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Instructor: Una-May O’Reilly
• Leader:  AnyScale Learning For All Group, 

MIT CSAIL
• Experience solving real world, complex 

problems requiring AI/machine learning where
evolutionary computation is a core capability

• Applications include
– Cybersecurity
– Waveform data mining – medical applications
– Behavioral data mining – MOOC
– Circuits, network coding
– Sparse matrix data mapping on parallel 

architectures
– Finance
– Flavor design
– Wind energy

» Turbine layout
» Resource assessment

• Focus on innovation in genetic programming
– Coevolution
– Improving its competence
– Program synthesis 
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Instructor: Erik Hemberg
• Research Scientist:  AnyScale Learning 

For All Group, MIT CSAIL
• Experience solving complex problems 

requiring AI and machine learning with
evolutionary computation as a core 
capability, Bronze HUMIE 2018

• Applications include
– Cybersecurity
– Behavioral data mining – MOOC
– Pylon design
– Network controllers
– Tax avoidance

• Focus on innovation and implementation 
in genetic programming
– Grammatical representation
– Coevolution
– Estimation of Distribution
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About You
• EA experience?

– ES? GA? EDA? PSO? ACO? EP?
• CS experience?
• Programming? algorithms?
• Teacher?
• Native English speakers?
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Tutorial Goals
• Introduction to GP algorithm, given some knowledge 

of genetic algorithms or evolutionary strategies
– provide Black box demonstration of GP symbolic regression

• Become familiar with GP design properties and 
recognize them
– ponygp in python

• You could teach it in an undergrad lecture
• Use it “out of the box”
• Set groundwork for advanced topics

– Theory, other tutorials
– Specialized workshops (Genetic improvement etc)
– GP Track talks at GECCO, Proceedings of EuroGP, Genetic 

Programming and Evolvable Machines
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Agenda
1. Context: Evolutionary Computation and 

Evolutionary Algorithms
2. GP is the genetic evolution of executable

expressions
– Black box example of GP symbolic regression

3. Nuts and Bolts Description of Algorithm 
Components

4. pony_gp.py demonstration from project PonyGP
5. Resources and reference material 

Agenda
6

6

Neo-Darwinian Evolution

Evolutionary Computation and Evolutionary Algorithms

• Survival and thriving in the environment
• Offspring quantity - based on survival of the fittest
• Offspring variation: genetic crossover and mutation
• Population-based adaptation over generations
• Genotype-phenotype duality
• Complex and non-deterministic
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EA Generation Loop

Evolutionary Computation and Evolutionary Algorithms

Each generation

select

breed

replace

population = random_pop_init()
generation = 0
while needToStop == false
generation++
solution = bestOf(population)
phenotypes =decoder(genotypes)
calculateFitness(phenotypes)
parents = select (phenotypes)
offspring = breed(parents.genotypes)
population = replace(parents, offspring)
recheck(needToStop)
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Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

• Where there is need for complex solutions 
– evolution is a process that gives rise to complexity
– a continually evolving, adapting process, potentially with 

changing environment from which emerges modularity, 
hierarchy, complex behavior and complex system 
relationships 

• Combinatorial optimization
– NP-complete and/or poorly scaling solutions via LP or 

convex optimization
– unyielding to approximations (SQP, GEO-P)
– eg. TSP, graph coloring, bin-packing, flows
– for: logistics, planning, scheduling, networks, bio gene 

knockouts
– Typified by discrete variables  
– Solved by Genetic Algorithm (GA) 
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Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

• Continuous Optimization
– non-differentiable, discontinuous, multi-modal, large scale 

objective functions  ‘black box’
– applications: engineering, mechanical, material, physics
– Typified by continuous variables
– Solved by Evolutionary Strategy (ES)

• Program Search 
– program as s/w system component, design, strategy, model
– common: system identification aka symbolic regression, modeling
– Symbolic regression is a form of supervised machine learning

» GP offers some unsupervised ML techniques as well
§ Clustering

– will show a blackbox GP example soon
§ http://flexgp.github.io/gp-learners/sr.html
§ http://flexgp.github.io/gp-learners/blog.html
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EA Individual Examples

Evolutionary Computation and Evolutionary 
Algorithms

Problem Gene Genome Phenotype Fitness
Function

TSP 110 sequence of cities tour tour length

Function
optimization 3.21 variables x of 

function f(x) |min-f(x)|

graph
k-coloring

permutation
element

sequence for greedy 
coloring coloring # of colors

investment
strategy rule agent rule set trading strategy portfolio change

Regress data Executable sub-
expression

Executable 
expression model Model error on 

training set (L1, L2) 
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Blackbox Example of
GP Symbolic Regression

http://flexgp.github.io/gp-learners/sr.html
http://flexgp.github.io/gp-learners/blog.html

S/W by ALFA Group’s FlexGP team
Special recognition to Ignacio Arnaldo, PhD who prepared SR Learner tutorial and blog post
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Regression

System

f(X)

Inputs

x11

x21

x31

Output

AKA
Explanatory variables
Independent variables
Manipulated variables
Control variables
Decision variables
Features

Response variable
Dependent variable
Label

y4

x12

x22

x32

x13

x23

x33

x14

x24

x34

y3 y2 y1

GOAL: FIND F(X) THAT GENERATES Y
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Regression
• Regress a relationship between a set of explanatory 

variables and a response variable
• Linear regression:

– Assume linear model:  y=ax+b
– Optimize parameters (a,b) so data best fits model

• Logistic regression for classification
– Maps linear model into sigmoid family

• Symbolic regression does NOT assume a model
– Not parameter search
– Model is intrinsic in GP solutions
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FlexGP’s SR Learner
• Targeted partly to be black-box for non-researchers 
• sr.jar is available for download

– Only supported for Debian linux
– Source is on 

§ http://flexgp.github.io
• functionality both for performing Symbolic regression on numerical 

datasets and for testing the retrieved models
• Referred to as our baseline in time-aligned ALFA group publications

– Bring Your Own Learner! A cloud-based, data-parallel commons for machine learning, Ignacio 
Arnaldo, Kalyan Veeramachaneni, Andrew Song, Una-May O’Reilly. IEEE Computational 
Intelligence Magazine. Special Issue on Computational Intelligence for Cloud Computing (Feb. 
2015), Vol 10, Issue 1, pp 20-32. 

– Multiple regression genetic programming, Ignacio Arnaldo, Krzysztof Krawiec, Una-May O'Reilly, GECCO '14, pp 879--
886.

• Option to accelerate runs with C++ optimized execution
– Requires gcc and g++ compilers, configuring Linux kernel parameter governing the 

maximum size of shared memory segments
• Option to accelerate runs with CUDA (GPU)

– Added requirement of nvcc compiler
– append the -cuda flag, make some extra directories…

• Easy parameter changing through a central file
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DEMONSTRATION
§ http://flexgp.csail.mit.edu -> LEARNERS
§ http://flexgp.github.io/gp-learners/sr.html INSTRUCTIONS
§ http://flexgp.github.io/gp-learners/blog.html EXAMPLE
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Agenda
HOW DOES IT WORK UNDER THE HOOD?

WHAT IS THIS EXECUTABLE EXPRESSION?

Agenda
17
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Koza’s Executable Expressions
Pioneered circa 1988
• Lisp S-Expressions 

– Composed of primitives 
called ‘functions’ and 
‘terminals’

– Aka operators and 
variables/operands

Example: 
• primitives: + - * div a 

b c d 4
• (*(- (+ 4 c) b) (div d a))
In a Lisp interpreter:
1. bind a b c and d
2. Evaluate expressions

% Lisp interpreter
(set! a 2) -> 2
(set! b 4) -> 4
(set! c 6) -> 6
(set! d 8) -> 8
(*(- (+ 4 c) b) (div d a)) -> 12
; Rule Example
(if (= a b) c d) -> 8
;Predicate:
(> c d) -> nil

GP Evolves Executable Expressions
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18

A Lisp GP system 
A Lisp GP system is a large set of functions which are 

interpreted by evaluating the entry function
– Some are definitions of primitives you write!

» (defun protectedDivide …)
– Rest is software logic for evolutionary algorithms

Any GP system has a set of functions that are pre-defined 
(by compilation or interpretation) for use as primitives
also has software logic that handles 
– Population initialization, iteration, selection, breeding, 

replacement, *fitness evalution*
GP expressions are first class objects in LISP so the GP 

software logic can manipulate them as data/variables 
as well as have the interpreter read and evaluate them

GP Evolves Executable Expressions
19

Expressions are data and are executed

19

How to Evaluation an Expression
• interpreter beneath your code

– Lisp example
• interpreter within your code

– typical, 
– examples: SR.jar or ponygp.py

• compile then execute on your OS
– older system in existence

20
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How to Manipulate Expressions as Data
• for Crossover and Mutation we want

– offspring can be different size and structure than parents
– syntactic correctness
– randomness in replication and variation

• GP solution
– reference the parse tree
– XO - swap subtrees between trees of parents
– Mutation: insert, subst or delete from a parse tree (PT)

• A picture tells a 1000 words…

21
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Parse Trees

GP Evolves Executable Expressions

• Whether parsed preorder (node, left-child, right-child) or
postorder (left-child, right-child, node) or inorder (left, node, right)
the expression evaluates to the same result

Inorder: 2+3

preorder: + 2 3

Post-order: 2 3 + Inorder: (2-3) + (a max best)

preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+
2 3

+
- max

2 3 a best

•(tree)GP uses an expression tree as its genotype structure
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Nuts and Bolts GP Design
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GP Preparatory Steps
Assume we have a GP system with internal expression evaluator.

1. Decide upon functions and terminals
– Terminals bind to decision variables in problem
– Combinatorial expression space defines the search space

2. Set up the fitness function
– Translation of problem goal to GP goal
– Minimization of error between desired and evolved expression when 

executed
– Maximization of a problem based score
– Construct test cases for program (input examples, desired output)

3. Decide upon run parameters
– Population size is most important
– GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
– Maximum number of fitness evaluations
– Time
– Minimum acceptable error
– Good enough solution (satisficing)

Nuts and Bolts GP Design
25
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Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
pop = random programs from a   set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program’s fitness
repeat

select 2 parents
copy 2 offspring from parents

crossover
mutate

add to new-pop
until pop-size

pop = new-pop
until max-generation 

or
adequate program found

End

26
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Population Initialization
• Fill population with random expressions

– Create a function set F and a corresponding argument-count set
– Create an terminal set (arg-count = 0), T
– draw from F with replacement and recursively enumerate its 

argument list by additional draws from F U T.
– Recursion ends at draw of a terminal
– requires closure and/or typing

• maximum tree height parameter
– At max-height-1, draw from T only

• “ramped half-half”method ensures diversity
– equal quantities of trees of each height
– half of height’s trees are full

» For full tree, only draw from terminals at max-height-1

Nuts and Bolts GP Design
27
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Selection in GP
• Proceeds in same manner as evolutionary algorithm

– Same set of methods
– Conventionally use tournament selection
– Also see fitness proportional selection
– Cartesian genetic programming:

» One parent: generate 5 children by mutation
» Keep best of parents and children and repeat

§ If parent fitness = child fitness, keep child

28
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Determining a Expression’s Fitness
• One test case:

– Execute the expression with the problem decision variables (ie
terminals) bound to some test value and with side effect values 
initialized

– Designate the “result” of the expression
• Measure the error between the correct output values for the 

inputs and the result of the expression 
– Final output may be side effect variables, or return value of 

expression
– Eg. Examine expression result and expected result for regression
– Eg. the heuristic in a compilation, run the binary with different 

inputs and measure how fast they ran.
– EG, Configure a circuit from the genome, test the circuit with an 

input signal and measure response vs desired response 
• Usually have more than one test case but cannot enumerate 

them all
– Use rational design to create incrementally more difficult test cases 
– Use class balanced data for classification

Nuts and Bolts GP Design
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Details When Using Executable Expressions
• Closure

– Design functions with wrappers that accept any type of 
argument

– Often types will  semantically clash…need to have a way of 
dealing with this

Practicality/Solution Feasibility
• Sufficiency

– Make sure a correct solution can be plausibly expressed 
when choosing your primitive set
» Functions must be wisely chosen but not too complex
» General primitives: arithmetic, boolean, condition, iteration, 

assignment
» Problem specific primitives

– Can you handcode a naïve solution?
– Balance flexibility with search space size

GP Evolves Executable Expressions
30
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Tree Crossover Details
• Crossover point in each 

parent is picked at random
• Conventional practices

– All nodes with equal 
probability

– leaf nodes chosen with 0.1 
probility and non-leaf with 
0.9 probability

• Probability of crossover
– Typically 0.9

• Maximum depth of child is a 
run parameter
– Typically ~ 15
– Can be size instead

Crossover Properties
• Two identical parents rarely 

produce offspring that are 
identical to them

• Tree-crossover produces 
great variations in offspring 
with respect to parents

• Crossover, in addition to 
preserving syntax, allows 
expressions to vary in 
length and structure (sub-
expression nesting)

Nuts and Bolts GP Design
32
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GP Tree Mutation
• Often only crossover is used
• But crossover behaves often like macro-mutation
• Mutation can be better tuned to control the size of 

the change
• A few different versions

Nuts and Bolts GP Design
33

33

1033



Other Sorts of Tree Mutation
• Koza:

– Randomly remove a sub-tree and replace it
– Permute: mix up order of args to operator 
– Edit: + 1 3 -> 4, and(t t) -> t
– Encapsulate: name a sub-tree, make it one node and allow 

re-use by others (protection from crossover)
» Developed into advanced GP concept known as 

§ Automatic module definition
§ Automatically defined functions (ADFs)

• Make your own
– Could even be problem dependent (what does a subtree 

do? Change according to its behavior)

Nuts and Bolts GP Design
34
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Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
pop = random programs from a   set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program’s fitness
repeat

select 2 parents
copy 2 offspring from parents

crossover
mutate

add to new-pop
until pop-size

pop = new-pop
until max-generation 

or
adequate program found

End

Grow or Full

•Tournament selection
•Fitness proportional selection
•Your favorite selection

Ramped-half-half

Prepare input data
Designate solution
Define error between actual
and expected

Sub-tree crossover•HVL-mutate
•Subtree subst
•Permute
•Edit
•Your own

Max-init-tree-height

Prob to crossover

Max-tree-height

Mutation probs

Tournament size

Leaf:node bias

35
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GP Parameters
• Population size
• Number of generations
• Max-height of trees on 

random initialization
– Typically 6

• Probability of crossover
– Higher than mutation
– 0.9 
– Rest of offspring are copied

• Probability of mutation
– Probabilities of addition, 

deletion and insertion

• Population initialization 
method
– Ramped-half-half
– All full
– All non-full

• Selection method
– Elitism?

• Termination criteria
• Fitness function 
• what is used as “solution”

of expression

Nuts and Bolts GP Design
36
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GP Software Deep Dive
• flexgp.csail.mit.edu
• http://flexgp.github.io/gp-learners/
Basic:
• https://flexgp.github.io/pony_gp/
• https://github.com/flexgp/pony_gp

37
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PonyGP: Simple Symbolic Regression
• Given a set of independent 

decision variables and 
corresponding values for a 
dependent variable

• Want: a model that predicts the 
dependent variable

– Eg: linear model with numerical 
coefficients

» Y= aX1 + bX2 + c(X1X2)
– Eg: non-linear model

» y= a x12 + bx23

– Prediction accuracy: minimum 
error between model prediction and 
actual samples

• Usually: designer provides a model 
and a regression (ordinary least 
squares, Fourier series) 
determines coefficients 

• With genetic programming, the 
model (structure) and the 
coefficients can be learned

• Test problem:
– f(x)=(X0 * X0) + (X1 * X1)

• Domain of X0 and X1 [-5.0,5.0]
• Choose the 4 operands (terminals)

– X0, X1, 1.0, 0 
• Choose the 4 operators (functions)

– +, - , *, / (protected)
– protected divide: if denom==0, 

return numerator
• Fitness function: sum of mean 

squared error between yi, and 
expression’s return values

• Prepare 121 randomized points for 
testing

• Out of sample training:testing ratio 
is 70:30, random selection of 
points as training or test

GP Examples
38
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Agenda
Context: Evolutionary Computation and Evolutionary 

Algorithms
1. GP is the genetic evolution of executable

expressions
2. Nuts and Bolts Descriptions of Algorithm 

Components
3. Resources and reference material 

Agenda
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Reference Material
Online Material
• http://geneticprogramming.com/
Where to search for conference and journal publications
• Genetic Programming Bibiliography

– https://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
Digital Libraries
• ACM digital library: http://portal.acm.org/ 

– GECCO conferences
– GP conferences (pre GECCO), 

• IEEE digital library: http://www.computer.org/portal/web/csdl/home 
– Congress on Evolutionary Computation (CEC)

• Springer digital library: http://www.springerlink.com/
– European Conference on Genetic Programming: “EuroGP”

JOURNALS
• Evolutionary Computation Journal (MIT Press)
• Genetic Programming and Evolvable Machines Journal (Springer)
• ACM Transactions on Evolutionary Learning and Optimization (ACM)
• IEEE Transactions on Evolutionary Computation
Software
• https://github.com/search?q=genetic+programming
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Genetic Programming Benchmarks
Genetic programming needs better benchmarks

– James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro 
Castelli, Leonardo Vanneschi, Wojciech Ja ́skowski, Krzysztof Krawiec, 
Robin Harper, Kenneth De Jong, and Una-May O’Reilly.

– In Proceedings of GECCO 2012, Philadelphia, 2012. ACM. 

• Related benchmarks wiki
– http://GPBenchmarks.org

• GP Program Synthesis Benchmarks
– http://thelmuth.github.io/GECCO_2015_Benchmarks_Materials/
– https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html
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Software Packages for Symbolic Regression

No Source code available
• Datamodeler - mathematica, Evolved Analytics
• Eureqa II/ Formulize  - a software tool for detecting 

equations and hidden mathematical relationships in 
data
– http://creativemachines.cornell.edu/eureqa
– Plugins to Matlab, mathematica, Python
– Convenient format for data presentation
– Standalone or grid resource usage
– Windows, Linux or Mac
– http://www.nutonian.com/ for cloud version

• Discipulus™ 5 Genetic Programming Predictive
Modelling

• New https://github.com/EC-KitY/EC-KitY
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Reference Material - Books
• Genetic Programming, James McDermott and Una-May O'Reilly, In the Handbook of 

Computational Intelligence, Topic Editors: Dr. F. Neumann and Dr. K Witt, Editors in Chief
Prof. Janusz Kacprzyk and Prof. Witold Pedrycz.

• Essentials of Metaheuristics, Sean Luke, 2010
• Genetic Programming: From Theory to Practice

– 10 years of workshop proceedings, on SpringerLink, edited
• A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu and online 

digitally
• Advances in Genetic Programming

– 3 years, each in different volume, edited
• John R. Koza

– Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992 (MIT Press)
– Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
– Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest H Bennett III, David Andre, and 

Martin A. Keane, (Morgan Kaufmann)
– Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with Martin A. Keane, Matthew J. 

Streeter, William Mydlowec, Jessen Yu, and Guido Lanza
• Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, Springer (2007)
• Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone, 1997 (Morgan 

Kaufmann)
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