
An Efficient Structural Diversity Technique for
Genetic Programming

Armand R. Burks
BEACON Center for the Study of Evolution in

Action
Michigan State University, U.S.A.

burksarm@msu.edu

William F. Punch
BEACON Center for the Study of Evolution in

Action
Michigan State University, U.S.A.

punch@msu.edu

ABSTRACT
Genetic diversity plays an important role in avoiding pre-
mature convergence, which is a phenomenon that stifles the
search effectiveness of evolutionary algorithms. However,
approaches that avoid premature convergence by maintain-
ing genetic diversity can do so at the cost of efficiency, re-
quiring more fitness evaluations to find high quality solu-
tions. We introduce a simple and efficient genetic diversity
technique that is capable of avoiding premature convergence
while maintaining a high level of search quality in tree-based
genetic programming. Our method finds solutions to a set
of benchmark problems in significantly fewer fitness evalua-
tions than the algorithms that we compared against.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search

Keywords
genetic programming; diversity; premature convergence

1. INTRODUCTION
Premature convergence is one of the biggest problems that

traditional evolutionary algorithms face. Premature conver-
gence can be thought of as evolutionary stagnation, wherein
the population reaches a point at which it is very difficult,
or even impossible, to improve in fitness. As the population
becomes more genetically similar, the traditional genetic op-
erators such as crossover and mutation become less likely to
escape local optima.

Evolutionary algorithms (EAs) have widely been applied
to solve problems with enormous search spaces that usually
contain an abundance of local optima. Therefore, the ability
to effectively explore such spaces is critical to finding solu-
tions. In many EAs, as the population converges genetically,
the population also converges around a local peak in the fit-
ness landscape. This has two notable impacts on the quality

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11–15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754649

of the search process: (1) as individuals in the population
become more genetically similar, the traditional crossover
and mutation operators only produce offspring that highly
resemble their parents and (2) the EA is reduced to a local
search, incapable of effectively moving the population away
from the local fitness peak in order to find global optima.

1.1 Genetic Programming
We consider the role of genetic diversity in avoiding pre-

mature convergence in genetic programming (GP). GP rep-
resents a class of heuristic techniques that extend from the
traditional genetic algorithm. In classical tree-based GP, in-
dividuals are encoded with a tree structure, similar to an
abstract syntax tree. As one of the main goals in GP is
to evolve computer programs, this tree structure provides a
generic way of representing such programs, and it allows the
search through the space of possible programs with genetic
operators such as crossover and mutation.

1.2 Premature Convergence in GP
The problem of premature convergence is perhaps even

more puzzling for traditional tree-based GP because of the
variable-size tree representation and the nature of the tradi-
tional genetic operators. Although it has been shown that
GP populations do not converge the same way as in the
classical binary-encoded genetic algorithm [10], premature
convergence is still a problem for GP. Earlier analysis work
showed that in classical tree-based GP using only subtree
crossover, very few individuals from the initial population
contribute any genetic material to the final population [12].
That work also showed that the entire population often in-
herits the rooted portion of their trees from a single ancestor,
referred to as Eve, within just a few generations from the
onset of the run. Additionally, over 70% of the population
became completely identical to the Eve individual in the top
four levels of their trees [12].

Other studies into the nature and effectiveness of the typ-
ical subtree crossover operator in GP have revealed some
interesting properties that contribute to the major loss of ge-
netic diversity [3, 13]. In the traditional subtree crossover, a
node is uniformly randomly selected as the crossover point in
each parent. The resulting subtrees rooted at each crossover
point are exchanged between the parents to create two off-
spring. This directly contributes to the problem that trees
tend to converge to the same structure near the top. Gath-
ercole and Ross showed that nodes deeper in the tree are
frequently selected for crossover, leaving upper portions of
the trees untouched [3].

991

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2739480.2754649&domain=pdf&date_stamp=2015-07-11

Due to the branching factors of the trees, there is a dis-
proportionately large number of nodes in lower levels com-
pared to those higher up in the trees. This means that uni-
formly randomly choosing a node is more likely to select a
node at a lower level. Coupled with a depth limit, which
is commonly used to avoid unrestricted tree growth, lower
crossover points will result in failed crossover attempts, as
they produce offspring that violate the depth limit. This has
partly been addressed by simply adding a bias to probabilis-
tically select function (internal) nodes more often than ter-
minal (leaf) nodes. However, Poli and Langdon also showed
that subtree crossover tends to exchange little genetic mate-
rial, on average, producing offspring that are highly identical
to one of the two parents [13].

2. EXISTING DIVERSITY TECHNIQUES

2.1 Genetic Diversity Metrics
Several metrics for measuring genetic diversity have been

proposed [1]. Many of these metrics attempt to measure
the degree to which two genotypes differ by taking into ac-
count some aspect of their tree structures. For example, one
approach to calculating the the distance between trees con-
siders the overlapping nodes when the two trees are overlaid
[2]. After overlaying the trees, the distance is then calcu-
lated by taking the total number of differing nodes divided
by the size of the smaller tree.

As Burke et al. discuss [1], the main intuition behind pro-
moting diversity is that increased diversity gives the evo-
lutionary process more opportunities to discover solutions.
However, it is not always clear which type of diversity met-
ric to employ, or how much diversity is sufficient. For many
problem domains, although two genotypes are considered
different by a genotypic distance metric, the two genotypes
can encode the same (or very similar) behavior or pheno-
type, and ultimately yield the same fitness value.

With this issue in mind, other approaches have been pro-
posed to explicitly maintain a diverse set of behaviors or
phenotypes in the population [8, 11]. The fitness uniform
selection scheme [8] attempts to maintain a spread of fitness
values over the range of possible fitness values. On the other
hand, the novelty search algorithm [11] completely ignores
fitness and instead searches for unique behaviors during evo-
lution to avoid the deceptive nature of fitness functions for
certain problems. In its original implementation, the nov-
elty search algorithm also benefits from a genetic diversity
maintenance technique.

The Structure Fitness Sharing (SFS) algorithm [7] is an-
other method that attempts to promote diversity based on
tree structure. Motivated by the fitness sharing concept [4],
SFS uses labels on tree structures to decrease the fitness
of structures that are over-represented in the population.
Instead of directly calculating and comparing genotypic dis-
tances, SFS labels each unique structure in the population
and keeps track of the total individuals and best fitness for
each structure.

2.2 Structured Populations
Instead of trying to enforce genetic diversity through an

explicit diversity measure, alternative approaches impose a
structure on the population to achieve the goal of avoiding
premature convergence [5, 6]. One such approach is the Age-
Layered Population Structure (ALPS) [5]. ALPS uses the

concept of“genotypic age” to segregate the population into a
hierarchy of several age layers, where genotypic age attempts
to measure how long an individual’s genetic material has
been evolving.

The main idea behind ALPS is to localize competition by
genotypic age so that younger, less-fit, individuals do not im-
mediately become dominated by older more-fit individuals.
This principle allows new randomly generated individuals
to be regularly inserted into the population without imme-
diately being outcompeted. This is a key feature of ALPS
because the new random individuals could be located within
a different region of the search space and contain valuable
genetic material that can help the population escape local
optima. Without the localized competition of the hierar-
chical structure, these new random individuals would likely
be dominated by older individuals before having a chance
to propagate useful genetic material throughout the popu-
lation.

2.3 Multi-objective Optimization
Multi-objective approaches have also been proposed to op-

timize fitness while maintaining diversity. The FOCUS (find
only and complete undominated sets) method transforms
single objective problems into a three-dimensional search
to simultaneously optimize fitness, diversity, and tree size
[2]. The FOCUS method maintains genetic diversity by us-
ing the overlapping tree distance metric described in Sec-
tion 2.1 to give preference to individuals with the least av-
erage squared distance to the entire population.

The Age-Fitness Pareto Optimization algorithm [14] is
another multi-objective approach that attempts to main-
tain genetic diversity while optimizing fitness. Based on the
genotypic age concept of ALPS, genotypic age is minimized
in order to allow newer, younger solutions in different regions
of the search space to direct search effort toward promising
areas. This method allows a new random individual to be
added to the population each generation without it being
immediately dominated by older, more-fit individuals. This
method avoids premature convergence without the need for
an O(n2) distance calculation or a the extra overhead in-
volved in maintaining a complicated hierarchical population
structure. This method was demonstrated to outperform
ALPS on a set of Symbolic Regression problems [14], and it
is the basis upon which our approach is implemented.

3. METHOD
Inspired by the findings that GP populations tend to pre-

maturely converge to an identical structure near the top of
the trees [12], our approach uses genetic markers to actively
avoid convergence to a particular rooted tree structure. This
is achieved by maintaining a number of unique genetic mark-
ers in the population.

3.1 Genetic Markers
In order to place pressure on the population to explore

different rooted tree structures, we developed genetic mark-
ers to gauge the genetic diversity among the top portions of
the trees in the population. Figure 1 illustrates the process
of generating a genetic marker by inspecting a partial tree.
We perform a depth-first traversal, up to some depth, d,
and the resulting Lisp-style partial expression becomes the
genetic marker. This process is relatively inexpensive, and
it can be done as the tree is parsed during the evaluation of

992

M2 = (+ (*) (SIN))M1 = (+ x (SIN))

Tree 1 Tree 2 Tree 3

Figure 1: Performing a depth-first traversal from
the root to depth 1 on three trees to create the
two unique genetic markers M1 = “(+ x (SIN))” and
M2 = “(+ (*) (SIN))”.

M = (* x (+)), (SIN (+))

Figure 2: Performing a depth-first traversal starting
at level 1 and stopping at level 2 to create the genetic
marker M = “(* x (+)), (SIN (+))”.

an individual to save extra computational expense. It is im-
portant to note that the genetic marker need not contain a
complete subtree. Also, the genetic marker can begin at an
arbitrary level in the tree, in which case, the genetic marker
will represent an ordered list of fragments as in Figure 2.
Requiring that the list of fragments remain ordered (left to
right) ensures that we capture the structure of the tree at
that level, even though we do not need to preserve the root
node.

3.2 Genetic Marker Density
Using genetic markers as described in Section 3.1, individ-

uals can be grouped as in Figure 1 in order to determine the
density of each unique genetic marker. This density mea-
sure allows us to determine how widely spread a particular
genetic marker is in the population. The density, ρm, of
a genetic marker, m, is the fraction of individuals in the
population that contain the genetic marker, and it can be
calculated as follows:

ρm =
|Pm|
|P | , Pm = {∀p ∈ P |M(p) = m} (1)

where, P is the current population, Pm is the subset of in-
dividuals in the population that contain the genetic marker
m, and M(p) is a function that returns the genetic marker
of individual p.

This density measure only requires O(n) time to assign
density values to the individuals in the population. Al-
though it is well-known that the fitness evaluation is the
most expensive part of the evolutionary process for large
problems, the density calculation still introduces less over-
head than the tree distance method that we discussed in

Section 2.1. The tree distance method requires O(n2) com-
parisons because each individual must be compared to every
other individual. Additionally, unlike the distance method
which needs to examine the entire tree, our density measure
only inspects partial trees. Even though we only consider
a small portion of each tree, our density measure is able to
capture useful dynamics of how genetic material propagates
throughout the population, which we will discuss further in
Section 5.1.

In addition to gauging how genetic markers propagate
throughout the population, this measure of density can also
be used to prevent a genetic marker from becoming too
dense. This is the central idea of our approach to avoiding
premature convergence. We now discuss how we use genetic
marker density to promote and maintain genetic diversity.

3.3 Optimizing Density and Fitness
Our approach, which is an extension of the Age-Fitness

Pareto Optimization algorithm [14], attempts to prevent the
rooted portions of the trees in the population from becom-
ing too structurally similar by maintaining a diverse set of
genetic markers. Instead of using genotypic age, we focus on
the density of genetic markers to promote genetic diversity.
The main intuition behind this is that by maintaining more
genetic markers, we can avoid converging to any one struc-
ture and therefore maintain a higher level of genetic diversity
in the population. We calculate the density of each unique
genetic marker in the population, and then minimize density
while optimizing fitness in our multi-objective approach.

Each generation, the algorithm proceeds by probabilisti-
cally performing crossover, reproduction, and mutation on
randomly selected parents to breed the next generation. The
parent population as well as the new population are tem-
porarily retained, doubling the population size from n to
2n. We then use the Pareto tournament selection method
[14] to remove dominated individuals in order to shrink the
population down from 2n back to the target population size,
n. This works by randomly selecting a tournament of indi-
viduals and then removing all dominated individuals from
the population until the target size is reached or all remain-
ing individuals in the population are non-dominated.

In order to determine domination, we calculate the den-
sity of each unique genetic marker in the population, and
assign each individual a density value corresponding to that
of its genetic marker. An individual A is said to dominate
individual B only if A is at least equal to B on all objective
values and A is strictly better than B in at least one objec-
tive value. In other words, A and B can be equal in either
density or fitness, but A must either be more fit than B or
A’s density value must be smaller. In the case that individ-
uals are equal on both objectives, we attempt to break ties
by tree size, preferring the individual that contains fewer
nodes. If individuals are equal on both objectives, and they
are the same size, we simply choose one in order to pre-
vent the population from becoming too large due to ties.
As Schmidt and Lipson note [14], it is theoretically possible
for the current set of non-dominated individuals to be larger
than the target population size after performing Pareto tour-
nament selection, but we did not observe this in any of our
experiments.

Since selection still favors fitter individuals, there is still an
incentive to improve fitness, which means that fitter individ-
uals will still receive more breeding opportunities. However,

993

since the density objective favors individuals that have less-
represented genetic markers, highly-fit individuals are less
likely to quickly sweep the population. This allows newer,
perhaps less-fit, genotypes more of a chance to propagate
valuable genetic material throughout the population. This
also allows us to add a new randomly generated individual
to the population at the end of each generation without it
being immediately dominated in fitness alone.

One of the known reasons for premature convergence is
that strong selection pressure causes an imbalanced sam-
pling of genetic material because more fit individuals are
constantly favored and selected [6]. The density objective
actively avoids this issue by favoring less-represented genetic
markers while still exploiting the fitter solutions. This is be-
cause individuals that contain denser genetic markers are
required to be more fit in order to remain non-dominated.

4. EXPERIMENTAL SETUP
In order to determine the effectiveness of our approach, we

compared its performance to the original Age-Fitness Pareto
Optimization algorithm as well as the Age-Layered Popula-
tion Structure (ALPS). For the comparison experiments, we
used standard GP as a control, where we consider standard
GP as a generational tree-based GP system using fitness-
based tournament selection and subtree crossover with 90%
internal node bias. We implemented the ALPS and Age-
Fitness Pareto Optimization algorithms, as described in [5]
and [14] respectively, in our GP system.1 We compared the
algorithms on the following problems described below.

Boolean 11-Multiplexer (11-MUX) as in [10]: This
problem requires a boolean function to correctly decode k =
3 address bits as a binary number in order to select as out-
put one of the 2k = 8 data bits. The fitness cases are all
combinations of 11-bit binary strings, and fitness is the pro-
portion of correctly output instances. We used the terminal
set T = {A0−A2, D0−D7}, where each Ai is an address bit,
and each Di is a data bit. The function set contained the
standard boolean operators F = {AND,OR,NOT, IF}.

Even n-Parity [10]: This problem requires a boolean
function to determine for each binary number of length n
whether or not the number has an even number of bits
set. Therefore, the fitness cases are all 2n combinations of
n-bit binary strings, and fitness is the proportion of cor-
rectly classified fitness cases. We used the following ter-
minal set: T = {D0, D1, ..., Dn−2, Dn−1}, where each Di

represents the ith bit in the n-bit binary string. The func-
tion set F = {AND,OR,NAND,NOR} contained stan-
dard boolean operators for this problem, with the exclusion
of the XOR operator. It has previously been noted [9, 10]
that this problem is more difficult without the XOR oper-
ator due to the complexity of the required structure of the
solution, so this provides more of a challenge for the algo-
rithms. We compared the algorithms using n = 5.

Modified Quartic Symbolic Regression as in [9]: GP
tries to evolve the function 4x4 + 3x3 + 2x2 + x instead of
the more common x4 + x3 + x2 + x. The addition of coeffi-
cients to the terms makes the required tree structure of the
solution more complex because we do not include constants
in the terminal set, so the coefficients must be manufac-

1All source code and configuration files neces-
sary for reproducing our results are available at
https://github.com/burks-pub/gecco2015

Parameter Value
Population size 500
Tournament size 2
Crossover probability 0.90
Reproduction probability 0.10
Max tree depth 17
Max tree size 300
Age layers (ALPS) 10
Age gap (ALPS) 20
Elites (ALPS) 2
Elites (standard GP) 50
Random initialization ramped half & half
Maximum evaluations 10 million

Table 1: GP settings for all problems.

tured arithmetically. We used the terminal set T = {x} and
the function set F = {+,−, ∗,%, SIN,COS,EXP,RLOG}
where % is the protected division operator, and RLOG is the
protected natural logarithm operator as described in [10].
We used 20 randomly selected points between [−1.0, 1.0],
and fitness is based on the sum of absolute errors between
an individual’s output value and the target function value,
if the difference is greater than 0.01. In the results reported
in Section 5, fitness is normalized between [0, 1.0] by using
the following formula:

f =
1

(1 + e)
(2)

where e is the cumulative absolute error.
Table 1 lists the GP settings that we used for all algo-

rithms for all problems. We did not use point mutation,
as initial experiments showed that it had minimal impact
on the results. In order to provide an accurate analysis of
the performance of each algorithm, we conducted 100 inde-
pendent trials for each problem. Each trial lasted until the
optimal fitness (1.0 in each problem) was reached or 10 mil-
lion fitness evaluations were used. All results represent the
mean across the 100 trials unless stated otherwise.

For the density/fitness algorithm, genetic markers were
generated using the first two levels in the tree, starting at
the root for all problems, with the exception of the Symbolic
Regression problem for which we used the first three levels.
Initial experiments suggested that using the first three levels
yields better performance for the Symbolic Regression prob-
lem. This is likely due to the larger function set with more
differences in arity among the functions.

5. RESULTS
We first validate the genetic marker definition with an

analysis of genetic marker propagation in a standard GP
setup contrasted with that of our approach. Next, since
we are interested in avoiding premature convergence while
finding the solution as fast as possible, we compare the al-
gorithms in terms of the mean number of fitness evaluations
used until the optimal solution was found. From the set of
all 100 independent replicate trials, we recorded the total
number of fitness evaluations at the time that the optimal
fitness was reached, for the trials in which the optimal fitness
was reached. We then compare the algorithms in terms of
search quality (fitness over time). In order to provide a fair
comparison, we present the best fitness over time in fitness

994

evaluations, averaged over the 100 trials, because the algo-
rithms consume a different number of fitness evaluations per
generation. Finally, we test the scalability of our approach
on the Even n-Parity problem. For space considerations, all
tables and figures refer to standard GP as SGP, Age-Fitness
Pareto Optimization as A/F, and Density/Fitness as D/F.

5.1 Genetic Marker Analysis
We analyzed the density of all genetic markers among the

top 6 levels of the trees in the population for 1000 gener-
ations, otherwise using the same experimental settings de-
tailed in Section 4. We use generations here because we are
interested in how genetic markers change after each round
of breeding. We simultaneously tracked the genetic markers
from all levels in a top-down fashion, using two levels at a
time. For each pair of levels, we recorded the genetic marker
with the maximum density, using the density measure de-
scribed in Section 3.2. For each level, i, in each tree in the
population, genetic markers were generated as we described
in Section 3.1, starting at level i and continuing through level
j. For example, the genetic marker at levels L0:1 will contain
all the nodes of a tree from the root (level 0) through level 1.
Except where noted, the results of this analysis were similar
for all the benchmark problems, so we will only show results
for the Symbolic Regression problem due to space consid-
erations. The results shown represent the mean across 100
independent trials.

Figure 3 shows the mean maximum density of all genetic
markers across the top 6 levels of the trees in the popula-
tion in a standard GP setup. The population very quickly
becomes nearly identical among the topmost portions of the
trees, as a large percentage of the population shares the same
genetic marker in the first few levels. By generation 200,
nearly 60 percent of the population is identical across the
top 6 levels in the trees. This confirms earlier findings that
a large percentage of the population quickly converges to the
same structure [12]. More importantly, this shows that our
definition of genetic markers and the corresponding density
measure captures useful dynamics of GP populations.

Figure 4 shows the effect that our approach has on genetic
diversity, which highly contrasts with that of a standard GP
setup as in Figure 3. This shows that our algorithm main-
tains a very diverse set of tree structures in the population
while preventing a single structure from becoming too dense.

Interestingly, for the Symbolic Regression problem, the
maximum density among all genetic markers in the topmost
portion of the trees (L0:1) still increases over time using our
approach. However, this is not nearly as rapid as in the stan-
dard GP setup shown in Figure 3. As we discussed in Section
3.3, individuals with more dense genetic markers must have
relatively high fitness in order to dominate individuals that
have more unique genetic markers. This dynamic places a
selective pressure on the population to improve in fitness
while still exploring newer rooted tree structures. Figure
4 also shows that our approach maintains a very diverse
set of genetic markers across the lower levels in the trees,
even though we only explicitly minimize density at the top-
most genetic marker level. This demonstrates that diversity
among the upper portions of the trees has a major impact
on the diversity at deeper levels in the trees.

0 200 400 600 800 1000

Generations

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

.D
en

si
ty

L0:1

L1:2

L2:3

L3:4

L4:5

Figure 3: Mean maximum genetic marker density
in the top 6 levels of the trees in the population
using a standard GP setup on the Quartic Symbolic
Regression benchmark problem.

0 200 400 600 800 1000

Generations

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

.D
en

si
ty

L0:1

L1:2

L2:3

L3:4

L4:5

Figure 4: Mean maximum genetic marker density in
the top 6 levels of the trees in the population using
the density/fitness algorithm on the Quartic Sym-
bolic Regression benchmark problem. Note that val-
ues for levels L1:2, L2:3, and L3:4 are overlapping.

5.2 Performance
Figures 5, 6, and 7 show that our algorithm reaches the

optimal fitness value in significantly fewer evaluations than
the other algorithms in each benchmark problem (Mann-
Whitney U test, p < 0.001). Table 2 shows that across all
problems, D/F reaches optimal fitness at least twice as fast
as the second fastest algorithm. Notably, D/F is 5 times
faster than A/F on the Even 5-Parity problem, and over
15 times faster than ALPS on the 11 Multiplexer problem.
These results show that although ALPS and A/F are suc-
cessful at avoiding premature convergence, they can do so at
the cost of requiring more fitness evaluations to find the op-
timal solution. However, our approach demonstrates that it

995

SGP ALPS A/F D/F
0.0

0.5

1.0

1.5

2.0

2.5
M

ea
n

E
va

lu
at

io
ns

×106

Figure 5: Mean number of evaluations (millions) un-
til optimal fitness was reached on the Boolean 11-
Multiplexer problem. Error bars represent the 95%
confidence interval around the mean.

SGP ALPS A/F D/F
0

1

2

3

4

5

6

M
ea

n
E

va
lu

at
io

ns

×106

Figure 6: Mean number of evaluations (millions) un-
til optimal fitness was reached on the Even 5-Parity
problem. Error bars represent the 95% confidence
interval around the mean.

SGP ALPS A/F D/F
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
E

va
lu

at
io

ns

×106

Figure 7: Mean number of evaluations (millions)
until optimal fitness was reached on the modified
Quartic Symbolic Regression problem. Error bars
represent the 95% confidence interval around the
mean.

11-MUX 5-Parity Regression
SGP 17.89 5.67 3.60
ALPS 15.18 7.98 4.49
A/F 4.40 5.00 2.23

Table 2: Performance factors compared to D/F
mean evaluations required to find the solution for
11-MUX (80,304), 5-Parity (591,788) and Regres-
sion (481,249).

11-MUX 5-Parity Regression
SGP 57 23 56

ALPS 98 25 93
A/F 100 97 100
D/F 100 100 98

Table 3: Number of runs in which the optimal fitness
was reached for each problem.

is possible to avoid premature convergence while still finding
the solution in a relatively small number of fitness evalua-
tions.

Table 3 shows that D/F found a solution in all of the trials
for the 11 Multiplexer and Even 5-Parity problems, and in
98% of the runs for the Symbolic Regression problem. We
conducted an additional 100 trials on the Symbolic Regres-
sion problem using genetic markers composed of only the
first two levels in the trees as in the other problems. With
this configuration, D/F found a solution in all of the runs.
However, the mean number of evaluations required to find
a solution was 1.9 times slower than when genetic markers
were composed of the first three levels in the trees. This
suggests that for some problems, there may be a trade-off
between robustness and efficiency for our algorithm, depend-
ing on the composition of the genetic markers. This also
suggests that the problem domain may influence the genetic
marker dynamics.

5.3 Search Quality
Our second goal is to improve the general quality of search,

so next we compare the algorithms in terms of the mean best
fitness over time (fitness evaluations). Figures 8, 9, and 10
plot the mean best fitness value over time for each algorithm
on each problem. Near the onset of the run, SGP and ALPS
reach higher fitness values than both Pareto optimization
approaches. This is because A/F and D/F are not only
optimizing fitness, but also age and density, respectively.
However, A/F and D/F surpass SGP and ALPS, reaching
the higher fitness values much earlier in the run, on average.
Figures 8 - 10 also show that D/F reaches the higher fitness
values much earlier than A/F. This gives rise to the dramatic
differences in the required number of evaluations to reach the
optimal fitness, as reported in Figures 5 - 7.

5.4 Scalability
We performed an additional set of experiments in order

to determine how well our algorithm scales on the n-Parity
problem. We do not include results for SGP or ALPS for n >
5 because SGP only found a solution in one trial and ALPS
only found a solution in two trials for n = 6 under these
settings. Similarly, we do not report results for A/F beyond
n = 6, because it only found one solution for n = 7. We

996

103 104 105 106 107

Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
F

it
ne

ss

SGP
ALPS
A/F
D/F

Figure 8: Mean best fitness over time (fitness evalu-
ations) on the Boolean 11-Multiplexer problem. Er-
ror bars are omitted for clarity.

103 104 105 106 107

Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
F

it
ne

ss

SGP
ALPS
A/F
D/F

Figure 9: Mean best fitness over time (fitness eval-
uations) on the Even 5-Parity problem. Error bars
are omitted for clarity.

103 104 105 106 107

Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
F

it
ne

ss

SGP
ALPS
A/F
D/F

Figure 10: Mean best fitness over time (fitness eval-
uations) on the modified Quartic Symbolic Regres-
sion problem. Error bars are omitted for clarity.

n = 5 n = 6 n = 7 n = 8
SGP 3.36 (23) – – –
ALPS 4.72 (25) – – –
A/F 2.96 (97) 6.56 (6) – –
D/F 0.59 (100) 3.08 (88) 4.48 (37) 5.73 (6)

Table 4: Mean number (in millions) of fitness evalu-
ations required to reach the optimal fitness value for
the Even n-Parity problem. Numbers in parenthe-
ses indicate the number of trials, out of 100 trials,
in which a solution was found.

used the same function set as described in Section 4, so this
problem becomes even more difficult as n increases because
the required structure for the solution becomes increasingly
complex without the XOR operator.

Table 4 shows the mean number of fitness evaluations, in
millions, required for n = 5, 6, 7, 8, as well as the percentage
of trials in which a solution was found. D/F is able to find a
solution at a significantly higher rate than A/F in the Even
6-Parity problem. For n = 6, our approach finds a solution
more than twice as fast as A/F. Additionally, our approach
requires less evaluations for both n = 7 and n = 8 than A/F
for n = 6. Of course, as n increases, in the absence of the
XOR operator, the success rate of our algorithm decreases,
and the required number of evaluations to find a solution
increases. However, our approach still found a solution in
6 trials with n = 8 without the XOR operator, while the
other algorithms did not find a solution in the majority of
the trials with n = 6.

6. CONCLUSIONS
We have presented a new, efficient technique for avoid-

ing premature convergence and improving search quality in
tree-based genetic programming. By using tree fragments as
genetic markers, the Density/Fitness algorithm prevents the
population from converging to a single structure by incor-
porating genetic marker density into the optimization pro-
cess. It has already been demonstrated that standard GP

997

often experiences a rapid loss of genetic diversity, wherein
the topmost portions of the trees in the population quickly
converge to the same structure [12]. Our results show that
by actively combating this phenomenon, we can significantly
improve the performance, search quality, and scalability of
GP, transforming the convergent nature of traditional GP
into a more sustainable search algorithm.

In this study, we restricted the genetic markers to only
contain the topmost portion of each tree in the popula-
tion. This loose genotypic diversity measure, which does
not consider the rest of the genotype (lower levels in the
tree), significantly improved performance and search qual-
ity over standard GP as well as the other algorithms that
we compared against. However, some questions that arise
are how to effectively and efficiently incorporate more of the
genotype into the algorithm, and whether or not this would
yield further improvements.

One simple approach to this would be to increase the num-
ber of levels used in each genetic marker over time in order
to focus on different levels in the trees in the population.
However, the computational overhead increases with depth,
as more of the tree needs to be traversed in order to cre-
ate the genetic marker. An alternative approach could sim-
ply change the level at which we begin creating the genetic
marker, as in Figure 2. Initial experiments with the latter
approach did not show an improvement over the results we
presented here, although further investigation into the rate
at which the level changes, or different methods for changing
the genetic markers may prove beneficial.

7. ACKNOWLEDGMENTS
This material is based in part upon work supported by the

National Science Foundation under Cooperative Agreement
No. DBI-0939454. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

This work was supported in part by Michigan State Uni-
versity through computational resources provided by the In-
stitute for Cyber-Enabled Research.

8. REFERENCES
[1] E. Burke, S. Gustafson, and G. Kendall. Diversity in

genetic programming: An analysis of measures and
correlation with fitness. Evolutionary Computation,
IEEE Transactions on, 8(1):47–62, 2004.

[2] E. de Jong, R. Watson, and J. Pollack. Reducing bloat
and promoting diversity using multi-objective
methods. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2001,
pages 11–18. Morgan Kaufmann, 2001.

[3] C. Gathercole and P. Ross. An adverse interaction
between crossover and restricted tree depth in genetic
programming. In Proceedings of the 1st Annual
Conference on Genetic Programming, pages 291–296,
Cambridge, MA, USA, 1996. MIT Press.

[4] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[5] G. S. Hornby. Alps: The age-layered population
structure for reducing the problem of premature
convergence. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary
Computation, GECCO ’06, pages 815–822, New York,
NY, USA, 2006. ACM.

[6] J. Hu, E. Goodman, K. Seo, Z. Fan, and
R. Rosenberg. The hierarchical fair competition (hfc)
framework for sustainable evolutionary algorithms.
Evol. Comput., 13(2):241–277, June 2005.

[7] J. Hu, K. Seo, S. Li, Z. Fan, R. C. Rosenberg, and
E. D. Goodman. Structure fitness sharing (sfs) for
evolutionary design by genetic programming. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 780–787. Morgan
Kaufmann Publishers, 2002.

[8] M. Hutter and S. Legg. Fitness uniform optimization.
Evolutionary Computation, IEEE Transactions on,
10(5):568–589, 2006.

[9] D. Jackson. Mutation as a diversity enhancing
mechanism in genetic programming. In Proceedings of
the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, pages
1371–1378, New York, NY, USA, 2011. ACM.

[10] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[11] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone. Evol.
Comput., 19(2):189–223, June 2011.

[12] N. F. McPhee and N. J. Hopper. Analysis of genetic
diversity through population history. In Proceedings of
the Genetic and Evolutionary Computation
Conference, pages 1112–1120. Morgan Kaufmann,
1999.

[13] R. Poli and W. Langdon. On the search properties of
different crossover operators in genetic programming.
In Genetic Programming, pages 293–301. Morgan
Kaufmann, 1998.

[14] M. Schmidt and H. Lipson. Age-fitness pareto
optimization. Genetic Programming Theory and
Practice VIII, 8:129–146, 2011.

998

