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ABSTRACT 
This paper presents work done to evolve soccer strategies 
through Genetic Programming. Each agent is controlled by an 
algorithm in the form of a decision tree to act on the 
environment given its percepts. Several experiments were 
performed and an analysis of the performance of the algorithm 
was documented afterwards. Experimental results showed that it 
is possible to implement soccer learning in a multi-agent system 
through Genetic Programming, although the evolution of higher-
level soccer strategies is a more difficult task. 

CCS CONCEPTS 
• Computing methodologies→Genetic programming 

KEYWORDS 
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1 Introduction 
Without much analysis, soccer might appear to be an easy game 
to play, with a negligible requirement for tactical approaches. 
However, at high levels of professional play, soccer involves 
complexity. Furthermore, a team’s performance may be 
determined by several factors, such as the fitness levels and 
technical capabilities of players, overall team morale, the 
strategies applied [1] and environmental factors. 

The complexity of soccer makes it a good testbed for multi-
agent system research [2] [3]. Simulated soccer allows for two 
types of learning: team learning, where a single learner learns 
joint solutions, and concurrent learning, in which multiple agents 
learn simultaneously [4]. Soccer has both the characteristics of 
cooperative [5] (participating in a team) and competitive [6] 
(winning against opponents) multi-agent systems. The existence 
of internal competition within a team is also possibility because 
each agent may want to outperform other agents. 

The work presented here proposes the use of Genetic 

Programming (GP) to evolve player behaviour so that it 
improves over time. The approach to be taken is that of 
concurrent learning, where each player in the field is 
represented by an agent that learns how to play the game 
intelligently enough. In order to achieve this aim, rules based on 
simple and primitive actions (i.e. choosing a direction) must be 
evolved to a point where each agent learns to play soccer. The 
idea is to avoid introducing any form of bias when defining the 
fitness function, as noted in [7]. Therefore, at the beginning of 
each experiment, no player is expected to possess any 
knowledge of soccer (i.e. to show no hand-coded coherent 
behaviour). As time progresses, basic improvement and 
emergent play should be observed. 

Evolutionary Computation (EC) - better known as 
Evolutionary Algorithms (EA) - is a subfield of Computational 
Intelligence (CI) that encodes the processes of natural evolution. 
Charles Dar- win’s theory of natural selection is considered the 
foundation of biological evolution and briefly states that: 
Individuals of a population compete in order to thrive in a world 
of finite resources. Those individuals possessing the most useful 
characteristics have a better chance of surviving and 
reproducing offspring . 

Through reproduction, the characteristics of an individual are 
passed on to their offspring. Therefore, according to Darwin’s 
theory, useful characteristics will be carried on to and inherited 
by subsequent generations, resulting in those characteristics 
being the most common across the population [8]. GP is part of 
the family of EAs and is inspired by the Genetic Algorithm (GA), 
which adopts the following concepts from biological evolution: 
(1) fitness evaluation, (2) crossover and (3) mutation [9]. In the GP 
context, a GA runs on a population computer programs rather 
than bit strings. 

Genetic Programming (GP) deals with an important objective 
of computer science: creating computer programs that can solve 
problems without the provision of explicit instructions. This is 
referred to as automatic programming, a concept that refers to 
the automatic creation of computer programs that enable 
computers to solve problems. 

An initial population of randomly generated computer 
programs made up of available programmatic elements is 
evolved by methods of natural selection in order to produce 
populations of improved programs [10]. At the end of each 
generation, computer programs in the form of trees are selected 
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for reproduction using a chosen selection mechanism (e.g. 
tournament, random or proportional selection [8]) where the 
fitness of each program is taken into account. 

Crossover is used to perform the reproduction of offspring. To 
perform crossover, subtrees may be chosen from each parent and 
substituted with one another to produce two offspring programs 
for example. To perform mutation, a subtree may be chosen at 
random and replaced with a randomly generated subtree [11]. 
All the above-mentioned components have no domain 
knowledge and simply rely on the Darwinian principle of 
survival of the fittest [10]. A computer program can be 
represented as a tree (i.e. Abstract Syntax Tree [12]) or graph (i.e. 
Directed Acyclic Graph [13]). 

The advantage of using GP to evolve trees is that we do not 
need to know the structure of an optimal tree in advance. 
Therefore, instead of concerning ourselves with task of building 
good solutions, the focus is on specifying a good fitness function 
for accepting candidate solutions [14]. Finally, Evolutionary 
Algorithms (EA) are highly customisable. This is an important 
feature because it serves as an advantage when designing an EA 
for the purpose of solving a specific problem [8]. The work 
presented here aims to use GP to evolve decision trees (DT) - 
which act as algorithms for the different agents. Each player in 
the soccer field will, therefore, be controlled by its dedicated 
decision tree. 

The rest of the paper is structured as follows: Section 2 is a 
literature survey of relevant works. Section 3 describes the 
problem statement and Section 4 follows with the proposed 
solution. Section 5 reports on the experimental results and offers 
a critical analysis of the algorithm. Finally, Section 6 concludes 
the paper. 

2 Literature Review 

2.1 Generating Emergent Team Strategies 
through Genetic Algorithms in Football 
Video Games 

Fernández-Leiva A., Cotta C. and Campaña Ceballos R. [15] 
proposed the use of a GA for improving the performance of 
computer-controlled opponents for human players in soccer 
video games. The aim of the work was to prove that 
evolutionary algorithms could perform better human-coded AI 
controllers in video games since it is becoming increasingly 
difficult to specify condition-action rules for player behaviour as 
video games continue to imitate real-life situations. 

An agent was represented by its chromosome (a vector of k 
values, where k represents the number of situations that the 
agent might find itself in. Each index of the vector represented a 
specific situation, whereas the value in that index represented 
the action that the agent would perform for that situation). The 
type of GA used was a Steady State Genetic Algorithm (SSGA) 
that applied single-point crossover. The selection mechanisms 
used was binary tournament with an elitist replacement policy. 

Experimental results showed that GAs can be used in video 
games since it was observed that the overall behaviour of the 
players did improve overtime. Furthermore, it was stated that 
using GAs in video games may lead to video games where 
computer-controlled players display emergent and entertaining 
behaviour. This is because computer-controlled agents would 
continuously face human opponents, which means that the 
algorithm would be consistently trained against naturally 
improving opponents [15]. 

2.2 A Softbot Team Whose Strategy is Learned 
through Genetic Programming 

In [16] work was done to develop a softbot team that defeated 
opponents programmed using hand-coded strategies. The softbot 
team won the RoboCup Scientific Challenge Award. Furthermore, 
the EA used was able to evolve teams that could position 
themselves across the field, make passes, shoot at goals and 
coordinate behaviour to complement teammates. The EA used 
was GP and, accordingly, chromosomes were represented as 
trees instead of vectors. A tree represented an entire team, not a 
single player. 

Two approaches were followed to construct a game-playing 
tree: In the first approach, a tree represented a heterogeneous 
team where different parts of the tree were assigned to different 
players. In the second approach, a tree represented a 
homogenous team instead. The homogenous performed better in 
the end. 

In order to evaluate a team’s fitness, the researchers applied a 
strategy that they referred to as competitive fitness. The idea 
behind competitive fitness was that a team’s fitness was 
measured based on competition with other agents in the 
population (e.g. through a round-robin tournament where every 
team in the population plays against every other team). 

The author pointed out that the function sets used were very 
biased. This inhibited the algorithm from reaching more 
generalised solutions that could maintain their own internal 
state. As such, the resulting teams consisted of purely reactive 
players whose decisions mainly relied on the current state of the 
environment. [16]. 

2.3 Genetic Programming for Robot Soccer 
The work done in [11] presented the use of Strongly Typed 
Genetic Programming (STGP) in robot soccer. The selection 
mechanism used was elimination round-style tournament where 
two programs were randomly chosen to play against each other. 
The program that won the play-off was advanced to the next 
round. 

A program’s fitness was determined by how many rounds it 
won and the fittest individuals in a generation were played 
against each other in a best-of tournament. In the first 
experiment, the programs could only perform primitive soccer 
actions with the hope that they would evolve complex 
behaviours from them. The resulting programs did not show any 
intelligent behaviour; therefore, the winner of a tournament was 
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determined randomly. In the second experiment, higher level 
functions that correspond to complex soccer behaviour were 
introduced, but terminal actions remained the same as in the 
first experiment. This resulted in the programs showing simple 
soccer-playing behaviour. 

During the third experiment, the same functions as in the 
first experiment were used including additional functions and 
terminal actions. Roulette wheel selection was used instead of 
tournament selection, and fitness was calculated as a weighted 
sum of the number of goals scored and executed kicks. The 
resulting teams showed interesting behaviour, although most of 
it was random [11]. 

2.4 Layered Learning in Genetic Programming 
for a Cooperative Robot Soccer Problem 

The researchers in [2] used Layered Learning GP (LLGP) for 
learning keep-away soccer. A learning problem was divided into 
separate sub-problems that were solved in a bottom-up fashion. 
Therefore, the solution to the previous sub-problem became the 
initial population to the current sub-problem. 

Four experiments were conducted. The first experiment used 
standard GP; the second experiment used Automatically Defined 
Functions GP (ADFGP). The third experiment used (LLGP) where 
the fittest individual was duplicated to fill the initial population 
for the next layer (LL1GP). The fourth experiment used LLGP 
where the entire population was used as the initial population of 
the next layer (LL2GP). According to the experimental results, 
LL1GP performed poorly when compared to standard GP and 
ADFGP, whereas LL2GP performed on par with SGP and ADFGP. 
Although LL2GP converged in the first 10 generations. 

New Layered Learning Genetic Programming (nLL2GP) is a 
variation of LL2GP that uses 20 generations to train the first 
layer and 81 generations to train the second layer. nLL2GP 
performed slightly better than all the previous algorithms [2]. 

3 Problem Statement 
The work presented here aims to use GP for team evolution 
through DTs. The secondary purpose is to discover how well a 
decision tree can perform as decision-making model for an agent 
performing a task in a real-time environment. The idea is that, 
even though agents may be initialized with purely random DTs, 
some of the decisions made by the agents will show some 
measure of intelligence. 

Therefore, if GP is applied carefully to choose DTs that make 
favourable decisions - even though they were made randomly - 
new DTs can be derived that inherit the desired behaviour and 
further display interesting and complex behaviour due to 
random mutation. 

Taking a closer look at the work presented in [15]: in order to 
add a new condition to the vector of possible situations as 
described in [15], one would have to redesign the vector. 
Therefore, it would be inconvenient to incorporate new 
behaviours. Our approach introduces more flexibility. Using a 

tree allows one to only add conditions to the existing pool of 
possible conditions without having to worry about restructuring 
the tree. 

The work presented in [16] makes use of a single tree that 
represents an entire team. This means that when the tree is 
flawed, there is a high probability that the whole team will 
perform poorly. We propose that every agent is controlled by its 
own DT as this will lead to a more distributed structure without 
a single point of failure. 

Finally, our approach might show resemblance to that of a 
Random Forest (RF) classifier albeit it is different. RF is an 
ensemble learning method where many classifiers (i.e. DTs) are 
generated - using a concept referred to as bootstrap aggregation - 
and whose predictions/classifications are aggregated to make a 
single classification [17]. In contrast to RF, our approach is based 
on the fact that each agent is controlled by one DT that makes 
decisions on behalf of only that agent. The decisions of other 
DTs are not aggregated to reach a decision for one agent. At the 
end of each generation, trees of desirable fitness are used to 
evolve tree which will also hopefully possess desirable fitness. 

4 Proposed Solution 

4.1 StratFinder Prototype 
StratFinder (short for Strategy Finder) is the solution prototype 
that was developed for this work. The application consists of a 
simulation window that renders instances of soccer matches. 
Each soccer match is essentially a non-player game that consists 
of two teams meant to be in opposition. 

Each team consists of 10 field players and there are no 
goalkeepers. Goalkeepers are not included because the aim is to 
evolve in-field game play without focusing on the added problem 
of evolving goalkeeping skills. However, goalkeepers could 
theoretically be added so that they behave according to 
predefined condition-action rules. Doing so would allow us to 
further examine how players would evolve if the game had 
goalkeepers. Please refer to Figure 1 for a screenshot of the 
simulation user interface. 

 

Figure 1: StratFinder's simulation user interface. 
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The team in yellow must score goals at the right-hand side 
goal and defend the left-hand side goal. The team in black must 
score at the left-hand side goal and defend the right-hand side 
goal. 

In order to win, a team must have scored more goals than the 
opposition by the end of the match. If the ball leaves the field, it 
goes back to the centre of the field and any player from either of 
the teams can kick it first when the simulation continues. 
Therefore, the throw-in and corner-kick rules of soccer do not 
apply. The offside rule also does not apply. These special 
conditions are already a part of the simulation. 

4.2 Decision Tree Implementation 
The DT used to control each player is a perfect binary tree. All 
internal nodes of a tree are function nodes (they represent 
conditions that the player might be in) that return a value of true 
or false. When a function node returns a value of true for a 
condition, the left child is evaluated; otherwise, the right child is 
evaluated. At the beginning of the first generation, all trees have 
the same depth. No evolutionary operator (whether it be 
crossover or mutation) can alter the structure of a tree. Please 
refer to Figure 2 for a depiction of a sample DT. 

4.2.1 Function Nodes. There are 20 different conditions that a 
player can find itself in; this results in 20 different function 
nodes that initially have equal probability of existing anywhere 
in a DT except as terminal nodes (i.e. if a DT is 6 nodes deep, it 
will have 64 function nodes). Therefore, all conditions initially 
have a uniform probability of existing in any DT. Moreover, 
mutating the DTs will also ensure that the algorithm tests as 
many condition sequences as possible. Table 1 lists the possible 
Functions that can exist as internal nodes in a DT. 

 

Figure 2: An example DT. 

Table 1: A list of function nodes that can exist in a DT 

Function Type Function Name 
Teammates 
 

TEAMMATE_N 
TEAMMATE_S 
TEAMMATE_E 
TEAMMATE_W 

Opponents 
 

OPPONENT_N 
OPPONENT_S 
OPPONENT_W 
OPPONENT_E 

Ball 
 

BALL_N 
BALL_S 
BALL_W 
BALL_E 

Touchline 
 

TOUCHLINE_N 
TOUCHLINE_S 
TOUCHLINE_W 
TOUCHLINE_E 

Goals 
 

OWN_GOALS_CLOSE 
OPP_GOALS_CLOSE 

Possession IN_POSSESSION 
TEAMMATE_IN_POSSESSION 
OPP_IN_POSSESSION 

 
4.2.1 Action Nodes. An action node represents the action that 

an agent will perform after having evaluated all preceding 
conditions. There are 8 different possible actions that an agent 
can perform, and they all have an equal probability of existing in 
any DT. Furthermore, an action node can only exist as a terminal 
(leaf) node. A player can move in 8 different directions. When a 
player is in possession of the ball, the player automatically kicks 
the ball in the direction it is moving in. Please refer to Table 2 for 
a list of the possible action nodes. 

Table 2: A list of action nodes that can exist in a DT 

Action Type Action Name 
Move MOVE_N 

MOVE_S 
MOVE_W 
MOVE_E 
MOVE_NW 
MOVE_NE 
MOVE_SW 
MOVE_SE 

4.3 Algorithm Implementation 
There are three primary reasons for using GP for this problem: 
the first reason generally applies to all EAs. EAs can be used to 
solve optimisation problems for which there is no exact known 
solution/optimum. For example, there is no exact way in which 
players must behave in a soccer field in order to win a match. 
Different teams deploy different strategies to succeed. Therefore, 
the problem of evolving soccer strategies does not have a fixed 
or known solution. 

The second reason is that GP allows for the use of trees 
which easily serve as natural visual representations of solutions: 
because of a tree’s structure, it is not difficult for humans to see 
how the algorithm arrived at a certain decision (terminal node). 

The third reason is that the worst-case computation time to 
traverse a binary tree is linear and occurs when the tree has 
taken the form of a list. Since the trees used in this algorithm do 
not change shapes, it is not possible for any of the trees to 
degenerate into lists. Therefore, the computation time to 
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evaluate the trees will always be logarithmic to the number of 
elements. Since a crossover operation on trees is an expensive 
approach [18] - because it involves creating copies of the desired 
subtrees in order to make offspring trees - ensuring a cheap 
evaluation of trees helps in making our approach viable. 

EAs have the property that they can be used to solve a 
problem to which a fixed solution is not known but can instead 
be approximated. The approximation can be expressed in the 
fitness function of the algorithm by penalizing models that do 
not exhibit desirable behaviour and rewarding those that do, and 
then using selected models to reproduce similar models with a 
certain amount of diversity. 

4.3.1 Chromosome Representation. Each DT represents a 
potential solution to the problem. A chromosome that represents 
good fitness is a DT that guides the agent towards optimum 
behaviour in the playing field. Therefore, a good solution is a DT 
that represents a sequence of steps that help the agent to 
contribute positively towards the team’s chance of winning a 
match. 

4.3.2 Fitness Evaluation. The fitness of each DT is evaluated at 
the end of each game or soccer match. Each DT’s fitness is 
determined according to a performance score that is solely 
associated to it. The score of a DT is affected by a set of 
situations that it finds itself in (See Table 3). 

Table 3: A depiction of rewards and penalties associated 
with being in each situation 

Situation Reward Penalty 
Moves outside of the 

field 
0 50 

Involved in a collision 0 50 

In possession of the ball 1000 0 

Scores a goal 10000 0 

Teammate scores a goal 5000 0 

Concedes a goal 0 5000 

 
The reason fitness is calculated in this way is because we 

assume that either the model does not have decisions that can 
help it escape difficult situations, or it makes decisions that cause 
it to be in unfavourable situations. As shown in Equation 1, the 
fitness function can therefore be defined as the difference 
between rewards and penalties that an agent would have 
acquired by the end of one generation: 

 
 ( )               (1) 
 

where   is the generation counter,    and    are the total 
rewards and penalties for one generation, respectively. 

4.3.3 Selection Strategy. At the end of each generation, the 
algorithm searches for candidates that fit the criteria for taking 
part in reproducing offspring for the next generation. The 
selection method used is tournament selection, and it is applied 

as follows for each team: at the end of the generation, 7 players 
are picked randomly. From the 7 players, 5 fittest players are 
then selected for reproduction. This strategy allows for some of 
the “worst” players to also have a chance of going to the next 
generation, although, the odds still favour the fittest players. 
Therefore, the algorithm leans towards elitism. 

The algorithm has a considerable generation overlap since, at 
each iteration step (generation), only half of the population is 
replaced with new individuals. The 10 fittest members (5 from 
each team) are selected to reproduce 10 new offspring. This was 
done so that the performance of the players changes steadily 
over time. The algorithm uses two reproduction operators: 
crossover and mutation. Each team is evolved separately. 

4.3.4 Reproduction. The crossover operator is used to produce 
offspring DTs from DTs selected in the previous step. The list of 
parent DTs is treated as a circular array. To perform crossover, 
two parent DTs that are next to each other in the list of parent 
DTs are selected to produce one offspring DT. Please refer to 
Figure 3 for an illustration of how two parent DTs are combined 
to produce an offspring DT. 

 

Figure 3: An illustration of how the crossover operation is 
carried out. The root of Parent 1 (C1) becomes the root of 
the offspring. The left child (C2) of Parent 1 becomes the 
offspring’s left child. The left child (C5) of Parent 2 
becomes the right child of the offspring. 

The root node of the offspring DT is the root node of the first 
parent DT. The subtree extending from the left child of the first 
parent DT also becomes the left subtree of the offspring DT’s 
root. The subtree that extends from the left child of the second 
parent DT’s root becomes the right subtree of the offspring DT’s 
root. 

The mutation rate changes overtime with the change in the 
fitness landscape. At the start of the first generation, the 
mutation rate is 10%. At the end of each generation, the fitness of 
each selected DT is compared with the current overall best 
fitness. If the fitness of the DT in question is higher than the 
overall best fitness, the DT’s fitness becomes the overall best 
fitness and the mutation rate is increased by 1%.  
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The reason for increasing the mutation rate is that the 
algorithm is still in the exploration phase. If the fitness of the DT 
in question is lower than or equal to the overall best fitness, the 
overall best fitness is not changed. However, the mutation rate is 
decreased by 1%. The reason for decreasing the mutation rate in 
this situation is because the algorithm may be converging 
towards a solution, therefore, exploitation should be favoured 
over exploration. 

In order to perform mutation of a DT, Algorithm 1 is 
followed. Using Algorithm 1, a tree might be mutated as in 
Figure 4, for example. In Figure 4, node C2 and C5 were mutated 
as the algorithm traversed the tree in a random fashion. 

 
Algorithm 1 Mutation Algorithm Pseudocode 
 
Function mutate(tree) 
      cursor ← tree.root; 
      random ← random integer between 0 and 1; //Dice throw. 
      if (random == 1) 
            walk(cursor.leftChild); 
      end if 
      else 
            walk(root.rightChild); 
      end if 
end function 
 
Function walk(cursor) 
      random ← random integer between 0 and 1; 
      if (cursor is a leaf node) 
            if (random == 1) 
     //Mutate with random action. 
                  cursor ← a random action;  
            end if 
            return 
      end if 
      if (random == 1) 
            //Mutate with random function. 
            cursor ← a random function; 
      end if 
      if (cursor.leftChild != null & cursor.rightChild != null) 
            random ← a random integer between 0 and 1; 
            if (random == 1) 
                  walk(cursor.leftChild) 

            end if 
            else 
                  walk(cursor.rightChild) 
            endif 
      end if 
end function 

 

Figure 4: An example of mutation being performed on a 
DT. Each node is mutated with a uniform probability as 
the algorithm walks down the tree in a random fashion. 

5 Experimental Results 
The algorithm was tested for different tree depths: 4, 6, 8 and 10, 
and the experiments are titled Experiment 1, 2, 3 and 4 
respectively. For tree depths 4 and 6, the evolutionary process 
was run for 1000 generations. For depths 8 and 10, the 
evolutionary process was run for 2000 generations. The aim was 
to discover any interesting emergent behaviour that would arise 
if the tree depth was increased. 

5.1 Experiment 1 
5.1.1 Performance of the Algorithm. For this experiment all the 
players in the field were initialised with DTs of depth size 4. 
Since, by the rules of the algorithm, all DTs are complete binary 
trees, all the DTs consisted of 31 nodes. Figure 5 and 6 show the 
resulting fitness curves for the black and yellow teams 
respectively, for this experiment. 

After 1000 generations, the players did show some 
coordination and were able to recognise the location of the ball 
in the field, and even move towards the ball. However, if a 
player obtained possession of the ball, the player would 
consistently kick the ball in a single direction until it went out of 
the field. 

 

Figure 5: A curve showing the average fitness of the black team for each generation across 1000 generations for trees that 
are 4 nodes deep. 
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Figure 6: A curve showing the average fitness of the yellow team for each generation across 1000 generations for trees that 
are 4 nodes deep. 

Each time the ball went out of the field, the players could not 
change the directions that they were moving in to follow the ball 
once again. This shows that the players had learnt to follow the 
ball at the start of the game, but they could not keep that up as 
the game continued. 

As can be seen in Figure 5, the black team’s average fitness 
quickly ascended and stopped going up at generation 65. In fact, 
there was a heavy drop of the team’s average fitness in 
generation 

78. The average fitness for the team finally plateaued from 
generation 117 onwards, although it followed an increasing 
trend from generation 800 going further. This resembles a 
pattern that is also observable in nature and is referred to as 
punctuated equilibria [19].  

Another interesting observation is that the fitness of the 
yellow team also followed a similar trend although the fitness 
curve for the yellow team had less fluctuations. This means that 
the algorithm was able to exploit good regions in the search 
space for the yellow team. 

5.1.2 Running Time of the Algorithm for each Evolution 
Sequence. Figure 7 shows the GP algorithm’s running time for 
each evolution sequence for Experiment 1. An evolution 
sequence begins at the end of each generation. The following 
steps are performed: (1) chromosome selection, (2) crossover, (3) 
mutation and (4) returning of the new set players to the game 

state. The average running time of the algorithm was 
approximately 0.08 milliseconds. 

5.2 Experiment 2 
5.2.1 Performance of the Algorithm. For this experiment, the 
players were initialised with decision trees of depth 6 (127 
nodes). Figure 8 and Figure 9 show the average fitness curves of 
the black and yellow teams respectively. Some interesting 
behaviour was observed for this experiment. Not only did the 
players chase the ball, but they had a sense of where their 
opponent’s goals were. Some degree of competitiveness was 
observed. However, most of the players would collide with each 
other until the end of the match, leaving only a few players 
running around the field. Several players also went to the 
touchline and stayed there for the whole match.  

As can be seen in Figure 8 and Figure 9, the two teams had 
overall higher fitness than when the DTs were 4 nodes deep. The 
fitness curve for the black team shows that the average fitness of 
the team increased at significant rate from generation 0 to 
generation 78, and then adopted a steady rise. This continued 
until generation 442, where the average fitness of the team again 
increased at a significant rate until it remained constant from 
generation 468 to generation 728.  

 

Figure 7: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 4 nodes 
deep. The running times were recorded for the first 200 generations. 
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Figure 8: A curve showing the average fitness of the black team for each generation across 1000 generations for trees that 
are 6 nodes deep. 

 

Figure 9: A curve showing the average fitness of the yellow team for each generation across 1000 generations for trees that 
are 6 nodes deep. 

After generation 728, the average fitness of the team started 
dropping slowly until it maintained a it was constant again at 
generation 819. The same trend can be seen for the yellow team, 
although the changes took place at slightly different generations.  

From an overall perspective, it was observed that increasing 
the depth of the DTs to depth 6 improved the performance of the 
players. This result can be justified by the fact that the players 
had more condition sequences to evaluate. Therefore, the players 
had the opportunity to make more complex decisions. 

Furthermore, with a branching factor of 2, the resulting 
decision nodes for each DT in this experiment was 64. This 
provided the players with the opportunity to explore different 
decisions for different condition sequences than when they had 
only 16 different decisions to make in the previous experiment. 

5.2.2 Running Time of the Algorithm for each Evolution 
Sequence. Please refer to Figure 10 for the average running time 
of the GP algorithm when evolving trees that are 6 nodes deep. 
On average, the algorithm took 0.01ms longer than when the 
DTs were 4 nodes deep. The difference in the number of nodes 
between the two tree sizes was 96. 

5.3 Experiment 3 
5.3.1 Performance of the Algorithm. For this experiment, each 
player’s DT was given a depth of 8 nodes. Figure 11 and Figure 

12 show the average fitness curves of the black and yellow teams 
respectively. From the 200th generation, players started moving 
towards the ball, although most players moved to the touchlines. 

After 200 generations, the players always had a sense of 
where the ball was. Even if the ball went out of the playing area, 
the players could redirect to the ball, which would now be at the 
kick-off spot. Moreover, the competitiveness between the two 
teams could be observed in some instances. For example, if a 
player from the yellow team was in possession of the ball, then 
the player’s teammates would try to stop any players from the 
team in black from moving close to the player in possession. 

However, after 1500 generations, no improvement in 
gameplay could be observed. Instead, most of the players began 
to hardly move in some instances. Each player would rapidly 
move in opposite directions as if it was vibrating. 

Although there were no improvements observed in terms of 
game play, the average fitness scores of the teams did not drop. 
This means that the algorithm converged to a local maximum. 
The semi-vibrational movement patterns of the players were the 
players’ way of not colliding with each other and not moving 
outside of the field while being very close to the ball. Therefore, 
by the fitness function, they were satisfying all the requirements 
for not getting penalised. 
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Figure 10: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 6 
nodes deep. The running times were recorded for the first 200 generations. 

 

Figure 11: A curve showing the average fitness of the black team for each generation across 2000 generations for trees that 
are 8 nodes deep. 

 

Figure 12: A curve showing the average fitness of the yellow team for each generation across 2000 generations for trees that 
are 8 nodes deep. 

This led to the addition of a new penalty that was added in 
order to avoid this behaviour. Each player was given a time 
window. If the time window elapsed without the player having 
moved at least 2 pixels away from its current position, the player 
was penalised. As can be seen in Figure 11 and Figure 12, the 

average fitness over time for the two teams was constant from 
an overall perspective, until it started fluctuating heavily from 
1400 onwards. However, from  

both charts, it can be observed that the teams reached very 
high fitness levels for some generations. 
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Figure 13: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 8 
nodes deep. The running times were recorded for the first 200 generations.  

Between generations 75 and 100, the yellow team reached a 
team average fitness higher than 1200000. Between generations 
1984 and 2000, the black team reached an average team fitness 
higher than 1600000. However, the algorithm could not exploit 
these good regions in the search space. 

5.3.2 Running Time of the Algorithm for each Evolution 
Sequence. Figure 13 shows the average running time of each 
evolution sequence performed by the algorithm when the DTs 
were 8 nodes deep. The average running time of each evolution 
sequence in this experiment was 0.18 milliseconds. This is twice 
the average running time for Experiment 2, which was 0.09. 

By increasing the depth of the tree by two, the average 
running time increased by 0.09 milliseconds. This is a significant 
increase, although justifiable considering that the DTs now had 
384 more nodes. 

5.4 Experiment 4 
5.4.1 Performance of the Algorithm. For this final experiment, 
each DT was 10 nodes deep. Figure 14 and Figure 15 show the 
average fitness curves of the black and yellow teams respectively. 

The resulting behaviour of the players was more 
sophisticated than in previous experiments. The players showed 
coordination and changed direction in order to chase the ball. 
Some emergent behaviour could be observed in some cases 
where a group of players would position themselves in a line, as 
if to form a defensive wall. Some players also showed 
coordinated movement with respect to each other. However, 
players struggled to score goals. This might be due to the 
competitiveness that the two teams had developed. 

In previous experiments, the players could score goals easily, 
but in most cases, it was a repeated sequence of actions. 
Moreover, some players would repeatedly score own goals in 
one match. Therefore, this shows that it was not planned 
behaviour. 

The time window constraint introduced in Experiment 3 
improved the behaviour of the players on the pitch. However, 
the collisions between players was now a limiting factor. Two 
players would collide for the whole match without changing 
directions. 

Figure 14: A curve showing the average fitness of the black team for each generation across 2000 generations for trees that 
are 10 nodes deep. 
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Figure 15: A curve showing the average fitness of the yellow team for each generation across 2000 generations for trees that 
are 10 nodes deep. 

 

Figure 16: A scatter plot showing the running times (y-axis) for each evolution sequence (x-axis) when the trees were 10 
nodes deep. The running times were recorded for the first 200 generations. 

5.4.2 Running Time of the Algorithm for each Evolution 
Sequence. Figure 17 shows the average running time for each 
evolution sequence.  

The average running time is 0.54. This is 0.36 milliseconds 
longer than in experiment 3. This is most certainly because the 
tree sizes were now more than two times bigger than in the 
previous experiment. The number of nodes had increased by 
1536.  

5 Conclusion 
The work presented here has shown that it is possible to evolve 
emergent soccer strategies through GP. Four experiments were 
performed where, for each experiment, the DT depths were 
increased by 2. It was observed that the behaviour of the players 
on the pitch increased in complexity with the size of the trees. 
Although, some formations were observed when the trees were 
10 nodes deep, they did not represent complex strategies. Table 4 
compares the four approaches followed in the four experiments 
with regards to RTES (Running Time of each Evolution 
Sequence). 

Although the average RTES was the highest for Experiment 4 
(0.56 milliseconds), we still recommend the approach taken in 
Experiment 4 to perform evolution. This is because 0.56 
milliseconds is not a significantly long time for one evolution 
sequence to take place in reality. Therefore, the approach in 
Experiment 4 is still feasible because the behaviour of the agents 
was much more intelligent than in the other experiments. 

 
Table 4: A comparison of the four experiments. 

Tree Depth Generations 
Average 

RTES 

4 1000 0.08 

6 1000 0.09 

8 2000 0.18 

10 2000 0.54 

 
Further work needs to be done with regards to evolving DTs 

to a point where agents display emergent strategies. One of the 
limitations of evolving DTs without changing their shape is that 
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 (    ) (where   is the number of nodes in the tree) conditions 
must always be evaluated before any decision is made. For some 
decisions to be made, only a few conditions need to be true. For 
example, say a player is in possession of the ball and in front of 
the opponent’s goal. The only decision to make, after evaluating 
the respective conditions (IN_POSSESSION & 
OPP_GOALS_CLOSE) as being true, is to kick the ball into the 
net.  

A limitation of implementing DTs as complete binary trees is 
that the size of a DT grows exponentially with its depth: with a 
branching factor of 2, the number of nodes at depth   become   . 
Future work will focus on using DTs of variable shape and size 
in order to examine how the teams would evolve if all the DTs 
were not required to have the same shape and size. 
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