2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

October 11-14, 2020. Toronto, Canada

A Novel Collective Crossover Operator for Genetic
Algorithms

Berna Kiraz
Department of Computer Engineering
Fatih Sultan Mehmet Vakif University
Istanbul, Turkey
bkiraz@fsm.edu.tr

Hossein Ebrahimpour-komleh
Department of Electrical and Computer Engineering
University of Kashan
Kashan, Iran
ebrahimpour @kashanu.ac.ir

Abstract—Crossover is the main genetic operator which influ-
ences the power of evolutionary algorithms. Among a variety
of crossover operators, there has been a growing interest in
multi-parent crossover operators in evolutionary computation. The
main motivation of those schemes is establishing comprehensive
collective collaboration of more than two chromosomes in the
population to generate a new offspring. In this paper, a novel all-
parent crossover operator called collective crossover for genetic
algorithm is proposed. In this method, all individuals in the
current population are involved in recombination part and one
offspring is generated. The contribution of each individuals is
defined based on its quality in terms of fitness value. The
performance of the collective crossover operator is tested on CEC-
2017 benchmark functions. The results revealed that the proposed
crossover operator performs better when compared to well-known
two-parent crossover operators including one-point and two-point
crossovers. In addition, the differences between collective crossover
and the other crossover operators are statistically significant for
the most cases.

Index Terms—Genetic algorithms, Crossover operator, Multi-
parent crossover, Optimization, All-parent crossover.

I. INTRODUCTION

Genetic algorithms are effective solvers for many global op-
timization problems. Crossover is one of the main operators in
genetic algorithms (GAs) [1]. This operator in GAs enables the
exchange of genetic information between parents to generate
new offspring. Two parents are typically used for crossover
operations in GAs in analogy to the sexual reproduction in
biology. However, there are several studies in which multiple
parents are used for crossover operators although there is no
biological equivalence. Crossover operators using more than
two parents have been successfully applied to the optimization
problems [2]-[6].

Depending on the solution representation for the given
optimization problems, different multi-parent crossover opera-
tors have been introduced in the literature. Two multi-parent
crossover mechanism, namely gene scanning and diagonal
crossover, were proposed in [2] . Gene scanning and diagonal

978-1-7281-8526-2/20/$31.00 ©2020 IEEE

Azam Asilian Bidgoli
Department of Electrical and Computer Engineering
University of Kashan
Kashan, Iran
Azam.AsilianBidgoli @ontariotechu.ca

Shahryar Rahnamayan, SMIEEE

Nature Inspired Computational Intelligence (NICI) Lab
Department of Electrical, Computer, and Software Engineering

Ontario Tech University
Oshawa, Canada
Shahryar.Rahnamayan @ ontariotechu.ca

crossover are general form of uniform and n-point crossover,
respectively. These two methods are tested on benchmark func-
tions (binary representation), a constraint satisfaction problem
(order-based representation) and a constrained optimization
problem (order-based representation). The results show that
multi-parent crossover outperforms two-parent crossover for
all benchmark functions and some problem instances of other
problems.

Tsutsui and Jain [3] proposed binary GA that use multi-
ple parents for crossover. They introduced two multi-parent
crossover operators: multi-cut and seed crossover, each of
which are the generalization of two-parent crossover. The
performance of the operators were evaluated on the benchmark
functions. Based on the results, the operators yield better
performance.

A multi-parent simplex crossover was introduced for real-
coded GAs in [7]. The crossover operator uses three or four
parents depending on the dimension of the given problem. The
offspring are created by using a uniform distribution with the
property of a simplex.

Elyased et al. [4] presented a multi-parent crossover for
real-coded GA. The crossover operator uses three parents that
generates three offspring. It is responsible for both exploita-
tion and exploration. In this study, a diversity operator was
considered instead of mutation operator that prevents to get
stuck in local optima. In addition, a memory that stores good
candidate solutions are used in GA. The results indicate that
the algorithm provides better performance when compared to
the other methods.

In a recent study [6], the authors introduced a new multi-
parent order crossover that has a reasonable computation time.
As in many multi-parent crossover, this operator is an extension
of two-parent crossover, i.e. more than two parents are used in
recombination part. This operator creates only one offspring.
According to experimental results, the proposed multi-parent

4204

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:38:54 UTC from IEEE Xplore. Restrictions apply.

crossover provide good performance on the travelling salesman
problem and the berth allocation problem in terms of solution
quality and the time.

As mentioned before, many different multi-parent crossover
operators have been proposed that use multiple parents for
recombination. Most of them use parents ranging from three
to twenty that are smaller than the population size. In [5], the
influence of the number of parents used were investigated. The
results indicate that using a large number of parents provides
better performance.

In this study, we introduce a novel all-parent crossover
operator, called collective crossover, which uses all individuals
in the population for GAs. The collective intelligence combines
the genetic information of whole population, with more likely
in the best individuals. In this crossover operator, only one
child is generated based on gene scanning technique proposed
in [2]. To evaluate the performance of the proposed method, a
set of experiments are conducted using 29 benchmark functions
proposed in the CEC-2017 special session on single objective
real parameter optimization. The results of our experimental
study demonstrate that the proposed crossover delivers good
performance for majority benchmark problems.

The rest of the paper is organized as follows: Section II gives
a brief information on GAs. Section III describes the proposed
crossover operators for genetic algorithms. The experimental
design and the results of this operator over a set of benchmark
functions are presented in Section IV. Finally, Section V
discusses the conclusions and highlights the promising future
works.

II. GENETIC ALGORITHM

Genetic Algorithm is a well-know biology-inspired algorithm
to solve the optimization problems. The algorithm works in
a repetitive procedure to find the optimal solution. At each
iteration, some stochastic changes are applied to modify current
candidate solutions to generate new ones. Similar to other
population-based optimization algorithms, GA needs a pop-
ulation of chromosomes (i.e., individuals) to move toward
the optimal solution(s) by evolving the population. For this
purpose, the algorithm utilizes crossover and mutation operators
to generate offspring from current parents in the population.

The offspring inherit the characteristics of the parents and
will be added to the next generation if they have better fitness
values compared to their parents. By this way, generations
will be improved in terms of fitness values. Therefore, that
is expected that the algorithm could find optimal solution after
an appropriate number of iterations.

Two well-known crossovers that use two parents to generate
offspring are one-point and two-point crossovers [6], [8]. In
one-point crossover, a variable is selected randomly as the
crossover point, then the all variables before that point of two
parents are swapped to generate new off-springs. Using this
operator, two new vectors are generated for more evaluation.
Two-point crossover is a more generalized form of the one-point
wherein two crossover points are selected randomly instead of

one, then the middle parts of variables are swapped to generate
offspring.

III. PROPOSED COLLECTIVE CROSSOVER

In this study, we propose a new crossover operator for GAs,
namely collective crossover, which uses all individuals in the
current population. Similar to a small society, contribution of
individuals in the population can give more chance to find
better candidate as a voting system. Accordingly, the proposed
crossover utilize the whole population to get their character-
istics based on their qualification in terms of fitness value
to evolve the generations. The proposed crossover operator
produces one child. The pseudo-code of collective crossover
is given in Algorithm 1.

Algorithm 1 The pseudo-code of the proposed collective
Crossover

Input: The current population Pop;

Output: The offspring population Pop,

1: Sort the population based on the fitness values

2: for i:=1 to N do

3. Create N — i+ 1 copies of i'” individual in the
population and insert into the mating pool

4: end for

5: for i:=1 to n. do

6: Generate a random permutation of genes (perm,)

7. for j:==1to D do

8 Select a parent randomly from the mating pool (p)

9: Pop.[i].gene[perm(j)] = p.genelperm(j)]
10: Remove one copy of the p from mating pool
11: end for

12: end for

Since the proposed crossover operator uses all individuals in
the population, these individuals will be copied in the mating
pool depending on their fitness values. In this method, better
individuals contribute more copies to the mating pool. To create
a mating pool (line 2-4 of Algorithm 1), all individuals in the
population is sorted based on their fitness values. Then, the best
individual in the population is copied as many as the population
size (IV); the second best individual is copied as many as N —1,
and so on. Only one copy of the worst individual is created.
As a result, there are N x (N + 1)/2 individuals in the mating
pool.

After creating a mating pool, a child is generated according to
gene scanning technique [2]. Starting from a random gene po-
sition of all individuals in the mating pool, each gene is picked
randomly from the corresponding gene of parents (line 5-12
of Algorithm 1); i.e. this operator change the whole genes
(components) of the individual. Since mating pool includes
more copies of better individuals, the child has more chance to
inherits good genes from better parents. Thus, for each gene,
a parent is selected randomly without replacement in mating
pool to take the gene of offspring. Therefore, by selecting
each parent from the mating pool, we decrease one chance

4205

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:38:54 UTC from IEEE Xplore. Restrictions apply.

(i.e. removing one copy) of selected parent to contribute in the
next genes of the offspring. Thereafter, constructing the mating
pool will be restarted for producing next offspring to give initial
chances to all parents. Each time, the procedure of generating
an offspring is performed based on a random order of genes.
This prevents the same distribution of individuals for a specific
gene each time. The proposed procedure will be repeated based
on crossover rate (n.) to generate offspring. Fig. 1 illustrates
generating an offspring using collective crossover. In the figure,
a sorted population, the initial constructed mating pool, and the
generated offspring are presented.

Sorted population based on fitness values

IND, 911 912 9di,p
IND, 921 92,2 92,0
IND; 931 | 932 9gs3.p
INDy In1 | 9n2 IN,D
Mating pool
IND,
N :
IND,
IND,
N-1 :
IND,
1{ INDy

Generated offspring

‘ Jd101 ’ 91,2 ’ Is,3 ’ 92,4 ’ l I1,i | ‘ 93,p ‘

Fig. 1. Generating an offspring using the proposed collective crossover. N is
the population size.

The details of genetic algorithm proposed in this paper are
as follows: A candidate solution is represented as a real-valued
vector. The population is initialized randomly. The mating
pool is generated according to fitness values. After applying
collective crossover operator, the offspring population (Pop.)
is created and evaluated. To generate mutants (Pop,,), a
number of individuals are chosen randomly from the current
population (Pop;). Mutation operator adds a random num-
ber drawn from a normal distribution to the selected gene.
Then, Pop;, Pop., and Pop,, are merged. The merged popu-
lation is sorted and the best /V individuals are selected for the
next generation (line 8- 9 of Algorithm 2). The pseudo-code of
the GA with collective crossover is given in Algorithm 2.

IV. EXPERIMENTS
A. Experimental Settings

To evaluate the performance of the proposed method, 29
benchmark functions proposed in the CEC-2017 special session
on single objective real parameter optimization were used [9].
These benchmark functions have different characteristics: uni-
modal functions (F1-F2), simple multimodal functions (F3-F9),
hybrid functions (F10-F19) and composite functions (F20-F29).
The details of the functions is presented in Table I.

TABLE 1
SUMMARY OF THE CEC-2017 TEST FUNCTIONS. M IS THE NUMBER OF
BASIC FUNCTIONS TO CONSTRUCT THE COMPONENTS OF HYBRID OR
COMPOSITION FUNCTIONS

No. Functions Type
F1 Shifted and Rotated Bent Cigar Function Unimodal
F2 Shifted and Rotated Zakharov Function Functions
F3 Shifted and Rotated Rosenbrock’s Function
F4 Shifted and Rotated Rastrigin’s Function
F5 Shifted and Rotated Expanded Scaffer’s F6 Function Simple
F6 Shifted and Rotated Lunacek Bi_Rastrigin Function Multimodal
F7 Shifted and Rotated Non-Continuous Rastrigin’s Function | Functions
F8 Shifted and Rotated Levy Function
F9 Shifted and Rotated Schwefel’s Function
F10 Hybrid Function 1 (M=3)
F11 Hybrid Function 2 (M=3)
F12 | Hybrid Function 3 (M=3)
F13 Hybrid Function 4 (M=4)
F14 Hybrid Function 5 (M=4) Hybrid
F15 Hybrid Function 6 (M=4) Functions
F16 Hybrid Function 6 (M=5)
F17 Hybrid Function 6 (M=5)
F18 Hybrid Function 6 (M=5)
F19 | Hybrid Function 6 (M=6)
F20 Composition Function 1 (M=3)
F21 Composition Function 2 (M=3)
F22 Composition Function 3 (M=4)
F23 Composition Function 4 (M=4)
F24 Composition Function 5 (M=5) Composition
F25 Composition Function 6 (M=5) Functions
F26 Composition Function 7 (M=6)
F27 Composition Function 8 (M=6)
F28 Composition Function 9 (M=3)
F29 Composition Function 10 (M=3)
Search Range: [— 100, 100]”

The performance of the proposed crossover operator was
compared with two well-known crossover operators, namely
one-point and two-point crossover operators [10]. In this study,
the public MATLAB implementation of the genetic algorithm
(GA) in [11] was adapted. The roulette wheel selection was
used as the parent selection method for the GA with one-point
and two-point crossover operators.

The parameter settings for all GAs are given as follows:

e The maximum number of generations is set to 30 x D,
where D is the number of dimensions.

« Population size (V) is set to 100.

« Crossover percentage (p.) is set to 0.7.

o The number of offspring (n.) is 2 * round(p. * N/2).

o Crossover probability is set to 1.0.

e Mutation percentage (p,,) is set to 0.3.

4206

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:38:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 The pseudo-code of the GA with the proposed collective crossover

1. t=0
2: Create an initial population (Pop;) and evaluate Pop;
3: while (termination criteria not satisfied) do

Create offspring (Pop.) by using Algorithm I and evaluate Pop,

Select individuals randomly from the Pop; for mutation

Apply mutation to create mutants (Pop,,) and evaluate Pop,,

Sort M Pop, based on the fitness values (sort(M Pop;))

Select the best N individuals from the sorted merged population (Pop,1 = select BestIndividual(M Popy))

s t=t+1
11: end while

4
5
6:
7. Merge three populations (M Pop; = Pop, U Pop. U Pop,,,)
3
9
10

o The number of mutants (n,,) is round(p,, * N).
e The mutation rate is set to 0.1.

The performance of the methods is compared based on the
function error values: f(x)— f(x*) where x is the best solution
obtained and z* is the global optimum of the corresponding
benchmark function. In the tables, the results are reported in
terms of averaged error values over 30 independent runs. Each
row except for the last row indicates the performance of all
the methods for the corresponding benchmark function. In the
columns of the tables, the averaged error value of each method
is presented. Additionally, in all the tables, the best performing
method is marked in bold.

The Wilcoxon signed-ranks test at a 95% confidence interval
was performed for the statistical comparison of crossover
operators. In order to summarize the statistical comparison
results, the win/tie/lose (w/#/[) values are provided in the last
row of the result tables.

B. Results and Discussion

The average error values generated by different crossover
operators on the benchmark functions with 30, 50, and 100
dimensions are provided in Tables II, III, and IV, respectively.
These tables also present the w/#/I values for each dimension. As
shown in the Table II, the proposed crossover could outperform
two other competitors on most of the functions. The collective
crossover could reach lower fitness values on 17 out of 29
functions compared to other crossover competitors. In addition,
on remaining functions, all methods have same efficiency to
approach the optimal solution. The results also indicate that the
difference between the proposed method and other methods is
significant on most of the winner functions. For instance, the er-
ror of algorithm to find the optimal solution by using collective
crossover for F8 is 84.76 while two other operators could find
the solution with error 1247.88 and 1036.69, respectively. There
are several other functions among benchmark functions with
similar remarkable difference between the result of collective
operator and other operators such as F12, F14, F17.

Similar results in the Table III can be observed for exper-
iments on dimension 50. The collective crossover gets better
fitness values on 20 out of 29 functions compared to one-
point crossover while they have same performance on 8 out
of 29 functions. The proposed operator was not able to find a

better solution on only one function. The comparison results
between collective and two-point crossovers on dimension 50
are almost the same. The number of winner functions for
collective crossover is 19 out of 29 while the same error has
been obtained on the remaining functions, except F2. The point
worth mentioning is that by increasing the dimension from 30 to
50, the efficiency of collective operator is not affected according
to the number of winner functions. The difference between the
resulted error of collective operator and competitor crossovers is
more considerable in higher dimensions. The same observation
can be found on the results of dimension 100 presented in
Table IV. The collective operator outperforms the one-point
crossover on 17 out of 29 functions while the number of tie and
lose functions are 10 and 2, respectively. The obtained results
are almost same on comparison between the collective and two-
point crossovers except one more winner function. The overall
results of mentioned experiments are indicated in Table V.
In the proposed crossover, intelligence of whole population
contribute to generate a candidate solution with a better fitness
value. Furthermore, the higher probability of selecting better
candidate solutions leads to inheriting the characteristic of those
solutions in generated offspring. The provided results indicate
that the positive effect of the collective intelligence directs the
population toward to more promising regions of the search
space.

We also perform a rank test based on Friedman test for
the statistical comparison. In Friedman test, each method is
ranked for each problem. Then, the total rank (score) for the
corresponding method is calculated. In this method, the smaller
the score, the better the performance. The average ranking
based on the Friedman test of each method is illustrated in
Fig. 2 for each dimension. It can be seen that the collective
crossover has higher rank comparing to other methods on
all experimental dimensions. As mentioned previously, the
collective crossover performs better to reach optimal solutions
in higher dimension comparing to its competitors. The average
rank based on Friedman test is an indicative for this point.
The presented plot also provides a comparison of the methods
on different dimensions. Accordingly, the collective crossover
has the highest rank on dimension 100 comparing to other
dimensions and other methods.

4207

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:38:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ERROR VALUES GENERATED BY THREE CROSSOVER OPERATORS ON 30D
FUNCTIONS. THE LOWER ERROR VALUES ARE HIGHLIGHTED. LAST ROW
REPRESENTS THE STATISTICAL TEST RESULTS.

Function | Collective | One-point | Two-point
Crossover | Crossover | Crossover
Fl1 3.79E+13 | 4.12E+13 | 4.05E+13
F2 2.18E+10 | 2.42E+10 | 2.80E+10
F3 1.15E+08 | 1.27E+08 | 1.31E+08
F4 6.61E+07 | 1.19E+08 | 9.90E+07
F5 2.35E+06 | 2.23E+06 | 2.43E+06
F6 1.50E+08 | 1.86E+08 | 1.82E+08
F7 5.75E+07 | 1.15E+08 | 9.65E+07
F8 8.48E+07 | 1.25E+09 | 1.04E+09
F9 2.91E+09 | 3.45E+09 | 3.15E+09
F10 1.82E+08 | 2.41E+08 | 2.34E+08
Fl11 2.12E+12 | 3.13E+12 | 2.85E+12
F12 2.32E+10 | 2.22E+11 1.21E+11
F13 4.70E+11 | 5.63E+11 | 8.01E+11
Fl14 8.67E+09 | 1.72E+10 | 1.45E+10
F15 8.20E+08 | 1.17E+09 | 1.08E+09
F16 2.73E+08 | 6.07E+08 | 4.60E+08
F17 9.18E+11 | 1.24E+12 | 1.30E+12
F18 1.06E+10 | 1.29E+10 | 1.94E+10
F19 4.03E+08 | 5.05E+08 | 4.79E+08
F20 2.65E+08 | 3.10E+08 | 3.04E+08
F21 7.18E+08 | 1.85E+09 | 9.31E+08
F22 4.07E+08 | 4.88E+08 | 4.56E+08
F23 4.99E+08 | 5.77E+08 | 5.45E+08
F24 3.99E+08 | 4.05E+08 | 4.05E+08
F25 1.60E+09 | 2.42E+09 | 2.26E+09
F26 5.28E+08 | 5.33E+08 | 5.29E+08
F27 4.75E+08 | 4.71E+08 | 4.70E+08
F28 6.83E+08 | 9.12E+08 | 8.70E+08
F29 1.24E+10 | 1.68E+10 | 1.62E+10
w/t/l - 17/12/0 17/12/0

V. CONCLUSION REMARKS

In this paper, a new crossover operator named collective
crossover is proposed for evolutionary algorithms. The pro-
posed operator works based on the collaboration of individuals
in whole population. Unlike many existing crossover operators
which an offspring is generated using a limited number of
candidate solutions, the collective crossover gathers the intel-
ligence of whole population with giving more probability to
the best individuals. Similar to a small society, a collaboration
on whole population leads to generate new candidates with
better fitness value. The results of conducted experiments
on CEC-2017 benchmark functions indicate the efficiency of
the GA with utilizing the collective crossover comparing to
two well-known crossover operators: one-point and two-point
crossovers. In addition, the results on dimensions 30, 50, and

TABLE III
ERROR VALUES GENERATED BY THREE CROSSOVER OPERATORS ON 50D
FUNCTIONS. THE LOWER ERROR VALUES ARE HIGHLIGHTED. LAST ROW
REPRESENTS THE STATISTICAL TEST RESULTS.

Function | Collective | One-point | Two-point
Crossover | Crossover | Crossover
Fl1 3.61E+14 | 4.23E+14 | 4.12E+14
F2 8.91E+10 | 6.48E+10 | 6.50E+10
F3 2.44E+08 | 3.28E+08 | 3.02E+08
F4 2.07E+08 | 3.48E+08 | 3.32E+08
F5 S5A43E+06 | 7.59E+06 | 6.66E+06
F6 3.73E+08 | 4.72E+08 | 4.53E+08
F7 1.76E+08 | 3.41E+08 | 3.00E+08
F8 5.61E+08 | 1.45E+10 | 8.68E+09
F9 7.06E+09 | 7.59E+09 | 7.48E+09
F10 5.37E+08 | 6.10E+08 | 6.56E+08
Fl11 2.34E+13 | 2.57E+13 | 2.83E+13
F12 S5.13E+10 | 6.39E+10 | 7.57E+10
F13 1.22E+12 | 1.97E+12 | 1.72E+12
F14 1.57E+10 | 2.19E+10 | 1.85E+10
F15 1.27E+09 | 1.84E+09 | 1.72E+09
Fl16 1.05E+09 | 1.57E+09 | 1.35E+09
F17 4.02E+12 | 5.19E+12 | 6.35E+12
F18 1.81E+10 | 1.46E+10 | 1.74E+10
F19 9.93E+08 | 1.06E+09 | 1.13E+09
F20 4.13E+08 | 5.19E+08 | 4.90E+08
F21 7.39E+09 | 8.31E+09 | 8.48E+09
F22 6.21E+08 | 8.34E+08 | 7.80E+08
F23 7.62E+08 | 9.23E+08 | 8.50E+08
F24 6.30E+08 | 6.74E+08 | 6.73E+08
F25 2.83E+09 | 5.12E+09 | 4.77E+09
F26 7.02E+08 | 8.15E+08 | 7.80E+08
F27 6.31E+08 | 6.30E+08 | 6.40E+08
F28 8.23E+08 | 1.37E+09 1.38E+09
F29 1.07E+12 | 1.41E+12 | 1.36E+12
w/t/l - 20/8/1 19/9/1

100 provide hints that increasing the dimension preserves the
effectiveness of the operator even with better rank. Although
the proposed method requires longer computational time, it
provides promising results.

As the future works, we will compare with other multi-parent
crossover operators, in particular gene scanning crossover op-
erators. We will also perform a comprehensive analysis of the
proposed operator. Another future work can be utilizing the
operator on large-scale optimization problems.

REFERENCES

[1] G. Pavai and T. V. Geetha, “A survey on crossover operators,”
ACM Comput. Surv., vol. 49, no. 4, Dec. 2016. [Online]. Available:
https://doi.org/10.1145/3009966

[2] A. E. Eiben, P--E. Raué, and Z. Ruttkay, “Genetic algorithms with multi-
parent recombination,” in Parallel Problem Solving from Nature (PPSN),
1994.

4208

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:38:54 UTC from IEEE Xplore. Restrictions apply.

TABLE IV

ERROR VALUES GENERATED BY THREE CROSSOVER OPERATORS ON 100D
FUNCTIONS. THE LOWER ERROR VALUES ARE HIGHLIGHTED. LAST ROW

REPRESENTS THE STATISTICAL TEST RESULTS.

Function | Collective | One-point | Two-point
Crossover | Crossover | Crossover
Fl1 3.20E+15 | 3.66E+15 | 3.49E+15
F2 3.65E+11 | 2.83E+11 | 2.82E+11
F3 7.25E+08 | 9.78E+08 | 9.50E+08
F4 7.10E+08 | 1.18E+09 | 1.05E+09
F5 1.26E+07 | 3.19E+07 | 2.72E+07
F6 1.01E+09 | 1.51E+09 | 1.55E+09
F7 6.66E+08 | 1.22E+09 | 1.04E+09
F8 2.51E+09 | 6.97E+10 | 5.53E+10
F9 2.20E+10 | 2.32E+10 | 2.31E+10
F10 4.39E+09 | 3.54E+09 | 3.51E+09
Fl11 3.95E+14 | 4.51E+14 | 4.27E+14
F12 291E+11 | 6.48E+11 | 3.27E+11
F13 5.14E+12 | 4.92E+12 | 5.17E+12
Fl14 1.98E+10 | 2.41E+11 | 7.07E+10
F15 3.20E+09 | 4.69E+09 | 4.49E+09
Fl16 2.80E+09 | 3.69E+09 | 3.89E+09
F17 7.57E+12 | 8.38E+12 | 8.75E+12
F18 1.89E+10 | 2.02E+10 | 3.27E+10
F19 2.59E+09 | 3.29E+09 | 3.08E+09
F20 9.24E+08 | 1.40E+09 | 1.30E+09
F21 2.31E+10 | 2.41E+10 | 2.46E+10
F22 9.77E+08 | 1.52E+09 | 1.42E+09
F23 1.43E+09 | 2.24E+09 | 2.13E+09
F24 1.38E+09 | 1.54E+09 | 1.61E+09
F25 9.64E+09 | 1.79E+10 | 1.54E+10
F26 9.06E+08 | 1.22E+09 | 1.11E+09
F27 1.29E+09 | 1.25E+09 | 1.23E+09
F28 3.01E+09 | 5.01E+09 | 4.89E+09
F29 3.33E+11 | 4.06E+11 3,65E+11
w/t/l - 1771072 187972
TABLE V

THE OVERALL COMPARISON (w/t/l) ON THE PROPOSED COLLECTIVE

[3]

[4]

[5]

CROSSOVER AND TOW-PARENT CROSSOVERS.

30D 50D 100D
One-point Crossover | 17/12/0 | 20/8/1 | 17/10/2
Two-point Crossover | 17/12/0 | 19/9/1 18/9/2

S. Tsutsui and L. C. Jain, “On the effect of multi-parents recombination
in binary coded genetic algorithms,” in 1998 Second International Con-
ference. Knowledge-Based Intelligent Electronic Systems. Proceedings
KES’98 (Cat. No.98EX111), vol. 3, April 1998, pp. 155-160 vol.3.

S. M. Elsayed, R. A. Sarker, and D. L. Essam, “A new genetic
algorithm for solving optimization problems,” Engineering Applications
of Artificial Intelligence, vol. 27, pp. 57 — 69, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197613001875

S. P. T. P. Phyu and G. Srijuntongsiri, “Effect of the number of parents on
the performance of multi-parent genetic algorithm,” in 2016 11th Inter-
national Conference on Knowledge, Information and Creativity Support

o0
==
A O

Average ranking
(9] R o

[

-

Collective Crossover One-point Crossover Two-point Crossover

Fig. 2. Average ranking based on the Friedman test for each method and
dimension.

[6]

[7

—

[8]

[9]

[10]

(11]

4209

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:38:54 UTC from IEEE Xplore. Restrictions apply.

Systems (KICSS), Nov 2016, pp. 1-6.

A. Arram and M. Ayob, “A novel multi-parent order crossover in
genetic algorithm for combinatorial optimization problems,” Computers &
Industrial Engineering, vol. 133, pp. 267 — 274, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835219302773

S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent recombination
with simplex crossover in real coded genetic algorithms,” in Proceedings
of the 1st Annual Conference on Genetic and Evolutionary Computation -
Volume 1, ser. GECCO’99. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, p. 657-664.

S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A. Mustapha, and K. Leong,
“Crossover and mutation operators of genetic algorithms,” International
Jjournal of machine learning and computing, vol. 7, no. 1, pp. 9-12, 2017.
N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu,
“Problem Definitions and Evaluation Criteria for the CEC 2017 Special
Session and Competition on Single Objective Real-Parameter Numerical
Optimization,” Nanyang Technological University (Singapore), Jordan
University of Science and Technology (Jordan) and Zhengzhou University
(Zhengzhou China), Tech. Rep., 2016.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
2nd ed. Springer Publishing Company, Incorporated, 2015.

Yarpiz, “Binary and real-coded genetic algorithms in matlab-yarpiz,”
https://yarpiz.com/23/ypeal01-genetic-algorithms, accessed: July 15,
2019.

