
Zoetrope Genetic Programming for Regression
Aurélie Boisbunon

MyDataModels
Sophia Antipolis, France
abb@mydatamodels.com

Carlo Fanara
MyDataModels

Sophia Antipolis, France
cf@mydatamodels.com

Ingrid Grenet
MyDataModels

Sophia Antipolis, France
ig@mydatamodels.com

Jonathan Daeden
MyDataModels

Sophia Antipolis, France
jd@mydatamodels.com

Alexis Vighi
MyDataModels

Sophia Antipolis, France
av@mydatamodels.com

Marc Schoenauer
INRIA TAU. CNRS & UPSaclay

LISN, Orsay, France
marc.schoenauer@inria.fr

ABSTRACT
The Zoetrope Genetic Programming (ZGP) algorithm is based on
an original representation for mathematical expressions, targeting
evolutionary symbolic regression. The zoetropic representation
uses repeated fusion operations between partial expressions, start-
ing from the terminal set. Repeated fusions within an individual
gradually generate more complex expressions, ending up in what
can be viewed as new features. These features are then linearly
combined to best fit the training data. ZGP individuals then un-
dergo specific crossover and mutation operators, and selection
takes place between parents and offspring. ZGP is validated using a
large number of public domain regression datasets, and compared
to other symbolic regression algorithms, as well as to traditional
machine learning algorithms. ZGP reaches state-of-the-art perfor-
mance with respect to both types of algorithms, and demonstrates
a low computational time compared to other symbolic regression
approaches.

CCS CONCEPTS
•Computingmethodologies→Representation ofmathemat-
ical functions; Supervised learning by regression; Learning
linear models; Genetic programming; Feature selection.

KEYWORDS
Symbolic regression, Genetic programming, regression

ACM Reference Format:
Aurélie Boisbunon, Carlo Fanara, Ingrid Grenet, Jonathan Daeden, Alexis
Vighi, and Marc Schoenauer. 2021. Zoetrope Genetic Programming for Re-
gression. In 2021 Genetic and Evolutionary Computation Conference (GECCO
’21), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3449639.3459349

1 INTRODUCTION
Symbolic Regression (SR) is a supervised learning approach that
consists in searching through a vast space of predictive models. This

GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8350-9/21/07.
https://doi.org/10.1145/3449639.3459349

space encompasses the rigid linear and polynomial models by en-
abling other transformations such as trigonometric and logarithmic,
as well as the generalized additive models by allowing (linear and)
nonlinear combinations of the transformed variables (see [39] and
references therein). SR models are often represented via expression
trees, and may include decision tree models if we consider equality
and inequality operators instead of functions (see e.g. the Boolean
multiplexer in [18]). Models can also be unravelled through mathe-
matical formulae, which make them much more interpretable than
other tree or network-based machine learning algorithms such as
random forests [6] or neural networks where, with few recent ex-
ceptions [16], the relationships among the variables remain hidden.
SR thus offers a good tradeoff between flexibility and interpretabil-
ity. Moreover, it does not need large numbers of observations as
in deep neural networks, and can be applied to smaller datasets
(typically from several dozens to tens of thousands).

The history of SR is closely related to that of Genetic Program-
ming (GP), starting with the early works of Koza [18, 22]. Indeed,
most of the approaches for SR are GP algorithms (often denoted
GPSR), as these offer a nice framework with expression trees repre-
senting the potential models. GPSR algorithms start with a pool of
initial models, which are then iteratively and randomly perturbed
to create new ones, until the one that fits the data best is finally se-
lected. Variants to this scheme are discussed in [36], whereas newer
approaches are enlisted in [37]. On the contrary, "standard" ma-
chine learning algorithms are not well suited for the complex task
of optimizing both parameters and model shape at the same time
[30, 38]. Several exceptions are worth noting, combining the idea
of expression trees with classical ML [24] or with neural networks
[16].

While SR is very present in the field of Evolutionary Algorithms
(EA) [24], it is almost completely absent in Machine Learning (ML)
reference books [5, 13] and toolboxes [29]. Possible reasons could
be the following: first, there are many SR algorithms in the litera-
ture, each offering various advantages [38], and it might be difficult
to know which one to use and how to tune their often large num-
ber of parameters; second, these algorithms are often slower than
most ML algorithms, with performance that did not match those of
e.g. random forests up until recently; finally, earlier works mostly
tested symbolic regression on synthetic data with a known equation
involving few input variables, with the aim of recovering exactly
this equation [17], and not often on real datasets with more than 5

776

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.

https://doi.org/10.1145/3449639.3459349
https://doi.org/10.1145/3449639.3459349
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3449639.3459349&domain=pdf&date_stamp=2021-06-26

GECCO ’21, July 10–14, 2021, Lille, France A. Boisbunon et al.

variables. For a critical view on SR benchmarks we refer the reader
to [25, 27] and references therein.

These limitations have been overcome in the last decade, at least
partially. The issue of computational time has been treated by Geo-
metric Semantic Genetic Programming (GSGP) 2.0 [7] with the
proposition of a very efficient algorithm. However, this efficiency
comes at the cost of interpretability, as the use of geometric seman-
tic variation operators results in exponentially growing trees. The
performance of GPSR has been increased for instance by the combi-
nation of GP with more standard ML approaches [2]. Finally, novel
benchmarks were established lately that also compare SR and clas-
sical ML algorithms on real datasets [1, 28, 40]. These benchmarks
show that the performance of random forests can be matched by
increasing the number of individuals and generations, considerably
slowing down the computations. So the issue remains for GPSR
to get good performance in a reasonable time without losing its
characteristic interpretability. A recent and promising work has
been proposed in that sense [20], as well as our own work that we
present here.

In this article we present a new GP algorithm called Zoetrope
Genetic Programming (ZGP), which brings the following main con-
tributions: (1) a new and unseen representation of models, allowing
fast computation and feature engineering, while keeping the in-
terpretability advantage of most SR methods through the explicit
model formula; (2) novel mutation and crossover processes, leading
to improvement of models over the generations; (3) performance
that is comparable to the best ML (Gradient Boosting) and SR algo-
rithms. While ZGP can handle the three main supervised learning
tasks, namely regression, binary classification and multiclass clas-
sification, we focus here only on the regression one. The paper is
organized as follows. Section 2 briefly presents the general context
and introduces GPSR state-of-the-art frameworks which are related
to our work. Section 3 describes the entire ZGP algorithm, with its
uncommon representation of individuals and variation operators,
as well as the choices for fitness and cost. Section 4 presents and
discusses the results of our benchmark against state-of-the-art SR
frameworks and ML algorithms on 98 regression datasets. Finally,
we conclude on our main contributions in Section 5, and suggest
potential future work.

2 BACKGROUND
2.1 Context
Given a datasetD made of i.i.d. observations (𝑋𝑖 , 𝑦𝑖) ∈ R𝑑 ×Rwith
𝑋𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑑), the goal of regression algorithms is to find a
function M : R𝑑 ↦→ R modelling the link between 𝑦 and 𝑋 , such
that it generalizes well on unseen data from the same distribution.

As common in regression problems, as performance measure for
M on dataset D we use the Mean Squared Error (MSE) defined by:

𝑀𝑆𝐸 (M,D) = 1
#D

∑
(𝑋𝑖 ,𝑦𝑖) ∈D

(𝑦𝑖 −M(𝑋𝑖))2 , (1)

where #D is the number of observations in D. Any datasetD used
in this work will be divided into training (D𝑇), validation (D𝑉) and
test, or holdout (D𝐻) sets, by default with a 40%-30%-30% ratio. The
holdout set D𝐻 is never to be seen during the learning procedure,

and is only used to assess the final performance of the model. The
use of the training and validation sets is detailed in Section 3.2.

2.2 Related work
As mentioned above, several SR frameworks have been recently
proposed and already compared to classical ML algorithms. First,
some SR techniques are not based on evolutionary process. For
example, Fast Function Extraction (FFX) [24] only generates a large
set of linear and non linear features and then fits a linear model on
the features using elastic net [41]. While the deterministic part can
be attractive to avoid getting different models from one run to an-
other, it turns out that FFX often results in much larger models than
conventional GP. Evolutionary Feature Synthesis (EFS) [3] uses a
similar idea, but avoids building the basis entirely by randomly gen-
erating them. It is however not a GP algorithm. The idea of linearly
combining branches of a tree is also very present in GP, as it allows
the construction of new features. Multiple Regression Genetic Pro-
gramming (MRGP) [2] combines all the possible subtrees of a tree
through LASSO [35], thereby decoupling the linear regression from
the construction of a tree. More recently, La Cava et al. developed
Feature Engineering Automation Tool (FEAT) [20], which trades
conciseness for accuracy. It is a stochastic optimization providing
a succinct syntactic representation with variable dependencies ex-
plicitly shown (in contrast to the semantic approach [31]). Another
related recent work is the Interaction-Transformation Evolutionary
Algorithm (ITEA) [9], which builds generalized additive models
including interactions between variables.

The efficiency of GP has been another direction of study. Geo-
metric Semantic Genetic Programming (GSGP) [26] is a technique
combining trees to get new individuals and adds semantic methods
for crossover and mutation in order to introduce a degree of ’aware-
ness’. However, in GSGP the generated individuals are larger than
their parents, resulting in large bloat, and longer computing times.
This is addressed by using a practical development environment,
GSGP-C++ [7] with operators in native C++. Finally, other frame-
works propose efficient selection techniques. Age-Fitness Pareto
Optimization (AFP) [33] is meant to prevent premature convergence
in evolutionary algorithms by including age as an optimization cri-
terion using a Pareto front between age and fitness. This allows
younger individuals to compete with older and fitter ones. Also,
𝜖-lexicase selection (EPLEX) [21] performs parent selection accord-
ing to their fitness on few random training examples, dropping all
the population individuals with error higher than the best error.
This selection technique is used in FEAT.

With respect to the above works, ZGP proposes two novelties.
First, ZGP uses a parametric representation for its models. Second,
within its complex genotype-to-phenotype mapping, ZGP borrows
to Geometric Semantic Crossover [26], and thus compensates the
could-be limitations of a fixed representation by creating a richer
set of smoother trajectories in the space of all possible analytical
expressions / programs. Furthermore, this process sets a strict bound
on the complexity of the resulting expressions, and thus limits the
bloat.

777

Zoetrope Genetic Programming for Regression GECCO ’21, July 10–14, 2021, Lille, France

3 THE ZGP ALGORITHM
The Zoetrope Genetic Programming1 (ZGP) algorithm is based on
the original Zoetropic representation for programs, together with
the corresponding variation operators (crossover and mutation).
However, the "natural selection" components of all evolutionary al-
gorithms are here directly incorporated into the variation operators
(i.e., selection takes place between the parents and their offspring
only). Furthermore, ZGP uses evolutionary components to build
possible branches of a regression tree, and standard ML techniques
to optimize the combination of those branches.

3.1 The Zoetropic Representation
This section describes both the genotype and the genotype-to-
phenotype mapping of ZGP individuals. As in standard tree-based
GP [4, 18], ZGP individuals are built from a set of unary or binary
operators O and a set of terminals T , variables of the problem and
ephemeral constants. The genotype of a ZGP individual is built
using elements (partial expressions built on T and O) and fusion
operations (see below). Two parameters control the size of the geno-
type as well as the derivation of the corresponding phenotype (the
final expression used to evaluate the fitness of the individual): the
number of initial elements 𝑛𝑒 and the number of maturation stages
𝑛𝑚 . An individual is built as follows:
Overview and notations The elements used during the process
can be seen as organized in 𝑛𝑚 levels, one per maturation step. The
𝑛𝑒 elements of level 𝑘 , denoted (𝐸𝑘1 , . . . , 𝐸

𝑘
𝑛𝑒
), are constructed by

maturation step 𝑘 from the elements of level 𝑘 − 1. However, due
to boundary conditions depending on the parity of 𝑛𝑒 , it is more
convenient to visualize all the elements in a circle (reminding the
original zoetrope mechanism2). Figure 1 illustrates the creation
process, but for the sake of simplicity, the elements of levels 0, 1, 2,
3 are denoted 𝐸𝑖 , 𝐸 ′𝑖 , 𝐸

′′
𝑖
and 𝑍𝑖 respectively (explanations below).

Initialization The 𝑛𝑒 elements (𝐸01, . . . , 𝐸
0
𝑛𝑒
) of an individual are

randomly drawn in T , being a uniformly chosen variable with 90%
probability, or an ephemeral constant with 10% probability. The
latter are uniformly drawn in [𝐶𝑚𝑖𝑛,𝐶𝑚𝑎𝑥], for some user-defined
parameters 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 . An individual is also initialized with a
set of 𝑛𝑓 fusion operations F1, . . . F𝑛𝑓

described next.
Fusion The fusion operation F transforms a pair (𝐸𝑖 , 𝐸 𝑗) of ele-
ments into a new pair (𝐸 ′

𝑖
, 𝐸 ′

𝑗
) = F (𝐸𝑖 , 𝐸 𝑗). It starts by computing

𝑓 (𝐸𝑖 , 𝐸 𝑗) = 𝑟 · op1 (𝐸𝑖 , 𝐸 𝑗) + (1 − 𝑟) · op2 (𝐸𝑖 , 𝐸 𝑗), (2)

where op𝑖 , 𝑖 = 1, 2 are operators uniformly chosen in O, and 𝑟 =

𝑈 [0, 1] (in case op1 or op2 is unary, only 𝐸𝑖 is taken into account).
Elements 𝐸 ′

𝑖
and 𝐸 ′

𝑗
are then defined by

𝐸 ′𝑖 = 𝑏 · 𝐸𝑖 + (1 − 𝑏) · 𝑓 (𝐸𝑖 , 𝐸 𝑗)
𝐸 ′𝑗 = (1 − 𝑏) · 𝐸 𝑗 + 𝑏 · 𝑓 (𝐸𝑖 , 𝐸 𝑗),

where 𝑏 = 𝑈 {0, 1}, i.e., one new element is equal to one randomly
chosen original element, while the other is defined by Eq. (2). The
fusion F is defined by (op1, op2, 𝑟 , 𝑏).
1ZGP is a proprietary algorithm from MyDataModels with patent pending. An open
source version is currently under development.
2The term zoetrope historically defines one of the first animation devices before the
camera, consisting of a cylinder with images inside, that seem to be moving as the
cylinder is turned.

Figure 1: Illustration of Zoetropic representation building:
for 𝑛𝑒 = 𝑛𝑚 = 3, there are 𝑛𝑓 = 4 fusions in total, and for the
sake of readability, the third one, generating (𝐸”2, 𝐸”3) from
(𝐸 ′2, 𝐸

′
3), taking place between center and right figures, is not

represented. Note that 𝑍3 = 𝐸”3 as no element is left for a
fusion.

Note that these fusion operations, and in particular Equation (2),
are similar in some ways to the Geometric Semantic Crossover [26].
But the linear combination with random weight is done here at the
level of simple operators, not subtree, and during the genotype-to-
phenotype mapping, not during crossover. In both situation, this
results in a smoother landscape than only allowing blunt choices
between one or the other argument, offering more transitional
states to the evolutionary process.
Maturation The 𝑘𝑡ℎ maturation step, or stage, consists of the se-
quence of ⌊𝑛𝑒/2⌋ fusions defining elements 𝐸𝑘

𝑖
from pairs of ele-

ments 𝐸𝑘−1
𝑖

. If𝑛𝑒 is even, then (𝐸𝑘
𝑖
, 𝐸𝑘

𝑖+1) = F (𝐸𝑘−1
𝑖

, 𝐸𝑘−1
𝑖+1) for some

fusion F . If 𝑛𝑒 is odd, the remaining element of maturation step 𝑘
is used for the first fusion of the maturation step 𝑘 + 1, and fusions
are further applied to the remaining 𝑛𝑒 − 1 elements (see Figure
1–stage 2).
The Zoetrope model After 𝑛𝑚 maturation steps, the 𝑛𝑒 elements
of level 𝑛𝑚 , called "Zoetropes", are linearly combined to obtain the
final model (see Section 3.2.1). The weights of this linear combi-
nation are obtained by minimizing the Mean Squared Error (MSE)
with a sparsity-inducing regularization: the idea is to obtain the
simplest possible expression, for obvious explainability reasons (see
details in Section 3.2.1).
Complexity analysis There are 𝑛𝑓 = 𝑛𝑚 · ⌊𝑛𝑒/2⌋ + 𝑛𝑒%2 fusions
in total. At each fusion, the size of the elements increases by the
application of Eq. (2). In terms of standard GP indicators (though
we never express the ZGP models as trees), the depth of F (𝐸𝑖 , 𝐸 𝑗)
is three more than the maximum depth of 𝐸𝑖 and 𝐸 𝑗 . Hence the
depth of the zoetropes is at most 3 ∗𝑛𝑚 + 1. The linear combination
applied to the zoetropes using the 𝑛𝑒 -ary addition operator can be
viewed as adding two more levels of depth. In particular, because
all created individuals use the same template, the complexity of any
ZGP model remains bounded. Therefore, ZGP individuals are not
subject to uncontrolled bloat.
Discussion In summary, the genotype of a ZGP individual is
made of the initial elements (𝐸01, . . . , 𝐸

0
𝑛𝑒
) and the set of fusions

F1, . . . F𝑛𝑓
through their respective components (op1, op2, 𝑟 , 𝑏). Its

phenotype is the model obtained after the 𝑛𝑚 maturation steps,
and the optimal linear combination of the 𝑛𝑒 zoetropes explained
in the sequel. Note that all individuals have the same number of
"genes". And though all genes are not of the same type (i.e., initial

778

GECCO ’21, July 10–14, 2021, Lille, France A. Boisbunon et al.

Figure 2: Examples of zoetropes that can be obtained from a
set of input variables (𝑋1, . . . , 𝑋9). As shown, the complexity
of a zoetrope can vary from a single variable or constant to
nested fusions. The 𝑟 components of the fusions have been
omitted for clarity.

elements or fusions defined by their 4 components), the genes at
the same position in all individuals are always of the same type and
have the same semantics in the genotype-to-phenotype mapping.
Ultimately, the representation used in ZGP could also be viewed as
a developmental representation: the initial elements are the embryo,
and the fusions describe the development of the final expression
from the embryo. Both the embryo and the development program
are evolved here.

3.2 Fitness and Cost Functions
3.2.1 Combination of zoetropes. As said in previous Section, at the
end of all fusions, the zoetropes are combined to obtain the full
model as:

M𝜶 (𝑋) =
𝑛𝑒∑
𝑗=1

𝛼 𝑗𝑍 𝑗 (𝑋), (3)

for some weights 𝜶 = (𝛼1, . . . , 𝛼𝑛𝑒) ∈ R𝑛𝑒 .
The optimal weights 𝜶 ∗ are computed by minimizing the MSE

on the training set D𝑇 , using an Elastic net regularization [41]

𝜶 ∗ = ArgMin𝜶 ∈R𝑛𝑒
{
𝑀𝑆𝐸 (M𝜶 ,D𝑇) + 𝜆1∥𝜶 ∥1 + 𝜆2∥𝜶 ∥22

}
(4)

with 𝜆1, 𝜆2 ∈ R+. Such Elastic net regularization forces the solution
to be both sparse and low biased, through the 𝐿1 and the 𝐿2 norms
respectively. At the moment, we start by setting 𝜆2 = 0.001 (de-
termined after some trial-and-errors on 6 datasets from UCI3 and
Kaggle4), because the value of 𝜆1 can then be obtained by minimiz-
ing the MSE on the validation set using the Least Angle Regression
(LAR) algorithm [10], very fast for such small dimension (𝑛𝑒). This
is however done using the training set. Further work will consider
first using Bayesian Optimization to find a possibly better value of
𝜆2, and using the validation set to set the value of 𝜆1.

Finally, note that this combination of zoetropes can be viewed
as an ensemble-generalization of Maarten Keijzer’ Scaled Symbolic
Regression [15]: the minimum is taken here using all 𝑛𝑒 zoetropes,
though with some emphasis on sparsity, possibly adding some
robustness to the final model.

3.2.2 The Fitness Function. The fitness function, used in Darwinian
selection, is the MSE of the best linear combination of the zoetropes
on the training set,𝑀𝑆𝐸 (M𝜶 ∗ ,D𝑇), obtained from Equation (4). In
ZGP, this fitness function is applied within the variation operators,
between parents and offspring. Furthermore, the best individual in
the population w.r.t. the MSE on the validation set D𝑉 is stored at
every generation, and after the algorithm has stopped, the overall
best of these best-per-generation is returned (still according to the
MSE on the validation set).

3.3 The variation operators
This section introduces the representation-specific variation op-
erators, i.e., crossover and mutation (the initialization has been
described in Section 3.1). As said, in ZGP, the selection is made
within these variation operators, between parents and their off-
spring, using the MSE for comparisons. Furthermore, the way these
operators are applied is also specific. This section will hence de-
scribe the operators as well as the choice of the individuals they
are applied to.

3.3.1 The Crossover Operator. The crossover process of ZGP uses
two parents, but works one-way: it only propagates components
from the fittest parent to the other one, similarly in some ways to
the InverOver operator for permutations [34]. It starts by selecting
𝑛𝑡 individuals uniformly from the population (as in standard tour-
nament selection). Then, it randomly replaces some of the ’genes’ of
the weakest parent by the corresponding genes of the fittest parent.
The genes to replace are randomly chosen from the initial elements
(terminals in T) and the fusions, each fusion being considered as a
single gene here.

3.3.2 Applying the Crossover. Our GP strategy for applying the
crossover amounts to repeat 𝜌𝑋 · 𝑃 times the above procedure
(tournament of size𝑛𝑡 , one-way gift of genes from best to worst), for
some hyperparameter 𝜌𝑋 ∈ [0, 1]. Its actual implementation runs
some tournaments in parallel (i.e., without replacement between
the tournaments), in order to decrease the overall computational
time.

3https://archive.ics.uci.edu/ml/index.php
4https://www.kaggle.com/datasets

779

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets

Zoetrope Genetic Programming for Regression GECCO ’21, July 10–14, 2021, Lille, France

3.3.3 Point Mutation. The point mutation operator considers one
parent, and works as expected: it replaces some ’genes’ of the
parents by random values. However, the fusions are here consid-
ered made of four ’genes’ here, the four components (op1, op2, 𝑟 , 𝑏)
(Section 3.1), that can be modified independently. For each point
mutation, either one element or one fusion is randomly chosen
from the "genes" and mutated.

When an element is to be mutated, it is replaced by a constant
with probability 𝜌𝑐𝑠𝑡 , or with a variable uniformly chosen (and
different from the current one if the element is a variable). When
replacing a variable with a constant, this constant is simply cho-
sen uniformly in [𝐶𝑚𝑖𝑛,𝐶𝑚𝑎𝑥]. When mutating a constant 𝐶 to a
new constant, an auxiliary constant 𝐶 is uniformly drawn also in
[𝐶𝑚𝑖𝑛,𝐶𝑚𝑎𝑥], an operator𝑜 is uniformly drawn in {×, /, +, 𝑝𝑜𝑤𝑒𝑟, 𝑛𝑖𝑙},
and 𝐶 is replaced by 𝐶 𝑜 𝐶 (where 𝐶𝑛𝑖𝑙𝐶 = 𝐶).

When a fusion is to be mutated, only one (uniformly drawn) of
its four components op1, op2, 𝑏, 𝑟 is modified. In case of an operator,
a new operator is chosen uniformly in O. 𝑟 is modified by flipping
one bit of its binary representation, and 𝑏 is simply flipped.

Note that in ZGP, each individual designated for mutation is actu-
ally mutated twice. A first point mutation is applied to a component
(element or fusion) randomly chosen from the "effective compo-
nents", i.e., the components which are actually used by the model,
thus ensuring that the mutation has an impact on the model. A
second point mutation is applied to a component randomly chosen
from all the components (effective or not), allowing components
free from fitness pressure to drift and preserve diversity once they
become effective [19].

3.3.4 Applying the Point Mutation. In most evolutionary algo-
rithms, the mutation step consists in applying a mutation oper-
ator (e.g. point mutation) to a given individual, regardless of all
other individuals. However, the mutation process of ZGP considers
couples of individuals, and its application incorporates the Dar-
winian replacement selection, and explicitly handles the explo-
ration/exploitation trade-off. It proceeds as follows.

A subset of size 𝑃/𝑚𝑚𝑢𝑡 of the population is randomly drawn,
with𝑚𝑚𝑢𝑡 ∈ [1, 𝑃/2] an integer hyperparameter. The individuals
in this subset are randomly paired. All these pairs undergo the 2-
individuals mutation described below. This loop is repeated𝑚𝑚𝑢𝑡

times. In particular, this means that a total number of 𝑃/2 mutations
are applied at each generation.

Within each pair obtained as described above, the best and worst
individuals are identified based on their respective fitnesses. Then,
depending on the number𝑚𝑏 of mutations that have been already
been applied to best in previous iterations, one of the following two
regimes applies:

• if𝑚𝑏 < 𝜏𝑙𝑖𝑚 , then worst is replaced by a mutant of best
• if𝑚𝑏 ≥ 𝜏𝑙𝑖𝑚 , both best and worst undergo point mutation,
but each offspring replaces its own parent only if its fitness
improves that of this parent.

The threshold is computed as follows:

𝜏𝑙𝑖𝑚 = 𝑃 · 𝑟𝑙𝑖𝑚 · 𝑔
𝐺
,

where 𝑃 is the population size, 𝐺 is the maximum number of gen-
erations, 𝑔 is the current generation, and 𝑟𝑙𝑖𝑚 is a user-defined

bounding parameter. This threshold is hence a linear function of
the generation 𝑔. It aims at limiting the number of times a given
individual can be used as a mutation’s progenitor.

The first regime clearly favors exploration around good individ-
uals, and as the algorithm advances and 𝑔 increases, this regime
becomes prominent, as usual in many EAs. However, limiting the
number of offspring of good individuals, prevents super-individuals
from invading too fast the whole population, thus favoring ex-
ploration, and allowing the algorithm to more easily escape local
optima. At the same time, using some deterministic replacement se-
lection in the second regime enforces a strong elitism, thus pushing
toward convergence, still preserving some exploration, as mutation
is then applied to both parents.

4 EXPERIMENTAL VALIDATION
This section describes and analyzes the performance of ZGP on
regression tasks with tabular data, and compares themwith those of
state-of-the-art symbolic regression and classical machine learning
algorithms.

4.1 Experimental Setting
The experiment closely follows the benchmark in [28], where the
algorithms were run on the Penn Machine Learning Benchmarks
(PMLB) database [27], a collection of real-world, synthetic and toy
datasets, with a restriction to datasets with less than 3000 obser-
vations (small data regime). We compare ZGP with the same SR
algorithms as in [28], namely MRGP [2], GSGP [7, 26], EPLEX [21],
AFP [33], used with the best parameters their authors found by
5-fold cross-validation. To this list, we also added the more recent
FEAT [20] and the deterministic FFX [24]. We also chose those
algorithms because of the availability of a Python interface (ellyn5
library for EPLEX and AFP, feat6 package for FEAT, and the inter-
face provided by the benchmark’s authors in the case of GSGP and
MRGP7). Indeed, while many state-of-the-art SR algorithms are
open source, their source code comes in different languages (C++,
Java, Matlab), hence quite somework is needed to re-implement and
run those under the same conditions, which is the case of EFS [3]
for instance. As for classical ML approaches, we chose the follow-
ing algorithms from scikit-learn [29]: gradient boosting, random
forests (RF), decision trees, elastic net, kernel ridge and linear SVR,
the latter three being optimized by 5-fold cross validation. Finally,
we added a multi-layer perceptron with keras [8] as in our expe-
rience, the one from scikit-learn does not perform well in general.
The parameters for each algorithm are provided in supplementary
material.

The experiment consisted in 20 runs of each algorithm, based on
the same splits of training and test sets (70-30%) for all algorithms8.
All datasets were standardized with scikit-learn’ StandardScaler.
We computed the Normalized Root Mean Squared Error (NRMSE),
i.e., the square-root of the MSE (Eq. 4) divided by the range of
target values, the R2-score (computed with scikit-learn), and the
computational time for each algorithm and each run. Note that in
5https://github.com/EpistasisLab/ellyn
6https://github.com/lacava/feat
7https://github.com/EpistasisLab/regression-benchmark
8Note that some of the algorithms, including ZGP, further split the training set into
training and validation, the rate of whichwas let to each algorithm’s default parameters.

780

https://github.com/EpistasisLab/ellyn
https://github.com/lacava/feat
https://github.com/EpistasisLab/regression-benchmark

GECCO ’21, July 10–14, 2021, Lille, France A. Boisbunon et al.

[28], only 10 independent runs were run for each algorithm, with
random train-test splits. However, given the variability of symbolic
regression approaches, we believe it is more robust to increase the
number of runs, and fairer to compare them on exactly the same
data.

All experimentswere performed on aHPZ8 serverwith 40 cores9.
All runs end when themaximum number of generation𝐺 is reached,
or when the standard deviation of the best fitness over a window
of size 𝐿 reaches some user-defined threshold 𝜏𝜎 , whichever comes
first. The code to replicate the comparison experiments is provided
in a public Gitlab repository10 along with a csv file containing the
results for all the algorithms, runs and datasets.

4.2 Hyperparameters
ZGP has quite a large number of hyperparameters. On the one
hand, this allows a great flexibility when tuning the algorithm. But
on the other hand, it makes its use time-consuming. Hence some
default values have been fixed by intensive trial-and-error experi-
ments performed on a few datasets from UCI/Kaggle as well as data
from clients. These values are reported in Table 1. The optimization
of these hyperparameters by some automatic Hyper Parameter Op-
timization (HPO) procedure, like SMAC [14], AutoSkLearn [11] or
HyperBand [23] will be the subject of further work.

Table 1: Hyperparameters and default values used in ZGP

Hyperparameter
name

Symbol Value

Operator set O {+,-,*,/,abs, sqrt, sin,
cos, ⌊⌋, ⌈⌉, int, mod}

elements 𝑛𝑒 7
maturation stages 𝑛𝑚 3
Interval for constants [𝐶𝑚𝑖𝑛 , 𝐶𝑚𝑎𝑥] [-3, 3]
Proba. of constants 𝜌𝑐𝑠𝑡 0.1
Xover tournament size 𝑛𝑡 12
Xover param. 𝜌𝑋 0.1
Mutation param. 𝑚𝑚𝑢𝑡 4
Threshold mut. regime 𝑟𝑙𝑖𝑚 0.1
Population size 𝑃 500
Max. # of generations 𝐺 100
Stopping criterion∗ 𝐿, 𝜏𝜎 30, 1𝑒−3

∗The algorithm is stopped if either one of the two following criterion is reached: 𝑔 = 𝐺

(the number of generations reaches the maximum) or the standard deviation of the
best fitness over 𝐿 generations goes below a threshold 𝜏𝜎 (inspired by [32]).

4.3 Results and Discussion
As in [28], we report the median values for R2 and NRMSE over
the 20 runs, for each algorithm and each dataset.

Figure 3 compares the distribution of these median R2 scores
(3a) and NRMSE (3b) over all datasets, while the red dots show the
average of the median R2/NRMSE scores over all datasets ("average

9CPU Intel(R) Xeon(R) Silver 4114, 2.20GHz, 64 GigaBytes of RAM.
10https://gitlab.devenv.mydatamodels.com/publications/bench-zgp-symbolic-
regression

(a) R2

(b) NRMSE

Figure 3: Distribution of the median performance (top: R2,
bottom: NRMSE) on test set for each dataset. Red points
show the average of median R2 over all datasets, and the al-
gorithms are ordered by thismeasure (best is left, with value
closest to 1).

R2/NRMSE" in the sequel) . The algorithms are ordered by decreas-
ing average R2 and increasing average NRMSE, the best one being
on the left. Table 2 gives the average rank for each algorithm, based
on the median R2 scores (middle column) and median NRMSE (right
column) for each dataset. Standard deviations of the ranks are given
in parenthesis.

Figure 3 and Table 2 show that gradient boosting attains the best
performance, closely followed by random forests, FEAT and ZGP,
and less closely by MRGP. Note that ZGP has lower average R2 than
FEAT and better average rank in R2 and NRMSE. This fact comes
from a few worse estimations for ZGP on some datasets (lower
outliers in R2, Figure 3a), and better ones for other datasets (higher
first and third quartiles in R2). The remaining algorithms display
lower performance with a much higher variance, especially on the
R2 scores. To complete the results, Wilcoxon signed-rank tests have
been performed and are given in Supplementary Material (Section
3). They show that ZGP is statistically equivalent to random forests

781

https://gitlab.devenv.mydatamodels.com/publications/bench-zgp-symbolic-regression
https://gitlab.devenv.mydatamodels.com/publications/bench-zgp-symbolic-regression

Zoetrope Genetic Programming for Regression GECCO ’21, July 10–14, 2021, Lille, France

Table 2: Average (and standard deviation) of the ranks inme-
dian R2-scores and NRMSE on test set.

Algorithm R2 avg rank
(std)

NRMSE avg
rank (std)

GradBoost 3.7 (2.9) 3.7 (2.9)
ZGP 4.9 (3.0) 5.0 (3.0)
RF 5.0 (2.7) 5.1 (2.7)
FEAT 5.6 (2.7) 5.4 (2.8)
KernelRidge 6.0 (3.5) 6.1 (3.5)
MRGP 7.2 (3.4) 7.2 (3.3)
FFX 7.5 (5.1) 7.5 (5.2)
MLP 7.9 (4.3) 7.9 (4.2)
AFP 8.4 (2.0) 8.4 (1.9)
EnetCV 8.4 (4.0) 8.4 (4.0)
LinearSVR 9.2 (3.9) 9.1 (4.1)
Tree 9.6 (2.9) 9.6 (3.0)
EPLEX 10.3 (3.4) 10.2 (3.4)
GSGP 11.5 (2.8) 11.5 (2.8)

for both the R2 and NRMSE metrics, and that it is equivalent to
FEAT for R2 only.

To further the comparison for symbolic regression, Figure 4
displays the performance in R2 against the computational time
for all SR algorithms (top), and for the top three SR algorithms
(bottom), namely ZGP, FEAT and MRGP. A ’good’ algorithm should
be in the upper left corner of these graphs (high performance and
low computational time). Note that this comparison of runtime
is somewhat qualitative because the algorithms rely on different
programming languages (ZGP and FEAT are in C++ with a Python
interface, while MRGP is in Java). In order to make the comparison
as fair as possible, we provided FEAT andMRGPwith the maximum
execution time as run by ZGP, because both FEAT and MRGP
require an upper limit in their input time parameter.

These figures show that ZGP and FEAT share the best perfor-
mance. Moreover, while all SR algorithms have scattered computa-
tional time, GSGP is the fastest SR algorithm, complying with its
claim. However, it has a large variance in performance, as does FFX.
Among the best three, ZGP thus shows the highest performance
and the shortest computational time. Also, we note that the algo-
rithms with the lowest performance, GSGP, AFP and EPLEX, are
those relying on the smallest operator set O = {+,−, ∗, /}. On the
contrary, the best performance is obtained by algorithms with a
wider operator set, including trigonometric functions and square
roots among others (the full list of operators for each algorithm is
provided in supplementary material). The choice of the operator
set appears to be an important one: we investigated it further by
expanding it for EPLEX and AFP to {+,−, ∗, /, sin, cos, sqrt}, and
their performance was indeed greatly improved, but still far from
those of ZGP and FEAT; we therefore decided to keep the default set
in the results presented here to be consistent with the benchmark
in [28], and to report the corresponding metrics in supplementary
material. Note also that EPLEX and AFP are selection methods,
and not full GPSR algorithm, and that EPLEX is used as a selection
mechanism for FEAT. As for the deterministic FFX, it turns out that

(a) All SR algorithms

10
1

10
2

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 R
2

R2=0.82R2=0.82
R2=0.74

R2=0.66

R2=0.32

R2=0.56

R2=0.34

ZGP
FEAT
MRGP
FFX

EPLEX
AFP
GSGP

(b) Top 3 SR algorithms

10
1

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 R
2

R2=0.82 R2=0.82
R2=0.74

ZGP
FEAT
MRGP

Figure 4: Performance (R2 on test) vs CPU time for SR algo-
rithms (top:all, bottom: best ones, ZGP, FEAT,MRGP). Trans-
parentmarkers are themedians for each dataset, large plain
markers are the medians over all datasets, and rectangle
transparent patches are the 25%-75% percentiles. The clos-
est from the upper left corner (high R2, low CPU time) the
better.

both performance and computational time are widely scattered,
ranging from very good R2 and low computational time for some
datasets, to the worst R2 or computational time on others. It is
also worth noting that FFX is the only algorithm that cannot be
parametrized directly to run on one thread only and it actually
spans all 40 cores of our server, while all the other algorithms were
limited to one core per run.

We are aware of the limitations of the datasets utilized. Despite
their number, as mentioned in this section and in the introduction,
a good portion (62 of them) consists of simulated data from the
Friedman collection of artificial datasets, that follow a known non-
linear function with only 3 relevant variables, as described in [12].
Hence, the chosen database may be a favorable setting for symbolic
regression approaches that tend to select few variables in the final
model (among which ZGP).

782

GECCO ’21, July 10–14, 2021, Lille, France A. Boisbunon et al.

5 CONCLUSION AND FUTUREWORK
ZGP, a novel GPSR algorithm, is presented and its inner working
explained in detail. The algorithm has been validated on regression
tasks, in comparison with several-state-of-the art algorithms, both
from classic ML tools and from existing GP-based SR frameworks.

The performance of ZGP is comparable or better than the state-
of-the-art SR algorithms, in terms of accuracy of the resulting model
(measured both by the RMSE or the R2), and of computational time.
It is also comparable to state-of-the-art classic ML algorithms, but
performs somewhat worse than the most advanced ML algorithms
like gradient boosting. However, the comparison of the computa-
tional time is semi-quantitative as it is difficult to guarantee condi-
tions that are fully equivalent for all.

Similarly to the majority of the SR algorithms, ZGP’s inter-
pretability is attained through a tight selection of variables, and the
output of an analytical formula, linking the selected variables to
the target. However, and different from most other SR algorithms,
ZGP is "bloat-adverse by design": the zoetropic representation, and
the genotype-to-phenotype mapping give an upper bound for the
complexity of all ZGP models. Last but not least, ZGP performs
feature construction and selection: the "zoetropes", the elements
obtained on the last layer of the development process, are simply
combined by linear regression. Therefore, they do represent useful
features, being a by-product of the algorithm rather than a separate
pre-processing step. These features offer yet another insight on the
interpretation of the model.

One of the specifics of ZGP is the use of the fusion operation
during the genotype-to-phenotype mapping (see Section 3.1 and in
particular Equation 2). No operator is applied alone, and smooth
transitions from one operator to the other are possible through
modifications by mutation of the random weight 𝑟 , in a way similar
to that of Geometric Semantic Crossover [26]. However, the linear
combination is limited here to simple operators, and is only per-
formed 𝑛𝑚 times, thus does not result in uncontrolled bloat: instead
of increasing the search space by augmenting the complexity of
the trees, as in traditional GP, the search space is extended in ZGP
by replacing the discrete set of operators by the continuous family
obtained by their linear combinations. On-going ablation studies
are investigating this hypothesis.

In contrast to algorithms designed for big data, ZGP, like all
GP-based SR algorithms, can attain its results by handling datasets
with less than a few thousands of observations (less than 3000 in
the present experiments), a context often loosely referred to today
as "small data". Whereas emphasis has been put on Big Data in
the recent years due to impressive results in image recognition
and Natural Language Processing, to name a few, for many more
companies out there the available data does not qualify as "Big".

As mentioned in the introduction, ZGP can also be applied to
classification and benchmarking in both binary, and multi-class
tasks is the subject of on-going work. Furthermore, an extension of
the benchmark to a database including more real-world datasets for
all three tasks will provide a fuller assessment for those algorithms.

Even though the inner mechanism of the ZGP algorithm does
limit the bloat, a major effort for future work is the quantitative
assessment of the model complexity. Several measures may capture

the complexity of symbolic regression models, and we plan to assess
it as an additional level for model selection. Finally, hyperparameter
tuning is often performed ad-hoc, whereas a systematic treatment
may help, in particular to select the number of elements and stages,
which can be constraining at present.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Patrick Oneill who was at the
origin of ZGP, as well as the technical teams of MyDataModels for
their involvement in the development of ZGP, in particular Jean-
Robert Polrot, Marcello Mansueto, Alina Tuholukova, and Norbert
Leon. The authors would also like to thank the anonymous referees
for their valuable comments and helpful suggestions. This work is
supported by the GPITISS project funded by the i-Lab innovation
program.

REFERENCES
[1] Michael Affenzeller, Bogdan Burlacu, Viktoria Dorfer, Sebastian Dorl, Gerhard

Halmerbauer, TilmanKönigswieser,Michael Kommenda, Julia Vetter, and Stephan
Winkler. 2019. White Box vs. Black Box Modeling: On the Performance of Deep
Learning, Random Forests, and Symbolic Regression in Solving Regression Prob-
lems. In International Conference on Computer Aided Systems Theory. Springer,
288–295.

[2] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. 2014. Multiple
regression genetic programming. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation. 879–886.

[3] Ignacio Arnaldo, Una-May O’Reilly, and Kalyan Veeramachaneni. 2015. Build-
ing predictive models via feature synthesis. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. 983–990.

[4] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. 1998.
Genetic programming. Springer.

[5] Christopher M Bishop. 2006. Pattern recognition and machine learning.
Springer, New York, NY. https://cds.cern.ch/record/998831 Softcover published
in 2016.

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[7] Mauro Castelli and Luca Manzoni. 2019. GSGP-C++ 2.0: A geometric semantic

genetic programming framework. SoftwareX 10 (2019), 100313.
[8] François Chollet et al. 2015. Keras. https://keras.io.
[9] Fabrício Olivetti de França and Guilherme Seidyo Imai Aldeia. 2020. Interaction-

Transformation Evolutionary Algorithm for Symbolic Regression. Evolutionary
Computation (2020), 1–25.

[10] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. 2004. Least
angle regression. The Annals of statistics 32, 2 (2004), 407–499.

[11] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine
Learning. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran
Associates, Inc., 2962–2970. https://proceedings.neurips.cc/paper/2015/file/
11d0e6287202fced83f79975ec59a3a6-Paper.pdf

[12] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[13] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of
statistical learning: data mining, inference, and prediction. Springer Science &
Business Media.

[14] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential
Model-based Optimization for General Algorithm Configuration. In Proceedings
of the 5th International Conference on Learning and Intelligent Optimization
(LION’05). Springer-Verlag, Berlin, Heidelberg, 507–523. https://doi.org/10.1007/
978-3-642-25566-3_40 event-place: Rome, Italy.

[15] Maarten Keijzer. 2004. Scaled Symbolic Regression. Genetic Programming
and Evolvable Machines 5 (09 2004), 259–269. https://doi.org/10.1023/B:GENP.
0000030195.77571.f9

[16] Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir
Čeperić, and Marin Soljačić. 2020. Integration of neural network-based symbolic
regression in deep learning for scientific discovery. IEEE Transactions on Neural
Networks and Learning Systems (2020).

[17] Michael F Korns. 2011. Accuracy in symbolic regression. In Genetic Programming
Theory and Practice IX. Springer, 129–151.

[18] John R Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press.

783

https://cds.cern.ch/record/998831
https://keras.io
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1023/B:GENP.0000030195.77571.f9

Zoetrope Genetic Programming for Regression GECCO ’21, July 10–14, 2021, Lille, France

[19] William La Cava, Thomas Helmuth, Lee Spector, and Kourosh Danai. 2015. Ge-
netic programming with epigenetic local search. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation. 1055–1062.

[20] William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H.
Moore. 2019. Learning concise representations for regression by evolving net-
works of trees. In International Conference on Learning Representations (ICLR).
https://arxiv.org/abs/1807.00981

[21] William La Cava, Lee Spector, and KouroshDanai. 2016. Epsilon-lexicase selection
for regression. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016. 741–748.

[22] WilliamB Langdon and Riccardo Poli. 2013. Foundations of genetic programming.
Springer Science & Business Media.

[23] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2018. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. Journal of Machine Learning Research 18, 185 (2018), 1–52. http:
//jmlr.org/papers/v18/16-558.html

[24] Trent McConaghy. 2011. FFX: Fast, scalable, deterministic symbolic regression
technology. In Genetic Programming Theory and Practice IX. Springer, 235–260.

[25] James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli,
Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper,
Kenneth De Jong, et al. 2012. Genetic programming needs better benchmarks.
In Proceedings of the 14th annual conference on Genetic and evolutionary
computation. 791–798.

[26] Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. 2012. Geometric
semantic genetic programming. In International Conference on Parallel Problem
Solving from Nature. Springer, 21–31.

[27] Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz,
and Jason H. Moore. 2017. PMLB: a large benchmark suite for machine learning
evaluation and comparison. BioData Mining 10, 1 (11 Dec 2017), 36. https:
//doi.org/10.1186/s13040-017-0154-4

[28] Patryk Orzechowski, William La Cava, and Jason H Moore. 2018. Where are
we now? A large benchmark study of recent symbolic regression methods. In
Proceedings of the Genetic and Evolutionary Computation Conference. 1183–
1190.

[29] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,

Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[30] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. 2008. A
field guide to genetic programming. Lulu. com.

[31] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should
I trust you?" Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 1135–1144.

[32] Olga Rudenko and Marc Schoenauer. 2004. A steady performance stop-
ping criterion for Pareto-based evolutionary algorithms. In 6th International
Multi-Objective Programming and Goal Programming Conference.

[33] Michael Schmidt and Hod Lipson. 2011. Age-fitness Pareto optimization. In
Genetic programming theory and practice VIII. Springer, 129–146.

[34] Guo Tao and Zbigniew Michalewicz. 1998. Inver-over operator for the TSP.
In International Conference on Parallel Problem Solving from Nature. Springer,
803–812.

[35] Robert Tibshirani. 2011. Regression shrinkage and selection via the lasso:
a retrospective. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73, 3 (2011), 273–282.

[36] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. 2014. A survey of se-
mantic methods in genetic programming. Genetic Programming and Evolvable
Machines 15, 2 (2014), 195–214.

[37] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter A. N. Bosman.
2020. Improving Model-Based Genetic Programming for Symbolic Regression of
Small Expressions. Evolutionary Computation (Jun 2020), 1–27. https://doi.org/
10.1162/evco_a_00278

[38] Sjoerd de Vries. 2018. Sensitivity Analysis Based Feature-Guided Evolution for
Symbolic Regression. Master’s thesis.

[39] Jan Žegklitz and Petr Pošík. 2017. Symbolic regression algorithms with built-in
linear regression. arXiv preprint arXiv:1701.03641 (2017).

[40] Jan Žegklitz and Petr Pošík. 2020. Benchmarking state-of-the-art symbolic regres-
sion algorithms. Genetic Programming and Evolvable Machines (2020), 1–29.

[41] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via
the elastic net. Journal of the royal statistical society: series B (statistical
methodology) 67, 2 (2005), 301–320.

784

https://arxiv.org/abs/1807.00981
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1162/evco_a_00278
https://doi.org/10.1162/evco_a_00278

	Abstract
	1 Introduction
	2 Background
	2.1 Context
	2.2 Related work

	3 The ZGP algorithm
	3.1 The Zoetropic Representation
	3.2 Fitness and Cost Functions
	3.3 The variation operators

	4 Experimental Validation
	4.1 Experimental Setting
	4.2 Hyperparameters
	4.3 Results and Discussion

	5 Conclusion and future work
	Acknowledgments
	References

