L)

Check for
updates

New Crossover Operators in Linear Genetic Programming
for Multiclass Object Classification

Carlton Downey
School of Engineering and
Computer Science
Victoria University of
Wellington
Wellington, New Zealand

ABSTRACT

Genetic programming (GP) has been successfully applied
to solving multiclass classification problems, but the perfor-
mance of GP classifiers still lags behind that of alternative
techniques. This paper investigates an alternative form of
GP, Linear GP (LGP), which demonstrates great promise
as a classifier as the division of classes is inherent in this
technique. By combining biological inspiration with detailed
knowledge of program structure two new crossover opera-
tors that significantly improve performance are developed.
The first is a new crossover operator that mimics biological
crossover between alleles, which helps reduce the disruptive
effect on building blocks of information. The second is an
extension of the first where a heuristic is used to predict
offspring fitness guiding search to promising solutions.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms
Algorithms, Design

Keywords

Genetic programming, crossover operator, classification

1. INTRODUCTION

Identifying and classifying objects is a common and im-
portant task which humans perform daily. Distinguishing
between a one and a zero, identifying a healthy person from
one with swine flu, and detecting potential terrorists from
fingerprint images are just three examples of important ob-
ject classification tasks. While some classification tasks are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’10, July 7-11, 2010, Portland, Oregon, USA.

Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

Mengjie Zhang
School of Engineering and
Computer Science
Victoria University of
Wellington
Wellington, New Zealand
Carlton.Downey@ecs.vuw.ac.nz Mengjie.Zhang@ecs.vuw.ac.nz

885

Will N Browne
School of Engineering and
Computer Science
Victoria University of
Wellington
Wellington, New Zealand
Will.Browne@ecs.vuw.ac.nz

trivial for humans, many others are challenging or tedious,
encouraging researchers to develop automated classifiers. In
many cases, performing these tasks by human/hand is too
expensive or too slow. Given the amount of image data
containing important objects that need to be detected and
classified, computer based solutions to many of these tasks
would be of immense social and economic value.

Derived from genetic algorithms [6], Genetic Program-
ming (GP) [1, 9] is a promising and nature inspired approach
for constructing reliable classification programs quickly and
automatically, given only a set of object image instances on
which an evolved program can be evaluated. GP uses ideas
analogous to biological evolution to search the space of pos-
sible programs to evolve a good program for a particular
task. Since the 1990s, GP has been successful for solving
many object classification problems [10, 16, 26, 27, 29].

The object classification problems that require distinguish-
ing between objects of more than two types are known as
multiclass classification problems. Many important classifi-
cation tasks such as digit recognition are examples of mul-
ticlass classification problems. Unfortunately the conven-
tional form of GP, Tree-based GP (TGP), often performs
poorly as a classifier for multiclass problems [28].

In order to improve GP performance on multiclass prob-
lems a different form of GP, Linear GP (LGP), where pro-
grams are represented as a linear sequence of instructions, is
considered [2]. It has been demonstrated that LGP has sig-
nificantly superior performance to TGP on many multiclass
classification problems [4, 15]. However, despite many such
promising initial results, it appears that relatively scant re-
search has been done in the area of LGP for multiclass clas-
sification. The motivation is to improve the performance of
LGP as we believe it has potential as a multiclass classifier,
which has not yet been fully realised.

The success of GP as a technique has been attributed in
large part to the crossover operator; crossover theoretically
allows two programs with disparate strengths to produce
an offspring that possesses the combined strengths of both
parents. Because of this many improved crossover opera-
tors have been developed, however such developments have
focused almost exclusively on TGP [5, 11, 17, 27]. LGP algo-
rithms differ from TGP algorithms in many important char-
acteristics, such as linear versus tree structure of the learnt
program and separable blocks of code versus complete trees.
Thus, it is unlikely a crossover operator developed specifi-
cally for TGP will perform well when using LGP. Hence it is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1830483.1830644&domain=pdf&date_stamp=2010-07-07

considered to improve LGP by developing a new crossover
operator that makes the most of the special characteristics
of LGP.

Crossover in LGP currently still has two major problems,
which are open to attack. It has been shown that crossover
often disrupts good building blocks of information instead
of preserving them. It is clearly desirable that we restrict
the crossover operator in such a way that it minimises build-
ing block disruption. It is noted that some disruption may
be unavoidable in crossover and may even be necessary to
escape from local optima.

There has been a great deal of research into better crossover
operators, where the likelihood of good offspring being pro-
duced is increased. An example of this is brood recombina-
tion crossover [22, 23|, where many offspring are produced,
with the best kept and the rest discarded. Unfortunately, a
large proportion of these improved operators require extra
program fitness evaluations, which greatly slows down the
evolutionary process. In addition, the number of possible
offspring resulting from any given crossover is exceedingly
large, while the number of possible good offspring is very
small. This results in any crossover method that requires a
generate-and-test methodology, such as that used in brood
crossover, to be an inefficient solution. What is required is
a crossover method that can predict which offspring will be
good without actually having to try them.

1.1 Objectives

In this paper, we aim to use the special characteristics of
LGP to develop two new crossover operators, which at least
partially overcomes the above problems. Specifically, this
paper has the following research objectives:

e To determine an abstract structure for LGP programs,
and use this structure to develop a new crossover op-
erator that alleviates the problem of building block
disruption.

e To improve this new crossover operator by devising a
heuristic that predicts which parts of the parent pro-
grams should be exchanged in order to maximize the
probability of high fitness offspring.

e To compare the performance of LGP with the new
crossover operators to that of LGP using the conven-
tional crossover operator.

1.2 Organisation

The rest of the paper is organised as follows. Section 2
describes some necessary background related to GP for ob-
ject classification, LGP program structure and the standard
LGP crossover operator. Sections 3 first analyses the build-
ing blocks in LGP then describes the first new crossover op-
erator, class graph crossover, developed in this paper. Sec-
tion 4 describes the second new LGP crossover operator,
selective crossover. The experiment design and configura-
tions are provided in section 5 and the results are presented
in section 6 with discussions. Section 7 concludes the paper
and gives future work directions.

2. BACKGROUND

2.1 GP Related Work to Object Classification

Since the early 1990s, a variety of GP systems with dif-
ferent representations have been developed. These include

886

tree-based GP [9], linear GP [2], graph-based GP [2], linear-
graph GP [8], grammar-based GP [24], and even machine
code instruction based GP [14]. Among them, tree-based
or tree-like GP is the most commonly used representation
and has been successfully applied to a range of real world
classification problems [10, 12, 16, 21, 26, 27, 29], demon-
strating the potential of GP as a general method to solve
classification problems.

In the first few years after GP was introduced, the classi-
fication tasks that the tree-based GP was used to solve were
mainly binary classification with two classes only. Since the
late 1990s, GP has also been applied to multi-class classi-
fication with three or more classes. In the last ten years,
there have been several major dimensions of developments,
to be summarised below, in tree-based GP for classification.

One major aspect is the investigation of ways of trans-
lating the single program output value into a small set of
class labels. For binary classification problems, there is a
natural translation of negative values to one class and pos-
itive values to the other class. For multi-class classification
problems, finding the appropriate region boundaries on the
numeric value to distinctly separate the different classes is
more difficult. Zhang and Ciesielski developed an algorithm
[25] that uses a fixed translation into the class labels, which
has been used in a number object classification tasks [20,
18, 12] and achieved reasonable classification results on rel-
atively easy classification problems. While it is perhaps the
first approach to multi-class classification using a single ge-
netic program, this method usually needs hand crafting of
good class boundaries before evolution, which is very hard
to do without domain expertise. To avoid this problem, dy-
namic range selection [13], and centred and slotted dynamic
class boundary determination methods [28] were developed.
A probability based class translation rule [29] greatly im-
proves GP capability for classification tasks with a relatively
small number of classes.

In terms of program representations and structures for
classification, there have been several developments. These
include the use of multiple programs each for a particular
class [10] and each for a binary classification [13] with mul-
tiple independent runs, and recent developments that al-
low multiple programs within a population to be evolved
together within a single run [29]. In this case, the fitness
function is generally more complex than the first approach
since the single fitness function has to deal with all the bi-
nary classification subproblems. As this approach still needs
multiple programs, the fitness function needs to explicitly
combine them together to solve the entire multi-class classi-
fication problem.

In the approach to using a single genetic program for
the entire multi-class problem, the single program will need
to have a directly corresponding relationship with all the
classes, and the fitness function needs to include the heuris-
tics that can help evolve programs that map the fitness cases
in different classes into the correct class labels. A major ad-
vantage of this approach is that only a single GP program is
needed and accordingly the efficiency for object classification
in the unseen test set is often better than the multi-program
approach. Another advantage is that the conversion from
multi-class to binary class is removed. However, a major
disadvantage of this approach is that a single output from
the root node in the basic TGP must be translated into a
set of class labels. This disadvantage can be avoided in LGP

where multiple registers are evolved concurrently. This pa-
per will be focused on LGP.

2.2 LGP Program Structure and Crossover

The LGP used in this paper follows the ideas of the reg-
ister machine LGP [1]. In the LGP system, an individual
program is represented by a sequence of register machine
instructions, typically expressed in human-readable form as
C-style code. Each instruction typically has three compo-
nents: source registers corresponding to features of a partic-
ular task or some random constant values generated by the
system, a destination register, corresponding to the output
of the genetic program, and the operators connecting and
bridging the source and destination registers. For presen-
tation convenience, the destination registers are represented
by a floating point (double) vector r, and the source regis-
ters are presented by f; denoting the ith feature for the task.
The operators can be simple standard arithmetic operators
or complex specific functions predefined for a particular task.

An LGP program often has only one register interpreted in
determining its output [1]. This kind of form can be easily
used for regression and binary classification problems just
as in TGP. In this work, we use LGP for multi-class object
recognition problems, where an LGP program is required to
produce multiple outputs. Instead of using only one register
as the output, we use multiple registers in a program, each
corresponding to a particular class. In other words every
LGP program is a complete classifier.

For a program with an object image as input, the class rep-
resented by the destination register with the largest value is
considered the class of the input object image. For an un-
seen object in a three-class problem, if the output destina-
tion register values are (0.20, 14.92, -3.23), then this object
will be classified as class2 as the middle value is the largest
among the three values.

An example LGP program is shown in figure 1. Note that
some instructions in an LGP program may also be introns,
i.e. code whose execution has no impact on the output of
the program.

r[l] = 31 + f1;
3] = 2/ 1l
2] = [l * 1)
r[l] = 1l - f1;
r[1] = «r[1] - 1.5
2] = 2] + 1l

Figure 1: An example LGP program.

In the LGP canonical/standard crossover operator, a part
consisting of one or more instructions is selected from each
of the two parent programs and the two parts are swapped
to produce two new offspring.

3. CLASS GRAPH CROSSOVER
3.1 Building Blocks in LGP

A crossover is considered destructive if one or more build-
ing blocks are disrupted by the exchange of genetic material.
A building block is disrupted if part of it is selected in the
code to be exchanged, and part of it is not. Hence non-
destructive crossover exchanges only entire building blocks,
which is not the case with conventional crossover.

887

The conventional crossover operator selects the instruc-
tion(s) to exchange at random. This means that whether
or not an entire building block is selected for exchange is
entirely random. If x instructions are selected at random
for crossover out of a program with n instructions, then the
probability that a building block of size b is disrupted can
be calculated.

A building block is not disrupted if either it is entirely
exchanged or no part of it is exchanged.

e Number of possible code segments that could be ex-
changed = C .1

e Number of possible exchanges containing entire build-
ing block = C’;L:f.

e Number of possible exchanges disjoint from building
block = C77°.

e Prob of no disruption = (C7~? 4+ Cz~%)/C.
e Prob of disruption = 1 — (C7=} + C2~b)/Cx.

As the numerator (C7~° + C?_,) increases, the probabil-
ity of disruption decreases. Assuming z < n/2, which is
standard practice, the numerator increases as b (the size of
the building block) decreases. In other words, as building
block size increases, the likelihood the building block is dis-
rupted by crossover also increases. Certainly, once building
blocks exceed a very minimal size, the likelihood they will
be disrupted by crossover becomes overwhelming. This is
an undesirable situation, as this effectively limits the size
of building blocks in the population. Successfully solving a
problem usually requires constructing larger building blocks
from small ones, but this process is often retarded by conven-
tional crossover. It is desired to create a crossover operator
that has a less disruptive influence on larger building blocks.

3.2 Biological Crossover

In biology, crossover is limited to exchange of paired DNA
[7]. Each physical feature (e.g. eye colour) has many differ-
ent DNA sequences, called alleles, which code for variations
of that feature. When crossover occurs, the alleles of one
parent that code for certain physical features are exchanged
with the alleles of another parent that code for the same
physical features. In other words, biological crossover always
exchanges DNA codes for different variations of the same
features. For instance the DNA for blue eye colour might be
exchanged with the DNA for brown eye colour, but the DNA
for blue eye colour would not be exchanged with the DNA
for brown hair colour. If we consider the biological building
blocks as DNA sequences within a single allele, then biolog-
ical crossover never destroys building blocks.? Alleles are
either exchanged in entirety or left alone, hence allele build-
ing blocks are also either entirely exchanged, or entirely left
alone.

In the remainder of this paper, we will refer to two se-
quences of code, DNA or program, as position equivalent if
they code for different versions of the same feature, in other
words if they are alleles for the same feature. For example,
two alleles for eye colour are position equivalent.

n!
z!(n—z)!
2However, some building blocks address epistasis, where the
value of one allele affects the importance of another allele
[3], so these may still be disrupted.

1C;L — (n) —

x

Figure 2: DAG with the 3 class graphs marked.

3.3 Class Graphs

Biological crossover is in stark contrast to conventional
GP crossover, where the program code to be exchanged is
chosen at random. By ignoring the abstract structure of
the program, no distinction for building block boundaries is
made. Thus conventional crossover is highly likely to be a
destructive influence on building blocks. Taking inspiration
from biological crossover, in order to preserve this structure
when selecting the code to exchange, an abstract structure
within our programs similar to the alleles of biology is de-
fined. Note that a common use of the term allele in evo-
lutionary computation indicates a feature corresponding to
a single input variable, whereas here a single feature may
correspond to several input variables.

In LGP for multiclass classification there is a natural struc-
ture already imposed on programs. An LGP solution to an
n-class classification problem can be viewed as a Directed
Acyclic Graph (DAG) composing of n overlapping graphs.
We define the nth class graph in any program as the sub-
graph whose root is the nth register. In other words, the
graph associated with the class n. The DAG format of the
example LGP program (figure 1) is given in Figure 2, where
the class graphs are indicated. Therefore sequences of in-
structions are position equivalent if and only if they are class
graphs for the same feature/class. This leads us naturally to
develop a new crossover operator based on the exchange of
position equivalent class graphs. Henceforth this new form
of crossover will be known as Class Graph Crossover (CGC).

3.4 Determining Instructions for Class Graphs

To perform class graph crossover, we need to determine
the instructions for each class graph in a program. The in-
structions belonging to every class graph in a problem can be
successfully determined by a single backwards pass through
the program.

e The classes whose class graphs will be exchanged are
selected at random and these class indices are added
to a set S.

e Each instruction ¢ is selected in turn by iterating through
the instructions in the program in a reverse order (from
the last instruction to the first instruction).

888

— Select instruction 4. If the destination register
r; is in S, then 7; is part of a class graph being
exchanged. We add 7 to the list of instructions
to exchange and remove r; from S. Since the
value of r; depends on its arguments, we then
add all arguments of r; that are registers (i.e. not
constants or features) to S.

Comparing the transition of LGP program (figure 1) to
DAG (figure 2) with the crossover point selection (figure 3)
facilitates the understanding of this procedure used in the
class graph identification.

3.5 Further Discussion

3.5.1 Building Blocks

In CGC, a random number of classes are selected to un-
dergo crossover. If a building block is present in the pro-
gram, it must affect the final value of a class register. This
means it is entirely contained within the class graph of that
class. Hence, if that class graph is exchanged, the entire
building block is exchanged as well. Since CGC swaps entire
class graphs, it exchanges nothing but entire building blocks.
This is a distinct improvement on conventional crossover
where partial building blocks may be exchanged.

While CGC ensures that only entire building blocks are
exchanged, we have said nothing of those building blocks not
exchanged. Because LGP programs consist of overlapping
class graphs, it is possible that part of a building block may
belong to more than one class graph. This means building
blocks not exchanged may be disrupted by CGC. However,
CGC replaces every class graph with a position equivalent
class graph, and position equivalent class graphs code for
the same class. Two code sequences that aim to perform
the same function are statistically more likely to be similar
than two randomly selected instruction sequences. Conse-
quently, position equivalent class graphs are more likely to
have similar code than two random sequences of instruc-
tions. It is possible that disrupted building blocks may be
repaired by the code that replaces the amputated part of
the building block. Because position equivalent class graphs
are more likely to have similar code, the likelihood of repair
is higher under CGC. So even though building blocks that
are not exchanged may be disrupted by CGC, they are more
likely to be repaired by the substituted code.

3.5.2 Crossover Complexity

The difference between CGC and conventional crossover
becomes most apparent if the number of possible crossovers
which can occur under each technique is considered.

Under a conventional crossover scheme, instructions are
exchanged at random. Assume for simplicity’s sake that
the number of instructions exchanged is the same for both
parents, i.e. x instructions from program 1 are exchanged
with z instructions from program 2. If z instructions from
programs of size n are exchanged, then:

e Number of possible sets of instructions from a single
program = C7'.
e Number of possible crossovers = C}} x C7..
Under a CGC scheme, we exchange only class graphs during

crossover. Hence if we exchange y class graphs for a problem
with ¢ classes:

e Number of possible crossovers = Cj.

Figure 3: Example of Class Graph Crossover. The rl class graph is exchanged. Crossover point occurs at the edge of class

graph.

Note that the number of possible crossovers depends only
on the number of classes and the number of classes to be
exchanged, i.e. it is independent of the program size. To
investigate the effects of this property an example based on
the very modest maximum program size used during these
experiments is given below:

e Max program size = 32, number of classes = 10.

e Let crossover be 50% of program size, so 16 instruc-
tions or 5 class graphs.

e Conventional Crossover = C32 x C52 = 3.73 x 107
e Class Graph Crossover = C1% = 2.52 x 10?

CGC has reduced the number of possible crossovers by 15
orders of magnitude, even for this very modest program size.
This indicates how severely the CGC operator restricts code
exchange compared with conventional crossover.

The purpose of crossover is to search for the code to ex-
change that results in the best children, with the conven-
tional crossover operator doing this by blind trial and er-
ror. The problem complexity is proportional to the num-
ber of possible children, and hence the number of possible
crossovers. Thus if the problem complexity can be decreased
by many orders of magnitude and achieve at least similar re-
sults, there will be efficiency improvements in the crossover
operator. Further improvements can be obtained if we can
move away from trial and error, and instead investigate so-
lutions in an intelligent order. This idea, in the form of a
new crossover operator, which will be referred to as Selective
Crossover (SC) is the focus of the next section.

4. SELECTIVE CROSSOVER

When improving the crossover operator, the goal is to in-
crease the fitness of the offspring produced. As discussed
in the introduction, one approach would be to generate and
test some number of possible offspring, and discard all but
the best, however this is a poor solution as it has huge com-
putational overhead. It is required to determine a heuristic
that can be used to predict which instructions should be
exchanged in order to produce the optimal offspring.

4.1 Motivation for Selective Crossover

By definition, each class graph is associated with a class
¢, and hence each class graph is responsible for all of the
misclassified training instances of class c. Good class graphs
are responsible for a low number of misclassifications; bad

class graphs are responsible for a large number of misclas-
sifications. A good program has good fitness, and hence a
small number of misclassifications. Hence all of the class
graphs in a good program are good class graphs, i.e. each
class graph is responsible for only a small number of misclas-
sifications. In summary, the aim is a program that consists
entirely of good class graphs. Replacing a poor class graph
with a good class graph is hypothesised as more likely to im-
prove program fitness than replacing a random class graph
with another random class graph. This is the motivation for
this novel selective crossover operator.

4.2 One Child Crossover

Normal crossover takes two parents and produces two chil-
dren by an exchange of code, however this has a major issue
if heuristics are utilised in optimising the offspring produced.
In order to optimize one child, it will receive all of the good
code identified by the heuristic. This means the second off-
spring will receive the remaining, rejected code. Hence it is
likely that the more optimized one offspring, the relatively
worse the second child. Hence for the remainder of this pa-
per only the one ’good’ child will be produced.

4.3 Algorithm

Because the correctness of each class graph is represented
by a single integer, the difference in correctness between
class graphs can be calculated by simple subtraction. The
class graphs are then ranked in descending order so that ex-
changing x class graphs is achieved by substituting the first
z class graphs in the ordered list. In other words, the al-
gorithm determines the class graphs in the second program
that are superior to the position equivalent class graphs in
the current program, and exchanges them. So suppose par-
ent one is poor at classifying certain class instances, whereas
parent two is good at classifying these same class instances.
Then the selective crossover operator would be expected to
replace the poor code in program one with the good code
from program two.

e Count the number of misclassified training instances
for each class in both parents.

Order the class graphs by the difference.

Choose some random number x.

Select the first x class graphs from the ordered list.
Exchange these class graphs.

Notice that the number of misclassification count here
only considers “false negatives”, namely the miss instances

i+ 5

(a) Artificial Characters

(b) Image Segmentation

(c) Handwritten Digits

Figure 4: Examples of instances in the image data sets.

for a particular class. For example, for class C the number
of missclassifications would be the total number of objects
of class C that were incorrectly classified by the program
as some other classes. In this way, the sum of the misclas-
sifications for all classes will be equal to the total number
of incorrectly classified objects across all classes, that is,
the error rate for the entire multiclass object classification
problem. This is to be consistent with the TGP used in this
paper, where the error rate was used as the fitness function.
However, considering false positives simultaneously might
improve the system performance, but this needs to be fur-
ther investigated in the future.

S. EXPERIMENTAL CONFIGURATIONS

In order to compare the effectiveness of different GP meth-
ods as techniques for performing multiclass classification, a
series of experiments was conducted in the important mul-
ticlass problem domain of object recognition. Here we de-
scribe the image data sets and parameters used during the
course of these experiments.

5.1 Image Data Sets

We used three image data sets providing object classifica-
tion problems of varying difficulty in the experiments. These
data sets were chosen from the UCI machine learning repos-
itory [19]. Example instances of all three data sets can be
found in figure 4.

The first data set is Artificial Characters. This data set
consists of vector representations of 10 capital letters from
the English language. It has a high number of classes (10)
and a high number of attributes/features (56), and 5000
instances in total. The second set is Image Segmentation,
which consists of 3x3 regions drawn from images of outdoor
areas such as sky, grass etc. It has 7 classes, 19 attributes
and 2100 instances. The third set is Hand Written Digits,
which consists of 3750 hand written digits with added noise.
It has 10 classes and 564 attributes. These tasks are quite
hard due to a high number of attributes, a high number of
classes and noise in some sets.

5.2 TGP/LGP Parameters

These values were determined based on common settings
for different LGP methods and empirical search via initial
experiments, which are shown in table 1. TGP used the
same settings except that the program depth was set to
8, corresponding to 32 instructions in LGP. For all exper-
iments, initial programs in the population consist of ran-
domly chosen instructions.

5.3 Experimental Configurations

Fach data set was divided into a test set, a training set,
and a validation set with all sets being of equal size and
clagses. After the maximum number of generations was
reached, the test accuracy of the program that performed

890

Table 1: Parameter Configurations

Parameter Basic | Class Graph | Selective
LGP | Crossover Crossover
Population 500 500 500
Max Gens 200 200 200
Normal Mutation 60% | 60% 60%
Elitism 10% | 10% 10%
Conventional Crossover | 30% | 0% 0%
Class Graph Crossover [0% | 30% 0%
Selective Crossover 0% 0% 30%
Max Size 32 32 32
Tournament Size 4 4 4
Runs 150 150 150

best on the validation set was recorded. This process was
repeated for 150 independent runs, each with a random seed.

Note that in all cases the intial population was created at
random, with no control over the amount of overlap between
class graphs.

6. RESULTS AND DISCUSSION

It is the applicability of the LGP approach to multiclass
classification and the efficacy of the two novel crossover op-
erators for object recognition tasks that is the subject of
this work. The work is firstly placed in a wider context by
comparison with TGP approaches, including basic LGP al-
gorithm in section 6.1 and the updated approach in section
6.4. However, it is beyond the scope of the paper to com-
pare all variants of TGP with all variants of LGP across all
multiclass problems in order to determine the most applica-
ble approach for any given sub-problem. Section 6.2 presents
results for the Class Graph Crossover compared with the ba-
sic LGP approach and section 6.3 extends this to compare
results for the Selective Crossover.

6.1 Basic LGP vs. TGP

Table 2 shows a comparison between the basic LGP and
the basic TGP approach averaged over 150 runs. In the
last column “Significant?”, “yes” means the results of the
two methods are significantly different against the standard
T/Z-test with the two-side 95% confidence level, “4+” means
that the result of the method in the right side is significantly
better than that of the left side, and “—” refers to that the
right method achieved significantly better result than the
left method. In this table, for all the three datasets here,
“+yes” suggests that the tree-based GP simply adapted to
multiclass problems is outperformed significantly by the ba-
sic LGP, see table 2.

However, these results are slightly “misleading” as adjust-
ing TGP by using Probabilistic Multiclass methods (one of
the best TGP methods for multiclass classification) shows
that (advanced) TGP performs similarly to basic LGP, see
table 3. There is no significant difference on one problem
domain, (advanced) TGP is significantly better on another
domain and basic LGP significantly better on the other do-

Table 2: Classification Accuracy on the test set: Basic TGP
vs basic LGP

Image Basic TGP Basic LGP | Signifi-
Data Set Mean | S.D. | Mean | S.D. | cant?
Artificial 55.91% | 8.79% | 82.02% | 5.72% | +yes
Characters

Image 68.69% | 7.51% | 75.46% | 2.81% | +yes
Segmentation

Digit 45.20% | 8.34% | 65.46% | 3.64% | +yes
Recognition

main. The hypothesised improvements to LGP through the
novel tailored crossover operators are now investigated in
the rest of this section.

Table 3: Classification Accuracy on the test set: TGP with
Probability Multiclass (PM) vs basic LGP

Image TGP with PM | Basic LGP | Signifi-
Data Set Mean | S.D. | Mean | S.D. | cant?
Artificial 81.83% | 5.19% | 82.02% | 5.72% no

Characters

Image 85.99% | 8.25% | 75.46% | 2.81% | —yes
Segmentation

Digit 50.66% | 8.38% | 65.46% | 3.64% | +yes
Recognition

6.2 LGP with Class Graph Crossover vs. LGP
with Canonical Crossover

Table 4 compared the results of LGP with the canonical

crossover (basic LGP) and LGP with Class Graph Crossover

(CGC) on the three problems on the test set averaged over
150 runs. These results show that LGP using CGC demon-

strates improved classification accuracy over LGP using canon-

ical crossover on all test data sets, and the improvement is
statistically significant in all three problems. These results
are an excellent indication that LGP using CGC is superior
to LGP using conventional crossover for solving multiclass
classification problems.

Table 4: LGP Classification Accuracy on the test set: canon-
ical crossover vs. Class Graph Crossover (CGC)

Data Set LGP LGP + CGC | Signifi-
Mean | S.D. | Mean | S.D. | cant?

Artificial 82.02% | 5.72% | 84.61% | 5.73% | +yes

Characters

Image 75.46% | 2.81% | 76.30% | 3.90% | +yes

Segmentation

Digit 65.46% | 3.64% | 68.04% | 3.86% | +yes

Recognition

6.3 LGP with Selective Crossover vs. LGP

with Class Graph Crossover

The results in table 5 were obtained by running LGP with
CGC and LGP with Selective Crossover (SC) on the three
problems averaged over 150 runs. These results show that
LGP using (SC) demonstrates improved classification ac-
curacy over LGP using CGC on all test data sets, and the
improvement is statistically significant in all three problems.
These results are an excellent indication that LGP using SC
is superior to LGP using CGC for solving multiclass object
classification problems.

891

Table 5: LGP Classification Accuracy on the test set: Class
Graph Crossover (CGC) vs Selected Crossover (SC)

Data Set LGP + CGC LGP + SC | Signifi-
Mean | S.D. [Mean | S.D. | cant?

Artificial 84.61% | 5.73% | 86.65% | 4.74% | +yes

Characters

Image 76.30% | 3.90% | 77.47% | 3.91% | +yes

Segmentation

Digit 68.04% | 3.86% | 69.16% | 3.21% | +yes

Recognition

6.4 Further Discussion

It has been shown that the novel crossover operators im-
prove the multiclass performance of LGP on the test do-
mains. The improvements are now compared with one of the
best TGP method (with Probabililty Multiclass), see section
6.1, to place them in context. Table 6 shows that now the
LGP based technique is significantly better than TGP for
the Artificial Characters dataset, whereas previously it was
equivalent. However, the advanced TGP method is still sig-
nificantly better for the Image Segmentation dataset despite
the improvements. This might be because the Image Seg-
mentation problem has a relatively small number of classes
where TGP with PM can usually perform well, but this
needs to be further investigated in the future. Neverthe-
less, although the novel operators have improved the perfor-
mance of LGP, there are further performance improvements
possible. Also the TGP approach is not dominated by LGP
for all problem types.

Table 6: Classification Accuracy on the test set: Best TGP
results vs LGP with Advanced Crossover (SC)

Data Set TGP + PM LGP + SC | Signifi-
Mean | S.D. [Mean | S.D. | cant?

Artificial 81.83% | 5.19% | 86.65% | 4.74% | +yes

Characters

Image 85.99% [8.25% | 77.47% | 3.91% | —yes

Segmentation

Digit 50.66% | 8.38% [69.16% | 3.21% | +yes

Recognition

7. CONCLUSIONS AND FUTURE WORK

Multiclass classification problems occur naturally in many
computer vision applications with the automatic generation
of good solutions being of great importance. Currently, GP
methods are not favored for solving multiclass classification
problems due in large part to the program structure of the
conventional TGP method. Experiments with an alternative
form of GP, LGP, have shown a plausibly better program
structure and learning algorithm for these types of problems.

The conventional LGP crossover operator exchanges pro-
gram instructions at random between two LGP programs.
This is problematic because exchanging instructions at ran-
dom is likely to disrupt good building blocks of code. Hence
a new form of crossover was introduced, called Class Graph
Crossover (CGC), where code exchanges only occur between
two code sequences that determine the same feature. The
results show that LGP with CGC has significantly superior
performance to conventional LGP on all problems tested.

Current advances in crossover focus on improving TGP
performance by increasing the likelihood that the offspring

produced by crossover have high fitness. The issue with
these methods is that they dramatically increase the compu-
tational cost of the crossover operator because they calculate
the fitness of many offspring. A further developed crossover
operator, called Selective Crossover, addresses this problem
by using a computationally cheap heuristic to predict off-
spring fitness. The results show that selective crossover out-
performs both conventional LGP crossover and Class Graph
Crossover by a significant amount on all problems tested.

It is noted that an advanced TGP algorithm outperforms
the advanced LGP algorithms developed here in the case of
the dataset with the lowest number of classes. It is consid-
ered that bespoke TGP instances will be complementary to
tuned LGP algorithms for multiclass problems.

There are many rich areas of future work which follow
naturally from this project. It would be interesting to an-
alyze the overlap between class graphs during evolution. It
would also be worthwhile to empirically demonstrate the effi-
ciency of the selective crossover operator. More work could
be done to determine to what extent the claim that class
graph crossover aids in repairing building blocks holds. Fi-
nally it would be interesting to compare how all of these
factors are impacted by the number of classes.

8. REFERENCES

(1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone.
Genetic Programming: An Introduction on the Automatic
Evolution of computer programs and its Applications.
Morgan Kaufmann Publishers. 1998.

[2] M. Brameier and W. Banzhaf. Linear Genetic
Programming. Number XVI in Genetic and Evolutionary
Computation. Springer, 2007.

(3] H. J. Cordell. Epistasis: What it means, what it doesn’t
mean, and statistical methods to detect it in humans.
Human Molecular Genetics, 11(10):2463-2468, 2002.

[4] C. Fogelberg and M. Zhang. Linear genetic programming
for multi-class object classification. In S. Zhang and
R. Jarvis, editors, Proceedings of 18th Australian Joint
Conference on Artificial Intelligence, , pages 369-379,
2005.

[5] F. D. Francone, M. Conrads, W. Banzhaf, and P. Nordin.
Homologous crossover in genetic programming. In
W. Banzhaf, et al. editors, Proceedings of the Genetic and
Evolutionary Computation Conference, volume 2, pages
1021-1026, 1999.

(6] J. H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. MIT Press,
1975.

[7] B. Hutt and K. Warwick. Synapsing variable-length
crossover: Meaningful crossover for variable-length
genomes. [EEE Trans. Evolutionary Computation,
11(1):118-131, 2007.

[8] W. Kantschik and W. Banzhaf. Linear-graph GP—A new
GP structure. In J. A. Foster, et al. editors, Genetic
Programming, Proceedings of the 5th European
Conference, EuroGP 2002, pages 83-92, 2002.

9] J. R. Koza. Genetic programming : on the programming of
computers by means of natural selection. MIT Press, 1992.

[10] K. Krawiec and B. Bhanu. Visual learning by evolutionary
and coevolutionary feature synthesis. IEEE Transactions
on Evolutionary Computation, 11(5):635-650, 2007.

[11] W. B. Langdon. Size fair and homologous tree genetic
programming crossovers. Genetic Programming and
Evolvable Machines, 1(1/2):95-119, 2000.

[12] T. Loveard. Genetic Programming for Classification
Learning Problems. PhD thesis, RMIT University, School
of Computer Science and Information Technology, 2003.

[13] T. Loveard and V. Ciesielski. Representing classification
problems in genetic programming. In Proceedings of the
Congress on Evolutionary Computation, volume 2, pages
1070-1077, 2001.

[14] P. Nordin. A compiling genetic programming system that
directly manipulates the machine code. In K. E. Kinnear,
Jr., editor, Advances in Genetic Programming, chapter 14,
pages 311-331. MIT Press, 1994.

[15] G. Olague Caballero, E. Romero, L. Trujillo, and
B. Bhanu. Multiclass object recognition based on texture
linear genetic programming. In M. Giacobini, et al. editors,
Applications of Evolutionary Computing,
EvoWorkshops2007, pages 291-300, 2007.

[16] G. Olaguea, S. Cagnoni, and E. Lutton. (eds.) special issue
on evolutionary computer vision and image understanding,
pattern recognition letters.27(11), 2006.

[17] R. Poli and N. F. McPhee. General schema theory for
genetic programming with subtree-swapping crossover:
Part 1. Evolutionary Computation, 11(1):53-66, Mar. 2003.

[18] M. E. Roberts and E. Claridge. A multistage approach to
cooperatively coevolving feature construction and object
detection. In F. Rothlauf, et al. editors, Applications of
Evolutionary Computing, EvoWorkshops2005 pages
396-406, 2005.

[19] C. B. S. Hettich and C. Merz. UCI repository of machine
learning databases, 1998.

[20] A. Song. Texture Classification: A Genetic Programming
Approach. PhD thesis, Department of Computer Science,
RMIT University, Melbourne, Australia, 2003.

[21] W. A. Tackett. Genetic programming for feature discovery
and image discrimination. In S. Forrest, editor, Proceedings
of the 5th International Conference on Genetic
Algorithms, pages 303—309, 1993.

[22] W. A. Tackett. Recombination, Selection, and the Genetic
Construction of Computer Programs. PhD thesis,
University of Southern California, Department of Electrical
Engineering Systems, USA, 1994.

[23] W. A. Tackett and A. Carmi. The unique implications of
brood selection for genetic programming. In Proceedings of
the 1994 IEEE World Congress on Computational
Intelligence, 1994.

[24] P. A. Whigham. Grammatically-based genetic
programming. In J. P. Rosca, editor, Proceedings of the
Workshop on Genetic Programming: From Theory to
Real-World Applications, pages 33-41, 1995.

[25] M. Zhang and V. Ciesielski. Genetic programming for
multiple class object detection. In N. Foo, editor,
Proceedings of the 12th Australian Joint Conference on
Artificial Intelligence, pages 180-192, 1999.

[26] M. Zhang, V. B. Ciesielski, and P. Andreae. A
domain-independent window approach to multiclass object
detection using genetic programming. EURASIP Journal
on Applied Signal Processing, 2003(8):841-859, 2003.

[27] M. Zhang, X. Gao, and W. Lou. A new crossover operator
in genetic programming for object classification. IEEE
Transactions on Systems, Man and Cybernetics, Part B,
37(5):1332-1343, 2007.

[28] M. Zhang and W. Smart. Multiclass object classification
using genetic programming. In G. R. Raidl, et al. editors,
Applications of Evolutionary Computing,
EvoWorkshops2004, pages 369-378, 2004.

[29] M. Zhang and W. Smart. Using gaussian distribution to
construct fitness functions in genetic programming for
multiclass object classification. Pattern Recognition
Letters, 27(11):1266-1274, 2006.

