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Parent Selection in Evolutionary Computation Parent Selection in Evolutionary Computation
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NomenCIatu re Training Data Individual A NomenCIatu re Training Data Individual A
Cases| x1 | x2 | x3 | x4 |Target Case |Semantics Cases| x1 | x2 | x3 | x4 |Target Case |Semantics
- (training) Cases: L L al eal e E L e - (training) Cases: L L R e e i e
- Samples of training data 2 0 1 3| 6.9 3| 2 8 - Samples of training data 2 0 1 3| 6.9 3 2 8
- Sometimes referred to as “test cases” - Sometimes referred to as “test cases”
- Semantics: 3 1 3| 45/ 123 8 3 13 - Semantics: 3 1 3| 45/ 123 8 3 13
- The behavior of a GP program on the - The behavior of a GP program on the
training cases 4 1 6 6/ 0.78 9 4 6 training cases 4 1 6 6/ 0.78 9 4 6
- The genome of a GA 5 0 5 29| 12 2 5 12 - The genome of a GA 5 0 5 29| 12 2 5 12
- Errors: - Errors:
- The (absolute, squared etc.) difference \ / - The (absolute, squared etc.) difference \ /
between an individual’'s semantics and between an individual’'s semantics and
the desired semantics on the training Individual Errors the desired semantics on the training Individual Errors
cases cases
Case A B C D E Case A B C D E
1 10 8 73 15 15 1 10 8 73 15 15
2 5 7 60 12 12 2 5 7 60 12 12
3 5 8 0 14 0 3 5 8 0 14 0
4 15 8 0 15| 106 4 15 8 0 15| 106
5 10 7 1 1 1 5 10 7 1 1 1
Total Total
Error: 45 38| 134 57| 134 Error: 45 38| 134 57| 134
B T
NomenCIatu re Training Data Individual A . =
Origin Story
Cases| x1 | x2 | x3 | x4 |Target Case |Semantics
. . 1 1 0| 86| 7.5 6 1 16 Late one night...
(training) Cases: n How can we evolve a calculator?
- Samples of training data 2 0 1 3| 6.9 3 2 8 - Modal: Multiple unrelated
- Sometimes referred to as “test cases” functions
Semantics: 3 1 3| 451123 8 3 13 - Different training cases
- The behavior of a GP program on the - How to maintain in the
training cases 4 1 6 -6 0.78 9 4 -6 population behaviors that are
- The genome of a GA 5 0 5/ 29| 1.2 2 5 12 good at parts of problem?
Errors:
- The (absolute, squared etc.) difference \ /
between an individual’'s semantics and
the desired semantics on the training Individual Errors
cases
Case A B C D E
1 10 8 73 15 15
2 5 7 60 12 12 Lee Spector
3 5 8 0 14 0
4 15 8 0 15| 106
5 10 7 1 1 1
Total Spector, Lee. (2012). Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary
Error: 45 38| 134 57| 134 report. GECCO.



Motivation

«» Most parent selection methods use a single aggregated fitness value
e Ex: total error across set of training cases
e Even multi-objective methods (e.g. NSGA-II) and quality diversity methods aggregate
errors
< Obscures useful info
e Ex: Individual Q performs well on some cases and poorly on others
m perhaps Q has genetic material worth propagating!
m  Q has poor total error
m  Qnot likely selected by tournament selection
o The skill Q is good at may be lost in the population

< Generalists vs. Specialists

errors / objective values

Motivation: Semantic-Aware Selection

« De-aggregating fitness
< Aggregating creates an "Information Bottleneck"

e arich amount of information in errors reduced to a single value
e see: Krawiec

<+ Semantic-aware selection methods make use of individual semantics/errors

errors / objective values

DEOEDO

e Krawiec, K., et al. (2015). Behavioral Program Synthesis: Insights and Prospects. GPTP
e Krawiec, K., & O'Reilly, U.-M. (2014). Behavioral Programming: A Broader and More Detailed Take on Semantic GP. GECCO.
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Median 7T A 45
Smallest 75 98 81
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e  Thomas Helmuth and Lee Spector. (2015) General program synthesis
benchmark suite. GECCO

e  Forstenlechner, S. etal. (2017). A Grammar Design Pattern for Arbitrary
Program Synthesis Problems in Genetic Programming. EuroGP.



Regression Many objective optimization
- Epsilon-lexicase selection has been shown to outperform many state-of- Sﬁn“nt,iiie:f:b?ii:::;iﬁ?”k‘"gs’ DTLZ problems, for increasing
the-art GP and ML methods for regression eexicase selecion probabiity
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e LaCava, W. etal (2016). Epsilon-Lexicase Selection for Regression. GECCO
e Orzechowski, P. et al. (2018) Where Are We Now? A Large Benchmark Study of Recent Symbolic Regression Methods. GECCO

La Cava, W. & Moore, J. H. (2018) An Analysis of e-Lexicase Selection for Large-Scale Many-Objective Optimization. GECCO

B
Evolutionary Robotics Other Evolutionary Computation Results
< Quadruped animat application, lexicase selection outperformed other selection <+ Boolean logic and finite algebras problems using GP
methods e Liskowski, P. et al. (2015) Comparison of semantic-aware selection methods in genetic
< Works well for soft robotics evolution of locomotion programming. GECCO.

< Learning Classifier Systems
e Aenugu, S., & Spector, L. (2019). Lexicase Selection in Learning Classifier Systems.
GECCO.

< Boolean constraint satisfaction using GA
e Metevier, B. et al. (2019) Lexicase selection beyond genetic programming. GPTP.

Moore, J. M., & Stanton, A. (2018). Tiebreaks and Diversity: Isolating Effects in Lexicase Selection. ALIFE.

La Cava, W., & Moore, J. H. (2018). Behavioral search drivers and the role of elitism in soft robotics. Artificial Life, 206-213.
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Lexicase Selection Algorithm:
To Pick One Parent

1. pool — population
2. cases — list of training cases, shuffled
3. while |pool| > 1 and |cases| > O:
a. t « first case in cases
b. best ~ the best error value of any individual in pool on case t
c. pool — filter pool to include only individuals with error of best
on t
d. pop t from cases
4. if |pool| = 1:
a. return the one individual in pool
5. else:
a. return random individual from pool

Thomas Helmuth, et al. (2015) Solving uncompromising problems with lexicase selection. IEEE Transactions on Evolutionary Computation.

T
Lexicase Selection: Example 1 Lexicase Selection: Example 2
Case order: 5,2,1, 3,4 Individual Caseorder:1,2,5,4,3 Individual
< b:bestis 1, pool ={C, D, E} < 1:bestis 8, pool = {B} Case | X B | K| K
< 2:bestis 12, pool ={D, E} < return B 1
e Note: best is always relative to pool, not full population
< 1:bestis 15, pool ={D, E} i 2 ; 68 12 15
< 3:bestis 0, pool ={E}
< return E 4 15 8 0| 15| 106
5 10 7 1 1 1
Total
Error: 45| 38| 134| 57| 134
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Lexicase Selection: Example 3 When it’s applicable

Case order: 3, 5,4,1,2 Individual - When fitness can be decomposed into component parts.
% 3:best is 0, pool = {C, E} - Ex: summations / averages over cases (mean squared error, etc)
“ 5:bestis 1, pool = {C, E} - Places it doesn’t apply:

@ 4 ti | =
bestis 0, pool = {C} - Single output, black-box function optimization
“ return C

- How many fitness components?
- There are factorial (n) different shufflings of n cases
- Lexicase can select from at most that number of different error vectors
- 41=24isn't much if you have a population such as 1000
- 6!=720is often reasonable

Working with floating point semantics

«» When program semantics/errors are floating point, it is much less likely to
have ties.
e This leads to very shallow selection events using lexicase selection
< Epsilon-lexicase selection
e Relaxes the lexicase filtering step
e Only individuals who fall outside of some epsilon of best are filtered each step

e LaCava, W. etal (2016). Epsilon-Lexicase Selection for Regression. GECCO
e LaCava, W. etal. (2019). A Probabilistic and Multi-Objective Analysis of Lexicase Selection and Epsilon-Lexicase Selection.
Evolutionary Computation.




epsilon-Lexicase Selection Algorithm:
To Pick One Parent

N

. cases ~ list of training cases,
. while

. pool ~ population

shuffled

|pool| > 1 and |cases| > O:

a. t « first case in cases

b. best ~ the best error value of any individual in pool on case t

c. epsilon — median absolute deviation of population on case t

d.;pool-«-filter pool to include only individuals within epsilon of
best.

e. pop t from cases

. if |pool| = 1:

a. return the one individual in pool

. else:

a. return random individual from pool

Pre-Selection Filtering: Motivation

R0
%

Individual
Case A B

In GP, programs often produce the same error vector
as other programs 1 17) 17

e Call these equivalent 2 0 0
If 2 or more equivalent programs would make it to the 3 4 4
. 4 12| 12

end of lexicase, we would need to look at every case to 5 p p

find this out
e This is inefficient
e If only one such individual existed, we could stop lexicase
earlier

Pre-Selection Filtering: Algorithm

R0
%

%,
%

X4

Group individuals into equivalence classes based on their error vectors
® once per generation

Run lexicase selection on error vectors, one from each equivalence class
e instead of individuals

After picking an error vector with lexicase selection, select a random
individual from its equivalence class as a parent

This has no functional effect on the results of lexicase - same probability of
selection for every individual

Can provide substantial speedup of running times

Note: is not functionally equivalent for dynamic Epsilon Lexicase

Thomas Helmuth, et al. (2020) On the importance of specialists for lexicase selection. GPEM



Lazy Evaluation

- Some training cases may not get used
for selection

- Computational savings depend on the
ratio of training cases (T) to number of
selections (N).

- Every case probably comes first in
selection when

1
r= 1— (05N

- Otherwise, lazy evaluation may see
significant gains in performance.

Saves time Not worth it

Py first

2000 4000 6000 8000 w10000

N

The probability of a case appearing first.

La Cava, W. et al. (2019). A Probabilistic and Multi-Objective Analysis of Lexicase Selection and Epsilon-Lexicase Selection. Evolutionary Computation

Lexicase
Selections are
Pareto Optimal

- Individuals who are selected are
on the Pareto front defined by
the cases

€2

Lexicase Selection

sequence : {t1,l2}

selected

y

€1

La Cava, W. et al. (2019). A Probabilistic and Multi-Objective Analysis of Lexicase Selection and Epsilon-Lexicase Selection. Evolutionary Computation

epsilon-Lexicase epsilon-Lexicase Selection

Selections are epsilon-
Pareto Optimal

sequence : {t1,ta}

- Epsilon Lexicase selects
individuals that are epsilon-
Pareto Optimal

- Within epsilon of the Pareto
Optimal points

- It does not necessarily select
the Pareto Optimal points

O

selected

€2

€1

La Cava, W. et al. (2019). A Probabilistic and Multi-Objective Analysis of Lexicase Selection and Epsilon-Lexicase Selection. Evolutionary Computation



Many objective optimization

&-Lexicase selection probability

Convergence Measure Rankings, DTLZ problems, for increasing
numbers of objectives (m)

.NSGA-IIDHypE.LEX

o

Mean CM Ranking

m='50 m;75 m=l1 00

La Cava, W. & Moore, J. H. (2018) An Analysis of e-Lexicase Selection for Large-Scale Many-Objective Optimization. GECCO

Specialists vs.
Generalists

< Which are better to select?
e Aggregating errors emphasizes
generalists
e Lexicase selection emphasizes
specialists
< Empirical answer is specialists in
most cases

Thomas Helmuth et al. (2019) Lexicase selection of specialists. GECCO
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Probability gl Selection
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0,000+

Individuals with poor total
error have negligible chances
of being selected:
< 1% of selections go to
bottom half of population

~=

500 1000
Individual's Rank in Population

Ex: Tournament size =7

Specialists vs. Generalists

< Specialists:

e relatively low errors on a subset of training cases
e relatively high errors on other training cases

e poor total error (aggregate fitness) relative to populaﬁgﬁ

< Generalists:
e similar errors on all training cases

e not particularly low errors on any training cases

e good total error relative to population

Thomas Helmuth et al. (2019) Lexicase selection of specialists. GECCO

Specialists vs.
Generalists

< Which are better to select?
e Aggregating errors emphasizes
generalists
e Lexicase selection emphasizes
specialists
< Empirical answer is specialists i
most cases

0.05

0.03

0.02

— Lexicase

Thomas Helmuth et al. (2019) Lexicase selection of specialists. GECCO
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Getting from Specialists to Generalists

R
£ <3

R
£ <3

In the end, we want program that performs well on all cases

e solution = generalist?

How to go from specialists to generalists?

< Specialists gain additional specialties in more cases, leading to

generalization

e lexicase likely to select

e as opposed to selecting generalists and hoping to get better on all cases at once

Diversity in GP for Symbolic Regression

Also maintains high
behavioral diversity
in symbolic
regression

Diversity

B w0 7
Generations

La Cava, W. et al. (2019). A Probabilistic and Multi-Objective Analysis of Lexicase Selection and Epsilon-Lexicase Selection. Evolutionary Computation

[

Population Diversity in GP

Error Diversity

< Lexicase selection produces and maintains higher
levels of behavioral diversity across full GP runs
<  Why?
e it selects individuals that perform well in
different parts of the search space

Replace Space with Newline

=
Ed

Error Diversity
E
=2

Error Diversity

Syllables

Negative to Zero

0 01
Generalion Generalion

Thomas Helmuth et al. (2015) Lexicase selection for program synthesis: A diversity analysis. GPTP




Worst case running time Experimental Running Time

=rand < lex dc “- ep-lex-sd

- Observed running time is much better ‘otourn  afp - ep-lex-s # ep-lex-d
than the worst-case

- Closer to linear in population size

- Population of N individuals, T training cases

- Worst-case running time:
- single selection event: O(NT)
- Per generation: O(N2T)

ep-lex-s =
¥y=044+0937-x, r =0.953

ep-lex-sd 5
y=046+0.935 x, r" =0.955

- Occurs when all individuals are identical e i, it
- In other words, doesn’t occur with pre-selection filtering

- Rarely observed

Runtime (seconds)

3
8

- Tournament selection worst-case O(NT) per generation

500 1000 2000

50 100 250
Population Size (N)

La Cava, W. et al. (2019). A Probabilistic and Multi-Objective Analysis of Lexicase Selection and Epsilon-Lexicase Selection. Evolutionary Computation

Expected Running Time
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T. Helmuth, J. Lengler, W. La Cava (2022). Population Diversity Leads to Short Running Times of Lexicase
Selection. PPSN




Extensions Discovery of Objectives + Lexicase Selection

0
o

Alternate definitions of epsilon - Apply clustering to population semantics to identify sub-tasks
* User-defined thresholds _ o _ _ , - Feed these into lexicase selection
m  Moore & McKinley (2016) A Comparison of Multiobjective Algorithms in Evolving
Quadrupedal Gaits. SAB
m La Cava et al (2016) Epsilon lexicase selection for regression. GECCO
e MADCAP epsilon lexicase

m  Spector, L. et al. (2018) Relaxations of Lexicase Parent Selection. GPTP XV Individual Errors
% epsilon-lexicase survival case | Al BlclpleE Clustered Errors
® La Cava, W.; Moore, J. (2017) A General Feature Engineering Wrapper for Machine Learning
Using epsilon-Lexicase Survival. EuroGP 1 10] 8 73] 15 15 Cluster| A | B | C | D | E .
< Combinations with other methods 2 5 7/ 60| 12| 12 1 o L B 25{;232‘5
e Novelty search: Knobelty and novelty-lexicase
e DOCLEX 3 5 8 0| 14 0 2 o el e
m  Liskowski, P.; Krawiec, K. (2017) Discovery of Search Objectives in Continuous Domains. GECCO 4 15 8 0| 15| 106 3 = = = = =
< Using smaller pools / islands 5 10 71 1 1] 1

e Works when less selection pressure is desirable

Liskowski, P.; Krawiec, K. (2017) Discovery of Search Objectives in Continuous Domains. GECCO 17

T
Down-sampled Lexicase Selection Weighted Case Shuffling
< Each generation, use a subsample of the training cases to evaluate < Natural question: is there a better way to shuffle cases than uniformly
individuals random?
e Similar to mini-batches used in gradient descent < Tested:
% Fewer program evaluations — longer evolution for the same computational e 3 different weighted shuffle algorithms
cost o 9 different bias metrics for weighting cases
< Works very well, even using small portions (5-10%) of the training set  None of these outperform uniform shuffle!
% This has given the best performance on program synthesis problems of any < Why? Hypotheses:

e Lower diversity because of less even emphasis on the search space
e Fewer selections of specialists that perform well on cases that receive less emphasis

lexicase selection variant

e Hernandez, J. G. et al. (2019). Random subsampling improves performance in lexicase selection. GECCO.
e  Ferguson, A. J. et al. (2019). Characterizing the Effects of Random Subsampling on Lexicase Selection. GPTP.
e  Thomas Helmuth and Lee Spector. (2020) Explaining and exploiting the advantages of down-sampled lexicase selection. ALife. Sarah Anne Troise, Thomas Helmuth. (2017) Lexicase selection with weighted shuffle. GPTP.
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Combining Lexicase and Novelty Search

Novelty Lexicase Selection Knobelty
< Combines novelty scores on each case < Uses novelty search selection K
and errors into one set of cases proportion of the time and lexicase
< Produces more diversity and higher selection (1 - K) proportion of the time

successes in long GP runs Knobelty x sensitivity

ool Totwomozo | [ Wrion Remire 7

e P F

é S o Syir Ty e | o —e— Performance
3 0.2{ —¢ Inefficiency
~>— DT novelty
0.0 = Avesize

F f /; 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
" )

‘Generaton

Value (Normalized)
4
S

Kelly, J. at al. (2019). Improving Genetic

Lia Jundt, Thomas Helmuth. (2019). Comparing and Programming with Novel Exploration-Exploitation
combining lexicase selection and novelty search. GECCO. Control. EuroGP.
B

« Lexicase selection is:
e easy to implement
e effective at improving performance and diversity
e applicable to many areas of evolutionary computation

< Contact us with questions / comments!
e thelmuth@hamilton.edu
e lacava@upenn.edu
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