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Abstract—The last decade has seen a rapid progress of deep 

learning techniques in various fields since the proposal of an 

efficient algorithm for training deep belief networks. Amongst 

these, speech recognition has seen significant breakthroughs with 

the application and integration of deep learning architectures. 

Deep Belief Networks have successfully outperformed GMM 

based acoustic models within the GMM-HMM hybrid that had 

dominated the field of speech recognition until now. Recent 

research with Convolutional Neural Networks and Recurrent 

Neural Networks for acoustic modeling has shown promising 

results. Both of these architectures are now being used to solve 

the problem end-to-end. With this article, a survey is provided on 

the application of three deep learning architectures in the field of 

speech recognition, namely, Deep Belief Networks, Convolutional 

Neural Networks and Recurrent Neural Networks. 
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INTRODUCTION 

Speech is the most natural and effective method of 
communication between human beings. Speech Recognition 
aims to transcribe speech to text. It is a standard classification 
problem where speech signals have to be mapped to or 
identified as words.  However, it is not possible to work with 
speech documents if they are recorded as audio signals. 
Therefore, speech recognition has become a crucial area of 
research [1], [2].  

There are many obstacles which make real-world speech 
recognition a challenging problem. Accents, speaking styles, 
different possible pronunciations, various languages, noise – 
are some of these obstacles. There’s a substantial loss in 
accuracy when we move from a controlled experimental 
setups to real life situations. Despite this, automatic speech 
recognition has abundant usage in dictation, human-machine 
interfaces and control of machines among others.  

Hidden Markov Models (HMMs) with an acoustic model 
based on Gaussian mixtures [3], also known as GMM-HMMs, 
have dominated the field of speech recognition for many years 
[4], [5], [6], [7], [8]. These speech recognition systems employ 
Hidden Markov Models to handle temporal variability and 
sequential structure of speech data and Gaussian mixture 
models (GMMs) to provide localized classifications. Over the 

years, GMMs have been shown to be statistically inefficient 
for modeling nonlinear relationships, such as the relationship 
between the acoustic features and human speech inputs. 
HMMs are also sensitive to mismatch between the training 
and testing data, particularly the mismatch introduced by 
environmental noise. Much effort has to be spent improving 
the robustness of the system to such distortions and ensuring 
that the system performs well often requires a large amount of 
training data. Moreover, traditional systems use heavily 
engineered processing stages, including noise removal, 
specialized input features and speech enhancement [9]. 
Traditional systems do not work on raw speech but on certain 
spectral features. The raw waveforms have to be processed to 
compute spectral features. Frequently used speech spectral 
features are Mel-frequency cepstral coefficients (MFCCs) and 
perceptual linear predictive coefficients (PLPs) [10], [11].  

This is why, in the last decade, there has been an extensive 
application of neural networks and deep learning to perform 
speech recognition leading to significant novel results. The 
trend began two decades ago, when sophisticated results were 
achieved using hybrid ANN-HMM models. These models 
appropriated the use of Artificial Neural Networks (ANNs) 
with only one layer of hidden units having non-linear 
activation functions to predict probabilities over HMM states 
from short windows of acoustic coefficients [12]. ANNs are 
powerful models that can represent complex non-linear 
functions but at that time, neither the computation power nor 
the training algorithms that were available, were advanced 
enough for training ANNs with many hidden layers. So, 
hybrid ANN-HMM models could not replace the very 
successful combination of HMMs with acoustic models based 
on Gaussian mixtures.  

In the last decade, this has been achieved. Through the 
application of deep learning, researchers have shown that 
Deep Neural Networks (DNNs) achieve better performance 
than GMMs for acoustic modeling in speech recognition 
systems, sometimes by a large margin [13]. The major 
breakthrough in deep learning was triggered by Hinton et al. 
[14] with the proposal of a novel deep learning architecture 
called a deep belief network (DBN) and the use of a 
generative, layer-by-layer pre-training method for initializing 
the weights and getting them to correct scales before the 
training procedure began. In addition to promising learning 
procedures, the main factors that have contributed to the 
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recent success of deep learning is the rapid advancement of 
computing power, allowing researchers to make the neural 
networks deeper and more powerful, and availability of more 
training data. Acoustic models based on DNNs have now 
started replacing GMMs in traditional speech recognition 
systems [13], [15], [16]. 

Deep learning has emerged as a powerful promising 
technique in fields ranging from computer vision to natural 
language processing and even recommendation systems [16]. 
Deep neural networks (DNNs) hold the capacity to represent 
functions with higher complexity. Moreover, they can also 
work with raw data and learn rich representations as opposed 
to specialized input features. The purpose of this paper is to 
provide a survey as well as a brief tutorial on the application 
of deep learning in the field of speech recognition. The rest of 
the paper is organized as follows. In the first section, we 
provide a brief tutorial on Deep Belief Networks (DBNs) and 
discuss their application and integration in existing GMM-
HMM speech recognition systems. In the second section, we 
move onto Convolutional Neural Networks (CNNs). In the 
third section, we discuss Recurrent Neural Networks (RNNs). 
In the last section, we bring attention to some very recent 
approaches that are experimenting with combinations of these 
deep architectures and trying to eliminate processing stages, 
solving the problem end-to-end. 

I. DEEP BELIEF NETWORK 

A. Restricted Boltzmann Machine 

A restricted Boltzmann machine (RBM) is a particular 
type of neural network that has one layer of hidden units and 
one layer of visible units. As the name implies, RBMs are a 
special case of Boltzmann machines, having the restriction 
that their neurons must form a bipartite graph. Bipartite graph 
means that all visible units are connected to all hidden units, 
but there are no connections between units of the same layer 
i.e. there are no visible-visible or hidden-hidden connections. 
This restriction allows for efficient training algorithms 
compared to those that are available for the general class of 
Boltzmann machines. One such learning algorithm is the 
gradient-based contrastive divergence algorithm [17]. This 
algorithm and its variations are most often used to train an 
RBM. 

RBMs can learn and model the structure in the input data. 
They can also be used for dimensionality reduction. In 
classification tasks, RBMs are used for feature learning. 
However, the features extracted by the RBMs via 
unsupervised learning may not be useful in the supervised 
learning tasks. Because they only have a single hidden layer, 
they are not as powerful. 

B. Deep Belief Network 

To explore the dependencies between neuron activations in 
the hidden and the visible layers in an RBM, Hinton et al. [14] 
stacked multiple RBMs together forming a multilayer, 
generative model called a DBN and marked the birth of deep 
learning. Every two adjacent layers of a DBN form an RBM. 
DBNs are more effective with a stronger learning capacity 
compared to an RBM, especially when applied to problems 

with unlabeled data. They also handle the problems of 
overfitting and underfitting [18], [16]. 

The training process of a DBN proposed by Hinton et al. 
[14] two stages: the pre-training stage and the fine-tuning 
stage. The RBMs within the DBN are pre-trained sequentially 
using a greedy layer-by-layer unsupervised learning algorithm. 
The visible layer of the lowest RBM is initialized with the 
input. The values in the visible layer are then transferred to the 
adjacent hidden layer where the activations of the hidden units 
are calculated. The representation obtained by this RBM is 
used as the training data for the next RBM and this training 
process continues until all the layers are traversed. With this 
method, one layer of mapped features is learnt at a time using 
the states of the features mapped by the previous layer as the 
training data. The pre-training stage serves as feature learning, 
after which, the weights that have  been learned from the 
distribution of the input data serve as a much better starting 
point for the fine-tuning stage as opposed to random 
initialization as they have been set to the correct scales [19]. 
The fine-tuning stage is where the discriminative learning 
takes place. A final softmax layer, having one unit to represent 
each of the HMM states, is added to the DBN and a supervised 
algorithm with a cost function is used to train the whole DNN 
to predict the correct HMM state and the weights are adjusted 
further. One such algorithm is backpropagation that optimizes 
cross entropy between the target state and the state predicted 
from the DBN. 

It is well noted that initializing the weights sensibly using 
the pre-training method strongly improves the performance of 
the DBN, allowing the fine-tuning stage to progress rapidly 
while also significantly reducing overfitting [20]. Compared 
with randomly initialized weights, these weights are closer to 
the global optima. In literature, these models are referred to by 
varied terms: DBN-HMM hybrid, DNN-HMM hybrid or 
fully-connected DNNs. 

C. Acoustic Modeling using DBNs 

Mohamed et al. [21] carried out the first successful 
experiment and demonstrated that a DNN-HMM hybrid model 
using an acoustic model based on a DBN in place of Gaussian 
mixtures outperformed state-of-the-art results on TIMIT 
dataset. In the next couple of years, various researchers 
employed the use of RBMs and DBNs to investigate the 
effects of these architectures and demonstrated the same [22], 
[23], [24], [25], [26].  

In these experiments, DBNs are trained to classify 
individual frames of acoustic input.  Therefore, DBNs are 
trained to optimize the cross entropy between the predicted 
HMM state and the correct HMM state for each frame. The 
correct prediction for each frame is decided upon by the HMM 
which uses a forced alignment between the speech data and 
transcription [12]. However, speech recognition is a sequential 
problem and this forced alignment is error-prone. Towards this 
goal, experiments were done by Mohamed et al. [27] using log 
conditional likelihood as the criteria to train a DBN at the 
sequence level. This technique also considered predictions 
scores from a bigram language model. With careful tuning of 
hyper parameters, it outperformed the frame-level training 
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using cross-entropy by almost 5% on the TIMIT phone 
recognition task. We discuss sequential approaches in more 
detail in the fourth section. 

The initial successes of DBNs lead to research and 
experimentation with large vocabularies such as the Bing 
Voice Search task, English Broadcast News and Switchboard 
Dataset.  Large vocabulary speech recognition tasks are 
tougher with a higher number of classes available for 
classification and less controlled conditions. Remarkable 
results on large vocabulary speech recognition tasks by using 
acoustic models based on DBNs were achieved subsequently 
[28], [29], [30], [31], [32], [33],[34]. The move from small to 
large vocabulary tasks was done by using context-dependent 
triphone HMMs having many thousands of tied states. A 
comprehensive review of these techniques was carried out by 
Hinton et al. [13]. 

Even though DBNs gave impressive results for large 
vocabulary speech recognition tasks, context-dependent 
HMMs were computationally demanding to train and suffered 
from the impending problem of scalability as vocabularies 
grew larger. To this end, Deng and Yu [35] proposed a deep 
architecture, referred to as deep convex networks (DCNs). An 
alternative method of pre-training was found to be effective 
for this architecture. It was called discriminative pre-training 
[13]. In this method, pre-training is accomplished directly by 
convex optimization. It begins with a neural network having 
only a single hidden layer and a softmax layer. This network is 
trained discriminatively. Then, a second hidden layer is added 
between the first hidden layer and the softmax output layer 
and the whole network is again discriminatively trained. This 
is done until the desired number of hidden layers is reached, 
after which fine-tuning is done. 

The next phase of advancement in automatic speech 
recognition began with the investigation of convolutional 
neural networks (CNNs) and the introduction of convolutional 
RBMs where experiments were carried out by making the 
RBMs convolutional in time and frequency. 

II. CONVOLUTIONAL NEURAL NETWORK 
A. Introduction 

A convolutional neural network (CNN) is a multi-layer 
neural network that consists of two different types of layers 
that alternate: the convolution layer and the pooling layer. The 
architecture of CNNs has been inspired from the structure of 
the animal visual cortex. 

The convolution layer is used to extract features. It 
consists of a number of feature maps made up of neurons. 
Each neuron in the convolution layer processes data only for 
its receptive field which are features of a limited range and not 
the whole input. This receptive field is also called a filter and 
it strides over the input. Neurons in one feature map have the 
same weights connecting them to their inputs but receive 
different inputs. This concept is called weight sharing or 
parameter sharing. Weight sharing significantly reduces the 
number of different parameters to be learned while also 
granting the CNN with equivariance, so that whenever the 
input changes, the corresponding output also changes. The 

essence is that each neuron in a feature map extracts the same 
feature from the input, agnostic to the input region being 
considered. This also reduces the amount of memory needed 
while training a CNN. Hence, weight sharing greatly improves 
thelearning efficiency of a CNN [36]. The pooling layer 
comes after the convolution layer. It has the same number of 
feature maps as its preceding convolution layer. The 
difference is that the dimensions of the feature maps are 
smaller and hence, have a smaller number of neurons per 
feature map. This purpose of the pooling layer is to compute a 
lower resolution representation of the features that have been 
learned by the convolution layer through sub-sampling. One 
very common pooling function is the max pooling function, 
where each neuron simply computes the maximum value of 
the feature for its receptive field. 

The convolution layer-pooling layer pairs are stacked up to 
obtain higher level features. On top of these layers, there is a 
standard fully connected layer, representing HMM states, that 
combines the effects of the features and is used for 
discriminative training of the network. 

B. Acoustic Modeling using CNNss 

After the success of DBN-HMM hybrid models for speech 
recognition, work was carried out using CNN based acoustic 
models. CNN for speech data with convolution along the time 
axis was first proposed by LeCun et al. [37], but no validation 
was carried out at the time. It was theorized that convolution 
along time will help obtain features robust to small temporal 
shifts. 

This was confirmed by Lee et al. [38] and, Hau and Chen 
[39]. In these works, convolution was applied over windows 
of acoustic frames that overlap in time. This resulted in 
learning acoustic features that were relatively more stable with 
respect to variations arising from speakers and genders.  

Abdel-Hamid et al. [40] achieved significant 
improvements by applying convolution and max-pooling 
along frequency axis rather than the time axis. Convolution 
along frequency axis was found to generate features robust to 
small frequency shifts, which often happens because of 
different speakers and even different moods. More researchers 
explored convolution over both time and frequency axes 
simultaneously [41], [42]. 

Results by Abdel-Hamid et al. [41] indicated that applying 
convolution along the time axis, while outperforming the 
DBN, gives significantly worse results than applying 
convolution along the frequency axis. Hence, further work by 
Abdel-Hamid et al. [43] went back to applying convolution 
only over frequency axis stating that HMMs do relatively well 
at handling temporal variability. This work also discusses the 
effects of using different speech spectral features as input and 
variations in CNN hyper parameters. 

Above experiments demonstrated CNNs to outperform the 
fully connected DBN within the hybrid DNN-HMM model. 
This was because of the following two reasons. First, DBNs 
interpret the input in any order but speech spectral features are 
strongly correlated in frequency and time. Weight sharing 
allowed CNNs to capture these local correlations. And second, 
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weight sharing and pooling helps CNNs capture equivariance 
and imparts robustness and stability. For DBNs to capture this 
sort of invariance over small frequency and/or temporal shifts, 
a very high number of hyper parameters are required.  

Experiments by Sainath et al. [44], [45], [46] showed that 
CNNs can achieve better performance than DBNs for large 
vocabulary tasks. These experiments involved careful 
parameter tuning, limited weight sharing and sequential 
training as opposed to frame-based. An empirical study on 
CNN based acoustic models for low resource languages 
performed by Chan and Lane [42] concluded that CNNs 
improve performance over DBNs in the low resource 
condition by providing robustness and better generalization. 

C. Limited Weight Sharing and Pre-Training 

A couple of changes from conventional CNNs that were 
widely explored and demonstrated improved performance 
were the concepts of limited weight sharing and RBM like 
pre-training [41], [43].  

Instead of full weight sharing between neurons belonging 
to the same feature map, weight sharing is limited. Only those 
convolution layer units that are attached to the same pooling 
layer units share weights. This significantly increases the 
number of parameters to be learned but allows these 
convolution neurons to compute comparable features. 

A convolutional RBM was proposed by [47]. The weights 
of a trained convolutional RBM serve as good initial values 
for training the convolution layer. The values learned by the 
convolution layer are then sub-sampled by the pooling layer. 
The outputs of the pooling layer are used as inputs to pre-train 
the next layer as discussed in case of DBNs. Lee et al. [38] 
demonstrated the convolutional RBM network to learn speech 
spectral features without supervision with convolution along 
time, finding it promising to work with complex, high-
dimensional data. 

Abdel-Hamid et al. [41], [43] investigated pre-training a 
convolutional RBM using limited weight sharing. It was found 
that this sort of pre-training improved performance only on 
large vocabulary speech recognition task. Improvements were 
obtained on the Bing Voice Search task which is a large 
vocabulary task but no improvements were obtained on the 
TIMIT phone recognition task. 

III. RECURRENT NEURAL NETWORK 

A. Introduction 

We have discussed that acoustic modeling using deep 
feedforward networks such as DBNs and CNNs have led to 
dramatic improvements in the field of speech recognition in 
recent years. Unlike feedforward neural networks, recurrent 
neural networks (RNNs) are allowed to have connections that 
feed activations from units in a particular layer as input to 
units in the same or preceding layers. To make a decision for 
the current input, RNNs consider previous decisions, making 
them inherently deep in time. Hence, RNNs have indefinite 
temporal context compared to fixed context windows as are 
used in feedforward networks and it is only natural that they 
have been used for processing sequential data such as speech. 

Training RNNs using backpropagation technique suffers 
from the vanishing gradient and exploding gradient problems 
[49]. Moreover, these problems limit the range for which 
RNNs can retain context. To address these problems, the Long 
Short-Term Memory (LSTM) architecture was proposed by 
Hochreiter and Schmidhuber [49]. LSTMs contain purpose 
built memory cells in the recurrent hidden layer to store 
information and are better at finding and exploiting long range 
context. Each memory cell contains an input gate that controls 
the flow of activations into the memory cell, an output gate 
that controls the flow of activations into rest of the network 
and a forget gate to allow resetting the memory cell. 

B. Bidirectional RNN and LSTM 

RNNs only retain and use previous context. To impart 
RNNs the ability to exploit future context, Bidirectional RNNs 
(BRNNs) were proposed Schuster and Paliwal [50]. BRNNs 
process data in both directions using two separate hidden 
layers in place of one. These two hidden layers feed forward 
to the same output layer. Bidirectional RNNs with LSTM cells 
in the recurrent hidden layers gives bidirectional LSTM 
network, which can access long-range context in both 
directions. 

C. Acoustic Modeling using RNNs 

Since RNNs can learn how much context they have to 
refer to, researchers have naturally experimented with HMM-
RNN hybrid models in the past [51], [52]. But it has been 
difficult to bring the performance of RNN based acoustic 
models up to par with acoustic models based on DBNs and 
CNNs. 

In recent years, much effort has been made in this 
direction. A very important work that has laid the groundwork 
for using RNNs to model sequential data, such as speech, was 
carried out by Graves et al. in 2006 [53]. This work introduced 
the Connectionist Temporal Classification (CTC) loss 
function, which allowed neural networks to learn alignments 
between a sequence of characters and unsegmented speech 
spectral features thereby obviating the need to use force 
alignments learned by Hidden Markov Models. CTC was 
shown to outperform HMM-RNN hybrids on TIMIT dataset in 
this work. Continued work by Graves et al. [54] demonstrated 
use of deep bidirectional LSTM for end-to-end speech 
recognition using CTC network combined with a language 
model and achieved state-of-the-art results on TIMIT dataset 
but found that it was difficult to integrate this with existing 
systems for larger vocabularies. Hence, Graves et al. [55] went 
back to exploring RNNs in combinations with HMMs in a 
hybrid setup. They used a deep bidirectional LSTM 
(DBLSTM) as an acoustic model within the standard DNN-
HMM hybrid and obtained state-of-the-art results on the 
TIMIT dataset and a very small improvement over best 
published results on the Wall Street Journal speech corpus, 
concluding that the DBLSTM-HMM hybrid will need further 
investigation. 

In recent years, RNN-HMM hybrid systems with deep 
bidirectional LSTM based acoustic models have improved 
significantly with the use of context-dependent phonetic units, 
context-dependent states for the LSTM output space and 
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distributed training methods to carry out large scale modeling 
[56], [57], [58]. In the next section we discuss end-to-end 
speech recognition which has been another crucial point of 
focus in recent years. 

IV. END-TO-END SPEECH RECOGNITION 

With DNN-HMM hybrids, DNNs are trained to predict 
HMM states for each frame. The frame-level targets are 
decided upon by the HMM by a forced alignment between the 
speech data and the transcription. Hence, the frame-wise cost 
function that is used to train the DNN does not capture the 
primary objective function which is obtaining the most 
accurate transcription possible. The repercussion is that 
sometimes an improvement in frame-level accuracy means no 
improvement or even a dip in the transcription accuracy. This 
is the inconsistency that end-to-end speech recognition seeks 
to avoid. Moreover, a large number of tuning parameters are 
needed with the frame-wise approach.  

With end-to-end speech recognition the HMM is replaced 
by a neural network that learns alignments between a sequence 
of characters and unsegmented speech. One such model we 
have already mentioned is CTC proposed by Graves et al. 
[54]. End-to-end speech recognition aims to eliminate as much 
of the processing pipeline as possible and replace it with a 
single unified neural network.  

RNNs have become a default method for end-to-end 
speech recognition. Foundational work by Graves et al. [56] 
combined a CTC network with a separate RNN that accounts 
for previous phoneme predictions while making the current 
prediction, thereby combining an acoustic model that is the 
CTC network and a language model that is the RNN 
transducer. Following this, much work has been done using 
RNN with CTC loss function to achieve end-to-end speech 
recognition. Hannun et al. [59] employed a 5-layer RNN with 
a bidirectional recurrent layer trained with CTC loss along 
with a language model to rectify phonetically plausible 
transcriptions. This technique outperformed the best results on 
the Switchboard dataset. They have also discussed many 
optimizations as their training system used multiple GPUs. 
Work by Amodei et al. [60] achieved a significant 
improvement over the 5-layer RNN proposed by Hannun et al. 
[59] by using a similar network but having 13 hidden layers 
and by applying convolution in some of the layers. 

Other successful approaches for end-to-end speech 
recognition have been using attention based RNNs that are 
trained sequence-to-sequence, that is, to generate one 
sequence that is the transcribed text, given another sequence, 
that is speech input [61], [62], [63]. Hence, these are also 
called sequence-to-sequence models. Zhang et al. [64] 
experimented with very deep CNNs and convolutional LSTMs 
to capture complex non-linearities and showed an 
improvement over shallow sequence-to-sequence models. 
Further work by Zhang et al. (2017b) [65] went on to 
experiment with combining CNNs with CTC loss function 
instead of using the default RNN with CTC loss function 
combination stating that RNNs suffer from various difficulties 
in training. They achieved promising results on the small 

vocabulary task of the TIMIT dataset claiming their work to 
be a more efficient training technique. 

V. CONCLUSION 

The area of deep learning has seen rapid progress and lead 
to significant improvements in various fields. With this article, 
we have provided a brief tutorial and overview of deep 
learning techniques and architectures in the field of speech 
recognition. We have discussed acoustic models based on 
Deep Belief Networks, Convolutional Neural Networks and 
Recurrent Neural Networks. In recent years, acoustic models 
based on DBNs and CNNs have successfully replaced 
Gaussian mixtures and have been demonstrated to work quite 
well for large vocabulary tasks. Moreover, there has been the 
idea of eliminating processing stages, using one unified neural 
network to achieve end-to-end speech recognition. To this 
end, RNNs are now being experimented with but require much 
computation power for training. The usage of RNNs for 
acoustic modeling within a hybrid DNN-HMM system as 
compared to the usage of RNNs for end-to-end speech 
recognition using CTC loss function and a language model has 
had mixed reactions. Deep learning holds the power to work 
with raw inputs and learn rich representations while 
eliminating laborious processing stages. With rapid 
advancement of computational technologies, deep learning 
will only grow in the future. 
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