

Genetic Programming

A Tutorial Introduction

Una-May O'Reilly, Erik Hemberg The ALFA Group: AnyScale Learning for All CSAIL, MIT

unamay@csail.mit.edu, hembergerik@csail.mit.edu http://groups.csail.mit.edu/ALFA

This work is licensed under a Creative Commons Attribution International 4.0 License. GECCO '23 Companion, July 15–19, 2023, Lisbon, Portugal © 2023 Copyright is held by the owner/author(s). ACM ISBN 979-8-4007-0120-7/23/07. //doi.org/10.1145/3583133.359506

Instructor: Erik Hemberg

- Research Scientist: AnyScale Learning For All Group, MIT CSAIL
- Experience solving complex problems requiring Al and machine learning with evolutionary computation as a core capability, Bronze HUMIE 2018
- · Applications include
 - Cybersecurity
 - Behavioral data mining MOOC
 - Pylon design
 - Network controllers
 - Tax avoidance
- Focus on innovation and implementation in genetic programming
 - Grammatical representation
 - Coevolution
 - Estimation of Distribution

Instructor: Una-May O'Reilly

- Leader: AnyScale Learning For All Group, MIT CSAIL
- Experience solving real world, complex problems requiring Al/machine learning where evolutionary computation is a core capability
- Applications include

 - Cybersecurity
 Waveform data mining medical applications
 - Behavioral data mining MOOC
 - Circuits, network coding
 - Sparse matrix data mapping on parallel architectures
 - Finance
 - Flavor design
 - Wind energy
 - » Turbine layout
 - » Resource assessment
- Focus on innovation in genetic programming

 - Improving its competence
 - Program synthesis

2

About You

- EA experience?
 - ES? GA? EDA? PSO? ACO? EP?
- CS experience?
- Programming? algorithms?
- · Teacher?
- Native English speakers?

Tutorial Goals

- Introduction to GP algorithm, given some knowledge of genetic algorithms or evolutionary strategies
 - provide Black box demonstration of GP symbolic regression
- Become familiar with GP design properties and recognize them
 - ponygp in python
- · You could teach it in an undergrad lecture
- Use it "out of the box"
- Set groundwork for advanced topics
 - Theory, other tutorials
 - Specialized workshops (Genetic improvement etc)
 - GP Track talks at GECCO, Proceedings of EuroGP, Genetic Programming and Evolvable Machines

5

5

Neo-Darwinian Evolution

- Survival and thriving in the environment
- · Offspring quantity based on survival of the fittest
- Offspring variation: genetic crossover and mutation
- Population-based adaptation over generations
- Genotype-phenotype duality
- · Complex and non-deterministic

Evolutionary Computation and Evolutionary Algorithms

Agenda

- 1. Context: Evolutionary Computation and Evolutionary Algorithms
- GP is the genetic evolution of <u>executable</u> expressions
 - Black box example of GP symbolic regression
- 3. Nuts and Bolts Description of Algorithm Components
- 4. pony_gp.py demonstration from project PonyGP
- 5. Resources and reference material

Agenda

6

EA Generation Loop

Each generation

- select
- breed
- replace

population = random_pop_init()
generation = 0
while needToStop == false
generation++
solution = bestOf(population)
phenotypes =decoder(genotypes)
calculateFitness(phenotypes)
parents = select (phenotypes)
offspring = breed(parents.genotypes)

population = replace(parents, offspring)

recheck(needToStop)

CSATL Computer Science Artificial Intelliger Laboratory

ary Computation and Evolutionary Algorithm

7

Problem Domains where EAs are Used

- · Where there is need for complex solutions
 - evolution is a process that gives rise to complexity
 - a continually evolving, adapting process, potentially with changing environment from which emerges modularity, hierarchy, complex behavior and complex system relationships
- Combinatorial optimization
 - NP-complete and/or poorly scaling solutions via LP or convex optimization
 - unyielding to approximations (SQP, GEO-P)
 - eg. TSP, graph coloring, bin-packing, flows
 - for: logistics, planning, scheduling, networks, bio gene knockouts
 - Typified by discrete variables
 - Solved by Genetic Algorithm (GA)

Evolutionary Computation and Evolutionary Algorithms

9

11

EA Individual Examples

Problem	Gene	Genome	Phenotype	Fitness Function
TSP	110	sequence of cities	tour	tour length
Function optimization	3.21	variables <u>x</u> of function	f(<u>x</u>)	lmin-f(<u>x</u>)l
graph k-coloring	permutation element	sequence for greedy coloring	coloring	# of colors
investment strategy	rule	agent rule set	trading strategy	portfolio change
Regress data	Executable sub- expression	Executable expression	model	Model error on training set (L1, L2)

Evolutionary Computation and Evolutionary Algorithms

Problem Domains where EAs are Used

- · Continuous Optimization
 - non-differentiable, discontinuous, multi-modal, large scale objective functions 'black box'
 - applications: engineering, mechanical, material, physics
 - Typified by continuous variables
 - Solved by Evolutionary Strategy (ES)
- Program Search
 - program as s/w system component, design, strategy, model
 - common: system identification aka symbolic regression, modeling
 - Symbolic regression is a form of supervised machine learning
 - » GP offers some unsupervised ML techniques as well
 - Clustering
 - will show a blackbox GP example soon
 - http://flexap.github.io/gp-learners/sr.html
 - http://flexgp.github.jo/gp-learners/blog.html

Evolutionary Computation and Evolutionary Algorithm

10

Blackbox Example of GP Symbolic Regression

http://flexgp.github.io/gp-learners/sr.html

http://flexgp.github.io/gp-learners/blog.html

S/W by ALFA Group's FlexGP team
Special recognition to Ignacio Arnaldo, PhD who prepared SR Learner tutorial and blog post

MITCSAIL

13

FlexGP's SR Learner

- Targeted partly to be black-box for non-researchers
- sr.jar is available for download
 - Only supported for Debian linux
 - Source is on
- functionality both for performing Symbolic regression on numerical datasets and for testing the retrieved models
- Referred to as our baseline in time-aligned ALFA group publications

 Bring Your Own Learner! A cloud-based, data-parallel commons for machine learning, Ignacio Arnaldo, Kalyan Veeramachaneni, Andrew Song, Una-May O'Reilly, IEEE Computational Intelligence Magazine. Special Issue on Computational Intelligence for Cloud Computing (Feb. 2015), Vol 10, Issue 1, pp 20-32.
- aming, Ignacio Arnaldo, Krzysztof Krawiec, Una-May O'Reilly, GECCO '14, pp 879--
- Option to accelerate runs with C++ optimized execution
 - Requires gcc and g++ compilers, configuring Linux kernel parameter governing the maximum size of shared memory segments
- Option to accelerate runs with CUDA (GPU)
 - Added requirement of nvcc compiler
- append the -cuda flag, make some extra directories...
 Easy parameter changing through a central file

Regression

- · Regress a relationship between a set of explanatory variables and a response variable
- Linear regression:
 - Assume linear model: y=ax+b
 - Optimize parameters (a,b) so data best fits model
- · Logistic regression for classification
 - Maps linear model into sigmoid family

$$F(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

- Symbolic regression does NOT assume a model
 - Not parameter search
 - Model is intrinsic in GP solutions

14

DEMONSTRATION

- http://flexgp.csail.mit.edu -> LEARNERS
- http://flexap.github.io/ap-learners/sr.html INSTRUCTIONS
- http://flexap.github.jo/gp-learners/blog.html EXAMPLE

15

Agenda

HOW DOES IT WORK UNDER THE HOOD?

WHAT IS THIS EXECUTABLE EXPRESSION?

Agenda

17

A Lisp GP system

A Lisp GP system is a large set of functions which are interpreted by evaluating the entry function

Some are definitions of primitives you write

(defun protests in the content of the c

- - » (defun protectedDivide ...)
- Rest is software logic for evolution algorithms

Any GP system has a set of functions that are pre-defined (by compilation or interpretation) for use as primitives also has software logic that handles

- Population initial ation, iteration, selection, breeding,

replacement fitness evalution*

GP expressions are first class objects in LISP so the GP soft are logic can manipulate them as data/variables well as have the interpreter read and evaluate them

GP Evolves Executable Expressions

Koza's Executable Expressions

% Lisp interpreter (set! a 2) -> 2

(*(- (+ 4 c) b) (div d a)) -> 12

(set! b 4) -> 4

(set! c 6) -> 6

(set! d 8) -> 8

; Rule Example

:Predicate:

(> c d) -> nil

(if (= a b) c d) -> 8

Pioneered circa 1988

Lisp S-Expressions

- Composed of primitives called 'functions' and 'terminals'

 Aka operators and variables/operands

Example:

• primitives: + - * div a bcd4

(*(- (+ 4 c) b) (div d a))

In a Lisp interpreter:

- 1. bind a b c and d
- 2. Evaluate expressions

GP Evolves Executable Expressions

18

How to Evaluation an Expression

- · interpreter beneath your code
 - Lisp example
- · interpreter within your code
 - typical,
 - examples: SR.jar or ponygp.py
- · compile then execute on your OS
 - older system in existence

19

How to Manipulate Expressions as Data

- · for Crossover and Mutation we want
 - offspring can be different size and structure than parents
 - syntactic correctness
 - randomness in replication and variation
- GP solution
 - reference the parse tree
 - XO swap subtrees between trees of parents
 - Mutation: insert, subst or delete from a parse tree (PT)
- · A picture tells a 1000 words...

21

21

22

GP Preparatory Steps

Assume we have a GP system with internal expression evaluator.

- 1. Decide upon functions and terminals
 - Terminals bind to decision variables in problem
- Combinatorial expression space defines the search space
- 2. Set up the fitness function
 - Translation of problem goal to GP goal
 - Minimization of error between desired and evolved expression when executed
 - Maximization of a problem based score
 - Construct test cases for program (input examples, desired output)
- 3. Decide upon run parameters
 - Population size is most important
 - GP is robust to many other parameter choices
- 4. Determine a halt criteria and result to be returned
 - Maximum number of fitness evaluations
 - Time
 - Minimum acceptable error
 - Good enough solution (satisficing)

Nuts and Bolts GP Design

25

25

Population Initialization

- · Fill population with random expressions
 - Create a function set Φ and a corresponding argument-count set
 - Create an terminal set (arg-count = 0), T
 - draw from Φ with replacement and recursively enumerate its argument list by additional draws from Φ U T.
 - Recursion ends at draw of a terminal
 - requires closure and/or typing
- · maximum tree height parameter
 - At max-height-1, draw from T only
- "ramped half-half" method ensures diversity
 - equal quantities of trees of each height
 - half of height's trees are full
 - » For full tree, only draw from terminals at max-height-1

27

Nuts and Bolts GP Design

27

Top Level GP Algorithm

Begin

pop = random programs from a set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program's fitness
repeat

select 2 parents
copy 2 offspring from parents
crossover
mutate
add to new-pop
until pop-size
pop = new-pop
until max-generation

Nuts and Bolts GP Design - Summary

26

Selection in GP

- Proceeds in same manner as evolutionary algorithm
 - Same set of methods
 - Conventionally use tournament selection

adequate program found

- Also see fitness proportional selection
- Cartesian genetic programming:
 - » One parent: generate 5 children by mutation
 - » Keep best of parents and children and repeat
 - If parent fitness = child fitness, keep child

Determining a Expression's Fitness

- · One test case:
 - Execute the expression with the problem decision variables (ie terminals) bound to some test value and with side effect values initialized
 - Designate the "result" of the expression
- Measure the error between the correct output values for the inputs and the result of the expression
 - Final output may be side effect variables, or return value of expression
 - Eg. Examine expression result and expected result for regression
 - Eg. the heuristic in a compilation, run the binary with different inputs and measure how fast they ran.
- EG, Configure a circuit from the genome, test the circuit with an input signal and measure response vs desired response
- Usually have more than one test case but cannot enumerate them all
 - Use rational design to create incrementally more difficult test cases
 - Use class balanced data for classification

Nuts and Bolts GP Design

29

29

Tree Crossover Details

- Crossover point in each parent is picked at random
- · Conventional practices
 - All nodes with equal probability
 - leaf nodes chosen with 0.1 probility and non-leaf with 0.9 probability
- · Probability of crossover
 - Typically 0.9
- Maximum depth of child is a run parameter
 - Typically ~ 15
 - Can be size instead

Crossover Properties

- Two identical parents rarely produce offspring that are identical to them
- Tree-crossover produces great variations in offspring with respect to parents
- Crossover, in addition to preserving syntax, allows expressions to vary in length and structure (subexpression nesting)

32

Nuts and Bolts GP Design

32

Details When Using Executable Expressions

- Closure
 - Design functions with wrappers that accept any type of argument
 - Often types will semantically clash...need to have a way of dealing with this

Practicality/Solution Feasibility

- Sufficiency
 - Make sure a correct solution can be plausibly expressed when choosing your primitive set
 - » Functions must be wisely chosen but not too complex
 - » General primitives: arithmetic, boolean, condition, iteration, assignment
 - » Problem specific primitives
 - Can you handcode a naïve solution?
 - Balance flexibility with search space size

GP Evolves Executable Expressions

Computer Science & Artificial Intelligence Laboratory

30

GP Tree Mutation

- · Often only crossover is used
- But crossover behaves often like macro-mutation
- Mutation can be better tuned to control the size of the change
- A few different versions

Nuts and Bolts GP Design

Other Sorts of Tree Mutation

- · Koza:
 - Randomly remove a sub-tree and replace it
 - Permute: mix up order of args to operator
 - Edit: + 1 3 -> 4, and(t t) -> t
 - Encapsulate: name a sub-tree, make it one node and allow re-use by others (protection from crossover)
 - » Developed into advanced GP concept known as
 - · Automatic module definition
 - Automatically defined functions (ADFs)
- Make your own
 - Could even be problem dependent (what does a subtree do? Change according to its behavior)

Nuts and Bolts GP Design

34

34

GP Parameters

- Population size
- · Number of generations
- Max-height of trees on random initialization
 - Typically 6
- · Probability of crossover
 - Higher than mutation
 - 0.9
 - Rest of offspring are copied
- Probability of mutation
 - Probabilities of addition, deletion and insertion

- Population initialization method
 - Ramped-half-half
 - All full
 - All non-full
- Selection method
 - Elitism?
- Termination criteria
- · Fitness function
- what is used as "solution" of expression

Nuts and Bolts GP Design

CSAIL Compute Artificial I Laborator

36

35

GP Software Deep Dive

- flexqp.csail.mit.edu
- http://flexqp.qithub.io/qp-learners/

Basic:

- https://flexgp.github.io/pony_gp/
- https://github.com/flexgp/pony_gp

3/

PonyGP: Simple Symbolic Regression

- · Given a set of independent decision variables and corresponding values for a dependent variable
- Want: a model that predicts the dependent variable
 - Eg: linear model with numerical coefficients
 - y = aX1 + bX2 + c(X1X2)
 - Eg: non-linear model y= a x1² + bx2³

actual samples

- Prediction accuracy: minimum error between model prediction and
- Usually: designer provides a model and a regression (ordinary least squares, Fourier series) determines coefficients
- With genetic programming, the model (structure) and the coefficients can be learned

- Test problem:
 - f(x)=(X0 * X0) + (X1 * X1)
 - Domain of X0 and X1 [-5.0,5.0]
- Choose the 4 operands (terminals)
 - X0, X1, 1.0, 0
- Choose the 4 operators (functions)
 - +, -, *, / (protected)
 - protected divide: if denom==0, return numerator
- · Fitness function: sum of mean squared error between yi, and expression's return values
- Prepare 121 randomized points for
- Out of sample training:testing ratio is 70:30, random selection of points as training or test

GP Examples

38

Reference Material

Online Material

http://geneticprogramming.com/

Where to search for conference and journal publications

· Genetic Programming Bibiliography

Digital Libraries

- ACM digital library: http://portal.acm.org/
- GECCO conferences GP conferences (pre GECCO),
- IEEE digital library: http://www.computer.org/portal/web/csdl/home
- Congress on Evolutionary Computation (CEC)
 Springer digital library: http://www.springerlink.com/ - European Conference on Genetic Programming: "EuroGP"

 JOURNALS

- **Evolutionary Computation Journal (MIT Press)**
- Genetic Programming and Evolvable Machines Journal (Springer)
- ACM Transactions on Evolutionary Learning and Optimization (ACM)
- IEEE Transactions on Evolutionary Computation

· https://github.com/search?q=genetic+programming

Agenda

- 1. GP is the genetic evolution of executable
- 2. Nuts and Bolts Descriptions of Algorithm
- 3. Resources and reference material

Agenda

39

Genetic Programming Benchmarks

Genetic programming needs better benchmarks

- James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo Vanneschi, Wojciech Ja'skowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, and Una-May O'Reilly.
- In Proceedings of GECCO 2012, Philadelphia, 2012. ACM.
- Related benchmarks wiki
 - http://GPBenchmarks.org
- · GP Program Synthesis Benchmarks
 - http://thelmuth.github.io/GECCO 2015 Benchmarks Materials/
 - https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html

Software Packages for Symbolic Regression

No Source code available

- · Datamodeler mathematica, Evolved Analytics
- Eureqa II/ Formulize a software tool for detecting equations and hidden mathematical relationships in data
 - http://creativemachines.cornell.edu/eurega
 - Plugins to Matlab, mathematica, Python
 - Convenient format for data presentation
 - Standalone or grid resource usage
 - Windows, Linux or Mac
 - http://www.nutonian.com/ for cloud version
- Discipulus[™] 5 Genetic Programming Predictive Modelling
- New https://github.com/EC-KitY/EC-KitY

42

Reference Material - Books

- Genetic Programming, James McDermott and Una-May O'Reilly, In the Handbook of Computational Intelligence, Topic Editors: Dr. F. Neumann and Dr. K Witt, Editors in Chief Prof. Janusz Kacprzyk and Prof. Witold Pedrycz.
- · Essentials of Metaheuristics, Sean Luke, 2010
- · Genetic Programming: From Theory to Practice
 - 10 years of workshop proceedings, on SpringerLink, edited
- A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu and online digitally
- · Advances in Genetic Programming
 - 3 years, each in different volume, edited
- John R. Koza
 - Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992 (MIT Press)
 - Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
 - Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest H Bennett III, David Andre, and Martin A. Keane, (Morgan Kaufmann)
 - Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with Martin A. Keane, Matthew J.
 Streeter, William Mydlowec, Jessen Yu, and Guido Lanza
- · Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, Springer (2007)
- Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone, 1997 (Morgan Kaufmann)

43

