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Abstract: 
The performance of genetic algorithms (GAs) is 

dependent on many factors. In this paper we have isolated one 
factor: the crossover operator. Commonly used crossover 
operators such as one-point, two-point and uniform crossover 
operator are likely to destroy the information obtained 
previously because of their random choices of crossover points. 
To overcome this defect, RSO, a new adaptive crossover 
operator based on the Rough Set theory, is proposed. By using 
RSO, useful schemata can be found and have a higher 
probability of surviving recombination regardless of their 
defining length. In this paper, the mechanism of RSO is 
discussed and its performance is compared with two-point 
crossover operator on several typical function optimization 
problems. The experimental results show that the proposed 
operator is more efficient. 
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1. Introduction 

Genetic algorithms (GAs) have been validated by their 
outstanding performance in optimization and machine 
learning for poorly understood, irregular and complex 
spaces [1]. The basic idea of GAs is to simulate the 
mechanisms of natural evolution such as selection, 
Recombination, and mutation. In canonical GAs [2], 
population is composed of individuals represented as fixed 
length binary vectors, and the population is generational.  
Recombination is implemented as a crossover operator, and 
mutation is an additional operator to provide diversity in a 
population. Recombination is one of the most salient 
features in GAs. Especially many researchers have more 
interest in crossover operator than other operators, because 
it is the important element that performs the exchanging 
and recombining genetic information from parents chosen 
through the selection mechanism [3]. In essence, through 
recombination, those distributed schemata are collected to 

form a better solution. The mechanism of this process can 
be explained by the schema theory [1]. Unfortunately, due 
to choosing crossover points randomly, commonly used 
crossover operators such as one-point, two-point and 
uniform crossover operator are likely to destroy useful 
schemata with high defining length. If such destruction 
happens, especially at the early state of the convergence 
process, it doesn’t give any significant effects on the 
performance of GAs. Therefore, such crossover operators 
both to enable recombination and to keep the information 
obtained previously are desired to make GAs converging to 
the optimal solution effectively. 

For this purpose, several crossover operators have 
been developed. HRO [4] considers only restricted region 
which shows homology over a specified threshold value 
when it selects crossover points. In the Puzzle Algorithm 
[5], there are two coevolving populations: candidate 
solutions and candidate building blocks. The fitness of an 
individual in the building-blocks population depends on 
individuals from the solutions population. The choice of 
recombination loci in the solutions population is affected by 
individuals from the building-blocks population. 

In this paper, RSO, a new crossover based on the 
Rough Set theory, is presented. The main idea is to place 
constrains on the choice of crossover points. Firstly, 
candidates for useful schemata are found by using the 
attribute reduction, a basic notion in the Rough Set theory. 
Then, they are evaluated through recombination, and useful 
ones are preserved in this process. Thus, a useful schema 
has a higher probability of surviving recombination even if 
its defining length is very high.  

The rest of this paper is organized as follows. In 
section 2, basic notions of the Rough Set theory are briefly 
reviewed. In section 3, the mechanism of the proposed 
crossover operator is discussed. In section 4, the efficiency 
of the proposed crossover operator is tested by computation 
experiments. We conclude the paper with a summary in 
Section 5. 
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2. Preliminaries 

In this Section, basic concepts of the Rough Set theory 
are briefly reviewed. More details can be found in [6-9]. 

Definition 1.  An Information system (IS) is a triplet 
T=<U, AT, f>, where U is a non-empty finite set of objects 
and AT is a non-empty finite set of attributes, fa :U → Va for 
any a∈AT, where Va is called domain of an attribute a. Here, 
we assume that an object x∈ U possesses only one value for 
an attribute a, a∈AT. In an IS, if AT is composed of two 
disjoint subsets of attributes, called condition and decision 
attributes set respectively, then the IS is called a decision 
table, denoted by DT=<U, C ∪ D, f> , where C ∪ D =AT, 
C ∩ D = ∅. 

Definition 2.  In an IS T＝<U，AT，f>, each subset of 
attributes A ⊆ AT determines a binary indiscernibility 
relation IND(A) of U: 

IND(A)={(x, y)∈U×U|∀a∈A, fa(x)= fa (y)}   (1) 
The relation IND(A) is an equivalence relation and 

constitutes a partition of U, denoted by U/IND(A), in short 
U/A. Let IA(x) denotes the set of objects {y∈U|(x,y)∈ 
IND(A)}. IA(x) is the equivalence class that contains the 
object x, and objects from IA(x) are indiscernible with 
regard to their description in the IS. 

Definition 3.  Let T＝<U，AT，f> be an IS, A⊆AT and 
X⊆U. The lower approximation XA and upper 

approximation XA of the set X with respect to A are 
defined as: 

})(|{ XxIUxXA A ⊆∈=        (2) 

≠∈= XxIUxXA A ∩)(|{ ∅}      (3) 
AX is the set of objects that belongs to X with certainty, 

whereas XA is the set of objects that possibly belongs to X. 
Definition 4.  Let DT=<U, C ∪ D, f>, the positive 

region of D with respect to C is denoted by 
XCDPOS

DUX
C

/∈
= ∪            (4) 

If POSCD = U, then the decision table DT is consistent, 
otherwise it is inconsistent. 

Definition 5.  Let DT=<U, C ∪ D, f>, a subset A ⊆ 
AT is a relative reduct of DT iff  

DPOSDPOS CA =             (5) 

      ∀a∈A,           (6) DPOSDPOS CaA ≠− }{

Definition 6.  Let  be the set containing all 
relative reducts of DT. The relative core is denoted by 

CREDD

∩
CREDR

D
D

RCCORE
∈

=              (7) 

3. Crossover operator based on the Rough Set theory 
(RSO)  

In canonical GAs, the schema theory suggests that 
those schemata with high defining length have lower 
probability to survive recombination, even if they have 
higher fitness. This is due to the premise that the crossover 
operator chooses crossover points at random. But 
apparently, nature does not do so. Experimental results 
suggest that human DNA can be partitioned into long 
blocks, such that recombinants within each block are rare or 
altogether nonexistent [10].  

This paper introduces a new crossover operator that 
helps to preserve schemata of promising performance. It is 
clear that we can hardly identify which schema is useful in 
the search space. However, using the concept of attribute 
reduction in the Rough Set theory, we can find the key 
genes on the chromosome that distinguish whether it has 
promising performance. Thus, we can choose schemata 
determined by those key genes as candidates and evaluate 
them. If the evaluation proves that they are useful, we can 
preserve them during recombination by placing constraints 
on the choice of crossover points, such that useful schemata 
have a higher probability of surviving recombination. 

3.1. Constructing the chromosome decision table 

In order to find schemata of promising performance, 
the chromosome decision table should be constructed 
firstly.  

Let population )(tX ={X1(t), X2(t),…, Xn(t)}, Each 
individual in population is treated as an object in DT, and 
each bit of the corresponding chromosome string is a 
condition attribute. Thus, DTchromosome=<U, C ∪ {d}, f>, 
where C={c1,c2,…, cm} (m is the length of the chromosome) 
and∀ci∈C, ={0, 1}. Also, V

iCV d = {0, 1}, each object of 
the decision table is assigned a decision value, which can be 
defined as:  

))(())((
))(())((

0 
1 

))((
tXJtXJ
tXJtXJtXf

avi

avi
id <

≥




=   (8) 

where     

  ∑
=

=
n

j
jav tXJ

n
tXJ

1
))((1))((         (9) 

means the average fitness of population )(tX . 
It is easy to prove that a chromosome decision table is 

a consistent decision table. 
Here, we employ two examples to illustrate some 
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concepts and computations involved in our proposed 
method. The aim of both examples is to maximize a 
function .  310,)( 2 ≤≤= xxxf

Example 1: The initial population )0(X = {20, 15, 2, 5, 
8}. 

Example 2: The initial population )0(X = {18, 16, 9, 
7}.  

In both examples, the length of the chromosome is 5. 
The chromosome decision tables are constructed as follows: 

 
Table 1. Chromosome decision table 1 

 c1   c2    c3     c4     c5 d 
X1(0)  0    0    1    0    1  1 
X2(0) 1    1    1    1    0 1 
X3(0) 0    1    0    0    0 0 
X4(0) 1    0    1    0    0 0 
X5(0) 0    0    0    1    0 0 

 
Table 2. Chromosome decision table 2 

 c1   c2    c3     c4     c5 d 
X1(0)  0    0    0    0    1  1 
X2(0) 0    1    0    0    1 1 
X3(0) 1    0    0    1    0 0 
X4(0) 1    1    1    0    0 0 

3.2. Finding candidate schemata 

By the definition of a reduct, it is a minimal subset of 
attributes that enables us to classify objects with high 
fitness (decision values are 1) and those with low fitness 
(decision values are 0). Thus, we can choose schemata 
determined by a reduct to be candidate schemata with 
promising performance. It is clear that finding all reducts 
then choosing the most suitable one is the best scheme. But 
it is already proved to be a NP-hard problem [11]. So it is 
more feasible to use a heuristic algorithm to acquire the 
optimal or hypo-optimal result, especially when the size of 
population is large. 

Definition 7.  Let DT＝<U，C ∪ {d}，f> be an 
decision table and A ⊆ C, then the significance for each 
attribute a ∈ C \ A is defined as: 

AaAAaSGF ηη −= ∪ }{),(          (10) 

where  

           ( )Ucard
DPOScard A

A
)(=η           (11) 

Based on the definition above, an attribute reduction 
algorithm is presented as follows: 

Input: DTchromosome＝<U，C ∪ {d}，f>.  
Output: a reduct of DTchromosome. 
Step1. Compute ηC for DTchromosome. 
Step2. Compute CORE{d}C . Let RED = CORE{d}C，

and compute ηRED. 
Setp2.1. Let B = C \ RED. For each attribute a∈B, 

compute ηRED ∪{a}； 
Setp2.2. Choose an attribute b such that ηRED ∪{b} is 

maximal (thus SGF (b, RED) is maximal), inserting it to the 
end of RED. Then, set ηRED =ηRED ∪{b}； 

Setp2.3. If ηRED= ηC then go to Setp3. Otherwise, go 
to Setp2.1。 

Setp3. From the end to the head of RED, test whether 
an attribute c is redundant： 
z If ηRED \{c} = ηC，then c is redundant, deleting it from 

RED； 
z If all the attributes in RED have been tested, the 

algorithm completes. 
Then, schemata determined by the output of the 

attribute reduction algorithm are chosen to be candidate 
schemata with promising performance. The set of those 
schemata is denoted as Scan. In example 1, supposing that 
we have RED= {c1, c4, c5}, Scan = {(0, *, *, 0, 1), (1, *, *, 1, 
0)}. In example 2, supposing that we have RED= {c3, c4}, 
Scan = {(*, *, 0, 0, *)}. But schemata in Scan are not always 
useful, so the recombination strategy is proposed as follows 
to evaluate them as well as exchanging genes on the 
chromosome. 

3.3. Recombination strategy 

In the method proposed in this paper, each 
recombination uses two parents, say X1(t) and X2(t), to 
create two children. During recombination two parents are 
selected and their fitness is checked by their decision 
values.  
z If fd(X1(t))=1 ∧ fd(X2(t))=1 or fd(X1(t))=0 ∧ fd(X2(t)) = 0, 

crossover points are chosen randomly, then 
recombination is executed like a standard GA. 

z Otherwise, genes on the position determined by 
schemata in Scan are exchanged, with probability pc.  
After recombination the two new children and two 

parents are evaluated and the replacement selection is 
employed.  

The main idea of this strategy is as follows: 
z If the fitness of either parent is greater than or less 

than ))(( tXJav , then crossover points are chosen 
randomly. If a single child’s fitness is less than the 
fitness of its parent, it is eliminated through the 
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replacement selection. Otherwise, the parent is 
replaced by its child. This is done to reflect the genes’ 
contribution to the fitness increase. 

z If the fitness of a parent is greater than ))(( tXJav and 

the fitness of the other is less than ))(( tXavJ , say 
f(X1(t))=1 and f(X2(t))=0, we intend to preserve 
schemata in Scan through recombination. At the same 
time, they are checked by recombination. If a schema 
in Scan is useful, through the recombination, a child 
whose fitness is greater than X2(t) and a child whose 
fitness is less than X1(t) will be produced. After the 
replacement selection, this schema exists in both 
survivals. Otherwise a child whose fitness is greater 
than X1(t) and a child whose fitness is less than X2(t) 
will be produce. Thus, if a schema in Scan is not useful, 
it does not exist in both survivals after the replacement 
selection.     
Fig. 1 and Fig. 2 illustrate the mechanism for the 

above examples. 
 

parents                     child 1 
0 0 1 0 1  0 0 1 1 0

↑↓  ↑↓  ↑↓  ⇒          child 2 
1 1 1 1 0  1 1 1 0 1

    ↑(crossover point)  
parents                     child 1 

0 0 1 0 1  0 0 1 1 0
↑↓           ↑↓  ↑↓  ⇒          child 2 
0 0 0 1 0  0 0 0 0 1

 
parents                     child 1 

1 1 1 1 0  0 1 1 0 0
↑↓            ↑↓  ↑↓  ⇒          child 2 

0 1 0 0 0  1 1 0 1 0
 

Figure 1.  Recombinations in example 1 

 
parents                     child 1  

0 1 0 0 1  0 1 0 1 1
          ↑↓  ↑↓       ⇒            child 2 

1 0 0 1 0  1 0 0 0 0
 

parents                     child 1 
0 1 0 0 1  0 1 1 0 1

          ↑↓  ↑↓       ⇒         child 2 
1 1 1 0 0  1 1 0 0 0

 
Figure 2.  Recombinations in example 2 

In the first recombination of Fig. 1, the fitness of either 
parent is greater than ))(( tXJav , so the crossover point is 
chosen randomly. Child 2 has an increase in fitness hence 
parent 1 and child 2 come into the next generation. In the 
second and the third recombination, “bad” parents (parents 
whose fitness is less than ))(( tXJav ) have an increase in 
fitness after exchanging genes determined by schemata in 
Scan. Meanwhile, “good” parents (parents whose fitness is 
greater than ))(( tXJav ) have a decrease in fitness. Thus, 
schemata in Scan can be regarded as useful. After the 
replacement selection, schemata in Scan survive in spite of 
their high defining length.  

But in either recombination of Fig. 2, after exchanging 
genes determined by schemata in Scan, the fitness of the 
“bad” parent decrease while the fitness of the “good” parent 
increase. That means schemata in Scan are not those 
schemata with promising performance. After the 
replacement selection, they do not exist in survivals and the 
corresponding schemata in “bad” parents, (*, *, 1, 0, *) and 
(*, *, 0, 1, *), are not eliminated.  

In a word, recombination strategy proposed here is 
responsible for not only exchanging and recombining 
genetic information from parents but evaluating schemata 
in Scan to decide if they are those schemata with promising 
performance. 

4. Performance evaluation    

We have implemented the GA using RSO on function 
optimization problems and its performance has been 
compared with the simple GA. We used the “mean best” of 
all function evaluations to measure the performance 
(averaged over 10 runs). In this paper, we performed 
comparative experiment for three typical functions. They 
were:  
(1) Schwefel’s sphere function  

∑
=

=
30

1

2
1 )(

i
ixxf  -5.12≤ xi ≤5.12  (12) 

(2) DeJong’s function 

∑
=

+ −+−=
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1
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1

2
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i
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(3)Griewangk’s function 
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20

1
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800
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i

i

i

i

i
xxxf ,  -512≤ xi≤512  (14) 

Functions f1(x) and f2(x) are unimodal functions, and 
f3(x) is a multimodal function where the number of local 
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minima increases exponentially with the dimension. 
In all experiments, the crossover rate is 0.85; the 

mutation rate is 0.001; the population size is 100; maximum 
number of generations is 10000. The simple GA uses 
two-point crossover operator. We use linear ranking 
selection with η=1.05. During the whole optimization 
process we kept the best value found in all generations, 
beginning from the initial population. Experimental results 
show that for all test functions the GA using RSO performs 
better than the simple GA. 

 
Table 3. Experimental results 

Algorithm simple GA 
GA using 

RSO 
avgf1  32.853 10.602 

avgf2  13078.212 3642.138 

avgf3  9.622 3.237 

5. Conclusions and discussions 

In this paper, we have described a new crossover 
operator based on the Rough Set theory, called RSO, for 
GAs. Unlike conventional crossover operator such as 
one-point, two-point and uniform crossover operator, it 
allows exploitation of good schemata regardless of their 
defining length. 

RSO uses the attribute reduction, a concept in the 
Rough Set theory, to find candidate schemata with 
promising performance. Then, a recombination strategy is 
used to evaluate if these schemata are useful as well as to 
exchange genetic information from parents.  

Experiments indicate that GA using RSO performs 
better than traditional GA, which uses two-point crossover, 
on a set of test functions.  

We conclude that the initial results of this study 
indicate that RSO may be a good candidate for a crossover 
operator in which practitioners can have more confidence to 
use as a starting point for an adaptive GA system. But there 
are still some issues needs to be discussed in future works. 
z Currently, when assigning the decision values for each 

object in DTchromosome, we just consider its fitness value. 
But maybe this is not an efficient way because the 
diversity of population is not taken into account. For 
example, we can consider the fitness value and the 
Hamming Distance to the best object at the same time. 

z In this paper, we focus on the crossover operator only. 
But the mutation operator is another important factor 
that influences the performance of GAs. So if we 
reconstruct mutation operator by the Rough Set theory, 

the performance of GAs is promising.  
z Further experiments should be carried out to compare 

RSO with other adaptive crossovers. We also intend to 
analyse the creation, propagation and disruption of a 
schema to determine exactly why and how a GA 
benefits from RSO and use those findings towards 
more reliable and adaptive crossover operators.  
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