

Using Genetic Programming and Decision Trees for Team
Evolution

Siphesihle Philezwini Sithungu
Academy of Computer Science and

Software Engineering
University of Johannesburg
Johannesburg, South Africa

siphesihles@uj.ac.za

Duncan Anthony Coulter
Academy of Computer Science and

Software Engineering
University of Johannesburg
Johannesburg, South Africa

dcoulter@uj.ac.za

Elizabeth Marie Ehlers
Academy of Computer Science and

Software Engineering
University of Johannesburg
Johannesburg, South Africa

emehlers@uj.ac.za

ABSTRACT
This paper presents work done to evolve soccer strategies
through Genetic Programming. Each agent is controlled by an
algorithm in the form of a decision tree to act on the
environment given its percepts. Several experiments were
performed and an analysis of the performance of the algorithm
was documented afterwards. Experimental results showed that it
is possible to implement soccer learning in a multi-agent system
through Genetic Programming, although the evolution of higher-
level soccer strategies is a more difficult task.

CCS CONCEPTS
• Computing methodologies→Genetic programming

KEYWORDS
genetic programming, decision trees, evolutionary learning

1 Introduction
Without much analysis, soccer might appear to be an easy game
to play, with a negligible requirement for tactical approaches.
However, at high levels of professional play, soccer involves
complexity. Furthermore, a team’s performance may be
determined by several factors, such as the fitness levels and
technical capabilities of players, overall team morale, the
strategies applied [1] and environmental factors.

The complexity of soccer makes it a good testbed for multi-
agent system research [2] [3]. Simulated soccer allows for two
types of learning: team learning, where a single learner learns
joint solutions, and concurrent learning, in which multiple agents
learn simultaneously [4]. Soccer has both the characteristics of
cooperative [5] (participating in a team) and competitive [6]
(winning against opponents) multi-agent systems. The existence
of internal competition within a team is also possibility because
each agent may want to outperform other agents.

The work presented here proposes the use of Genetic

Programming (GP) to evolve player behaviour so that it
improves over time. The approach to be taken is that of
concurrent learning, where each player in the field is
represented by an agent that learns how to play the game
intelligently enough. In order to achieve this aim, rules based on
simple and primitive actions (i.e. choosing a direction) must be
evolved to a point where each agent learns to play soccer. The
idea is to avoid introducing any form of bias when defining the
fitness function, as noted in [7]. Therefore, at the beginning of
each experiment, no player is expected to possess any
knowledge of soccer (i.e. to show no hand-coded coherent
behaviour). As time progresses, basic improvement and
emergent play should be observed.

Evolutionary Computation (EC) - better known as
Evolutionary Algorithms (EA) - is a subfield of Computational
Intelligence (CI) that encodes the processes of natural evolution.
Charles Dar- win’s theory of natural selection is considered the
foundation of biological evolution and briefly states that:
Individuals of a population compete in order to thrive in a world
of finite resources. Those individuals possessing the most useful
characteristics have a better chance of surviving and
reproducing offspring .

Through reproduction, the characteristics of an individual are
passed on to their offspring. Therefore, according to Darwin’s
theory, useful characteristics will be carried on to and inherited
by subsequent generations, resulting in those characteristics
being the most common across the population [8]. GP is part of
the family of EAs and is inspired by the Genetic Algorithm (GA),
which adopts the following concepts from biological evolution:
(1) fitness evaluation, (2) crossover and (3) mutation [9]. In the GP
context, a GA runs on a population computer programs rather
than bit strings.

Genetic Programming (GP) deals with an important objective
of computer science: creating computer programs that can solve
problems without the provision of explicit instructions. This is
referred to as automatic programming, a concept that refers to
the automatic creation of computer programs that enable
computers to solve problems.

An initial population of randomly generated computer
programs made up of available programmatic elements is
evolved by methods of natural selection in order to produce
populations of improved programs [10]. At the end of each
generation, computer programs in the form of trees are selected

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
CIIS’19, November, 2019, Bangkok, Thailand
© 2019 Copyright held by the owner/author(s). 978-1-4503-7259-6...$15.00
https://doi.org/10.1145/3372422.3372430

28

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3372422.3372430&domain=pdf&date_stamp=2020-02-07

CIIS’19, November, 2019, Bangkok, Thailand
Siphesihle Philezwini Sithungu; Duncan Anthony Coulter and

 Elizabeth Marie Ehlers

for reproduction using a chosen selection mechanism (e.g.
tournament, random or proportional selection [8]) where the
fitness of each program is taken into account.

Crossover is used to perform the reproduction of offspring. To
perform crossover, subtrees may be chosen from each parent and
substituted with one another to produce two offspring programs
for example. To perform mutation, a subtree may be chosen at
random and replaced with a randomly generated subtree [11].
All the above-mentioned components have no domain
knowledge and simply rely on the Darwinian principle of
survival of the fittest [10]. A computer program can be
represented as a tree (i.e. Abstract Syntax Tree [12]) or graph (i.e.
Directed Acyclic Graph [13]).

The advantage of using GP to evolve trees is that we do not
need to know the structure of an optimal tree in advance.
Therefore, instead of concerning ourselves with task of building
good solutions, the focus is on specifying a good fitness function
for accepting candidate solutions [14]. Finally, Evolutionary
Algorithms (EA) are highly customisable. This is an important
feature because it serves as an advantage when designing an EA
for the purpose of solving a specific problem [8]. The work
presented here aims to use GP to evolve decision trees (DT) -
which act as algorithms for the different agents. Each player in
the soccer field will, therefore, be controlled by its dedicated
decision tree.

The rest of the paper is structured as follows: Section 2 is a
literature survey of relevant works. Section 3 describes the
problem statement and Section 4 follows with the proposed
solution. Section 5 reports on the experimental results and offers
a critical analysis of the algorithm. Finally, Section 6 concludes
the paper.

2 Literature Review

2.1 Generating Emergent Team Strategies
through Genetic Algorithms in Football
Video Games

Fernández-Leiva A., Cotta C. and Campaña Ceballos R. [15]
proposed the use of a GA for improving the performance of
computer-controlled opponents for human players in soccer
video games. The aim of the work was to prove that
evolutionary algorithms could perform better human-coded AI
controllers in video games since it is becoming increasingly
difficult to specify condition-action rules for player behaviour as
video games continue to imitate real-life situations.

An agent was represented by its chromosome (a vector of k
values, where k represents the number of situations that the
agent might find itself in. Each index of the vector represented a
specific situation, whereas the value in that index represented
the action that the agent would perform for that situation). The
type of GA used was a Steady State Genetic Algorithm (SSGA)
that applied single-point crossover. The selection mechanisms
used was binary tournament with an elitist replacement policy.

Experimental results showed that GAs can be used in video
games since it was observed that the overall behaviour of the
players did improve overtime. Furthermore, it was stated that
using GAs in video games may lead to video games where
computer-controlled players display emergent and entertaining
behaviour. This is because computer-controlled agents would
continuously face human opponents, which means that the
algorithm would be consistently trained against naturally
improving opponents [15].

2.2 A Softbot Team Whose Strategy is Learned
through Genetic Programming

In [16] work was done to develop a softbot team that defeated
opponents programmed using hand-coded strategies. The softbot
team won the RoboCup Scientific Challenge Award. Furthermore,
the EA used was able to evolve teams that could position
themselves across the field, make passes, shoot at goals and
coordinate behaviour to complement teammates. The EA used
was GP and, accordingly, chromosomes were represented as
trees instead of vectors. A tree represented an entire team, not a
single player.

Two approaches were followed to construct a game-playing
tree: In the first approach, a tree represented a heterogeneous
team where different parts of the tree were assigned to different
players. In the second approach, a tree represented a
homogenous team instead. The homogenous performed better in
the end.

In order to evaluate a team’s fitness, the researchers applied a
strategy that they referred to as competitive fitness. The idea
behind competitive fitness was that a team’s fitness was
measured based on competition with other agents in the
population (e.g. through a round-robin tournament where every
team in the population plays against every other team).

The author pointed out that the function sets used were very
biased. This inhibited the algorithm from reaching more
generalised solutions that could maintain their own internal
state. As such, the resulting teams consisted of purely reactive
players whose decisions mainly relied on the current state of the
environment. [16].

2.3 Genetic Programming for Robot Soccer
The work done in [11] presented the use of Strongly Typed
Genetic Programming (STGP) in robot soccer. The selection
mechanism used was elimination round-style tournament where
two programs were randomly chosen to play against each other.
The program that won the play-off was advanced to the next
round.

A program’s fitness was determined by how many rounds it
won and the fittest individuals in a generation were played
against each other in a best-of tournament. In the first
experiment, the programs could only perform primitive soccer
actions with the hope that they would evolve complex
behaviours from them. The resulting programs did not show any
intelligent behaviour; therefore, the winner of a tournament was

29

Using Genetic Programming and Decision Trees for Team
Evolution

CIIS’19, November, 2019, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

determined randomly. In the second experiment, higher level
functions that correspond to complex soccer behaviour were
introduced, but terminal actions remained the same as in the
first experiment. This resulted in the programs showing simple
soccer-playing behaviour.

During the third experiment, the same functions as in the
first experiment were used including additional functions and
terminal actions. Roulette wheel selection was used instead of
tournament selection, and fitness was calculated as a weighted
sum of the number of goals scored and executed kicks. The
resulting teams showed interesting behaviour, although most of
it was random [11].

2.4 Layered Learning in Genetic Programming
for a Cooperative Robot Soccer Problem

The researchers in [2] used Layered Learning GP (LLGP) for
learning keep-away soccer. A learning problem was divided into
separate sub-problems that were solved in a bottom-up fashion.
Therefore, the solution to the previous sub-problem became the
initial population to the current sub-problem.

Four experiments were conducted. The first experiment used
standard GP; the second experiment used Automatically Defined
Functions GP (ADFGP). The third experiment used (LLGP) where
the fittest individual was duplicated to fill the initial population
for the next layer (LL1GP). The fourth experiment used LLGP
where the entire population was used as the initial population of
the next layer (LL2GP). According to the experimental results,
LL1GP performed poorly when compared to standard GP and
ADFGP, whereas LL2GP performed on par with SGP and ADFGP.
Although LL2GP converged in the first 10 generations.

New Layered Learning Genetic Programming (nLL2GP) is a
variation of LL2GP that uses 20 generations to train the first
layer and 81 generations to train the second layer. nLL2GP
performed slightly better than all the previous algorithms [2].

3 Problem Statement
The work presented here aims to use GP for team evolution
through DTs. The secondary purpose is to discover how well a
decision tree can perform as decision-making model for an agent
performing a task in a real-time environment. The idea is that,
even though agents may be initialized with purely random DTs,
some of the decisions made by the agents will show some
measure of intelligence.

Therefore, if GP is applied carefully to choose DTs that make
favourable decisions - even though they were made randomly -
new DTs can be derived that inherit the desired behaviour and
further display interesting and complex behaviour due to
random mutation.

Taking a closer look at the work presented in [15]: in order to
add a new condition to the vector of possible situations as
described in [15], one would have to redesign the vector.
Therefore, it would be inconvenient to incorporate new
behaviours. Our approach introduces more flexibility. Using a

tree allows one to only add conditions to the existing pool of
possible conditions without having to worry about restructuring
the tree.

The work presented in [16] makes use of a single tree that
represents an entire team. This means that when the tree is
flawed, there is a high probability that the whole team will
perform poorly. We propose that every agent is controlled by its
own DT as this will lead to a more distributed structure without
a single point of failure.

Finally, our approach might show resemblance to that of a
Random Forest (RF) classifier albeit it is different. RF is an
ensemble learning method where many classifiers (i.e. DTs) are
generated - using a concept referred to as bootstrap aggregation -
and whose predictions/classifications are aggregated to make a
single classification [17]. In contrast to RF, our approach is based
on the fact that each agent is controlled by one DT that makes
decisions on behalf of only that agent. The decisions of other
DTs are not aggregated to reach a decision for one agent. At the
end of each generation, trees of desirable fitness are used to
evolve tree which will also hopefully possess desirable fitness.

4 Proposed Solution

4.1 StratFinder Prototype
StratFinder (short for Strategy Finder) is the solution prototype
that was developed for this work. The application consists of a
simulation window that renders instances of soccer matches.
Each soccer match is essentially a non-player game that consists
of two teams meant to be in opposition.

Each team consists of 10 field players and there are no
goalkeepers. Goalkeepers are not included because the aim is to
evolve in-field game play without focusing on the added problem
of evolving goalkeeping skills. However, goalkeepers could
theoretically be added so that they behave according to
predefined condition-action rules. Doing so would allow us to
further examine how players would evolve if the game had
goalkeepers. Please refer to Figure 1 for a screenshot of the
simulation user interface.

Figure 1: StratFinder's simulation user interface.

30

CIIS’19, November, 2019, Bangkok, Thailand
Siphesihle Philezwini Sithungu; Duncan Anthony Coulter and

 Elizabeth Marie Ehlers

The team in yellow must score goals at the right-hand side
goal and defend the left-hand side goal. The team in black must
score at the left-hand side goal and defend the right-hand side
goal.

In order to win, a team must have scored more goals than the
opposition by the end of the match. If the ball leaves the field, it
goes back to the centre of the field and any player from either of
the teams can kick it first when the simulation continues.
Therefore, the throw-in and corner-kick rules of soccer do not
apply. The offside rule also does not apply. These special
conditions are already a part of the simulation.

4.2 Decision Tree Implementation
The DT used to control each player is a perfect binary tree. All
internal nodes of a tree are function nodes (they represent
conditions that the player might be in) that return a value of true
or false. When a function node returns a value of true for a
condition, the left child is evaluated; otherwise, the right child is
evaluated. At the beginning of the first generation, all trees have
the same depth. No evolutionary operator (whether it be
crossover or mutation) can alter the structure of a tree. Please
refer to Figure 2 for a depiction of a sample DT.

4.2.1 Function Nodes. There are 20 different conditions that a
player can find itself in; this results in 20 different function
nodes that initially have equal probability of existing anywhere
in a DT except as terminal nodes (i.e. if a DT is 6 nodes deep, it
will have 64 function nodes). Therefore, all conditions initially
have a uniform probability of existing in any DT. Moreover,
mutating the DTs will also ensure that the algorithm tests as
many condition sequences as possible. Table 1 lists the possible
Functions that can exist as internal nodes in a DT.

Figure 2: An example DT.

Table 1: A list of function nodes that can exist in a DT

Function Type Function Name
Teammates

TEAMMATE_N
TEAMMATE_S
TEAMMATE_E
TEAMMATE_W

Opponents

OPPONENT_N
OPPONENT_S
OPPONENT_W
OPPONENT_E

Ball

BALL_N
BALL_S
BALL_W
BALL_E

Touchline

TOUCHLINE_N
TOUCHLINE_S
TOUCHLINE_W
TOUCHLINE_E

Goals

OWN_GOALS_CLOSE
OPP_GOALS_CLOSE

Possession IN_POSSESSION
TEAMMATE_IN_POSSESSION
OPP_IN_POSSESSION

4.2.1 Action Nodes. An action node represents the action that

an agent will perform after having evaluated all preceding
conditions. There are 8 different possible actions that an agent
can perform, and they all have an equal probability of existing in
any DT. Furthermore, an action node can only exist as a terminal
(leaf) node. A player can move in 8 different directions. When a
player is in possession of the ball, the player automatically kicks
the ball in the direction it is moving in. Please refer to Table 2 for
a list of the possible action nodes.

Table 2: A list of action nodes that can exist in a DT

Action Type Action Name
Move MOVE_N

MOVE_S
MOVE_W
MOVE_E
MOVE_NW
MOVE_NE
MOVE_SW
MOVE_SE

4.3 Algorithm Implementation
There are three primary reasons for using GP for this problem:
the first reason generally applies to all EAs. EAs can be used to
solve optimisation problems for which there is no exact known
solution/optimum. For example, there is no exact way in which
players must behave in a soccer field in order to win a match.
Different teams deploy different strategies to succeed. Therefore,
the problem of evolving soccer strategies does not have a fixed
or known solution.

The second reason is that GP allows for the use of trees
which easily serve as natural visual representations of solutions:
because of a tree’s structure, it is not difficult for humans to see
how the algorithm arrived at a certain decision (terminal node).

The third reason is that the worst-case computation time to
traverse a binary tree is linear and occurs when the tree has
taken the form of a list. Since the trees used in this algorithm do
not change shapes, it is not possible for any of the trees to
degenerate into lists. Therefore, the computation time to

31

Using Genetic Programming and Decision Trees for Team
Evolution

CIIS’19, November, 2019, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

evaluate the trees will always be logarithmic to the number of
elements. Since a crossover operation on trees is an expensive
approach [18] - because it involves creating copies of the desired
subtrees in order to make offspring trees - ensuring a cheap
evaluation of trees helps in making our approach viable.

EAs have the property that they can be used to solve a
problem to which a fixed solution is not known but can instead
be approximated. The approximation can be expressed in the
fitness function of the algorithm by penalizing models that do
not exhibit desirable behaviour and rewarding those that do, and
then using selected models to reproduce similar models with a
certain amount of diversity.

4.3.1 Chromosome Representation. Each DT represents a
potential solution to the problem. A chromosome that represents
good fitness is a DT that guides the agent towards optimum
behaviour in the playing field. Therefore, a good solution is a DT
that represents a sequence of steps that help the agent to
contribute positively towards the team’s chance of winning a
match.

4.3.2 Fitness Evaluation. The fitness of each DT is evaluated at
the end of each game or soccer match. Each DT’s fitness is
determined according to a performance score that is solely
associated to it. The score of a DT is affected by a set of
situations that it finds itself in (See Table 3).

Table 3: A depiction of rewards and penalties associated
with being in each situation

Situation Reward Penalty
Moves outside of the

field
0 50

Involved in a collision 0 50

In possession of the ball 1000 0

Scores a goal 10000 0

Teammate scores a goal 5000 0

Concedes a goal 0 5000

The reason fitness is calculated in this way is because we

assume that either the model does not have decisions that can
help it escape difficult situations, or it makes decisions that cause
it to be in unfavourable situations. As shown in Equation 1, the
fitness function can therefore be defined as the difference
between rewards and penalties that an agent would have
acquired by the end of one generation:

 () (1)

where is the generation counter, and are the total
rewards and penalties for one generation, respectively.

4.3.3 Selection Strategy. At the end of each generation, the
algorithm searches for candidates that fit the criteria for taking
part in reproducing offspring for the next generation. The
selection method used is tournament selection, and it is applied

as follows for each team: at the end of the generation, 7 players
are picked randomly. From the 7 players, 5 fittest players are
then selected for reproduction. This strategy allows for some of
the “worst” players to also have a chance of going to the next
generation, although, the odds still favour the fittest players.
Therefore, the algorithm leans towards elitism.

The algorithm has a considerable generation overlap since, at
each iteration step (generation), only half of the population is
replaced with new individuals. The 10 fittest members (5 from
each team) are selected to reproduce 10 new offspring. This was
done so that the performance of the players changes steadily
over time. The algorithm uses two reproduction operators:
crossover and mutation. Each team is evolved separately.

4.3.4 Reproduction. The crossover operator is used to produce
offspring DTs from DTs selected in the previous step. The list of
parent DTs is treated as a circular array. To perform crossover,
two parent DTs that are next to each other in the list of parent
DTs are selected to produce one offspring DT. Please refer to
Figure 3 for an illustration of how two parent DTs are combined
to produce an offspring DT.

Figure 3: An illustration of how the crossover operation is
carried out. The root of Parent 1 (C1) becomes the root of
the offspring. The left child (C2) of Parent 1 becomes the
offspring’s left child. The left child (C5) of Parent 2
becomes the right child of the offspring.

The root node of the offspring DT is the root node of the first
parent DT. The subtree extending from the left child of the first
parent DT also becomes the left subtree of the offspring DT’s
root. The subtree that extends from the left child of the second
parent DT’s root becomes the right subtree of the offspring DT’s
root.

The mutation rate changes overtime with the change in the
fitness landscape. At the start of the first generation, the
mutation rate is 10%. At the end of each generation, the fitness of
each selected DT is compared with the current overall best
fitness. If the fitness of the DT in question is higher than the
overall best fitness, the DT’s fitness becomes the overall best
fitness and the mutation rate is increased by 1%.

32

CIIS’19, November, 2019, Bangkok, Thailand
Siphesihle Philezwini Sithungu; Duncan Anthony Coulter and

 Elizabeth Marie Ehlers

The reason for increasing the mutation rate is that the
algorithm is still in the exploration phase. If the fitness of the DT
in question is lower than or equal to the overall best fitness, the
overall best fitness is not changed. However, the mutation rate is
decreased by 1%. The reason for decreasing the mutation rate in
this situation is because the algorithm may be converging
towards a solution, therefore, exploitation should be favoured
over exploration.

In order to perform mutation of a DT, Algorithm 1 is
followed. Using Algorithm 1, a tree might be mutated as in
Figure 4, for example. In Figure 4, node C2 and C5 were mutated
as the algorithm traversed the tree in a random fashion.

Algorithm 1 Mutation Algorithm Pseudocode

Function mutate(tree)
 cursor ← tree.root;
 random ← random integer between 0 and 1; //Dice throw.
 if (random == 1)
 walk(cursor.leftChild);
 end if
 else
 walk(root.rightChild);
 end if
end function

Function walk(cursor)
 random ← random integer between 0 and 1;
 if (cursor is a leaf node)
 if (random == 1)
 //Mutate with random action.
 cursor ← a random action;
 end if
 return
 end if
 if (random == 1)
 //Mutate with random function.
 cursor ← a random function;
 end if
 if (cursor.leftChild != null & cursor.rightChild != null)
 random ← a random integer between 0 and 1;
 if (random == 1)
 walk(cursor.leftChild)

 end if
 else
 walk(cursor.rightChild)
 endif
 end if
end function

Figure 4: An example of mutation being performed on a
DT. Each node is mutated with a uniform probability as
the algorithm walks down the tree in a random fashion.

5 Experimental Results
The algorithm was tested for different tree depths: 4, 6, 8 and 10,
and the experiments are titled Experiment 1, 2, 3 and 4
respectively. For tree depths 4 and 6, the evolutionary process
was run for 1000 generations. For depths 8 and 10, the
evolutionary process was run for 2000 generations. The aim was
to discover any interesting emergent behaviour that would arise
if the tree depth was increased.

5.1 Experiment 1
5.1.1 Performance of the Algorithm. For this experiment all the
players in the field were initialised with DTs of depth size 4.
Since, by the rules of the algorithm, all DTs are complete binary
trees, all the DTs consisted of 31 nodes. Figure 5 and 6 show the
resulting fitness curves for the black and yellow teams
respectively, for this experiment.

After 1000 generations, the players did show some
coordination and were able to recognise the location of the ball
in the field, and even move towards the ball. However, if a
player obtained possession of the ball, the player would
consistently kick the ball in a single direction until it went out of
the field.

Figure 5: A curve showing the average fitness of the black team for each generation across 1000 generations for trees that
are 4 nodes deep.

33

Using Genetic Programming and Decision Trees for Team
Evolution

CIIS’19, November, 2019, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

Figure 6: A curve showing the average fitness of the yellow team for each generation across 1000 generations for trees that
are 4 nodes deep.

Each time the ball went out of the field, the players could not
change the directions that they were moving in to follow the ball
once again. This shows that the players had learnt to follow the
ball at the start of the game, but they could not keep that up as
the game continued.

As can be seen in Figure 5, the black team’s average fitness
quickly ascended and stopped going up at generation 65. In fact,
there was a heavy drop of the team’s average fitness in
generation

78. The average fitness for the team finally plateaued from
generation 117 onwards, although it followed an increasing
trend from generation 800 going further. This resembles a
pattern that is also observable in nature and is referred to as
punctuated equilibria [19].

Another interesting observation is that the fitness of the
yellow team also followed a similar trend although the fitness
curve for the yellow team had less fluctuations. This means that
the algorithm was able to exploit good regions in the search
space for the yellow team.

5.1.2 Running Time of the Algorithm for each Evolution
Sequence. Figure 7 shows the GP algorithm’s running time for
each evolution sequence for Experiment 1. An evolution
sequence begins at the end of each generation. The following
steps are performed: (1) chromosome selection, (2) crossover, (3)
mutation and (4) returning of the new set players to the game

state. The average running time of the algorithm was
approximately 0.08 milliseconds.

5.2 Experiment 2
5.2.1 Performance of the Algorithm. For this experiment, the
players were initialised with decision trees of depth 6 (127
nodes). Figure 8 and Figure 9 show the average fitness curves of
the black and yellow teams respectively. Some interesting
behaviour was observed for this experiment. Not only did the
players chase the ball, but they had a sense of where their
opponent’s goals were. Some degree of competitiveness was
observed. However, most of the players would collide with each
other until the end of the match, leaving only a few players
running around the field. Several players also went to the
touchline and stayed there for the whole match.

As can be seen in Figure 8 and Figure 9, the two teams had
overall higher fitness than when the DTs were 4 nodes deep. The
fitness curve for the black team shows that the average fitness of
the team increased at significant rate from generation 0 to
generation 78, and then adopted a steady rise. This continued
until generation 442, where the average fitness of the team again
increased at a significant rate until it remained constant from
generation 468 to generation 728.

Figure 7: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 4 nodes
deep. The running times were recorded for the first 200 generations.

34

CIIS’19, November, 2019, Bangkok, Thailand
Siphesihle Philezwini Sithungu; Duncan Anthony Coulter and

 Elizabeth Marie Ehlers

Figure 8: A curve showing the average fitness of the black team for each generation across 1000 generations for trees that
are 6 nodes deep.

Figure 9: A curve showing the average fitness of the yellow team for each generation across 1000 generations for trees that
are 6 nodes deep.

After generation 728, the average fitness of the team started
dropping slowly until it maintained a it was constant again at
generation 819. The same trend can be seen for the yellow team,
although the changes took place at slightly different generations.

From an overall perspective, it was observed that increasing
the depth of the DTs to depth 6 improved the performance of the
players. This result can be justified by the fact that the players
had more condition sequences to evaluate. Therefore, the players
had the opportunity to make more complex decisions.

Furthermore, with a branching factor of 2, the resulting
decision nodes for each DT in this experiment was 64. This
provided the players with the opportunity to explore different
decisions for different condition sequences than when they had
only 16 different decisions to make in the previous experiment.

5.2.2 Running Time of the Algorithm for each Evolution
Sequence. Please refer to Figure 10 for the average running time
of the GP algorithm when evolving trees that are 6 nodes deep.
On average, the algorithm took 0.01ms longer than when the
DTs were 4 nodes deep. The difference in the number of nodes
between the two tree sizes was 96.

5.3 Experiment 3
5.3.1 Performance of the Algorithm. For this experiment, each
player’s DT was given a depth of 8 nodes. Figure 11 and Figure

12 show the average fitness curves of the black and yellow teams
respectively. From the 200th generation, players started moving
towards the ball, although most players moved to the touchlines.

After 200 generations, the players always had a sense of
where the ball was. Even if the ball went out of the playing area,
the players could redirect to the ball, which would now be at the
kick-off spot. Moreover, the competitiveness between the two
teams could be observed in some instances. For example, if a
player from the yellow team was in possession of the ball, then
the player’s teammates would try to stop any players from the
team in black from moving close to the player in possession.

However, after 1500 generations, no improvement in
gameplay could be observed. Instead, most of the players began
to hardly move in some instances. Each player would rapidly
move in opposite directions as if it was vibrating.

Although there were no improvements observed in terms of
game play, the average fitness scores of the teams did not drop.
This means that the algorithm converged to a local maximum.
The semi-vibrational movement patterns of the players were the
players’ way of not colliding with each other and not moving
outside of the field while being very close to the ball. Therefore,
by the fitness function, they were satisfying all the requirements
for not getting penalised.

35

Using Genetic Programming and Decision Trees for Team
Evolution

CIIS’19, November, 2019, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

Figure 10: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 6
nodes deep. The running times were recorded for the first 200 generations.

Figure 11: A curve showing the average fitness of the black team for each generation across 2000 generations for trees that
are 8 nodes deep.

Figure 12: A curve showing the average fitness of the yellow team for each generation across 2000 generations for trees that
are 8 nodes deep.

This led to the addition of a new penalty that was added in
order to avoid this behaviour. Each player was given a time
window. If the time window elapsed without the player having
moved at least 2 pixels away from its current position, the player
was penalised. As can be seen in Figure 11 and Figure 12, the

average fitness over time for the two teams was constant from
an overall perspective, until it started fluctuating heavily from
1400 onwards. However, from

both charts, it can be observed that the teams reached very
high fitness levels for some generations.

36

CIIS’19, November, 2019, Bangkok, Thailand
Siphesihle Philezwini Sithungu; Duncan Anthony Coulter and

 Elizabeth Marie Ehlers

Figure 13: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 8
nodes deep. The running times were recorded for the first 200 generations.

Between generations 75 and 100, the yellow team reached a
team average fitness higher than 1200000. Between generations
1984 and 2000, the black team reached an average team fitness
higher than 1600000. However, the algorithm could not exploit
these good regions in the search space.

5.3.2 Running Time of the Algorithm for each Evolution
Sequence. Figure 13 shows the average running time of each
evolution sequence performed by the algorithm when the DTs
were 8 nodes deep. The average running time of each evolution
sequence in this experiment was 0.18 milliseconds. This is twice
the average running time for Experiment 2, which was 0.09.

By increasing the depth of the tree by two, the average
running time increased by 0.09 milliseconds. This is a significant
increase, although justifiable considering that the DTs now had
384 more nodes.

5.4 Experiment 4
5.4.1 Performance of the Algorithm. For this final experiment,
each DT was 10 nodes deep. Figure 14 and Figure 15 show the
average fitness curves of the black and yellow teams respectively.

The resulting behaviour of the players was more
sophisticated than in previous experiments. The players showed
coordination and changed direction in order to chase the ball.
Some emergent behaviour could be observed in some cases
where a group of players would position themselves in a line, as
if to form a defensive wall. Some players also showed
coordinated movement with respect to each other. However,
players struggled to score goals. This might be due to the
competitiveness that the two teams had developed.

In previous experiments, the players could score goals easily,
but in most cases, it was a repeated sequence of actions.
Moreover, some players would repeatedly score own goals in
one match. Therefore, this shows that it was not planned
behaviour.

The time window constraint introduced in Experiment 3
improved the behaviour of the players on the pitch. However,
the collisions between players was now a limiting factor. Two
players would collide for the whole match without changing
directions.

Figure 14: A curve showing the average fitness of the black team for each generation across 2000 generations for trees that
are 10 nodes deep.

37

Using Genetic Programming and Decision Trees for Team
Evolution

CIIS’19, November, 2019, Bangkok, Thailand WOODSTOCK’18, June, 2018, El Paso, Texas USA

Figure 15: A curve showing the average fitness of the yellow team for each generation across 2000 generations for trees that
are 10 nodes deep.

Figure 16: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 10
nodes deep. The running times were recorded for the first 200 generations.

5.4.2 Running Time of the Algorithm for each Evolution
Sequence. Figure 17 shows the average running time for each
evolution sequence.

The average running time is 0.54. This is 0.36 milliseconds
longer than in experiment 3. This is most certainly because the
tree sizes were now more than two times bigger than in the
previous experiment. The number of nodes had increased by
1536.

5 Conclusion
The work presented here has shown that it is possible to evolve
emergent soccer strategies through GP. Four experiments were
performed where, for each experiment, the DT depths were
increased by 2. It was observed that the behaviour of the players
on the pitch increased in complexity with the size of the trees.
Although, some formations were observed when the trees were
10 nodes deep, they did not represent complex strategies. Table 4
compares the four approaches followed in the four experiments
with regards to RTES (Running Time of each Evolution
Sequence).

Although the average RTES was the highest for Experiment 4
(0.56 milliseconds), we still recommend the approach taken in
Experiment 4 to perform evolution. This is because 0.56
milliseconds is not a significantly long time for one evolution
sequence to take place in reality. Therefore, the approach in
Experiment 4 is still feasible because the behaviour of the agents
was much more intelligent than in the other experiments.

Table 4: A comparison of the four experiments.

Tree Depth Generations
Average

RTES

4 1000 0.08

6 1000 0.09

8 2000 0.18

10 2000 0.54

Further work needs to be done with regards to evolving DTs

to a point where agents display emergent strategies. One of the
limitations of evolving DTs without changing their shape is that

38

CIIS’19, November, 2019, Bangkok, Thailand
Siphesihle Philezwini Sithungu; Duncan Anthony Coulter and

 Elizabeth Marie Ehlers

 () (where is the number of nodes in the tree) conditions
must always be evaluated before any decision is made. For some
decisions to be made, only a few conditions need to be true. For
example, say a player is in possession of the ball and in front of
the opponent’s goal. The only decision to make, after evaluating
the respective conditions (IN_POSSESSION &
OPP_GOALS_CLOSE) as being true, is to kick the ball into the
net.

A limitation of implementing DTs as complete binary trees is
that the size of a DT grows exponentially with its depth: with a
branching factor of 2, the number of nodes at depth become .
Future work will focus on using DTs of variable shape and size
in order to examine how the teams would evolve if all the DTs
were not required to have the same shape and size.

REFERENCES
[1] Arni Arnason, Stefan B Sigurdsson, Arni Gudmundsson, Ingar Holme, Lars

Engebretsen, and Roald Bahr. 2004. Physical fitness, injuries, and team
performance in soccer. Medicine & Science in Sports & Exercise 36, 2 (2004), 278–
285.

[2] Steven M Gustafson and William H Hsu. 2001. Layered learning in genetic
programming for a cooperative robot soccer problem. In European Conference
on Genetic Programming. Springer, 291–301.

[3] Peter Stone and Manuela Veloso. 2000. Layered learning. In European Conference on
Machine Learning. Springer, 369–381.

[4] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of the art.
Autonomous agents and multi-agent systems 11, 3 (2005), 387–434.

[5] J-H Kim, H-S Shim, H-S Kim, M-J Jung, I-H Choi, and J-O Kim. 1997. A
cooperative multi-agent system and its real time application to robot soccer. In
Proceedings of International Conference on Robotics and Automation, Vol. 1. IEEE,
638–643.

[6] Franciszek Seredynski. 1997. Competitive coevolutionary multi-agent systems: The
application to mapping and scheduling problems. J. Parallel and Distrib. Comput.
47, 1 (1997), 39–57.

[7] Sean Luke et al. 1998. Genetic programming produced competitive soccer softbot teams
for robocup97. Genetic Programming 1998 (1998), 214–222.

[8] Andries P Engelbrecht. 2007. Computational intelligence: an introduction. John
Wiley & Sons.

[9] Darrell Whitley. 1994. A genetic algorithm tutorial. Statistics and computing 4, 2
(1994), 65–85.

[10] John R Koza. 1997. Genetic programming. (1997).
[11] Vic Ciesielski, Dylan Mawhinney, and Peter Wilson. 2001. Genetic

programming for robot soccer. In Robot Soccer World Cup. Springer, 319–324.
[12] Michel Chilowicz, Etienne Duris, and Gilles Roussel. 2009. Syntax tree

fingerprinting for source code similarity detection. In 2009 IEEE 17th
International Conference on Program Comprehension. IEEE, 243–247.

[13] Julian F. Miller. 2011. Cartesian Genetic Programming. Springer Berlin Heidelberg,
Berlin, Heidelberg, 17–34. https://doi.org/10.1007/978-3-642-17310-3_2

[14] Sichun Wang. 2009. Solving the Optimal Solution of Weight Vectors on GP-
Decision Tree. In 2009 Second International Conference on Intelligent
Computation Technology and Automation, Vol. 4. IEEE, 329–332.

[15] Antonio J Fernández, Carlos Cotta, and Rafael Campaña Ceballos. 2008.
Generating Emergent Team Strategies in Football Simulation Videogames via
Genetic Algorithms. In GAMEON. Citeseer, 120–128.

[16] Sean Luke. 1998. Evolving soccerbots: A retrospective. In Proceedings of the 12th
Annual Conference of the Japanese Society for Artificial Intelligence. Citeseer.

[17] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by
randomForest. R news 2, 3 (2002), 18–22.

[18] Mihai Oltean. 2004. Solving even-parity problems using traceless genetic
programming. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE
Cat. No. 04TH8753), Vol. 2. IEEE, 1813–1819.

[19]Michael D Vose and Gunar E Liepins. 1991. Punctuated equilibria in genetic search.
Complex systems 5, 1 (1991), 31–44.

39

https://doi.org/10.1007/978-3-642-17310-3_2

