On SBCL, if the file or directory doesn’t exist, namestring doesn’t expand the path but returns the argument, with the tilde.

With files that exist, you can also use truename. But, at least on SBCL, it returns an error if the path doesn’t exist.

Turning a pathname into a string with Windows’ directory separator

Use again uiop:native-namestring:

CL-USER> (uiop:native-namestring #p"~/foo/")
"C:\\Users\\You\\foo\\"

See also uiop:parse-native-namestring for the inverse operation.

Creating directories

The function ensure-directories-exist creates the directories if they do not exist:

(ensure-directories-exist "foo/bar/baz/")

This may create foo, bar and baz. Don’t forget the trailing slash.

Deleting directories

Use uiop:delete-directory-tree with a pathname (#p), a trailing slash and the :validate key:

;; mkdir dirtest
(uiop:delete-directory-tree #p"dirtest/" :validate t)

You can use pathname around a string that designates a directory:

(defun rmdir (path)
 (uiop:delete-directory-tree (pathname path) :validate t))

UIOP also has delete-empty-directory

cl-fad has (fad:delete-directory-and-files "dirtest").

Merging files and directories

Use merge-pathnames, with one thing to note: if you want to append directories, the second argument must have a trailing /.

As always, look at UIOP functions. We have a uiop:merge-pathnames* equivalent which fixes corner cases.

So, here’s how to append a directory to another one:

(merge-pathnames "otherpath" "/home/vince/projects/")
;; important: ^^
;; a trailing / denotes a directory.
;; => #P"/home/vince/projects/otherpath"

Look at the difference: if you don’t include a trailing slash to either paths, otherpath and projects are seen as files, so otherpath is appended to the base directory containing projects:

(merge-pathnames "otherpath" "/home/vince/projects")
;; #P"/home/vince/otherpath"
;; ^^ no "projects", because it was seen as a file.

or again, with otherpath/ (a trailing /) but projects seen as a file:

(merge-pathnames "otherpath/" "/home/vince/projects")
;; #P"/home/vince/otherpath/projects"
;; ^^ inserted here

Get the current working directory (CWD)

Use uiop/os:getcwd:

(uiop/os:getcwd)
;; #P"/home/vince/projects/cl-cookbook/"
;; ^ with a trailing slash, useful for merge-pathnames

Get the current directory relative to a Lisp project

Use asdf:system-relative-pathname system path.

Say you are working inside mysystem. It has an ASDF system declaration, the system is loaded in your Lisp image. This ASDF file is somewhere on your filesystem and you want the path to src/web/. Do this:

(asdf:system-relative-pathname "mysystem" "src/web/")
;; => #P"/home/vince/projects/mysystem/src/web/"

This will work on another user’s machine, where the system sources are located in another location.

Setting the current working directory

Use uiop:chdir path:

(uiop:chdir "/bin/")
0

The trailing slash in path is optional.

Or, to set for the current directory for the next operation only, use uiop:with-current-directory:

(let ((dir "/path/to/another/directory/"))
 (uiop:with-current-directory (dir)
 (directory-files "./")))

Opening a file

Common Lisp has open and close functions which resemble the functions of the same denominator from other programming languages you’re probably familiar with. However, it is almost always recommendable to use the macro with-open-file instead. Not only will this macro open the file for you and close it when you’re done, it’ll also take care of it if your code leaves the body abnormally (such as by a use of throw). A typical use of with-open-file looks like this:

(with-open-file (str <_file-spec_>
 :direction <_direction_>
 :if-exists <_if-exists_>
 :if-does-not-exist <_if-does-not-exist_>)
 (your code here))

	str is a variable which’ll be bound to the stream which is created by opening the file.

	<_file-spec_> will be a truename or a pathname.

	<_direction_> is usually :input (meaning you want to read from the file), :output (meaning you want to write to the file) or :io (which is for reading and writing at the same time) - the default is :input.

	<_if-exists_> specifies what to do if you want to open a file for writing and a file with that name already exists - this option is ignored if you just want to read from the file. The default is :error which means that an error is signalled. Other useful options are :supersede (meaning that the new file will replace the old one), :append (content is added to the file), nil (the stream variable will be bound to nil), and :rename (i.e. the old file is renamed).

	<_if-does-not-exist_> specifies what to do if the file you want to open does not exist. It is one of :error for signalling an error, :create for creating an empty file, or nil for binding the stream variable to nil. The default is, to be brief, to do the right thing depending on the other options you provided. See the CLHS for details.

Note that there are a lot more options to with-open-file. See the CLHS entry for open for all the details. You’ll find some examples on how to use with-open-file below. Also note that you usually don’t need to provide any keyword arguments if you just want to open an existing file for reading.

Reading files

Reading a file into a string or a list of lines

It’s quite common to need to access the contents of a file in string form, or to get a list of lines.

uiop is included in ASDF (there is no extra library to install or system to load) and has the following functions:

(uiop:read-file-string "file.txt")

and

(uiop:read-file-lines "file.txt")

Otherwise, this can be achieved by using read-line or read-char functions, that probably won’t be the best solution. The file might not be divided into multiple lines or reading one character at a time might bring significant performance problems. To solve this problems, you can read files using buckets of specific sizes.

(with-output-to-string (out)
 (with-open-file (in "/path/to/big/file")
 (loop with buffer = (make-array 8192 :element-type 'character)
 for n-characters = (read-sequence buffer in)
 while (< 0 n-characters)
 do (write-sequence buffer out :start 0 :end n-characters)))))

Furthermore, you’re free to change the format of the read/written data, instead of using elements of type character every time. For instance, you can set :element-type type argument of with-output-to-string, with-open-file and make-array functions to '(unsigned-byte 8) to read data in octets.

Reading with an utf-8 encoding

To avoid an ASCII stream decoding error you might want to specify an UTF-8 encoding:

(with-open-file (in "/path/to/big/file"
 :external-format :utf-8)
 ...

Set SBCL’s default encoding format to utf-8

Sometimes you don’t control the internals of a library, so you’d better set the default encoding to utf-8. Add this line to your ~/.sbclrc:

(setf sb-impl::default-external-format :utf-8)

and optionally

(setf sb-alien::default-c-string-external-format :utf-8)

Reading a file one line at a time

read-line will read one line from a stream (which defaults to standard input) the end of which is determined by either a newline character or the end of the file. It will return this line as a string without the trailing newline character. (Note that read-line has a second return value which is true if there was no trailing newline, i.e. if the line was terminated by the end of the file.) read-line will by default signal an error if the end of the file is reached. You can inhibit this by supplying NIL as the second argument. If you do this, read-line will return nil if it reaches the end of the file.

(with-open-file (stream "/etc/passwd")
 (do ((line (read-line stream nil)
 (read-line stream nil)))
 ((null line))
 (print line)))

You can also supply a third argument which will be used instead of nil to signal the end of the file:

(with-open-file (stream "/etc/passwd")
 (loop for line = (read-line stream nil 'foo)
 until (eq line 'foo)
 do (print line)))

Reading a file one character at a time

read-char is similar to read-line, but it only reads one character as opposed to one line. Of course, newline characters aren’t treated differently from other characters by this function.

(with-open-file (stream "/etc/passwd")
 (do ((char (read-char stream nil)
 (read-char stream nil)))
 ((null char))
 (print char)))

Looking one character ahead

You can ‘look at’ the next character of a stream without actually removing it from there - this is what the function peek-char is for. It can be used for three different purposes depending on its first (optional) argument (the second one being the stream it reads from): If the first argument is nil, peek-char will just return the next character that’s waiting on the stream:

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (peek-char nil stream))
 (print (read-char stream))
 (values))

#\I
#\'
#\'

If the first argument is T, peek-char will skip whitespace characters, i.e. it will return the next non-whitespace character that’s waiting on the stream. The whitespace characters will vanish from the stream as if they had been read by read-char:

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (read-char stream))
 (print (read-char stream))
 (print (peek-char t stream))
 (print (read-char stream))
 (print (read-char stream))
 (values))

#\I
#\'
#\m
#\n
#\n
#\o

If the first argument to peek-char is a character, the function will skip all characters until that particular character is found:

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (peek-char #\a stream))
 (print (read-char stream))
 (print (read-char stream))
 (values))

#\I
#\a
#\a
#\m

Note that peek-char has further optional arguments to control its behaviour on end-of-file similar to those for read-line and read-char (and it will signal an error by default):

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (read-char stream))
 (print (peek-char #\d stream))
 (print (read-char stream))
 (print (peek-char nil stream nil 'the-end))
 (values))

#\I
#\d
#\d
THE-END

You can also put one character back onto the stream with the function unread-char. You can use it as if, after you have read a character, you decide that you’d better used peek-char instead of read-char:

CL-USER> (with-input-from-string (stream "I'm not amused")
 (let ((c (read-char stream)))
 (print c)
 (unread-char c stream)
 (print (read-char stream))
 (values)))

#\I
#\I

Note that the front of a stream doesn’t behave like a stack: You can only put back exactly one character onto the stream. Also, you must put back the same character that has been read previously, and you can’t unread a character if none has been read before.

Random access to a File

Use the function file-position for random access to a file. If this function is used with one argument (a stream), it will return the current position within the stream. If it’s used with two arguments (see below), it will actually change the file position in the stream.

CL-USER> (with-input-from-string (stream "I'm not amused")
 (print (file-position stream))
 (print (read-char stream))
 (print (file-position stream))
 (file-position stream 4)
 (print (file-position stream))
 (print (read-char stream))
 (print (file-position stream))
 (values))

0
#\I
1
4
#\n
5

Writing content to a file

With with-open-file, specify :direction :output and use write-sequence inside:

(with-open-file (f <pathname> :direction :output
 :if-exists :supersede
 :if-does-not-exist :create)
 (write-sequence s f))

If the file exists, you can also :append content to it.

If it doesn’t exist, you can :error out. See the standard for more details.

Using libraries

The library Alexandria has a function called write-string-into-file

(alexandria:write-string-into-file content "file.txt")

Alternatively, the library str has the to-file function.

(str:to-file "file.txt" content) ;; with optional options

Both alexandria:write-string-into-file and str:to-file take the same keyword arguments as cl:open that controls file creation: :if-exists and if-does-not-exists.

Getting file attributes (size, access time,…)

Osicat is a lightweight operating system interface for Common Lisp on POSIX-like systems, including Windows. With Osicat we can get and set environment variables (now doable with uiop:getenv), manipulate files and directories, pathnames and a bit more.

file-attributes is a newer and lighter OS portability library specifically for getting file attributes, using system calls (cffi).

SBCL with its sb-posix contrib can be used too.

File attributes (Osicat)

Once Osicat is installed, it also defines the osicat-posix system, which permits us to get file attributes.

(ql:quickload "osicat")

(let ((stat (osicat-posix:stat #P"./files.md")))
 (osicat-posix:stat-size stat)) ;; => 10629

We can get the other attributes with the following methods:

osicat-posix:stat-dev
osicat-posix:stat-gid
osicat-posix:stat-ino
osicat-posix:stat-uid
osicat-posix:stat-mode
osicat-posix:stat-rdev
osicat-posix:stat-size
osicat-posix:stat-atime
osicat-posix:stat-ctime
osicat-posix:stat-mtime
osicat-posix:stat-nlink
osicat-posix:stat-blocks
osicat-posix:stat-blksize

File attributes (file-attributes)

Install the library with

(ql:quickload “file-attributes”)

Its package is org.shirakumo.file-attributes. You can use a package-local nickname for a shorter access to its functions, for example:

(uiop:add-package-local-nickname :file-attributes :org.shirakumo.file-attributes)

Then simply use the functions:

	access-time, modification-time, creation-time. You can setf them.

	owner, group, and attributes. The values used are OS specific for these functions. The attributes flag can be decoded and encoded via a standardised form with decode-attributes and encode-attributes.

CL-USER> (file-attributes:decode-attributes
 (file-attributes:attributes #p"test.txt"))
(:READ-ONLY NIL :HIDDEN NIL :SYSTEM-FILE NIL :DIRECTORY NIL :ARCHIVED T :DEVICE
 NIL :NORMAL NIL :TEMPORARY NIL :SPARSE NIL :LINK NIL :COMPRESSED NIL :OFFLINE
 NIL :NOT-INDEXED NIL :ENCRYPTED NIL :INTEGRITY NIL :VIRTUAL NIL :NO-SCRUB NIL
 :RECALL NIL)

See its documentation.

File attributes (sb-posix)

This contrib is loaded by default on POSIX systems.

First get a stat object for a file, then get the stat you want:

CL-USER> (sb-posix:stat "test.txt")
#<SB-POSIX:STAT {10053FCBE3}>

CL-USER> (sb-posix:stat-mtime *)
1686671405

Listing files and directories

Some functions below return pathnames, so you might need the following:

(namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/baz.txt"
(directory-namestring #p"/foo/bar/baz.txt") ==> "/foo/bar/"
(file-namestring #p"/foo/bar/baz.txt") ==> "baz.txt"

Listing files in a directory

(uiop:directory-files "./")

Returns a list of pathnames:

(#P"/home/vince/projects/cl-cookbook/.emacs"
 #P"/home/vince/projects/cl-cookbook/.gitignore"
 #P"/home/vince/projects/cl-cookbook/AppendixA.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixB.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixC.jpg"
 #P"/home/vince/projects/cl-cookbook/CHANGELOG"
 #P"/home/vince/projects/cl-cookbook/CONTRIBUTING.md"
 […]

Listing sub-directories

(uiop:subdirectories "./")

(#P"/home/vince/projects/cl-cookbook/.git/"
 #P"/home/vince/projects/cl-cookbook/.sass-cache/"
 #P"/home/vince/projects/cl-cookbook/_includes/"
 #P"/home/vince/projects/cl-cookbook/_layouts/"
 #P"/home/vince/projects/cl-cookbook/_site/"
 #P"/home/vince/projects/cl-cookbook/assets/")

Traversing (walking) directories recursively

See uiop/filesystem:collect-sub*directories. It takes as arguments:

	a directory

	a collectp function

	a recursep function

	a collector function

Given a directory, when collectp returns true with the directory, call the collector function on the directory, and recurse each of its subdirectories on which recursep returns true.

This function will thus let you traverse a filesystem hierarchy, superseding the functionality of cl-fad:walk-directory.

The behavior in presence of symlinks is not portable. Use IOlib to handle such situations.

Examples:

	this collects only subdirectories:

(defparameter *dirs* nil "All recursive directories.")

(uiop:collect-sub*directories "~/cl-cookbook"
 (constantly t)
 (constantly t)
 (lambda (it) (push it *dirs*)))

	this collects files and subdirectories:

(let ((results))
 (uiop:collect-sub*directories
 "./"
 (constantly t)
 (constantly t)
 (lambda (subdir)
 (setf results
 (nconc results
 ;; A detail: we return strings, not pathnames.
 (loop for path in (append (uiop:subdirectories subdir)
 (uiop:directory-files subdir))
 collect (namestring path))))))
 results)

	we can do the same with the cl-fad library:

(cl-fad:walk-directory "./"
 (lambda (name)
 (format t "~A~%" name))
 :directories t)

	and of course, we can use an external tool: the good ol’ unix find, or the newer fd (fdfind on Debian) that has a simpler syntax and filters out a set of common files and directories by default (node_modules, .git…):

(str:lines (uiop:run-program (list "find" ".") :output :string))
;; or
(str:lines (uiop:run-program (list "fdfind") :output :string))

Here with the help of the str library.

Finding files matching a pattern

Below we simply list files of a directory and check that their name contains a given string.

(remove-if-not (lambda (it)
 (search "App" (namestring it)))
 (uiop:directory-files "./"))

(#P"/home/vince/projects/cl-cookbook/AppendixA.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixB.jpg"
 #P"/home/vince/projects/cl-cookbook/AppendixC.jpg")

We used namestring to convert a pathname to a string, thus a sequence that search can deal with.

Finding files with a wildcard

We can not transpose unix wildcards to portable Common Lisp.

In pathname strings we can use * and ** as wildcards. This works in absolute and relative pathnames.

(directory #P"*.jpg")

(directory #P"**/*.png")

Change the default pathname

The concept of . denoting the current directory does not exist in portable Common Lisp. This may exist in specific filesystems and specific implementations.

Also ~ to denote the home directory does not exist. They may be recognized by some implementations as non-portable extensions.

*default-pathname-defaults*provides a default for some pathname operations.

(let ((*default-pathname-defaults* (pathname "/bin/")))
 (directory "*sh"))
(#P"/bin/zsh" #P"/bin/tcsh" #P"/bin/sh" #P"/bin/ksh" #P"/bin/csh" #P"/bin/bash")

See also (user-homedir-pathname).

Error and exception handling

Common Lisp has mechanisms for error and condition handling as found in other languages, and can do more.

What is a condition ?

Just like in languages that support exception handling (Java, C++, Python, etc.), a condition represents, for the most part, an “exceptional” situation. However, even more so than those languages, a condition in Common Lisp can represent a general situation where some branching in program logic needs to take place, not necessarily due to some error condition. Due to the highly interactive nature of Lisp development (the Lisp image in conjunction with the REPL), this makes perfect sense in a language like Lisp rather than say, a language like Java or even Python, which has a very primitive REPL. In most cases, however, we may not need (or even allow) the interactivity that this system offers us. Thankfully, the same system works just as well even in non-interactive mode.

z0ltan

Let’s dive into it step by step. More resources are given afterwards.

Ignoring all errors, returning nil

Sometimes you know that a function can fail and you just want to ignore it: use ignore-errors:

(ignore-errors
 (/ 3 0))
; in: IGNORE-ERRORS (/ 3 0)
; (/ 3 0)
;
; caught STYLE-WARNING:
; Lisp error during constant folding:
; arithmetic error DIVISION-BY-ZERO signalled
; Operation was (/ 3 0).
;
; compilation unit finished
; caught 1 STYLE-WARNING condition
NIL
#<DIVISION-BY-ZERO {1008FF5F13}>

We get a welcome division-by-zero warning but the code runs well and it returns two things: nil and the condition that was signaled. We could not choose what to return.

Remember that we can inspect the condition with a right click in Slime.

Catching any condition (handler-case)

ignore-errors is built from handler-case. We can write the previous example by catching the general error but now we can return whatever we want:

(handler-case (/ 3 0)
 (error (c)
 (format t "We caught a condition.~&")
 (values 0 c)))
; in: HANDLER-CASE (/ 3 0)
; (/ 3 0)
;
; caught STYLE-WARNING:
; Lisp error during constant folding:
; Condition DIVISION-BY-ZERO was signalled.
;
; compilation unit finished
; caught 1 STYLE-WARNING condition
We caught a condition.
0
#<DIVISION-BY-ZERO {1004846AE3}>

We also returned two values, 0 and the signaled condition.

The general form of handler-case is

(handler-case (code that errors out)
 (condition-type (the-condition) ;; <-- optional argument
 (code))
 (another-condition (the-condition)
 ...))

Catching a specific condition

We can specify what condition to handle:

(handler-case (/ 3 0)
 (division-by-zero (c)
 (format t "Caught division by zero: ~a~%" c)))
;; …
;; Caught division by zero: arithmetic error DIVISION-BY-ZERO signalled
;; Operation was (/ 3 0).
;; NIL

This workflow is similar to a try/catch as found in other languages, but we can do more.

handler-case VS handler-bind

handler-case is similar to the try/catch forms that we find in other languages.

handler-bind (see the next examples), is what to use when we need absolute control over what happens when a signal is raised. It allows us to use the debugger and restarts, either interactively or programmatically.

If some library doesn’t catch all conditions and lets some bubble out to us, we can see the restarts (established by restart-case) anywhere deep in the stack, including restarts established by other libraries that this library called. And we can see the stack trace, with every frame that was called and, in some lisps, even see local variables and such. Once we handler-case, we “forget” about this, everything is unwound. handler-bind does not rewind the stack.

Before we properly see handler-bind, let’s study conditions and restarts.

Defining and making conditions

We define conditions with define-condition and we make (initialize) them with make-condition.

(define-condition my-division-by-zero (error)
 ())

(make-condition 'my-division-by-zero)
;; #<MY-DIVISION-BY-ZERO {1005A5FE43}>

It’s better if we give more information to it when we create a condition, so let’s use slots:

(define-condition my-division-by-zero (error)
 ((dividend :initarg :dividend
 :initform nil
 :reader dividend)) ;; <-- we'll get the dividend with (dividend condition). See the CLOS tutorial if needed.
 (:documentation "Custom error when we encounter a division by zero.")) ;; good practice ;)

Now when we’ll “signal” or “throw” the condition in our code we’ll be able to populate it with information to be consumed later:

(make-condition 'my-division-by-zero :dividend 3)
;; #<MY-DIVISION-BY-ZERO {1005C18653}>

Note: here’s a quick reminder on classes, if you are not fully operational on the Common Lisp Object System.

(make-condition 'my-division-by-zero :dividend 3)
;; ^^ this is the ":initarg"

and :reader dividend created a generic function that is a “getter” for the dividend of a my-division-by-zero object:

(make-condition 'my-division-by-zero :dividend 3)
;; #<MY-DIVISION-BY-ZERO {1005C18653}>
(dividend *)
;; 3

an “:accessor” would be both a getter and a setter.

So, the general form of define-condition looks and feels like a regular class definition, but despite the similarities, conditions are not standard objects.

A difference is that we can’t use slot-value on slots.

Signaling (throwing) conditions: error, warn, signal

We can use error in two ways:

	(error "some text"): signals a condition of type simple-error, and opens-up the interactive debugger.

	(error 'my-error :message "We did this and that and it didn't work."): creates and throws a custom condition with its slot “message” and opens-up the interactive debugger.

With our own condition we can do:

(error 'my-division-by-zero :dividend 3)
;; which is a shortcut for
(error (make-condition 'my-division-by-zero :dividend 3))

Throwing these conditions will enter the interactive debugger, where the user may select a restart.

warn will not enter the debugger (create warning conditions by subclassing simple-warning).

Use signal if you do not want to enter the debugger, but you still want to signal to the upper levels that something exceptional happened.

And that can be anything. For example, it can be used to track progress during an operation. You would create a condition with a percent slot, signal one when progress is made, and the higher level code would handle it and display it to the user. See the resources below for more.

Conditions hierarchy

The class precedence list of simple-error is simple-error, simple-condition, error, serious-condition, condition, t.

The class precedence list of simple-warning is simple-warning, simple-condition, warning, condition, t.

Custom error messages (:report)

So far, when throwing our error, we saw this default text in the debugger:

Condition COMMON-LISP-USER::MY-DIVISION-BY-ZERO was signalled.
 [Condition of type MY-DIVISION-BY-ZERO]

We can do better by giving a :report function in our condition declaration:

(define-condition my-division-by-zero (error)
 ((dividend :initarg :dividend
 :initform nil
 :accessor dividend))
 ;; the :report is the message into the debugger:
 (:report (lambda (condition stream)
 (format stream
 "You were going to divide ~a by zero.~&"
 (dividend condition)))))

Now:

(error 'my-division-by-zero :dividend 3)
;; Debugger:
;;
;; You were going to divide 3 by zero.
;; [Condition of type MY-DIVISION-BY-ZERO]

Inspecting the stacktrace

That’s another quick reminder, not a Slime tutorial. In the debugger, you can inspect the stacktrace, the arguments to the function calls, go to the erroneous source line (with v in Slime), execute code in the context (e), etc.

Often, you can edit a buggy function, compile it (with the C-c C-c shortcut in Slime), choose the “RETRY” restart and see your code pass.

All this depends on compiler options, wether it is optimized for debugging, speed or security.

See our debugging section.

Restarts, interactive choices in the debugger

Restarts are the choices we get in the debugger, which always has the RETRY and ABORT ones.

By handling restarts we can start over the operation as if the error didn’t occur (as seen in the stack).

Using assert’s optional restart

In its simple form assert does what we know:

(assert (realp 3))
;; NIL = passed

When the assertion fails, we are prompted into the debugger:

(defun divide (x y)
 (assert (not (zerop y)))
 (/ x y))

(divide 3 0)
;; The assertion (NOT #1=(ZEROP Y)) failed with #1# = T.
;; [Condition of type SIMPLE-ERROR]
;;
;; Restarts:
;; 0: [CONTINUE] Retry assertion.
;; 1: [RETRY] Retry SLIME REPL evaluation request.
;; …

It also accepts an optional parameter to offer to change values:

(defun divide (x y)
 (assert (not (zerop y))
 (y) ;; list of values that we can change.
 "Y can not be zero. Please change it") ;; custom error message.
 (/ x y))

Now we get a new restart that offers to change the value of Y:

(divide 3 0)
;; Y can not be zero. Please change it
;; [Condition of type SIMPLE-ERROR]
;;
;; Restarts:
;; 0: [CONTINUE] Retry assertion with new value for Y. <--- new restart
;; 1: [RETRY] Retry SLIME REPL evaluation request.
;; …

and when we choose it, we are prompted for a new value in the REPL:

The old value of Y is 0.
Do you want to supply a new value? (y or n) y

Type a form to be evaluated:
2
3/2 ;; and our result.

Defining restarts (restart-case)

All this is good but we might want more custom choices. We can add restarts on the top of the list by wrapping our function call inside restart-case.

(defun divide-with-restarts (x y)
 (restart-case (/ x y)
 (return-zero () ;; <-- creates a new restart called "RETURN-ZERO"
 0)
 (divide-by-one ()
 (/ x 1))))
(divide-with-restarts 3 0)

In case of any error (we’ll improve on that with handler-bind), we’ll get those two new choices at the top of the debugger:

That’s allright but let’s just write more human-friendy “reports”:

(defun divide-with-restarts (x y)
 (restart-case (/ x y)
 (return-zero ()
 :report "Return 0" ;; <-- added
 0)
 (divide-by-one ()
 :report "Divide by 1"
 (/ x 1))))
(divide-with-restarts 3 0)
;; Nicer restarts:
;; 0: [RETURN-ZERO] Return 0
;; 1: [DIVIDE-BY-ONE] Divide by 1

That’s better, but we lack the ability to change an operand, as we did with the assert example above.

Changing a variable with restarts

The two restarts we defined didn’t ask for a new value. To do this, we add an :interactive lambda function to the restart, that asks for the user a new value with the input method of its choice. Here, we’ll use the regular read.

(defun divide-with-restarts (x y)
 (restart-case (/ x y)
 (return-zero ()
 :report "Return 0"
 0)
 (divide-by-one ()
 :report "Divide by 1"
 (/ x 1))
 (set-new-divisor (value)
 :report "Enter a new divisor"
 ;;
 ;; Ask the user for a new value:
 :interactive (lambda () (prompt-new-value "Please enter a new divisor: "))
 ;;
 ;; and call the divide function with the new value…
 ;; … possibly catching bad input again!
 (divide-with-restarts x value))))

(defun prompt-new-value (prompt)
 (format *query-io* prompt) ;; *query-io*: the special stream to make user queries.
 (force-output *query-io*) ;; Ensure the user sees what he types.
 (list (read *query-io*))) ;; We must return a list.

(divide-with-restarts 3 0)

When calling it, we are offered a new restart, we enter a new value, and we get our result:

(divide-with-restarts 3 0)
;; Debugger:
;;
;; 2: [SET-NEW-DIVISOR] Enter a new divisor
;;
;; Please enter a new divisor: 10
;;
;; 3/10

Oh, you prefer a graphical user interface? We can use the zenity command line interface on GNU/Linux.

(defun prompt-new-value (prompt)
 (list
 (let ((input
 ;; We capture the program's output to a string.
 (with-output-to-string (s)
 (let* ((*standard-output* s))
 (uiop:run-program `("zenity"
 "--forms"
 ,(format nil "--add-entry=~a" prompt))
 :output s)))))
 ;; We get a string and we want a number.
 ;; We could also use parse-integer, the parse-number library, etc.
 (read-from-string input))))

Now try again and you should get a little window asking for a new number:

That’s fun, but that’s not all. Choosing restarts manually is not always (or often?) satisfactory. And by handling restarts we can start over the operation as if the error didn’t occur, as seen in the stack.

Calling restarts programmatically (handler-bind, invoke-restart)

We have a piece of code that we know can throw conditions. Here, divide-with-restarts can signal an error about a division by zero. What we want to do, is our higher-level code to automatically handle it and call the appropriate restart.

We can do this with handler-bind and invoke-restart:

(defun divide-and-handle-error (x y)
 (handler-bind
 ((division-by-zero (lambda (c)
 (format t "Got error: ~a~%" c) ;; error-message
 (format t "and will divide by 1~&")
 (invoke-restart 'divide-by-one))))
 (divide-with-restarts x y)))

(divide-and-handle-error 3 0)
;; Got error: arithmetic error DIVISION-BY-ZERO signalled
;; Operation was (/ 3 0).
;; and will divide by 1
;; 3

Using other restarts (find-restart)

Use find-restart.

find-restart 'name-of-restart will return the most recent bound restart with the given name, or nil.

Hiding and showing restarts

Restarts can be hidden. In restart-case, in addition to :report and :interactive, they also accept a :test key:

(restart-case
 (return-zero ()
 :test (lambda ()
 (some-test))
 ...

Handling conditions (handler-bind)

We just saw a use for handler-bind.

Its general form is:

(handler-bind ((a-condition #'function-to-handle-it)
 (another-one #'another-function))
 (code that can...)
 (...error out))

If the handler returns normally (it declines to handle the condition), the condition continues to bubble up, searching for another handler, and it will find the interactive debugger (when it’s an error, not when it’s a simple condition).

We can study a real example with the unix-opts library, that parses command line arguments. It defined some conditions: unknown-option, missing-arg and arg-parser-failed, and it is up to us to write what to do in these cases.

(handler-bind ((opts:unknown-option #'unknown-option)
 (opts:missing-arg #'missing-arg)
 (opts:arg-parser-failed #'arg-parser-failed))
 (opts:get-opts))

Our unknown-option function is simple and looks like this:

(defun unknown-option (condition)
 (format t "~s option is unknown.~%" (opts:option condition))
 (opts:describe)
 (exit)) ;; <-- we return to the command line, no debugger.

it takes the condition as parameter, so we can read information from it if needed. Here we get the name of the erroneous option with the condition’s reader (opts:option condition).

Running some code, condition or not (“finally”) (unwind-protect)

The “finally” part of others try/catch/finally forms is done with unwind-protect.

It is the construct used in “with-” macros, like with-open-file, which always closes the file after it.

With this example:

(unwind-protect (/ 3 0)
 (format t "This place is safe.~&"))

We do get the interactive debugger (we didn’t use handler-bind or anything), but our message is printed afterwards anyway.

Conclusion

You’re now more than ready to write some code and to dive into other resources!

Resources

	Practical Common Lisp: “Beyond Exception Handling: Conditions and Restarts” - the go-to tutorial, more explanations and primitives.

	Common Lisp Recipes, chap. 12, by E. Weitz

	language reference

	Video tutorial: introduction on conditions and restarts, by Patrick Stein.

	Condition Handling in the Lisp family of languages

	z0ltan.wordpress.com (the article this recipe is heavily based upon)

See also

	Algebraic effects - You can touch this ! - how to use conditions and restarts to implement progress reporting and aborting of a long-running calculation, possibly in an interactive or GUI context.

	A tutorial on conditions and restarts, based around computing the roots of a real function. It was presented by the author at a Bay Area Julia meetup on may 2019 (talk slides here).

	lisper.in - example with parsing a csv file and using restarts with success, in a flight travel company.

	https://github.com/svetlyak40wt/python-cl-conditions - implementation of the CL conditions system in Python.

Packages

See: The Complete Idiot’s Guide to Common Lisp Packages

Creating a package

Here’s an example package definition. It takes a name, and you probably want to :use the Common Lisp symbols and functions.

(defpackage :my-package
 (:use :cl))

To start writing code for this package, go inside it:

(in-package :my-package)

This in-package macro puts you “inside” a package:

	any new variable or function will be created in this package, aka in the “namespace” of this package.

	you can call all this package’s symbols directly, without using the package prefix.

Just try!

We can also use in-package to try packages on the REPL. Note that on a new Lisp REPL session, we are “inside” the CL-USER package. It is a regular package.

Let’s show you an example. We open a new .lisp file and we create a new package with a function inside our package:

;; in test-package.lisp
(defpackage :my-package
 (:use :cl))

(in-package :my-package)

(defun hello ()
 (print "Hello from my package."))

This “hello” function lives inside “my-package”. It is not exported yet.

Continue below to see how to call it.

Accessing symbols from a package

As soon as you have defined a package or loaded one (with Quicklisp, or if it was defined as a dependency in your .asd system definition), you can access its symbols with package:a-symbol, using a colon as delimiter.

For example:

(str:concat …)

When the symbol is not exported (it is “private”), use a double colon:

(package::non-exported-symbol)
(my-package::hello)

Continuing our example: in the REPL, be sure to be in my-package and not in CL-USER. There you can call “hello” directly:

CL-USER> (in-package :my-package)
#<PACKAGE "MY-PACKAGE">
;; ^^^ this creates a package object.
MY-PACKAGE> (hello)
;; ^^^^ the REPL shows you the current package.
"Hello from my package."

But now, come back to the CL-USER package and try to call “hello”: we get an error.

MY-PACKAGE> (in-package :cl-user)
#<PACKAGE "COMMON-LISP-USER">
CL-USER> (hello)

=> you get the interactive debugger that says:

The function COMMON-LISP-USER::HELLO is undefined.

(quit)

We have to “namespace” our hello function with its package name:

CL-USER> (my-package::hello)
"Hello from my package."

Let’s export the function.

Exporting symbols

Augment our defpackage declaration to export our “hello” function like so:

(defpackage :my-package
 (:use :cl)
 (:export
 #:hello))

Compile this (C-c C-c in Slime), and now you can call

CL-USER> (my-package:hello)

with a single colon.

You can also use the export function:

(in-package :my-package)
(export #:hello)

Observation:

	exporting :hello without the sharpsign (#:hello) works too, but it will always create a new symbol. The #: notation does not create a new symbol. More precisely: it doesn’t intern a new symbol in our current package. It is a detail and at this point, a personal preference to use it or not. It can be helpful to not clutter our symbols namespace, specially when we import and re-export symbols from other libraries. That way, our editor’s symbols completion only shows relevant results. It is not useful for us at this point, don’t worry.

Now we might want to import individual symbols in order to access them right away, without the package prefix.

Importing symbols from another package

You can import exactly the symbols you need with :import-from:

(defpackage :my-package
 (:import-from :ppcre #:regex-replace)
 (:use :cl))

Now you can call regex-replace from inside my-package, without the ppcre package prefix. regex-replace is a new symbol inside your package. It is not exported.

Sometimes, we see (:import-from :ppcre), without an explicit import. This helps people using ASDF’s package inferred system.

You can also use the import function from outside a package definition:

CL-USER> (import 'ppcre:regex-replace)
CL-USER> (regex-replace …)

Importing all symbols

It is a better practice to carefully choose what symbols you import from another package (read below), but we can also import all symbols at once with :use:

(defpackage :my-package
 (:use :cl :ppcre))

Now you can access all variables, functions and macros of cl-ppcre from your my-package package.

You can also use the use-package function:

CL-USER> (use-package 'cl-ppcre)

About “use”-ing packages being a bad practice

:use is a well spread idiom. You could do:

(defpackage :my-package
 (:use :cl :ppcre))

and now, all symbols that are exported by cl-ppcre (aka ppcre) are available to use directly in your package. However, this should be considered bad practice, unless you use another package of your project that you control. Indeed, if the external package adds a symbol, it could conflict with one of yours, or you could add one which will hide the external symbol and you might not see a warning.

To quote this thorough explanation (a recommended read):

USE is a bad idea in contemporary code except for internal packages that you fully control, where it is a decent idea until you forget that you mutate the symbol of some other package while making that brand new shiny DEFUN. USE is the reason why Alexandria cannot nowadays even add a new symbol to itself, because it might cause name collisions with other packages that already have a symbol with the same name from some external source.

List all Symbols in a Package (do-external-symbols)

Common Lisp provides some macros to iterate through the symbols of a package. The two most interesting are: DO-SYMBOLS and DO-EXTERNAL-SYMBOLS. DO-SYMBOLS iterates over the symbols accessible in the package and DO-EXTERNAL-SYMBOLS only iterates over the external symbols (you can see them as the real package API).

To print all exported symbols of a package named “PACKAGE”, you can write:

(do-external-symbols (s (find-package "PACKAGE"))
 (print s))

You can also collect all these symbols in a list by writing:

(let (symbols)
 (do-external-symbols (s (find-package "PACKAGE"))
 (push s symbols))
 symbols)

Or you can do it with LOOP.

(loop for s being the external-symbols of (find-package "PACKAGE")
 collect s)

Package nickname

Package Local Nicknames (PLN)

Sometimes it is handy to give a local name to an imported package to save some typing, especially when the imported package does not provide nice global nicknames.

Many implementations (SBCL, CCL, ECL, Clasp, ABCL, ACL, LispWorks >= 7.2…) support Package Local Nicknames (PLN).

To use a PLN you can simply do the following, for example, if you’d like to try out a local nickname in an ad-hoc fashion:

(uiop:add-package-local-nickname :a :alexandria)
(a:iota 12) ; (0 1 2 3 4 5 6 7 8 9 10 11)

You can also set up a PLN in a defpackage form. The effect of PLN is totally within mypackage i.e. the nickname won’t work in other packages unless defined there too. So, you don’t have to worry about unintended package name clash in other libraries.

(defpackage :mypackage
 (:use :cl)
 (:local-nicknames (:nickname :original-package-name)
 (:alex :alexandria)
 (:re :cl-ppcre)))

(in-package :mypackage)

;; You can use :nickname instead of :original-package-name
(nickname:some-function "a" "b")

Another facility exists for adding nicknames to packages. The function RENAME-PACKAGE can be used to replace the name and nicknames of a package. But it’s use would mean that other libraries may not be able to access the package using the original name or nicknames. There is rarely any situation to use this. Use Package Local Nicknames instead.

Nickname Provided by Packages

When defining a package, it is trivial to give it a nickname for better user experience. But this mechanism is global, a nickname defined here is visible by all other packages everywhere. If you were thinking in giving a short name to a package you use often, you can get a conflict with another package. That’s why package-local nicknames appeared. You should use them instead.

Here’s an example anyways, from the prove package:

(defpackage prove
 (:nicknames :cl-test-more :test-more)
 (:export #:run
 #:is
 #:ok)

Afterwards, a user may use a nickname instead of the package name to refer to this package. For example:

(prove:run)
(cl-test-more:is)
(test-more:ok)

Please note that although Common Lisp allows defining multiple nicknames for one package, too many nicknames may bring maintenance complexity to the users. Thus the nicknames shall be meaningful and straightforward. For example:

(defpackage #:iterate
 (:nicknames #:iter))

(defpackage :cl-ppcre
 (:nicknames :ppcre)

Package locks

The package common-lisp and SBCL internal implementation packages are locked by default, including sb-ext.

In addition, any user-defined package can be declared to be locked so that it cannot be modified by the user. Attempts to change its symbol table or redefine functions which its symbols name result in an error.

More detailed information can be obtained from documents of SBCL and CLisp.

For example, if you try the following code:

(asdf:load-system :alexandria)
(rename-package :alexandria :alex)

You will get the following error (on SBCL):

Lock on package ALEXANDRIA violated when renaming as ALEX while
in package COMMON-LISP-USER.
 [Condition of type PACKAGE-LOCKED-ERROR]
See also:
 SBCL Manual, Package Locks [:node]

Restarts:
 0: [CONTINUE] Ignore the package lock.
 1: [IGNORE-ALL] Ignore all package locks in the context of this operation.
 2: [UNLOCK-PACKAGE] Unlock the package.
 3: [RETRY] Retry SLIME REPL evaluation request.
 4: [*ABORT] Return to SLIME's top level.
 5: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING {10047A8433}>)

...

If a modification is required anyway, a package named cl-package-lock can be used to ignore package locks. For example:

(cl-package-locks:without-package-locks
 (rename-package :alexandria :alex))

See also

	Package Local Nicknames in Common Lisp article.

Macros

The word macro is used generally in computer science to mean a syntactic extension to a programming language. (Note: The name comes from the word “macro-instruction,” which was a useful feature of many second-generation assembly languages. A macro-instruction looked like a single instruction, but expanded into a sequence of actual instructions. The basic idea has since been used many times, notably in the C preprocessor. The name “macro” is perhaps not ideal, since it connotes nothing relevant to what it names, but we’re stuck with it.) Although many languages have a macro facility, none of them are as powerful as Lisp’s. The basic mechanism of Lisp macros is simple, but has subtle complexities, so learning your way around it takes a bit of practice.

How Macros Work

A macro is an ordinary piece of Lisp code that operates on another piece of putative Lisp code, translating it into (a version closer to) executable Lisp. That may sound a bit complicated, so let’s give a simple example. Suppose you want a version of setq that sets two variables to the same value. So if you write

(setq2 x y (+ z 3))

when z=8 then both x and y are set to 11. (I can’t think of any use for this, but it’s just an example.)

It should be obvious that we can’t define setq2 as a function. If x=50 and y=-5, this function would receive the values 50, -5, and 11; it would have no knowledge of what variables were supposed to be set. What we really want to say is, When you (the Lisp system) see:

(setq2 v1 v2 e)

then treat it as equivalent to:

(progn
 (setq v1 e)
 (setq v2 e))

Actually, this isn’t quite right, but it will do for now. A macro allows us to do precisely this, by specifying a program for transforming the input pattern (setq2 v1 v2 e) into the output pattern (progn ...).

Quote

Here’s how we could define the setq2 macro:

(defmacro setq2 (v1 v2 e)
 (list 'progn (list 'setq v1 e) (list 'setq v2 e)))

It takes as parameters two variables and one expression.

Then it returns a piece of code. In Lisp, because code is represented as lists, we can simply return a list that represents code.

We also use the quote, a special operator (not a function nor a macro, but one of a few special operators forming the core of Lisp).

Each quoted object evaluates to itself, aka it is returned as is:

	(+ 1 2) evaluates to 3 but (quote (+ 1 2)) evaluates to (+ 1 2)

	(quote (foo bar baz)) evaluates to (foo bar baz)

	' is a shortcut for quote: (quote foo) and 'foo are equvalent - both evaluate to foo.

So, our macro returns the following bits:

	the symbol progn,

	a second list, that contains

	the symbol setq

	the variable v1: note that the variable is not evaluated inside the macro!

	the expression e: it is not evaluated either!

	a second list, with v2.

We can use it like this:

(defparameter v1 1)
(defparameter v2 2)
(setq2 v1 v2 3)
;; 3

We can check, v1 and v2 were set to 3.

Macroexpand

We must start writing a macro when we know what code we want to generate. Once we’ve begun writing one, it becomes very useful to check effectively what code does the macro generate. The function for that is macroexpand. It is a function, and we give it some code, as a list (so, we quote the code snippet we give it):

(macroexpand '(setq2 v1 v2 3))
;; (PROGN (SETQ V1 3) (SETQ V2 3))
;; T

Yay, our macro expands to the code we wanted!

More interestingly:

(macroexpand '(setq2 v1 v2 (+ z 3)))
;; (PROGN (SETQ V1 (+ z 3)) (SETQ V2 (+ z 3)))
;; T

We can confirm that our expression e, here (+ z 3), was not evaluated. We will see how to control the evaluation of arguments with the comma: ,.

Note: Slime tips

With Slime, you can call macroexpand by putting the cursor at the left of the parenthesis of the s-expr to expand and call the functionM-x slime-macroexpand-[1,all], or C-c M-m:

[|](setq2 v1 v2 3)
;^ cursor
; C-c M-m
; =>
; (PROGN (SETQ V1 3) (SETQ V2 3))

Another tip: on a macro name, type C-c C-w m (or M-x slime-who-macroexpands) to get a new buffer with all the places where the macro was expanded. Then type the usual C-c C-k (slime-compile-and-load-file) to recompile all of them.

Macros VS functions

Our macro is very close to the following function definition:

(defun setq2-function (v1 v2 e)
 (list 'progn (list 'setq v1 e) (list 'setq v2 e)))

If we evaluated (setq2-function 'x 'y '(+ z 3)) (note that each argument is quoted, so it isn’t evaluated when we call the function), we would get

(progn (setq x (+ z 3)) (setq y (+ z 3)))

This is a perfectly ordinary Lisp computation, whose sole point of interest is that its output is a piece of executable Lisp code. What defmacro does is create this function implicitly and make sure that whenever an expression of the form (setq2 x y (+ z 3)) is seen, setq2-function is called with the pieces of the form as arguments, namely x, y, and (+ z 3). The resulting piece of code then replaces the call to setq2, and execution resumes as if the new piece of code had occurred in the first place. The macro form is said to expand into the new piece of code.

Evaluation context

This is all there is to it, except, of course, for the myriad subtle consequences. The main consequence is that run time for the setq2 macro is compile time for its context. That is, suppose the Lisp system is compiling a function, and midway through it finds the expression (setq2 x y (+ z 3)). The job of the compiler is, of course, to translate source code into something executable, such as machine language or perhaps byte code. Hence it doesn’t execute the source code, but operates on it in various mysterious ways. However, once the compiler sees the setq2 expression, it must suddenly switch to executing the body of the setq2 macro. As I said, this is an ordinary piece of Lisp code, which can in principle do anything any other piece of Lisp code can do. That means that when the compiler is running, the entire Lisp (run-time) system must be present.

We’ll stress this once more: at compile-time, you have the full language at your disposal.

Novices often make the following sort of mistake. Suppose that the setq2 macro needs to do some complex transformation on its e argument before plugging it into the result. Suppose this transformation can be written as a Lisp procedure some-computation. The novice will often write:

(defmacro setq2 (v1 v2 e)
 (let ((e1 (some-computation e)))
 (list 'progn (list 'setq v1 e1) (list 'setq v2 e1))))

(defmacro some-computation (exp) ...) ;; _Wrong!_

The mistake is to suppose that once a macro is called, the Lisp system enters a “macro world,” so naturally everything in that world must be defined using defmacro. This is the wrong picture. The right picture is that defmacro enables a step into the ordinary Lisp world, but in which the principal object of manipulation is Lisp code. Once that step is taken, one uses ordinary Lisp function definitions:

(defmacro setq2 (v1 v2 e)
 (let ((e1 (some-computation e)))
 (list 'progn (list 'setq v1 e1) (list 'setq v2 e1))))

(defun some-computation (exp) ...) ;; _Right!_

One possible explanation for this mistake may be that in other languages, such as C, invoking a preprocessor macro does get you into a different world; you can’t run an arbitrary C program. It might be worth pausing to think about what it might mean to be able to.

Another subtle consequence is that we must spell out how the arguments to the macro get distributed to the hypothetical behind-the-scenes function (called setq2-function in my example). In most cases, it is easy to do so: In defining a macro, we use all the usual lambda-list syntax, such as &optional, &rest, &key, but what gets bound to the formal parameters are pieces of the macro form, not their values (which are mostly unknown, this being compile time for the macro form). So if we defined a macro thus:

(defmacro foo (x &optional y &key (cxt 'null)) ...)

then

	if we call it with (foo a), the parameters’ values are: x=a, y=nil, cxt=null.

	calling (foo (+ a 1) (- y 1)) gives: x=(+ a 1), y=(- y 1), cxt=null.

	and (foo a b :cxt (zap zip)) gives: x=a, y=b, cxt=(zap zip).

Note that the values of the variables are the actual expressions (+ a 1) and (zap zip). There is no requirement that these expressions’ values be known, or even that they have values. The macro can do anything it likes with them. For instance, here’s an even more useless variant of setq: (setq-reversible e1 e2 d) behaves like (setq e1 e2) if d=:normal, and behaves like (setq e2 e1) if d=:backward. It could be defined thus:

(defmacro setq-reversible (e1 e2 direction)
 (case direction
 (:normal (list 'setq e1 e2))
 (:backward (list 'setq e2 e1))
 (t (error "Unknown direction: ~a" direction))))

Here’s how it expands:

(macroexpand '(setq-reversible x y :normal))
(SETQ X Y)
T
(macroexpand '(setq-reversible x y :backward))
(SETQ Y X)
T

And with a wrong direction:

(macroexpand '(setq-reversible x y :other-way-around))

We get an error and are prompted into the debugger!

We’ll see the backquote and comma mechanism in the next section, but here’s a fix:

(defmacro setq-reversible (v1 v2 direction)
 (case direction
 (:normal (list 'setq v1 v2))
 (:backward (list 'setq v2 v1))
 (t `(error "Unknown direction: ~a" ,direction))))
 ;; ^^ backquote ^^ comma: get the value inside the backquote.

(macroexpand '(SETQ-REVERSIBLE v1 v2 :other-way-around))
;; (ERROR "Unknown direction: ~a" :OTHER-WAY-AROUND)
;; T

Now when we call (setq-reversible v1 v2 :other-way-around) we still get the error and the debugger, but at least not when using macroexpand.

[bookmark: 2-backquote]

Backquote and comma

Before taking another step, we need to introduce a piece of Lisp notation that is indispensable to defining macros, even though technically it is quite independent of macros. This is the backquote facility. As we saw above, the main job of a macro, when all is said and done, is to define a piece of Lisp code, and that means evaluating expressions such as (list 'prog (list 'setq ...) ...). As these expressions grow in complexity, it becomes hard to read them and write them. What we find ourselves wanting is a notation that provides the skeleton of an expression, with some of the pieces filled in with new expressions. That’s what backquote provides. Instead of the list expression given above, one writes

 `(progn (setq ,v1 ,e) (setq ,v2 ,e))
;;^ backquote ^ ^ ^ ^ commas

The backquote (`) character signals that in the expression that follows, every subexpression not preceded by a comma is to be quoted, and every subexpression preceded by a comma is to be evaluated.

You can think of it, and use it, as data interpolation:

`(v1 = ,v1) ;; => (V1 = 3)

That’s mostly all there is to backquote. There are just two extra items to point out.

Comma-splice ,@

First, if you write “,@e” instead of “,e” then the value of e is spliced (or “joined”, “combined”, “interleaved”) into the result. So if v equals (oh boy), then

`(zap ,@v ,v)

evaluates to

(zap oh boy (oh boy))
;; ^^^^^ elements of v (two elements), spliced.
;; ^^ v itself (a list)

The second occurrence of v is replaced by its value. The first is replaced by the elements of its value. If v had had value (), it would have disappeared entirely: the value of (zap ,@v ,v) would have been (zap ()), which is the same as (zap nil).

Quote-comma ’,

When we are inside a backquote context and we want to print an expression literally, we have no choice but to use the combination of quote and comma:

(defmacro explain-exp (exp)
 `(format t "~S = ~S" ',exp ,exp))
 ;; ^^

(explain-exp (+ 2 3))
;; (+ 2 3) = 5

See by yourself:

;; Defmacro with no quote at all:
(defmacro explain-exp (exp)
 (format t "~a = ~a" exp exp))
(explain-exp v1)
;; V1 = V1

;; OK, with a backquote and a comma to get the value of exp:
(defmacro explain-exp (exp)
 ;; WRONG example
 `(format t "~a = ~a" exp ,exp))
(explain-exp v1)
;; => error: The variable EXP is unbound.

;; We then must use quote-comma:
(defmacro explain-exp (exp)
 `(format t "~a = ~a" ',exp ,exp))
(explain-exp (+ 1 2))
;; (+ 1 2) = 3

Nested backquotes

Second, one might wonder what happens if a backquote expression occurs inside another backquote. The answer is that the backquote becomes essentially unreadable and unwriteable; using nested backquote is usually a tedious debugging exercise. The reason, in my not-so-humble opinion, is that backquote is defined wrong. A comma pairs up with the innermost backquote when the default should be that it pairs up with the outermost. But this is not the place for a rant; consult your favorite Lisp reference for the exact behavior of nested backquote plus some examples.

Building lists with backquote

One problem with backquote is that once you learn it you tend to use for every list-building occasion. For instance, you might write

(mapcan (lambda (x)
 (cond ((symbolp x) `((,x)))
 ((> x 10) `(,x ,x))
 (t '())))
 some-list)

which yields ((a) 15 15) when some-list = (a 6 15). The problem is that mapcan destructively alters the results returned by the lambda-expression. Can we be sure that the lists returned by that expression are “fresh,” that is, they are different (in the eq sense) from the structures returned on other calls of that lambda expression? In the present case, close analysis will show that they must be fresh, but in general backquote is not obligated to return a fresh list every time (whether it does or not is implementation-dependent). If the example above got changed to

(mapcan (lambda (x)
 (cond ((symbolp x) `((,x)))
 ((> x 10) `(,x ,x))
 ((>= x 0) `(low))
 (t '())))
 some-list)

then backquote may well treat (low) as if it were '(low); the list will be allocated at load time, and every time the lambda is evaluated, that same chunk of storage will be returned. So if we evaluate the expression with some-list = (a 6 15), we will get ((a) low 15 15), but as a side effect the constant (low) will get clobbered to become (low 15 15). If we then evaluate the expression with, say, some-list = (8 oops), the result will be (low 15 15 (oops)), and now the “constant” that started off as '(low) will be (low 15 15 (oops)). (Note: The bug exemplified here takes other forms, and has often bit newbies - as well as experienced programmers - in the ass. The general form is that a constant list is produced as the value of something that is later destructively altered. The first line of defense against this bug is never to destructively alter any list. For newbies, this is also the last line of defense. For those of us who imagine we’re more sophisticated, the next line of defense is to think very carefully any time you use nconc or mapcan).

To fix the bug, you can write (map 'list ...) instead of mapcan. However, if you are determined to use mapcan, write the expression this way:

(mapcan (lambda (x)
 (cond ((symbolp x) (list `(,x)))
 ((> x 10) (list x x))
 ((>= x 0) (list 'low))
 (t '())))
 some-list)

My personal preference is to use backquote only to build S-expressions, that is, hierarchical expressions that consist of symbols, numbers, and strings, and that are not conceptualized as changing in length. For instance, I would never write

(setq sk `(,x ,@sk))

If sk is being used as a stack, that is, it’s going to be popped in the normal course of things, I would write (push x sk). If not, I would write (setq sk (cons x sk)).

[bookmark: LtohTOCentry-3]

Getting Macros Right

I said in the first section that my definition of setq2 wasn’t quite right, and now it’s time to fix it.

Suppose we write (setq2 x y (+ x 2)), when x=8. Then according to the definition given above, this form will expand into

(progn
 (setq x (+ x 2))
 (setq y (+ x 2)))

so that x will have value 10 and y will have value 12. Indeed, here’s its macroexpansion:

(macroexpand '(setq2 x y (+ x 2)))
;;(PROGN (SETQ X (+ X 2)) (SETQ Y (+ X 2)))

Chances are that isn’t what the macro is expected to do (although you never know). Another problematic case is (setq2 x y (pop l)), which causes l to be popped twice; again, probably not right.

The solution is to evaluate the expression e just once, save it in a temporary variable, and then set v1 and v2 to it.

Gensym

To make temporary variables, we use the gensym function, which returns a fresh variable guaranteed to appear nowhere else. Here is what the macro should look like:

(defmacro setq2 (v1 v2 e)
 (let ((tempvar (gensym)))
 `(let ((,tempvar ,e))
 (progn (setq ,v1 ,tempvar)
 (setq ,v2 ,tempvar)))))

Now (setq2 x y (+ x 2)) expands to

(let ((#:g2003 (+ x 2)))
 (progn (setq x #:g2003) (setq y #:g2003)))

Here gensym has returned the symbol #:g2003, which prints in this funny way because it won’t be recognized by the reader. (Nor is there any need for the reader to recognize it, since it exists only long enough for the code that contains it to be compiled.)

Exercise: Verify that this new version works correctly for the case (setq2 x y (pop l1)).

Exercise: Try writing the new version of the macro without using backquote. If you can’t do it, you have done the exercise correctly, and learned what backquote is for!

The moral of this section is to think carefully about which expressions in a macro get evaluated and when. Be on the lookout for situations where the same expression gets plugged into the output twice (as e was in my original macro design). For complex macros, watch out for cases where the order that expressions are evaluated differs from the order in which they are written. This is sure to trip up some user of the macro - even if you are the only user.[bookmark: LtohTOCentry-4]

What Macros are For

Macros are for making syntactic extensions to Lisp. One often hears it said that macros are a bad idea, that users can’t be trusted with them, and so forth. Balderdash. It is just as reasonable to extend a language syntactically as to extend it by defining your own procedures. It may be true that the casual reader of your code can’t understand the code without seeing the macro definitions, but then the casual reader can’t understand it without seeing function definitions either. Having defmethods strewn around several files contributes far more to unclarity than macros ever have, but that’s a different diatribe.

Before surveying what sorts of syntactic extensions I have found useful, let me point out what sorts of syntactic extensions are generally not useful, or best accomplished using means other than macros. Some novices think macros are useful for open-coding functions. So, instead of defining

(defun sqone (x)
 (let ((y (+ x 1))) (* y y)))

they might define

(defmacro sqone (x)
 `(let ((y (+ ,x 1))) (* y y)))

So that (sqone (* z 13)) might expand into

(let ((y (+ (* z 13) 1)))
 (* y y))

This is correct, but a waste of effort. For one thing, the amount of time saved is almost certainly negligible. If it’s really important that sqone be expanded inline, one can put (declaim (inline sqone)) before sqone is defined (although the compiler is not obligated to honor this declaration). For another, once sqone is defined as a macro, it becomes impossible to write (mapcar #'sqone ll), or to do anything else with it except call it.

But macros have a thousand and one legitimate uses. Why write (lambda (x) ...) when you can write (\\ (x) ...)? Just define \\ as a macro: (defmacro \ (&rest list) `(lambda ,@list)).

Many people find mapcar and mapcan a bit too obscure, especially when used with large lambda expressions. Rather than write something like

(mapcar (lambda (x)
 (let ((y (hairy-fun1 x))
 (z (hairy-fun2 x)))
 (dolist (y1 y)
 (dolist (z1 z)
 ... and further meaningless
 space-filling nonsense...
))))
 list)

we might prefer to write

(for (x :in list)
 (let ((y (hairy-fun1 x))
 (z (hairy-fun2 x)))
 (dolist (y1 y)
 (dolist (z1 z)
 ... and further meaningless
 space-filling nonsense...
))))

This macro might be defined thus:

(defmacro for (listspec exp)
 ;; ^^ listspec = (x :in list), a list of length 3.
 ;; ^^ exp = the rest of the code.
 (cond
 ((and (= (length listspec) 3)
 (symbolp (first listspec))
 (eq (second listspec) ':in))
 `(mapcar (lambda (,(first listspec))
 ,exp)
 ,(third listspec)))
 (t (error "Ill-formed for spec: ~A" listspec)))))

(This is a simplified version of a macro by Chris Riesbeck.)

It’s worth stopping for a second to discuss the role the keyword :in plays in this macro. It serves as a sort of “local syntax marker,” in that it has no meaning as far as Lisp is concerned, but does serve as a syntactic guidepost for the macro itself. I will refer to these markers as guide symbols. (Here its job may seem trivial, but if we generalized the for macro to allow multiple list arguments and an implicit progn in the body the :ins would be crucial in telling us where the arguments stopped and the body began.)

It is not strictly necessary for the guide symbols of a macro to be in the keyword package, but it is a good idea, for two reasons. First, they highlight to the reader that something idiosyncratic is going on. A form like (for ((x in (foobar a b 'oof))) (something-hairy x (list x))) looks a bit wrong already, because of the double parentheses before the x. But using “:in” makes it more obvious.

Second, notice that I wrote (eq (second listspec) ':in) in the macro definition to check for the presence of the guide symbol. If I had used in instead, I would have had to think about which package my in lives in and which package the macro user’s in lives in. One way to avoid trouble would be to write

(and (symbolp (second listspec))
 (eq (intern (symbol-name (second listspec))
 :keyword)
 ':in))

Another would be to write

(and (symbolp (second listspec))
 (string= (symbol-name (second listspec)) (symbol-name 'in)))

which neither of which is particularly clear or aesthetic. The keyword package is there to provide a home for symbols whose home is not per se relevant to anything; you might as well use it. (Note: In ANSI Lisp, I could have written "IN" instead of (symbol-name 'in), but there are Lisp implementations that do not convert symbols’ names to uppercase. Since I think the whole uppercase conversion idea is an embarrassing relic, I try to write code that is portable to those implementations.)

Let’s look at another example, both to illustrate a nice macro, and to provide an auxiliary function for some of the discussion below. One often wants to create new symbols in Lisp, and gensym is not always adequate for building them. Here is a description of an alternative facility called build-symbol:

(build-symbol [(:package p)] -pieces-) builds a symbol by concatenating the given pieces and interns it as specified by p. For each element of pieces, if it is a …

	… string: The string is added to the new symbol’s name.

	… symbol: The name of the symbol is added to the new symbol’s name.

	… expression of the form (:< e): e should evaluate to a string, symbol, or number; the characters of the value of e (as printed by princ) are concatenated into the new symbol’s name.

	… expression of the form (:++ p): p should be a place expression (i.e., appropriate as the first argument to setf), whose value is an integer; the value is incremented by 1, and the new value is concatenated into the new symbol’s name.

If the :package specification is omitted, it defaults to the value of *package*. If p is nil, the symbol is interned nowhere. Otherwise, it should evaluate to a package designator (usually, a keyword whose name is the same of a package).

For example, (build-symbol (:< x) "-" (:++ *x-num*)), when x = foo and *x-num* = 8, sets *x-num* to 9 and evaluates to FOO-9. If evaluated again, the result will be FOO-10, and so forth.

Obviously, build-symbol can’t be implemented as a function; it has to be a macro. Here is an implementation:

(defmacro build-symbol (&rest list)
 (let ((p (find-if (lambda (x)
 (and (consp x)
 (eq (car x) ':package)))
 list)))
 (when p
 (setq list (remove p list)))
 (let ((pkg (cond ((eq (second p) 'nil)
 nil)
 (t `(find-package ',(second p))))))
 (cond (p
 (cond (pkg
 `(values (intern ,(symstuff list) ,pkg)))
 (t
 `(make-symbol ,(symstuff list)))))
 (t
 `(values (intern ,(symstuff list))))))))

(defun symstuff (list)
 `(concatenate 'string
 ,@(for (x :in list)
 (cond ((stringp x)
 `',x)
 ((atom x)
 `',(format nil "~a" x))
 ((eq (car x) ':<)
 `(format nil "~a" ,(second x)))
 ((eq (car x) ':++)
 `(format nil "~a" (incf ,(second x))))
 (t
 `(format nil "~a" ,x))))))

(Another approach would be have symstuff return a single call of the form (format nil format-string -forms-), where the forms are derived from the pieces, and the format-string consists of interleaved ~a’s and strings.)

Sometimes a macro is needed only temporarily, as a sort of syntactic scaffolding. Suppose you need to define 12 functions, but they fall into 3 stereotyped groups of 4:

(defun make-a-zip (y z)
 (vector 2 'zip y z))
(defun test-whether-zip (x)
 (and (vectorp x) (eq (aref x 1) 'zip)))
(defun zip-copy (x) ...)
(defun zip-deactivate (x) ...)

(defun make-a-zap (u v w)
 (vector 3 'zap u v w))
(defun test-whether-zap (x) ...)
(defun zap-copy (x) ...)
(defun zap-deactivate (x) ...)

(defun make-a-zep ()
 (vector 0 'zep))
(defun test-whether-zep (x) ...)
(defun zep-copy (x) ...)
(defun zep-deactivate (x) ...)

Where the omitted pieces are the same in all similarly named functions. (That is, the “…” in zep-deactivate is the same code as the “…” in zip-deactivate, and so forth.) Here, for the sake of concreteness, if not plausibility, zip, zap, and zep are behaving like odd little data structures. The functions could be rather large, and it would get tedious keeping them all in sync as they are debugged. An alternative would be to use a macro:

(defmacro odd-define (name buildargs)
 `(progn (defun ,(build-symbol make-a- (:< name))
 ,buildargs
 (vector ,(length buildargs) ',name ,@buildargs))
 (defun ,(build-symbol test-whether- (:< name)) (x)
 (and (vectorp x) (eq (aref x 1) ',name))
 (defun ,(build-symbol (:< name) -copy) (x)
 ...)
 (defun ,(build-symbol (:< name) -deactivate) (x)
 ...))))

(odd-define zip (y z))
(odd-define zap (u v w))
(odd-define zep ())

If all the uses of this macro are collected in this one place, it might be clearer to make it a local macro using macrolet:

(macrolet ((odd-define (name buildargs)
 `(progn
 (defun ,(build-symbol make-a- (:< name))
 ,buildargs
 (vector ,(length buildargs)
 ',name
 ,@buildargs))
 (defun ,(build-symbol test-whether- (:< name))
 (x)
 (and (vectorp x) (eq (aref x 1) ',name))
 (defun ,(build-symbol (:< name) -copy) (x)
 ...)
 (defun ,(build-symbol (:< name) -deactivate) (x)
 ...)))))
(odd-define zip (y z))
(odd-define zap (u v w))
(odd-define zep ()))

Finally, macros are essential for defining “command languages.” A command is a function with a short name for use by users in interacting with Lisp’s read-eval-print loop. A short name is useful and possible because we want it to be easy to type and we don’t care much whether the name clashes some other command; if two command names clash, we can change one of them.

As an example, let’s define a little command language for debugging macros. (You may actually find this useful.) There are just two commands, ex and fi. They keep track of a “current form,” the thing to be macro-expanded or the result of such an expansion:

	(ex [form]): Apply macroexpand-1 to form (if supplied) or the current form, and make the result the current form. Then pretty-print the current form.

	(fi s [k]): Find the k’th subexpression of the current form whose car is s. (k defaults to 0.) Make that subexpression the current form and pretty-print it.

Suppose you’re trying to debug a macro hair-squared that expands into something complex containing a subform that is itself a macro form beginning with the symbol odd-define. You suspect there is a bug in the subform. You might issue the following commands:

(ex (hair-squared ...))
(PROGN (DEFUN ...)
 (ODD-DEFINE ZIP (U V W))
 ...)

(fi odd-define)
(ODD-DEFINE ZIP (U V W))

(ex)
(PROGN (DEFUN MAKE-A-ZIP (U V W) ...)
 ...)

Once again, it is clear that ex and fi cannot be functions, although they could easily be made into functions if we were willing to type a quote before their arguments. But using “quote” often seems inappropriate in commands. For one thing, having to type it is a nuisance in a context where we are trying to save keystrokes, especially if the argument in question is always quoted. For another, in many cases it just seems inappropriate. If we had a command that took a symbol as one of its arguments and set it to a value, it would just be strange to write (command ’x …) instead of (command x …), because we want to think of the command as a variant of setq.

Here is how ex and fi might be defined:

(defvar *current-form*)

(defmacro ex (&optional (form nil form-supplied))
 `(progn
 (pprint (setq *current-form*
 (macroexpand-1
 ,(cond (form-supplied
 `',form)
 (t '*current-form*)))))
 (values)))

(defmacro fi (s &optional (k 0))
 `(progn
 (pprint (setq *current-form*
 (find-nth-occurrence ',s *current-form* ,k)))
 (values)))

The ex macro expands to a form containing a call to macroexpand-1, a built-in function that does one step of macro expansion to a form whose car is the name of a macro. (If given some other form, it returns the form unchanged.) pprint is a built-in function that pretty-prints its argument. Because we are using ex and fi at a read-eval-print loop, any value returned by their expansions will be printed. Here the expansion is executed for side effect, so we arrange to return no values at all by having the expansion return (values).

In some Lisp implementations, read-eval-print loops routinely print results using pprint. In those implementations we could simplify ex and fi by having them print nothing, but just return the value of *current-form*, which the read-eval-print loop will then print prettily. Use your judgment.

I leave the definition of find-nth-occurrence as an exercise. You might also want to define a command that just sets and prints the current form: (cf e).

One caution: In general, command languages will consist of a mixture of macros and functions, with convenience for their definer (and usually sole user) being the main consideration. If a command seems to “want” to evaluate some of its arguments sometimes, you have to decide whether to define two (or more) versions of it, or just one, a function whose arguments must be quoted to prevent their being evaluated. For the cf command mentioned in the previous paragraph, some users might prefer cf to be a function, some a macro.

See also

	A gentle introduction to Compile-Time Computing — Part 1

	Safely dealing with scientific units of variables at compile time (a gentle introduction to Compile-Time Computing — part 3)

	The following video, from the series “Little bits of Lisp” by cbaggers, is a two hours long talk on macros, showing simple to advanced concepts such as compiler macros: https://www.youtube.com/watch?v=ygKXeLKhiTI It also shows how to manipulate macros (and their expansion) in Emacs.

[image: video]

	the article “Reader macros in Common Lisp”: https://lisper.in/reader-macros

Fundamentals of CLOS

CLOS is the “Common Lisp Object System”, arguably one of the most powerful object systems available in any language.

Some of its features include:

	it is dynamic, making it a joy to work with in a Lisp REPL. For example, changing a class definition will update the existing objects, given certain rules which we have control upon.

	it supports multiple dispatch and multiple inheritance,

	it is different from most object systems in that class and method definitions are not tied together,

	it has excellent introspection capabilities,

	it is provided by a meta-object protocol, which provides a standard interface to the CLOS, and can be used to create new object systems.

The functionality belonging to this name was added to the Common Lisp language between the publication of Steele’s first edition of “Common Lisp, the Language” in 1984 and the formalization of the language as an ANSI standard ten years later.

This page aims to give a good understanding of how to use CLOS, but only a brief introduction to the MOP.

To learn the subjects in depth, you will need two books:

	Object-Oriented Programming in Common Lisp: a Programmer’s Guide to CLOS, by Sonya Keene,

	the Art of the Metaobject Protocol, by Gregor Kiczales, Jim des Rivières et al.

But see also

	the introduction in Practical Common Lisp (online), by Peter Seibel.

	Common Lisp, the Language

	and for reference, the complete CLOS-MOP specifications.

Classes and instances

Diving in

Let’s dive in with an example showing class definition, creation of objects, slot access, methods specialized for a given class, and inheritance.

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)))

;; => #<STANDARD-CLASS PERSON>

(defvar p1 (make-instance 'person :name "me"))
;; ^^^^ initarg
;; => #<PERSON {1006234593}>

(name p1)
;;^^^ accessor
;; => "me"

(lisper p1)
;; => nil
;; ^^ initform (slot unbound by default)

(setf (lisper p1) t)

(defclass child (person)
 ())

(defclass child (person)
 ((can-walk-p
 :accessor can-walk-p
 :initform t)))
;; #<STANDARD-CLASS CHILD>

(can-walk-p (make-instance 'child))
;; T

Defining classes (defclass)

The macro used for defining new data types in CLOS is defclass.

We used it like this:

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)))

This gives us a CLOS type (or class) called person and two slots, named name and lisper.

(class-of p1)
#<STANDARD-CLASS PERSON>

(type-of p1)
PERSON

The general form of defclass is:

(defclass <class-name> (list of super classes)
 ((slot-1
 :slot-option slot-argument)
 (slot-2, etc))
 (:optional-class-option
 :another-optional-class-option))

So, our person class doesn’t explicitly inherit from another class (it gets the empty parentheses ()). However it still inherits by default from the class t and from standard-object. See below under “inheritance”.

We could write a minimal class definition without slot options like this:

(defclass point ()
 (x y z))

or even without slot specifiers: (defclass point () ()).

Creating objects (make-instance)

We create instances of a class with make-instance:

(defvar p1 (make-instance 'person :name "me"))

It is generally good practice to define a constructor:

(defun make-person (name &key lisper)
 (make-instance 'person :name name :lisper lisper))

This has the direct advantage that you can control the required arguments. You should now export the constructor from your package and not the class itself.

Slots

A function that always works (slot-value)

The function to access any slot anytime is (slot-value <object> <slot-name>).

Given our point class above, which didn’t define any slot accessors:

(defvar pt (make-instance 'point))

(inspect pt)
The object is a STANDARD-OBJECT of type POINT.
0. X: "unbound"
1. Y: "unbound"
2. Z: "unbound"

We got an object of type POINT, but slots are unbound by default: trying to access them will raise an UNBOUND-SLOT condition:

(slot-value pt 'x) ;; => condition: the slot is unbound

slot-value is setf-able:

(setf (slot-value pt 'x) 1)
(slot-value pt 'x) ;; => 1

Initial and default values (initarg, initform)

	:initarg :foo is the keyword we can pass to make-instance to give a value to this slot:

(make-instance 'person :name "me")

(again: slots are unbound by default)

	:initform <val> is the default value in case we didn’t specify an initarg. This form is evaluated each time it’s needed, in the lexical environment of the defclass.

Sometimes we see the following trick to clearly require a slot:

(defclass foo ()
 ((a
 :initarg :a
 :initform (error "you didn't supply an initial value for slot a"))))
;; #<STANDARD-CLASS FOO>

(make-instance 'foo) ;; => enters the debugger.

Getters and setters (accessor, reader, writer)

	:accessor foo: an accessor is both a getter and a setter. Its argument is a name that will become a generic function.

(name p1) ;; => "me"

(type-of #'name)
STANDARD-GENERIC-FUNCTION

	:reader and :writer do what you expect. Only the :writer is setf-able.

If you don’t specify any of these, you can still use slot-value.

You can give a slot more than one :accessor, :reader or :initarg.

We introduce two macros to make the access to slots shorter in some situations:

1- with-slots allows to abbreviate several calls to slot-value. The first argument is a list of slot names. The second argument evaluates to a CLOS instance. This is followed by optional declarations and an implicit progn. Lexically during the evaluation of the body, an access to any of these names as a variable is equivalent to accessing the corresponding slot of the instance with slot-value.

(with-slots (name lisper)
 c1
 (format t "got ~a, ~a~&" name lisper))

or

(with-slots ((n name)
 (l lisper))
 c1
 (format t "got ~a, ~a~&" n l))

2- with-accessors is equivalent, but instead of a list of slots it takes a list of accessor functions. Any reference to the variable inside the macro is equivalent to a call to the accessor function.

(with-accessors ((name name)
 ^^variable ^^accessor
 (lisper lisper))
 p1
 (format t "name: ~a, lisper: ~a" name lisper))

Class VS instance slots

:allocation specifies whether this slot is local or shared.

	a slot is local by default, that means it can be different for each instance of the class. In that case :allocation equals :instance.

	a shared slot will always be equal for all instances of the class. We set it with :allocation :class.

In the following example, note how changing the value of the class slot species of p2 affects all instances of the class (whether or not those instances exist yet).

(defclass person ()
 ((name :initarg :name :accessor name)
 (species
 :initform 'homo-sapiens
 :accessor species
 :allocation :class)))

;; Note that the slot "lisper" was removed in existing instances.
(inspect p1)
;; The object is a STANDARD-OBJECT of type PERSON.
;; 0. NAME: "me"
;; 1. SPECIES: HOMO-SAPIENS
;; > q

(defvar p2 (make-instance 'person))

(species p1)
(species p2)
;; HOMO-SAPIENS

(setf (species p2) 'homo-numericus)
;; HOMO-NUMERICUS

(species p1)
;; HOMO-NUMERICUS

(species (make-instance 'person))
;; HOMO-NUMERICUS

(let ((temp (make-instance 'person)))
 (setf (species temp) 'homo-lisper))
;; HOMO-LISPER
(species (make-instance 'person))
;; HOMO-LISPER

Slot documentation

Each slot accepts one :documentation option. To obtain its documentation via documentation, you need to obtain the slot object. This can be done compatibly using a library such as closer-mop. For instance:

(closer-mop:class-direct-slots (find-class 'my-class))
;; => list of slots (objects)
(find 'my-slot * :key #'closer-mop:slot-definition-name)
;; => find desired slot by name
(documentation * t) ; obtain its documentation

Note however that generally it may be better to document slot accessors instead, as a popular viewpoint is that slots are implementation details and not part of the public interface.

Slot type

The :type slot option may not do the job you expect it does. If you are new to the CLOS, we suggest you skip this section and use your own constructors to manually check slot types.

Indeed, whether slot types are being checked or not is undefined. See the Hyperspec.

Few implementations will do it. Clozure CL does it, SBCL does it since its version 1.5.9 (November, 2019) or when safety is high ((declaim (optimise safety))).

To do it otherwise, see this Stack-Overflow answer, and see also quid-pro-quo, a contract programming library.

find-class, class-name, class-of

(find-class 'point)
;; #<STANDARD-CLASS POINT 275B78DC>

(class-name (find-class 'point))
;; POINT

(class-of my-point)
;; #<STANDARD-CLASS POINT 275B78DC>

(typep my-point (class-of my-point))
;; T

CLOS classes are also instances of a CLOS class, and we can find out what that class is, as in the example below:

(class-of (class-of my-point))
;; #<STANDARD-CLASS STANDARD-CLASS 20306534>

Note: this is your first introduction to the MOP. You don’t need that to get started !

The object my-point is an instance of the class named point, and the class named point is itself an instance of the class named standard-class. We say that the class named standard-class is the metaclass (i.e. the class of the class) of my-point. We can make good uses of metaclasses, as we’ll see later.

Subclasses and inheritance

As illustrated above, child is a subclass of person.

All objects inherit from the class standard-object and t.

Every child instance is also an instance of person.

(type-of c1)
;; CHILD

(subtypep (type-of c1) 'person)
;; T

(ql:quickload "closer-mop")
;; ...

(closer-mop:subclassp (class-of c1) 'person)
;; T

The closer-mop library is the portable way to do CLOS/MOP operations.

A subclass inherits all of its parents’ slots, and it can override any of their slot options. Common Lisp makes this process dynamic, great for REPL session, and we can even control parts of it (like, do something when a given slot is removed/updated/added, etc).

The class precedence list of a child is thus:

child <- person <– standard-object <- t

Which we can get with:

(closer-mop:class-precedence-list (class-of c1))
;; (#<standard-class child>
;; #<standard-class person>
;; #<standard-class standard-object>
;; #<sb-pcl::slot-class sb-pcl::slot-object>
;; #<sb-pcl:system-class t>)

However, the direct superclass of a child is only:

(closer-mop:class-direct-superclasses (class-of c1))
;; (#<standard-class person>)

We can further inspect our classes with class-direct-[subclasses, slots, default-initargs] and many more functions.

How slots are combined follows some rules:

	:accessor and :reader are combined by the union of accessors and readers from all the inherited slots.

	:initarg: the union of initialization arguments from all the inherited slots.

	:initform: we get the most specific default initial value form, i.e. the first :initform for that slot in the precedence list.

	:allocation is not inherited. It is controlled solely by the class being defined and defaults to :instance.

Last but not least, be warned that inheritance is fairly easy to misuse, and multiple inheritance is multiply so, so please take a little care. Ask yourself whether foo really wants to inherit from bar, or whether instances of foo want a slot containing a bar. A good general guide is that if foo and bar are “same sort of thing” then it’s correct to mix them together by inheritance, but if they’re really separate concepts then you should use slots to keep them apart.

Multiple inheritance

CLOS supports multiple inheritance.

(defclass baby (child person)
 ())

The first class on the list of parent classes is the most specific one, child’s slots will take precedence over the person’s. Note that both child and person have to be defined prior to defining baby in this example.

Redefining and changing a class

This section briefly covers two topics:

	redefinition of an existing class, which you might already have done by following our code snippets, and what we do naturally during development, and

	changing an instance of one class into an instance of another, a powerful feature of CLOS that you’ll probably won’t use very often.

We’ll gloss over the details. Suffice it to say that everything’s configurable by implementing methods exposed by the MOP.

To redefine a class, simply evaluate a new defclass form. This then takes the place of the old definition, the existing class object is updated, and all instances of the class (and, recursively, its subclasses) are lazily updated to reflect the new definition. You don’t have to recompile anything other than the new defclass, nor to invalidate any of your objects. Think about it for a second: this is awesome !

For example, with our person class:

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)))

(setf p1 (make-instance 'person :name "me"))

Changing, adding, removing slots,…

(lisper p1)
;; NIL

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform t ;; <-- from nil to t
 :accessor lisper)))

(lisper p1)
;; NIL (of course!)

(lisper (make-instance 'person :name "You"))
;; T

(defclass person ()
 ((name
 :initarg :name
 :accessor name)
 (lisper
 :initform nil
 :accessor lisper)
 (age ;; <-- new slot
 :initarg :arg
 :initform 18 ;; <-- default value
 :accessor age)))

(age p1)
;; => 18. Correct. This is the default initform for this new slot.

(slot-value p1 'bwarf)
;; => "the slot bwarf is missing from the object #<person…>"

(setf (age p1) 30)
(age p1) ;; => 30

(defclass person ()
 ((name
 :initarg :name
 :accessor name)))

(slot-value p1 'lisper) ;; => slot lisper is missing.
(lisper p1) ;; => there is no applicable method for the generic function lisper when called with arguments #(lisper).

To change the class of an instance, use change-class:

(change-class p1 'child)
;; we can also set slots of the new class:
(change-class p1 'child :can-walk-p nil)

(class-of p1)
;; #<STANDARD-CLASS CHILD>

(can-walk-p p1)
;; T

In the above example, I became a child, and I inherited the can-walk-p slot, which is true by default.

Pretty printing

Every time we printed an object so far we got an output like

#<PERSON {1006234593}>

which doesn’t say much.

What if we want to show more information ? Something like

#

 Type System

Type System

Common Lisp has a complete and flexible type system and corresponding tools to inspect, check and manipulate types. It allows creating custom types, adding type declarations to variables and functions and thus to get compile-time warnings and errors.

Values Have Types, Not Variables

Being different from some languages such as C/C++, variables in Lisp are just placeholders for objects1. When you setf a variable, an object is “placed” in it. You can place another value to the same variable later, as you wish.

This implies a fact that in Common Lisp objects have types, while variables do not. This might be surprising at first if you come from a C/C++ background.

For example:

(defvar *var* 1234)
VAR

(type-of *var*)
(INTEGER 0 4611686018427387903)

The function type-of returns the type of the given object. The returned result is a type-specifier. In this case the first element is the type and the remaining part is extra information (lower and upper bound) of that type. You can safely ignore it for now. Also remember that integers in Lisp have no limit!

Now let’s try to setf the variable:

* (setf *var* "hello")
"hello"

* (type-of *var*)
(SIMPLE-ARRAY CHARACTER (5))

You see, type-of returns a different result: simple-array of length 5 with contents of type character. This is because *var* is evaluated to string "hello" and the function type-of actually returns the type of object "hello" instead of variable *var*.

Type Hierarchy

The inheritance relationship of Lisp types consists a type graph and the root of all types is T. For example:

* (describe 'integer)
COMMON-LISP:INTEGER
 [symbol]

INTEGER names the built-in-class #<BUILT-IN-CLASS COMMON-LISP:INTEGER>:
 Class precedence-list: INTEGER, RATIONAL, REAL, NUMBER, T
 Direct superclasses: RATIONAL
 Direct subclasses: FIXNUM, BIGNUM
 No direct slots.

INTEGER names a primitive type-specifier:
 Lambda-list: (&OPTIONAL (SB-KERNEL::LOW '*) (SB-KERNEL::HIGH '*))

The function describe shows that the symbol integer is a primitive type-specifier that has optional information lower bound and upper bound. Meanwhile, it is a built-in class. But why?

Most common Lisp types are implemented as CLOS classes. Some types are simply “wrappers” of other types. Each CLOS class maps to a corresponding type. In Lisp types are referred to indirectly by the use of type specifiers.

There are some differences between the function type-of and class-of. The function type-of returns the type of a given object in type specifier format while class-of returns the implementation details.

* (type-of 1234)
(INTEGER 0 4611686018427387903)

* (class-of 1234)
#<BUILT-IN-CLASS COMMON-LISP:FIXNUM>

Checking Types

The function typep can be used to check if the first argument is of the given type specified by the second argument.

* (typep 1234 'integer)
T

The function subtypep can be used to inspect if a type inherits from the another one. It returns 2 values:

	T, T means first argument is sub-type of the second one.

	NIL, T means first argument is not sub-type of the second one.

	NIL, NIL means “not determined”.

For example:

* (subtypep 'integer 'number)
T
T

* (subtypep 'string 'number)
NIL
T

Sometimes you may want to perform different actions according to the type of an argument. The macro typecase is your friend:

* (defun plus1 (arg)
 (typecase arg
 (integer (+ arg 1))
 (string (concatenate 'string arg "1"))
 (t 'error)))
PLUS1

* (plus1 100)
101 (7 bits, #x65, #o145, #b1100101)

* (plus1 "hello")
"hello1"

* (plus1 'hello)
ERROR

Type Specifier

A type specifier is a form specifying a type. As mentioned above, returning value of the function type-of and the second argument of typep are both type specifiers.

As shown above, (type-of 1234) returns (INTEGER 0 4611686018427387903). This kind of type specifiers are called compound type specifier. It is a list whose head is a symbol indicating the type. The rest part of it is complementary information.

* (typep '#(1 2 3) '(vector number 3))
T

Here the complementary information of the type vector is its elements type and size respectively.

The rest part of a compound type specifier can be a *, which means “anything”. For example, the type specifier (vector number *) denotes a vector consisting of any number of numbers.

* (typep '#(1 2 3) '(vector number *))
T

The trailing parts can be omitted, the omitted elements are treated as *s:

* (typep '#(1 2 3) '(vector number))
T

* (typep '#(1 2 3) '(vector))
T

As you may have guessed, the type specifier above can be shortened as following:

* (typep '#(1 2 3) 'vector)
T

You may refer to the CLHS page for more information.

Defining New Types

You can use the macro deftype to define a new type-specifier.

Its argument list can be understood as a direct mapping to elements of rest part of a compound type specifier. They are defined as optional to allow symbol type specifier.

Its body should be a macro checking whether given argument is of this type (see defmacro).

We can use member to define enum types, for example:

(deftype fruit () '(member :apple :orange :pear))

Now let us define a new data type. The data type should be a array with at most 10 elements. Also each element should be a number smaller than 10. See following code for an example:

* (defun small-number-array-p (thing)
 (and (arrayp thing)
 (<= (length thing) 10)
 (every #'numberp thing)
 (every (lambda (x) (< x 10)) thing)))

* (deftype small-number-array (&optional type)
 `(and (array ,type 1)
 (satisfies small-number-array-p)))

* (typep '#(1 2 3 4) '(small-number-array number))
T

* (typep '#(1 2 3 4) 'small-number-array)
T

* (typep '#(1 2 3 4 100) 'small-number-array)
NIL

* (small-number-array-p '#(1 2 3 4 5 6 7 8 9 0 1))
NIL

Run-time type Checking

Common Lisp supports run-time type checking via the macro check-type. It accepts a place and a type specifier as arguments and signals an type-error if the contents of place are not of the given type.

* (defun plus1 (arg)
 (check-type arg number)
 (1+ arg))
PLUS1

* (plus1 1)
2 (2 bits, #x2, #o2, #b10)

* (plus1 "hello")
; Debugger entered on #<SIMPLE-TYPE-ERROR expected-type: NUMBER datum: "Hello">

The value of ARG is "Hello", which is not of type NUMBER.
 [Condition of type SIMPLE-TYPE-ERROR]
...

Compile-time type checking

You may provide type information for variables, function arguments etc via proclaim, declaim (at the toplevel) and declare (inside functions and macros).

However, similar to the :type slot introduced in CLOS section, the effects of type declarations are undefined in Lisp standard and are implementation specific. So there is no guarantee that the Lisp compiler will perform compile-time type checking.

However, it is possible, and SBCL is an implementation that does thorough type checking.

Let’s recall first that Lisp already warns about simple type warnings. The following function wrongly wants to concatenate a string and a number. When we compile it, we get a type warning.

(defconstant +foo+ 3)
(defun bar ()
 (concatenate 'string "+" +foo+))
; caught WARNING:
; Constant 3 conflicts with its asserted type SEQUENCE.
; See also:
; The SBCL Manual, Node "Handling of Types"

The example is simple, but it already shows a capacity some other languages don’t have, and it is actually useful during development ;) Now, we’ll do better.

Declaring the type of variables

Use the macro declaim with a type declaration identifier (other identifiers are "ftype, inline, notinline, optimize…).

Let’s declare that our global variable *name* is a string. You can type the following in any order in the REPL:

(declaim (type (string) *name*))
(defparameter *name* "book")

Now if we try to set it with a bad type, we get a simple-type-error:

(setf *name* :me)
Value of :ME in (THE STRING :ME) is :ME, not a STRING.
 [Condition of type SIMPLE-TYPE-ERROR]

We can do the same with our custom types. Let’s quickly declare the type list-of-strings:

(defun list-of-strings-p (list)
 "Return t if LIST is non nil and contains only strings."
 (and (consp list)
 (every #'stringp list)))

(deftype list-of-strings ()
 `(satisfies list-of-strings-p))

Now let’s declare that our *all-names* variables is a list of strings:

(declaim (type (list-of-strings) *all-names*))
;; and with a wrong value:
(defparameter *all-names* "")
;; we get an error, still at compile-time:
Cannot set SYMBOL-VALUE of *ALL-NAMES* to "", not of type
(SATISFIES LIST-OF-STRINGS-P).
 [Condition of type SIMPLE-TYPE-ERROR]

Composing types

We can compose types. Following the previous example:

(declaim (type (or null list-of-strings) *all-names*))

Declaring the input and output types of functions

We use again the declaim macro, with ftype (function …) instead of just type:

(declaim (ftype (function (fixnum) fixnum) add))
;; ^^input ^^output [optional]
(defun add (n)
 (+ n 1))

With this we get nice type warnings at compile time.

If we change the function to erroneously return a string instead of a fixnum, we get a warning:

(defun add (n)
 (format nil "~a" (+ n 1)))
; caught WARNING:
; Derived type of ((GET-OUTPUT-STREAM-STRING STREAM)) is
; (VALUES SIMPLE-STRING &OPTIONAL),
; conflicting with the declared function return type
; (VALUES FIXNUM &REST T).

If we use add inside another function, to a place that expects a string, we get a warning:

(defun bad-concat (n)
 (concatenate 'string (add n)))
; caught WARNING:
; Derived type of (ADD N) is
; (VALUES FIXNUM &REST T),
; conflicting with its asserted type
; SEQUENCE.

If we use add inside another function, and that function declares its argument types which appear to be incompatible with those of add, we get a warning:

(declaim (ftype (function (string)) bad-arg))
(defun bad-arg (n)
 (add n))
; caught WARNING:
; Derived type of N is
; (VALUES STRING &OPTIONAL),
; conflicting with its asserted type
; FIXNUM.

This all happens indeed at compile time, either in the REPL, either with a simple C-c C-c in Slime, or when we load a file.

Declaring &key parameters

Use &key (:argument type).

For example:

(declaim (ftype (function (string &key (:n integer))) foo)) (defun foo (bar &key n) …)

Declaring &rest parameters

This is less evident, you might need a well-placed declare.

In the following, we declare a fruit type and we write a function that uses a single fruit argument, so compiling placing-order gives us a type warning as expected:

(deftype fruit () '(member :apple :orange :pear))

(declaim (ftype (function (fruit)) one-order))
(defun one-order (fruit)
 (format t "Ordering ~S~%" fruit))

(defun placing-order ()
 (one-order :bacon))

But in this version, we use &rest parameters, and we don’t have a type warning anymore:

(declaim (ftype (function (&rest fruit)) place-order))
(defun place-order (&rest selections)
 (dolist (s selections)
 (format t "Ordering ~S~%" s)))

(defun placing-orders ()
 (place-order :orange :apple :bacon)) ;; => no type warning

The declaration is correct, but our compiler doesn’t check it. A well-placed declare gives us the compile-time warning back:

(defun place-order (&rest selections)
 (dolist (s selections)
 (declare (type fruit s)) ;; <= declare
 (format t "Ordering ~S~%" s)))

(defun placing-orders ()
 (place-order :orange :apple :bacon))

=>

The value
 :BACON
is not of type
 (MEMBER :PEAR :ORANGE :APPLE)

For portable code, we would add run-time checks with an assert.

Declaring class slots types

A class slot accepts a :type slot option. It is however generally not used to check the type of the initform. SBCL, starting with version 1.5.9 released on november 2019, now gives those warnings, meaning that this:

(defclass foo ()
 ((name :type number :initform "17")))

throws a warning at compile time.

Note: see also sanity-clause, a data serialization/contract library to check slots’ types during make-instance (which is not compile time).

Alternative type checking syntax: defstar, serapeum

The Serapeum library provides a shortcut that looks like this:

 (-> mod-fixnum+ (fixnum fixnum) fixnum)
 (defun mod-fixnum+ (x y) ...)

The Defstar library provides a defun* macro that allows to add the type declarations into the lambda list. It looks like this:

(defun* sum ((a real) (b real))
 (+ a b))

It also allows:

	to declare the return type, either in the function definition or in its body

	to quickly declare variables that are ignored, with the _ placeholder

	to add assertions for each arguments

	to do the same with defmethod, defparameter, defvar, flet, labels, let* and lambda.

Limitations

Complex types involving satisfies are not checked inside a function body by default, only at its boundaries. Even if it does a lot, SBCL doesn’t do as much as a statically typed language.

Consider this example, where we badly increment an integer with a string:

(declaim (ftype (function () string) bad-adder))
(defun bad-adder ()
 (let ((res 10))
 (loop for name in '("alice")
 do (incf res name)) ;; <= bad
 (format nil "finally doing sth with ~a" res)))

Compiling this function doesn’t throw a type warning.

However, if we had the problematic line at the function’s boundary we’d get the warning:

(defun bad-adder ()
 (let ((res 10))
 (loop for name in '("alice")
 return (incf res name))))
; in: DEFUN BAD-ADDER
; (SB-INT:NAMED-LAMBDA BAD-ADDER
; NIL
; (BLOCK BAD-ADDER
; (LET ((RES 10))
; (LOOP FOR NAME IN *ALL-NAMES* RETURN (INCF RES NAME)))))
;
; caught WARNING:
; Derived type of ("a hairy form" NIL (SETQ RES (+ NAME RES))) is
; (VALUES (OR NULL NUMBER) &OPTIONAL),
; conflicting with the declared function return type
; (VALUES STRING &REST T).

We could also use a the declaration in the loop body to get a compile-time warning:

 do (incf res (the string name)))

What can we conclude? This is yet another reason to decompose your code into small functions.

See also

	the article Static type checking in SBCL, by Martin Cracauer

	the article Typed List, a Primer - let’s explore Lisp’s fine-grained type hierarchy! with a shallow comparison to Haskell.

	the Coalton library: an efficient, statically typed functional programming language that supercharges Common Lisp. It is as an embedded DSL in Lisp that resembles Haskell or Standard ML, but lets you seamlessly interoperate with non-statically-typed Lisp code (and vice versa).

	exhaustiveness type checking at compile-time with Serapeum for enum types and union types (ecase-of, etypecase-of).

	The term object here has nothing to do with Object-Oriented or so. It means “any Lisp datum”.↩

 TCP/UDP programming with sockets

TCP/UDP programming with sockets

This is a short guide to TCP/IP and UDP/IP client/server programming in Common Lisp using usockets.

TCP/IP

As usual, we will use quicklisp to load usocket.

(ql:quickload “usocket”)

Now we need to create a server. There are 2 primary functions that we need to call. usocket:socket-listen and usocket:socket-accept.

usocket:socket-listen binds to a port and listens on it. It returns a socket object. We need to wait with this object until we get a connection that we accept. That’s where usocket:socket-accept comes in. It’s a blocking call that returns only when a connection is made. This returns a new socket object that is specific to that connection. We can then use that connection to communicate with our client.

So, what were the problems I faced due to my mistakes?

Mistake 1 - My initial understanding was that socket-accept would return a stream object. NO…. It returns a socket object. In hindsight, its correct and my own mistake cost me time. So, if you want to write to the socket, you need to actually get the corresponding stream from this new socket. The socket object has a stream slot and we need to explicitly use that. And how does one know that? (describe connection) is your friend!

Mistake 2 - You need to close both the new socket and the server socket. Again this is pretty obvious but since my initial code was only closing the connection, I kept running into a socket in use problem. Of course one more option is to reuse the socket when we listen.

Once you get past these mistakes, it’s pretty easy to do the rest. Close the connections and the server socket and boom you are done!

(defun create-server (port)
 (let* ((socket (usocket:socket-listen "127.0.0.1" port))
 (connection (usocket:socket-accept socket :element-type
 'character)))
 (unwind-protect
 (progn
 (format (usocket:socket-stream connection)
 "Hello World~%")
 (force-output (usocket:socket-stream connection)))
 (progn
 (format t "Closing sockets~%")
 (usocket:socket-close connection)
 (usocket:socket-close socket)))))

Now for the client. This part is easy. Just connect to the server port and you should be able to read from the server. The only silly mistake I made here was to use read and not read-line. So, I ended up seeing only a “Hello” from the server. I went for a walk and came back to find the issue and fix it.

(defun create-client (port)
 (usocket:with-client-socket (socket stream "127.0.0.1" port
 :element-type 'character)
 (unwind-protect
 (progn
 (usocket:wait-for-input socket)
 (format t "Input is: ~a~%" (read-line stream)))
 (usocket:socket-close socket))))

So, how do you run this? You need two REPLs, one for the server and one for the client. Load this file in both REPLs. Create the server in the first REPL.

(create-server 12321)

Now you are ready to run the client on the second REPL

(create-client 12321)

Voilà! You should see “Hello World” on the second REPL.

UDP/IP

As a protocol, UDP is connection-less, and therefore there is no concept of binding and accepting a connection. Instead we only do a socket-connect but pass a specific set of parameters to make sure that we create an UDP socket that’s waiting for data on a particular port.

So, what were the problems I faced due to my mistakes? Mistake 1 - Unlike TCP, you don’t pass host and port to socket-connect. If you do that, then you are indicating that you want to send a packet. Instead, you pass nil but you set :local-host and :local-port to the address and port that you want to receive data on. This part took some time to figure out, because the documentation didn’t cover it. Instead reading a bit of code from blackthorn-engine-3d helped a lot.

Also, since UDP is connectionless, anyone can send data to it at any time. So, we need to know which host/port did we get data from so that we can respond on it. So we bind multiple values to socket-receive and use those values to send back data to our peer “client”.

(defun create-server (port buffer)
 (let* ((socket (usocket:socket-connect nil nil
 :protocol :datagram
 :element-type '(unsigned-byte 8)
 :local-host "127.0.0.1"
 :local-port port)))
 (unwind-protect
 (multiple-value-bind (buffer size client receive-port)
 (usocket:socket-receive socket buffer 8)
 (format t "~A~%" buffer)
 (usocket:socket-send socket (reverse buffer) size
 :port receive-port
 :host client))
 (usocket:socket-close socket))))

Now for the sender/receiver. This part is pretty easy. Create a socket, send data on it and receive data back.

(defun create-client (port buffer)
 (let ((socket (usocket:socket-connect "127.0.0.1" port
 :protocol :datagram
 :element-type '(unsigned-byte 8))))
 (unwind-protect
 (progn
 (format t "Sending data~%")
 (replace buffer #(1 2 3 4 5 6 7 8))
 (format t "Receiving data~%")
 (usocket:socket-send socket buffer 8)
 (usocket:socket-receive socket buffer 8)
 (format t "~A~%" buffer))
 (usocket:socket-close socket))))

So, how do you run this? You need again two REPLs, one for the server and one for the client. Load this file in both REPLs. Create the server in the first REPL.

(create-server 12321 (make-array 8 :element-type ’(unsigned-byte 8)))

Now you are ready to run the client on the second REPL

(create-client 12321 (make-array 8 :element-type ’(unsigned-byte 8)))

Voilà! You should see a vector #(1 2 3 4 5 6 7 8) on the first REPL and #(8 7 6 5 4 3 2 1) on the second one.

Credit

This guide originally comes from shortsightedsid

 Interfacing with your OS

Interfacing with your OS

The ANSI Common Lisp standard doesn’t mention this topic. (Keep in mind that it was written at a time where Lisp Machines were at their peak. On these boxes Lisp was your operating system!) So almost everything that can be said here depends on your OS and your implementation. There are, however, some widely used libraries, which either come with your Common Lisp implementation, or are easily available through Quicklisp. These include:

	ASDF3, which is included with almost all Common Lisp implementations, includes Utilities for Implementation- and OS- Portability (UIOP).

	osicat

	unix-opts or the newer clingon are a command-line argument parsers, similar to Python’s argparse.

[bookmark: env]

Accessing Environment variables

UIOP comes with a function that’ll allow you to look at Unix/Linux environment variables on a lot of different CL implementations:

* (uiop:getenv "HOME")
 "/home/edi"

Below is an example implementation, where we can see /feature flags/ used to run code on specific implementations:

* (defun my-getenv (name &optional default)
 "Obtains the current value of the POSIX environment variable NAME."
 (declare (type (or string symbol) name))
 (let ((name (string name)))
 (or #+abcl (ext:getenv name)
 #+ccl (ccl:getenv name)
 #+clisp (ext:getenv name)
 #+cmu (unix:unix-getenv name) ; since CMUCL 20b
 #+ecl (si:getenv name)
 #+gcl (si:getenv name)
 #+mkcl (mkcl:getenv name)
 #+sbcl (sb-ext:posix-getenv name)
 default)))
MY-GETENV
* (my-getenv "HOME")
"/home/edi"
* (my-getenv "HOM")
NIL
* (my-getenv "HOM" "huh?")
"huh?"

You should also note that some of these implementations also provide the ability to set these variables. These include ECL (si:setenv) and AllegroCL, LispWorks, and CLISP where you can use the functions from above together with setf. This feature might be important if you want to start subprocesses from your Lisp environment.

Also note that the Osicat library has the method (environment-variable "name"), on POSIX-like systems including Windows. It is also fset-able.

[bookmark: accessing-command-line]

Accessing the command line arguments

Basics

Accessing command line arguments is implementation-specific but it appears most implementations have a way of getting at them. UIOP with uiop:command-line-arguments or Roswell as well as external libraries (see next section) make it portable.

SBCL stores the arguments list in the special variable sb-ext:*posix-argv*

$ sbcl my-command-line-arg

….

* sb-ext:*posix-argv*

("sbcl" "my-command-line-arg")
*

More on using this to write standalone Lisp scripts can be found in the SBCL Manual

LispWorks has system:*line-arguments-list*

* system:*line-arguments-list*
("/Users/cbrown/Projects/lisptty/tty-lispworks" "-init" "/Users/cbrown/Desktop/lisp/lispworks-init.lisp")

Here’s a quick function to return the argument strings list across multiple implementations:

(defun my-command-line ()
 (or
 #+SBCL *posix-argv*
 #+LISPWORKS system:*line-arguments-list*))

Now it would be handy to access them in a portable way and to parse them according to a schema definition.

Parsing command line arguments

We have a look at the Awesome CL list#scripting section and we’ll show how to use clingon.

Please see our scripting recipe.

Running external programs

uiop has us covered, and is probably included in your Common Lisp implementation.

Synchronously

uiop:run-program either takes a string as argument, denoting the name of the executable to run, or a list of strings, for the program and its arguments:

(uiop:run-program "firefox")

or

(uiop:run-program (list "firefox" "http:url"))

This will process the program output as specified and return the processing results when the program and its output processing are complete.

Use :output t to print to standard output.

This function has the following optional arguments:

run-program (command &rest keys &key
 ignore-error-status
 (force-shell nil force-shell-suppliedp)
 input
 (if-input-does-not-exist :error)
 output
 (if-output-exists :supersede)
 error-output
 (if-error-output-exists :supersede)
 (element-type *default-stream-element-type*)
 (external-format *utf-8-external-format*)
 allow-other-keys)

It will always call a shell (rather than directly executing the command when possible) if force-shell is specified. Similarly, it will never call a shell if force-shell is specified to be nil.

Signal a continuable subprocess-error if the process wasn’t successful (exit-code 0), unless ignore-error-status is specified.

If output is a pathname, a string designating a pathname, or nil (the default) designating the null device, the file at that path is used as output. If it’s :interactive, output is inherited from the current process; beware that this may be different from your *standard-output*, and under slime will be on your *inferior-lisp* buffer. If it’s t, output goes to your current *standard-output* stream. Otherwise, output should be a value that is a suitable first argument to slurp-input-stream (qv.), or a list of such a value and keyword arguments. In this case, run-program will create a temporary stream for the program output; the program output, in that stream, will be processed by a call to slurp-input-stream, using output as the first argument (or the first element of output, and the rest as keywords). The primary value resulting from that call (or nil if no call was needed) will be the first value returned by run-program. E.g., using :output :string will have it return the entire output stream as a string. And using :output '(:string :stripped t) will have it return the same string stripped of any ending newline.

if-output-exists, which is only meaningful if output is a string or a pathname, can take the values :error, :append, and :supersede (the default). The meaning of these values and their effect on the case where output does not exist, is analogous to the if-exists parameter to open with :direction :output.

error-output is similar to output, except that the resulting value is returned as the second value of run-program. t designates the *error-output*. Also :output means redirecting the error output to the output stream, in which case nil is returned.

if-error-output-exists is similar to if-output-exist, except that it affects error-output rather than output.

input is similar to output, except that vomit-output-stream is used, no value is returned, and T designates the *standard-input*.

if-input-does-not-exist, which is only meaningful if input is a string or a pathname, can take the values :create and :error (the default). The meaning of these values is analogous to the if-does-not-exist parameter to open with :direction :input.

element-type and external-format are passed on to your Lisp implementation, when applicable, for creation of the output stream.

One and only one of the stream slurping or vomiting may or may not happen in parallel in parallel with the subprocess, depending on options and implementation, and with priority being given to output processing. Other streams are completely produced or consumed before or after the subprocess is spawned, using temporary files.

run-program returns 3 values:

	the result of the output slurping if any, or nil

	the result of the error-output slurping if any, or nil

	either 0 if the subprocess exited with success status, or an indication of failure via the exit-code of the process

Asynchronously

With uiop:launch-program.

Its signature is the following:

launch-program (command &rest keys &key
 input
 (if-input-does-not-exist :error)
 output
 (if-output-exists :supersede)
 error-output
 (if-error-output-exists :supersede)
 (element-type *default-stream-element-type*)
 (external-format *utf-8-external-format*)
 directory
 #+allegro separate-streams
 &allow-other-keys)

Output (stdout) from the launched program is set using the output keyword:

	If output is a pathname, a string designating a pathname, or nil (the default) designating the null device, the file at that path is used as output.

	If it’s :interactive, output is inherited from the current process; beware that this may be different from your *standard-output*, and under Slime will be on your *inferior-lisp* buffer.

	If it’s T, output goes to your current *standard-output* stream.

	If it’s :stream, a new stream will be made available that can be accessed via process-info-output and read from.

	Otherwise, output should be a value that the underlying lisp implementation knows how to handle.

if-output-exists, which is only meaningful if output is a string or a pathname, can take the values :error, :append, and :supersede (the default). The meaning of these values and their effect on the case where output does not exist, is analogous to the if-exists parameter to open with :DIRECTION :output.

error-output is similar to output. T designates the *error-output*, :output means redirecting the error output to the output stream, and :stream causes a stream to be made available via process-info-error-output.

launch-program returns a process-info object, which look like the following (source):

(defclass process-info ()
 (
 ;; The advantage of dealing with streams instead of PID is the
 ;; availability of functions like `sys:pipe-kill-process`.
 (process :initform nil)
 (input-stream :initform nil)
 (output-stream :initform nil)
 (bidir-stream :initform nil)
 (error-output-stream :initform nil)
 ;; For backward-compatibility, to maintain the property (zerop
 ;; exit-code) <-> success, an exit in response to a signal is
 ;; encoded as 128+signum.
 (exit-code :initform nil)
 ;; If the platform allows it, distinguish exiting with a code
 ;; >128 from exiting in response to a signal by setting this code
 (signal-code :initform nil)))

See the docstrings.

Test if a subprocess is alive

uiop:process-alive-p tests if a process is still alive, given a process-info object returned by launch-program:

* (defparameter *shell* (uiop:launch-program "bash"
 :input :stream :output :stream))

;; inferior shell process now running
* (uiop:process-alive-p *shell*)
T

;; Close input and output streams
* (uiop:close-streams *shell*)
* (uiop:process-alive-p *shell*)
NIL

Get the exit code

We can use uiop:wait-process. If the process is finished, it returns immediately, and returns the exit code. If not, it waits for the process to terminate.

(uiop:process-alive-p *process*)
NIL
(uiop:wait-process *process*)
0

An exit code to 0 means success (use zerop).

The exit code is also stored in the exit-code slot of our process-info object. We see from the class definition above that it has no accessor, so we’ll use slot-value. It has an initform to nil, so we don’t have to check if the slot is bound. We can do:

(slot-value *my-process* 'uiop/launch-program::exit-code)
0

The trick is that we must run wait-process beforehand, otherwise the result will be nil.

Since wait-process is blocking, we can do it on a new thread:

(bt:make-thread
 (lambda ()
 (let ((exit-code (uiop:wait-process
 (uiop:launch-program (list "of" "commands"))))
 (if (zerop exit-code)
 (print :success)
 (print :failure)))))
 :name "Waiting for <program>")

Note that run-program returns the exit code as the third value.

Input and output from subprocess

If the input keyword is set to :stream, then a stream is created and can be written to in the same way as a file. The stream can be accessed using uiop:process-info-input:

;; Start the inferior shell, with input and output streams
* (defparameter *shell* (uiop:launch-program "bash"
 :input :stream :output :stream))
;; Write a line to the shell
* (write-line "find . -name '*.md'"
 (uiop:process-info-input *shell*))
;; Flush stream
* (force-output (uiop:process-info-input *shell*))

where write-line writes the string to the given stream, adding a newline at the end. The force-output call attempts to flush the stream, but does not wait for completion.

Reading from the output stream is similar, with uiop:process-info-output returning the output stream:

* (read-line (uiop:process-info-output *shell*))

In some cases the amount of data to be read is known, or there are delimiters to determine when to stop reading. If this is not the case, then calls to read-line can hang while waiting for data. To avoid this, listen can be used to test if a character is available:

* (let ((stream (uiop:process-info-output *shell*)))
 (loop while (listen stream) do
 ;; Characters are immediately available
 (princ (read-line stream))
 (terpri)))

There is also read-char-no-hang which reads a single character, or returns nil if no character is available. Note that due to issues like buffering, and the timing of when the other process is executed, there is no guarantee that all data sent will be received before listen or read-char-no-hang return nil.

Capturing standard and error output

Capturing standard output, as seen above, is easily done by telling :output to be :string, or using :output '(:string :stripped t) to strip any ending newline.

You can ask the same to :error-output and, in addition, you can ask uiop:run-program to not signal an error, thus to not enter the interactive debugger, with :ignore-error-status t.

In that case, you can check the success or the failure of the program with the returned exit-code. 0 is success.

Here’s everything together:

(uiop:run-program (list "git"
 "checkout"
 "me/does-not-exist")
 :output :string
 :error-output :string
 :ignore-error-status t)
;; =>
""
"error: pathspec 'me/does-not-exist did not match any file(s) known to git
"
1

uiop:run-program returns 3 values:

	the standard output (here, as a blank string)

	the error output (here, as a string with our error message)

	the exit code

We can bind them with multiple-value-bind:

(multiple-value-bind (output error-output exit-code)
 (uiop:run-program (list …))
 (unless (zerop exit-code)
 (format t "error output is: ~a" error-output)))

Running visual commands (htop)

Use uiop:run-program and set both :input and :output to :interactive:

(uiop:run-program "htop"
 :output :interactive
 :input :interactive)

This will spawn htop in full screen, as it should.

It works for more commands (sudo, vim…), however not for all interactive programs, such as less or fzf.

Piping

Here’s an example to do the equivalent of ls | sort. Note that “ls” uses launch-program (async) and outputs to a stream, where “sort”, the last command of the pipe, uses run-program and outputs to a string.

(uiop:run-program "sort"
 :input
 (uiop:process-info-output
 (uiop:launch-program "ls"
 :output :stream))
 :output :string)

Get Lisp’s current Process ID (PID)

Implementations provide their own functions for this.

On SBCL:

(sb-posix:getpid)

It is possible portably with the osicat library:

(osicat-posix:getpid)

Here again, we could find it by using the apropos function:

CL-USER> (apropos "pid")
OSICAT-POSIX:GETPID (fbound)
OSICAT-POSIX::PID
[…]
SB-IMPL::PID
SB-IMPL::WAITPID (fbound)
SB-POSIX:GETPID (fbound)
SB-POSIX:GETPPID (fbound)
SB-POSIX:LOG-PID (bound)
SB-POSIX::PID
SB-POSIX::PID-T
SB-POSIX:WAITPID (fbound)
[…]

 Foreign Function Interfaces

Foreign Function Interfaces

The ANSI Common Lisp standard doesn’t mention this topic. So almost everything that can be said here depends on your OS and your implementation.

[bookmark: clisp-gethost]

Example: Calling ‘gethostname’ from CLISP

Note: You should read the relevant chapter from the CLISP implementation notes before you proceed.

int gethostname(char *name, int len) follows a typical pattern of C “out”-parameter convention - it expects a pointer to a buffer it’s going to fill. So you must view this parameter as either :OUT or :IN-OUT. Additionally, one must tell the function the size of the buffer. Here len is just an :IN parameter. Sometimes this will be an :IN-OUT parameter, returning the number of bytes actually filled in.

So name is actually a pointer to an array of up to len characters, regardless of what the poor “char *” C prototype says, to be used like a C string (0-termination). How many elements are in the array? Luckily, in our case, you can find it out without calculating the sizeof() a C structure. It’s a hostname that will be returned. The Solaris 2.x manpage says “Host names are limited to MAXHOSTNAMELEN characters, currently 256.”

Also, in the present example, you can use allocation :ALLOCA, like you’d do in C: stack-allocate a temporary. Why make things worse when using Lisp than when using C?

This yields the following useful signature for your foreign function:

(ffi:def-c-call-out gethostname
 (:arguments (name (ffi:c-ptr (ffi:c-array-max ffi:char 256))
 :out :alloca)
 (len ffi:int))
 ;; (:return-type BOOLEAN) could have been used here
 ;; (Solaris says it's either 0 or -1).
 (:return-type ffi:int))

 (defun myhostname ()
 (multiple-value-bind (success name)
 ;; :OUT or :IN-OUT parameters are returned via multiple values
 (gethostname 256)
 (if (zerop success)
 (subseq name 0 (position #\null name))
 (error ... ; errno may be set
 ...))))
 (defvar hostname (myhostname))

Possibly SUBSEQ and POSITION are superfluous, thanks to C-ARRAY-MAX as opposed to C-ARRAY:

(defun myhostname ()
 (multiple-value-bind (success name)
 ;; :out or :in-out parameters are returned via multiple values
 (gethostname 256)
 (if (zerop success) name
 (error ... ; errno may be set
 ...))))

[bookmark: alisp-gethost]

Example: Calling ‘gethostname’ from Allegro CL

This is how the same example above would be written in Allegro Common Lisp version 6 and above. ACL doesn’t explicitly distinguish between input and output arguments. The way to declare an argument as output (i.e., modifiable by C) is to use an array, since arrays are passed by reference and C therefore receives a pointer to a memory location (which is what it expects). In this case things are made even easier by the fact that gethostname() expects an array of char, and a SIMPLE-ARRAY of CHARACTER represents essentially the same thing in Lisp. The foreign function definition is therefore the following:

(def-foreign-call (c-get-hostname "gethostname")
 ((name (* :char) (simple-array 'character (*)))
 (len :int integer))
 :returning :int)

Let’s read this line by line: this form defines a Lisp function called C-GET-HOSTNAME that calls the C function gethostname(). It takes two arguments: the first one, called NAME, is a pointer to a char (*char in C), and a SIMPLE-ARRAY of characters in Lisp; the second one is called LEN, and is an integer. The function returns an integer value.

And now the Lisp side:

(defun get-hostname ()
 (let* ((name (make-array 256 :element-type 'character))
 (result (c-get-hostname name 256)))
 (if (zerop result)
 (let ((pos (position #\null name)))
 (subseq name 0 pos))
 (error "gethostname() failed."))))

This function creates the NAME array, calls C-GET-HOSTNAME to fill it and then checks the returned value. If the value is zero, then the call was successful, and we return the contents of NAME up to the first 0 character (the string terminator in C), otherwise we signal an error. Note that, unlike the previous example, we allocate the string in Lisp, and we rely on the Lisp garbage collector to get rid of it after the function terminates. Here is a usage example:

* (get-hostname)
 "terminus"

Working with strings is, in general, easier than the previous example showed. Let’s say you want to call getenv() from Lisp to access the value of an environment variable. getenv() takes a string argument (the variable name) and returns another string (the variable value). To be more precise, the argument is a pointer to a sequence of characters that should have been allocated by the caller, and the return value is a pointer to an already-existing sequence of chars (in the environment). Here is the definition of C-GETENV:

(def-foreign-call (c-getenv "getenv")
 ((var (* :char) string))
 :returning :int
 :strings-convert t)

The argument in this case is still a pointer to char in C, but we can declare it a STRING to Lisp. The return value is a pointer, so we declare it as integer. Finally, the :STRINGS-CONVERT keyword argument specifies that ACL should automatically translate the Lisp string passed as the first argument into a C string. Here is how it’s used:

* (c-getenv "SHELL")
 -1073742215

If you are surprised by the return value, just remember that C-GETENV returns a pointer, and we must tell Lisp how to interpret the contents of the memory location pointed to by it. Since in this case we know that it will point to a C string, we can use the FF:NATIVE-TO-STRING function to convert it to a Lisp string:

* (native-to-string (c-getenv "SHELL"))
 "/bin/tcsh"
 9
 9

(The second and third values are the number of characters and bytes copied, respectively). One caveat: if you ask for the value of a non-existent variable, C-GETENV will return 0, and NATIVE-TO-STRING will fail. So a safer example would be:

* (let ((ptr (c-getenv "NOSUCHVAR")))
 (unless (zerop ptr)
 (native-to-string ptr)))
 NIL

 Threads, concurrency, parallelism

Threads, concurrency, parallelism

[bookmark: intro]

Introduction

By threads, we mean separate execution strands within a single Lisp process, sharing the same address space. Typically, execution is automatically switched between these strands by the system (either by the lisp kernel or by the operating system) so that tasks appear to be completed in parallel (asynchronously). This page discusses the creation and management of threads and some aspects of interactions between them. For information about the interaction between lisp and other processes, see Interfacing with your OS.

An instant pitfall for the unwary is that most implementations refer (in nomenclature) to threads as processes - this is a historical feature of a language which has been around for much longer than the term thread. Call this maturity a sign of stable implementations, if you will.

The ANSI Common Lisp standard doesn’t mention this topic. We will present here the portable bordeaux-threads library, an example implementation via SBCL threads from the SBCL Manual, and the lparallel library (GitHub).

Bordeaux-threads is a de-facto standard portable library, that exposes rather low-level primitives. Lparallel builds on it and features:

	a simple model of task submission with receiving queue

	constructs for expressing fine-grained parallelism

	asynchronous condition handling across thread boundaries

	parallel versions of map, reduce, sort, remove, and many others

	promises, futures, and delayed evaluation constructs

	computation trees for parallelizing interconnected tasks

	bounded and unbounded FIFO queues

	channels

	high and low priority tasks

	task killing by category

	integrated timeouts

For more libraries on parallelism and concurrency, see the Awesome CL list and Quickdocs such as quickdocks on thread and concurrency.

[bookmark: why_bother]

Why bother?

The first question to resolve is: why bother with threads? Sometimes your answer will simply be that your application is so straightforward that you need not concern yourself with threads at all. But in many other cases it’s difficult to imagine how a sophisticated application can be written without multi-threading. For example:

	you might be writing a server which needs to be able to respond to more than one user / connection at a time (for instance: a web server) on the Sockets page);

	you might want to perform some background activity, without halting the main application while this is going on;

	you might want your application to be notified when a certain time has elapsed;

	you might want to keep the application running and active while waiting for some system resource to become available;

	you might need to interface with some other system which requires multithreading (for example, “windows” under Windows which generally run in their own threads);

	you might want to associate different contexts (e.g. different dynamic bindings) with different parts of the application;

	you might even have the simple need to do two things at once.

[bookmark: emergency]

What is Concurrency? What is Parallelism?

Credit: The following was first written on z0ltan.wordpress.com by Timmy Jose.

Concurrency is a way of running different, possibly related, tasks seemingly simultaneously. What this means is that even on a single processor machine, you can simulate simultaneity using threads (for instance) and context-switching them.

In the case of system (native OS) threads, the scheduling and context switching is ultimately determined by the OS. This is the case with Java threads and Common Lisp threads.

In the case of “green” threads, that is to say threads that are completely managed by the program, the scheduling can be completely controlled by the program itself. Erlang is a great example of this approach.

So what is the difference between Concurrency and Parallelism? Parallelism is usually defined in a very strict sense to mean independent tasks being run in parallel, simultaneously, on different processors or on different cores. In this narrow sense, you really cannot have parallelism on a single-core, single-processor machine.

It rather helps to differentiate between these two related concepts on a more abstract level – concurrency primarily deals with providing the illusion of simultaneity to clients so that the system doesn’t appear locked when a long running operation is underway. GUI systems are a wonderful example of this kind of system. Concurrency is therefore concerned with providing good user experience and not necessarily concerned with performance benefits.

Java’s Swing toolkit and JavaScript are both single-threaded, and yet they can give the appearance of simultaneity because of the context switching behind the scenes. Of course, concurrency is implemented using multiple threads/processes in most cases.

Parallelism, on the other hand, is mostly concerned with pure performance gains. For instance, if we are given a task to find the squares of all the even numbers in a given range, we could divide the range into chunks which are then run in parallel on different cores or different processors, and then the results can be collated together to form the final result. This is an example of Map-Reduce in action.

So now that we have separated the abstract meaning of Concurrency from that of Parallelism, we can talk a bit about the actual mechanism used to implement them. This is where most of the confusion arise for a lot of people. They tend to tie down abstract concepts with specific means of implementing them. In essence, both abstract concepts may be implemented using the same mechanisms! For instance, we may implement concurrent features and parallel features using the same basic thread mechanism in Java. It’s only the conceptual intertwining or independence of tasks at an abstract level that makes the difference for us.

For instance, if we have a task where part of the work can be done on a different thread (possibly on a different core/processor), but the thread which spawns this thread is logically dependent on the results of the spawned thread (and as such has to “join” on that thread), it is still Concurrency!

So the bottomline is this – Concurrency and Parallelism are different concepts, but their implementations may be done using the same mechanisms — threads, processes, etc.

Bordeaux threads

The Bordeaux library provides a platform independent way to handle basic threading on multiple Common Lisp implementations. The interesting bit is that it itself does not really create any native threads — it relies entirely on the underlying implementation to do so.

On the other hand, it does provide some useful extra features in its own abstractions over the lower-level threads.

Also, you can see from the demo programs that a lot of the Bordeaux functions seem quite similar to those used in SBCL. I don’t really think that this is a coincidence.

You can refer to the documentation for more details (check the “Wrap-up” section).

Installing Bordeaux Threads

First let’s load up the Bordeaux library using Quicklisp:

CL-USER> (ql:quickload "bt-semaphore")
To load "bt-semaphore":
 Load 1 ASDF system:
 bt-semaphore
; Loading "bt-semaphore"

(:BT-SEMAPHORE)

Checking for thread support in Common Lisp

Regardless of the Common Lisp implementation, there is a standard way to check for thread support availability:

CL-USER> (member :thread-support *FEATURES*)
(:THREAD-SUPPORT :SWANK :QUICKLISP :ASDF-PACKAGE-SYSTEM :ASDF3.1 :ASDF3 :ASDF2
 :ASDF :OS-MACOSX :OS-UNIX :NON-BASE-CHARS-EXIST-P :ASDF-UNICODE :64-BIT
 :64-BIT-REGISTERS :ALIEN-CALLBACKS :ANSI-CL :ASH-RIGHT-VOPS :BSD
 :C-STACK-IS-CONTROL-STACK :COMMON-LISP :COMPARE-AND-SWAP-VOPS
 :COMPLEX-FLOAT-VOPS :CYCLE-COUNTER :DARWIN :DARWIN9-OR-BETTER :FLOAT-EQL-VOPS
 :FP-AND-PC-STANDARD-SAVE :GENCGC :IEEE-FLOATING-POINT :INLINE-CONSTANTS
 :INODE64 :INTEGER-EQL-VOP :LINKAGE-TABLE :LITTLE-ENDIAN
 :MACH-EXCEPTION-HANDLER :MACH-O :MEMORY-BARRIER-VOPS :MULTIPLY-HIGH-VOPS
 :OS-PROVIDES-BLKSIZE-T :OS-PROVIDES-DLADDR :OS-PROVIDES-DLOPEN
 :OS-PROVIDES-PUTWC :OS-PROVIDES-SUSECONDS-T :PACKAGE-LOCAL-NICKNAMES
 :PRECISE-ARG-COUNT-ERROR :RAW-INSTANCE-INIT-VOPS :SB-DOC :SB-EVAL :SB-LDB
 :SB-PACKAGE-LOCKS :SB-SIMD-PACK :SB-SOURCE-LOCATIONS :SB-TEST :SB-THREAD
 :SB-UNICODE :SBCL :STACK-ALLOCATABLE-CLOSURES :STACK-ALLOCATABLE-FIXED-OBJECTS
 :STACK-ALLOCATABLE-LISTS :STACK-ALLOCATABLE-VECTORS
 :STACK-GROWS-DOWNWARD-NOT-UPWARD :SYMBOL-INFO-VOPS :UD2-BREAKPOINTS :UNIX
 :UNWIND-TO-FRAME-AND-CALL-VOP :X86-64)

If there were no thread support, it would show “NIL” as the value of the expression.

Depending on the specific library being used, we may also have different ways of checking for concurrency support, which may be used instead of the common check mentioned above.

For instance, in our case, we are interested in using the Bordeaux library. To check whether there is support for threads using this library, we can see whether the *supports-threads-p* global variable is set to NIL (no support) or T (support available):

CL-USER> bt:*supports-threads-p*
T

Okay, now that we’ve got that out of the way, let’s test out both the platform-independent library (Bordeaux) as well as the platform-specific support (SBCL in this case).

To do this, let us work our way through a number of simple examples:

	Basics — list current thread, list all threads, get thread name

	Update a global variable from a thread

	Print a message onto the top-level using a thread

	Print a message onto the top-level — fixed

	Print a message onto the top-level — better

	Modify a shared resource from multiple threads

	Modify a shared resource from multiple threads — fixed using locks

	Modify a shared resource from multiple threads — using atomic operations

	Joining on a thread, destroying a thread example

Basics — list current thread, list all threads, get thread name

 ;;; Print the current thread, all the threads, and the current thread's name
 (defun print-thread-info ()
 (let* ((curr-thread (bt:current-thread))
 (curr-thread-name (bt:thread-name curr-thread))
 (all-threads (bt:all-threads)))
 (format t "Current thread: ~a~%~%" curr-thread)
 (format t "Current thread name: ~a~%~%" curr-thread-name)
 (format t "All threads:~% ~{~a~%~}~%" all-threads))
 nil)

And the output:

 CL-USER> (print-thread-info)
 Current thread: #<THREAD "repl-thread" RUNNING {10043B8003}>

 Current thread name: repl-thread

 All threads:
 #<THREAD "repl-thread" RUNNING {10043B8003}>
 #<THREAD "auto-flush-thread" RUNNING {10043B7DA3}>
 #<THREAD "swank-indentation-cache-thread" waiting on: #<WAITQUEUE {1003A28103}> {1003A201A3}>
 #<THREAD "reader-thread" RUNNING {1003A20063}>
 #<THREAD "control-thread" waiting on: #<WAITQUEUE {1003A19E53}> {1003A18C83}>
 #<THREAD "Swank Sentinel" waiting on: #<WAITQUEUE {1003790043}> {1003788023}>
 #<THREAD "main thread" RUNNING {1002991CE3}>

 NIL

Update a global variable from a thread:

 (defparameter *counter* 0)

 (defun test-update-global-variable ()
 (bt:make-thread
 (lambda ()
 (sleep 1)
 (incf *counter*)))
 counter)

We create a new thread using bt:make-thread, which takes a lambda abstraction as a parameter. Note that this lambda abstraction cannot take any parameters.

Another point to note is that unlike some other languages (Java, for instance), there is no separation from creating the thread object and starting/running it. In this case, as soon as the thread is created, it is executed.

The output:

 CL-USER> (test-update-global-variable)

 0
 CL-USER> *counter*
 1

As we can see, because the main thread returned immediately, the initial value of *counter* is 0, and then around a second later, it gets updated to 1 by the anonymous thread.

Create a thread: print a message onto the top-level

 ;;; Print a message onto the top-level using a thread
 (defun print-message-top-level-wrong ()
 (bt:make-thread
 (lambda ()
 (format *standard-output* "Hello from thread!"))
 :name "hello")
 nil)

And the output:

 CL-USER> (print-message-top-level-wrong)
 NIL

So what went wrong? The problem is variable binding. Now, the ’t’ parameter to the format function refers to the top-level, which is a Common Lisp term for the main console stream, also referred to by the global variable *standard-output*. So we could have expected the output to be shown on the main console screen.

The same code would have run fine if we had not run it in a separate thread. What happens is that each thread has its own stack where the variables are rebound. In this case, even for *standard-output*, which being a global variable, we would assume should be available to all threads, is rebound inside each thread! This is similar to the concept of ThreadLocal storage in Java.

Print a message onto the top-level — fixed

So how do we fix the problem of the previous example? By binding the top-level at the time of thread creation of course. Pure lexical scoping to the rescue!

 ;;; Print a message onto the top-level using a thread — fixed
 (defun print-message-top-level-fixed ()
 (let ((top-level *standard-output*))
 (bt:make-thread
 (lambda ()
 (format top-level "Hello from thread!"))
 :name "hello"))
 nil)

Which produces:

 CL-USER> (print-message-top-level-fixed)
 Hello from thread!
 NIL

Phew! However, there is another way of producing the same result using a very interesting reader macro as we’ll see next.

Print a message onto the top-level — read-time eval macro

Let’s take a look at the code first:

 ;;; Print a message onto the top-level using a thread - reader macro

 (eval-when (:compile-toplevel)
 (defun print-message-top-level-reader-macro ()
 (bt:make-thread
 (lambda ()
 (format #.*standard-output* "Hello from thread!")))
 nil))

 (print-message-top-level-reader-macro)

And the output:

 CL-USER> (print-message-top-level-reader-macro)
 Hello from thread!
 NIL

So it works, but what’s the deal with the eval-when and what is that strange #. symbol before *standard-output*?

eval-when controls when evaluation of Lisp expressions takes place. We can have three targets — :compile-toplevel, :load-toplevel, and :execute.

The #. symbol is what is called a “Reader macro”. A reader (or read) macro is called so because it has special meaning to the Common Lisp Reader, which is the component that is responsible for reading in Common Lisp expressions and making sense out of them. This specific reader macro ensures that the binding of *standard-output* is done at read time.

Binding the value at read-time ensures that the original value of *standard-output* is maintained when the thread is run, and the output is shown on the correct top-level.

Now this is where the eval-when bit comes into play. By wrapping the whole function definition inside the eval-when, and ensuring that evaluation takes place during compile time, the correct value of *standard-output* is bound. If we had skipped the eval-when, we would see the following error:

 error:
 don't know how to dump #<SWANK/GRAY::SLIME-OUTPUT-STREAM {100439EEA3}> (default MAKE-LOAD-FORM method called).
 ==>
 #<SWANK/GRAY::SLIME-OUTPUT-STREAM {100439EEA3}>

 note: The first argument never returns a value.
 note:
 deleting unreachable code
 ==>
 "Hello from thread!"

 Compilation failed.

And that makes sense because SBCL cannot make sense of what this output stream returns since it is a stream and not really a defined value (which is what the ‘format’ function expects). That is why we see the “unreachable code” error.

Note that if the same code had been run on the REPL directly, there would be no problem since the resolution of all the symbols would be done correctly by the REPL thread.

Modify a shared resource from multiple threads

Suppose we have the following setup with a minimal bank-account class (no error checks):

 ;;; Modify a shared resource from multiple threads

 (defclass bank-account ()
 ((id :initarg :id
 :initform (error "id required")
 :accessor :id)
 (name :initarg :name
 :initform (error "name required")
 :accessor :name)
 (balance :initarg :balance
 :initform 0
 :accessor :balance)))

 (defgeneric deposit (account amount)
 (:documentation "Deposit money into the account"))

 (defgeneric withdraw (account amount)
 (:documentation "Withdraw amount from account"))

 (defmethod deposit ((account bank-account) (amount real))
 (incf (:balance account) amount))

 (defmethod withdraw ((account bank-account) (amount real))
 (decf (:balance account) amount))

And we have a simple client which apparently does not believe in any form of synchronisation:

 (defparameter *rich*
 (make-instance 'bank-account
 :id 1
 :name "Rich"
 :balance 0))
 ; compiling (DEFPARAMETER *RICH* ...)

 (defun demo-race-condition ()
 (loop repeat 100
 do
 (bt:make-thread
 (lambda ()
 (loop repeat 10000 do (deposit *rich* 100))
 (loop repeat 10000 do (withdraw *rich* 100))))))

This is all we are doing – create a new bank account instance (balance 0), and then create a 100 threads, each of which simply deposits an amount of 100 10000 times, and then withdraws the same amount the same number of times. So the final result should be the same as that of the opening balance, which is 0, right? Let’s check that and see.

On a sample run, we might get the following results:

 CL-USER> (:balance *rich*)
 0
 CL-USER> (dotimes (i 5)
 (demo-race-condition))
 NIL
 CL-USER> (:balance *rich*)
 22844600

Whoa! The reason for this discrepancy is that incf and decf are not atomic operations — they consist of multiple sub-operations, and the order in which they are executed is not in our control.

This is what is called a “race condition” — multiple threads contending for the same shared resource with at least one modifying thread which, more likely than not, reads the wrong value of the object while modifying it. How do we fix it? One simple way it to use locks (mutex in this case, could be semaphores for more complex situations).

Modify a shared resource from multiple threads — fixed using locks

Let’s rest the balance for the account back to 0 first:

 CL-USER> (setf (:balance *rich*) 0)
 0
 CL-USER> (:balance *rich*)
 0

Now let’s modify the demo-race-condition function to access the shared resource using locks (created using bt:make-lock and used as shown):

 (defvar *lock* (bt:make-lock))
 ; compiling (DEFVAR *LOCK* …)

 (defun demo-race-condition-locks ()
 (loop repeat 100
 do
 (bt:make-thread
 (lambda ()
 (loop repeat 10000 do (bt:with-lock-held (*lock*)
 (deposit *rich* 100)))
 (loop repeat 10000 do (bt:with-lock-held (*lock*)
 (withdraw *rich* 100)))))))
 ; compiling (DEFUN DEMO-RACE-CONDITION-LOCKS ...)

And let’s do a bigger sample run this time around:

 CL-USER> (dotimes (i 100)
 (demo-race-condition-locks))
 NIL
 CL-USER> (:balance *rich*)
 0

Excellent! Now this is better. Of course, one has to remember that using a mutex like this is bound to affect performance. There is a better way in quite a few circumstances — using atomic operations when possible. We’ll cover that next.

Modify a shared resource from multiple threads — using atomic operations

Atomic operations are operations that are guaranteed by the system to all occur inside a conceptual transaction, i.e., all the sub-operations of the main operation all take place together without any interference from outside. The operation succeeds completely or fails completely. There is no middle ground, and there is no inconsistent state.

Another advantage is that performance is far superior to using locks to protect access to the shared state. We will see this difference in the actual demo run.

The Bordeaux library does not provide any real support for atomics, so we will have to depend on the specific implementation support for that. In our case, that is SBCL, and so we will have to defer this demo to the SBCL section.

Joining on a thread, destroying a thread

To join on a thread, we use the bt:join-thread function, and for destroying a thread (not a recommended operation), we can use the bt:destroy-thread function.

A simple demo:

 (defmacro until (condition &body body)
 (let ((block-name (gensym)))
 `(block ,block-name
 (loop
 (if ,condition
 (return-from ,block-name nil)
 (progn
 ,@body))))))

 (defun join-destroy-thread ()
 (let* ((s *standard-output*)
 (joiner-thread
 (bt:make-thread
 (lambda ()
 (loop for i from 1 to 10
 do
 (format s "~%[Joiner Thread] Working...")
 (sleep (* 0.01 (random 100)))))))
 (destroyer-thread
 (bt:make-thread
 (lambda ()
 (loop for i from 1 to 1000000
 do
 (format s "~%[Destroyer Thread] Working...")
 (sleep (* 0.01 (random 10000))))))))
 (format t "~%[Main Thread] Waiting on joiner thread...")
 (bt:join-thread joiner-thread)
 (format t "~%[Main Thread] Done waiting on joiner thread")
 (if (bt:thread-alive-p destroyer-thread)
 (progn
 (format t "~%[Main Thread] Destroyer thread alive... killing it")
 (bt:destroy-thread destroyer-thread))
 (format t "~%[Main Thread] Destroyer thread is already dead"))
 (until (bt:thread-alive-p destroyer-thread)
 (format t "[Main Thread] Waiting for destroyer thread to die..."))
 (format t "~%[Main Thread] Destroyer thread dead")
 (format t "~%[Main Thread] Adios!~%")))

And the output on a run:

 CL-USER> (join-destroy-thread)

 [Joiner Thread] Working...
 [Destroyer Thread] Working...
 [Main Thread] Waiting on joiner thread...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Main Thread] Done waiting on joiner thread
 [Main Thread] Destroyer thread alive... killing it
 [Main Thread] Destroyer thread dead
 [Main Thread] Adios!
 NIL

The until macro simply loops around until the condition becomes true. The rest of the code is pretty much self-explanatory — the main thread waits for the joiner-thread to finish, but it immediately destroys the destroyer-thread.

Again, it is not recommended to use bt:destroy-thread. Any conceivable situation which requires this function can probably be done better with another approach.

Now let’s move onto some more comprehensive examples which tie together all the concepts discussed thus far.

Timeouts

We can use bt:with-timeout.

Sometimes we want to run a background operation, but we want to ensure that it doesn’t take a maximum time limit. We can use bt:with-timeout (n) where n is a number of seconds. In case of a timeout, Bordeaux-threads signals a bt:timeout error.

In our scenario below, we create a thread that launches a potentially long operation, we join the thread with a timeout, and we handle any timeout error. In our case, we destroy the running thread. This also kills its underlying processes (were they run with uiop:run-program).

(defun maybe-costly-operation ()
 (print "working hard...")
 (sleep 10))

(let ((thread (bt:make-thread ;; <--- create a thread
 (lambda ()
 ;; maybe a long operation:
 (maybe-costly-operation))
 :name "maybe-costly-thread")))
 (handler-case
 (bt:with-timeout (timeout) ;; <-- with-timeout
 (bt:join-thread thread)) ;; <-- join the thread
 (bt:timeout () ;; <-- handle timeout.
 (bt:destroy-thread thread))))

Useful functions

Here is a summary of the functions, macros and global variables which were used in the demo examples along with some extras. These should cover most of the basic programming scenarios:

	bt:*supports-thread-p* (to check for basic thread support)

	bt:make-thread (create a new thread)

	bt:current-thread (return the current thread object)

	bt:all-threads (return a list of all running threads)

	bt:thread-alive-p (checks if the thread is still alive)

	bt:thread-name (return the name of the thread)

	bt:join-thread (join on the supplied thread)

	bt:interrupt-thread (interrupt the given thread)

	bt:destroy-thread (attempt to abort the thread)

	bt:make-lock (create a mutex)

	bt:with-lock-held (use the supplied lock to protect critical code)

	bt:with-timeout (to signal a timeout error)

SBCL threads

SBCL provides support for native threads via its sb-thread package. These are very low-level functions, but we can build our own abstractions on top of these as shown in the demo examples.

You can refer to the documentation for more details (check the “Wrap-up” section).

You can see from the examples below that there is a strong correspondence between Bordeaux and SBCL Thread functions. In most cases, the only difference is the change of package name from bt to sb-thread.

It is evident that the Bordeaux thread library was more or less based on the SBCL implementation. As such, explanation will be provided only in those cases where there is a major difference in syntax or semantics.

Basics — list current thread, list all threads, get thread name

The code:

 ;;; Print the current thread, all the threads, and the current thread's name

 (defun print-thread-info ()
 (let* ((curr-thread sb-thread:*current-thread*)
 (curr-thread-name (sb-thread:thread-name curr-thread))
 (all-threads (sb-thread:list-all-threads)))
 (format t "Current thread: ~a~%~%" curr-thread)
 (format t "Current thread name: ~a~%~%" curr-thread-name)
 (format t "All threads:~% ~{~a~%~}~%" all-threads))
 nil)

And the output:

 CL-USER> (print-thread-info)
 Current thread: #<THREAD "repl-thread" RUNNING {10043B8003}>

 Current thread name: repl-thread

 All threads:
 #<THREAD "repl-thread" RUNNING {10043B8003}>
 #<THREAD "auto-flush-thread" RUNNING {10043B7DA3}>
 #<THREAD "swank-indentation-cache-thread" waiting on: #<WAITQUEUE {1003A28103}> {1003A201A3}>
 #<THREAD "reader-thread" RUNNING {1003A20063}>
 #<THREAD "control-thread" waiting on: #<WAITQUEUE {1003A19E53}> {1003A18C83}>
 #<THREAD "Swank Sentinel" waiting on: #<WAITQUEUE {1003790043}> {1003788023}>
 #<THREAD "main thread" RUNNING {1002991CE3}>

 NIL

Update a global variable from a thread

The code:

 ;;; Update a global variable from a thread

 (defparameter *counter* 0)

 (defun test-update-global-variable ()
 (sb-thread:make-thread
 (lambda ()
 (sleep 1)
 (incf *counter*)))
 counter)

And the output:

 CL-USER> (test-update-global-variable)
 0

Print a message onto the top-level using a thread

The code:

 ;;; Print a message onto the top-level using a thread

 (defun print-message-top-level-wrong ()
 (sb-thread:make-thread
 (lambda ()
 (format *standard-output* "Hello from thread!")))
 nil)

And the output:

 CL-USER> (print-message-top-level-wrong)
 NIL

Print a message onto the top-level — fixed:

The code:

 ;;; Print a message onto the top-level using a thread - fixed

 (defun print-message-top-level-fixed ()
 (let ((top-level *standard-output*))
 (sb-thread:make-thread
 (lambda ()
 (format top-level "Hello from thread!"))))
 nil)

And the output:

 CL-USER> (print-message-top-level-fixed)
 Hello from thread!
 NIL

Print a message onto the top-level — better

The code:

 ;;; Print a message onto the top-level using a thread - reader macro

 (eval-when (:compile-toplevel)
 (defun print-message-top-level-reader-macro ()
 (sb-thread:make-thread
 (lambda ()
 (format #.*standard-output* "Hello from thread!")))
 nil))

And the output:

 CL-USER> (print-message-top-level-reader-macro)
 Hello from thread!
 NIL

Modify a shared resource from multiple threads

The code:

 ;;; Modify a shared resource from multiple threads

 (defclass bank-account ()
 ((id :initarg :id
 :initform (error "id required")
 :accessor :id)
 (name :initarg :name
 :initform (error "name required")
 :accessor :name)
 (balance :initarg :balance
 :initform 0
 :accessor :balance)))

 (defgeneric deposit (account amount)
 (:documentation "Deposit money into the account"))

 (defgeneric withdraw (account amount)
 (:documentation "Withdraw amount from account"))

 (defmethod deposit ((account bank-account) (amount real))
 (incf (:balance account) amount))

 (defmethod withdraw ((account bank-account) (amount real))
 (decf (:balance account) amount))

 (defparameter *rich*
 (make-instance 'bank-account
 :id 1
 :name "Rich"
 :balance 0))

 (defun demo-race-condition ()
 (loop repeat 100
 do
 (sb-thread:make-thread
 (lambda ()
 (loop repeat 10000 do (deposit *rich* 100))
 (loop repeat 10000 do (withdraw *rich* 100))))))

And the output:

 CL-USER> (:balance *rich*)
 0
 CL-USER> (demo-race-condition)
 NIL
 CL-USER> (:balance *rich*)
 3987400

Modify a shared resource from multiple threads — fixed using locks

The code:

 (defvar *lock* (sb-thread:make-mutex))

 (defun demo-race-condition-locks ()
 (loop repeat 100
 do
 (sb-thread:make-thread
 (lambda ()
 (loop repeat 10000 do (sb-thread:with-mutex (*lock*)
 (deposit *rich* 100)))
 (loop repeat 10000 do (sb-thread:with-mutex (*lock*)
 (withdraw *rich* 100)))))))

The only difference here is that instead of make-lock as in Bordeaux, we have make-mutex and that is used along with the macro with-mutex as shown in the example.

And the output:

 CL-USER> (:balance *rich*)
 0
 CL-USER> (demo-race-condition-locks)
 NIL
 CL-USER> (:balance *rich*)
 0

Modify a shared resource from multiple threads — using atomic operations

First, the code:

 ;;; Modify a shared resource from multiple threads - atomics

 (defgeneric atomic-deposit (account amount)
 (:documentation "Atomic version of the deposit method"))

 (defgeneric atomic-withdraw (account amount)
 (:documentation "Atomic version of the withdraw method"))

 (defmethod atomic-deposit ((account bank-account) (amount real))
 (sb-ext:atomic-incf (car (cons (:balance account) nil)) amount))

 (defmethod atomic-withdraw ((account bank-account) (amount real))
 (sb-ext:atomic-decf (car (cons (:balance account) nil)) amount))

 (defun demo-race-condition-atomics ()
 (loop repeat 100
 do (sb-thread:make-thread
 (lambda ()
 (loop repeat 10000 do (atomic-deposit *rich* 100))
 (loop repeat 10000 do (atomic-withdraw *rich* 100))))))

And the output:

 CL-USER> (dotimes (i 5)
 (format t "~%Opening: ~d" (:balance *rich*))
 (demo-race-condition-atomics)
 (format t "~%Closing: ~d~%" (:balance *rich*)))

 Opening: 0
 Closing: 0

 Opening: 0
 Closing: 0

 Opening: 0
 Closing: 0

 Opening: 0
 Closing: 0

 Opening: 0
 Closing: 0
 NIL

As you can see, SBCL’s atomic functions are a bit quirky. The two functions used here: sb-ext:incf and sb-ext:atomic-decf have the following signatures:

Macro: atomic-incf [sb-ext] place &optional diff

and

Macro: atomic-decf [sb-ext] place &optional diff

The interesting bit is that the “place” parameter must be any of the following (as per the documentation):

	a defstruct slot with declared type (unsigned-byte 64) or aref of a (simple-array (unsigned-byte 64) (*)) The type sb-ext:word can be used for these purposes.

	car or cdr (respectively first or REST) of a cons.

	a variable defined using defglobal with a proclaimed type of fixnum.

This is the reason for the bizarre construct used in the atomic-deposit and atomic-decf methods.

One major incentive to use atomic operations as much as possible is performance. Let’s do a quick run of the demo-race-condition-locks and demo-race-condition-atomics functions over 1000 times and check the difference in performance (if any):

With locks:

 CL-USER> (time
 (loop repeat 100
 do (demo-race-condition-locks)))
 Evaluation took:
 57.711 seconds of real time
 431.451639 seconds of total run time (408.014746 user, 23.436893 system)
 747.61% CPU
 126,674,011,941 processor cycles
 3,329,504 bytes consed

 NIL

With atomics:

 CL-USER> (time
 (loop repeat 100
 do (demo-race-condition-atomics)))
 Evaluation took:
 2.495 seconds of real time
 8.175454 seconds of total run time (6.124259 user, 2.051195 system)
 [Run times consist of 0.420 seconds GC time, and 7.756 seconds non-GC time.]
 327.66% CPU
 5,477,039,706 processor cycles
 3,201,582,368 bytes consed

 NIL

The results? The locks version took around 57s whereas the lockless atomics version took just 2s! This is a massive difference indeed!

Joining on a thread, destroying a thread example

The code:

;;; Joining on and destroying a thread

(defmacro until (condition &body body)
 (let ((block-name (gensym)))
 `(block ,block-name
 (loop
 (if ,condition
 (return-from ,block-name nil)
 (progn
 ,@body))))))

(defun join-destroy-thread ()
 (let* ((s *standard-output*)
 (joiner-thread
 (sb-thread:make-thread
 (lambda ()
 (loop for i from 1 to 10
 do
 (format s "~%[Joiner Thread] Working...")
 (sleep (* 0.01 (random 100)))))))
 (destroyer-thread
 (sb-thread:make-thread
 (lambda ()
 (loop for i from 1 to 1000000
 do
 (format s "~%[Destroyer Thread] Working...")
 (sleep (* 0.01 (random 10000))))))))

 (format t "~%[Main Thread] Waiting on joiner thread...")
 (bt:join-thread joiner-thread)
 (format t "~%[Main Thread] Done waiting on joiner thread")
 (if (sb-thread:thread-alive-p destroyer-thread)
 (progn
 (format t "~%[Main Thread] Destroyer thread alive... killing it")
 (sb-thread:terminate-thread destroyer-thread))
 (format t "~%[Main Thread] Destroyer thread is already dead"))
 (until (sb-thread:thread-alive-p destroyer-thread)
 (format t "[Main Thread] Waiting for destroyer thread to die..."))
 (format t "~%[Main Thread] Destroyer thread dead")
 (format t "~%[Main Thread] Adios!~%")))

And the output:

 CL-USER> (join-destroy-thread)

 [Joiner Thread] Working...
 [Destroyer Thread] Working...
 [Main Thread] Waiting on joiner thread...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Joiner Thread] Working...
 [Main Thread] Done waiting on joiner thread
 [Main Thread] Destroyer thread alive... killing it
 [Main Thread] Destroyer thread dead
 [Main Thread] Adios!
 NIL

Useful functions

Here is a summarised list of the functions, macros and global variables used in the examples along with some extras:

	(member :thread-support *features*) (check thread support)

	sb-thread:make-thread (create a new thread)

	sb-thread:*current-thread* (holds the current thread object)

	sb-thread:list-all-threads (return a list of all running threads)

	sb-thread:thread-alive-p (checks if the thread is still alive)

	sb-thread:thread-name (return the name of the thread)

	sb-thread:join-thread (join on the supplied thread)

	sb-thread:interrupt-thread (interrupt the given thread)

	sb-thread:destroy-thread (attempt to abort the thread)

	sb-thread:make-mutex (create a mutex)

	sb-thread:with-mutex (use supplied lock to protect critical code)

Wrap-up

As you can see, concurrency support is rather primitive in Common Lisp, but that’s primarily due to the glaring absence of this important feature in the ANSI Common Lisp specification. That does not detract in the least from the support provided by Common Lisp implementations, nor wonderful libraries like the Bordeaux library.

You should follow up on your own by reading a lot more on this topic. I share some of my own references here:

	Common Lisp Recipes

	Bordeaux API Reference

	SBCL Manual on Threading

	The Common Lisp Hyperspec

Next up, the final post in this mini-series: parallelism in Common Lisp using the lparallel library.

Parallel programming with lparallel

It is important to note that lparallel also provides extensive support for asynchronous programming, and is not a purely parallel programming library. As stated before, parallelism is merely an abstract concept in which tasks are conceptually independent of one another.

The lparallel library is built on top of the Bordeaux threading library.

As mentioned previously, parallelism and concurrency can be (and usually are) implemented using the same means — threads, processes, etc. The difference between lies in their conceptual differences.

Note that not all the examples shown in this post are necessarily parallel. Asynchronous constructs such as Promises and Futures are, in particular, more suited to concurrent programming than parallel programming.

The modus operandi of using the lparallel library (for a basic use case) is as follows:

	Create an instance of what the library calls a kernel using lparallel:make-kernel. The kernel is the component that schedules and executes tasks.

	Design the code in terms of futures, promises and other higher level functional concepts. To this end, lparallel provides support for channels, promises, futures, and cognates.

	Perform operations using what the library calls cognates, which are simply functions which have equivalents in the Common Lisp language itself. For instance, the lparallel:pmap function is the parallel equivalent of the Common Lisp map function.

	Finally, close the kernel created in the first step using lparallel:end-kernel.

Note that the onus of ensuring that the tasks being carried out are logically parallelisable as well as taking care of all mutable state is on the developer.

Credit: this article first appeared on z0ltan.wordpress.com.

Installation

Let’s check if lparallel is available for download using Quicklisp:

CL-USER> (ql:system-apropos "lparallel")
#<SYSTEM lparallel / lparallel-20160825-git / quicklisp 2016-08-25>
#<SYSTEM lparallel-bench / lparallel-20160825-git / quicklisp 2016-08-25>
#<SYSTEM lparallel-test / lparallel-20160825-git / quicklisp 2016-08-25>
; No value

Looks like it is. Let’s go ahead and install it:

CL-USER> (ql:quickload "lparallel")
To load "lparallel":
 Load 2 ASDF systems:
 alexandria bordeaux-threads
 Install 1 Quicklisp release:
 lparallel
; Fetching #<URL "http://beta.quicklisp.org/archive/lparallel/2016-08-25/lparallel-20160825-git.tgz">
; 76.71KB
==
78,551 bytes in 0.62 seconds (124.33KB/sec)
; Loading "lparallel"
[package lparallel.util]..........................
[package lparallel.thread-util]...................
[package lparallel.raw-queue].....................
[package lparallel.cons-queue]....................
[package lparallel.vector-queue]..................
[package lparallel.queue].........................
[package lparallel.counter].......................
[package lparallel.spin-queue]....................
[package lparallel.kernel]........................
[package lparallel.kernel-util]...................
[package lparallel.promise].......................
[package lparallel.ptree].........................
[package lparallel.slet]..........................
[package lparallel.defpun]........................
[package lparallel.cognate].......................
[package lparallel]
(:LPARALLEL)

And that’s all it took! Now let’s see how this library actually works.

Preamble - get the number of cores

First, let’s get hold of the number of threads that we are going to use for our parallel examples. Ideally, we’d like to have a 1:1 match between the number of worker threads and the number of available cores.

We can use the great Serapeum library to this end, which has a count-cpus function, that works on all major platforms.

Install it:

CL-USER> (ql:quickload "serapeum")

and call it:

CL-USER> (serapeum:count-cpus)
8

and check that is correct.

Common Setup

In this example, we will go through the initial setup bit, and also show some useful information once the setup is done.

Load the library:

CL-USER> (ql:quickload "lparallel")
To load "lparallel":
 Load 1 ASDF system:
 lparallel
; Loading "lparallel"

(:LPARALLEL)

Initialise the lparallel kernel:

CL-USER> (setf lparallel:*kernel*
 (lparallel:make-kernel 8 :name "custom-kernel"))
#<LPARALLEL.KERNEL:KERNEL :NAME "custom-kernel" :WORKER-COUNT 8 :USE-CALLER NIL :ALIVE T :SPIN-COUNT 2000 {1003141F03}>

Note that the *kernel* global variable can be rebound — this allows multiple kernels to co-exist during the same run. Now, some useful information about the kernel:

CL-USER> (defun show-kernel-info ()
 (let ((name (lparallel:kernel-name))
 (count (lparallel:kernel-worker-count))
 (context (lparallel:kernel-context))
 (bindings (lparallel:kernel-bindings)))
 (format t "Kernel name = ~a~%" name)
 (format t "Worker threads count = ~d~%" count)
 (format t "Kernel context = ~a~%" context)
 (format t "Kernel bindings = ~a~%" bindings)))

WARNING: redefining COMMON-LISP-USER::SHOW-KERNEL-INFO in DEFUN
SHOW-KERNEL-INFO

CL-USER> (show-kernel-info)
Kernel name = custom-kernel
Worker threads count = 8
Kernel context = #<FUNCTION FUNCALL>
Kernel bindings = ((*STANDARD-OUTPUT* . #<SLIME-OUTPUT-STREAM {10044EEEA3}>)
 (*ERROR-OUTPUT* . #<SLIME-OUTPUT-STREAM {10044EEEA3}>))
NIL

End the kernel (this is important since *kernel* does not get garbage collected until we explicitly end it):

CL-USER> (lparallel:end-kernel :wait t)
(#<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {100723FA83}>
 #<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {100723FE23}>
 #<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {10072581E3}>
 #<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {1007258583}>
 #<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {1007258923}>
 #<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {1007258CC3}>
 #<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {1007259063}>
 #<SB-THREAD:THREAD "custom--kernel" FINISHED values: NIL {1007259403}>)

Let’s move on to some more examples of different aspects of the lparallel library.

For these demos, we will be using the following initial setup from a coding perspective:

(require ‘lparallel)
(require ‘bt-semaphore)

(defpackage :lparallel-user
 (:use :cl :lparallel :lparallel.queue :bt-semaphore))

(in-package :lparallel-user)

;;; initialise the kernel
(defun init ()
 (setf *kernel* (make-kernel 8 :name "channel-queue-kernel")))

(init)

So we will be using a kernel with 8 worker threads (one for each CPU core on the machine).

And once we’re done will all the examples, the following code will be run to close the kernel and free all used system resources:

;;; shut the kernel down
(defun shutdown ()
 (end-kernel :wait t))

(shutdown)

Using channels and queues

First some definitions are in order.

A task is a job that is submitted to the kernel. It is simply a function object along with its arguments.

A channel in lparallel is similar to the same concept in Go. A channel is simply a means of communication with a worker thread. In our case, it is one particular way of submitting tasks to the kernel.

A channel is created in lparallel using lparallel:make-channel. A task is submitted using lparallel:submit-task, and the results received via lparallel:receive-result.

For instance, we can calculate the square of a number as:

(defun calculate-square (n)
 (let* ((channel (lparallel:make-channel))
 (res nil))
 (lparallel:submit-task channel (lambda (x)
 (* x x))
 n)
 (setf res (lparallel:receive-result channel))
 (format t "Square of ~d = ~d~%" n res)))

And the output:

LPARALLEL-USER> (calculate-square 100)
Square of 100 = 10000
NIL

Now let’s try submitting multiple tasks to the same channel. In this simple example, we are simply creating three tasks that square, triple, and quadruple the supplied input respectively.

Note that in case of multiple tasks, the output will be in non-deterministic order:

(defun test-basic-channel-multiple-tasks ()
 (let ((channel (make-channel))
 (res '()))
 (submit-task channel (lambda (x)
 (* x x))
 10)
 (submit-task channel (lambda (y)
 (* y y y))
 10)
 (submit-task channel (lambda (z)
 (* z z z z))
 10)
 (dotimes (i 3 res)
 (push (receive-result channel) res))))

And the output:

LPARALLEL-USER> (dotimes (i 3)
 (print (test-basic-channel-multiple-tasks)))

(100 1000 10000)
(100 1000 10000)
(10000 1000 100)
NIL

lparallel also provides support for creating a blocking queue in order to enable message passing between worker threads. A queue is created using lparallel.queue:make-queue.

Some useful functions for using queues are:

	lparallel.queue:make-queue: create a FIFO blocking queue

	lparallel.queue:push-queue: insert an element into the queue

	lparallel.queue:pop-queue: pop an item from the queue

	lparallel.queue:peek-queue: inspect value without popping it

	lparallel.queue:queue-count: the number of entries in the queue

	lparallel.queue:queue-full-p: check if the queue is full

	lparallel.queue:queue-empty-p:check if the queue is empty

	lparallel.queue:with-locked-queue: lock the queue during access

A basic demo showing basic queue properties:

 (defun test-queue-properties ()
 (let ((queue (make-queue :fixed-capacity 5)))
 (loop
 when (queue-full-p queue)
 do (return)
 do (push-queue (random 100) queue))
 (print (queue-full-p queue))
 (loop
 when (queue-empty-p queue)
 do (return)
 do (print (pop-queue queue)))
 (print (queue-empty-p queue)))
 nil)

Which produces:

 LPARALLEL-USER> (test-queue-properties)

 T
 17
 51
 55
 42
 82
 T
 NIL

Note: lparallel.queue:make-queue is a generic interface which is actually backed by different types of queues. For instance, in the previous example, the actual type of the queue is lparallel.vector-queue since we specified it to be of fixed size using the :fixed-capacity keyword argument.

The documentation doesn’t actually specify what keyword arguments we can pass to lparallel.queue:make-queue, so let’s and find that out in a different way:

 LPARALLEL-USER> (describe 'lparallel.queue:make-queue)
 LPARALLEL.QUEUE:MAKE-QUEUE
 [symbol]

 MAKE-QUEUE names a compiled function:
 Lambda-list: (&REST ARGS)
 Derived type: FUNCTION
 Documentation:
 Create a queue.

 The queue contents may be initialized with the keyword argument
 `initial-contents'.

 By default there is no limit on the queue capacity. Passing a
 `fixed-capacity' keyword argument limits the capacity to the value
 passed. `push-queue' will block for a full fixed-capacity queue.
 Source file: /Users/z0ltan/quicklisp/dists/quicklisp/software/lparallel-20160825-git/src/queue.lisp

 MAKE-QUEUE has a compiler-macro:
 Source file: /Users/z0ltan/quicklisp/dists/quicklisp/software/lparallel-20160825-git/src/queue.lisp
 ; No value

So, as we can see, it supports the following keyword arguments: :fixed-capacity, and initial-contents.

Now, if we do specify :fixed-capacity, then the actual type of the queue will be lparallel.vector-queue, and if we skip that keyword argument, the queue will be of type lparallel.cons-queue (which is a queue of unlimited size), as can be seen from the output of the following snippet:

 (defun check-queue-types ()
 (let ((queue-one (make-queue :fixed-capacity 5))
 (queue-two (make-queue)))
 (format t "queue-one is of type: ~a~%" (type-of queue-one))
 (format t "queue-two is of type: ~a~%" (type-of queue-two))))

 LPARALLEL-USER> (check-queue-types)
 queue-one is of type: VECTOR-QUEUE
 queue-two is of type: CONS-QUEUE
 NIL

Of course, you can always create instances of the specific queue types yourself, but it is always better, when you can, to stick to the generic interface and letting the library create the proper type of queue for you.

Now, let’s just see the queue in action!

 (defun test-basic-queue ()
 (let ((queue (make-queue))
 (channel (make-channel))
 (res '()))
 (submit-task channel (lambda ()
 (loop for entry = (pop-queue queue)
 when (queue-empty-p queue)
 do (return)
 do (push (* entry entry) res))))
 (dotimes (i 100)
 (push-queue i queue))
 (receive-result channel)
 (format t "~{~d ~}~%" res)))

Here we submit a single task that repeatedly scans the queue till it’s empty, pops the available values, and pushes them into the res list.

And the output:

 LPARALLEL-USER> (test-basic-queue)
 9604 9409 9216 9025 8836 8649 8464 8281 8100 7921 7744 7569 7396 7225 7056 6889 6724 6561 6400 6241 6084 5929 5776 5625 5476 5329 5184 5041 4900 4761 4624 4489 4356 4225 4096 3969 3844 3721 3600 3481 3364 3249 3136 3025 2916 2809 2704 2601 2500 2401 2304 2209 2116 2025 1936 1849 1764 1681 1600 1521 1444 1369 1296 1225 1156 1089 1024 961 900 841 784 729 676 625 576 529 484 441 400 361 324 289 256 225 196 169 144 121 100 81 64 49 36 25 16 9 4 1 0
 NIL

Killing tasks

A small note mentioning the lparallel:kill-task function would be apropos at this juncture. This function is useful in those cases when tasks are unresponsive. The lparallel documentation clearly states that this must only be used as a last resort.

All tasks which are created are by default assigned a category of :default. The dynamic property, *task-category* holds this value, and can be dynamically bound to different values (as we shall see).

;;; kill default tasks
(defun test-kill-all-tasks ()
 (let ((channel (make-channel))
 (stream *query-io*))
 (dotimes (i 10)
 (submit-task
 channel
 (lambda (x)
 (sleep (random 10))
 (format stream "~d~%" (* x x))) (random 10)))
 (sleep (random 2))
 (kill-tasks :default)))

Sample run:

LPARALLEL-USER> (test-kill-all-tasks)
16
1
8
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

Since we had created 10 tasks, all the 8 kernel worker threads were presumably busy with a task each. When we killed tasks of category :default, all these threads were killed as well and had to be regenerated (which is an expensive operation). This is part of the reason why lparallel:kill-tasks must be avoided.

Now, in the example above, all running tasks were killed since all of them belonged to the :default category. Suppose we wish to kill only specific tasks, we can do that by binding *task-category* when we create those tasks, and then specifying the category when we invoke lparallel:kill-tasks.

For example, suppose we have two categories of tasks – tasks which square their arguments, and tasks which cube theirs. Let’s assign them categories ’squaring-tasks and ’cubing-tasks respectively. Let’s then kill tasks of a randomly chosen category ’squaring-tasks or ’cubing-tasks.

Here is the code:

;;; kill tasks of a randomly chosen category
(defun test-kill-random-tasks ()
 (let ((channel (make-channel))
 (stream *query-io*))
 (let ((*task-category* 'squaring-tasks))
 (dotimes (i 5)
 (submit-task channel
 (lambda (x)
 (sleep (random 5))
 (format stream "~%[Squaring] ~d = ~d"
 x (* x x))) i)))
 (let ((*task-category* 'cubing-tasks))
 (dotimes (i 5)
 (submit-task channel
 (lambda (x)
 (sleep (random 5))
 (format stream "~%[Cubing] ~d = ~d"
 x (* x x x))) i)))
 (sleep 1)
 (if (evenp (random 10))
 (progn
 (print "Killing squaring tasks")
 (kill-tasks 'squaring-tasks))
 (progn
 (print "Killing cubing tasks")
 (kill-tasks 'cubing-tasks)))))

And here is a sample run:

LPARALLEL-USER> (test-kill-random-tasks)

[Cubing] 2 = 8
[Squaring] 4 = 16
[Cubing] 4
 = [Cubing] 643 = 27
"Killing squaring tasks"
4
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

[Cubing] 1 = 1
[Cubing] 0 = 0

LPARALLEL-USER> (test-kill-random-tasks)

[Squaring] 1 = 1
[Squaring] 3 = 9
"Killing cubing tasks"
5
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

[Squaring] 2 = 4
WARNING: lparallel: Replacing lost or dead worker.
WARNING: lparallel: Replacing lost or dead worker.

[Squaring] 0 = 0
[Squaring] 4 = 16

Using promises and futures

Promises and Futures provide support for Asynchronous Programming.

In lparallel-speak, a lparallel:promise is a placeholder for a result which is fulfilled by providing it with a value. The promise object itself is created using lparallel:promise, and the promise is given a value using the lparallel:fulfill macro.

To check whether the promise has been fulfilled yet or not, we can use the lparallel:fulfilledp predicate function. Finally, the lparallel:force function is used to extract the value out of the promise. Note that this function blocks until the operation is complete.

Let’s solidify these concepts with a very simple example first:

(defun test-promise ()
 (let ((p (promise)))
 (loop
 do (if (evenp (read))
 (progn
 (fulfill p 'even-received!)
 (return))))
 (force p)))

Which generates the output:

LPARALLEL-USER> (test-promise)
5
1
3
10
EVEN-RECEIVED!

Explanation: This simple example simply keeps looping forever until an even number has been entered. The promise is fulfilled inside the loop using lparallel:fulfill, and the value is then returned from the function by forcing it with lparallel:force.

Now, let’s take a bigger example. Assuming that we don’t want to have to wait for the promise to be fulfilled, and instead have the current do some useful work, we can delegate the promise fulfillment to external explicitly as seen in the next example.

Consider we have a function that squares its argument. And, for the sake of argument, it consumes a lot of time doing so. From our client code, we want to invoke it, and wait till the squared value is available.

(defun promise-with-threads ()
 (let ((p (promise))
 (stream *query-io*)
 (n (progn
 (princ "Enter a number: ")
 (read))))
 (format t "In main function...~%")
 (bt:make-thread
 (lambda ()
 (sleep (random 10))
 (format stream "Inside thread... fulfilling promise~%")
 (fulfill p (* n n))))
 (bt:make-thread
 (lambda ()
 (loop
 when (fulfilledp p)
 do (return)
 do (progn
 (format stream "~d~%" (random 100))
 (sleep (* 0.01 (random 100)))))))
 (format t "Inside main function, received value: ~d~%"
 (force p))))

And the output:

LPARALLEL-USER> (promise-with-threads)
Enter a number: 19
In main function...
44
59
90
34
30
76
Inside thread... fulfilling promise
Inside main function, received value: 361
NIL

Explanation: There is nothing much in this example. We create a promise object p, and we spawn off a thread that sleeps for some random time and then fulfills the promise by giving it a value.

Meanwhile, in the main thread, we spawn off another thread that keeps checking if the promise has been fulfilled or not. If not, it prints some random number and continues checking. Once the promise has been fulfilled, we can extract the value using lparallel:force in the main thread as shown.

This shows that promises can be fulfilled by different threads while the code that created the promise need not wait for the promise to be fulfilled. This is especially important since, as mentioned before, lparallel:force is a blocking call. We want to delay forcing the promise until the value is actually available.

Another point to note when using promises is that once a promise has been fulfilled, invoking force on the same object will always return the same value. That is to say, a promise can be successfully fulfilled only once.

For instance:

(defun multiple-fulfilling ()
 (let ((p (promise)))
 (dotimes (i 10)
 (fulfill p (random 100))
 (format t "~d~%" (force p)))))

Which produces:

LPARALLEL-USER> (multiple-fulfilling)
15
15
15
15
15
15
15
15
15
15
NIL

So how does a future differ from a promise?

A lparallel:future is simply a promise that is run in parallel, and as such, it does not block the main thread like a default use of lparallel:promise would. It is executed in its own thread (by the lparallel library, of course).

Here is a simple example of a future:

(defun test-future ()
 (let ((f (future
 (sleep (random 5))
 (print "Hello from future!"))))
 (loop
 when (fulfilledp f)
 do (return)
 do (sleep (* 0.01 (random 100)))
 (format t "~d~%" (random 100)))
 (format t "~d~%" (force f))))

And the output:

LPARALLEL-USER> (test-future)
5
19
91
11
Hello from future!
NIL

Explanation: This exactly is similar to the promise-with-threads example. Observe two differences, however - first of all, the lparallel:future macro has a body as well. This allows the future to fulfill itself! What this means is that as soon as the body of the future is done executing, lparallel:fulfilledp will always return true for the future object.

Secondly, the future itself is spawned off on a separate thread by the library, so it does not interfere with the execution of the current thread very much unlike promises as could be seen in the promise-with-threads example (which needed an explicit thread for the fulfilling code in order to avoid blocking the current thread).

The most interesting bit is that (even in terms of the actual theory propounded by Dan Friedman and others), a Future is conceptually something that fulfills a Promise. That is to say, a promise is a contract that some value will be generated sometime in the future, and a future is precisely that “something” that does that job.

What this means is that even when using the lparallel library, the basic use of a future would be to fulfill a promise. This means that hacks like promise-with-threads need not be made by the user.

Let’s take a small example to demonstrate this point (a pretty contrived example, I must admit!).

Here’s the scenario: we want to read in a number and calculate its square. So we offload this work to another function, and continue with our own work. When the result is ready, we want it to be printed on the console without any intervention from us.

Here’s how the code looks:

;;; Callback example using promises and futures
(defun callback-promise-future-demo ()
 (let* ((p (promise))
 (stream *query-io*)
 (n (progn
 (princ "Enter a number: ")
 (read)))
 (f (future
 (sleep (random 10))
 (fulfill p (* n n))
 (force (future
 (format stream "Square of ~d = ~d~%"
 n (force p)))))))
 (loop
 when (fulfilledp f)
 do (return)
 do (sleep (* 0.01 (random 100))))))

And the output:

LPARALLEL-USER> (callback-promise-future-demo)
Enter a number: 19
Square of 19 = 361
NIL

Explanation: All right, so first off, we create a promise to hold the squared value when it is generated. This is the p object. The input value is stored in the local variable n.

Then we create a future object f. This future simply squares the input value and fulfills the promise with this value. Finally, since we want to print the output in its own time, we force an anonymous future which simply prints the output string as shown.

Note that this is very similar to the situation in an environment like Node, where we pass callback functions to other functions with the understanding that the callback will be called when the invoked function is done with its work.

Finally note that the following snippet is still fine (even if it uses the blocking lparallel:force call because it’s on a separate thread):

(force (future
(format stream "Square of ~d = ~d~%" n (force p))))

To summarise, the general idiom of usage is: define objects which will hold the results of asynchronous computations in promises, and use futures to fulfill those promises.

Using cognates - parallel equivalents of Common Lisp counterparts

Cognates are arguably the raison d’etre of the lparallel library. These constructs are what truly provide parallelism in the lparallel. Note, however, that most (if not all) of these constructs are built on top of futures and promises.

To put it in a nutshell, cognates are simply functions that are intended to be the parallel equivalents of their Common Lisp counterparts. However, there are a few extra lparallel cognates that have no Common Lisp equivalents.

At this juncture, it is important to know that cognates come in two basic flavours:

	Constructs for fine-grained parallelism: defpun, plet, plet-if, etc.

	Explicit functions and macros for performing parallel operations - pmap, preduce, psort, pdotimes, etc.

In the first case we don’t have much explicit control over the operations themselves. We mostly rely on the fact that the library itself will optimise and parallelise the forms to whatever extent it can. In this post, we will focus on the second category of cognates.

Take, for instance, the cognate function lparallel:pmap is exactly the same as the Common Lisp equivalent, map, but it runs in parallel. Let’s demonstrate that through an example.

Suppose we had a list of random strings of length varying from 3 to 10, and we wished to collect their lengths in a vector.

Let’s first set up the helper functions that will generate the random strings:

(defvar *chars*
 (remove-duplicates
 (sort
 (loop for c across "The quick brown fox jumps over the lazy dog"
 when (alpha-char-p c)
 collect (char-downcase c))
 #'char<)))

(defun get-random-strings (&optional (count 100000))
 "generate random strings between lengths 3 and 10"
 (loop repeat count
 collect
 (concatenate 'string (loop repeat (+ 3 (random 8))
 collect (nth (random 26) *chars*)))))

And here’s how the Common Lisp map version of the solution might look like:

;;; map demo
(defun test-map ()
 (map 'vector #'length (get-random-strings 100)))

And let’s have a test run:

LPARALLEL-USER> (test-map)
#(7 5 10 8 7 5 3 4 4 10)

And here’s the lparallel:pmap equivalent:

;;;pmap demo
(defun test-pmap ()
 (pmap 'vector #'length (get-random-strings 100)))

which produces:

LPARALLEL-USER> (test-pmap)
#(8 7 6 7 6 4 5 6 5 7)
LPARALLEL-USER>

As you can see from the definitions of test-map and test-pmap, the syntax of the lparallel:map and lparallel:pmap functions are exactly the same (well, almost - lparallel:pmap has a few more optional arguments).

Some useful cognate functions and macros (all of them are functions except when marked so explicitly. Note that there are quite a few cognates, and I have chosen a few to try and represent every category through an example:

lparallel:pmap: parallel version of map.

Note that all the mapping functions (lparallel:pmap, lparallel:pmapc,lparallel:pmapcar, etc.) take two special keyword arguments:

	:size, specifying the number of elements of the input sequence(s) to process.

	:parts which specifies the number of parallel parts to divide the sequence(s) into.

 ;;; pmap - function
 (defun test-pmap ()
 (let ((numbers (loop for i below 10
 collect i)))
 (pmap 'vector (lambda (x)
 (* x x))
 :parts (length numbers)
 numbers)))

Sample run:

 LPARALLEL-USER> (test-pmap)

 #(0 1 4 9 16 25 36 49 64 81)

lparallel:por: parallel version of or.

The behaviour is that it returns the first non-nil element amongst its arguments. However, due to the parallel nature of this macro, that element varies.

 ;;; por - macro
 (defun test-por ()
 (let ((a 100)
 (b 200)
 (c nil)
 (d 300))
 (por a b c d)))

Sample run:

 LPARALLEL-USER> (dotimes (i 10)
 (print (test-por)))

 300
 300
 100
 100
 100
 300
 100
 100
 100
 100
 NIL

In the case of the normal or operator, it would always have returned the first non-nil element viz. 100.

lparallel:pdotimes: parallel version of dotimes.

Note that this macro also take an optional :parts argument.

 ;;; pdotimes - macro
 (defun test-pdotimes ()
 (pdotimes (i 5)
 (declare (ignore i))
 (print (random 100))))

Sample run:

 LPARALLEL-USER> (test-pdotimes)

 39
 29
 81
 42
 56
 NIL

lparallel:pfuncall: parallel version of funcall.

 ;;; pfuncall - macro
 (defun test-pfuncall ()
 (pfuncall #'* 1 2 3 4 5))

Sample run:

 LPARALLEL-USER> (test-pfuncall)

 120

lparallel:preduce: parallel version of reduce.

This very important function also takes two optional keyword arguments: :parts (same meaning as explained), and :recurse. If :recurse is non-nil, it recursively applies lparallel:preduce to its arguments, otherwise it default to using reduce.

 ;;; preduce - function
 (defun test-preduce ()
 (let ((numbers (loop for i from 1 to 100
 collect i)))
 (preduce #'+
 numbers
 :parts (length numbers)
 :recurse t)))

Sample run:

 LPARALLEL-USER> (test-preduce)

 5050

lparallel:premove-if-not: parallel version of remove-if-not.

This is essentially equivalent to “filter” in Functional Programming parlance.

 ;;; premove-if-not
 (defun test-premove-if-not ()
 (let ((numbers (loop for i from 1 to 100
 collect i)))
 (premove-if-not #'evenp numbers)))

Sample run:

 LPARALLEL-USER> (test-premove-if-not)

 (2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100)

lparallel:pevery: parallel version of every.

 ;;; pevery - function
 (defun test-pevery ()
 (let ((numbers (loop for i from 1 to 100
 collect i)))
 (list (pevery #'evenp numbers)
 (pevery #'integerp numbers))))

Sample run:

 LPARALLEL-USER> (test-pevery)

 (NIL T)

In this example, we are performing two checks - firstly, whether all the numbers in the range [1,100] are even, and secondly, whether all the numbers in the same range are integers.

lparallel:count: parallel version of count.

 ;;; pcount - function
 (defun test-pcount ()
 (let ((chars "The quick brown fox jumps over the lazy dog"))
 (pcount #\e chars)))

Sample run:

 LPARALLEL-USER> (test-pcount)

 3

lparallel:psort: parallel version of sort.

 ;;; psort - function
 (defstruct person
 name
 age)

 (defun test-psort ()
 (let* ((names (list "Peter" "Sybil" "Basil" "Candy" "Olga"))
 (people (loop for name in names
 collect (make-person :name name
 :age (+ (random 20)
 20)))))
 (print "Before sorting...")
 (print people)
 (fresh-line)
 (print "After sorting...")
 (psort
 people
 (lambda (x y)
 (< (person-age x)
 (person-age y)))
 :test #'=)))

Sample run:

 LPARALLEL-USER> (test-psort)

 "Before sorting..."
 (#S(PERSON :NAME "Peter" :AGE 24) #S(PERSON :NAME "Sybil" :AGE 20)
 #S(PERSON :NAME "Basil" :AGE 22) #S(PERSON :NAME "Candy" :AGE 23)
 #S(PERSON :NAME "Olga" :AGE 33))

 "After sorting..."
 (#S(PERSON :NAME "Sybil" :AGE 20) #S(PERSON :NAME "Basil" :AGE 22)
 #S(PERSON :NAME "Candy" :AGE 23) #S(PERSON :NAME "Peter" :AGE 24)
 #S(PERSON :NAME "Olga" :AGE 33))

In this example, we first define a structure of type person for storing information about people. Then we create a list of 7 people with randomly generated ages (between 20 and 39). Finally, we sort them by age in non-decreasing order.

Error handling

To see how lparallel handles error handling (hint: with lparallel:task-handler-bind), please read lparallel-error-handling.

Monitoring and controlling threads with Slime

M-x slime-list-threads (you can also access it through the slime-selector, shortcut t) will list running threads by their names, and their statuses.

The thread on the current line can be killed with k, or if there’s a lot of threads to kill, several lines can be selected and k will kill all the threads in the selected region.

g will update the thread list, but when you have a lot of threads starting and stopping it may be too cumbersome to always press g, so there’s a variable slime-threads-update-interval, when set to a number X the thread list will be automatically updated each X seconds, a reasonable value would be 0.5.

Thanks to Slime tips.

References

There are, of course, a lot more functions, objects, and idiomatic ways of performing parallel computations using the lparallel library. This post barely scratches the surface on those. However, the general flow of operation is amply demonstrated here, and for further reading, you may find the following resources useful:

	The official homepage of the lparallel library, including documentation

	The Common Lisp Hyperspec, and, of course

	Your Common Lisp implementation’s manual. For SBCL, here is a link to the official manual

	Common Lisp recipes by the venerable Edi Weitz.

	more concurrency and threading libraries on the Awesome-cl#parallelism-and-concurrency list.

 Defining Systems

Defining Systems

A system is a collection of Lisp files that together constitute an application or a library, and that should therefore be managed as a whole. A system definition describes which source files make up the system, what the dependencies among them are, and the order they should be compiled and loaded in.

ASDF

ASDF is the standard build system for Common Lisp. It is shipped in most Common Lisp implementations. It includes UIOP, “the Utilities for Implementation- and OS- Portability”. You can read its manual and the tutorial and best practices.

[bookmark: example]

Simple examples

Loading a system definition

When you start your Lisp, it knows about its internal modules and, by default, it has no way to know that your shiny new project is located under your ~/code/foo/bar/new-ideas/ directory. So, in order to load your project in your image, you have one of three ways:

	use ASDF or Quicklisp defaults

	configure where ASDF or Quicklisp look for project definitions

	load your project definition explicitely.

Please read our section on the getting started#how-to-load-an-existing-project page.

Loading a system

Once your Lisp knows what your system is and where it lives, you can load it.

The most trivial use of ASDF is by calling asdf:load-system to load your library. Then you can use it. For instance, if it exports a function some-fun in its package foobar, then you will be able to call it with (foobar:some-fun ...) or with:

(in-package :foobar)
(some-fun ...)

You can also use Quicklisp.

Quicklisp calls ASDF under the hood, with the advantage that it will download and install any dependency if they are not already installed.

(ql:quickload "foobar")
;; =>
;; installs all dependencies
;; and loads the system.

Also, you can use SLIME to load a system, using the M-x slime-load-system Emacs command or the , load-system comma command in the prompt. The interesting thing about this way of doing it is that SLIME collects all the system warnings and errors in the process, and puts them in the *slime-compilation* buffer, from which you can interactively inspect them after the loading finishes.

Testing a system

To run the tests for a system, you may use:

(asdf:test-system :foobar)

The convention is that an error SHOULD be signalled if tests are unsuccessful.

Designating a system

The proper way to designate a system in a program is with lower-case strings, not symbols, as in:

(asdf:load-system "foobar")
(asdf:test-system "foobar")

How to write a trivial system definition

A trivial system would have a single Lisp file called foobar.lisp, located at the project’s root. That file would depend on some existing libraries, say alexandria for general purpose utilities, and trivia for pattern-matching. To make this system buildable using ASDF, you create a system definition file called foobar.asd, with the following contents:

(asdf:defsystem "foobar"
 :depends-on ("alexandria" "trivia")
 :components ((:file "foobar")))

Note how the type lisp of foobar.lisp is implicit in the name of the file above. As for contents of that file, they would look like this:

(defpackage :foobar
 (:use :common-lisp :alexandria :trivia)
 (:export
 #:some-function
 #:another-function
 #:call-with-foobar
 #:with-foobar))

(in-package :foobar)

(defun some-function (...)
 ...)
...

Instead of using multiple complete packages, you might want to just import parts of them:

(defpackage :foobar
 (:use #:common-lisp)
 (:import-from #:alexandria
 #:some-function
 #:another-function))
 (:import-from #:trivia
 #:some-function
 #:another-function))
...)

Using the system you defined

Assuming your system is installed under ~/common-lisp/, ~/quicklisp/local-projects/ or some other filesystem hierarchy already configured for ASDF, you can load it with: (asdf:load-system "foobar").

If your Lisp was already started when you created that file, you may have to, either:

	load the new .asd file: (asdf:load-asd "path/to/foobar.asd"), or with C-c C-k in Slime to compile and load the whole file.

	note: avoid using the built-in load for ASDF files, it may work but asdf:load-asd is preferred.

	(asdf:clear-configuration) to re-process the configuration.

How to write a trivial testing definition

Even the most trivial of systems needs some tests, if only because it will have to be modified eventually, and you want to make sure those modifications don’t break client code. Tests are also a good way to document expected behavior.

The simplest way to write tests is to have a file foobar-tests.lisp and modify the above foobar.asd as follows:

(asdf:defsystem "foobar"
 :depends-on ("alexandria" "trivia")
 :components ((:file "foobar"))
 :in-order-to ((test-op (test-op "foobar/tests"))))

(asdf:defsystem "foobar/tests"
 :depends-on ("foobar" "fiveam")
 :components ((:file "foobar-tests"))
 :perform (test-op (o c) (symbol-call :fiveam '#:run! :foobar)))

The :in-order-to clause in the first system allows you to use (asdf:test-system :foobar) which will chain into foobar/tests. The :perform clause in the second system does the testing itself.

In the test system, fiveam is the name of a popular test library, and the content of the perform method is how to invoke this library to run the test suite :foobar. Obvious YMMV if you use a different library.

Create a project skeleton

cl-project can be used to generate a project skeleton. It will create a default ASDF definition, generate a system for unit testing, etc.

Install with

(ql:quickload “cl-project”)

Create a project:

(cl-project:make-project #p"lib/cl-sample/"
:author "Eitaro Fukamachi"
:email "e.arrows@gmail.com"
:license "LLGPL"
:depends-on '(:clack :cl-annot))
;-> writing /Users/fukamachi/Programs/lib/cl-sample/.gitignore
; writing /Users/fukamachi/Programs/lib/cl-sample/README.markdown
; writing /Users/fukamachi/Programs/lib/cl-sample/cl-sample-test.asd
; writing /Users/fukamachi/Programs/lib/cl-sample/cl-sample.asd
; writing /Users/fukamachi/Programs/lib/cl-sample/src/hogehoge.lisp
; writing /Users/fukamachi/Programs/lib/cl-sample/t/hogehoge.lisp
;=> T

And you’re done.

 Debugging

Debugging

You entered this new world of Lisp and now wonder: how can we debug what’s going on? How is it more interactive than other platforms? What does the interactive debugger bring, apart from stack traces?

Print debugging

Well of course we can use the famous technique of “print debugging”. Let’s just recap a few print functions.

print works, it prints a readable representation of its argument, which means what is printed can be read back in by the Lisp reader. It accepts only one argument.

princ focuses on an aesthetic representation.

(format t "~a" …), with the aesthetic directive, prints a string (in t, the standard output stream) and returns nil, whereas format nil … doesn’t print anything and returns a string. With many format controls we can print several variables at once.

print has this useful debugging feature that it prints and returns the result form it was given as argument. You can intersperse print statements in the middle of your algorithm, it won’t break it.

(+ 2 (print 40))

Logging

Logging is already a good evolution from print debugging ;)

log4cl is the popular, de-facto logging library although it isn’t the only one. Download it:

(ql:quickload "log4cl")

and let’s have a dummy variable:

(defvar *foo* '(:a :b :c))

We can use log4cl with its log nickname, then it is as simple to use as:

(log:info *foo*)
;; <INFO> [13:36:49] cl-user () - *FOO*: (:A :B :C)

We can interleave strings and expressions, with or without format control strings:

(log:info "foo is " *foo*)
;; <INFO> [13:37:22] cl-user () - foo is *FOO*: (:A :B :C)
(log:info "foo is ~{~a~}" *foo*)
;; <INFO> [13:39:05] cl-user () - foo is ABC

With its companion library log4slime, we can interactively change the log level:

	globally

	per package

	per function

	and by CLOS methods and CLOS hierarchy (before and after methods)

It is very handy, when we have a lot of output, to turn off the logging of functions or packages we know to work, and thus narrowing our search to the right area. We can even save this configuration and re-use it in another image, be it on another machine.

We can do all this through commands, keyboard shortcuts and also through a menu or mouse clicks.

[image: “changing the log level with log4slime”]“changing the log level with log4slime”

We invite you to read log4cl’s README.

Using the powerful REPL

Part of the joy of Lisp is the excellent REPL. Its existence usually delays the need to use other debugging tools, if it doesn’t annihilate them for the usual routine.

As soon as we define a function, we can try it in the REPL. In Slime, compile a function with C-c C-c (the whole buffer with C-c C-k), switch to the REPL with C-c C-z and try it. Eventually enter the package you are working on with (in-package :your-package) or C-c ~ (slime-sync-package-and-default-directory, which will also change the default working directory to the package definition’s directory).

The feedback is immediate. There is no need to recompile everything, nor to restart any process, nor to create a main function and define command line arguments for use in the shell (which we can of course do later on when needed).

We usually need to create some data to test our function(s). This is a subsequent art of the REPL existence and it may be a new discipline for newcomers. A trick is to write the test data alongside your functions but below a #+nil feature test (or safer, +(or): it is still possible that someone pushed NIL to the *features* list) so that only you can manually compile them:

#+nil
(progn
 (defvar *test-data* nil)
 (setf *test-data* (make-instance 'foo …)))

When you load this file, *test-data* won’t exist, but you can manually create it with C-c C-c.

We can define tests functions like this.

Some do similarly inside #| … |# comments.

All that being said, keep in mind to write unit tests when time comes ;)

Inspect and describe

These two commands share the same goal, printing a description of an object, inspect being the interactive one.

(inspect *foo*)

The object is a proper list of length 3.
0. 0: :A
1. 1: :B

2. 2: :C
> q

We can also, in editors that support it, right-click on any object in the REPL and inspect them (or C-c I on the object to inspect in Slime). We are presented a screen where we can dive deep inside the data structure and even change it.

Let’s have a quick look with a more interesting structure, an object:

(defclass foo ()
 ((a :accessor foo-a :initform '(:a :b :c))
 (b :accessor foo-b :initform :b)))
;; #<STANDARD-CLASS FOO>
(make-instance 'foo)
;; #<FOO {100F2B6183}>

We right-click on the #<FOO object and choose “inspect”. We are presented an interactive pane (in Slime):

[image: “Slime’s inspector, a textual window with buttons”]“Slime’s inspector, a textual window with buttons”

When we click or press enter on the line of slot A, we inspect it further:

#<CONS {100F5E2A07}>
 --
A proper list:
0: :A
1: :B
2: :C

In LispWorks, we can use a graphical inspector:

[image: “The LispWorks inspector window”]“The LispWorks inspector window”

Trace

trace allows us to see when a function was called, what arguments it received, and the value it returned.

(defun factorial (n)
 (if (plusp n)
 (* n (factorial (1- n)))
 1))

To start tracing a function, just call trace with the function name (or several function names):

(trace factorial)

(factorial 2)
 0: (FACTORIAL 3)
 1: (FACTORIAL 2)
 2: (FACTORIAL 1)
 3: (FACTORIAL 0)
 3: FACTORIAL returned 1
 2: FACTORIAL returned 1
 1: FACTORIAL returned 2
 0: FACTORIAL returned 6
6

(untrace factorial)

To untrace all functions, just evaluate (untrace).

To get a list of currently traced functions, evaluate (trace) with no arguments.

In Slime we have the shortcut C-c M-t to trace or untrace a function.

If you don’t see recursive calls, that may be because of the compiler’s optimizations. Try this before defining the function to be traced:

(declaim (optimize (debug 3))) ;; or C-u C-c C-c to compile with maximal debug settings.

The output is printed to *trace-output* (see the CLHS).

In Slime, we also have an interactive trace dialog with M-x slime-trace-dialog bound to C-c T.

Trace options

trace accepts options. For example, you can use :break t to invoke the debugger at the start of the function, before it is called (more on break below):

(trace factorial :break t)
(factorial 2)

We can define many things in one call to trace. For instance, options that appear before the first function name to trace are global, they affect all traced functions that we add afterwards. Here, :break t is set for every function that follows: factorial, foo and bar:

(trace :break t factorial foo bar)

On the contrary, if an option comes after a function name, it acts as a local option, only for its preceding function. That’s how we first did. Below foo and bar come after, they are not affected by :break:

(trace factorial :break t foo bar)

But do you actually want to break before the function call or just after it? With :break as with many options, you can choose. These are the options for :break:

:break form ;; before
:break-after form
:break-all form ;; before and after

form can be any form that evaluates to true.

Note that we explained the trace function of SBCL. Other implementations may have the same feature with another syntax and other option names. For example, in LispWorks it is “:break-on-exit” instead of “:break-after”, and we write (trace (factorial :break t)).

Below are some other options but first, a trick with :break.

Trace options: break

The argument to an option can be any form. Here’s a trick, on SBCL, to get the break window when we are about to call factorial with 0. (sb-debug:arg 0) refers to n, the first argument.

CL-USER> (trace factorial :break (equal 0 (sb-debug:arg 0)))
;; WARNING: FACTORIAL is already TRACE'd, untracing it first.
;; (FACTORIAL)

Running it again:

CL-USER> (factorial 3)
 0: (FACTORIAL 3)
 1: (FACTORIAL 2)
 2: (FACTORIAL 1)
 3: (FACTORIAL 0)

breaking before traced call to FACTORIAL:
 [Condition of type SIMPLE-CONDITION]

Restarts:
 0: [CONTINUE] Return from BREAK.
 1: [RETRY] Retry SLIME REPL evaluation request.
 2: [*ABORT] Return to SLIME's top level.
 3: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING {1003551BC3}>)

Backtrace:
 0: (FACTORIAL 1)
 Locals:
 N = 1 <---------- before calling (factorial 0), n equals 1.

Trace options: trace on conditions, trace if called from another function

:condition enables tracing only if the condition in form evaluates to true.

:condition form
:condition-after form
:condition-all form

If :condition is specified, then trace does nothing unless Form evaluates to true at the time of the call. :condition-after is similar, but suppresses the initial printout, and is tested when the function returns. :condition-all tries both before and after.

:wherein can be super useful:

:wherein Names

If specified, Names is a function name or list of names. trace does nothing unless a call to one of those functions encloses the call to this function (i.e. it would appear in a backtrace.) Anonymous functions have string names like “DEFUN FOO”.

:report Report-Type

If Report-Type is trace (the default) then information is reported by printing immediately. If Report-Type is nil, then the only effect of the trace is to execute other options (e.g. print or break). Otherwise, Report-Type is treated as a function designator and, for each trace event, funcalled with 5 arguments: trace depth (a non-negative integer), a function name or a function object, a keyword (:enter, :exit or :non-local-exit), a stack frame, and a list of values (arguments or return values).

See also :print to enrich the trace output.

It is expected that implementations extend trace with non-standard options. And we didn’t list all available options, so please refer to your implementation’s documentation:

	SBCL trace

	CCL trace

	LispWorks trace

	Allegro trace

Tracing method invocation

In SBCL, we can use (trace foo :methods t) to trace the execution order of method combination (before, after, around methods). For example:

(trace foo :methods t)

(foo 2.0d0)
 0: (FOO 2.0d0)
 1: ((SB-PCL::COMBINED-METHOD FOO) 2.0d0)
 2: ((METHOD FOO (FLOAT)) 2.0d0)
 3: ((METHOD FOO (T)) 2.0d0)
 3: (METHOD FOO (T)) returned 3
 2: (METHOD FOO (FLOAT)) returned 9
 2: ((METHOD FOO :AFTER (DOUBLE-FLOAT)) 2.0d0)
 2: (METHOD FOO :AFTER (DOUBLE-FLOAT)) returned DOUBLE
 1: (SB-PCL::COMBINED-METHOD FOO) returned 9
 0: FOO returned 9
9

It is also possible in CCL.

See the CLOS section for a tad more information.

The interactive debugger

Whenever an exceptional situation happens (see error handling), or when you ask for it (using step or break), the interactive debugger pops up.

It presents the error message, the available actions (restarts), and the backtrace. A few remarks:

	the restarts are programmable, we can create our own.

	in Slime, press v on a stack trace frame to view the corresponding source file location.

	hit Enter (or t) on a frame to toggle more details,

	use e to evaluate some code from within that frame,

	hit r to restart a given frame (see below).

	we can explore the functionality with the menu that should appear in our editor.

Compile with maximum debugging information

Usually your compiler will optimize things out and this will reduce the amount of information available to the debugger. For example sometimes we can’t see intermediate variables of computations. We can change the optimization choices with:

(declaim (optimize (speed 0) (space 0) (debug 3)))

and recompile our code. You can achieve the same with a handy shortcut: C-u C-c C-c: the form is compiled with maximum debug settings. You can on the contrary use a negative prefix argument (M--) to compile for speed. And use a numeric argument to set the setting to it (you should read the docstring of slime-compile-defun).

Step

step is an interactive command with similar scope than trace. This:

;; note: we copied factorial over to a file, to have more debug information.
(step (factorial 3))

gives an interactive pane with available actions (restarts) and the backtrace:

Evaluating call:
 (FACTORIAL 3)
With arguments:
 3
 [Condition of type SB-EXT:STEP-FORM-CONDITION]

Restarts:
 0: [STEP-CONTINUE] Resume normal execution <---------- stepping actions
 1: [STEP-OUT] Resume stepping after returning from this function
 2: [STEP-NEXT] Step over call
 3: [STEP-INTO] Step into call
 4: [RETRY] Retry SLIME REPL evaluation request.
 5: [*ABORT] Return to SLIME's top level.
 --more--

Backtrace:
 0: (FACTORIAL 3) <----------- press Enter to fold/unfold.
 Locals:
 N = 3 <----------- want to check? Move the point here and
 press "e" to evaluate code on that frame.

 1: (SB-INT:SIMPLE-EVAL-IN-LEXENV (LET ((SB-IMPL::*STEP-OUT* :MAYBE)) (UNWIND-PROTECT (SB-IMPL::WITH-STEPPING-ENABLED #))) #S(SB-KERNEL:LEXENV :FUNS NIL :VARS NIL :BLOCKS NIL :TAGS NIL :TYPE-RESTRICTIONS ..
 2: (SB-INT:SIMPLE-EVAL-IN-LEXENV (STEP (FACTORIAL 3)) #<NULL-LEXENV>)
 3: (EVAL (STEP (FACTORIAL 3)))
 --more--

(again, be sure you compiled your function with maximum debug settings (see above). Otherwise, your compiler might do optimizations under the hood and you might not see useful information such as local variables, or you might not be able to step at all.)

You have many options here. If you are using Emacs (or any other editor actually), keep in mind that you have a “SLDB” menu that shows you the available actions, in addition to the step window.

	follow the restarts to continue stepping: continue the execution, step out of this function, step into the function call the point is on, step over to the next function call, or abort everything. The shortcuts are:

	c: continue

	s: step

	x: step next

	o: step out

	inspect the backtrace and the source code. You can go to the source file with v, on each stackframe (each line of the backtrace). Press Enter or t (“toggle details”) on the stackframe to see more information, such as the function parameters for this call. Use n and p to navigate, use M-n and M-p to navigate to the next or previous stackframe and to open the corresponding source file at the same time. The point will be placed on the function being called.

	evaluate code from within the context of that stackframe. In Slime, use e (“eval in frame” and d to pretty-pint the result) and type a Lisp form. It will be executed in the context of the stackframe the point is on. Look, you can even inspect variables and have Slime open another inspector window. If you are on the first frame (0:), press i, then “n” to inspect the intermediate variable.

	resume execution from where you want. Use r to restart the frame the point is on. For example, go change the source code (without quitting the interactive debugger), re-compile it, re-run the frame to see if it works better. You didn’t restart all the program execution, you just restarted your program from a precise point. Use R to return from a stackframe, by giving its return value.

NB: let’s think about it, this is awesome! We just restarted our program from any point in time. If we work with long-running computations, we don’t need to restart it from the start. We can change, re-compile our erroneous code and resume execution from where it is needed to pass, no more.

Stepping is precious. However, if you find yourself inspecting the behaviour of a function a lot, it may be a sign that you need to simplify it and divide it in smaller pieces.

And again, LispWorks has a graphical stepper.

Resume a program execution from anywhere in the stack

In this video you will find a demo that shows the process explained above: how to fix a buggy function and how to resume the program execution from anywhere in the stack, without running everything from zero again. The video shows it with Emacs and Slime, the Lem editor, both with SBCL.

Break

A call to break makes the program enter the debugger, from which we can inspect the call stack, and do everything described above in the stepper.

Breakpoints in Slime

Look at the SLDB menu, it shows navigation keys and available actions. Of which:

	e (sldb-eval-in-frame) prompts for an expression and evaluates it in the selected frame. This is how we can explore our intermediate variables

	d is similar with the addition of pretty printing the result

Once we are in a frame and detect a suspicious behavior, we can even re-compile a function at runtime and resume the program execution from where it stopped (using the “step-continue” restart or using r (“restart frame”) on a given stackframe).

See also the Slime-star Emacs extension to set breakpoints without code annotations.

Advise and watch

advise and watch are available in some implementations, like CCL (advise and watch) and LispWorks. They do exist in SBCL but are not exported. advise allows to modify a function without changing its source, or to do something before or after its execution, similar to CLOS method combination (before, after, around methods).

watch will signal a condition when a thread attempts to write to an object being watched. It can be coupled with the display of the watched objects in a GUI. For a certain class of bugs (someone is changing this value, but I don’t know who), this can be extremely helpful.

Cross-referencing

Your Lisp can tell you all the places where a function is referenced or called, where a global variable is set, where a macro is expanded, and so on. For example, slime-who-calls (C-c C-w C-c or the Slime > Cross-Reference menu) will show you all the places where a function is called.

See our Emacs page for a complete list of commands.

SLY stepper and SLY stickers

SLY has an improved stepper and a unique feature, stickers. You mark a piece of code, you run your code, SLY captures the results for each sticker and lets you examine the program execution interactively. It allows to see what sticker was captured, or not, so we can see at a glance the code coverage of that function call.

They are a non-intrusive alternative to print and break.

Unit tests

Last but not least, automatic testing of functions in isolation might be what you’re looking for! See the testing section and a list of test frameworks and libraries.

Remote debugging

You can have your software running on a machine over the network, connect to it and debug it from home, from your development environment.

The steps involved are to start a Swank server on the remote machine (Swank is the backend companion of Slime), create an ssh tunnel and connect to the Swank server from our editor. Then we can browse and evaluate code on the running instance transparently.

To test this, let’s define a function that prints forever.

If needed, import the dependencies first:

(ql:quickload '("swank" "bordeaux-threads"))

;; a little common lisp swank demo
;; while this program is running, you can connect to it from
;; another terminal or machine
;; and change the definition of doprint to print something else out!

(require :swank)
(require :bordeaux-threads)

(defparameter *counter* 0)

(defun dostuff ()
 (format t "hello world ~a!~%" *counter*))

(defun runner ()
 (swank:create-server :port 4006)
 (format t "we are past go!~%")
 (bt:make-thread (lambda ()
 (loop repeat 5 do
 (sleep 5)
 (dostuff)
 (incf *counter*)))
 :name "do-stuff"))

(runner)

On the server, we can run this code with

sbcl –load demo.lisp

If you check with (bt:all-threads), you’ll see your Swank server running on port 4006, as well as the other thread ready to do stuff:

(#<SB-THREAD:THREAD “do-stuff” RUNNING {10027CEDC3}> #<SB-THREAD:THREAD “Swank Sentinel” waiting on: #<WAITQUEUE {10027D0003}> {10027CE8B3}> #<SB-THREAD:THREAD “Swank 4006” RUNNING {10027CEB63}> #<SB-THREAD:THREAD “main thread” RUNNING {1007C40393}>)

We do port forwarding on our development machine:

ssh -L4006:127.0.0.1:4006 username@example.com

this will securely forward port 4006 on the server at example.com to our local computer’s port 4006 (Swank only accepts connections from localhost).

We connect to the running Swank with M-x slime-connect, choosing localhost for the host and port 4006.

We can write new code:

(defun dostuff ()
 (format t "goodbye world ~a!~%" *counter*))
(setf *counter* 0)

and eval it as usual with C-c C-c or M-x slime-eval-region for instance. The output should change.

That’s how Ron Garret debugged the Deep Space 1 spacecraft from the earth in 1999:

We were able to debug and fix a race condition that had not shown up during ground testing. (Debugging a program running on a $100M piece of hardware that is 100 million miles away is an interesting experience. Having a read-eval-print loop running on the spacecraft proved invaluable in finding and fixing the problem.

References

	“How to understand and use Common Lisp”, chap. 30, David Lamkins (book download from author’s site)

	Malisper: debugging Lisp series

	Two Wrongs: debugging Common Lisp in Slime

	Slime documentation: connecting to a remote Lisp

	cvberrycom: remotely modifying a running Lisp program using Swank

	Ron Garret: Lisping at the JPL

	the Remote Agent experiment: debugging code from 60 million miles away (youtube) (“AMA” on reddit)

 Performance Tuning and Tips

Performance Tuning and Tips

Many Common Lisp implementations translate the source code into assembly language, so the performance is really good compared with some other interpreted languages.

However, sometimes we just want the program to be faster. This chapter introduces some techniques to squeeze the CPU power out.

Finding Bottlenecks

Acquiring Execution Time

The macro time is very useful for finding out bottlenecks. It takes a form, evaluates it and prints timing information in *trace-output*, as shown below:

* (defun collect (start end)
 "Collect numbers [start, end] as list."
 (loop for i from start to end
 collect i))

* (time (collect 1 10))

Evaluation took:
 0.000 seconds of real time
 0.000001 seconds of total run time (0.000001 user, 0.000000 system)
 100.00% CPU
 3,800 processor cycles
 0 bytes consed

By using the time macro it is fairly easy to find out which part of your program takes too much time.

Please note that the timing information provided here is not guaranteed to be reliable enough for marketing comparisons. It should only be used for tuning purpose, as demonstrated in this chapter.

Know your Lisp’s statistical profiler

Implementations ship their own profilers. SBCL has sb-profile, a “classic, per-function-call” deterministic profiler and sb-sprof, a statistical profiler. The latter works by taking samples of the program execution at regular intervals, instead of instrumenting functions like sb-profile:profile does.

You might find sb-sprof more useful than the deterministic profiler when profiling functions in the common-lisp-package, SBCL internals, or code where the instrumenting overhead is excessive.

Use flamegraphs and other tracing profilers

cl-flamegraph is a wrapper around SBCL’s statistical profiler to generate FlameGraph charts. Flamegraphs are a very visual way to search for hotspots in your code:

See also tracer, a tracing profiler for SBCL. Its output is suitable for display in Chrome’s or Chromium’s Tracing Viewer (chrome://tracing).

Checking Assembly Code

The function disassemble takes a function and prints the compiled code of it to *standard-output*. For example:

* (defun plus (a b)
 (+ a b))
PLUS

* (disassemble 'plus)
; disassembly for PLUS
; Size: 37 bytes. Origin: #x52B8063B
; 3B: 498B5D60 MOV RBX, [R13+96] ; no-arg-parsing entry point
 ; thread.binding-stack-pointer
; 3F: 48895DF8 MOV [RBP-8], RBX
; 43: 498BD0 MOV RDX, R8
; 46: 488BFE MOV RDI, RSI
; 49: FF14250102 CALL QWORD PTR [#x52100] ; GENERIC-+
; 50: 488B75E8 MOV RSI, [RBP-24]
; 54: 4C8B45F0 MOV R8, [RBP-16]
; 58: 488BE5 MOV RSP, RBP
; 5B: F8 CLC
; 5C: 5D POP RBP
; 5D: C3 RET
; 5E: CC0F BREAK 15 ; Invalid argument count trap

The code above was evaluated in SBCL. In some other implementations such as CLISP, disassembly might return something different:

* (defun plus (a b)
 (+ a b))
PLUS

* (disassemble 'plus)
Disassembly of function PLUS
2 required arguments
0 optional arguments
No rest parameter
No keyword parameters
4 byte-code instructions:
0 (LOAD&PUSH 2)
1 (LOAD&PUSH 2)
2 (CALLSR 2 55) ; +
5 (SKIP&RET 3)
NIL

It is because SBCL compiles the Lisp code into machine code, while CLISP does not.

Using Declare Expression

The declare expression can be used to provide hints for compilers to perform various optimization. Please note that these hints are implementation-dependent. Some implementations such as SBCL support this feature, and you may refer to their own documentation for detailed information. Here only some basic techniques mentioned in CLHS are introduced.

In general, declare expressions can occur only at the beginning of the bodies of certain forms, or immediately after a documentation string if the context allows. Also, the content of a declare expression is restricted to limited forms. Here we introduce some of them that are related to performance tuning.

Please keep in mind that these optimization skills introduced in this section are strongly connected to the Lisp implementation selected. Always check their documentation before using declare!

Speed and Safety

Lisp allows you to specify several quality properties for the compiler using the declaration optimize. Each quality may be assigned a value from 0 to 3, with 0 being “totally unimportant” and 3 being “extremely important”.

The most significant qualities might be safety and speed.

By default, Lisp considers code safety to be much more important than speed. But you may adjust the weight for more aggressive optimization.

* (defun max-original (a b)
 (max a b))
MAX-ORIGINAL

* (disassemble 'max-original)
; disassembly for MAX-ORIGINAL
; Size: 144 bytes. Origin: #x52D450EF
; 7A7: 8D46F1 lea eax, [rsi-15] ; no-arg-parsing entry point
; 7AA: A801 test al, 1
; 7AC: 750E jne L0
; 7AE: 3C0A cmp al, 10
; 7B0: 740A jeq L0
; 7B2: A80F test al, 15
; 7B4: 7576 jne L5
; 7B6: 807EF11D cmp byte ptr [rsi-15], 29
; 7BA: 7770 jnbe L5
; 7BC: L0: 8D43F1 lea eax, [rbx-15]
; 7BF: A801 test al, 1
; 7C1: 750E jne L1
; 7C3: 3C0A cmp al, 10
; 7C5: 740A jeq L1
; 7C7: A80F test al, 15
; 7C9: 755A jne L4
; 7CB: 807BF11D cmp byte ptr [rbx-15], 29
; 7CF: 7754 jnbe L4
; 7D1: L1: 488BD3 mov rdx, rbx
; 7D4: 488BFE mov rdi, rsi
; 7D7: B9C1030020 mov ecx, 536871873 ; generic->
; 7DC: FFD1 call rcx
; 7DE: 488B75F0 mov rsi, [rbp-16]
; 7E2: 488B5DF8 mov rbx, [rbp-8]
; 7E6: 7E09 jle L3
; 7E8: 488BD3 mov rdx, rbx
; 7EB: L2: 488BE5 mov rsp, rbp
; 7EE: F8 clc
; 7EF: 5D pop rbp
; 7F0: C3 ret
; 7F1: L3: 4C8BCB mov r9, rbx
; 7F4: 4C894DE8 mov [rbp-24], r9
; 7F8: 4C8BC6 mov r8, rsi
; 7FB: 4C8945E0 mov [rbp-32], r8
; 7FF: 488BD3 mov rdx, rbx
; 802: 488BFE mov rdi, rsi
; 805: B929040020 mov ecx, 536871977 ; generic-=
; 80A: FFD1 call rcx
; 80C: 4C8B45E0 mov r8, [rbp-32]
; 810: 4C8B4DE8 mov r9, [rbp-24]
; 814: 488B75F0 mov rsi, [rbp-16]
; 818: 488B5DF8 mov rbx, [rbp-8]
; 81C: 498BD0 mov rdx, r8
; 81F: 490F44D1 cmoveq rdx, r9
; 823: EBC6 jmp L2
; 825: L4: CC0A break 10 ; error trap
; 827: 04 byte #X04
; 828: 13 byte #X13 ; OBJECT-NOT-REAL-ERROR
; 829: FE9B01 byte #XFE, #X9B, #X01 ; RBX
; 82C: L5: CC0A break 10 ; error trap
; 82E: 04 byte #X04
; 82F: 13 byte #X13 ; OBJECT-NOT-REAL-ERROR
; 830: FE1B03 byte #XFE, #X1B, #X03 ; RSI
; 833: CC0A break 10 ; error trap
; 835: 02 byte #X02
; 836: 19 byte #X19 ; INVALID-ARG-COUNT-ERROR
; 837: 9A byte #X9A ; RCX

* (defun max-with-speed-3 (a b)
 (declare (optimize (speed 3) (safety 0)))
 (max a b))
MAX-WITH-SPEED-3

* (disassemble 'max-with-speed-3)
; disassembly for MAX-WITH-SPEED-3
; Size: 92 bytes. Origin: #x52D452C3
; 3B: 48895DE0 mov [rbp-32], rbx ; no-arg-parsing entry point
; 3F: 488945E8 mov [rbp-24], rax
; 43: 488BD0 mov rdx, rax
; 46: 488BFB mov rdi, rbx
; 49: B9C1030020 mov ecx, 536871873 ; generic->
; 4E: FFD1 call rcx
; 50: 488B45E8 mov rax, [rbp-24]
; 54: 488B5DE0 mov rbx, [rbp-32]
; 58: 7E0C jle L1
; 5A: 4C8BC0 mov r8, rax
; 5D: L0: 498BD0 mov rdx, r8
; 60: 488BE5 mov rsp, rbp
; 63: F8 clc
; 64: 5D pop rbp
; 65: C3 ret
; 66: L1: 488945E8 mov [rbp-24], rax
; 6A: 488BF0 mov rsi, rax
; 6D: 488975F0 mov [rbp-16], rsi
; 71: 4C8BC3 mov r8, rbx
; 74: 4C8945F8 mov [rbp-8], r8
; 78: 488BD0 mov rdx, rax
; 7B: 488BFB mov rdi, rbx
; 7E: B929040020 mov ecx, 536871977 ; generic-=
; 83: FFD1 call rcx
; 85: 488B45E8 mov rax, [rbp-24]
; 89: 488B75F0 mov rsi, [rbp-16]
; 8D: 4C8B45F8 mov r8, [rbp-8]
; 91: 4C0F44C6 cmoveq r8, rsi
; 95: EBC6 jmp L0

As you can see, the generated assembly code is much shorter (92 bytes VS 144). The compiler was able to perform optimizations. Yet we can do better by declaring types.

Type Hints

As mentioned in the Type System chapter, Lisp has a relatively powerful type system. You may provide type hints so that the compiler may reduce the size of the generated code.

* (defun max-with-type (a b)
 (declare (optimize (speed 3) (safety 0)))
 (declare (type integer a b))
 (max a b))
MAX-WITH-TYPE

* (disassemble 'max-with-type)
; disassembly for MAX-WITH-TYPE
; Size: 42 bytes. Origin: #x52D48A23
; 1B: 488BF7 mov rsi, rdi ; no-arg-parsing entry point
; 1E: 488975F0 mov [rbp-16], rsi
; 22: 488BD8 mov rbx, rax
; 25: 48895DF8 mov [rbp-8], rbx
; 29: 488BD0 mov rdx, rax
; 2C: B98C030020 mov ecx, 536871820 ; generic-<
; 31: FFD1 call rcx
; 33: 488B75F0 mov rsi, [rbp-16]
; 37: 488B5DF8 mov rbx, [rbp-8]
; 3B: 480F4CDE cmovl rbx, rsi
; 3F: 488BD3 mov rdx, rbx
; 42: 488BE5 mov rsp, rbp
; 45: F8 clc
; 46: 5D pop rbp
; 47: C3 ret

The size of generated assembly code shrunk to about 1/3 of the size. What about speed?

* (time (dotimes (i 10000) (max-original 100 200)))
Evaluation took:
 0.000 seconds of real time
 0.000107 seconds of total run time (0.000088 user, 0.000019 system)
 100.00% CPU
 361,088 processor cycles
 0 bytes consed

* (time (dotimes (i 10000) (max-with-type 100 200)))
Evaluation took:
 0.000 seconds of real time
 0.000044 seconds of total run time (0.000036 user, 0.000008 system)
 100.00% CPU
 146,960 processor cycles
 0 bytes consed

You see, by specifying type hints, our code runs much faster!

But wait…What happens if we declare wrong types? The answer is: it depends.

For example, SBCL treats type declarations in a special way. It performs different levels of type checking according to the safety level. If safety level is set to 0, no type checking will be performed. Thus a wrong type specifier might cause a lot of damage.

More on Type Declaration with declaim

If you try to evaluate a declare form in the top level, you might get the following error:

Execution of a form compiled with errors.
Form:
 (DECLARE (SPEED 3))
Compile-time error:
 There is no function named DECLARE. References to DECLARE in some contexts
(like starts of blocks) are unevaluated expressions, but here the expression is
being evaluated, which invokes undefined behaviour.
 [Condition of type SB-INT:COMPILED-PROGRAM-ERROR]

This is because type declarations have scopes. In the examples above, we have seen type declarations applied to a function.

During development it is usually useful to raise the importance of safety in order to find out potential problems as soon as possible. On the contrary, speed might be more important after deployment. However, it might be too verbose to specify declaration expression for each single function.

The macro declaim provides such possibility. It can be used as a top level form in a file and the declarations will be made at compile-time.

* (declaim (optimize (speed 0) (safety 3)))
NIL

* (defun max-original (a b)
 (max a b))
MAX-ORIGINAL

* (disassemble 'max-original)
; disassembly for MAX-ORIGINAL
; Size: 181 bytes. Origin: #x52D47D9C
...

* (declaim (optimize (speed 3) (safety 3)))
NIL

* (defun max-original (a b)
 (max a b))
MAX-ORIGINAL

* (disassemble 'max-original)
; disassembly for MAX-ORIGINAL
; Size: 142 bytes. Origin: #x52D4815D

Please note that declaim works in compile-time of a file. It is mostly used to make some declares local to that file. And it is unspecified whether or not the compile-time side-effects of a declaim persist after the file has been compiled.

Declaring function types

Another useful declaration is a ftype declaration which establishes the relationship between the function argument types and the return value type. If the type of passed arguments matches the declared types, the return value type is expected to match the declared one. Because of that, a function can have more than one ftype declaration associated with it. A ftype declaration restricts the type of the argument every time the function is called. It has the following form:

 (declaim (ftype (function (arg1 arg2 ...) return-value)
 function-name1))

If the function returns nil, its return type is null. This declaration does not put any restriction on the types of arguments by itself. It only takes effect if the provided arguments have the specified types – otherwise no error is signaled and declaration has no effect. For example, the following declamation states that if the argument to the function square is a fixnum, the value of the function will also be a fixnum:

(declaim (ftype (function (fixnum) fixnum) square))
(defun square (x) (* x x))

If we provide it with the argument which is not declared to be of type fixnum, no optimization will take place:

(defun do-some-arithmetic (x)
 (the fixnum (+ x (square x))))

Now let’s try to optimize the speed. The compiler will state that there is type uncertainty:

(defun do-some-arithmetic (x)
 (declare (optimize (speed 3) (debug 0) (safety 0)))
 (the fixnum (+ x (square x))))

; compiling (DEFUN DO-SOME-ARITHMETIC ...)

; file: /tmp/slimeRzDh1R
 in: DEFUN DO-SOME-ARITHMETIC
; (+ TEST-FRAMEWORK::X (TEST-FRAMEWORK::SQUARE TEST-FRAMEWORK::X))
;
; note: forced to do GENERIC-+ (cost 10)
; unable to do inline fixnum arithmetic (cost 2) because:
; The first argument is a NUMBER, not a FIXNUM.
; unable to do inline (signed-byte 64) arithmetic (cost 5) because:
; The first argument is a NUMBER, not a (SIGNED-BYTE 64).
; etc.
;
; compilation unit finished
; printed 1 note

 (disassemble 'do-some-arithmetic)
; disassembly for DO-SOME-ARITHMETIC
; Size: 53 bytes. Origin: #x52CD1D1A
; 1A: 488945F8 MOV [RBP-8], RAX ; no-arg-parsing entry point
; 1E: 488BD0 MOV RDX, RAX
; 21: 4883EC10 SUB RSP, 16
; 25: B902000000 MOV ECX, 2
; 2A: 48892C24 MOV [RSP], RBP
; 2E: 488BEC MOV RBP, RSP
; 31: E8C2737CFD CALL #x504990F8 ; #<FDEFN SQUARE>
; 36: 480F42E3 CMOVB RSP, RBX
; 3A: 488B45F8 MOV RAX, [RBP-8]
; 3E: 488BFA MOV RDI, RDX
; 41: 488BD0 MOV RDX, RAX
; 44: E807EE42FF CALL #x52100B50 ; GENERIC-+
; 49: 488BE5 MOV RSP, RBP
; 4C: F8 CLC
; 4D: 5D POP RBP
; 4E: C3 RET
NIL

Now we can add a type declaration for x, so the compiler can assume that the expression (square x) is a fixnum, and use the fixnum-specific +:

(defun do-some-arithmetic (x)
 (declare (optimize (speed 3) (debug 0) (safety 0)))
 (declare (type fixnum x))
 (the fixnum (+ x (square x))))

 (disassemble 'do-some-arithmetic)

; disassembly for DO-SOME-ARITHMETIC
; Size: 48 bytes. Origin: #x52C084DA
; 4DA: 488945F8 MOV [RBP-8], RAX ; no-arg-parsing entry point
; 4DE: 4883EC10 SUB RSP, 16
; 4E2: 488BD0 MOV RDX, RAX
; 4E5: B902000000 MOV ECX, 2
; 4EA: 48892C24 MOV [RSP], RBP
; 4EE: 488BEC MOV RBP, RSP
; 4F1: E8020C89FD CALL #x504990F8 ; #<FDEFN SQUARE>
; 4F6: 480F42E3 CMOVB RSP, RBX
; 4FA: 488B45F8 MOV RAX, [RBP-8]
; 4FE: 4801D0 ADD RAX, RDX
; 501: 488BD0 MOV RDX, RAX
; 504: 488BE5 MOV RSP, RBP
; 507: F8 CLC
; 508: 5D POP RBP
; 509: C3 RET
NIL

Code Inline

The declaration inline replaces function calls with function body, if the compiler supports it. It will save the cost of function calls but will potentially increase the code size. The best situation to use inline might be those small but frequently used functions. The following snippet shows how to encourage and prohibit code inline.

;; The globally defined function DISPATCH should be open-coded,
;; if the implementation supports inlining, unless a NOTINLINE
;; declaration overrides this effect.
(declaim (inline dispatch))
(defun dispatch (x) (funcall (get (car x) 'dispatch) x))

;; Here is an example where inlining would be encouraged.
;; Because function DISPATCH was defined as INLINE, the code
;; inlining will be encouraged by default.
(defun use-dispatch-inline-by-default ()
 (dispatch (read-command)))

;; Here is an example where inlining would be prohibited.
;; The NOTINLINE here only affects this function.
(defun use-dispatch-with-declare-notinline ()
 (declare (notinline dispatch))
 (dispatch (read-command)))

;; Here is an example where inlining would be prohibited.
;; The NOTINLINE here affects all following code.
(declaim (notinline dispatch))
(defun use-dispatch-with-declaim-noinline ()
 (dispatch (read-command)))

;; Inlining would be encouraged because you specified it.
;; The INLINE here only affects this function.
(defun use-dispatch-with-inline ()
 (declare (inline dispatch))
 (dispatch (read-command)))

Please note that when the inlined functions change, all the callers must be re-compiled.

Optimizing Generic Functions

Using Static Dispatch

Generic functions provide much convenience and flexibility during development. However, the flexibility comes with cost: generic methods are much slower than trivial functions. The performance cost becomes a burden especially when the flexibility is not needed.

The package inlined-generic-function provides functions to convert generic functions to static dispatch, moving the dispatch cost to compile-time. You just need to define generic function as a inlined-generic-function.

Caution

This package is declared as experimental thus is not recommended to be used in a serious software production. Use it at your own risk!

* (defgeneric plus (a b)
 (:generic-function-class inlined-generic-function))
#<INLINED-GENERIC-FUNCTION HELLO::PLUS (2)>

* (defmethod plus ((a fixnum) (b fixnum))
 (+ a b))
#<INLINED-METHOD HELLO::PLUS (FIXNUM FIXNUM) {10056D7513}>

* (defun func-using-plus (a b)
 (plus a b))
FUNC-USING-PLUS

* (defun func-using-plus-inline (a b)
 (declare (inline plus))
 (plus a b))
FUNC-USING-PLUS-INLINE

* (time
 (dotimes (i 100000)
 (func-using-plus 100 200)))
Evaluation took:
 0.018 seconds of real time
 0.017819 seconds of total run time (0.017800 user, 0.000019 system)
 100.00% CPU
 3 lambdas converted
 71,132,440 processor cycles
 6,586,240 bytes consed

* (time
 (dotimes (i 100000)
 (func-using-plus-inline 100 200)))
Evaluation took:
 0.001 seconds of real time
 0.000326 seconds of total run time (0.000326 user, 0.000000 system)
 0.00% CPU
 1,301,040 processor cycles
 0 bytes consed

The inlining is not enabled by default because once inlined, changes made to methods will not be reflected.

It can be enabled globally by adding :inline-generic-function flag in *features*.

* (push :inline-generic-function *features*)
(:INLINE-GENERIC-FUNCTION :SLYNK :CLOSER-MOP :CL-FAD :BORDEAUX-THREADS
:THREAD-SUPPORT :CL-PPCRE ALEXANDRIA.0.DEV::SEQUENCE-EMPTYP :QUICKLISP
:QUICKLISP-SUPPORT-HTTPS :SB-BSD-SOCKETS-ADDRINFO :ASDF3.3 :ASDF3.2 :ASDF3.1
:ASDF3 :ASDF2 :ASDF :OS-UNIX :NON-BASE-CHARS-EXIST-P :ASDF-UNICODE :ROS.INIT
:X86-64 :64-BIT :64-BIT-REGISTERS :ALIEN-CALLBACKS :ANSI-CL :AVX2
:C-STACK-IS-CONTROL-STACK :CALL-SYMBOL :COMMON-LISP :COMPACT-INSTANCE-HEADER
:COMPARE-AND-SWAP-VOPS :CYCLE-COUNTER :ELF :FP-AND-PC-STANDARD-SAVE ..)

When this feature is present, all inlinable generic functions are inlined unless it is declared notinline.

Block compilation

SBCL got block compilation on version 2.0.2, which was in CMUCL since 1991 but a little forgotten since.

You can enable block compilation with a one-liner:

(setq *block-compile-default* t)

But what is it?

Block compilation addresses a known aspect of dynamic languages: function calls to global, top-level functions are expensive.

Much more expensive than in a statically compiled language. They’re slow because of the late-bound nature of top-level defined functions, allowing arbitrary redefinition while the program is running and forcing runtime checks on whether the function is being called with the right number or types of arguments. This type of call is known as a “full call” in Python (the compiler used in CMUCL and SBCL, not to be confused with the programming language), and their calling convention permits the most runtime flexibility.

But local calls, the ones inside a top-level functions (for example lambdas, labels and flets) are fast.

These calls are more ‘static’ in the sense that they are treated more like function calls in static languages, being compiled “together” and at the same time as the local functions they reference, allowing them to be optimized at compile-time. For example, argument checking can be done at compile time because the number of arguments of the callee is known at compile time, unlike in the full call case where the function, and hence the number of arguments it takes, can change dynamically at runtime at any point. Additionally, the local call calling convention can allow for passing unboxed values like floats around, as they are put into unboxed registers never used in the full call convention, which must use boxed argument and return value registers.

So enabling block compilation kind of turns your code into a giant labels form.

One evident possible drawback, dependending on your application, is that you can’t redefine functions at runtime anymore.

We can also enable block compilation with the :block-compile keyword to compile-file:

(defun foo (x y)
 (print (bar x y))
 (bar x y))

(defun bar (x y)
 (+ x y))

(defun fact (n)
 (if (zerop n)
 1
 (* n (fact (1- n)))))

> (compile-file "foo.lisp" :block-compile t :entry-points nil)
> (load "foo.fasl")

> (sb-disassem:disassemble-code-component #'foo)

If you inspect the assembly,

you [will] see that FOO and BAR are now compiled into the same component (with local calls), and both have valid external entry points. This improves locality of code quite a bit and still allows calling both FOO and BAR externally from the file (e.g. in the REPL). […]

But there is one more goody block compilation adds…

Notice we specified :entry-points nil above. That’s telling the compiler to still create external entry points to every function in the file, since we’d like to be able to call them normally from outside the code component (i.e. the compiled compilation unit, here the entire file).

For more explanations, I refer you to the mentioned blog post, the current de-facto documentation for SBCL, in addition to CMUCL’s documentation (note that the form-by-form level granularity in CMUCL ((declaim (start-block ...)) ... (declaim (end-block ..))) is missing in SBCL, at the time of writing).

Finally, be aware that “block compiling and inlining currently does not interact very well [in SBCL]”.

 Scripting. Command line arguments. Executables.

Scripting. Command line arguments. Executables.

Using a program from a REPL is fine and well, but once it’s ready we’ll surely want to call it from the terminal. We can run Lisp scripts for this.

Next, if we want to distribute our program easily, we’ll want to build an executable.

Lisp implementations differ in their processes, but they all create self-contained executables, for the architecture they are built on. The final user doesn’t need to install a Lisp implementation, he can run the software right away.

Start-up times are near to zero, specially with SBCL and CCL.

Binaries size are large-ish. They include the whole Lisp including its libraries, the names of all symbols, information about argument lists to functions, the compiler, the debugger, source code location information, and more.

Note that we can similarly build self-contained executables for web apps.

Scripting with Common Lisp

Create a file named hello (you can drop the .lisp extension) and add this:

#!/usr/bin/env -S sbcl --script
(require :uiop)
(format t "hello ~a!~&" (uiop:getenv "USER"))

Make the script executable (chmod +x hello) and run it:

$./hello
hello me!

Nice! We can use this to a great extent already.

In addition, the script was quite fast to start, 0.03s on my system.

However, we will get longer startup times as soon as we add dependencies. The solution is to build a binary. They start even faster, with all dependencies compiled.

Quickloading dependencies from a script

Say you don’t bother with an .asd project definition yet, you just want to write a quick script, but you need to load a quicklisp dependency. You’ll need a bit more ceremony:

#!/usr/bin/env -S sbcl --script

(require :uiop)

;; We want quicklisp, which is loaded from our initfile,
;; after a classical installation.
;; However the --script flag doesn't load our init file:
;; it implies --no-sysinit --no-userinit --disable-debugger --end-toplevel-options
;; So, please load it:
(load "~/.sbclrc")

;; Load a quicklisp dependency silently.
(ql:quickload "str" :silent t)

(princ (str:concat "hello " (uiop:getenv "USER") "!"))

Accordingly, you could only use require, if the quicklisp dependency is already installed:

;; replace loading sbclrc and ql:quickload.
(require :str)

Also note that when you put a ql:quickload in the middle of your code, you can’t load the file anymore, you can’t C-c C-k from your editor. This is because the reader will see the “quickload” without running it yet, then sees “str:concat”, a call to a package that doesn’t exist (it wasn’t loaded yet). Common Lisp has you covered, with a form that executes code during the read phase:

;; you shouldn't need this. Use an .asd system definition!
(eval-when (:load-toplevel :compile-toplevel :execute)
 (ql:quickload "str" :silent t))

but ASDF project definitions are here for a reason. Find me another language that makes you install dependencies in the middle of the application code.

Building a self-contained executable

With SBCL - Images and Executables

How to build (self-contained) executables is, by default, implementation-specific (see below for portable ways). With SBCL, as says its documentation, it is a matter of calling save-lisp-and-die with the :executable argument to T:

(sb-ext:save-lisp-and-die #P"path/name-of-executable"
 :toplevel #'my-app:main-function
 :executable t)

sb-ext is an SBCL extension to run external processes. See other SBCL extensions (many of them are made implementation-portable in other libraries).

:executable t tells to build an executable instead of an image. We could build an image to save the state of our current Lisp image, to come back working with it later. This is especially useful if we made a lot of work that is computing intensive. In that case, we re-use the image with sbcl --core name-of-image.

:toplevel gives the program’s entry point, here my-app:main-function. Don’t forget to export the symbol, or use my-app::main-function (with two colons).

If you try to run this in Slime, you’ll get an error about threads running:

Cannot save core with multiple threads running.

We must run the command from a simple SBCL repl, from the terminal.

I suppose your project has Quicklisp dependencies. You must then:

	ensure Quicklisp is installed and loaded at the Lisp startup (you completed Quicklisp installation),

	asdf:load-asd the project’s .asd (recommended instead of just load),

	install the dependencies,

	build the executable.

That gives:

(asdf:load-asd "my-app.asd")
(ql:quickload "my-app")
(sb-ext:save-lisp-and-die #p"my-app-binary"
 :toplevel #'my-app:main
 :executable t)

From the command line, or from a Makefile, use --load and --eval:

build:
 sbcl --load my-app.asd \
 --eval '(ql:quickload :my-app)' \
 --eval "(sb-ext:save-lisp-and-die #p\"my-app\" :toplevel #'my-app:main :executable t)"

With ASDF

Now that we’ve seen the basics, we need a portable method. Since its version 3.1, ASDF allows to do that. It introduces the make command, that reads parameters from the .asd. Add this to your .asd declaration:

:build-operation "program-op" ;; leave as is
:build-pathname "<here your final binary name>"
:entry-point "<my-package:main-function>"

and call asdf:make :my-package.

So, in a Makefile:

LISP ?= sbcl

build:
 $(LISP) --load my-app.asd \
 --eval '(ql:quickload :my-app)' \
 --eval '(asdf:make :my-app)' \
 --eval '(quit)'

With Deploy - ship foreign libraries dependencies

All this is good, you can create binaries that work on your machine… but maybe not on someone else’s or on your server. Your program probably relies on C shared libraries that are defined somewhere on your filesystem. For example, libssl might be located on

/usr/lib/x86_64-linux-gnu/libssl.so.1.1

but on your VPS, maybe somewhere else.

Deploy to the rescue.

It will create a bin/ directory with your binary and the required foreign libraries. It will auto-discover the ones your program needs, but you can also help it (or tell it to not do so much).

Its use is very close to the above recipe with asdf:make and the .asd project configuration. Use this:

:defsystem-depends-on (:deploy) ;; (ql:quickload "deploy") before
:build-operation "deploy-op" ;; instead of "program-op"
:build-pathname "my-application-name" ;; doesn't change
:entry-point "my-package:my-start-function" ;; doesn't change

and build your binary with (asdf:make :my-app) like before.

Now, ship the bin/ directory to your users.

When you run the binary, you’ll see it uses the shipped libraries:

$./my-app
 ==> Performing warm boot.
 -> Runtime directory is /home/debian/projects/my-app/bin/
 -> Resource directory is /home/debian/projects/my-app/bin/
 ==> Running boot hooks.
 ==> Reloading foreign libraries.
 -> Loading foreign library #<LIBRARY LIBRT>.
 -> Loading foreign library #<LIBRARY LIBMAGIC>.
 ==> Launching application.
 […]

Success!

A note regarding libssl. It’s easier, on Linux at least, to rely on your OS’ current installation, so we’ll tell Deploy to not bother shipping it (nor libcrypto):

#+linux (deploy:define-library cl+ssl::libssl :dont-deploy T)
#+linux (deploy:define-library cl+ssl::libcrypto :dont-deploy T)

The day you want to ship a foreign library that Deploy doesn’t find, you can instruct it like this:

(deploy:define-library cl+ssl::libcrypto
 ;; ^^^ CFFI system name.
 ;; Find it with a call to "apropos".
 :path "/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1")

A last remark. Once you built your binary and you run it for the first time, you might get a funny message from ASDF that tries to upgrade itself, finds nothing into a ~/common-lisp/asdf/ repository, and quits. To tell it to not upgrade itself, add this into your .asd:

;; Tell ASDF to not update itself.
(deploy:define-hook (:deploy asdf) (directory)
 (declare (ignorable directory))
 #+asdf (asdf:clear-source-registry)
 #+asdf (defun asdf:upgrade-asdf () nil))

You can also silence Deploy’s start-up messages by adding this in your build script, before asdf:make is called:

(push :deploy-console features)

And there is more, so we refer you to Deploy’s documentation.

With Roswell or Buildapp

Roswell, an implementation manager, script launcher and much more, has the ros build command, that should work for many implementations.

This is how we can make our application easily installable by others, with a ros install my-app. See Roswell’s documentation.

Be aware that ros build adds core compression by default. That adds a significant startup overhead of the order of 150ms (for a simple app, startup time went from about 30ms to 180ms). You can disable it with ros build <app.ros> --disable-compression. Of course, core compression reduces your binary size significantly. See the table below, “Size and startup times of executables per implementation”.

We’ll finish with a word on Buildapp, a battle-tested and still popular “application for SBCL or CCL that configures and saves an executable Common Lisp image”.

Example usage:

buildapp --output myapp \
 --asdf-path . \
 --asdf-tree ~/quicklisp/dists \
 --load-system my-app \
 --entry my-app:main

Many applications use it (for example, pgloader), it is available on Debian: apt install buildapp, but you shouldn’t need it now with asdf:make or Roswell.

For web apps

We can similarly build a self-contained executable for our web appplication. It would thus contain a web server and would be able to run on the command line:

$./my-web-app Hunchentoot server is started. Listening on localhost:9003.

Note that this runs the production webserver, not a development one, so we can run the binary on our VPS right away and access the application from the outside.

We have one thing to take care of, it is to find and put the thread of the running web server on the foreground. In our main function, we can do something like this:

(defun main ()
 (start-app :port 9003) ;; our start-app, for example clack:clack-up
 ;; let the webserver run.
 ;; warning: hardcoded "hunchentoot".
 ;; You can simply run (sleep most-positive-fixnum)
 (handler-case (bt:join-thread (find-if (lambda (th)
 (search "hunchentoot" (bt:thread-name th)))
 (bt:all-threads)))
 ;; Catch a user's C-c
 (#+sbcl sb-sys:interactive-interrupt
 #+ccl ccl:interrupt-signal-condition
 #+clisp system::simple-interrupt-condition
 #+ecl ext:interactive-interrupt
 #+allegro excl:interrupt-signal
 () (progn
 (format *error-output* "Aborting.~&")
 (clack:stop *server*)
 (uiop:quit)))
 (error (c) (format t "Woops, an unknown error occured:~&~a~&" c))))

We used the bordeaux-threads library ((ql:quickload "bordeaux-threads"), alias bt) and uiop, which is part of ASDF so already loaded, in order to exit in a portable way (uiop:quit, with an optional return code, instead of sb-ext:quit).

Size and startup times of executables per implementation

SBCL isn’t the only Lisp implementation. ECL, Embeddable Common Lisp, transpiles Lisp programs to C. That creates a smaller executable.

According to this reddit source, ECL produces indeed the smallest executables of all, an order of magnitude smaller than SBCL, but with a longer startup time.

CCL’s binaries seem to be as fast to start up as SBCL and nearly half the size.

| program size | implementation | CPU | startup time |
|--------------+----------------+------+--------------|
28	/bin/true	15%	.0004
1005	ecl	115%	.5093
48151	sbcl	91%	.0064
27054	ccl	93%	.0060
10162	clisp	96%	.0170
4901	ecl.big	113%	.8223
70413	sbcl.big	93%	.0073
41713	ccl.big	95%	.0094
19948	clisp.big	97%	.0259

You’ll also want to investigate the proprietary Lisps’ tree shakers capabilities.

Regarding compilation times, CCL is famous for being fast in that regards. ECL is more involved and takes the longer to compile of these three implementations.

Building a smaller binary with SBCL’s core compression

Building with SBCL’s core compression can dramatically reduce your application binary’s size. In our case, it reduced it from 120MB to 23MB, for a loss of a dozen milliseconds of start-up time, which was still under 50ms.

Note: SBCL 2.2.6 switched to compression with zstd instead of zlib, which provides smaller binaries and faster compression and decompression times. Un-official numbers are: about 4x faster compression, 2x faster decompression, and smaller binaries by 10%.

Your SBCL must be built with core compression, see the documentation: Saving-a-Core-Image

Is it the case ?

(find :sb-core-compression *features*)
:SB-CORE-COMPRESSION

Yes, it is the case with this SBCL installed from Debian.

With SBCL

In SBCL, we would give an argument to save-lisp-and-die, where :compression

may be an integer from -7 to 22, corresponding to zstd compression levels, or t (which is equivalent to the default compression level, 9).

For a simple “Hello, world” program:

Program size	Compression level
46MB	Without compression
22MB	-7
12MB	9
11MB	22

For a bigger project like StumpWM, an X window manager written in Lisp:

Program size	Compression level
58MB	Without compression
27MB	-7
15MB	9
13MB	22

With ASDF

However, we prefer to do this with ASDF (or rather, UIOP). Add this in your .asd:

#+sb-core-compression
(defmethod asdf:perform ((o asdf:image-op) (c asdf:system))
 (uiop:dump-image (asdf:output-file o c)
 :executable t
 :compression t))

With Deploy

Also, the Deploy library can be used to build a fully standalone application. It will use compression if available.

Deploy is specifically geared towards applications with foreign library dependencies. It collects all the foreign shared libraries of dependencies, such as libssl.so in the bin subdirectory.

And voilà !

Parsing command line arguments

SBCL stores the command line arguments into sb-ext:*posix-argv*.

But that variable name differs from implementations, so we want a way to handle the differences for us.

We have (uiop:command-line-arguments), shipped in ASDF and included in nearly all implementations. From anywhere in your code, you can simply check if a given string is present in this list:

(member "-h" (uiop:command-line-arguments) :test #'string-equal)

That’s good, but we also want to parse the arguments, have facilities to check short and long options, build a help message automatically, etc.

We chose the Clingon library, because it may have the richest feature set:

	it handles subcommands,

	it supports various kinds of options (flags, integers, booleans, counters, enums…),

	it generates Bash and Zsh completion files as well as man pages,

	it is extensible in many ways,

	we can easily try it out on the REPL

	etc

Let’s download it:

(ql:quickload “clingon”)

As often, work happens in two phases:

	we first declare the options that our application accepts, their kind (flag, string, integer…), their long and short names and the required ones.

	we ask Clingon to parse the command-line options and run our app.

Declaring options

We want to represent a command-line tool with this possible usage:

$ myscript [-h, –help] [-n, –name NAME]

Ultimately, we need to create a Clingon command (with clingon:make-command) to represent our application. A command is composed of options and of a handler function, to do the logic.

So first, let’s create options. Clingon already handles “–help” for us, but not the short version. Here’s how we use clingon:make-option to create an option:

(clingon:make-option
 :flag ;; <--- option kind. A "flag" does not expect a parameter on the CLI.
 :description "short help"
 ;; :long-name "help" ;; <--- long name, sans the "--" prefix, but here it's a duplicate.
 :short-name #\h ;; <--- short name, a character
 ;; :required t ;; <--- is this option always required? In our case, no.
 :key :help) ;; <--- the internal reference to use with getopt, see later.

This is a flag: if “-h” is present on the command-line, the option’s value will be truthy, otherwise it will be falsy. A flag does not expect an argument, it’s here for itself.

Similar kind of options would be:

	:boolean: that one expects an argument, which can be “true” or 1 to be truthy. Anything else is considered falsy.

	:counter: a counter option counts how many times the option is provided on the command line. Typically, use it with -v / --verbose, so the user could use -vvv to have extra verbosity. In that case, the option value would be 3. When this option is not provided on the command line, Clingon sets its value to 0.

We’ll create a second option (“–name” or “-n” with a parameter) and we put everything in a litle function.

;; The naming with a "/" is just our convention.
(defun cli/options ()
 "Returns a list of options for our main command"
 (list
 (clingon:make-option
 :flag
 :description "short help."
 :short-name #\h
 :key :help)
 (clingon:make-option
 :string ;; <--- string type: expects one parameter on the CLI.
 :description "Name to greet"
 :short-name #\n
 :long-name "name"
 :env-vars '("USER") ;; <-- takes this default value if the env var exists.
 :initial-value "lisper" ;; <-- default value if nothing else is set.
 :key :name)))

The second option we created is of kind :string. This option expects one argument, which will be parsed as a string. There is also :integer, to parse the argument as an integer.

There are more option kinds of Clingon, which you will find on its good documentation: :choice, :enum, :list, :filepath, :switch and so on.

Top-level command

We have to tell Clingon about our top-level command. clingon:make-command accepts some descriptive fields, and two important ones:

	:options is a list of Clingon options, each created with clingon:make-option

	:handler is the function that will do the app’s logic.

And finally, we’ll use clingon:run in our main function (the entry point of our binary) to parse the command-line arguments, and apply our command’s logic. During development, we can also manually call clingon:parse-command-line to try things out.

Here’s a minimal command. We’ll define our handler function afterwards:

(defun cli/command ()
 "A command to say hello to someone"
 (clingon:make-command
 :name "hello"
 :description "say hello"
 :version "0.1.0"
 :authors '("John Doe <john.doe@example.org")
 :license "BSD 2-Clause"
 :options (cli/options) ;; <-- our options
 :handler #'null)) ;; <-- to change. See below.

At this point, we can already test things out on the REPL.

Testing options parsing on the REPL

Use clingon:parse-command-line: it wants a top-level command, and a list of command-line arguments (strings):

CL-USER> (clingon:parse-command-line (cli/command) '("-h" "-n" "me"))
#<CLINGON.COMMAND:COMMAND name=hello options=5 sub-commands=0>

It works!

We can even inspect this command object, we would see its properties (name, hooks, description, context…), its list of options, etc.

Let’s try again with an unknown option:

CL-USER> (clingon:parse-command-line (cli/command) '("-x"))
;; => debugger: Unknown option -x of kind SHORT

In that case, we are dropped into the interactive debugger, which says

Unknown option -x of kind SHORT
 [Condition of type CLINGON.CONDITIONS:UNKNOWN-OPTION]

and we are provided a few restarts:

Restarts:
 0: [DISCARD-OPTION] Discard the unknown option
 1: [TREAT-AS-ARGUMENT] Treat the unknown option as a free argument
 2: [SUPPLY-NEW-VALUE] Supply a new value to be parsed
 3: [RETRY] Retry SLIME REPL evaluation request.
 4: [*ABORT] Return to SLIME's top level.

which are very practical. If we needed, we could create an :around method for parse-command-line, handle Clingon’s conditions with handler-bind and use its restarts, to do something different with unknown options. But we don’t need that yet, if ever: we want our command-line parsing engine to warn us on invalid options.

Last but not least, we can see how Clingon prints our CLI tool’s usage information:

CL-USER> (clingon:print-usage (cli/command) t)
NAME:
 hello - say hello

USAGE:
 hello [options] [arguments ...]

OPTIONS:
 --help display usage information and exit
 --version display version and exit
 -h short help.
 -n, --name <VALUE> Name to greet [default: lisper] [env: $USER]

AUTHORS:
 John Doe <john.doe@example.org

LICENSE:
 BSD 2-Clause

We can tweak the “USAGE” part with the :usage key parameter of the lop-level command.

Handling options

When the parsing of command-line arguments succeeds, we need to do something with them. We introduce two new Clingon functions:

	clingon:getopt is used to get an option’s value by its :key

	clingon:command-arguments gets use the free arguments remaining on the command-line.

Here’s how to use them:

CL-USER> (let ((command (clingon:parse-command-line (cli/command) '("-n" "you" "last"))))
 (format t "name is: ~a~&" (clingon:getopt command :name))
 (format t "free args are: ~s~&" (clingon:command-arguments command)))
name is: you
free args are: ("last")
NIL

It is with them that we will write the handler of our top-level command:

(defun cli/handler (cmd)
 "The handler function of our top-level command"
 (let ((free-args (clingon:command-arguments cmd))
 (name (clingon:getopt cmd :name))) ;; <-- using the option's :key
 (format t "Hello, ~a!~%" name)
 (format t "You have provided ~a more free arguments~%"
 (length free-args))
 (format t "Bye!~%")))

We must tell our top-level command to use this handler:

;; from above:
(defun cli/command ()
 "A command to say hello to someone"
 (clingon:make-command
 ...
 :handler #'cli/handler)) ;; <-- changed.

We now only have to write the main entry point of our binary and we’re done.

By the way, clingon:getopt returns 3 values:

	the option’s value

	a boolean, indicating wether this option was provided on the command-line

	the command which provided the option for this value.

See also clingon:opt-is-set-p.

Main entry point

This can be any function, but to use Clingon, use its run function:

(defun main ()
 "The main entrypoint of our CLI program"
 (clingon:run (cli/command)))

To use this main function as your binary entry point, see above how to build a Common Lisp binary. A reminder: set it in your .asd system declaration:

:entry-point "my-package::main"

And that’s about it. Congratulations, you can now properly parse command-line arguments!

Go check Clingon’s documentation, because there is much more to it: sub-commands, contexts, hooks, handling a C-c, developing new options such as an email kind, Bash and Zsh completion…

Catching a C-c termination signal

By default, Clingon provides a handler for SIGINT signals. It makes the application to immediately exit with the status code 130.

If your application needs some clean-up logic, you can use an unwind-protect form. However, it might not be appropriate for all cases, so Clingon advertises to use the with-user-abort helper library.

Below we show how to catch a C-c manually. Because by default, you would get a Lisp stacktrace.

We built a simple binary, we ran it and pressed C-c. Let’s read the stacktrace:

$./my-app
sleep…
^C
debugger invoked on a SB-SYS:INTERACTIVE-INTERRUPT in thread <== condition name
#<THREAD "main thread" RUNNING {1003156A03}>:
 Interactive interrupt at #x7FFFF6C6C170.

Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):
 0: [CONTINUE] Return from SB-UNIX:SIGINT. <== it was a SIGINT indeed
 1: [RETRY-REQUEST] Retry the same request.

The signaled condition is named after our implementation: sb-sys:interactive-interrupt. We just have to surround our application code with a handler-case:

(handler-case
 (run-my-app free-args)
 (sb-sys:interactive-interrupt ()
 (progn
 (format *error-output* "Abort.~&")
 (opts:exit))))

This code is only for SBCL though. We know about trivial-signal, but we were not satisfied with our test yet. So we can use something like this:

(handler-case
 (run-my-app free-args)
 (#+sbcl sb-sys:interactive-interrupt
 #+ccl ccl:interrupt-signal-condition
 #+clisp system::simple-interrupt-condition
 #+ecl ext:interactive-interrupt
 #+allegro excl:interrupt-signal
 ()
 (opts:exit)))

here #+ includes the line at compile time depending on the implementation. There’s also #-. What #+ does is to look for symbols in the *features* list. We can also combine symbols with and, or and not.

Continuous delivery of executables

We can make a Continuous Integration system (Travis CI, Gitlab CI,…) build binaries for us at every commit, or at every tag pushed or at whichever other policy.

See Continuous Integration.

See also

	SBCL-GOODIES - Allows to distribute SBCL binaries with foreign libraries: libssl, libcrypto and libfixposix are statically baked in. This removes the need of Deploy, when only these three foreign libraries are used.

	it was released on February, 2023.

Credit

	cl-torrents’ tutorial

	lisp-journey/web-dev

 Testing the code

Testing the code

So you want to easily test the code you’re writing? The following recipe covers how to write automated tests and see their code coverage. We also give pointers to plug those in modern continuous integration services like GitHub Actions, Gitlab CI, Travis CI or Coveralls.

We will be using a mature testing framework called FiveAM. It supports test suites, random testing, test fixtures (to a certain extent) and, of course, interactive development.

Previously on the Cookbook, the recipe was cooked with Prove. It used to be a widely liked testing framework but, because of some shortcomings, its repository was later archived. Its successor Rove is not stable enough and lacks some features, so we didn’t pick it. There are also some other testing frameworks to explore if you feel like it.

FiveAM has an API documentation. You may inspect it or simply read the docstrings in code. Most of the time, they would provide sufficient information that answers your questions… if you didn’t find them here. Let’s get started.

Testing with FiveAM

FiveAM has 3 levels of abstraction: check, test and suite. As you may have guessed:

	A check is a single assertion that checks that its argument is truthy. The most used check is is. For example, (is (= 2 (+ 1 1))).

	A test is the smallest runnable unit. A test case may contain multiple checks. Any check failure leads to the failure of the whole test.

	A suite is a collection of tests. When a suite is run, all tests inside would be performed. A suite allows paternity, which means that running a suite will run all the tests defined in it and in its children suites.

A simple code sample containing the 3 basic blocks mentioned above can be shown as follows:

(def-suite* my-suite)

(test my-test
 (is (= 2 (+ 1 1))))

It is totally up to the user to decide the hierarchy of tests and suites. Here we mainly focus on the usage of FiveAM.

Suppose we have built a rather complex system and the following functions are part of it:

;; We have a custom "file doesn't exist" condition.
(define-condition file-not-existing-error (error)
 ((filename :type string :initarg :filename :reader filename)))

;; We have a function that tries to read a file and signals the above condition
;; if the file doesn't exist.
(defun read-file-as-string (filename &key (error-if-not-exists t))
 "Read file content as string. FILENAME specifies the path of file.

Keyword ERROR-IF-NOT-EXISTS specifies the operation to perform when the file
is not found. T (by default) means an error will be signaled. When given NIL,
the function will return NIL in that case."
 (cond
 ((uiop:file-exists-p filename)
 (uiop:read-file-string filename))
 (error-if-not-exists
 (error 'file-not-existing-error :filename filename))
 (t nil)))

We will write tests for that code. In particular, we must ensure:

	that the content read in a file is the expected content,

	that the condition is signaled if the file doesn’t exist.

Install and load

FiveAM is in Quicklisp and can be loaded with the following command:

(ql:quickload "fiveam")

The package is named fiveam with a nickname 5am. For the sake of simplicity, we will ignore the package prefix in the following code samples.

It is like we :used fiveam in our test package definition. You can also follow along in the REPL with (use-package :fiveam).

Here is a package definition you can use:

(in-package :cl-user)
(defpackage my-fiveam-test
 (:use :cl
 :fiveam))
(in-package :my-fiveam-test)

Defining suites (def-suite, def-suite*)

Testing in FiveAM usually starts by defining a suite. A suite helps separating tests to smaller collections that makes them more organized. It is highly recommended to define a single root suite for the sake of ASDF integration. We will talk about it later, now let’s focus on the testing itself.

The code below defines a suite named my-system. We will use it as the root suite for the whole system.

(def-suite my-system
 :description "Test my system")

Then let’s define another suite for testing the read-file-as-string function.

;; Define a suite and set it as the default for the following tests.
(def-suite read-file-as-string
 :description "Test the read-file-as-string function."
 :in my-system)
(in-suite read-file-as-string)

;; Alternatively, the following line is a combination of the 2 lines above.
(def-suite* read-file-as-string :in my-system)

Here a new suite named read-file-as-string has been defined. It is declared to be a child suite of my-system as specified by the :in keyword. The macro in-suite sets it as the default suite for the tests defined later.

Defining tests

Before diving into tests, here is a brief introduction of the available checks you may use inside tests:

	The is macro is likely the most used check. It simply checks if the given expression returns a true value and generates a test-passed or test-failure result accordingly.

	The skip macro takes a reason and generates a test-skipped result.

	The signals macro checks if the given condition was signaled during execution.

There is also:

	finishes: passes if the assertion body executes to normal completion. In other words if body does signal, return-from or throw, then this test fails.

	pass: just make the test pass.

	is-true: like is, but unlike it this check does not inspect the assertion body to determine how to report the failure. Similarly, there is is-false.

Please note that all the checks accept an optional reason, as string, that can be formatted with format directives (see more below). When omitted, FiveAM generates a report that explains the failure according to the arguments passed to the function.

The test macro provides a simple way to define a test with a name.

Note that below, we expect two files to exist: /tmp/hello.txt should contain “hello” and /tmp/empty.txt should be empty.

;; Our first "base" case: we read a file that contains "hello".
(test read-file-as-string-normal-file
 (let ((result (read-file-as-string "/tmp/hello.txt")))
 ;; Tip: put the expected value as the first argument of = or equal, string= etc.
 ;; FiveAM generates a more readable report following this convention.
 (is (string= "hello" result))))

;; We read an empty file.
(test read-file-as-string-empty-file
 (let ((result (read-file-as-string "/tmp/empty.txt")))
 (is (not (null result)))
 ;; The reason can be used to provide formatted text.
 (is (= 0 (length result)))
 "Empty string expected but got ~a" result))

;; Now we test that reading a non-existing file signals our condition.
(test read-file-as-string-non-existing-file
 (let ((result (read-file-as-string "/tmp/non-existing-file.txt"
 :error-if-not-exists nil)))
 (is (null result)
 "Reading a file should return NIL when :ERROR-IF-NOT-EXISTS is set to NIL"))
 ;; SIGNALS accepts the unquoted name of a condition and a body to evaluate.
 ;; Here it checks if FILE-NOT-EXISTING-ERROR is signaled.
 (signals file-not-existing-error
 (read-file-as-string "/tmp/non-existing-file.txt"
 :error-if-not-exists t)))

In the above code, three tests were defined with 5 checks in total. Some checks were actually redundant for the sake of demonstration. You may put all the checks in one big test, or in multiple scenarios. It is up to you.

The macro test is a convenience for def-test to define simple tests. You may read its docstring for a more complete introduction, for example to read about :depends-on.

Running tests

FiveAm provides multiple ways to run tests. The macro run! is a good start point during development. It accepts a name of suite or test and run it, then prints testing report in standard output. Let’s run the tests now!

(run! 'my-system)
; Running test suite MY-SYSTEM
; Running test READ-FILE-AS-STRING-EMPTY-FILE ..
; Running test READ-FILE-AS-STRING-NON-EXISTING-FILE ..
; Running test READ-FILE-AS-STRING-NORMAL-FILE .
; Did 5 checks.
; Pass: 5 (100%)
; Skip: 0 (0%)
; Fail: 0 (0%)
; => T, NIL, NIL

If we mess read-file-as-string-non-existing-file up by replacing /tmp/non-existing-file.txt with /tmp/hello.txt, the test would fail (sure!) as expected:

(run! 'read-file-as-string-non-existing-file)
; Running test READ-FILE-AS-STRING-NON-EXISTING-FILE ff
; Did 2 checks.
; Pass: 0 (0%)
; Skip: 0 (0%)
; Fail: 2 (100%)
; Failure Details:
; --------------------------------
; READ-FILE-AS-STRING-NON-EXISTING-FILE []:
; Should return NIL when :ERROR-IF-NOT-EXISTS is set to NIL.
; --------------------------------
; --------------------------------
; READ-FILE-AS-STRING-NON-EXISTING-FILE []:
; Failed to signal a FILE-NOT-EXISTING-ERROR.
; --------------------------------
; => NIL
; (#<IT.BESE.FIVEAM::TEST-FAILURE {10064485F3}>
; #<IT.BESE.FIVEAM::TEST-FAILURE {1006438663}>)
; NIL

The behavior of the suite/test runner can be customized by the *on-failure* variable, which controls what to do when a check failure happens. It can be set to one of the following values:

	:debug to drop to the debugger.

	:backtrace to print a backtrace and continue.

	NIL (default) to simply continue and print the report.

There is also *on-error*.

Running tests as they are compiled

Under normal circumstances, a test is written and compiled (with the usual C-c C-c in Slime) separately from the moment it is run. If you want to run the test when it is defined (with C-c C-c), set this:

(setf fiveam:*run-test-when-defined* t)

Custom and shorter tests explanations

We said earlier that a check accepts an optional custom reason that can be formatted with format directives. Here’s a simple example.

We are testing a math function:

(fiveam:test simple-maths
 (is (= 3 (+ 1 1))))

When we run! it, we see this somewhat lengthy but informative output (and that’s very important):

Running test suite NIL
 Running test SIMPLE-MATHS f
 Did 1 check.
 Pass: 0 (0%)
 Skip: 0 (0%)
 Fail: 1 (100%)

 Failure Details:

 SIMPLE-MATHS []:

(+ 1 1)

 evaluated to

2

 which is not

=

 to

3

Now, we can give it a custom reason:

(fiveam:test simple-maths
 (is (= 3 (+ 1 1))
 "Maths should work, right? ~a. Another parameter is: ~S" t :foo))

And we will see:

Running test suite NIL
 Running test SIMPLE-MATHS f
 Did 1 check.
 Pass: 0 (0%)
 Skip: 0 (0%)
 Fail: 1 (100%)

 Failure Details:

 SIMPLE-MATHS []:
 Maths should work, right? T. Another parameter is: :FOO

Fixtures

FiveAM also provides a feature called fixtures for setting up testing context. The goal is to ensure that some functions are not called and always return the same result. Think functions hitting the network: you want to isolate the network call in a small function and write a fixture so that in your tests, this function always returns the same, known result. (But if you do so, you might also need an “end to end” test that tests with real data and all your code…)

However, FiveAM’s fixture system is nothing more than a macro, it is not fully-featured compared to other libraries such as Mockingbird, and even FiveAM’s maintainer encourages to “just use a macro” instead.

Mockingbird (and maybe other libraries), in addition to the basic feature descibed above, also allows to count the number of times a function was called, with what arguments, and so on.

Random checking

The goal of random testing is to assist the developer in generating test cases, and thus, to find cases that the developer would not have thought about.

We have a few data generators at our disposal, for example:

(gen-float)
#<CLOSURE (LAMBDA () :IN GEN-FLOAT) {1005A906AB}>

(funcall (gen-float))
9.220082e37

(funcall (gen-integer :max 27 :min -16))
26

or again, gen-string, gen-list, gen-tree, gen-buffer, gen-character.

And we have a function to run 100 checks, taking each turn a new value from the given generators: for-all:

(test randomtest
 (for-all ((a (gen-integer :min 1 :max 10))
 (b (gen-integer :min 1 :max 10)))
 "Test random tests."
 (is (<= a b))))

When you run! 'randomtest this, I expect you will hit an error. You can’t possibly always get a lower than b, can you?

For more, see FiveAM’s documentation.

See also cl-quickcheck and Check-it, inspired by Haskell’s QuickCheck test framework.

ASDF integration

So it would be nice to provide a one-line trigger to test our my-system system. Recall that we said it is better to provide a root suite? Here is the reason:

(asdf:defsystem my-system
 ;; Parts omitted.
 :in-order-to ((test-op (test-op :my-system/test))))

(asdf:defsystem mitogrator/test
 ;; Parts omitted.
 :perform (test-op (op c)
 (symbol-call :fiveam :run!
 (find-symbol* :my-system :my-system/test))))

The last line tells ASDF to load symbol :my-system from my-system/test package and call fiveam:run!. It fact, it is equivalent to (run! 'my-system) as mentioned above.

Running tests on the terminal

Until now, we ran our tests from our editor’s REPL. How can we run them from a terminal window?

As always, the required steps are as follow:

	start our Lisp

	make sure Quicklisp is enabled (if we have external dependencies)

	load our main system

	load the test system

	run the FiveAM tests.

You could put them in a new run-tests.lisp file:

(load "mysystem.lisp")
(load "mysystem-tests.lisp") ;; <-- where all the FiveAM tests are written.
(in-package :mysystem-tests)

(run!) ;; <-- run all the tests and print the report.

and you could invoke it like so, from a source file or from a Makefile:

rlwrap sbcl --non-interactive --load mysystem.asd --eval '(ql:quickload :mysystem)' --load run-tests.lisp
;; we assume Quicklisp is installed and loaded. This can be done in the Lisp startup file like .sbclrc.

Before going that route however, have a look at the CI-Utils tool that we use in the Continuous Integration section below. It provides a run-fiveam command that can do all that for you.

But let us highlight something you’ll have to take care of if you ran your tests like this: the exit code. Indeed, (run!) prints a report, but it doesn’t say to your Lisp wether the tests were successful or not, and wether to exit with an exit code of 0 (for success) or more (for errors). So, if your testst were run on a CI system, the CI status would be always green, even if tests failed. To remedy that, replace run! by:

(let ((result (run!)))
 (cond
 ((null result)
 (log:info "Tests failed!") ;; FiveAM printed the report already.
 (uiop:quit 1))
 (t
 (log:info "All pass.")
 (uiop:quit))))

Check with echo $? on your shell that the exit code is correct.

Testing report customization

It is possible to generate our own testing report. The macro run! is nothing more than a composition of explain! and run.

Instead of generating a testing report like its cousin run!, the function run runs suite or test passed in and returns a list of test-result instance, usually instances of test-failure or test-passed sub-classes.

A class text-explainer is defined as a basic class for testing report generator. A generic function explain is defined to take a text-plainer instance and a test-result instance (returned by run) and generate testing report. The following 2 code snippets are equivalent:

(run! 'read-file-as-string-non-existing-file)

(explain (make-instance '5am::detailed-text-explainer)
 (run 'read-file-as-string-non-existing-file))

By creating a new sub-class of text-explainer and a method explain for it, it is possible to define a new test reporting system.

The following code just provides a proof-of-concept implementation. You may need to read the source code of 5am::detailed-text-explainer to fully understand it.

(defclass my-explainer (5am::text-explainer)
 ())

(defmethod 5am:explain ((explainer my-explainer) results &optional (stream *standard-output*) recursive-deps)
 (loop for result in results
 do (case (type-of result)
 ('5am::test-passed
 (format stream "~%Test ~a passed" (5am::name (5am::test-case result))))
 ('5am::test-failure
 (format stream "~%Test ~a failed" (5am::name (5am::test-case result)))))))

(explain (make-instace 'my-explainer)
 (run 'read-file-as-string-non-existing-file))
; Test READ-FILE-AS-STRING-NON-EXISTING-FILE failed
; Test READ-FILE-AS-STRING-NON-EXISTING-FILE passed => NIL

Interactively fixing unit tests

Common Lisp is interactive by nature (or so are most implementations), and testing frameworks make use of it. It is possible to ask the framework to open the debugger on a failing test, so that we can inspect the stack trace and go to the erroneous line instantly, fix it and re-run the test from where it left off, by choosing the suggested restart.

With FiveAM, set fiveam:*on-failure* to :debug:

(setf fiveam:*on-failure* :debug)

You will be dropped into the interactive debugger if an error occurs.

Use :backtrace to print a backtrace, continue to run the following tests and print FiveAM’s report.

The default is nil: carry on the tests execution and print the report.

Note that in the debugger:

	<enter> on a backtrace shows more of it

	v on a backtrace goes to the corresponding line or function.

	you can discover more options with the menu.

Code coverage

A code coverage tool produces a visual output that allows to see what parts of our code were tested or not:

Such capabilities are included into Lisp implementations. For example, SBCL has the sb-cover module and the feature is also built-in in CCL or LispWorks.

Generating an html test coverage output

Let’s do it with SBCL’s sb-cover.

Coverage reports are only generated for code compiled using compile-file with the value of the sb-cover:store-coverage-data optimization quality set to 3.

;;; Load SB-COVER
(require :sb-cover)

;;; Turn on generation of code coverage instrumentation
;;; in the compiler
(declaim (optimize sb-cover:store-coverage-data))

;;; Load some code, ensuring that it's recompiled
;;; with the new optimization policy.
(asdf:oos 'asdf:load-op :cl-ppcre-test :force t)

;;; Run the test suite.
(fiveam:run! yoursystem-test)

Produce a coverage report, set the output directory:

(sb-cover:report "coverage/")

Finally, turn off instrumentation:

(declaim (optimize (sb-cover:store-coverage-data 0)))

You can open your browser at ../yourproject/t/coverage/cover-index.html to see the report like the capture above or like this code coverage of cl-ppcre.

Continuous Integration

Continuous Integration is important to run automatic tests after a commit or before a pull request, to run code quality checks, to build and distribute your software… well, to automate everything about software.

We want our programs to be portable across Lisp implementations, so we’ll set up our CI pipeline to run our tests against several of them (it could be SBCL and CCL of course, but while we’re at it ABCL, ECL and possibly more).

We have a choice of Continuous Integration services: Travis CI, Circle, Gitlab CI, now also GitHub Actions, etc (many existed before GitHub Actions, if you wonder). We’ll have a look at how to configure a CI pipeline for Common Lisp, and we’ll focus a little more on Gitlab CI on the last part.

We’ll also quickly show how to publish coverage reports to the Coveralls service. cl-coveralls helps to post our coverage to the service.

GitHub Actions, Circle CI, Travis… with CI-Utils

We’ll use CI-Utils, a set of utilities that comes with many examples. It also explains more precisely what is a CI system and compares a dozen of services.

It relies on Roswell to install the Lisp implementations and to run the tests. They all are installed with a bash one-liner:

curl -L https://raw.githubusercontent.com/roswell/roswell/release/scripts/install-for-ci.sh | bash

(note that on the Gitlab CI example, we use a ready-to-use Docker image that contains them all)

It also ships with a test runner for FiveAM, which eases some rough parts (like returning the right error code to the terminal). We install ci-utils with Roswell, and we get the run-fiveam executable.

Then we can run our tests:

run-fiveam -e t -l foo/test :foo-tests # foo is our project

Following is the complete .travis.yml file.

The first part should be self-explanatory:

Example configuration for Travis CI
language: generic

addons:
 homebrew:
 update: true
 packages:
 - roswell
 apt:
 packages:
 - libc6-i386 # needed for a couple implementations
 - default-jre # needed for abcl

Runs each lisp implementation on each of the listed OS
os:
 - linux
- osx # OSX has a long setup on travis, so it's likely easier
to just run select implementations on OSX.

This is how we configure the implementations matrix, to run our tests on several Lisp implementations. We also send the test coverage made with SBCL to Coveralls.

env:
 global:
 - PATH=~/.roswell/bin:$PATH
 - ROSWELL_INSTALL_DIR=$HOME/.roswell
- COVERAGE_EXCLUDE=t # for rove
 jobs:
 # The implementation and whether coverage
 # is sent to coveralls are controlled
 # with these environmental variables
 - LISP=sbcl-bin COVERALLS=true
 - LISP=ccl-bin
 - LISP=abcl
 - LISP=ecl # warn: in our experience,
 # compilations times can be long on ECL.

Additional OS/Lisp combinations can be added
to those generated above
jobs:
 include:
 - os: osx
 env: LISP=sbcl-bin
 - os: osx
 env: LISP=ccl-bin

Some jobs can be marked as allowed to fail:

Note that this should only be used if there is no interest
for the library to work on that system
allow_failures:
- env: LISP=abcl
- env: LISP=ecl
- env: LISP=cmucl
- env: LISP=alisp
os: osx

 fast_finish: true

We finally install Roswell, the implementations, and we run our tests.

cache:
 directories:
 - $HOME/.roswell
 - $HOME/.config/common-lisp

install:
 - curl -L https://raw.githubusercontent.com/roswell/roswell/release/scripts/install-for-ci.sh | sh
 - ros install ci-utils #for run-fiveam
- ros install rove #for [run-] rove

 # If asdf 3.16 or higher is needed, uncomment the following lines
 #- mkdir -p ~/common-lisp
 #- if ["$LISP" == "ccl-bin"]; then git clone https://gitlab.common-lisp.net/asdf/asdf.git ~/common-lisp; fi

script:
 - run-fiveam -e t -l foo/test :foo-tests
 #- rove foo.asd

Below with Gitlab CI, we’ll use a Docker image that already contains the Lisp binaries and every Debian package required to build Quicklisp libraries.

Gitlab CI

Gitlab CI is part of Gitlab and is available on Gitlab.com, for public and private repositories. Let’s see straight away a simple .gitlab-ci.yml:

variables:
 QUICKLISP_ADD_TO_INIT_FILE: "true"

image: clfoundation/sbcl:latest

before_script:
 - install-quicklisp
 - git clone https://github.com/foo/bar ~/quicklisp/local-projects/

test:
 script:
 - make test

Gitlab CI is based on Docker. With image we tell it to use the latest tag of the clfoundation/sbcl image. This includes the latest version of SBCL, many OS packages useful for CI purposes, and a script to install Quicklisp. Gitlab will load the image, clone our project and put us at the project root with administrative rights to run the rest of the commands.

test is a “job” we define, script is a recognized keywords that takes a list of commands to run.

Suppose we must install dependencies before running our tests: before_script will run before each job. Here we install Quicklisp (adding it to SBCL’s init file), and clone a library where Quicklisp can find it.

We can try locally ourselves. If we already installed Docker and started its daemon (sudo service docker start), we can do:

docker run –rm -it -v /path/to/local/code:/usr/local/share/common-lisp/source clfoundation/sbcl:latest bash

This will download the lisp image (±300MB compressed), mount some local code in the image where indicated, and drop us in bash. Now we can try a make test.

Here is a more complete example that tests against several CL implementations in parallel:

variables:
 IMAGE_TAG: latest
 QUICKLISP_ADD_TO_INIT_FILE: "true"
 QUICKLISP_DIST_VERSION: latest

image: clfoundation/$LISP:$IMAGE_TAG

stages:
 - test
 - build

before_script:
 - install-quicklisp
 - git clone https://github.com/foo/bar ~/quicklisp/local-projects/

.test:
 stage: test
 script:
 - make test

abcl test:
 extends: .test
 variables:
 LISP: abcl

ccl test:
 extends: .test
 variables:
 LISP: ccl

ecl test:
 extends: .test
 variables:
 LISP: ecl

sbcl test:
 extends: .test
 variables:
 LISP: sbcl

build:
 stage: build
 variables:
 LISP: sbcl
 only:
 - tags
 script:
 - make build
 artifacts:
 paths:
 - some-file-name

Here we defined two stages (see environments), “test” and “build”, defined to run one after another. A “build” stage will start only if the “test” one succeeds.

“build” is asked to run only when a new tag is pushed, not at every commit. When it succeeds, it will make the files listed in artifacts’s paths available for download. We can download them from Gitlab’s Pipelines UI, or with an url. This one will download the file “some-file-name” from the latest “build” job:

https://gitlab.com/username/project-name/-/jobs/artifacts/master/raw/some-file-name?job=build

When the pipelines pass, you will see:

You now have a ready to use Gitlab CI.

SourceHut

It’s very easy to set up SourceHut’s CI system for Common Lisp. Here is a minimal .build.yml file that you can test via the build manifest tester:

image: archlinux
packages:
- sbcl
- quicklisp
sources:
- https://git.sr.ht/~fosskers/cl-transducers
tasks:
If our project isn't in the special `common-lisp` directory, quicklisp won't
be able to find it for loading.
- move: |
 mkdir common-lisp
 mv cl-transducers ~/common-lisp
- quicklisp: |
 sbcl --non-interactive --load /usr/share/quicklisp/quicklisp.lisp --eval "(quicklisp-quickstart:install)"
- test: |
 cd common-lisp/cl-transducers
 sbcl --non-interactive --load ~/quicklisp/setup.lisp --load run-tests.lisp

Since the Docker image we’re given is nearly empty, we need to install sbcl and quicklisp manually. Notice also that we’re running a run-tests.lisp file to drive the tests. Here’s what it could look like:

(ql:quickload :transducers/tests)
(in-package :transducers/tests)

(let ((status (parachute:status (parachute:test 'transducers/tests))))
 (cond ((eq :PASSED status) (uiop:quit))
 (t (uiop:quit 1))))

Here, examples of the Parachute testing library are shown. As shown elsewhere, in order for the CI job to fail when any test fails, we manually check the test result status and return 1 when there’s a problem.

Emacs integration: running tests using Slite

Slite stands for SLIme TEst runner. It allows you to see the summary of test failures, jump to test definitions, rerun tests with the debugger… all from inside Emacs. We get a dashboard-like buffer with green and red badges, from where we can act on tests. It makes the testing process even more integrated and interactive.

It consists of an ASDF system and an Emacs package. It is a new project (it appeared mid 2021) so, as of September 2021, neither can be installed via Quicklisp or MELPA yet. Please refer to its repository for instructions.

References

	Tutorial: Working with FiveAM, by Tomek “uint” Kurcz

	Comparison of Common Lisp Testing Frameworks, by Sabra Crolleton.

	the CL Foundation Docker images

See also

	cl-cookieproject, a project skeleton with a FiveAM tests structure.

 Database Access and Persistence

Database Access and Persistence

The Database section on the Awesome-cl list is a resource listing popular libraries to work with different kind of databases. We can group them roughly in four categories:

	wrappers to one database engine (cl-sqlite, postmodern, cl-redis,…),

	interfaces to several DB engines (clsql, sxql,…),

	persistent object databases (bknr.datastore (see chap. 21 of “Common Lisp Recipes”), ubiquitous,…),

	Object Relational Mappers (Mito),

and other DB-related tools (pgloader).

We’ll begin with an overview of Mito. If you must work with an existing DB, you might want to have a look at cl-dbi and clsql. If you don’t need a SQL database and want automatic persistence of Lisp objects, you also have a choice of libraries.

The Mito ORM and SxQL

Mito is in Quicklisp:

(ql:quickload "mito")

Overview

Mito is “an ORM for Common Lisp with migrations, relationships and PostgreSQL support”.

	it supports MySQL, PostgreSQL and SQLite3,

	when defining a model, it adds an id (serial primary key), created_at and updated_at fields by default like Ruby’s ActiveRecord or Django,

	handles DB migrations for the supported backends,

	permits DB schema versioning,

	is tested under SBCL and CCL.

As an ORM, it allows to write class definitions, to specify relationships, and provides functions to query the database. For custom queries, it relies on SxQL, an SQL generator that provides the same interface for several backends.

Working with Mito generally involves these steps:

	connecting to the DB

	writing CLOS classes to define models

	running migrations to create or alter tables

	creating objects, saving same in the DB,

and iterating.

Connecting to a DB

Mito provides the function connect-toplevel to establish a connection to RDBMs:

(mito:connect-toplevel :mysql
 :database-name "myapp"
 :username "fukamachi"
 :password "c0mon-1isp")

The driver type can be of :mysql, :sqlite3 and :postgres.

With sqlite you don’t need the username and password:

(mito:connect-toplevel :sqlite3 :database-name "myapp")

As usual, you need to create the MySQL or PostgreSQL database beforehand. Refer to their documentation.

Connecting sets mito:*connection* to the new connection and returns it.

Disconnect with disconnect-toplevel.

You might make good use of a wrapper function:

(defun connect ()
 "Connect to the DB."
 (mito:connect-toplevel :sqlite3 :database-name "myapp"))

Models

Defining models

In Mito, you can define a class which corresponds to a database table with the deftable macro:

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (or (:varchar 128) :null)))

Alternatively, you can specify (:metaclass mito:dao-table-class) in a regular class definition.

The deftable macro automatically adds some slots: a primary key named id if there’s no primary key, and created_at and updated_at for recording timestamps. Specifying (:auto-pk nil) and (:record-timestamps nil) in the deftable form will disable these behaviours. A deftable class will also come with initializers, named after the slot, and accessors, of form <class-name>-<slot-name>, for each named slot. For example, for the name slot in the above table definition, the initarg :name will be added to the constuctor, and the accessor user-name will be created.

You can inspect the new class:

(mito.class:table-column-slots (find-class 'user))
;=> (#<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS MITO.DAO.MIXIN::ID>
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS COMMON-LISP-USER::NAME>
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS COMMON-LISP-USER::EMAIL>
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS MITO.DAO.MIXIN::CREATED-AT>
; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS MITO.DAO.MIXIN::UPDATED-AT>)

The class inherits mito:dao-class implicitly.

(find-class 'user)
;=> #<MITO.DAO.TABLE:DAO-TABLE-CLASS COMMON-LISP-USER::USER>

(c2mop:class-direct-superclasses *)
;=> (#<STANDARD-CLASS MITO.DAO.TABLE:DAO-CLASS>)

This may be useful when you define methods which can be applied for all table classes.

For more information on using the Common Lisp Object System, see the clos page.

Creating the tables

After defining the models, you must create the tables:

(mito:ensure-table-exists 'user)

So a helper function:

(defun ensure-tables ()
 (mapcar #'mito:ensure-table-exists '(user foo bar)))

See Mito’s documentation for a couple more ways.

When you alter the model you’ll need to run a DB migration, see the next section.

Fields

Fields types

Field types are:

(:varchar <integer>), text,

:serial, :bigserial, :integer, :bigint, :unsigned,

:timestamp, :timestamptz,

:bytea,

Optional fields

Use (or <real type> :null):

 (email :col-type (or (:varchar 128) :null))

Field constraints

:unique-keys can be used like so:

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (:varchar 128))
 (:unique-keys email))

We already saw :primary-key.

You can change the table name with :table-name.

Relationships

You can define a relationship by specifying a foreign class with :col-type:

(mito:deftable tweet ()
 ((status :col-type :text)
 ;; This slot refers to USER class
 (user :col-type user))

(table-definition (find-class 'tweet))
;=> (#<SXQL-STATEMENT: CREATE TABLE tweet (
; id BIGSERIAL NOT NULL PRIMARY KEY,
; status TEXT NOT NULL,
; user_id BIGINT NOT NULL,
; created_at TIMESTAMP,
; updated_at TIMESTAMP
;)>)

Now you can create or retrieve a TWEET by a USER object, not a USER-ID.

(defvar *user* (mito:create-dao 'user :name "Eitaro Fukamachi"))
(mito:create-dao 'tweet :user *user*)

(mito:find-dao 'tweet :user *user*)

Mito doesn’t add foreign key constraints for referring tables.

One-to-one

A one-to-one relationship is simply represented with a simple foreign key on a slot (as :col-type user in the tweet class). Besides, we can add a unicity constraint, as with (:unique-keys email).

One-to-many, many-to-one

The tweet example above shows a one-to-many relationship between a user and his tweets: a user can write many tweets, and a tweet belongs to only one user.

The relationship is defined with a foreign key on the “many” side linking back to the “one” side. Here the tweet class defines a user foreign key, so a tweet can only have one user. You didn’t need to edit the user class.

A many-to-one relationship is actually the contrary of a one-to-many. You have to put the foreign key on the appropriate side.

Many-to-many

A many-to-many relationship needs an intermediate table, which will be the “many” side for the two tables it is the intermediary of.

And, thanks to the join table, we can store more information about the relationship.

Let’s define a book class:

(mito:deftable book ()
 ((title :col-type (:varchar 128))
 (ean :col-type (or (:varchar 128) :null))))

A user can have many books, and a book (as the title, not the physical copy) is likely to be in many people’s library. Here’s the intermediate class:

(mito:deftable user-books ()
 ((user :col-type user)
 (book :col-type book)))

Each time we want to add a book to a user’s collection (say in a add-book function), we create a new user-books object.

But someone may very well own many copies of one book. This is an information we can store in the join table:

(mito:deftable user-books ()
 ((user :col-type user)
 (book :col-type book)
 ;; Set the quantity, 1 by default:
 (quantity :col-type :integer)))

Inheritance and mixin

A subclass of DAO-CLASS is allowed to be inherited. This may be useful when you need classes which have similar columns:

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (:varchar 128)))
 (:unique-keys email))

(mito:deftable temporary-user (user)
 ((registered-at :col-type :timestamp)))

(mito:table-definition 'temporary-user)
;=> (#<SXQL-STATEMENT: CREATE TABLE temporary_user (
; id BIGSERIAL NOT NULL PRIMARY KEY,
; name VARCHAR(64) NOT NULL,
; email VARCHAR(128) NOT NULL,
; registered_at TIMESTAMP NOT NULL,
; created_at TIMESTAMP,
; updated_at TIMESTAMP,
; UNIQUE (email)
;)>)

If you need a ‘template’ for tables which aren’t related to any database tables, you can use DAO-TABLE-MIXIN in a defclass form. The has-email class below will not create a table.

(defclass has-email ()
 ((email :col-type (:varchar 128)
 :initarg :email
 :accessor object-email))
 (:metaclass mito:dao-table-mixin)
 (:unique-keys email))
;=> #<MITO.DAO.MIXIN:DAO-TABLE-MIXIN COMMON-LISP-USER::HAS-EMAIL>

(mito:deftable user (has-email)
 ((name :col-type (:varchar 64))))
;=> #<MITO.DAO.TABLE:DAO-TABLE-CLASS COMMON-LISP-USER::USER>

(mito:table-definition 'user)
;=> (#<SXQL-STATEMENT: CREATE TABLE user (
; id BIGSERIAL NOT NULL PRIMARY KEY,
; name VARCHAR(64) NOT NULL,
; email VARCHAR(128) NOT NULL,
; created_at TIMESTAMP,
; updated_at TIMESTAMP,
; UNIQUE (email)
;)>)

See more examples of use in mito-auth.

Troubleshooting

“Cannot CHANGE-CLASS objects into CLASS metaobjects.”

If you get the following error message:

Cannot CHANGE-CLASS objects into CLASS metaobjects.
 [Condition of type SB-PCL::METAOBJECT-INITIALIZATION-VIOLATION]
See also:
 The Art of the Metaobject Protocol, CLASS [:initialization]

it is certainly because you first wrote a class definition and then added the Mito metaclass and tried to evaluate the class definition again.

If this happens, you must remove the class definition from the current package:

(setf (find-class 'foo) nil)

or, with the Slime inspector, click on the class and find the “remove” button.

More info here.

Migrations

We can run database migrations manually, as shown below, or we can automatically run migrations after a change to the model definitions. To enable automatic migrations, set mito:*auto-migration-mode* to t.

The first step is to create the tables, if needed:

(ensure-table-exists 'user)

then alter the tables:

(mito:migrate-table 'user)

You can check the SQL generated code with migration-expressions 'class. For example, we create the user table:

(ensure-table-exists 'user)
;-> ;; CREATE TABLE IF NOT EXISTS "user" (
; "id" BIGSERIAL NOT NULL PRIMARY KEY,
; "name" VARCHAR(64) NOT NULL,
; "email" VARCHAR(128),
; "created_at" TIMESTAMP,
; "updated_at" TIMESTAMP
;) () [0 rows] | MITO.DAO:ENSURE-TABLE-EXISTS

There are no changes from the previous user definition:

(mito:migration-expressions 'user)
;=> NIL

Now let’s add a unique email field:

(mito:deftable user ()
 ((name :col-type (:varchar 64))
 (email :col-type (:varchar 128)))
 (:unique-keys email))

The migration will run the following code:

(mito:migration-expressions 'user)
;=> (#<SXQL-STATEMENT: ALTER TABLE user ALTER COLUMN email TYPE character varying(128), ALTER COLUMN email SET NOT NULL>
; #<SXQL-STATEMENT: CREATE UNIQUE INDEX unique_user_email ON user (email)>)

so let’s apply it:

(mito:migrate-table 'user)
;-> ;; ALTER TABLE "user" ALTER COLUMN "email" TYPE character varying(128), ALTER COLUMN "email" SET NOT NULL () [0 rows] | MITO.MIGRATION.TABLE:MIGRATE-TABLE
; ;; CREATE UNIQUE INDEX "unique_user_email" ON "user" ("email") () [0 rows] | MITO.MIGRATION.TABLE:MIGRATE-TABLE
;-> (#<SXQL-STATEMENT: ALTER TABLE user ALTER COLUMN email TYPE character varying(128), ALTER COLUMN email SET NOT NULL>
; #<SXQL-STATEMENT: CREATE UNIQUE INDEX unique_user_email ON user (email)>)

Queries

Creating objects

We can create user objects with the regular make-instance:

(defvar me
 (make-instance 'user :name "Eitaro Fukamachi" :email "e.arrows@gmail.com"))
;=> USER

To save it in DB, use insert-dao:

(mito:insert-dao me)
;-> ;; INSERT INTO `user` (`name`, `email`, `created_at`, `updated_at`) VALUES (?, ?, ?, ?) ("Eitaro Fukamachi", "e.arrows@gmail.com", "2016-02-04T19:55:16.365543Z", "2016-02-04T19:55:16.365543Z") [0 rows] | MITO.DAO:INSERT-DAO
;=> #<USER {10053C4453}>

Do the two steps above at once:

(mito:create-dao 'user :name "Eitaro Fukamachi" :email "e.arrows@gmail.com")

You should not export the user class and create objects outside of its package (it is good practice anyway to keep all database-related operations in say a models package and file). You should instead use a helper function:

(defun make-user (&key name)
 (make-instance 'user :name name))

Updating fields

(setf (slot-value me 'name) "nitro_idiot")
;=> "nitro_idiot"

and save it:

(mito:save-dao me)

Deleting

(mito:delete-dao me)
;-> ;; DELETE FROM `user` WHERE (`id` = ?) (1) [0 rows] | MITO.DAO:DELETE-DAO

;; or:
(mito:delete-by-values 'user :id 1)
;-> ;; DELETE FROM `user` WHERE (`id` = ?) (1) [0 rows] | MITO.DAO:DELETE-DAO

Get the primary key value

(mito:object-id me)
;=> 1

Count

(mito:count-dao 'user)
;=> 1

Find one

(mito:find-dao 'user :id 1)
;-> ;; SELECT * FROM `user` WHERE (`id` = ?) LIMIT 1 (1) [1 row] | MITO.DB:RETRIEVE-BY-SQL
;=> #<USER {10077C6073}>

So here’s a possibility of generic helpers to find an object by a given key:

(defgeneric find-user (key-name key-value)
 (:documentation "Retrieves an user from the data base by one of the unique
keys."))

(defmethod find-user ((key-name (eql :id)) (key-value integer))
 (mito:find-dao 'user key-value))

(defmethod find-user ((key-name (eql :name)) (key-value string))
 (first (mito:select-dao 'user
 (sxql:where (:= :name key-value)))))

Find all

Use the macro select-dao.

Get a list of all users:

(mito:select-dao 'user)
;(#<USER {10077C6073}>)
;#<SXQL-STATEMENT: SELECT * FROM user>

Find by relationship

As seen above:

(mito:find-dao 'tweet :user *user*)

Custom queries

It is with select-dao that you can write more precise queries by giving it SxQL statements.

Example:

(select-dao 'tweet
 (where (:like :status "%Japan%")))

another:

(select (:id :name :sex)
 (from (:as :person :p))
 (where (:and (:>= :age 18)
 (:< :age 65)))
 (order-by (:desc :age)))

You can compose your queries with regular Lisp code:

(defun find-tweets (&key user)
 (select-dao 'tweet
 (when user
 (where (:= :user user)))
 (order-by :object-created)))

select-dao is a macro that expands to the right thing©.

Note: if you didn’t use SXQL, then write (sxql:where …) and (sxql:order-by …).

You can compose your queries further with the backquote syntax.

Imagine you receive a query string, maybe composed of space-separated words, and you want to search for books that have either one of these words in their title or in their author’s name. Searching for “bob adventure” would return a book that has “adventure” in its title and “bob” in its author name, or both in the title.

For the example sake, an author is a string, not a link to another table:

(mito:deftable book ()
 ((title :col-type (:varchar 128))
 (author :col-type (:varchar 128))
 (ean :col-type (or (:varchar 128) :null))))

You want to add a clause that searches on both fields for each word.

(defun find-books (&key query (order :desc))
 "Return a list of books.
If a query string is given, search on both the title
and the author fields."
 (mito:select-dao 'book
 (when (str:non-blank-string-p query)
 (sxql:where
 `(:and
 ,@(loop for word in (str:words query)
 :collect `(:or (:like :title
 ,(str:concat "%" word "%"))
 (:like :authors
 ,(str:concat "%" word "%")))))))
 (sxql:order-by `(,order :created-at))))

By the way, we are still using a LIKE statement, but with a non-small dataset you’ll want to use your database’s full text search engine.

Clauses

See the SxQL documentation.

Examples:

(select-dao 'foo
 (where (:and (:> :age 20) (:<= :age 65))))

(order-by :age (:desc :id))

(group-by :sex)

(having (:>= (:sum :hoge) 88))

(limit 0 10)

and joins, etc.

Operators

:not
:is-null, :not-null
:asc, :desc
:distinct
:=, :!=
:<, :>, :<= :>=
:a<, :a>
:as
:in, :not-in
:like
:and, :or
:+, :-, :* :/ :%
:raw

Triggers

Since insert-dao, update-dao and delete-dao are defined as generic functions, you can define :before, :after or :around methods to those, like regular method combination.

(defmethod mito:insert-dao :before ((object user))
 (format t "~&Adding ~S...~%" (user-name object)))

(mito:create-dao 'user :name "Eitaro Fukamachi" :email "e.arrows@gmail.com")
;-> Adding "Eitaro Fukamachi"...
; ;; INSERT INTO "user" ("name", "email", "created_at", "updated_at") VALUES (?, ?, ?, ?) ("Eitaro Fukamachi", "e.arrows@gmail.com", "2016-02-16 21:13:47", "2016-02-16 21:13:47") [0 rows] | MITO.DAO:INSERT-DAO
;=> #<USER {100835FB33}>

Inflation/Deflation

Inflation/Deflation is a function to convert values between Mito and RDBMS.

(mito:deftable user-report ()
 ((title :col-type (:varchar 100))
 (body :col-type :text
 :initform "")
 (reported-at :col-type :timestamp
 :initform (local-time:now)
 :inflate #'local-time:universal-to-timestamp
 :deflate #'local-time:timestamp-to-universal)))

Eager loading

One of the pains in the neck to use ORMs is the “N+1 query” problem.

;; BAD EXAMPLE

(use-package '(:mito :sxql))

(defvar *tweets-contain-japan*
 (select-dao 'tweet
 (where (:like :status "%Japan%"))))

;; Getting names of tweeted users.
(mapcar (lambda (tweet)
 (user-name (tweet-user tweet)))
 tweets-contain-japan)

This example sends a query to retrieve a user like “SELECT * FROM user WHERE id = ?” at each iteration.

To prevent this performance issue, add includes to the above query which only sends a single WHERE IN query instead of N queries:

;; GOOD EXAMPLE with eager loading

(use-package '(:mito :sxql))

(defvar *tweets-contain-japan*
 (select-dao 'tweet
 (includes 'user)
 (where (:like :status "%Japan%"))))
;-> ;; SELECT * FROM `tweet` WHERE (`status` LIKE ?) ("%Japan%") [3 row] | MITO.DB:RETRIEVE-BY-SQL
;-> ;; SELECT * FROM `user` WHERE (`id` IN (?, ?, ?)) (1, 3, 12) [3 row] | MITO.DB:RETRIEVE-BY-SQL
;=> (#<TWEET {1003513EC3}> #<TWEET {1007BABEF3}> #<TWEET {1007BB9D63}>)

;; No additional SQLs will be executed.
(tweet-user (first *))
;=> #<USER {100361E813}>

Schema versioning

$ ros install mito
$ mito
Usage: mito command [option...]

Commands:
 generate-migrations
 migrate

Options:
 -t, --type DRIVER-TYPE DBI driver type (one of "mysql", "postgres" or "sqlite3")
 -d, --database DATABASE-NAME Database name to use
 -u, --username USERNAME Username for RDBMS
 -p, --password PASSWORD Password for RDBMS
 -s, --system SYSTEM ASDF system to load (several -s's allowed)
 -D, --directory DIRECTORY Directory path to keep migration SQL files (default: "/Users/nitro_idiot/Programs/lib/mito/db/")
 --dry-run List SQL expressions to migrate

Introspection

Mito provides some functions for introspection.

We can access the information of columns with the functions in (mito.class.column:...):

	table-column-[class, name, info, not-null-p,...]

	primary-key-p

and likewise for tables with (mito.class.table:...).

Given we get a list of slots of our class:

(ql:quickload "closer-mop")

(closer-mop:class-direct-slots (find-class 'user))
;; (#<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS NAME>
;; #<MITO.DAO.COLUMN:DAO-TABLE-COLUMN-CLASS EMAIL>)

(defparameter user-slots *)

We can answer the following questions:

What is the type of this column ?

(mito.class.column:table-column-type (first user-slots))
;; (:VARCHAR 64)

Is this column nullable ?

(mito.class.column:table-column-not-null-p
 (first user-slots))
;; T
(mito.class.column:table-column-not-null-p
 (second user-slots))
;; NIL

Testing

We don’t want to test DB operations against the production one. We need to create a temporary DB before each test.

The macro below creates a temporary DB with a random name, creates the tables, runs the code and connects back to the original DB connection.

(defpackage my-test.utils
 (:use :cl)
 (:import-from :my.models
 :*db*
 :*db-name*
 :connect
 :ensure-tables-exist
 :migrate-all)
 (:export :with-empty-db))

(in-package my-test.utils)

(defun random-string (length)
 ;; thanks 40ants/hacrm.
 (let ((chars "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"))
 (coerce (loop repeat length
 collect (aref chars (random (length chars))))
 'string)))

(defmacro with-empty-db (&body body)
 "Run `body` with a new temporary DB."
 `(let* ((*random-state* (make-random-state t))
 (prefix (concatenate 'string
 (random-string 8)
 "/"))
 ;; Save our current DB connection.
 (connection mito:*connection*))
 (uiop:with-temporary-file (:pathname name :prefix prefix)
 ;; Bind our *db-name* to a new name, so as to create a new DB.
 (let* ((*db-name* name))
 ;; Always re-connect to our real DB even in case of
 ;; error in body.
 (unwind-protect
 (progn
 ;; our functions to connect to the DB, create the tables
 ;; and run the migrations.
 (connect)
 (ensure-tables-exist)
 (migrate-all)
 ,@body)

 (setf mito:*connection* connection))))))

Use it like this:

(prove:subtest "Creation in a temporary DB."
 (with-empty-db
 (let ((user (make-user :name "Cookbook")))
 (save-user user)

 (prove:is (name user)
 "Cookbook"
 "Test username in a temp DB."))))
;; Creation in a temporary DB
;; CREATE TABLE "user" (
;; id BIGSERIAL NOT NULL PRIMARY KEY,
;; name VARCHAR(64) NOT NULL,
;; email VARCHAR(128) NOT NULL,
;; created_at TIMESTAMP,
;; updated_at TIMESTAMP,
;; UNIQUE (email)
;;) () [0 rows] | MITO.DB:EXECUTE-SQL
;; ✓ Test username in a temp DB.

See also

	exploring an existing (PostgreSQL) database with postmodern

	mito-attachment

	mito-auth

	can a role-based access right control library

 GUI toolkits

GUI toolkits

Lisp has a long and rich history and so does the development of Graphical User Interfaces in Lisp. In fact, the first GUI builder was written in Lisp (and sold to Apple. It is now Interface Builder).

Lisp is also famous and unrivalled for its interactive development capabilities, a feature even more worth having to develop GUI applications. Can you imagine compiling one function and seeing your GUI update instantly? We can do this with many GUI frameworks today, even though the details differ from one to another.

Finally, a key part in building software is how to build it and ship it to users. Here also, we can build self-contained binaries, for the three main operating systems, that users can run with a double click.

We aim here to give you the relevant information to help you choose the right GUI framework and to put you on tracks. Don’t hesitate to contribute, to send more examples and to furnish the upstream documentations.

Introduction

In this recipe, we’ll present the following GUI toolkits:

	Tk with Ltk and nodgui

	Qt4 with Qtools

	IUP with lispnik/iup

	Gtk3 with cl-cffi-gtk

	if you want Gtk4 bindings, see cl-gtk4. They are new bindings, released in September, 2022.

	Nuklear with Bodge-Nuklear

In addition, you might want to have a look to:

	the CAPI toolkit (Common Application Programming Interface), which is proprietary and made by LispWorks. It is a complete and cross-platform toolkit (Windows, Gtk+, Cocoa), very praised by its users. LispWorks also has iOS and Android runtimes. Example software built with CAPI include ScoreCloud. It is possible to try it with the LispWorks free demo.

	Allegro CL’s IDE and Common Graphics windowing system (proprietary): Allegro’s IDE is a general environment for developing applications. It works in concert with a windowing system called Common Graphics. The IDE is available for Allegro CL’s Microsoft Windows, on Linux platforms, Free BSD and on the Mac.

	NEW! 🎉 since Allegro CL 10.1 (released in March of 2022), the IDE, and the Common Graphics GUI toolkit, runs in the browser. It is called CG/JS.

	CCL’s built-in Cocoa interface, used to build applications such as Opusmodus.

	Clozure CL’s built-in Objective-C bridge and CocoaInterface, a Cocoa interface for CCL. Build Cocoa user interface windows dynamically using Lisp code and bypass the typical Xcode processes.

	the bridge is good at catching ObjC errors and turning them into Lisp errors, so one can have an iterative REPL-based development cycle for a macOS GUI application.

	McCLIM and Garnet are toolkit in 100% Common Lisp. McClim even has a prototype running in the browser with the Broadway protocol and Garnet has an ongoing interface to Gtk.

	Alloy, another very new toolkit in 100% Common Lisp, used for example in the Kandria game.

	eql, eql5, eql5-android, embedded Qt4 and Qt5 Lisp, embedded in ECL, embeddable in Qt. Port of EQL5 to the Android platform.

	this demo using Java Swing from ABCL

	examples of using Gtk without C files with SBCL, as well as GTK-server.

	and, last but not least, Ceramic, to ship a cross-platform web app with Electron.

as well as the other ones listed on awesome-cl#gui and Cliki.

Tk (Ltk and nodgui)

Tk (or Tcl/Tk, where Tcl is the programming language) has the infamous reputation of having an outdated look. This is not (so) true anymore since its version 8 of 1997 (!). It is probably better than you think.

This is a simple GUI with nodgui’s built-in theme (more on that below):

This is a treeview, with the same theme:

A toy mediaplayer, showing a tree list, checkboxes, buttons and labels, with the Arc theme:

This is a demo with a Macos theme:

In addition to those, we can use many of the ttkthemes, the Forest theme, and more. See this tcl/tk list.

But what is Tk good for? Tk doesn’t have a great choice of widgets, but it has a useful canvas, and it has a couple of unique features: we can develop a graphical interface fully interactively and we can run the GUI remotely from the core app. It is also cross-platform.

So, Tk isn’t native and doesn’t have the most advanced features, but it is a used and proven GUI toolkit (and programming language) still used in the industry. It can be a great choice to quickly create simple GUIs, to leverage its ease of deployment, or when stability is required.

There are two Lisp bindings: Ltk and nodgui. Nodgui (“No Drama GUI”) is a fork of Ltk, with added widgets (such as an auto-completion list widget), an asynchronous event loop and, what we really enjoy, the surprisingly nice-looking “Yaru” theme that comes with the library. It is also very easy to install and use any other theme of our choice, see below.

	Tk is Written in: Tcl

	Portability: cross-platform (Windows, macOS, Linux).

	Widgets: this is not the fort of Tk. It has a small set of default widgets, and misses important ones, for example a date picker. We can find some in extensions (such as in Nodgui), but they don’t feel native, at all. The calendar is brought by a Tk extension and looks better.

	Interactive development: very much.

	Graphical builder: no

	Other features:

	remote execution: the connection between Lisp and Tcl/Tk is done via a stream. It is thus possible to run the Lisp program on one computer, and to display the GUI on another one. The only thing required on the client computer is tcl/tk installed and the remote.tcl script. See Ltk-remote.

	Bindings documentation: short but complete. Nodgui too.

	Bindings stability: very stable

	Bindings activity: low for Ltk (mostly maintenance), active for nodgui (new features).

	Licence: Tcl/Tk is BSD-style, Ltk is LGPL.

	Example applications:

	Fulci - a program to organise your movie collections.

	Ltk small games - snake and tic-tac-toe.

	cl-pkr - a cross-platform color picker.

	cl-torrents - searching torrents on popular trackers. CLI, readline and a simple Tk GUI.

	More examples:

	https://peterlane.netlify.app/ltk-examples/: LTk examples for the tkdocs tutorial.

	LTk Plotchart - A wrapper around the tklib/plotchart library to work with LTk. This includes over 20 different chart types (xy-plots, gantt charts, 3d-bar charts etc…).

List of widgets

(please don’t suppose the list is exhaustive)

Button Canvas Check-button Entry Frame Label Labelframe Listbox
Menu Menubutton Message
Paned-window
Radio-button Scale
Scrollbar Spinbox Text
Toplevel Widget Canvas

Ltk-megawidgets:
 progress
 history-entry
 menu-entry

nodgui adds:

treelist tooltip searchable-listbox date-picker calendar autocomplete-listbox
password-entry progress-bar-star notify-window
dot-plot bar-chart equalizer-bar
swap-list

Qt4 (Qtools)

Do we need to present Qt and Qt4? Qt is huge and contains everything and the kitchen sink. Qt not only provides UI widgets, but numerous other layers (networking, D-BUS…).

Qt is free for open-source software, however you’ll want to check the conditions to ship proprietary ones.

The Qtools bindings target Qt4. The Qt5 Lisp bindings are https://github.com/commonqt/commonqt5/ and not ready for prime time..

A companion library for Qtools, that you’ll want to check out once you made your first Qtool application, is Qtools-ui, a collection of useful widgets and pre-made components. It comes with short demonstrations videos.

	Framework written in: C++

	Framework Portability: multi-platform, Android, embedded systems, WASM.

	Bindings Portability: Qtools runs on x86 desktop platforms on Windows, macOS and GNU/Linux.

	Widgets choice: large.

	Graphical builder: yes.

	Other features: Web browser, a lot more.

	Bindings documentation: lengthy explanations, a few examples. Prior Qt knowledge is required.

	Bindings stability: stable

	Bindings activity: active

	Qt Licence: both commercial and open source licences.

	Example applications:

	https://github.com/Shinmera/qtools/tree/master/examples

	https://github.com/Shirakumo/lionchat

	https://github.com/shinmera/halftone - a simple image viewer

Gtk+3 (cl-cffi-gtk)

Gtk+3 is the primary library used to build GNOME applications. Its (currently most advanced) lisp bindings is cl-cffi-gtk. While primarily created for GNU/Linux, Gtk works fine under macOS and can now also be used on Windows.

	Framework written in: C

	Portability: GNU/Linux and macOS, also Windows.

	Widgets choice: large.

	Graphical builder: yes: Glade.

	Other features: web browser (WebKitGTK)

	Bindings documentation: very good: http://www.crategus.com/books/cl-gtk/gtk-tutorial.html

	Bindings stability: stable

	Bindings activity: low activity, active development.

	Licence: LGPL

	Example applications:

	an Atmosphere Calculator, built with Glade.

	more documentation and examples:

	Learn Common Lisp by Example: GTK GUI with SBCL

IUP (lispnik/IUP)

IUP is a cross-platform GUI toolkit actively developed at the PUC university of Rio de Janeiro, Brazil. It uses native controls: the Windows API for Windows, Gtk3 for GNU/Linux. At the time of writing, it has a Cocoa port in the works (as well as iOS, Android and WASM ones). A particularity of IUP is its small API.

The Lisp bindings are lispnik/iup. They are nicely done in that they are automatically generated from the C sources. They can follow new IUP versions with a minimal work and the required steps are documented. All this gives us good guarantee over the bus factor.

IUP stands as a great solution in between Tk and Gtk or Qt.

	Framework written in: C (official API also in Lua and LED)

	Portability: Windows and Linux, work started for Cocoa, iOS, Android, WASM.

	Widgets choice: medium. Includes a web browser window (WebkitGTK on Linux, IE’s WebBrowser on Windows).

	Graphical builder: yes: IupVisualLED

	Other features: OpenGL, Web browser (WebKitGTK on GNU/Linux), plotting, Scintilla text editor

	Bindings documentation: good examples and good readme, otherwise low.

	Bindings stability: alpha (but fully generated and working nicely).

	Bindings activity: low but steady, and reactive to new IUP versions.

	Licence: IUP and the bindings are MIT licenced.

List of widgets

Radio, Tabs, FlatTabs, ScrollBox, DetachBox,
Button, FlatButton, DropButton, Calendar, Canvas, Colorbar, ColorBrowser, DatePick, Dial, Gauge, Label, FlatLabel,
FlatSeparator, Link, List, FlatList, ProgressBar, Spin, Text, Toggle, Tree, Val,
listDialog, Alarm, Color, Message, Font, Scintilla, file-dialog…
Cells, Matrix, MatrixEx, MatrixList,
GLCanvas, Plot, MglPlot, OleControl, WebBrowser (WebKit/Gtk+)…
drag-and-drop
WebBrowser

Nuklear (Bodge-Nuklear)

Nuklear is a small immediate-mode GUI toolkit:

Nuklear is a minimal-state, immediate-mode graphical user interface toolkit written in ANSI C and licensed under public domain. It was designed as a simple embeddable user interface for application and does not have any dependencies, a default render backend or OS window/input handling but instead provides a highly modular, library-based approach, with simple input state for input and draw commands describing primitive shapes as output. So instead of providing a layered library that tries to abstract over a number of platform and render backends, it focuses only on the actual UI.

its Lisp binding is Bodge-Nuklear, and its higher level companions bodge-ui and bodge-ui-window.

Unlike traditional UI frameworks, Nuklear allows the developer to take over the rendering loop or the input management. This might require more setup, but it makes Nuklear particularly well suited for games, or for applications where you want to create new controls.

	Framework written in: ANSI C, single-header library.

	Portability: where C runs. Nuklear doesn’t contain platform-specific code. No direct OS or window handling is done in Nuklear. Instead all input state has to be provided by platform specific code.

	Widgets choice: small.

	Graphical builder: no.

	Other features: fully skinnable and customisable.

	Bindings stability: stable

	Bindings activity: active

	Licence: MIT or Public Domain (unlicence).

	Example applications:

	Trivial-gamekit

	Obvius - a resurrected image processing library.

	Notalone - an autumn 2017 Lisp Game Jam entry.

List of widgets

Non-exhaustive list:

buttons, progressbar, image selector, (collapsable) tree, list, grid, range, slider, color picker,
date-picker

Getting started

Tk

Ltk is quick and easy to grasp.

(ql:quickload "ltk")
(in-package :ltk-user)

How to create widgets

All widgets are created with a regular make-instance and the widget name:

(make-instance 'button)
(make-instance 'treeview)

This makes Ltk explorable with the default symbol completion.

How to start the main loop

As with most bindings, the GUI-related code must be started inside a macro that handles the main loop, here with-ltk:

(with-ltk ()
 (let ((frame (make-instance 'frame)))
 …))

How to display widgets

After we created some widgets, we must place them on the layout. There are a few Tk systems for that, but the most recent one and the one we should start with is the grid. grid is a function that takes as arguments the widget, its column, its row, and a few optional parameters.

As with any Lisp code in a regular environment, the functions’ signatures are indicated by the editor. It makes Ltk explorable.

Here’s how to display a button:

(with-ltk ()
 (let ((button (make-instance 'button :text "hello")))
 (grid button 0 0)))

That’s all there is to it.

Reacting to events

Many widgets have a :command argument that accept a lambda which is executed when the widget’s event is started. In the case of a button, that will be on a click:

(make-instance 'button
 :text "Hello"
 :command (lambda ()
 (format t "clicked")))

Interactive development

When we start the Tk process in the background with (start-wish), we can create widgets and place them on the grid interactively.

See the documentation.

Once we’re done, we can (exit-wish).

Nodgui

To try the Nodgui demo, do:

(ql:quickload "nodgui")
(nodgui.demo:demo)

but hey, to load the demo with the better looking theme, do:

(nodgui.demo:demo :theme "yaru")

or

(setf nodgui:*default-theme* "yaru")
(nodgui.demo:demo)

Nodgui UI themes

To use the “yaru” theme that comes with nodgui, we can simply do:

(with-nodgui ()
 (use-theme "yaru")
 …)

or

(with-nodgui (:theme "yaru")
 …)

or

(setf nodgui:*default-theme* "yaru")
(with-nodgui ()
 …)

It is also possible to install and load another tcl theme. For example, clone the Forest ttk theme or the ttkthemes. Your project directory would look like this:

yourgui.asd
yourgui.lisp
ttkthemes/

Inside ttkthemes/, you will find themes under the png/ directory (the other ones are currently not supported):

/ttkthemes/ttkthemes/png/arc/arc.tcl

You need to load the .tcl file with nodgui, and tell it to use this theme:

(with-nodgui ()
 (eval-tcl-file "/ttkthemes/ttkthemes/png/arc/arc.tcl")
 (use-theme "arc")
 … code here …)

and that’s it. Your application now uses a new and decently looking GUI theme.

Qt4

(ql:quickload '(:qtools :qtcore :qtgui))

(defpackage #:qtools-test
 (:use #:cl+qt)
 (:export #:main))
(in-package :qtools-test)
(in-readtable :qtools)

We create our main widget that will contain the rest:

(define-widget main-window (QWidget)
 ())

We create an input field and a button inside this main widget:

(define-subwidget (main-window name) (q+:make-qlineedit main-window)
 (setf (q+:placeholder-text name) "Your name please."))

(define-subwidget (main-window go-button) (q+:make-qpushbutton "Go!" main-window))

We stack them horizontally:

(define-subwidget (main-window layout) (q+:make-qhboxlayout main-window)
 (q+:add-widget layout name)
 (q+:add-widget layout go-button))

and we show them:

(with-main-window
 (window 'main-window))

That’s cool, but we don’t react to the click event yet.

Reacting to events

Reacting to events in Qt happens through signals and slots. Slots are functions that receive or “connect to” signals, and signals are event carriers.

Widgets already send their own signals: for example, a button sends a “pressed” event. So, most of the time, we only need to connect to them.

However, had we extra needs, we can create our own set of signals.

Built-in events

We want to connect our go-button to the pressed and return-pressed events and display a message box.

	we need to do this inside a define-slot function,

	where we establish the connection to those events,

	and where we create the message box. We grab the text of the name input field with (q+:text name).

(define-slot (main-window go-button) ()
 (declare (connected go-button (pressed)))
 (declare (connected name (return-pressed)))
 (q+:qmessagebox-information main-window
 "Greetings" ;; title
 (format NIL "Good day to you, ~a!" (q+:text name))))

And voilà. Run it with

(with-main-window (window 'main-window))

Custom events

We’ll implement the same functionality as above, but for demonstration purposes we’ll create our own signal named name-set to throw when the button is clicked.

We start by defining the signal, which happens inside the main-window, and which is of type string:

(define-signal (main-window name-set) (string))

We create a first slot to make our button react to the pressed and return-pressed events. But instead of creating the message box here, as above, we send the name-set signal, with the value of our input field..

(define-slot (main-window go-button) ()
 (declare (connected go-button (pressed)))
 (declare (connected name (return-pressed)))
 (signal! main-window (name-set string) (q+:text name)))

So far, nobody reacts to name-set. We create a second slot that connects to it, and displays our message. Here again, we precise the parameter type.

(define-slot (main-window name-set) ((new-name string))
 (declare (connected main-window (name-set string)))
 (q+:qmessagebox-information main-window "Greetings"
 (format NIL "Good day to you, ~a!" new-name)))

and run it:

(with-main-window (window 'main-window))

Building and deployment

It is possible to build a binary and bundle it together with all the necessary shared libraries.

Please read https://github.com/Shinmera/qtools#deployment.

You might also like this Travis CI script to build a self-contained binary for the three OSes.

Gtk3

The documentation is exceptionally good, including for beginners.

The library to quickload is cl-cffi-gtk. It is made of numerous ones, that we have to :use for our package.

(ql:quickload "cl-cffi-gtk")

(defpackage :gtk-tutorial
 (:use :gtk :gdk :gdk-pixbuf :gobject
 :glib :gio :pango :cairo :common-lisp))

(in-package :gtk-tutorial)

How to run the main loop

As with the other libraries, everything happens inside the main loop wrapper, here with-main-loop.

How to create a window

(make-instance 'gtk-window :type :toplevel :title "hello" ...).

How to create a widget

All widgets have a corresponding class. We can create them with make-instance 'widget-class, but we preferably use the constructors.

The constructors end with (or contain) “new”:

(gtk-label-new)
(gtk-button-new-with-label "Label")

How to create a layout

(let ((box (make-instance 'gtk-box :orientation :horizontal
 :spacing 6))) ...)

then pack a widget onto the box:

(gtk-box-pack-start box mybutton-1)

and add the box to the window:

(gtk-container-add window box)

and display them all:

(gtk-widget-show-all window)

Reacting to events

Use g-signal-connect + the concerned widget + the event name (as a string) + a lambda, that takes the widget as argument:

(g-signal-connect window "destroy"
 (lambda (widget)
 (declare (ignore widget))
 (leave-gtk-main)))

Or again:

(g-signal-connect button "clicked"
 (lambda (widget)
 (declare (ignore widget))
 (format t "Button was pressed.~%")))

Full example

(defun hello-world ()
 ;; in the docs, this is example-upgraded-hello-world-2.
 (within-main-loop
 (let ((window (make-instance 'gtk-window
 :type :toplevel
 :title "Hello Buttons"
 :default-width 250
 :default-height 75
 :border-width 12))
 (box (make-instance 'gtk-box
 :orientation :horizontal
 :spacing 6)))
 (g-signal-connect window "destroy"
 (lambda (widget)
 (declare (ignore widget))
 (leave-gtk-main)))
 (let ((button (gtk-button-new-with-label "Button 1")))
 (g-signal-connect button "clicked"
 (lambda (widget)
 (declare (ignore widget))
 (format t "Button 1 was pressed.~%")))
 (gtk-box-pack-start box button))
 (let ((button (gtk-button-new-with-label "Button 2")))
 (g-signal-connect button "clicked"
 (lambda (widget)
 (declare (ignore widget))
 (format t "Button 2 was pressed.~%")))
 (gtk-box-pack-start box button))
 (gtk-container-add window box)
 (gtk-widget-show-all window))))

IUP

Please check the installation instructions upstream. You may need one system dependency on GNU/Linux, and to modify an environment variable on Windows.

Finally, do:

(ql:quickload "iup")

We are not going to :use IUP (it is a bad practice generally after all).

(defpackage :test-iup
 (:use :cl))
(in-package :test-iup)

The following snippet creates a dialog frame to display a text label.

(defun hello ()
 (iup:with-iup ()
 (let* ((label (iup:label
 :title
 (format nil "Hello, World!~%IUP ~A~%~A ~A"
 (iup:version)
 (lisp-implementation-type)
 (lisp-implementation-version))))
 (dialog (iup:dialog label :title "Hello, World!")))
 (iup:show dialog)
 (iup:main-loop))))
(hello)

Important note for SBCL: we currently must trap division-by-zero errors (see advancement on this issue). So, run snippets like so:

(defun run-gui-function ()
 #-sbcl (gui-function)
 #+sbcl
 (sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (gui-function)))

How to run the main loop

As with all the bindings seen so far, widgets are shown inside a with-iup macro, and with a call to iup:main-loop.

How to create widgets

The constructor function is the name of the widget: iup:label, iup:dialog.

How to display a widget

Be sure to “show” it: (iup:show dialog).

You can group widgets on frames, and stack them vertically or horizontally (with vbox or hbox, see the example below).

To allow a widget to be expanded on window resize, use :expand :yes (or :horizontal and :vertical).

Use also the :alignement properties.

How to get and set a widget’s attributes

Use (iup:attribute widget attribute) to get the attribute’s value, and use setf on it to set it.

Reacting to events

Most widgets take an :action parameter that takes a lambda function with one parameter (the handle).

(iup:button :title "Test &1"
 :expand :yes
 :tip "Callback inline at control creation"
 :action (lambda (handle)
 (iup:message "title" "button1's action callback")
 iup:+default+))

Below we create a label and put a button below it. We display a message dialog when we click on the button.

(defun click-button ()
 (iup:with-iup ()
 (let* ((label (iup:label :title
 (format nil "Hello, World!~%IUP ~A~%~A ~A"
 (iup:version)
 (lisp-implementation-type)
 (lisp-implementation-version))))
 (button (iup:button :title "Click me"
 :expand :yes
 :tip "yes, click me"
 :action
 (lambda (handle)
 (declare (ignorable handle))
 (iup:message "title"
 "button clicked")
 iup:+default+)))
 (vbox
 (iup:vbox (list label button)
 :gap "10"
 :margin "10x10"
 :alignment :acenter))
 (dialog (iup:dialog vbox :title "Hello, World!")))
 (iup:show dialog)
 (iup:main-loop))))

#+sbcl
(sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (click-button))

Here’s a similar example to make a counter of clicks. We use a label and its title to hold the count. The title is an integer.

(defun counter ()
 (iup:with-iup ()
 (let* ((counter (iup:label :title 0))
 (label (iup:label :title
 (format nil "The button was clicked ~a time(s)."
 (iup:attribute counter :title))))
 (button (iup:button :title "Click me"
 :expand :yes
 :tip "yes, click me"
 :action (lambda (handle)
 (declare (ignorable handle))
 (setf (iup:attribute counter :title)
 (1+ (iup:attribute counter :title 'number)))
 (setf (iup:attribute label :title)
 (format nil "The button was clicked ~a times."
 (iup:attribute counter :title)))
 iup:+default+)))
 (vbox
 (iup:vbox (list label button)
 :gap "10"
 :margin "10x10"
 :alignment :acenter))
 (dialog (iup:dialog vbox :title "Counter")))
 (iup:show dialog)
 (iup:main-loop))))

(defun run-counter ()
 #-sbcl
 (counter)
 #+sbcl
 (sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (counter)))

List widget example

Below we create three list widgets with simple and multiple selection, we set their default value (the pre-selected row) and we place them horizontally side by side.

(defun list-test ()
 (iup:with-iup ()
 (let* ((list-1 (iup:list :tip "List 1" ;; tooltip
 ;; multiple selection
 :multiple :yes
 :expand :yes))
 (list-2 (iup:list :value 2 ;; default index of the selected row
 :tip "List 2" :expand :yes))
 (list-3 (iup:list :value 9 :tip "List 3" :expand :yes))
 (frame (iup:frame
 (iup:hbox
 (progn
 ;; populate the lists: display integers.
 (loop for i from 1 upto 10
 do (setf (iup:attribute list-1 i)
 (format nil "~A" i))
 do (setf (iup:attribute list-2 i)
 (format nil "~A" (+ i 10)))
 do (setf (iup:attribute list-3 i)
 (format nil "~A" (+ i 50))))
 ;; hbox wants a list of widgets.
 (list list-1 list-2 list-3)))
 :title "IUP List"))
 (dialog (iup:dialog frame :menu "menu" :title "List example")))

 (iup:map dialog)
 (iup:show dialog)
 (iup:main-loop))))

(defun run-list-test ()
 #-sbcl (hello)
 #+sbcl
 (sb-int:with-float-traps-masked
 (:divide-by-zero :invalid)
 (list-test)))

Nuklear

Disclaimer: as per the author’s words at the time of writing, bodge-ui is in early stages of development and not ready for general use yet. There are some quirks that need to be fixed, which might require some changes in the API.

bodge-ui is not in Quicklisp but in its own Quicklisp distribution. Let’s install it:

(ql-dist:install-dist "http://bodge.borodust.org/dist/org.borodust.bodge.txt" :replace t :prompt nil)

Uncomment and evaluate this line only if you want to enable the OpenGL 2 renderer:

;; (cl:pushnew :bodge-gl2 cl:*features*)

Quickload bodge-ui-window:

(ql:quickload "bodge-ui-window")

We can run the built-in example:

(ql:quickload "bodge-ui-window/examples")
(bodge-ui-window.example.basic:run)

Now let’s define a package to write a simple application.

(cl:defpackage :bodge-ui-window-test
 (:use :cl :bodge-ui :bodge-host))
(in-package :bodge-ui-window-test)

(defpanel (main-panel
 (:title "Hello Bodge UI")
 (:origin 200 50)
 (:width 400) (:height 400)
 (:options :movable :resizable
 :minimizable :scrollable
 :closable))
 (label :text "Nested widgets:")
 (horizontal-layout
 (radio-group
 (radio :label "Option 1")
 (radio :label "Option 2" :activated t))
 (vertical-layout
 (check-box :label "Check 1" :width 100)
 (check-box :label "Check 2"))
 (vertical-layout
 (label :text "Awesomely" :align :left)
 (label :text "Stacked" :align :centered)
 (label :text "Labels" :align :right)))
 (label :text "Expand by width:")
 (horizontal-layout
 (button :label "Dynamic")
 (button :label "Min-Width" :width 80)
 (button :label "Fixed-Width" :expandable nil :width 100))
 (label :text "Expand by width:")
 (horizontal-layout
 (button :label "1.0" :expand-ratio 1.0)
 (button :label "0.75" :expand-ratio 0.75)
 (button :label "0.5" :expand-ratio 0.5))
 (label :text "Rest:")
 (button :label "Top-level Button"))

(defparameter *window-width* 800)
(defparameter *window-height* 600)

(defclass main-window (bodge-ui-window:ui-window) ()
 (:default-initargs
 :title "Bodge UI Window Example"
 :width *window-width*
 :height *window-height*
 :panels '(main-panel)
 :floating t
 :opengl-version #+bodge-gl2 '(2 1)
 #+bodge-gl2 '(3 3)))

(defun run ()
 (bodge-host:open-window (make-instance 'main-window)))

and run it:

(run)

To react to events, use the following signals:

:on-click
:on-hover
:on-leave
:on-change
:on-mouse-press
:on-mouse-release

They take as argument a function with one argument, the panel. But beware: they will be called on each rendering cycle when the widget is on the given state, so potentially a lot of times.

Interactive development

If you ran the example in the REPL, you couldn’t see what’s cool. Put the code in a lisp file and run it, so than you get the window. Now you can change the panel widgets and the layout, and your changes will be immediately applied while the application is running!

Conclusion

Have fun, and don’t hesitate to share your experience and your apps.

 Web development

Web development

For web development as for any other task, one can leverage Common Lisp’s advantages: the unmatched REPL that even helps to interact with a running web app, the exception handling system, performance, the ability to build a self-contained executable, stability, good threads story, strong typing, etc. We can, say, define a new route and try it right away, there is no need to restart any running server. We can change and compile one function at a time (the usual C-c C-c in Slime) and try it. The feedback is immediate. We can choose the degree of interactivity: the web server can catch exceptions and fire the interactive debugger, or print lisp backtraces on the browser, or display a 404 error page and print logs on standard output. The ability to build self-contained executables eases deployment tremendously (compared to, for example, npm-based apps), in that we just copy the executable to a server and run it.

And when we have deployed our app, we can still interact with it, allowing for hot reload, that even works when new dependencies have to be installed. If you are careful and don’t want to use full live reload, you might still enjoy this capability to reload, for example, a user’s configuration file.

We’ll present here some established web frameworks and other common libraries to help you getting started in developing a web application. We do not aim to be exhaustive nor to replace the upstream documentation. Your feedback and contributions are appreciated.

Overview

Hunchentoot and Clack are two projects that you’ll often hear about.

Hunchentoot is

a web server and at the same time a toolkit for building dynamic websites. As a stand-alone web server, Hunchentoot is capable of HTTP/1.1 chunking (both directions), persistent connections (keep-alive), and SSL. It provides facilities like automatic session handling (with and without cookies), logging, customizable error handling, and easy access to GET and POST parameters sent by the client.

It is a software written by Edi Weitz (“Common Lisp Recipes”, cl-ppcre and much more), it’s used and proven solid. One can achieve a lot with it, but sometimes with more friction than with a traditional web framework. For example, dispatching a route by the HTTP method is a bit convoluted, one must write a function for the :uri parameter that does the check, when it is a built-in keyword in other frameworks like Caveman.

Clack is

a web application environment for Common Lisp inspired by Python’s WSGI and Ruby’s Rack.

Also written by a prolific lisper (E. Fukamachi), it actually uses Hunchentoot by default as the server, but thanks to its pluggable architecture one can use another web server, like the asynchronous Woo, built on the libev event loop, maybe “the fastest web server written in any programming language”.

We’ll cite also Wookie, an asynchronous HTTP server, and its companion library cl-async, for general purpose, non-blocking programming in Common Lisp, built on libuv, the backend library in Node.js.

Clack being more recent and less documented, and Hunchentoot a de-facto standard, we’ll concentrate on the latter for this recipe. Your contributions are of course welcome.

Web frameworks build upon web servers and can provide facilities for common activities in web development, like a templating system, access to a database, session management, or facilities to build a REST api.

Some web frameworks include:

	Caveman, by E. Fukamachi. It provides, out of the box, database management, a templating engine (Djula), a project skeleton generator, a routing system à la Flask or Sinatra, deployment options (mod_lisp or FastCGI), support for Roswell on the command line, etc.

	Radiance, by Shinmera (Qtools, Portacle, lquery, …), is a web application environment, more general than usual web frameworks. It lets us write and tie websites and applications together, easing their deployment as a whole. It has thorough documentation, a tutorial, modules, pre-written applications such as an image board or a blogging platform, and more. For example websites, see https://shinmera.com/, reader.tymoon.eu and events.tymoon.eu.

	Snooze, by João Távora (Sly, Emacs’ Yasnippet, Eglot, …), is “an URL router designed around REST web services”. It is different because in Snooze, routes are just functions and HTTP conditions are just Lisp conditions.

	cl-rest-server is a library for writing REST web APIs. It features validation with schemas, annotations for logging, caching, permissions or authentication, documentation via OpenAPI (Swagger), etc.

	last but not least, Weblocks is a venerable Common Lisp web framework that permits to write ajax-based dynamic web applications without writing any JavaScript, nor writing some lisp that would transpile to JavaScript. It is seeing an extensive rewrite and update since 2017. We present it in more details below.

For a full list of libraries for the web, please see the awesome-cl list #network-and-internet and Cliki. If you are looking for a featureful static site generator, see Coleslaw.

Installation

Let’s install the libraries we’ll use:

(ql:quickload '("hunchentoot" "caveman2" "spinneret"
 "djula" "easy-routes"))

To try Weblocks, please see its documentation. The Weblocks in Quicklisp is not yet, as of writing, the one we are interested in.

We’ll start by serving local files and we’ll run more than one local server in the running image.

Simple webserver

Serve local files

Hunchentoot

Create and start a webserver like this:

(defvar *acceptor* (make-instance 'hunchentoot:easy-acceptor
 :port 4242))
(hunchentoot:start *acceptor*)

We create an instance of easy-acceptor on port 4242 and we start it. We can now access http://127.0.0.1:4242/. You should get a welcome screen with a link to the documentation and logs to the console.

By default, Hunchentoot serves the files from the www/ directory in its source tree. Thus, if you go to the source of easy-acceptor (M-. in Slime), which is probably ~/quicklisp/dists/quicklisp/software/hunchentoot-v1.2.38/, you’ll find the www/ directory. It contains:

	an errors/ directory, with the error templates 404.html and 500.html,

	an img/ directory,

	an index.html file.

To serve another directory, we give the option :document-root to easy-acceptor. We can also set the slot with its accessor:

(setf (hunchentoot:acceptor-document-root *acceptor*)
 #p"path/to/www")

Let’s create our index.html first. Put this in a new www/index.html at the current directory (of the lisp repl):

<html>
 <head>
 <title>Hello!</title>
 </head>
 <body>
 <h1>Hello local server!</h1>
 <p>
 We just served our own files.
 </p>
 </body>
</html>

Let’s start a new acceptor on a new port:

(defvar *my-acceptor* (make-instance 'hunchentoot:easy-acceptor
 :port 4444
 :document-root #p"www/"))
(hunchentoot:start *my-acceptor*)

go to http://127.0.0.1:4444/ and see the difference.

Note that we just created another acceptor on a different port on the same lisp image. This is already pretty cool.

Access your server from the internet

Hunchentoot

With Hunchentoot we have nothing to do, we can see the server from the internet right away.

If you evaluate this on your VPS:

(hunchentoot:start (make-instance ’hunchentoot:easy-acceptor :port 4242))

You can see it right away on your server’s IP.

Stop it with (hunchentoot:stop *).

Routing

Simple routes

Hunchentoot

To bind an existing function to a route, we create a “prefix dispatch” that we push onto the *dispatch-table* list:

(defun hello ()
 (format nil "Hello, it works!"))

(push
 (hunchentoot:create-prefix-dispatcher "/hello.html" #'hello)
 hunchentoot:*dispatch-table*)

To create a route with a regexp, we use create-regex-dispatcher, where the url-as-regexp can be a string, an s-expression or a cl-ppcre scanner.

If you didn’t yet, create an acceptor and start the server:

(defvar *server* (make-instance 'hunchentoot:easy-acceptor :port 4242))
(hunchentoot:start *server*)

and access it on http://localhost:4242/hello.html.

We can see logs on the REPL:

127.0.0.1 - [2018-10-27 23:50:09] "get / http/1.1" 200 393 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101 Firefox/58.0"
127.0.0.1 - [2018-10-27 23:50:10] "get /img/made-with-lisp-logo.jpg http/1.1" 200 12583 "http://localhost:4242/" "Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101 Firefox/58.0"
127.0.0.1 - [2018-10-27 23:50:10] "get /favicon.ico http/1.1" 200 1406 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101 Firefox/58.0"
127.0.0.1 - [2018-10-27 23:50:19] "get /hello.html http/1.1" 200 20 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101 Firefox/58.0"

define-easy-handler allows to create a function and to bind it to an uri at once.

Its form follows

define-easy-handler (function-name :uri …) (lambda list parameters)

 Web Scraping

Web Scraping

The set of tools to do web scraping in Common Lisp is pretty complete and pleasant. In this short tutorial we’ll see how to make http requests, parse html, extract content and do asynchronous requests.

Our simple task will be to extract the list of links on the CL Cookbook’s index page and check if they are reachable.

We’ll use the following libraries:

	Dexador - an HTTP client (that aims at replacing the venerable Drakma),

	Plump - a markup parser, that works on malformed HTML,

	Lquery - a DOM manipulation library, to extract content from our Plump result,

	lparallel - a library for parallel programming (read more in the process section).

Before starting let’s install those libraries with Quicklisp:

(ql:quickload '("dexador" "plump" "lquery" "lparallel"))

HTTP Requests

Easy things first. Install Dexador. Then we use the get function:

(defvar *url* "https://lispcookbook.github.io/cl-cookbook/")
(defvar *request* (dex:get *url*))

This returns a list of values: the whole page content, the return code (200), the response headers, the uri and the stream.

"<!DOCTYPE html>
 <html lang=\"en\">
 <head>
 <title>Home – the Common Lisp Cookbook</title>
 […]
 "
200
#<HASH-TABLE :TEST EQUAL :COUNT 19 {1008BF3043}>
#<QURI.URI.HTTP:URI-HTTPS https://lispcookbook.github.io/cl-cookbook/>
#<CL+SSL::SSL-STREAM for #<FD-STREAM for "socket 192.168.0.23:34897, peer: 151.101.120.133:443" {100781C133}>>

Remember, in Slime we can inspect the objects with a right-click on them.

Parsing and extracting content with CSS selectors

We’ll use lquery to parse the html and extract the content.

	https://shinmera.github.io/lquery/

We first need to parse the html into an internal data structure. Use (lquery:$ (initialize <html>)):

(defvar *parsed-content* (lquery:$ (initialize *request*)))
;; => #<PLUMP-DOM:ROOT {1009EE5FE3}>

lquery uses Plump internally.

Now we’ll extract the links with CSS selectors.

Note: to find out what should be the CSS selector of the element I’m interested in, I right click on an element in the browser and I choose “Inspect element”. This opens up the inspector of my browser’s web dev tool and I can study the page structure.

So the links I want to extract are in a page with an id of value “content”, and they are in regular list elements (li).

Let’s try something:

(lquery:$ *parsed-content* "#content li")
;; => #(#<PLUMP-DOM:ELEMENT li {100B3263A3}> #<PLUMP-DOM:ELEMENT li {100B3263E3}>
;; #<PLUMP-DOM:ELEMENT li {100B326423}> #<PLUMP-DOM:ELEMENT li {100B326463}>
;; #<PLUMP-DOM:ELEMENT li {100B3264A3}> #<PLUMP-DOM:ELEMENT li {100B3264E3}>
;; #<PLUMP-DOM:ELEMENT li {100B326523}> #<PLUMP-DOM:ELEMENT li {100B326563}>
;; #<PLUMP-DOM:ELEMENT li {100B3265A3}> #<PLUMP-DOM:ELEMENT li {100B3265E3}>
;; #<PLUMP-DOM:ELEMENT li {100B326623}> #<PLUMP-DOM:ELEMENT li {100B326663}>
;; […]

Wow it works ! We get here a vector of plump elements.

I’d like to easily check what those elements are. To see the entire html, we can end our lquery line with (serialize):

(lquery:$ *parsed-content* "#content li" (serialize))
#("License"
 "Getting started"
 "Editor support"
 […]

And to see their textual content (the user-visible text inside the html), we can use (text) instead:

(lquery:$ *parsed-content* "#content" (text))
#("License" "Editor support" "Strings" "Dates and Times" "Hash Tables"
 "Pattern Matching / Regular Expressions" "Functions" "Loop" "Input/Output"
 "Files and Directories" "Packages" "Macros and Backquote"
 "CLOS (the Common Lisp Object System)" "Sockets" "Interfacing with your OS"
 "Foreign Function Interfaces" "Threads" "Defining Systems"
 […]
 "Pascal Costanza’s Highly Opinionated Guide to Lisp"
 "Loving Lisp - the Savy Programmer’s Secret Weapon by Mark Watson"
 "FranzInc, a company selling Common Lisp and Graph Database solutions.")

All right, so we see we are manipulating what we want. Now to get their href, a quick look at lquery’s doc and we’ll use (attr "some-name"):

(lquery:$ *parsed-content* "#content li a" (attr :href))
;; => #("license.html" "editor-support.html" "strings.html" "dates_and_times.html"
;; "hashes.html" "pattern_matching.html" "functions.html" "loop.html" "io.html"
;; "files.html" "packages.html" "macros.html"
;; "/cl-cookbook/clos-tutorial/index.html" "os.html" "ffi.html"
;; "process.html" "systems.html" "win32.html" "testing.html" "misc.html"
;; […]
;; "http://www.nicklevine.org/declarative/lectures/"
;; "http://www.p-cos.net/lisp/guide.html" "https://leanpub.com/lovinglisp/"
;; "https://franz.com/")

Note: using (serialize) after attr leads to an error.

Nice, we now have the list (well, a vector) of links of the page. We’ll now write an async program to check and validate they are reachable.

External resources:

	CSS selectors

Async requests

In this example we’ll take the list of url from above and we’ll check if they are reachable. We want to do this asynchronously, but to see the benefits we’ll first do it synchronously !

We need a bit of filtering first to exclude the email addresses (maybe that was doable in the CSS selector ?).

We put the vector of urls in a variable:

(defvar *urls* (lquery:$ *parsed-content* "#content li a" (attr :href)))

We remove the elements that start with “mailto:”: (a quick look at the strings page will help)

(remove-if (lambda (it)
 (string= it "mailto:" :start1 0
 :end1 (length "mailto:")))
 urls)
;; => #("license.html" "editor-support.html" "strings.html" "dates_and_times.html"
;; […]
;; "process.html" "systems.html" "win32.html" "testing.html" "misc.html"
;; "license.html" "http://lisp-lang.org/"
;; "https://github.com/CodyReichert/awesome-cl"
;; "http://www.lispworks.com/documentation/HyperSpec/Front/index.htm"
;; […]
;; "https://franz.com/")

Actually before writing the remove-if (which works on any sequence, including vectors) I tested with a (map 'vector …) to see that the results where indeed nil or t.

As a side note, there is a handy starts-with function in cl-strings, available in Quicklisp. So we could do:

(map 'vector (lambda (it)
 (cl-strings:starts-with it "mailto:"))
 urls)

it also has an option to ignore or respect the case.

While we’re at it, we’ll only consider links starting with “http”, in order not to write too much stuff irrelevant to web scraping:

(remove-if-not (lambda (it)
 (string= it "http" :start1 0 :end1 (length "http")))
 *)

All right, we put this result in another variable:

(defvar *filtered-urls* *)

and now to the real work. For every url, we want to request it and check that its return code is 200. We have to ignore certain errors. Indeed, a request can timeout, be redirected (we don’t want that) or return an error code.

To be in real conditions we’ll add a link that times out in our list:

(setf (aref *filtered-urls* 0) "http://lisp.org") ;; :/

We’ll take the simple approach to ignore errors and return nil in that case. If all goes well, we return the return code, that should be 200.

As we saw at the beginning, dex:get returns many values, including the return code. We’ll catch only this one with nth-value (instead of all of them with multiple-value-bind) and we’ll use ignore-errors, that returns nil in case of an error. We could also use handler-case and catch specific error types (see examples in dexador’s documentation) or (better yet ?) use handler-bind to catch any condition.

(ignore-errors has the caveat that when there’s an error, we can not return the element it comes from. We’ll get to our ends though.)

(map 'vector (lambda (it)
 (ignore-errors
 (nth-value 1 (dex:get it))))
 filtered-urls)

we get:

#(NIL 200 200 200 200 200 200 200 200 200 200 NIL 200 200 200 200 200 200 200
 200 200 200 200)

it works, but it took a very long time. How much time precisely ? with (time …):

Evaluation took:
 21.554 seconds of real time
 0.188000 seconds of total run time (0.172000 user, 0.016000 system)
 0.87% CPU
 55,912,081,589 processor cycles
 9,279,664 bytes consed

21 seconds ! Obviously this synchronous method isn’t efficient. We wait 10 seconds for links that time out. It’s time to write and measure an async version.

After installing lparallel and looking at its documentation, we see that the parallel map pmap seems to be what we want. And it’s only a one word edit. Let’s try:

(time (lparallel:pmap 'vector
 (lambda (it)
 (ignore-errors
 (let ((status (nth-value 1 (dex:get it)))) status)))
 filtered-urls)
;; Evaluation took:
;; 11.584 seconds of real time
;; 0.156000 seconds of total run time (0.136000 user, 0.020000 system)
;; 1.35% CPU
;; 30,050,475,879 processor cycles
;; 7,241,616 bytes consed
;;
;;#(NIL 200 200 200 200 200 200 200 200 200 200 NIL 200 200 200 200 200 200 200
;; 200 200 200 200)

Bingo. It still takes more than 10 seconds because we wait 10 seconds for one request that times out. But otherwise it proceeds all the http requests in parallel and so it is much faster.

Shall we get the urls that aren’t reachable, remove them from our list and measure the execution time in the sync and async cases ?

What we do is: instead of returning only the return code, we check it is valid and we return the url:

... (if (and status (= 200 status)) it) ...
(defvar *valid-urls* *)

we get a vector of urls with a couple of nils: indeed, I thought I would have only one unreachable url but I discovered another one. Hopefully I have pushed a fix before you try this tutorial.

But what are they ? We saw the status codes but not the urls :S We have a vector with all the urls and another with the valid ones. We’ll simply treat them as sets and compute their difference. This will show us the bad ones. We must transform our vectors to lists for that.

(set-difference (coerce *filtered-urls* 'list)
 (coerce *valid-urls* 'list))
;; => ("http://lisp-lang.org/" "http://www.psg.com/~dlamkins/sl/cover.html")

Gotcha !

BTW it takes 8.280 seconds of real time to me to check the list of valid urls synchronously, and 2.857 seconds async.

Have fun doing web scraping in CL !

More helpful libraries:

	we could use VCR, a store and replay utility to set up repeatable tests or to speed up a bit our experiments in the REPL.

	cl-async, carrier and others network, parallelism and concurrency libraries to see on the awesome-cl list, Cliki or Quickdocs.

 WebSockets

WebSockets

The Common Lisp ecosystem boasts a few approaches to building WebSocket servers. First, there is the excellent Hunchensocket that is written as an extension to Hunchentoot, the classic web server for Common Lisp. I have used both and I find them to be wonderful.

Today, however, you will be using the equally excellent websocket-driver to build a WebSocket server with Clack. The Common Lisp web development community has expressed a slight preference for the Clack ecosystem because Clack provides a uniform interface to a variety of backends, including Hunchentoot. That is, with Clack, you can pick and choose the backend you prefer.

In what follows, you will build a simple chat server and connect to it from a web browser. The tutorial is written so that you can enter the code into your REPL as you go, but in case you miss something, the full code listing can be found at the end.

As a first step, you should load the needed libraries via quicklisp:

(ql:quickload '(clack websocket-driver alexandria))

The websocket-driver Concept

In websocket-driver, a WebSocket connection is an instance of the ws class, which exposes an event-driven API. You register event handlers by passing your WebSocket instance as the second argument to a method called on. For example, calling (on :message my-websocket #'some-message-handler) would invoke some-message-handler whenever a new message arrives.

The websocket-driver API provides handlers for the following events:

	:open: When a connection is opened. Expects a handler with zero arguments.

	:message When a message arrives. Expects a handler with one argument, the message received.

	:close When a connection closes. Expects a handler with two keyword args, a “code” and a “reason” for the dropped connection.

	:error When some kind of protocol level error occurs. Expects a handler with one argument, the error message.

For the purposes of your chat server, you will want to handle three cases: when a new user arrives to the channel, when a user sends a message to the channel, and when a user leaves.

Defining Handlers for Chat Server Logic

In this section you will define the functions that your event handlers will eventually call. These are helper functions that manage the chat server logic. You will define the WebSocket server in the next section.

First, when a user connects to the server, you need to give that user a nickname so that other users know whose chats belong to whom. You will also need a data structure to map individual WebSocket connections to nicknames:

;; make a hash table to map connections to nicknames
(defvar *connections* (make-hash-table))

;; and assign a random nickname to a user upon connection
(defun handle-new-connection (con)
 (setf (gethash con *connections*)
 (format nil "user-~a" (random 100000))))

Next, when a user sends a chat to the room, the rest of the room should be notified. The message that the server receives is prepended with the nickname of the user who sent it.

(defun broadcast-to-room (connection message)
 (let ((message (format nil "~a: ~a"
 (gethash connection *connections*)
 message)))
 (loop :for con :being :the :hash-key :of *connections* :do
 (websocket-driver:send con message))))

Finally, when a user leaves the channel, by closing the browser tab or navigating away, the room should be notified of that change, and the user’s connection should be dropped from the *connections* table.

(defun handle-close-connection (connection)
 (let ((message (format nil " ~a has left."
 (gethash connection *connections*))))
 (remhash connection *connections*)
 (loop :for con :being :the :hash-key :of *connections* :do
 (websocket-driver:send con message))))

Defining A Server

Using Clack, a server is started by passing a function to clack:clackup. You will define a function called chat-server that you will start by calling (clack:clackup #'chat-server :port 12345).

A Clack server function accepts a single plist as its argument. That plist contains environment information about a request and is provided by the system. Your chat server will not make use of that environment, but if you want to learn more you can check out Clack’s documentation.

When a browser connects to your server, a websocket will be instantiated and handlers will be defined on it for each of the the events you want to support. A WebSocket “handshake” will then be sent back to the browser, indicating that the connection has been made. Here’s how it works:

(defun chat-server (env)
 (let ((ws (websocket-driver:make-server env)))

 (websocket-driver:on :open ws
 (lambda () (handle-new-connection ws)))

 (websocket-driver:on :message ws
 (lambda (msg)
 (broadcast-to-room ws msg)))

 (websocket-driver:on :close ws
 (lambda (&key code reason)
 (declare (ignore code reason))
 (handle-close-connection ws)))

 (lambda (responder)
 (declare (ignore responder))
 (websocket-driver:start-connection ws)))) ; send the handshake

You may now start your server, running on port 12345:

;; keep the handler around so that you can stop your server later on

(defvar *chat-handler* (clack:clackup #'chat-server :port 12345))

A Quick HTML Chat Client

So now you need a way to talk to your server. Using Clack, define a simple application that serves a web page to display and send chats. First the web page:

(defvar *html*
 "<!doctype html>

<html lang=\"en\">
<head>
 <meta charset=\"utf-8\">
 <title>LISP-CHAT</title>
</head>

<body>
 <ul id=\"chat-echo-area\">

 <div style=\"position:fixed; bottom:0;\">
 <input id=\"chat-input\" placeholder=\"say something\" >
 </div>
 <script>
 window.onload = function () {
 const inputField = document.getElementById(\"chat-input\");

 function receivedMessage(msg) {
 let li = document.createElement(\"li\");
 li.textContent = msg.data;
 document.getElementById(\"chat-echo-area\").appendChild(li);
 }

 const ws = new WebSocket(\"ws://localhost:12345/chat\");
 ws.addEventListener('message', receivedMessage);

 inputField.addEventListener(\"keyup\", (evt) => {
 if (evt.key === \"Enter\") {
 ws.send(evt.target.value);
 evt.target.value = \"\";
 }
 });
 };

 </script>
</body>
</html>
")

(defun client-server (env)
 (declare (ignore env))
 `(200 (:content-type "text/html")
 (,*html*)))

You might prefer to put the HTML into a file, as escaping quotes is kind of annoying. Keeping the page data in a defvar was simpler for the purposes of this tutorial.

You can see that the client-server function just serves the HTML content. Go ahead and start it, this time on port 8080:

(defvar *client-handler* (clack:clackup #'client-server :port 8080))

Check it out!

Now open up two browser tabs and point them to http://localhost:8080 and you should see your chat app!

[image: Chat app demo between two browser windows]

All The Code

(ql:quickload '(clack websocket-driver alexandria))

(defvar *connections* (make-hash-table))

(defun handle-new-connection (con)
 (setf (gethash con *connections*)
 (format nil "user-~a" (random 100000))))

(defun broadcast-to-room (connection message)
 (let ((message (format nil "~a: ~a"
 (gethash connection *connections*)
 message)))
 (loop :for con :being :the :hash-key :of *connections* :do
 (websocket-driver:send con message))))

(defun handle-close-connection (connection)
 (let ((message (format nil " ~a has left."
 (gethash connection *connections*))))
 (remhash connection *connections*)
 (loop :for con :being :the :hash-key :of *connections* :do
 (websocket-driver:send con message))))

(defun chat-server (env)
 (let ((ws (websocket-driver:make-server env)))
 (websocket-driver:on :open ws
 (lambda () (handle-new-connection ws)))

 (websocket-driver:on :message ws
 (lambda (msg)
 (broadcast-to-room ws msg)))

 (websocket-driver:on :close ws
 (lambda (&key code reason)
 (declare (ignore code reason))
 (handle-close-connection ws)))
 (lambda (responder)
 (declare (ignore responder))
 (websocket-driver:start-connection ws))))

(defvar *html*
 "<!doctype html>

<html lang=\"en\">
<head>
 <meta charset=\"utf-8\">
 <title>LISP-CHAT</title>
</head>

<body>
 <ul id=\"chat-echo-area\">

 <div style=\"position:fixed; bottom:0;\">
 <input id=\"chat-input\" placeholder=\"say something\" >
 </div>
 <script>
 window.onload = function () {
 const inputField = document.getElementById(\"chat-input\");

 function receivedMessage(msg) {
 let li = document.createElement(\"li\");
 li.textContent = msg.data;
 document.getElementById(\"chat-echo-area\").appendChild(li);
 }

 const ws = new WebSocket(\"ws://localhost:12345/\");
 ws.addEventListener('message', receivedMessage);

 inputField.addEventListener(\"keyup\", (evt) => {
 if (evt.key === \"Enter\") {
 ws.send(evt.target.value);
 evt.target.value = \"\";
 }
 });
 };

 </script>
</body>
</html>
")

(defun client-server (env)
 (declare (ignore env))
 `(200 (:content-type "text/html")
 (,*html*)))

(defvar *chat-handler* (clack:clackup #'chat-server :port 12345))
(defvar *client-handler* (clack:clackup #'client-server :port 8080))

 APPENDIX: Contributors

APPENDIX: Contributors

Thank you to all contributors, as well as to the people reviewing pull requests whose name won’t appear here.

The contributors on Github are:

	vindarel

	Paul Nathan

	nhabedi 1

	Fernando Borretti

	bill_clementson

	chuchana

	Ben Dudson

	YUE Daian

	Pierre Neidhardt

	Rommel MARTINEZ

	digikar99

	nicklevine

	Dmitry Petrov

	otjura

	skeptomai

	alx-a

	jgart

	thegoofist

	Francis St-Amour

	Johan Widén

	emres

	jdcal

	Boutade

	airfoyle

	contrapunctus

	mvilleneuve

	Alex Ponomarev

	Alexander Artemenko

	Johan Sjölén

	Mariano Montone

	albertoriva

	Blue

	Daniel Keogh

	David Pflug

	David Sun

	Jason Legler

	Jiho Sung

	Kilian M. Haemmerle

	Matteo Landi

	Nikolaos Chatzikonstantinou

	Nisar Ahmad

	Nisen

	Vityok

	ctoid

	ozten

	reflektoin

	Ahmad Edrisy

	Alberto Ferreira

	Amol Dosanjh

	Andrew

	Andrew Hill

	André Alexandre Gomes

	Ankit Chandawala

	August Feng

	B1nj0y

	Bibek Panthi

	Bo Yao

	Brandon Hale

	Burhanuddin Baharuddin

	Coin Okay

	Colin Woodbury

	Daniel Uber

	Eric Timmons

	Giorgos Makris

	HiPhish

	Inc0n

	John Zhang

	Justin

	Kevin Layer

	Kevin Secretan

	LdBeth

	Matthew Kennedy

	Momozor

	NCM

	Noor

	Paul Donnelly

	Pavel Kulyov

	Phi-Long Nguyen

	R Primus

	Ralf Doering

	Salad Tea

	Victor Anyakin

	alaskasquirrel

	blackeuler

	contrapunctus-1

	convert-repo

	dangerdyke

	grobe0ba

	jthing

	mavis

	mwgkgk

	paul-donnelly

	various-and-sundry

	Štěpán Němec

(this list is sorted by number of commits)

And the contributors on the original SourceForge version are:

	Marco Antoniotti

	Zach Beane

	Pierpaolo Bernardi

	Christopher Brown

	Frederic Brunel

	Jeff Caldwell

	Bill Clementson

	Martin Cracauer

	Gerald Doussot

	Paul Foley

	Jörg-Cyril Höhle

	Nick Levine

	Austin King

	Lieven Marchand

	Drew McDermott

	Kalman Reti

	Alberto Riva

	Rudi Schlatte

	Emre Sevinç

	Paul Tarvydas

	Kenny Tilton

	Reini Urban

	Matthieu Villeneuve

	Edi Weitz

Finally, the credit for finally giving birth to the project probably goes to Edi Weitz who posted this message to comp.lang.lisp.

	nhabedi is Edmund Weitz ;)↩

EPUB/media/file43.png
NODGUI #2 -+ x

column 0 column 1 column 2

EPUB/media/file10.png
Works File Edit Expression Vzliec Debug History Help
{ P New i open [,

Listener 1 -+ x

e O Pesse | Sy sen B sorce By et Gaciss |

Editor 1-binding.lisp
Works File Edit View Buffers Definions Expression History Help

£ New i open Oy save | 3 coo [0 copy B paste | [T]Refresh

Text | Output Buffers | Definitions | Changed Definitions | Find Definitions |

Creating system "COMM"
Loading /usr/local/1ib6é/LispWorksPersonal /1ib/7-1-0-0/load-on-demand/ccl/describe.64ufasl on demand...
Loading /usr/local/1ib64/LisphorksPersonal/1ib/7-1-0-0/load-on-demand/ccl/inspector-values. 64ufasl on deman

Loading /usr/local/1ib64/LispHorksPersonal/1ib/7-1-0-0/load-on-denand/ FFi/types/inspector. 64ufasl on demand

/home/vince/quicklisp/setup. lisp"
Error while reading: A comna appears outside the scope of a backquote (or there are too many commas).

CL-USER 2 > (qL:quickload “serapeun”)
To Load "serapeun

Load 1 ASDF systen:

serapeun

; Loading "serapeun”
On Lispworks, we cannot add method to DESCRIBE-OBJECT, so you cannot enjoy extended documentations for variou
s namespaces
switching to the BALLAND2006 optimizer

Ipackage serapeum/vector
[package serapeun/mop] .
[package serapeun/internal-definitions].
[package serapeun/dispatch-casel
[package serapeun/generalized-arrays].
[package serapeun/contrib/hooks]. .
("serapeun")

CL-USER 4 > (serapeun:prll N

(in-package :<erapeun)

Helpers.

(defun simple-binding-p (binding)
(or (atom binding)
(= (length binding) 2)))

(defun canonicalize-bindings (bindings)
(loop for binding in bindings
if (aton binding)
collect (list binding nil)
else collect binding))

i letl!

(defmacro letl (var expr &body body)
"Bind VAR, inmutably, to EXPR and evaluate BODY

This may be pronounced with equal propriety as \"let-one\" or
\"let-once\"."
“(let ((,var expr))
(with-read-only-vars (,var)
J@ody)))

(defmacro lret-aux (let (srest bindings) &body body)
(if (null bindings)
(et 0
,@body)
(multiple-value-bind (body decls)
(parse-body body)
(let ((last-binding (ensure-car (lastcar bindings))))
*(,let ,bindings
,@decls
(with-read-only-vars (,last-binding)
(progl , last-binding
,@body))))))

(defmacro lret ((srest bindings) &body body)
"Return the initial value of the last binding in BINDINGS. The idea
is to create something, initialize it, and then return it.[]

(lret ((x 1)
(y (make-array 1)))
(setf (aref y 8) x))

LATIN-1 — bindinglisp _{SERAPEUM} (Lisp) 0-47 [317] /home vince/quicklisp/dists/quicklisp/software/serapeum-20201220-git/binding lisp

Finished completing

EPUB/media/file5.png
ne test - /usr/share/sbcl-source/src/code/evaLlisp
File Edit View Navigate Code Refactor Build Run Tools VCS Window Help
1 usr) share) sbcl-source | src) code !) evallisp &~ A | Add Configuration...
[= Project ~ O & —
(lambda (condition)
> Midea (error 'interpreted-program-error
> Bavenv :condition (encapsulated-condition condition)
2 asdel +form exp))))
. testcl (typecase exp
2 wotd (symbol
iheg) (ecase (info :variable :kind exp)

Bxpy ((:special :global :constant :unknown)
lilh External Libraries.

> P scratches and Consoles

suonEayof

[(symbor-vatve exp)
;5 FIXHE: This special case here is a synptom of non-ANSI
;i weirdness in SBCL's ALIEN implementation, which could
;i cause problems for e.g. code walkers. It'd probably be
;5 good to ANSIfy it by making alien variable accessors
;; into ordinary forms, e.g. (SB-UNIX:ENV) and (SETF
;i SB-UNIX:ENV), instead of magical symbols, e.g. plain
;5 SB-UNIX:ENV. Then if the old magical-symbol syntax is to
;5 be retained for compatibility, it can be implemented
;i with DEFINE-SYMBOL-MACRO, keeping the code walkers
55 happy.
(:alien
(sb-alien-internals:alien-value exp))))

(uist

(let ((name (first exp))

(n-args (1- (length exp))))

Common Lisp: SBCLProcess _ SBCL Debuggers
oDebugger 1
Error Message: | The variable BOB:B0B is unbound. Condition: | [Condition of type UNBOUND-VARIABLE]

Actions——————— Frames R
sbint:simple-eval-in-lexenv
sb-int:simple-eval-in-lexenv
sb-exteval-tif 0 P
(common-lisp:labels sb-fasl:eval-form :in sb-int:0ad-as-source

(common-lisp:lambda (sb-kernel:form common-lisp:&key :currer | SB-KERNEL:LEXENV #<NULL-LEXENV>
sb-c:%do-forms-from-info BOB:BOB.
sb-intload-as-source

(common-lispilabels sb-fasl:load-stream-1 :in common-lisp:load

sb-fast:call-with-load-bindings

common-lispiload

swankiload-file

sbrintsimple-eval-in-lexeny.

Locals Frame REPL

& Structure

Retry EVAL of current toplevel form. |

fignore error and continue loading
\"/home/pvan/test/xcl\

P Version Control =000 @ Problems B Terminal Gy Profiler), CommonLisp @ Services,

X Bookmarks

UTF8 4spaces @ @

[}

EPUB/media/file52.gif
Fle Edit View History Bookmarks Tools Help

« & O @& (@ hupocalhostsososasks!

~) (@~ owouckeo Q) JL [k~

Dltasks x| %] ks
Tasks
() Make my first app in Weblocks

() Deploy it somewhere

[JHave a profit

Er—T

EPUB/media/file21.gif

EPUB/media/file45.png
e0e Preferences

([Fonisffabsl] Themes Keys General Extensions
[Monaco

[Monaco GY
[Monotype Corsiva
[Monotype Sorts AaBbCcDdEe
[Mshtakan FiGgHhIJK
IMuna 1234567890
Myanmar MN #+=000
[Myanmar Sangam MN
IMyriad Pro

[Myriad Web Pro

INadeem
INanum Brush Script

Font Size: 11 Bold

Indent: 4 | % Python Standard: 4 Spaces!

oK Apply

Cancel

EPUB/media/file18.gif

EPUB/media/file41.png
@®© 5jobsforve.o.2

o e974bdfe fy

19 No related merge requests found.

Pipeline Needs Jobs 5 Tests 0

[CIIGINO]
Q Q) Q

©
Q

Q

EPUB/media/file37.png
@<F00 {100F8DAES3}>

Class: #<STANDARD-CLASS COMMON-LISP-USER::F00>

Group slots by inheritance [1
sort slots alphabetically [X]

ALL Slots:
L1 A
18

Q)
B

[set value] [make unbound]

EPUB/media/file1.jpg
it

EPUB/media/file23.gif

EPUB/media/file12.png
= Jupyter wecometoP

Fo

t View Inset Cal

=2+ xaB v >

ZJupyter

‘Welcome to the
Tris Notebook Server war

WARNING
Don'trely on this se

Your server is hosted that

Run some Python (
To run the code below:

1. Cickonthe cell osg
2. Press sareresTER

A tull tutorial for using the

In {]: tmatplotlib inline

import pandas as pd
1mport nuspy as np
import matplotlib

ZJupyter Lorenz Differential Equations mcss a
Flo Bt Vew et Col Komd Heb Pyinona ©
B+ k@B A > mC e £ ol Toobar: [Nore :
Exploring the Lorenz System
In tis Notobook we explor the Lorenz ysiem of diferontal acuatins:
oy -2
proy-x
ety

Tris s one of the classic systoms in non-linear diferontial quations. It exhibits a ango of
‘complex behaviors as the parameters (3, ,) aro vried, including what ar known as chaotic
Solutions. The systom was orginaly developed as a simplifid mathematical model for
amospheric convection n 1963

Tn (7)5 interact(Lorens, Nefixed(10), angle=(0.,360.),
0=(0.0,50.0) ,B=(0.,5), p=(0.0,50.0))

angle 308.2
macsme [
o o
v 2
. zs

EPUB/media/file3.png
[Extension Development Host] - helo.isp

[efun divide xy
‘assert (not (zerop)
»
"The second argument can not be zero. Please change it."
xyf]

(divide 10)

Debug TH-1 x
Condition
The second argument can not be zero. Please change it.
[Condition of type SIMPLE-ERROR]

Restarts

0: [CONTINUE] Retry assertion with new value fory.
[RETRY] Retry SLIME interactive evaluation request.

2: [*ABORT] Return to SLIME's top level.

3: [ABORT] abort thread (#)

Backtrace

0: (SB-KERNEL:ASSERT-ERROR (NOT (ZEROP Y)) 1 (ZEROP Y) T (Y) "The second argument can not be zero.
Please change it")

@ 1 (DIVIDE10)

2: (SB-INT:SIMPLE-EVAL-IN-LEXENV (DIVIDE 10) #)
3: (EVAL (DIVIDE 10)
[@ 4: ((LAMBDA NIL :IN SWANK:INTERACTIVE-EVAL))

b e o

EPUB/media/file35.jpg
e
et 1 01

T
e or 0

etz iy

EPUB/media/file24.gif

EPUB/media/file31.png
Function Call Browser 1
Works File Edit View Descriprion Function History Help

1 New 03 Oven Dy sove | 3¢ i 10 copy) e | g titen Bsource P et
| v x

Function: [STRING-TRIM

Show functions from packages: | All
Text| Called By Calls Into|
© CL.CHANGE CASENO-CASE

© QLHTTP:PARSE-URLSTRING —$)® STRING-TRIM
‘SERAPEUMTRIM-WHITESPACE

Name: STRING-TRIM
Function: #<Function STRING-TRIM 41300CAC74>

Lambda List: (CHAR-BAG STRING)

Source Files:

Documentation:
Ewen a set of characters (a list o string) and a string, returns a

-opy of the string with the characters in the set removed from both
nds.

Funcion Descripion <<

EPUB/media/file48.png
QTOOLSINTRO - + X

L J=]

EPUB/media/file9.png
4b -REPL* [lisp] hello.lisp .

HELLO (defun hello (name)
* (hello "Sublime") (format t "Hello ~a~& !" name))
Hello sublime

iy

jumn &

EPUB/media/file14.png
emacs@blueberry

File Edit Options Buffers Tools Emacs-lisp Help

[9 B B X Hsawe Sudo & B Q

(defsubst hash-table-empty-p (hash-table)
"Check whether HASH-TABLE is empty (has O elements)."
(zerop (hash-table-count hash-table)))

(defsubst hash-table-keys (hash-table)
"Return a list of keys in HASH-TABLE."
(let ((keys '()))
(maphash (lanbda (k _v) (push k keys)) hash-table
keys))

(defsubst hash-table-values (hash-table)
"Return a list of values in HASH-TABLE."
(let ((values '())

- subr-x.el.gz 36% L148 (Emacs-Lisp)

Next: Distrib, Up: (Oir
(emacs) Top

The Emacs Editor

Emacs is the extensible, customizable, self-documenting real-time
display editor. This manual describes how to edit with Emacs and some
of the ways to customize it; it corresponds to GNU Emacs version
26.0.50

If you are reading this in Emacs, type ‘h’ to read a basic
introduction to the Info documentation system.

Us%%- *info* (emacs) Top Top L9 (Info Narrow

EPUB/media/file46.png
SBCL 1.5.1 on X86-64, IUP 3.26

lupButton lupLabel— lupToggle lupText: lupList lupTree
ButtonText || -2DelText | [@ToggleText [single Line Text T rTgares

\tem 2. ©Other
Multiline Text N
@ . Second Ling. Item 3 Striangle
Text Third Line [~equilateral
& — eisocees
<& ©scalenus

Oroggle Text 3 ~ [Eparallelogram
Toggle Text ltem 1 .
<@> 99 Item 2 square
\tem 3 ©diamond
(D)
2D
lupval lupProgressBar lupTabs
TbTiteo | fprabTiter >
lupCalendar lupDatePick lupColorBrowser lupColorBar
May 2019 1/5/2019
2 3 4
5 6 7 8 9 10 1
12 13 14 15 16 17 18 o
1920 21 22 23 24 25
26 27 28 29 30 31
lupGauge lupLink

20.0% 1UP Toolkit

EPUB/media/file26.gif
o000
EXPLORER

 OPENEDITORS
 HELLO

> OUTLINE

[Extension Development Host] - hello.

Show All Commands
Go to File

Find in Files

Start Debugging

Toggle Terminal

o%P

F5

EPUB/media/file16.png
emacs@boogie

File Edit Options Buffers Tools YASnippet Help
forward-sexp is an interactive function defined in lisp.el.az

Function Signature
(forward-sexp &optional ARG)

Function Documentation
Move forward across one balanced expression (sexp)

With ARG, do it that many times. Negative arg -N means move
backward across N balanced expressions. This command assumes
point is not in a string or comment. Calls
forward-sexp-function to do the work, if that is non-nil. If
unable to move over a sexp, signal scan-error with three
arguments: a message, the start of the obstacle (usually a
parenthesis or list marker of some kind), and end of the
obstacle

View in manual

Key Bindings

global-map <C-M-right>
global-map C-M-T
global-map ESC <C-right>
esc-map <C-right>
esc-map C-T

References

References in lisp.el.oz

(defun backward-sexp ...) 1 ref

(defun mark-sexp ...) 2 ref

U:%*- *helpful command: forward-sexp* Top (1,0) (Helpful)

EPUB/media/file50.png
Bodge UIWindow

Hello Bodge UL

Option 1

Option 2

Expand by width

Dynamic

EPUB/media/file7.png

EPUB/media/file33.png
arithmetic error DIVISION-BY-ZERO signalled
Operation was (/ 3 0).
[Condition of type DIVISION-BY-ZERO]

Restarts:
[RETURN-ZER0] RETURN-ZERO

1: [DIVIDE-BY-ONE] DIVIDE-BY-ONE

[RETRY] Retry SLIME REPL evaluation request.

[*ABORT] Return to SLIME's top level.

4: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING {1003AG6FFA3}>)

Backtrace:
N 0: (SB-KERNEL::INTEGER-/-INTEGER 3 0)

1 (/3 0)

(DIVISTON-RESTARTER)

(SB-INT:SIMPLE-EVAL-IN-LEXENV (DIVISION-RESTARTER) #<NULL-LEXENV>)
(EVAL (DIVISION-RESTARTER))

--more--

EPUB/media/file0.png
; Welcome to Portacle, the Portable Common Lisp Environment. 5 SLIME 2.18
For information on Portacle and how to use it, please read the website at cL-user= |
https://github.con/Shinmera/portacle
or see the *portacle-help* buffer. You can switch to it by pressing this
Ctrlsx b *portacle-help* Ente
or by clicking on the *scratch* field below until it changes to read
portacle-help.

You can use this buffer for notes and tinkering with small pieces of code

* 22 U: *slime-repl sbcl* REPL Paredit company My-Keys adoc 2: 9 AU

Connected. Lemonodor-fame is but a hack away

EPUB/media/file4.png
EXPLORER
\ OPENEDIT... |1UNSAVED
blisp /home/bo

chlsp.ros roswell

le
P e serverlisp
class.lisp ~/.rosw...

> @® README.md
logger.lisp

20,

A0 Vv cLisp
]

protocol-utillisp

a protocol lisp

@ ® README.md
serverlisp
slime.lisp
swank lisp

> OUTLINE

> TIMELINE

main.lisp ~/.rosw...

1 Terminal Help

cl-lsp.ros main.lisp serverlisp ® %1 B <O ® O
serverlisp >
506 (vector))
507
508 (define-method "textDocument/rename" (params |RenameParams
509 (with-slots (|textDocument| |position| |newName|) params
510 (with-document-position (point (slot-value |textDocumel
511 (alexandria:whe ((name (symbol-name-at-point point))
512 hen-let
513 hen-let*
514 (£ alexandria:whichever
ith-gensyns
:with-unique-names
CL-USER> [] ith-output-to-file

ith-input-from-file
nds-with-subseq
starts-with-subseq

You,a few secondsago Ln 51

EPUB/media/file29.gif
=
@ @ @) D @ ey

cure e Cvemhdemoutis s

33 See the LispWorks IDE User Guide. ~

(in-package “CL-USER")

(defun my-useful-function (x)
(print (& % x)))

Backtiace | Listener

= Breakpoint: Evaluating PRINT form
& N M-USEFULFUNCTION

ox 3
A mvrumcTion

X Fom

[Ready

EPUB/media/file44.png
Listbox Example: media player. Theme: arc -+
[FFF*~7zique/Cave In - Heavy Pendulum (2022) [320]/01 - New Reality.mp3" 0 vic

Jzique/Cave In - Heavy Pendulum (2022) [320]/02 - Blood Spiller.mp3"
Jzique/Cave In - Heavy Pendulum (2022) [320]/03 - Floating Skulls.mp3|
Jzique/Cave In - Heavy Pendulum (2022) [320]/04 - Heavy Pendulum.m|
Jzique/Cave In - Heavy Pendulum (2022) [320]/05 - Pendulambient.mp3|
Jzique/Cave In - Heavy Pendulum (2022) [320]/06 - Careless Offering.m|
Jzique/Cave In - Heavy Pendulum (2022) [320/07 - Blinded by a Blaze.r|
Jzique/Cave In - Heavy Pendulum (2022) [320]/08 - Amaranthine.mp3"
Jzique/Cave In - Heavy Pendulum (2022) [320]/09 - Searchers of Hell.m|
Jzique/Cave In - Heavy Pendulum (2022) [320]/10 - Nightmare Eyes.mp|
Jzique/Cave In - Heavy Pendulum (2022) [320)/11 - Days of Nothing.mp|
Jzique/Cave In - Heavy Pendulum (2022) [320)/12 - Waiting for Love.mg|
JziquefCave in - Heavy Pendulum (2023) [320]/13 - Reckoning mp3-
Jzique/Cave I - Heavy Pendulum (2022) [3201/14 - Wavering Angel.mp|
[#F*~/zique/Cave In - Heavy Pendulum (2022) [320]/cover jpg"

mpv

Listen
&

Song: "13 - Reckoning.mp3"

EPUB/media/file53.gif
LISP-CHAT - Mozilla Firefox LISP-CHAT - Mozilla Firefox

LISP-CHAT LISP-CHAT

& @ (O localhost:8080 & @ (O localhost:8080

say something say something

EPUB/media/file28.png
- | ek @ conine @yabor § pevrame [+

% NextFrame

{Z Backtrace
Bindings

2] source.

EPUB/media/file6.png
™ -eclipse-workspace - testing-eclipse/foo.lisp - Eclipse IDE -+ x
File Edit Navigate Search Project Lisp Run Window Help

Hellh @~ B Qv @ v divilvto oy~ oW e 5350 [Quickaccess |1 & & [BH)
D foolisp 3¢ | = B | /& outine 3 =8
144 (defun emptyp (s) a
145 "Is s nil or the empty string 7* ¢ BYM ReR
146 (empty?) -

147

148 (defun blank? (s) © words
149 "Is s nil or only contains whitespaces 7" ——
150 (or (null s) (string-equal "* (trim 5))))

151 o lines

152= (defun blankp (s)

153 "Is s nil or only contains whitespaces 7" © unlines
154 (blank? s))

ey o repeat
156= (defun starts-with? (start s &key (ignore-case *ignore-case*)) U o replaceall
157 "Return t if s starts with the substring 'start’, nil otherwise."

158 (when (>= (length s) (length start)) © empy?
150 (let ((fn (if ignore-case #'string-equal #'string=))) .

160 (funcall fn s start :startl © :endl (length start))))) emptyp
161 © blank?
162 ;; An alia

163 (setf (fdefinition 'starts-with-p) #'starts-with?) © blankp
164

1655 (defun ends-with? (end s &key (ignore-case *ignore-case*)) O Xy
166 "Return t if s ends with the substring 'end’, nil otherwise." O setf

167 (when (>= (length s) (length end))

168 (let ((fn (if ignore-case #'string-equal #'string=))) © endswith?

O setf

(2 Problems [Listener SBCL[1.1.10] 53 ®X # &~ v =08

'SBCL[1.1.10] (disconnected)
#<FUNCTION ENDS-WITH?>
CONTAINS?

#<FUNCTION CONTAINS?>
PREFIX-1

PREFIX
COMMON-PREFIX
SUFFIX-1

SUFFIX

PREFIX?

#<FUNCTION PREFIX?>
SUFFIX?

#<FUNCTION SUFFIX?>
ADD-PREFIX
ADD-SUFFIX

CLUSER>

EPUB/media/file36.png
CL-USER> (log:config :debug)
CL-USER> (progn

(log:info "I just ate a -5, feeling tired" pi)

(when (1og: debug)

(dotimes (sheep 3)
(log: debug sheep “zzz")))

(log:warn "doh fell asleep for" (random 10) “winutes™))
<INFO> [15:41:50] cl-user () - I just ate a 3.142, feeling tired
<DEBUG> [15:41:50] cl-user () - SHEEP: 0 zzz
<DEBUG> [15:41:50] cl-user () - SHEEP: 1 zzz
<DEBUG> [15:41:50] c) §: 2 222
<WARN> [15:41:50] c1 e11 asleep for (RANDOM 10): 4 minutes
CL-USER> |

EPUB/media/file11.png
) lisptest.lisp - /homejaidenn/projects/lisptest - [lisptest] - Geany [P
Fle Edit Search View Document Project Buld Tools Help

H-8-8@8 X[R0~ &M Q0 -

symbols [Documents| fisptest.isp x|

No tags found 1 (in-package :cl-user)
2
3 -bar-
a T “(progn ,@b))
5
6 (defun Some-wArming.(x
7
8 E(defun baz ()
9 (foo-bar-quux (x y z)
10 (with-open-file (f "foo.in" :if-does-not-exist :error)
1)
12

{Kil |
Status | /home/aidenn/share/glisp/lispcompileload *home/aidenn/projectsfisptest/lisptest isp* (in directory: /home/aidenn/pr

Compiler /home/aidenn/projects/lisptest/lisptestlisp 3 The variable ARGS is defined but never used.

The variable ARGS is defined but never used

Jhome/aidenn/projectsfisptest/lisptestlisp 6 The variable X is defined but never used.

Messages

scribble
———— Compilation finished successfully
Terminal

il I 5

fine:6/12 col:26 se:0 N5 TAB mode: LF _encoding: UTF-8 fletype: Lisp _scope: unknown

EPUB/media/file2.png
000 | repl.lisp-repl — /Users/steve/Desktop/GroupMeeting

v GroupMeet shape.lisp square.lisp main.lisp

= atom-sl (defun hi-there () T
2 main.lis (letx ((sq (make-instance 'square :width 2.0)))
D shapel] 3 (format t "Area: ~a" (area sq))))
= square.l (defmethod area square)
S test.lisp (defmethod area shape)
repl.lisp-repl

CL-USER> (dotimes (i 3) (format t "Interact with Lisp!~%")) ==
Interact with Lisp!
Interact with Lisp!

Interact with Lisp!
NIL

7 CL-USER> Lload "more—shapes.lisp"h

/tmp/repl.lisp-repl 7:34 (load pathspec &key (verbose *load-verbose’ LF UTF-8 ()\) strict Lisp REPL ”

EPUB/media/file22.gif

EPUB/media/file42.png
Feet to Meters - theme yaru -+

feet

is equivalent to meters

Calculate

EPUB/media/file38.png
Inspector 1 -+ x|
Works File Edit View Object Slots History Help

{51 New i 0pen Ds save | 3 cur [0 copy B e | Sgy tisten #source § inspect ~

| X Matches2

FOO: #<FOO 40D00DA4173>

EPUB/media/orly-cover.png
Lispserics

the Common
Lisp Cookbook

Diving in

ORLY’ Collective

EPUB/media/file19.gif

EPUB/media/file30.png
B R
Works Fle €6t View Buffers Defitors Expression Hstory Help

0 e B open Dysne | Y (0o @) pose | [E]neesn [jcine pprtoreces | oo v e+ | @ oot [)wacoomand 1/

T utp Bsfers | Deiions | Changed Defiiion Find De