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ABSTRACT
Measuring diversity in evolutionary algorithms presents a complex
challenge, especially in optimization tasks with variable dimen-
sionality. Current literature offers limited insights on effectively
quantifying diversity under these conditions. This paper addresses
this gap by evaluating the effectiveness of conventional diversity
measures in variable dimension contexts and identifying their lim-
itations. We introduce a novel diversity measurement approach
tailored to these dynamic environments. Our method comprehen-
sively captures both the structural and parametric diversity of pop-
ulations, providing a more nuanced understanding of diversity
changes over time. Through a series of experimental scenarios,
we demonstrate that our proposed measure effectively tracks the
evolution of diversity in populations with variable dimensions.
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1 INTRODUCTION
In the realm of artificial intelligence (AI), optimization plays a piv-
otal role, particularly in applications involving network design [4],
resource allocation [23], and machine learning [19]. Metaheuristic
algorithms have emerged as powerful tools for solving complex
optimization problems due to their flexibility and robustness [15].
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However, a critical challenge arises when these algorithms are ap-
plied to problems with variable problem dimensionality, a scenario
frequently encountered in dynamic and uncertain environments.
Examples can be found in various domains: navigation and manip-
ulation tasks in robotics, further logistics, scheduling, mission and
path planning and also in data preprocessing in machine learning.

Population diversity is a key factor in the success ofmeta-heuristic
algorithms, influencing their ability to explore the search space and
avoid premature convergence [26]. Despite its importance, standard
methods for measuring population diversity are primarily designed
for fixed–dimension problems, leading to inadequacies in scenarios
where the dimensionality of the problem varies.

This paper aims to bridge this gap by focusing on the evaluation
and comparison of standard methods for measuring population
diversity within the context of variable dimension search spaces.
By addressing this underexplored area, our research endeavors to
enhance the performance and applicability of metaheuristic algo-
rithms, providing practical solutions for a wide range of domains
facing the challenge of variable problem dimensionality.

The originality and motivation of the present research can be
defined as follows.

The experimental study here focuses on the selected use case
of object selection with parameter optimization, specifically the
mixed-integer domain. The research questions are simple: How do
we measure diversity in such a case, and are there any differences
between possible approaches?

Motivation can be viewed from several directions. This research
seeks to support the development of efficient algorithms for op-
timization in a problem environment with variable dimension by
implementing not only the principle itself to deal with the problem
given by the nature of the dynamic optimization problem, but also
by analyzing the diversity of the population. This data would then
provide beneficial feedback into the control or adaptation of the
algorithm run and could also help to understand the characteristics
of the optimization problem. Currently, the standard procedure for
the aforesaid optimization problem is to complement missing di-
mensions to the maximum possible length of an individual, and this
inherently increases the search space complexity significantly. The
desire to develop new approaches for algorithms and for analyzing
their dynamics clearly defines the research goal.

The organization of the paper is as follows: First, a brief overview
of the problem of optimization with variable-length (dimension)
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of the individual (solution) is given, followed by a review of ap-
proaches to computing diversity in the fixed–dimension problem
domain. The following experimental section provides a demon-
stration and comparison of population diversity computation ap-
proaches for synthetic data generated on the basis of a real–world
optimization problem. The findings and possible future directions
are then summarized in the discussion and conclusion sections.

2 VARIABLE DIMENSIONALITY IN
OPTIMIZATION

The problem of optimization with variable dimensionality can be
identified for several real-world problems. In most cases, the con-
version or encoding of the solution for an optimization algorithm
is performed so that the dimensionality of the solution, and hence
e.g. the number of genes for a genetic algorithm (GA), remains
fixed throughout the algorithm’s run. The simplest representation
is the problem of subset selection, or selecting elements with a
fixed number of optimized parameters. Examples include several
navigation problems, such as [28], where an underwater glider is
navigated by a fixed number of surfacings, adjusting (optimizing)
angles and headings with respect to weather conditions and sea
current forecasts. Another example would be the navigation of
robots [22] in the environment and optimizing the route from the
starting point to the destination over obstacles or a variable number
of waypoints. From the robotics field, also the industrial robotics
arm controlling problem [13] was identified as variable dimension
optimization task [12]. The AI field covers variable dimensional
problems like feature selection in high dimensional classification
[25], as well as neural network architecture design [17]. A selected
example that also inspired the data generation was a mixed–integer
operational research task where the number and location of munic-
ipal waste incinerators were decided, and the routing problem for
the waste collection for these newly located incinerators was opti-
mized considering many constraining criteria and the economics
of the operation and collection [10].

In the context of metaheuristic algorithms, the most straight-
forward approach involves utilizing an encoding scheme that is
tailored to the specific features of the problem at hand. Nevertheless,
when addressing the issue of variable dimensionality and aiming
to understand the interactions among genes, a distinct version of a
genetic algorithm, known as the messy GA [7], is employed. This
specialized algorithm is designed to navigate the complexities asso-
ciated with varying chromosome lengths. The algorithm was pro-
posed to accelerate convergence on selected multimodal problems,
and the core idea was to include the search for relations in black–
box optimization problem representations. Thus, the genes do not
have a fixed position. The algorithm was also characterized by a
specific encoding of genes, two different mechanisms for dealing
with so–called overspecified (conflicting) genes or underspecified
genes, which are resolved by filling in missing information (genes)
based on the population’s best–known individual (solution). Other
examples from the associated algorithmic domain are Fast Messy
Genetic Algorithm [6], A multi–population pattern searching al-
gorithm (MuPPetS) introduced in [16] which presents an answer
to situations where long–coded individuals are a must and uses
some of the messy GA ideas like coding and operators. Another

algorithm derived from messy GA, which mainly tried to remove
the computational drawbacks of the original algorithm design, was
Gene Expression Messy GA (GEMGA) [14].

Beyond the group of GA-based algorithms, popular metaheuris-
tics have also been specifically adapted for a particular variable
dimension applications. Examples are Differential Evolution (DE)
[22] and Particle Swarm Optimization (PSO) [25].

3 POPULATION DIVERSITY STATE OF THE
ART

In the field of continuous single–objective optimization, metaheuris-
tic algorithms stand out for their ability to navigate complex search
spaces efficiently. A pivotal aspect of their success lies in the adap-
tive mechanisms these algorithms often employ, particularly in
response to population diversity. Population diversity serves as a
crucial indicator of the search process’s state, guiding the algorithm
towards exploration or exploitation as necessary [26].

The evolution of metaheuristic algorithms has seen the incor-
poration of advanced adaptive strategies, explicitly focusing on
the measurement and management of population diversity. This
involves the fine–tuning of algorithm–specific parameters like mu-
tation rates in GAs [8], flight parameters in PSO [11, 18, 21], or
scaling factors in DE [2, 3, 24], all predicated on the ongoing evalu-
ation of diversity levels. These strategic adjustments facilitate an
algorithm’s ability to elude local optima, promoting a more effective
convergence towards the optimal solution by maintaining a balance
between diversity and algorithmic focus.

The significance of these adaptive strategies lies in their role
in enhancing the robustness and flexibility of metaheuristic algo-
rithms, enabling them to navigate through the complex landscapes
of optimization problems adaptively. By integrating responses to
diversity fluctuations, these algorithms demonstrate an exceptional
capacity for both exploring new possibilities and exploiting known
information to identify optimal solutions efficiently. The dynamic
management of population diversity stands as a cornerstone in
the algorithm’s ability to tackle a broad spectrum of optimization
challenges effectively.

Nevertheless, the analysis of population dynamics through di-
versity measures needs to be viewed critically, as demonstrated in
[20]. The paper analyzes the prevalent methods used to quantify
population diversity and reveals a significant insight: the common
practice of encapsulating the complex state of a metaheuristic pop-
ulation into a single numerical value of diversity is overly simplistic
and can be misleading. The presented results demonstrate that a
lower diversity measure does not necessarily correlate with dimin-
ished prospects for generating new feasible solutions. This finding
challenges existing assumptions in the field and underscores the
need for a more nuanced understanding of population diversity’s
role in the effectiveness of metaheuristic algorithms.

Considering the criticisms and the usefulness of the diversity–
based adaptations in metaheuristic algorithms for single–objective
optimization with consistent dimensionality, the applicability and
effectiveness of these approaches in environments characterized
by variable dimensionality might be promising. Such extension
suggests a potential for improved adaptiveness and solution quality
in more complex optimization scenarios, thereby underscoring the
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adaptive mechanisms’ crucial role in the ongoing development and
success of metaheuristic algorithms.

The following section describes common ways of calculating
diversity in a population, according to [26], and [27].

3.1 Diversity meassures
(1) Euclidean Distance–based Measure: This method calcu-

lates the average of the pairwise Euclidean distances between
all individuals in the population (1). A higher average dis-
tance implies greater diversity, indicating that the solutions
are spread out over the search space. the measure is more
beneficial in continuous spaces.

𝐷Euclidean =
1

𝑁 (𝑁 − 1)

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

√√√
𝑑∑︁

𝑘=1
(𝑥𝑖𝑘 − 𝑥 𝑗𝑘 )2 (1)

(2) Variance of Solutions: This approachmeasures the average
dispersion of solutions across all dimensions (2). A high
variance suggests that the population is exploring a wider
region of the search space.

𝐷variance =
1
𝑑

𝑑∑︁
𝑘=1

(
1
𝑁

𝑁∑︁
𝑖=1
(𝑥𝑖𝑘 − 𝑥𝑘 )2

)
(2)

(3) Standard Deviation of Fitness Values: This method as-
sesses diversity based on the variability of fitness values
among the individuals (3). A larger standard deviation indi-
cates that the fitness differences among the explored solu-
tions are higher.

𝐷fitness =

√√√
1
𝑁

𝑁∑︁
𝑖=1
(𝑓𝑖 − 𝑓 )2 (3)

(4) Search Space Coverage: This method involves dividing the
search space into a grid and assessing the proportion of this
grid occupied by the population (4). It helps in understanding
how uniformly the population is distributed across the search
space.

𝐷coverage =
Number of occupied cells

Total number of cells in grid
(4)

Note: The specifics of grid definition and counting occupied
grids depends on the problem and implementation.

(5) Radius of Gyration: The radius of gyration measures the
spread of the population around its center of mass (5). A
larger radius indicates that the population is more dispersed
in the search space. This metric is particularly useful for
understanding the spatial distribution of solutions in the
search space [1].

𝐷gyration =

√√√
1
𝑁

𝑁∑︁
𝑖=1
∥x𝑖 − xcm∥2 (5)

Where 𝑁 is the number of individuals in the population, x𝑖
represents the position vector of the 𝑖–th individual, and xcm
is the center of mass of the population.

These methods vary in computational complexity and sensitivity.
For instance, Euclidean distance measures can be computationally
intensive for large populations and large–scale optimization, while

variance–based measures offer a simpler alternative but might not
capture all aspects of the diversity.

3.2 Limitations and applicability in variable
dimension search spaces

(1) Euclidean Distance–based Measure
These measures assume the same number of dimensions for
calculating distances between individuals. In variable dimen-
sion scenarios, individuals might have different numbers
of components, making it difficult to compute a standard
Euclidean distance, as there is no straightforward way to
calculate distances between such vectors.

(2) Variance of Solutions
Both variance and standard deviation require a fixed num-
ber of dimensions for meaningful calculations. When the
dimensions vary across individuals, these measures might
not be applicable as they presuppose uniformity in the data
structure. This non–uniformity leads to difficulties in defin-
ing and computing variance or standard deviation across the
entire population.

(3) Standard Deviation of Fitness Values
The method of measuring population diversity through the
Standard Deviation of Fitness Values, while useful, has its
limitations in the context of evolutionary algorithms. This
approach assesses diversity based on the variability of fitness
values among individuals, with a larger standard deviation
suggesting a wider exploration of the solution space. How-
ever, this method may not always accurately reflect the true
diversity of solutions. In many cases, different regions of
the search space can yield similar or identical fitness values,
while adjacent regions might exhibit significant fitness dis-
parities. This discrepancy arises because fitness landscapes
in optimization problems can be highly irregular and multi–
modal. Therefore, relying solely on fitness value variability
can sometimes provide an incomplete or misleading picture
of the population’s diversity and the extent of search space
exploration.

(4) Search Space Coverage
This approach is typically defined for a fixed and predeter-
mined search space. In scenarios where individuals have
varying numbers of dimensions, the search space becomes
dynamic and ill–defined. This variability complicates the pro-
cess of assessing how well the population covers the search
space since the boundaries and dimensions of the space are
constantly changing.

(5) Radius of Gyration
The radius of gyration measures the spread of the population
around a central point, assuming uniform dimensionality.
When dimensions vary among individuals, calculating a com-
mon center of mass and subsequently the radius of gyration
becomes problematic. This method is not designed to handle
the disparities in dimensionality that occur in such scenarios.

In each case, the primary challenge is the inherent assumption
of uniform dimensionality in the population, which is violated in
variable dimension scenarios, leading to complications in applying
these traditional diversity measures.
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3.3 Solutions for variable dimensions
There are also proposals for alternative approaches, such as the
phylogenetic metric [9], for which the authors claim the advantages
of providing different values as opposed to traditional computa-
tional approaches (genotype or phenotype) used in metaheuristics
and improved prediction of population status. The reasoning the
authors provide is that phylogenetic diversity metrics take into ac-
count the evolutionary history of a population. Another approach is
represented by calculating diversity based on (binary) chromosome
length. It can be defined as the availability of chromosome lengths
and their ratio to the population size. In [5], chromosome–length–
based diversity for genetic algorithms and variable chromosome
length shortest path problem is defined as a metric that measures
diversity at the strata level and at the sub–population level.

Traditional approaches, typically reliant on fixed–dimensional
structures, falter when faced with the variable ordering of compo-
nents across individuals. This variability not only complicates the
process of comparing like–for–like parameters across the popula-
tion but also risks misrepresenting the true diversity within the
search space.

A viable solution to this quandary lies in the implementation of
parameter identification mechanisms. By assigning unique identi-
fiers (IDs) to each parameter, one can maintain a consistent frame
of reference across the population, ensuring that comparisons and
diversity calculations are made between corresponding parameters,
even in the absence of some. This approach necessitates a reorien-
tation of diversity measures, wherein they are applied selectively,
considering only those individuals that share common parameters
for each specific measurement.

While the issue of variable length of the individual often con-
cerns the absence of parameters towards the end of an individual
(e.g., in route planning), a more complex problem emerges when
parameters are missing in the middle. This irregularity disrupts
the conventional ordering of parameters, complicating the task
of aligning and comparing corresponding parameters across the
population. Such disparities in parameter arrangement not only
hinder the process of conducting like–for–like comparisons but
also pose the risk of misrepresenting the actual diversity present
in the search space. This work looks at such a scenario, described
further in the next section. Due to the limited scope of this study,
we will focus in the following sections only on diversity measures
utilizing Euclidian distance and Variance of solutions, as these are
by far the most frequently used among published works.

4 EXPERIMENT
4.1 Problem definition
Our experimental design draws inspiration from a real–world sce-
nario detailed in [10], which involves determining the locations
and quantities of waste–processing plants. A unique aspect of this
scenario is the additional parameters associated with each plant,
such as capacity, which are included in the decision–making pro-
cess only when there is an intention to build the particular plant.
This leads to a scenario where the number of parameters and the
length of each solution (individual) vary significantly.

To tailor this scenario to our research needs, we have simplified
it in the following manner:

• We represent each solution as a collection of triplets, where
each triplet consists of a facility ID and two facility-specific
parameters 𝑝1 and 𝑝2 (representing attributes like capacity
and cost).
• The facility IDs are integers ranging from 1 to 40, represent-
ing different potential plant locations.
• The two additional parameters 𝑝1 and 𝑝2 associated with
each facility can take any real number value between 0 and
1.
• Each individual in our population can contain a minimum
of 1 triplet and a maximum of 40, resulting in a total length
variation from 3 to 120 parameters per individual.

This formulation of the problem introduces a mixed–integer
and variable–dimension aspect, making it more representative of
the complexities typically encountered in real–world optimization
scenarios.

The data were generated synthetically emulating the evolution-
ary optimization process with gradual convergence of the pop-
ulation. Such data are sufficient for investigating approaches to
diversity computation, as the goal in this paper is not to directly
link the analyzed/processed diversity data back to any metaheuris-
tic algorithm and evaluate its performance. Another argument for
synthetic data is the speed and simplicity of possible whole opti-
mization instance (simulated progress) generation.

The initial population of 50 individuals is generated randomly
with each individual having a unique set (set size from 1 to 40) of
IDs (ranging from 1 to 40) and associated parameters (2 for each
ID). Through iterative cycles, a new population is formed by first
directly transferring half of the current population. The remainder
of the new population is filled by randomly selecting individuals
from the current population, which are then subjected to potential
mutations regarding the number of IDs, the IDs themselves, and
their parameters with decreasing probability (starting at initial
probability and lowering by factor of 0.95 with each following
iteration). This loop continues until a termination condition is met.
Which, in this case, was 100 iterations. For better illustration, the
process is depicted in Algorithm 1.

4.2 Algorithms
We consider a number of approaches to compute the population
diversity in variable dimensional search spaces. Firstly, we discuss
three ways of tailoring existing methods (Euclidian distance and
Variance) to the specifics of variable dimensionality of solutions. Af-
terward, we propose a new diversity calculation method specifically
designed for this scenario.

4.2.1 Naive approach. This approach involves three key steps: We
independently compute the diversity (either by Mean Euclid dis-
tance or variance) of the three distinct elements (ID, 𝑝1, 𝑝2) across
the entire population:

Each of the calculated diversity values is then normalized. This
normalization is crucial to ensure that the diversitymeasures, which
may vary in scale and range, are brought to a common platform for
accurate comparison and aggregation.

The final step involves averaging these normalized diversity
values to yield a single comprehensive diversity metric. This ag-
gregated measure aims to encapsulate the overall diversity of the
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Algorithm 1 Testing data generation
Initialize 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ← 50
Initialize 𝐼𝐷𝑚𝑖𝑛 ← 1, 𝐼𝐷𝑚𝑎𝑥 ← 40
Initialize 𝐼𝐷𝑐𝑜𝑢𝑛𝑡𝑀𝑖𝑛 ← 1, 𝐼𝐷𝑐𝑜𝑢𝑛𝑡𝑀𝑎𝑥 ← 40
Initialize 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑅𝑎𝑛𝑔𝑒 ← [0, 1]
Initialize𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← [0.2, 0.2, 0.2] ⊲ For ID count, ID, and parameters
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← GenerateInitialPopulation(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 , 𝐼𝐷𝑚𝑖𝑛 , 𝐼𝐷𝑚𝑎𝑥 , 𝐼𝐷𝑐𝑜𝑢𝑛𝑡𝑀𝑖𝑛 , 𝐼𝐷𝑐𝑜𝑢𝑛𝑡𝑀𝑎𝑥 , 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑅𝑎𝑛𝑔𝑒)
while not termination condition do

𝑛𝑒𝑥𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← SelectRandomIndividuals(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒/2)
while SizeOf(𝑛𝑒𝑥𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) < 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 do

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← SelectRandomIndividual(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
With probability𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 [0], mutate ID count of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
With probability𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 [1], mutate each ID in 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

With probability𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 [2], mutate each parameter in 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

Add 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 to 𝑛𝑒𝑥𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
end while
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑥𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ∗ 0.95
end while

population, considering the variability in IDs and their correspond-
ing parameters should decrease over time.

These variants are hereinafter noted as Naive - Euclid (for Eu-
clidian distance diversity) and Naive - Variance (for variance-based
diversity).

Naive - Euclid:

𝐷𝐼𝐷 = MeanEuclideanDistance(𝐼𝐷)
𝐷𝑝1 = MeanEuclideanDistance(𝑝1)
𝐷𝑝2 = MeanEuclideanDistance(𝑝2)

Naive - Variance:

𝐷𝐼𝐷 = var(𝐼𝐷)
𝐷𝑝1 = var(𝑝1)
𝐷𝑝2 = var(𝑝2)

In both cases, each calculated diversity value is then normalized:

𝐷𝐼𝐷𝑛𝑜𝑟𝑚
=

𝐷𝐼𝐷

max(𝐷𝐼𝐷 )

𝐷𝑝1𝑛𝑜𝑟𝑚 =
𝐷𝑝1

max(𝐷𝑝1)

𝐷𝑝2𝑛𝑜𝑟𝑚 =
𝐷𝑝2

max(𝐷𝑝2)

The final step involves averaging these normalized diversity
values to obtain a single comprehensive diversity metric:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 =
1
3
(𝐷𝐼𝐷𝑛𝑜𝑟𝑚

+ 𝐷𝑝1𝑛𝑜𝑟𝑚 + 𝐷𝑝2𝑛𝑜𝑟𝑚 )

4.2.2 Grouping by ID. In this approach, the parameter values asso-
ciated with a particular ID are grouped together, and the diversity is
computed for each group separately. The results are then averaged.
By averaging these individual diversity scores, it provides a suc-
cinct yet comprehensive metric of overall population diversity. This
method benefits from maintaining parameter–specific relevance.

These variants are hereinafter noted as Grouping - Euclid (for
Euclidian distance diversity) and Grouping - Variance (for variance–
based diversity).

Grouping - Euclid: For each ID, compute the mean Euclidean
distance among parameters and then average these distances.

𝐷ID1 = MeanEuclideanDistance(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ID1 )
𝐷ID2 = MeanEuclideanDistance(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ID2 )

.

.

.

𝐷ID𝑛
= MeanEuclideanDistance(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ID𝑛

)

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦Score =
1
𝑛

𝑛∑︁
𝑖=1

𝐷ID𝑖

Grouping - Variance: For each ID, compute the variance among
parameters and then average these variances.

𝑉ID1 = var(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ID1 )
𝑉ID2 = var(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ID2 )

.

.

.

𝑉ID𝑛
= var(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ID𝑛

)

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦Score =
1
𝑛

𝑛∑︁
𝑖=1

𝑉ID𝑖

4.2.3 Weighted grouping by ID. The method operates on two levels:
it first quantifies the diversity of solution identifiers, reflecting the
variety of options being explored within the population. Concur-
rently, it assesses the diversity of associated solution parameters,
capturing the spread of values that these options take. Each diver-
sity metric is independently normalized to account for differences
in scale. The identifier diversity is normalized against the total
number of possible IDs, while parameter diversity is inherently
scaled by its definition as an average pairwise Euclidean distance.
The final diversity score is obtained by averaging these normalized
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metrics, providing a singular value that represents overall popula-
tion diversity. This dual–level approach ensures that the composite
metric encapsulates a holistic view of diversity, considering both
the presence of various solution options and the extent of their
exploration in the search space.

These variants are hereinafter noted as Weighted - Euclid (for
Euclidian distance diversity) andWeighted - Variance (for variance–
based diversity).

Weighted - Euclid:

𝐷𝐼𝐷 = MeanEuclideanDistance(𝐼𝐷)
𝐷𝑝 = MeanEuclideanDistance(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

Weighted - Variance:

𝐷𝐼𝐷 = var(𝐼𝐷)
𝐷𝑝 = var(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

Normalization of each metric:

𝐷𝐼𝐷𝑛𝑜𝑟𝑚
=

𝐷𝐼𝐷

max(𝐷𝐼𝐷 )

𝐷𝑝𝑛𝑜𝑟𝑚 =
𝐷𝑝

max(𝐷𝑝 )
The final diversity score is computed as an average of these

normalized metrics:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 =
1
2
(𝐷𝐼𝐷𝑛𝑜𝑟𝑚

+ 𝐷𝑝𝑛𝑜𝑟𝑚 )

4.2.4 Proposed approach. In the face of the challenges of adapting
classical diversity measures to the variable dimension search spaces,
we propose a new measure tailored to this scenario. In this measure,
the average inverted ID frequency in the population, the average
inverted frequency of the number of IDs in individuals, and the
mean–variance among parameters (grouped by ID) are normalized
and averaged into a single measure. This approach should lead to
better capturing the changes in population coverage of the search
space.

Let 𝑃 be the population, where each individual 𝐼 ∈ 𝑃 is composed
of a varying number of triplets (𝐼𝐷, 𝑝1, 𝑝2).

(1) Mean inverted ID frequency (𝑀𝐹_𝐼𝐷−1): Calculate the
mean inverted ID frequency across the population.

𝑀𝐹_𝐼𝐷−1 = avg({𝑓id}id∈IDs)−1

where 𝑓id is the frequency of an ID across the population.
(2) Mean inverted frequency of the number of IDs in in-

dividuals (𝑀𝐹_𝑛𝐼𝐷−1): Calculate the mean inverted fre-
quency of the number of IDs across the population.

𝑀𝐹_𝑛𝐼𝐷−1
= avg({𝑓𝑛𝐼𝐷 }where 𝑛𝐼𝐷 = 𝑛𝑚𝑖𝑛 ..𝑛𝑚𝑎𝑥 )−1

where 𝑛𝑚𝑖𝑛 is the lowest possible number of unique IDs in
individual 𝐼 , 𝑛𝑚𝑎𝑥 is the highest possible number of unique
IDs in individual 𝐼 and 𝑓𝑛𝐼𝐷 is the frequency of 𝑛𝐼𝐷 across
the population.

(3) MeanVarianceAmongParametersGrouped by ID (𝑀𝑉 _𝑝):
For each ID, calculate the variance among the corresponding
parameters across the population, then take the mean of
these variances.

𝑀𝑉 _𝑝 =
1
|IDs|

∑︁
id∈IDs

var({pid}𝐼 ∈𝑃 )

where pid is the set of parameters associated with ID id in
individual 𝐼 , and |IDs| is the total number of unique IDs.

(4) Normalization and averaging: Normalize each measure
by dividing it by the maximum possible value for that mea-
sure and then average the normalized values to get the final
diversity score.

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦score =
1
3

(
𝑀𝐹_𝐼𝐷−1

𝑀𝐹_𝐼𝐷−1
max
+ 𝑀𝐹_𝑛𝐼𝐷−1

𝑀𝐹_𝑛𝐼𝐷−1
max
+ 𝑀𝑉 _𝑝
𝑀𝑉 _𝑝max

)
where 𝑀𝐹_𝐼𝐷−1

max, 𝑀𝐹_𝑛𝐼𝐷−1
max, and 𝑀𝑉 _𝑝max are the the-

oretical maximum values for mean inverted ID frequency,
the mean inverted frequency of number of IDs, and mean
variance among parameters grouped by ID, respectively.

4.3 Test scenarios:
Using the test data generator described earlier, we have evaluated
the above–described diversity measures for several datasets de-
signed in the following way:

Test scenario 1:
• ID number mutation probability = 0.2
• ID value mutation probability = 0.2
• Parameter mutation = 0.2

Test scenario 2:
• ID number mutation probability = 0.1
• ID value mutation probability = 0.1
• Parameter mutation = 0.1

Test scenario 3:
• ID number mutation probability = 0.5
• ID value mutation probability = 0.3
• Parameter mutation = 0.1

For each scenario, a distinct diversity course should be observable.
Test scenario 4: Finally, we devised a different test scenario to

evaluate the effectiveness of our proposed diversity measures in dy-
namic search spaces. This scenario involves a series of evolutionary
algorithm simulations across 50 iterations, each comprising a popu-
lation of 50 individuals. Uniquely, individuals in these populations
are characterized by an increasing number of parameters as iter-
ations progress, growing by one in each successive iteration. The
key feature of this setup is the dual nature of evolution within the
population: while the variance in the number of parameters and IDs
(identifiers) per individual decreases over time, the parameter val-
ues themselves are generated randomly at each iteration, ensuring
no convergence in their distribution. The aim of this experimental
setup is to rigorously test whether our diversity measures can ac-
curately detect and quantify the diminishing variance in individual
lengths and the diversity of IDs amidst the backdrop of consistently
high randomness in parameter values. For better illustration, the
process is depicted in Algorithm 2.

5 RESULTS AND DISCUSSION
The results of each above–described experiment scenario are de-
picted in this section in Figures 1–4 respectively.

The experimental results, as illustrated in the figures, provide
valuable insights into the effectiveness of various diversity mea-
surement approaches in dynamic dimensionality search spaces. It
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Algorithm 2 Linear population growth testing data generation
1: Initialize 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ← 50
2: Initialize𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 50
3: Initialize 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑅𝑎𝑛𝑔𝑒 ← [0, 1]
4: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 1 do
5: Initialize 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← empty list
6: for 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐼𝑛𝑑𝑒𝑥 ← 1 to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 do
7: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑆𝑖𝑧𝑒 ← Clip(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐼𝑛𝑑𝑒𝑥 + 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 50)
8: for 𝑖𝑑 ← 1 to 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑆𝑖𝑧𝑒 do
9: 𝑝𝑎𝑟𝑎𝑚1← RandomReal(0, 1)
10: 𝑝𝑎𝑟𝑎𝑚2← RandomReal(0, 1)
11: Append (𝑖𝑑, 𝑝𝑎𝑟𝑎𝑚1, 𝑝𝑎𝑟𝑎𝑚2) to 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
12: end for
13: Append 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
14: end for
15: end for

is evident that certain traditional diversity measures when directly
applied to these evolving environments, fail to accurately reflect
the true diversity within the population. This underlines the chal-
lenge of adapting standard measures to contexts where individual
dimensions are not static.

Interestingly, the ‘Grouping by ID’ approach demonstrates con-
siderable effectiveness in the initial three test scenarios. Thismethod,
which focuses on assessing diversity within groups of identical IDs,
seems adept at capturing variations in the population’s composi-
tion. However, it’s important to note that while this approach is
effective in certain aspects, it may not comprehensively capture
all dimensions of diversity, particularly in rapidly evolving popula-
tions.

In contrast, our proposed diversity measure shows a distinct abil-
ity to capture the typically swift loss of diversity observed in the
first few iterations of the evolutionary process. This phenomenon
is crucial in evolutionary algorithms, where initial high diversity
often quickly converges as the algorithm progresses. Significantly,
our measure is uniquely capable of detecting a decrease in the
variability of the population’s structure, even in the presence of in-
creasing variance in parameter values. This capability is particularly
noteworthy, as it indicates the measure’s sensitivity not only to the
diversity of parameter values but also to the structural diversity of
the individuals themselves.

These observations suggest that our proposed measure provides
a more nuanced and comprehensive understanding of diversity
in variable dimension search spaces. It effectively balances the
assessment of both parametric and structural diversity, making it a
valuable tool for monitoring and guiding evolutionary processes in
complex optimization scenarios.

6 CONCLUSION
The task of implementing classical diversity measures in variable di-
mension search spaces presents a unique set of challenges, as these
environments lack the structural regularity upon which many tra-
ditional metrics depend. The synthetic data emulating evolutionary
optimization progress generated on the basis of a real–world opti-
mization problem have been used in this study. We have evaluated
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Figure 1: Normalized values for compared diversitymeasures
- test scenario 1
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Figure 2: Normalized values for compared diversitymeasures
- test scenario 2

several adaptations of classical diversity measures and recognized
that although they can be applied, their effectiveness varies, and
they come with inherent limitations. Some adaptations may not
fully capture the nuanced differences between individuals when di-
mensions are not consistent, while others may inadvertently mask
the diversity present by overemphasizing certain aspects of the
search space.

In response to these challenges, we have proposed a novel diver-
sity measure tailored to the context of variable dimension search
space. Preliminary evaluations indicate that this measure provides
a promising approach for effectively quantifying diversity in this
scenario, offering a more accurate reflection of the population’s
exploratory breadth and depth. This measure’s potential lies in
its ability to maintain the integrity of diversity assessment in the
face of varying dimensions while being robust to the irregularities
inherent in such search spaces.
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Our contributions lay the groundwork for further research, where
the effectiveness of this measure can be empirically evaluated across
diverse optimization problems. The promise shown by our proposed
measure encourages its integration into evolutionary algorithms,
which may lead to enhanced search capabilities and improved opti-
mization outcomes.

For future research, a promising direction involves developing
adaptive methods for measuring diversity in evolutionary algo-
rithms with variable dimensions. This entails creating metrics that
dynamically adapt to the individual dimensionality within a pop-
ulation. Key aspects would include dimensional weighting based
on prevalence, aggregation with normalization to counteract bi-
ases towards individuals with more dimensions, and incorporating
techniques to estimate the impact of missing dimensions. Such an
approach aims to offer a more nuanced and accurate assessment of

diversity, catering to the unique challenges of variable dimension-
ality in complex optimization problems.
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