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Abstract—Workflow scheduling problem (WSP) is a well-known combinatorial optimization problem, which is defined to assign a series

of interconnected tasks to the available resources to meet user definedQuality of Service (QoS). The guided random searchmethods

and heuristic basedmethods are twomost commonmethods for solvingWSP. However, thesemethods either require expensive

computational cost or heavily rely on human’s empirical knowledge, whichmakes them inconvenient for practical applications. Keeping

this in mind, this paper proposes a cooperative coevolution hyper-heuristic framework to solveWSPwith an objective of minimizing the

completed time of workflow. In particular, in the proposed framework, two heuristic rules, namely, the task selection rule (TSR) and the

resource selection rule (RSR), are learned automatically by a cooperative coevolution genetic programming (CCGP) algorithm. The TSR

is used to select a ready task for scheduling, while the RSR is used to allocate resources to perform the selected task. To improve the

search efficiency, a set of low-level heuristics are defined and used as building blocks to construct the TSR and RSR. Further, to validate

the effectiveness of the proposed framework, randomly generated workflow instances and four real-world workflows are used as test

cases in the experimental study. Compared with several state-of-the-art methods, e.g., the Heterogeneous Earliest Finish Time (HEFT)

and the Predict Earliest Finish Time (PEFT), the high-level heuristics found by our proposed framework demonstrate superior

performance on all the test cases in terms of several metrics including the schedule length ratio, speedup and efficiency.

Index Terms—Workflow scheduling, genetic programming, hyper-heuristic, cooperative coevolution, DAG scheduling
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1 INTRODUCTION

IN real world, many practical applications in distributed
computing platform could bemodeled as workflows, such

as the Montage workflow [1] and the Epigenomic workflow
[2]. The workflow usually consists of a number of interde-
pendent tasks that can be represented by a Directed Acyclic
Graph (DAG). In this DAG, the nodes represent tasks, while
the edges denote dependencies between the tasks. Thework-
flow scheduling problem (WSP) requires properly assigning
a set of resources to the interconnected tasks of a workflow
to satisfy user defined QoS, such as minimizing the com-
pleted time of the workflow and minimizing the rental cost
in cloud.

Over the past decades, extensive research efforts [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20] have been conducted for solving WSP.
Among others, the guided random search methods and the
heuristic-based methods are two categories of the most
common methods for solving WSP. The guided random
search methods are usually based on population-based evo-
lutionary algorithms (EAs) [3], [4], [5] to optimize solutions
for the WSP. In these algorithms, each individual in the

population represents a candidate solution and the whole
population is evolved iteratively by nature-inspired opera-
tors such as mutation, crossover, and selection. These algo-
rithms have demonstrated strong search capabilities in
locating the global optimal or near-global optimal solutions.
However, they often require expensive computational cost
due to the iterative search mechanism. Furthermore, if the
given workflow varies, they should be re-executed to search
for suitable solutions for the new WSP, which makes them
inconvenient in practice.

On the other hand, the heuristic-based methods have also
been proposed to solve the WSP. In contrast to the guided
random searchmethods, the heuristic-basedmethods sched-
ule workflow via heuristic rules, which can be further classi-
fied into three major categories [1]: 1) list-based heuristics, 2)
clustering-based heuristics, and 3) duplication-based heuris-
tics. Among them, the most well-known and popular meth-
ods are the list-based heuristics [8], [9], [10], [11], [12], [13],
[14], [15], [16], which commonly comprise two phases, i.e.,
the task prioritizing phase and the resource selection phase.
In the task prioritizing phase, each task possesses a priority
and the task with higher priority will be scheduled first. In
the resource selection phase, the selected task will be sched-
uled on the resource with highest priority. Further, in the
clustering heuristics [17], [18], the key idea is to divide tasks
into a set of clusters and then map the clusters to resources.
Lastly, in the duplication-based heuristics [19], [20], the
predecessors of a task may be copied to the resource on
which the taskwill be executed. In thismanner, the predeces-
sors do not need to transfer data to the task and the commu-
nication time between them thus can be saved. Generally,
existing heuristic-based methods for the WSP are manually
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designed in an ad-hoc manner. The design process is time-
consuming and heavily dependent on the designers’ empiri-
cal knowledge.

Keeping the above inmind, this paper proposes a coopera-
tive coevolution hyper-heuristic framework to solve theWSP.
The proposed framework is capable of automatically learning
high-level heuristics to effectively schedule workflows with-
out expert intervention. In this paper, the hyper-heuristic is a
methodology that automatically produces high-level heuris-
tics constructed by several simple low-level heuristics, and
thus the high-level heuristics are more powerful and effec-
tive. To learn the high-level heuristics automatically, the
Genetic Programming (GP) algorithm [21] is utilized in this
paper. GP is a kind of powerful hyper-heuristic algorithm for
automatically evolving high-level heuristics to solve prob-
lems, and it has been successfully applied to automated
design of scheduling heuristic [25], [26], such as the job shop
scheduling problems [27], [28] and air traffic control prob-
lems [29]. However, as far as we know, little work has been
reported in the literature on using GP for solving WSP. This
paper presents an early attempt to fill this gap. Furthermore,
for WSP, the high-level heuristics are comprised of two
coadapted sub-heuristic, i.e., the task selection rule (TSR) that
used to select a ready task, and the resource selection rule
(RSR) that used to select a resource to execute the ready task.
The Cooperative Coeveolution (CC) architecture [22] is a
mechanism for effectively evolving coadapted subcompo-
nents, which are the TSR and RSR in this paper. Therefore,
the CC architecture is integrated into GP, forming a Coopera-
tive Coevolution Genetic Programming (CCGP) algorithm,
to efficiently learn high-quality coadapted sub-heuristics.

In particular, the proposed framework is composed of a
Heuristic-based Workflow Scheduling (HBWS) algorithm
and the CCGP algorithmmentioned above. The HBWS algo-
rithm is designed to schedule workflow by using given heu-
ristics, while the CCGP algorithm is used to learn effective
high-level heuristics. To verify the effectiveness of the pro-
posed framework, comprehensive empirical study has been
conducted. In the experiment, the best high-level heuristics
learned by the proposed framework is compared with the
state-of-the-art methods (e.g., the HEFT [8], Lookahead [9],
PEFT [10], and the Particle Swarm Optimization (PSO) [5])
on various randomly generated workflows and four real-
world workflows. The experimental results have demon-
strated that the learned heuristics can always achieve supe-
rior performance than the other methods in terms of metrics
including the schedule length ratio, speedup and efficiency.

The rest of the paper is organized as follows: Section 2
presents the related work about heuristic-based and guided
random search algorithms for the WSP. Section 3 presents
the background and the problem definition of the WSP. The
proposed framework for the WSP is given in Section 4, and
the framework implementation is described in Section 5.
The experiments and results are provided and discussed in
Section 6. Finally, the conclusion is given in Section 7.

2 RELATED WORK

In this section, we present a brief review of the related meth-
ods in the literature for solving the WSP. In particular,
as aforementioned, two categories of algorithms, guided

random search algorithms and heuristic-based algorithms,
are discussed.

First of all, the guided random search algorithms search
the solution space iteratively and use the historical informa-
tion to guide the search. The population-based algorithms
such as Generic Algorithm (GA) [3], [4], PSO [5] andAnt Col-
ony Optimization [6], [7] have also been studied for solving
WSP. Particularly, in [4], two GA variants, i.e., the Critical
Path Genetic Algorithm and the Task Duplication Genetic
Algorithm, have been proposed to utilize problem-specific
heuristic principles to improve the search performance for
WSP. Chen et al. [7] proposed a framework based on ACO to
schedule workflows in grid with various QoS parameters,
such as deadline constrain, cost constrain and makespan
optimization. In these algorithms, solutions of WSP are
encoded as chromosomes and nature-inspired operators
such as mutation and crossover are utilized to evolve the
population of chromosomes iteratively. The algorithms ter-
minate when predefined stopping criteria are met, and
finally the best individual with best objective value in the
population will be decoded as the final solution. These algo-
rithms are generally capable of generating better solutions
than the heuristic-based algorithms, but they require much
more computation time and they contain a number of control
parameters which need to be set properly.

On the other hand, heuristic-based algorithms can be clas-
sified into three major categories: list-based heuristics, clus-
tering-based heuristics, and duplication-based heuristics.
The HEFT algorithm [8] is one of the most well-known list-
based heuristic methods for WSP in heterogeneous environ-
ment. The algorithm has two major phases, i.e., the task pri-
oritizing phase and the resource selection phase. In the task
prioritizing phase, each task is assigned with an upward
rank and tasks are scheduled according to their ranks. In the
resource selection phase, each task will be performed on the
resource that minimizing its earliest finish time (EFT). The
authors also proposed the Critical-Path-on-a-Processor
(CPOP) algorithm [8] where the rank of each task is equal to
the summation of the upward rank and downward rank.
The second phase is the same as HEFT except that the task
on the critical path will be scheduled on the critical-path
resource. In [11], a hybrid heuristic was proposed for DAG
scheduling in heterogeneous system. The algorithm consists
of three phases: ranking, group creation, and scheduling
independent tasks within each group. In the ranking phase,
each task is assigned with an upward rank. In the second
phase, tasks are divided into different groups and the tasks
in the same group are independent to each other. In the last
phase, the Balanced Minimum Completion Time heuristic
[11] is used to schedule independent tasks within each
group. Similarly, other list-based heuristic algorithms such
as the Lookahead [9], PEFT [10], PETS [12], and MSL [13] are
usually comprised of two major phases. Generally, the PEFT
performs better than the Lookahead, HEFT, CPOP and PETS
algorithms on randomly generated graphs and several real-
world applications. More recently, the Improved PEFT [14]
andHeterogeneous Scheduling with Improved Task Priority
[16] algorithms have been proposed to solve theWSP.

In contrast to the list-based algorithms, the clustering-
based algorithms divide tasks into a set of clusters and tasks
in a common cluster are scheduled to the same resource.
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The heuristics are intended to cluster the tasks which spend
a lot of time on communicating with each other. Then the
tasks of a cluster will be scheduled on the same resource so
as to reduce the communication overhead. However, these
algorithms generally have higher time complexity com-
pared to the list-based algorithms. Typical examples of the
clustering algorithms include the Dominant Sequence Clus-
tering [17] and the Clustering for Minimizing the Worst
Scheduling Length algorithms [18].

Further, the task duplication algorithms, which are the
third category of heuristic-based algorithms, reduce commu-
nication time by duplicating the predecessors of a task into
the resource on which the task executes. However, these
algorithms usually have a heavier resource workload than
the other two types of heuristics due to the extra task dupli-
cation operation. Therefore, algorithms of this category are
more suitable for cases where the communication time and
the idle time of processors are extremely large. Typical exam-
ples of this category include the Task Duplication-based
Scheduling algorithm [19] and the Task duplication-based
scheduling Algorithm for Network of Heterogeneous sys-
tems [20].

However, existing heuristic-based methods are designed
manually by experts. The rule designing procedure includes
many trial-and-error steps, which is quite time-consuming
and requires luxuriant domain knowledge.

GP has been successfully applied for scheduling prob-
lems, such as the job shop scheduling [27], [28]. The job shop
scheduling is assigning jobs to resources for satisfying user
QoS (e.g., minimizing complete time or mean tardiness), and
the jobs are independent. However, in WSP, the scheduled
targets are workflows and the tasks in a workflow have
inter-task data dependencies. Therefore, GP for JSP cannot
be applied directly toWSP. It is necessary to design task-spe-
cific low-level heuristics considering tasks’ dependencies.
Besides, the GP should be extended accordingly to efficiently
learn high-level heuristics for WSP. In [32], the authors pro-
posed a preliminary GP-based approach to find policies that
can select resource to execute tasks in a cloud environment.
However, their method only focused on selecting resource
for a ready task, while the order for executing tasks was not
considered.

To overcome the above drawbacks of the existing meth-
ods, we propose a hyper-heuristic framework for WSP in
this paper. The major difference between the existing heu-
ristic-based methods and the work reported in this paper is
that the heuristics in our method are learned automatically

rather than manually designed by experts. Unlike the
guided random search methods, the heuristics offered by
our method can be applied to different cases without re-exe-
cuting the algorithm, which is more flexible and convenient
for practical applications.

3 PROBLEM DEFINITION

Aworkflow can be represented by a DAGG ¼ ðVV ;EEÞ, where
VV is the set of v nodes and EE is the set of e edges connecting
nodes. A node vi 2 VV represents a task ti, while an edge
eði; jÞ 2 EE represents precedence dependency between task
ti and task tj, i.e., task tj can be executed once task ti was fin-
ished. The weight of the edge represents the transfer time
from task ti to task tj. The underlying resource computing
system or infrastructure PP for scheduling workflows is a set
of heterogeneous, distributed and fully-interconnected (e.g.,
with network) computers such as grids and cloud comput-
ing. Fig. 1 illustrates a typical workflow DAG with 10 nodes
and 11 edges and the table in Fig. 1 gives the estimated exe-
cution time of each task, if the entire task is running on one of
the given resources (i.e., three computers p1 to p3).

In a DAG, a task without any predecessor is denoted as an
entry task tentry and a task without any successor is denoted
as an exit task texit. We assume that task scheduling is non-
preemptive, which means that a task will not stop running
until it is finished or blocked. The execution time of tasks in
all resources is known in advance and stored in an v� p
matrixWW , where v is the number of tasks and p is the number
of resources. Each element of WW ðwi;jÞ represents the execu-
tion time of task ti running on resource pj. The average exe-
cution time of task ti is calculated by

wi ¼
Xp
j¼1

wi;j

 !
=p: (1)

The weight ci;j assigned to edge eði; jÞ represents the
communication cost, i.e., communication time between task
ti and task tj. The communication cost ci;j of task ti (sched-
uled on resource pm) and task tj (scheduled on resource pn)
is calculated by

ci;j ¼ Lm þ datai;j
minðBm;BnÞ ; m 6¼ n

0; m ¼ n

�
; (2)

where Lm is the communication latency time of resource pm,
datai;j is the transfer data size from task ti to task tj and min
ðBm;BnÞ is the function to select theminimumvalue between
the bandwidth Bm of resource pm and the bandwidth Bn of
resource pn. Note that the communication cost equals to zero
when two tasks are scheduled on the same resources.

The average communication cost ci;j is calculated by

ci;j ¼ Lþ datai;j

B
; (3)

where L is the average latency time of all the resources and
B is the average bandwidth of all the resources.

When a task is to be executed on a resource, two attrib-
utes, namely, the earliest start time (EST) and the earliest fin-
ished time (EFT), are associated to it. The EST of task ti on
resource pj is denoted asEST ðti; pjÞwhich is calculated by

Fig. 1. A typical workflow DAG and the tasks execution time on three
processors.
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EST ðti; pjÞ ¼ max
availðpjÞ;
maxtk2predðtiÞ AFT ðtkÞ þ ck;i

� �� �
; (4)

where availðpjÞ is the earliest available time of resource pj
and predðtiÞ is the set of immediate predecessor tasks (also
named as parent tasks) of task ti. AFT ðtkÞ is the actual finish
time of task tk and AST ðtkÞ is the actual start time of task tk.
The inner max block of the formula returns the ready time of
tasks ti when all predecessor tasks (also named as child tasks)
of the task have been finished and the required transfer data
have arrived at resource pj on which task ti runs. The EST of
task ti on resource pj is themaximum time among the earliest
available time of resource pj and the ready time of tasks ti.
Note that the ready time of entry tasks is equal to zero.

The EFT of task ti on resource pj is denoted as EFT
ðti; pjÞ, which is calculated by

EFT ðti; pjÞ ¼ EST ðti; pjÞ þ wi;j: (5)

When the task ti is to be executed on a resource pj, the
AST ðtiÞ and AFT ðtiÞ are equal to EST ðti; pjÞ and EFT
ðti; pjÞ, respectively. After all tasks of a workflow have been
finished, the makespan of the workflow is set to the maxi-
mum time among the actual finish time of all tasks, i.e.,

makespan¼ max AFT ðtexitÞf g: (6)

Based on the above definitions, we can formulate the
workflow scheduling problem as:

Minimize makespan

s:t: AST ðtiÞ � max
tj2predðtiÞ

AFT ðtjÞ þ cj;i
� �

; (7)

where the constrain indicates the dependencies between task
ti and its predecessor tasks. Given a workflow, we can pro-
vide a schedule S ¼ ðO;M;makespanÞ where O is a task
sequence representing the scheduling order of tasks. And M
is a task-resource mapping determining which resource is
assigned to a task. The objective of the WSP is to properly
assign resources to tasks so as to minimize themakespan of the
workflow.

4 THE CC HYPER-HEURISTIC FRAMEWORK

The proposed cooperative coevolution hyper-heuristic frame-
work for WSP includes two algorithms, i.e., the HBWS algo-
rithm for scheduling workflow and the CCGP algorithm for
learning the high-level heuristics used in the HBWS. In this
section, the HBWS algorithm is introduced at first. Then, the
CCGP algorithm is presented.

4.1 The HBWS Algorithm

Since the WSP is an NP-Complete problem [8], [33], the
exhaust method requires a high time complexity to solve it.
The heuristic-based methods are able to find the approxi-
mated best solutions withmuch less computational cost than
the exhaust methods. Therefore, the HBWS utilizes heuris-
tics to schedule a workflow. Specifically, the HBWS is
designed as a kind of the list-based scheduling methods
(e.g., HEFT, PEFT)which contains two phases: the task prior-
itizing phase and the resource selection phase. Here we use
two sub-heuristics named TSR and RSR to represent the

heuristics used in the two phases respectively. The TSR is uti-
lized to select a ready task in the first phase, while the RSR is
utilized to select a resource to execute the selected task in the
second phase. Actually, the TSR and RSR are two priority
functions (denoted as GTSR and GRSR), and the task or
resource with the highest priority will be selected. The other
list scheduling algorithms can be represented by this for-
mula. For example, in HEFT [8], the GTSR is the upward rank
of tasks, and the GRSR is equal toEFT ðti; pjÞ.

The pseudocode of HBWS is described in Algorithm 1.
Given a workflow G ¼ ðVV ;EEÞ, a resource set P ¼ fp1; p2; . . . ;
pmg and two heuristics (i.e., a pair of GTSR and GRSR) as the
inputs, the HBWS will schedule all the tasks on the given
resources and finally return the solution S ¼ ðO;M;makespanÞ.
In the HBWS, a waiting queue WQ is used to record all the
ready tasks. First of all, the waiting queue WQ is initialized
with all entry tasks of the workflow. Then, the HBWS will
repetitively select tasks and resources until all tasks are fin-
ished. At each iteration, the task ti with the highest priority
calculated by GTSR is selected, and then the selected task ti is
executed on the resource pj with the highest priority value cal-
culated by GRSR. When pj is assigned to task ti, the AST and
AFT of task ti are determined. The available time of resource
pj availðpjÞ is determined by using the insert-based policy [8],
and the makespan is updated. Next, task ti is appended into
task scheduling order O and the task ti to resource pj pair is
added into the task-to-resource mapping M. After that, the
child tasks of the selected task are added to the waiting queue
if all of its parent tasks have been scheduled (i.e., parent cita-
tion count of task tc equals to zero). Finally, the obtained
schedule S is returned as the output.

Algorithm 1.Heuristic-based Scheduling Algorithm

Input: a workflow G ¼ ðVV ;EEÞ, a processor set PP ¼ fp1; p2; . . . ;
pmg, two priority functions GTSR and GRSR

Output: a schedule S ¼ ðO;M;makespanÞ
Procedure:
1. makespan ¼ 0
2. add all entry tasks of the workflow into the waiting queue

WQ
3. while size ofWQ > 0 do
4. calculate the priorities of tasks in WQ by using GTSR, and

select the task ti with the first priority
5. select the processor pj with maximum priority calculated

by GRSRðti; pjÞ and schedule task ti on processor pj
6. if task ti is an entry task
7. ASTti ¼ availðpjÞ
8. else
9. AST ðti; pjÞ ¼ max

n
availðpjÞ;maxtk2predðtiÞfAFT ðtkÞ þ ck;ig

o
10. end if
11. AFT ðtiÞ ¼ AST ðtiÞ þ wi;j

12. makespan ¼ maxðmakespan;AFT ðtiÞÞ
13. update the order O and the mappingM
14. remove the selected task ti fromWQ
15. for each child task tc of task ti
16. if tc’s parent tasks are all finished
17. add task tc intoWQ
18. end if
19. end for each
20. end while
21. return the obtained schedule S ¼ ðO;M;makespanÞ
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For understanding the HBWS algorithm easier, Fig. 2
illustrates a scheduling example of the workflow. The left
chart shows each scheduling step by using the HBWS algo-
rithm with the best learned heuristics GTSR and GRSR in (25)
and (26). At each step, theHBWS selects a task and a resource
according to the GTSR and GRSR, respectively, until all tasks
are scheduled. For example, at step 3, there are three ready
tasks ðt4; t5; t3Þ in waiting queue and their priorities are 826,
473 and 746 calculated by GTSR. Then the task t4 which has
the largest priority is selected. For performing the task t4, all
priorities of resources are calculated by GRSR and the
resource p3 which has the best priority is chosen. In Fig. 2,
the two graphs on right show the whole schedules using the
best leaned heuristics and PEFT. It can be observed that the
learned heuristics obtain better solution ðmakespan ¼ 100Þ
than PEFT ðmakespan ¼ 107Þ. Based on the scheduling algo-
rithm, optimizing the makespan is equivalent to optimizing
the two heuristics. Thus, the workflow scheduling problem
can be converted to the following optimization problem:
Given a workflow G ¼ ðVV ;EEÞ, find the best GTSR and GRSR

that minimize themakespan of the workflow, i.e.,

argmin
GTSR;GRSR

makespanGTSR;GRSR : (8)

4.2 The CCGP Algorithm

The CCGP algorithm is proposed to automatically learn
effective high-level heuristics (i.e., TSR and RSR) for WSP.
The CCGP algorithm is based on GP integrated with cooper-
ative coevolution mechanism. GP is an EA that solves user
defined problems by the evolution of computer programs
(e.g., functions, policies or heuristics) [21], [23], [24]. As the
high-level heuristics for WSP can be represented by mathe-
matic formulas which combine the low-level heuristics
together, GP is suitable to evolve the high-level heuristics.
Traditionally, each individual of GP can represent a function
formed by based functions (e.g.,þ, /, and log) and terminals
or variables (e.g., x; y, and PI). In GP, each individual is
decoded as a tree-structure or string-structure to represent a
solution for the defined problem. For solving the WSP, each
individual of GP represents high-level heuristics and the

goal is to learn high-level heuristics to minimize the make-
span of the given workflow. Furthermore, since the high-
level heuristics consist of two interacting and co-adapted
sub-heuristics (i.e., TSR and RSR), the CC mechanism is con-
sidered because it is suitable to solve the problems whose
solutions comprise of multiple coadapted subcomponents
[22], [30], [31].

To sum up, the general structure of the proposed hyper-
heuristic framework is composed of the HBWS algorithm
and the CCGP algorithm, as illustrated in Fig. 3. The func-
tion set and the terminal set are used as building blocks to
construct the high-level heuristics TSR and RSR. Specifi-
cally, the terminals are the low-level heuristics and linked
by the functions to construct the high-level heuristics. Sub-
sequently, in the CCGP, two sub-populations (denoted as
PTSR and PRSR) work cooperatively to evolve the TSR and
RSR respectively, i.e., PTSR focuses on evolving PTSR and
PRSR focuses on evolving GRSR. To evaluate a candidate
solution ðGiÞ of one sub-population, it needs to be combined
with the best individual of the other sub-population
(denoted as Gbest) to form a complete solution (the pair of
TSR GTSR and RSR GRSR). Then the average performance of
the complete solution on the training set fðGi;GbestÞ (or
fðGbest;GiÞ) are used as fitness value of Gi. In this way, the
framework evolves the TSR and RSR via an iterative man-
ner, and finally we can obtain the best learned high-level
heuristics. Note that the HBWS algorithm is used to not
only schedule the workflow, but also evaluate the perfor-
mance of heuristics in CCGP. Since the performance of heu-
ristics is evaluated on a training set including different
workflows, the learned high-level heuristics could be gen-
eral enough for scheduling different workflows if the train-
ing set is large enough.

5 THE FRAMEWORK IMPLEMENTATION

In this section, an implementation of the proposed CCGP is
presented. First, the function and terminal sets are defined.
Then, the CCGP algorithm based on a recently published
GP variant (i.e., Self-learning Genetic Expression Program-
ming (SL-GEP) [23]) is implemented.

Fig. 2. The left table lists each schedule step in HBWS using the TSR in (25) and the RSR in (26) for performing the workflow example showed in
Fig. 1. The two graphs on right present the schedules with the leaned heuristics ðmakespan ¼ 100Þ and PEFT ðmakespan ¼ 107Þ.
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5.1 Function and Terminal Set

The learned high-level heuristics are constructed based on
two kinds of elements: terminal and function. Terminals are
crucial features that help to make decisions, while functions
are used to link up terminals to form the high-level heuristics.
The constructed heuristics actually map the terminals into
priorities non-linearly. To construct good TSR and RSR, the
function set and terminals set should be carefully designed.
In this paper, we consider eight commonly used base func-
tions (i.e., {ADD, SUB, MUL, DIV, SQRT, LOG, MIN, MAX})
to construct the high-level heuristics, as described in Table 1.
Further, two different terminal sets are defined for the con-
struction of TSR and RSR, respectively. This is because the
features that influence the decision of selecting ready task at
the scheduling step are different from those of selecting
resource for executing the selected task. Specifically, five
low-level heuristics are defined as terminals.

a) The upward rank: The upward rank rankuðtiÞ of task ti
is the length of the critical path from ti to the exit
task, which is introduced in HEFT [8]. It can be cal-
culated by

rankuðtiÞ ¼ wi þ max
tj2succðtiÞ

ðci;j þ rankuðtjÞÞ; (9)

where succðtiÞ is the set of successors of task ti. For the exit
task, the upward value is wexit.

b) The Optimistic Cost Table (OCT): The OCT for fore-
casting the optimistic cost of each task on a resource
was presented in PEFT [10]. The OCT of task ti on
resource pk can be calculated by

OCT ðti; pkÞ ¼ max
tj2succðtiÞ

min
pw2P

OCT ðtj; pwÞ þ wj;w þ ci;j
� �� �

;

(10)

where ci;j is zero if pk equals to pw.

c) The OCT rank: In the PEFT, the priority rankoctðtiÞ of
task ti is set to be the averageOCT,which is defined as

rankoctðtiÞ ¼
Pp

j¼1 OCT ðti; pjÞ
p

: (11)

d) The Max Remaining Time (MRT): The MRT ðtiÞ esti-
mates the maximum cost of paths from ti children’s
tasks to the exit task, including the communication
cost of ti and its children’s tasks. The MRT ðtiÞ of
task ti can be calculated by

MRT ðtiÞ ¼ max
tj2succðtiÞ

wj þ ci;j þMRT ðtjÞ
� �

: (12)

Note that the MRT of an exit task is equal to zero.

e) The Real-time Optimistic Time (ROT): To enhance the
optimistic cost table (OCT) of PEFT with real time
information, we define a new variable, ROT, which
is calculated by

ROT ðti; pjÞ ¼ max
tk2succðtiÞ

min
pl2P

EST ðtk; plÞþ
wk;l þOCT ðtk; plÞ

� �� �
; (13)

where task ti is presumably scheduled on resource pj. The
EST ðtk; plÞ is calculated according to the actual finish time

TABLE 1
Function Set

Function name Definition

ADD, SUB,
MUL

Binary addition, subtraction and
multiplication operators

DIV

Protected division:

DIVða; bÞ ¼ 0; if b < 1e� 8
a=b otherwise

�

SQRT

Protected square root:

SQRTðaÞ ¼
ffiffiffi
a
p

; if a � 0
0; otherwise

�

LOG

Protected logarithm:

LOGðaÞ ¼ loga; if a > 1e� 8
0; otherwise

�

MIN, MAX
MINða; bÞ returns the minimum between a
and b, whereasMAXða; bÞ returns the
maximum.

Fig. 3. The general structure of the proposed cooperative coevolution hyper-heuristic framework.
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of predecessors of task tk. Therefore, we only consider the
preceding tasks that have already been executed and the
task ti when the EST ðtk; plÞ is calculated. The ROT ðti; pjÞ
forecasts the effect of ti running on pj to schedule succeed-
ing tasks of ti. In general, we prefer scheduling task ti on
the resource that can minimize the ROT of ti. Note that for
an exit task texit, the ROT ðtexit; pjÞ is equal to EFT ðtexit; pjÞ.

Based on the above five features, we create two terminal
sets for the construction of TSR and RSR, respectively. The
description of the two terminal sets can be found in Table 2.
The designed terminal sets include the variables that HEFT
and PEFT used, i.e., the upward rank, the OCT and the OCT
rank. Hence, the HEFT and PEFT heuristics are in the search
space of CCGP algorithm. For example, the HEFT heuristic
can be expressed as GTSR ¼ rankuðtiÞ and GRSR ¼ EFTðti;
pjÞ ¼ EST ðti; pjÞ þ wi;j, while the PEFT heuristic can be
expressed as GTSR ¼ rankoctðtiÞ and GRSR ¼ OCT ðti; pjÞ.
Based on these low-level heuristics, the proposedCCGP algo-
rithm tries to learn better high-level heuristics by non-linearly
combining the low-level heuristics.

The terminals, i.e., the low-level heuristics, are designed
based on the global information of workflows. Therefore,
the learned high-level heuristics are suitable for solving the
static workflow scheduling problem, like most of heuristic-
based methods (e.g., HEFT and PEFT). However, if the ter-
minals are designed by putting the dynamic changed infor-
mation into consideration, the learned heuristics have
potential to cope with dynamic workflows.

5.2 The CCGP Algorithm

Our CCGP algorithm is based on a recent published GP
variant SL-GEP and the CC mechanism. In SL-GEP, each
chromosome consists of a “main program” and several
Automatically Defined Functions (ADFs). A chromosome
can be converted to an equivalent expression tree by using
the breadth first traversal scheme. Based on the expression
tree, we can get an equivalent formula. For WSP, the main
program is a priority function representing the TSR or the
RSR. Fig. 4 demonstrates a typical chromosome example
representing the TSR using the function and terminal sets
described in Tables 1 and 2.

To learn general and effective high-level heuristics, a
large number of training instances with different properties

are used as training cases. Since the makespan of instances
might vary significantly, it is necessary to normalize the
makespan (also called the schedule length) to a lower bound.
Thus, we use the schedule length ratio (SLR) as in [8], [10],
which is defined as follow:

SLR ¼ makespanP
ti2CPMIN

minpj2Pfwi;jg ; (14)

where CPMIN is the set of the critical path tasks and the exe-
cution time of each task takes the minimum computation
cost. The denominator of SLR is the summation of execution
time of the tasks on CPMIN , i.e., the minimum makespan.
The lower the SLR is, the better the solution is. Hence, the
fitness of a candidate solution (i.e., a pair of GTSR and GRSR)
is the average SLR over the set of training instances I, i.e.,

fðGTSR;GRSRÞ ¼
PjIj

j¼1 SLRIj

jIj : (15)

In the proposed framework, two sub-populations (PTSR

and PRSR) are used to evolve the TSR and RSR, respectively.
To evaluate an individual of one sub-population, the indi-
vidual will be combined with a representative individual of
another sub-population to form a complete solution. The fit-
ness of an individual is the fitness of the corresponding
complete solution. We denote the representatives of PTSR

and PRSR as Pr
TSR and Pr

RSR respectively. For example, the

fitness of an individual Pi
TSR of PTSR is calculated by

fðPi
TSRÞ ¼ fðPi

TSR; P
r
RSRÞ. In the initialization phase, the rep-

resentations of sub-populations are selected randomly,
while in the evolution phase, the best individuals of sub-
populations are selected as the representations. The pseudo
code of the proposed CCGP is shown in Algorithm 2, which
consists of the following four main steps.

1) Step 1 – Initialization: The first step is to generate indi-
viduals of two initial sub-populations PTSR and PRSR. Each
dimension of chromosome is randomly assigned with func-
tions, terminals or variables according to its type. The fitness
value of an individual in each sub-population is determined
by evaluating the whole heuristics formed by the individual
and a randomly selected individual of another sub-

TABLE 2
Terminal Set

Terminal name Definition

For the TSR (tti is the considered task)

CN The number of child tasks of the ti
MRT The max remaining timeMRT ðtiÞ of ti
ranku The upward rank rankuðtiÞ of ti used by HEFT
rankoct The average OCT of ti used by PEFT
RN The number of ready tasks
RP The proportion of the remaining tasks

For the RSR (ti is the selected task from the TSR and pj is the
considered processor)

wi;j The execution time of ti on pj
EST The earliest start time EST ðti; pjÞ of ti on pj
OCT The optimistic cost table OCT ðti; pjÞ
ROT The realtime optimistic time ROT ðti; pjÞ
AT The available time availðpjÞ of processor pj Fig. 4. A sample gene expression TSR of an individual in CCGP using

function and terminal sets in Tables 1 and 2.

156 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:53 UTC from IEEE Xplore.  Restrictions apply. 



population. After that, the two sub-populations are evolved
by mutation, crossover and selection operations, which are
described as below.

2) Step 2 – Mutation: In SL-GEP, the common “DE/cur-
rent-to-best/1” mutation scheme is used to generate mutant
vectors, i.e.,

yi ¼ xi þ F � ðxbest � xiÞ þ F � ðxr1 � xr2Þ; (16)

where r1 and r2 are two distinct individual indices which
are different from i:xxbest is the best individual with mini-
mum fitness value. F is the scaling factor of mutation. As
described in [23], the mutation probability of each dimen-
sion xi;j of individual xxi is calculated by

’ ¼ 1� ð1� F � cðxbest;j; xi;jÞÞ � ð1� F � cðxr1;j; xr2;jÞÞ;
(17)

where cða; bÞ is defined as

cða; bÞ ¼ 1; if a 6¼ b
0; otherwise

�
: (18)

When a dimension xi;j is to be mutated, a new value is gener-
ated to assign yi;j by using the “frequency-based assignment”
described in [23] if xi;j is part of themain program. Otherwise,
yi;j is assigned randomly. The key idea of the frequency-based
assignment is to select a value based on the frequencies of
building blocks (e.g., functions and terminals) in the popula-
tion. Those with higher frequencies are more likely to be
selected and assigned to yi;j. The frequency calculations of the
TSR and RSR are separated and independent, for the charac-
ters of the TSR are different from those of the RSR.

3) Step 3 – Crossover: In this step, a trail vector uu will be
created by:

uj ¼ yi;j; if randð0; 1Þ < CR or j ¼ k
xi;j; otherwise

�
; (19)

where CR is the crossover rate assigned from 0 to 1 ran-
domly, k is a random value between 1 and D, and j is the jth
dimension of the individual xxi. Each individual xxi will get a
new trail vector uu and then uu will compete with xxi in the
selection operation.

4) Step 4 – Selection: In the selection operation, the final
individual xxi will select the vector with better fitness
between xxi and uu as offspring:

xi ¼ u; if fðuÞ < fðxiÞ
xi; otherwise

�
: (20)

The fitness of the uu is evaluated by the complete solu-
tion formed by uu and the representative of the other sub-
population.

Step 2, Step 3 and Step 4 are repeated until reaching the
termination conditions such as reaching the maximum
number of generations. Finally, the best heuristics evolved
by the CCGP are the combination of the best individual of
each sub-population.

6 EXPERIMENTAL STUDIES

In this section, we investigate the effectiveness of the pro-
posed framework for the WSP. The performance metrics are

firstly presented and the experimental settings are then
described. Lastly, the high-level heuristics learned by CCGP
are compared with several well-known human designed
heuristics and an EA algorithm.

Algorithm 2. CCGP

Input: training set I; population size NP, number of ADFs K,
head length of main program and ADFs h; h0

Output: the best TSR and RSR
Procedure:
1. initialize two populations (PTSR and PRSR), and evaluate fit-

ness of individuals of each population
2. while stopping criterion not met do
3. Pr

TSR, P
r
RSR best individual of PTSR; PRSR

4. for each sub-population P do
5. update frequencies of functions and terminals of the

sub-population
6. for i ¼ 1 to NP do
7. F ¼ randð0; 1Þ;CR ¼ randð0; 1Þ; k ¼ randð1; DÞ
8. randomly select two individuals xxr1 and xxr2 where r1

and r2 are different and unequal to i
9. for j ¼ 1 to D do
10. calculate the mutation probability ’ by (18)
11. if (rand ð0; 1Þ < CR or j ¼ k) and (rand ð0; 1Þ < f)

then
12. uj  “frequency-based assignment”
13. else
14. uj ¼ xi;j

15. end if
16. end for
17. if fðuuÞ < fðPiÞ then
18. Pi ¼ uu
19. end if
20. end for
21. update the best individual indexes
22. end for
23. end while
24. return Pr

TSR, P
r
RSR

6.1 Performace Metrics

In the experiment study, four commonly used performance
metrics [8], [9], [10] are used for comparison. These perfor-
mance metrics are described as follows:

1) Schedule Length Ratio (SLR): The makespan (schedule
length) is most commonly used to evaluate a schedule
of a DAG, but it is usually normalized to a lower
bound to test graphs with different parameters. The
average SLR of all test instances, which is calculated
by equation (14), are used to evaluate the performance
of different heuristics. Generally, the heuristic that
yields lower average SLR performs better.

2) Speedup: The speedup S is defined as

S ¼ minpj2Pf
P

ti2V wi;jg
makespan

; (21)

where the numerator is the single-resource execution time
computed by assigning all tasks to the fastest resource that
minimizes the total execution time of all the tasks. The
makespan is the execution time in the case that the tasks can
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be executed in parallel and it is usually less than the total
execution time if the tasks can only be executed sequen-
tially. The speedup metric indicates how much speedup
we can gain by using multiple resources than a single
resource.

3) Efficiency: For a heterogeneous environment, the effi-
ciency [34] of a schedule is defined as the ratio of the
speedup value to the number of resources, where
each resource is weighted with the relative speedup
compared with the fastest one:

E ¼ SP
pj2P Spj

; where : Spj ¼
minpk2Pf

P
ti2V wi;kgP

ti2V wi;j
: (22)

The efficiency formula then becomes

E ¼ makespan�1P
pj2P ð

P
ti2V wi;jÞ�1

: (23)

The average efficiency is used as a performance metric
for comparison.

4) Number of occurrences of better schedules: The percent-
age of better, equal, and worse schedules generated
by the learned high-level heuristics and competitors
are also investigated in our experiment.

6.2 Experimental Settings

In the CCGP, there are four hyper parameters: the popula-
tion size NP, the number of ADFs K, the head length of
main program and ADFs h and h’, respectively. For select-
ing the suitable parameters for our problem, we do some
experiments on them. For the population size, we vary it in
the set of values f10; 30; 50; 100; 200g and found that the bet-
ter parameters are from 30 to 100. If the size is too low or
high, the result will get worse because small population
will loss divergence and converge fast into a local optimal
value, while large population needs much more time to con-
verge. Hence, we set NP ¼ 50. For parameters h, by chang-
ing it’s value from 5 to 40, the experiment showed that h
near 20 achieves the best results. The chromosome with a
short head length can only expresses limited functions,
while the chromosome with longer length can express more
functions but result in a larger search space. Thus, for bal-
ancing the expression ability and search efficiency, we set
h ¼ 20. Similarly, we set K ¼ 2; h0 ¼ 3 based on our empiri-
cal experiments.

In our experiment, we choose five well-known human
designed heuristics and a recently published EA algorithm
for comparison, i.e., the HEFT [8], Lookahead [9], PEFT
[10], PETS [12], MSL [13], and PSO [5]. In [5], the PSO is
used to minimize the monetary cost while meeting dead-
line constraints. We adjust the PSO by removing the
constraints and modify the optimal objective to minimize
the makespan for comparison analysis. We consider two
categories of workflows used for performance evaluation:
randomly generated workflows and four well-known real-
world workflows. The random workflows are generated
by random DAG generator with different parameters
and the four real-world workflows are the Gaussian

Elimination, Fast Fourier Transform (FFT) [8], [10], Mon-
tage [1] and Epigenomics [2].

6.3 Case Study 1: Randomly Generated Workflows

First, the randomly generated workflows are used to test
the performance of the learned high-level heuristics. In
[35], several random graph generation methods are pro-
vided, and the Erdo��s-R�enyi method Gðv; rÞ is selected to
generate random workflow graph, where v is the number
of vertices and r is the link probability of vertices. In the
generation method, a vertice vi and each vertice vj ðj < iÞ
are connected to form an edge ei;j with the link probability
r, which is set as fixed 0.1 in the experiment. Then, pn
heterogeneous resources are allocated to schedule the gen-
erated workflow. After the topology structure of the work-
flow is determined and the resources are allocated, the
computation costs and communication costs of tasks on
the given resources are computed by using the following
two parameters [8]:

� CCR: The communication-computation ratio CCR is
the ratio of the average communication cost to the
average computation cost in a DAG;

� b: The range percent of computation costs on resour-
ces b is the heterogeneity factor for resource speeds.
The difference between the computation costs of a
task on resources is large if the b value is high. Oth-
erwise, the computation costs are nearly equal. The
average computation cost wi of task ti is selected
from a uniform distribution with range ½0; 2� wDAG�
where wDAG is the average computation cost of
whole DAG and is randomly set from 1 to 10 in the
experiment. The computation cost wi;j of task ti on
resource pj is set within the range:

wi � 1� b

2

� �
� wi;j � wi � 1þ b

2

� �
: (24)

In the experiment, we use the following parameter set-
tings for generating random instances: v ¼ f30; 50; 100; 200g;
CCR ¼ f0:1; 1; 2g;b ¼ f0:5; 1; 2g; pn ¼ f4; 8; 16; 32g. There
are 144 parameter combinations, each of which is used to
generate five different instances consisting of a random
workflow and some resources used to execute tasks of the
workflow. In this way, we generate 720 training instances
and 720 test instances for train and testing.

For the randomly generated workflows, the best high-
level heuristics learned by the proposed framework, i.e., the
best priority functions GTSR and GRSR, are

GTSR¼ maxðminðCN � rankoct; 2� rankuÞ �MRT

þmaxð2� ðrankoct þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rankoct

p
Þ;rankoctÞ;rankuÞ;

(25)

GRSR¼ 1=ðROT � ðROT þmaxðROT;OCT ÞÞ � log ðROT ÞÞ:
(26)

As can be seen from the formulas, some terminals are not
used. For example, terminals RN and RP are not in the GTSR,
which indicates that they may be less important for con-
structing effective scheduling heuristics. To investigate the
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importance of a terminal in the formulas, we add noise to
the terminal while fixing the other terminals. The larger the
SLR metric changes, the more importance the terminal is.
The experimental results show that the terminal ROT has
the greatest impact on SLR, and the other terminals only
have a slight influence on SLR. These results indicate that
the terminal ROT defined by us plays a more important role
in scheduling workflows.

After learning the best high-level heuristics, we compare
it with other algorithms on test set to investigate its effec-
tiveness and robustness. The means on three metrics are
presented on Table 3. Here (and in the rest of this paper)
we use LH to represent the learned heuristics evolved by
the CCGP algorithm. The LH performs better than other
heuristics in terms of all metrics. To confirm whether the
mean of LH is significantly less than the means of other
algorithms, the paired student’s t-test is used. The obtained
p-values at level 0.01 are also given in Table 3. We can see
that all p-values are less than 0.01, therefore, our LH is sig-
nificantly better than other algorithms. The experimental
results indicate that the CCGP algorithm is effective to uti-
lize the low-level heuristics to construct and learn better
high-level heuristics. As can be seen from Table 3, the PSO
gets worse results than heuristic-based algorithms. This is
because the method in [5] doesn’t consider the execution
order of tasks. However, there are many kinds of task exe-
cution orders in a workflow as long as the dependencies
between tasks are met. Different orders could lead to signifi-
cant different scheduling results. The PSO method in [5]
executes tasks according to the task indexes which are fixed
in advance. Since the order based on the task indexes usu-
ally is not the best execution order, the PSO method usually
could not find the best results. However, in the heuristic
based algorithms and our method, the order of tasks can be
flexible decided by certain heuristics. Thus, they are capable
of finding better results.

Table 4 shows the percentage of better, equal and worse
schedules produced by the LH for all test instances com-
pared with other heuristics. It can be seen that the LH
achieves better SLR than PEFT by 66%, Lookahead by 82%,
HEFT by 80%, MSL by 95%, PETS by 92% and PSO by
98%, respectively. The LH performs better than (or equal
to) the second best algorithm PEFT on most of test instan-
ces (about 76%).

As for the time complexities of the heuristic-based meth-
ods, they usually contain the calculations of heuristic

variables (e.g., the upward rank in HEFT [8], and the opti-
mistic cost table in PEFT [10]) and the complexity of work-
flow scheduling algorithm HBWS. Firstly, the computation
complexities of the heuristic variables are different. For
example, the computation complexity of the upward rank
in HEFT [8] is Oðv2pÞ and the OCT table in PEFT [10] also
needs Oðv2pÞ for computation. Secondly, the time complex-
ity of the HBWS algorithm is Oðvðv � t1 þ p � t2ÞÞ where t1 is
the time complexity of GRSR and t2 is the time complexity of
GRSR. In the HEFT and PEFT, the variables are ready in the
preparation phrase, so both t1 and t2 are 1. Thus, their total
complexities are Oðv2pþ vðvþ pÞÞ. Since the number of
tasks is usually larger than the number of resources, the
complexity can be simplified as Oðv2pÞ.

In this paper, the computation complexities of the heuris-
tic variables designed in Section 5.1 are Oðv2pÞ. For the time
complexity of HBWS, t1 is 1 and t2 is v because of the com-
putation of real-time variable ROT. Therefore, the total
complexity of our hyper-heuristic method is Oðv2pþ vðvþ
vpÞÞ ¼ Oðv2pÞ, which is of the same order as the HEFT and
the PEFT. In the experiment, for the averaging running time
of all algorithms to schedule a workflow in test set, the LH
and Lookahead take about 0.023 seconds and the other
heuristics take about 0.01 seconds, while PSO takes about
9 seconds, which means that the PSO requires much more
computational cost than heuristic base methods.

Fig. 5a shows the average SLR with respect to the num-
ber of tasks for randomly generated workflows. It can be
observed that as the number of tasks increases, the SLR of
all algorithms increases. The LH outperforms other algo-
rithms on four different number of tasks. The result of
the average efficiencies of all heuristics as a function of
resource number is shown in Fig. 5b. We can see that
among all heuristics, the LH obtains the best efficiency
on different number of resources, and with the increasing
number of resources, the corresponding efficiency of each
heuristic is gradually reduced. The reason is that the
makespan does not decrease linearly as the number of
resources increases, since it is limited by the dependencies
between tasks. To explore the influence of DAG density
on the metric SLR, we generate different density work-
flows for testing. Specifically, in the random workflow
generator, we vary the link probability r of tasks from 0.1
to 1, and other parameters are set the same as before. The
final result is given in Fig. 5c. It can be observed that
the LH gets the best performance in all cases, and heuris-
tic based algorithms can handle workflows with density
0.1, 0.8 or 1 better than the workflows with medium
density 0.3 or 0.5.

To check whether there is a significant difference among
median SLR obtained by all algorithms, the Friedman test
[36], [37] is applied. The Friedman test is a non-parametric

TABLE 3
Comparison on Different Metrics Between the Learned

High-Level Heuristics and Other Algorithms For
RandomWorkflows Case

Algorithm
SLR Speedup Efficiency

mean p-value mean p-value mean p-value

LH 2:416 - 6:007 - 0:633 -
PEFT 2.513 3.67E-18 5.860 1.21E-29 0.610 2.27E-29
Lookahead 2.690 4.36E-29 5.640 7.97E-64 0.597 2,84E-63
HEFT 2.686 3.53E-30 5.696 1.77E-59 0.605 1.12E-47
MSL 2.937 7.59E-69 5.219 2.64E-131 0.526 6.39E-97
PETS 2.849 2.45E-55 5.347 2.49E-106 0.547 3.76E-83
PSO 3.945 2.78E-59 3.690 2.76E-46 0.418 2.78E-82

TABLE 4
Schedule Length Ratio Comparison Between the Learned

High-Level Heuristics and Other Algorithms

PEFT Lookahead HEFT MSL PETS PSO

LH
Better 66% 82% 80% 95% 92% 98%
Equal 10% 6% 5% 1% 2% 0%
Worse 24% 12% 15% 4% 6% 2%
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statistical test for detecting differences in treatments across
multiple test attempts. Specifically, according to the differ-
ent parameter setting combinations, the test instances are
divided into 144 groups. In each group, all heuristics are
ranked in terms of the obtained average SLR. Then we cal-
culate the average ranking of different heuristics and the
Friedman value. As shown in Table 5, the obtained Fried-
man value is 2512.420, which is greater than the critical
value x2

:01 ¼ 16:81 at a level of a ¼ 0:01. This result indicates
that the difference of the average SLR among the heuristics
is significant with the error rate p < 0:01. We follow the
Friedman test with Bonferroni–Dunn’s test that is utilized
as Post-hoc test to compare the difference between two heu-
ristics. The critical difference (CD), which is the minimum
required difference between the average ranks of any two
heuristics, is 0.568 at level a ¼ 0:01. To compare the differ-
ence between LH and other algorithms, the threshold
value is used, which is calculated by the average rank of
the LH plus the CD (i.e., 1:299þ 0:568 ¼ 1:867, as shown
in Table 5). If the average rank of a heuristic is larger than
the threshold value, the heuristic is significantly worse
than the LH. The results in Fig. 6 indicate that the LH
learned by our framework performs significantly better
than other human designed heuristics on the randomly
generated workflows.

6.4 Case Study 2: Real-World Workflows

Next, we consider four real-world workflows for testing.
The topology structures of these real-world workflows are
shown in Fig. 7. The parameters CCR; b and pn are set the
same as the randomly generated workflows when generat-
ing real-world workflow instances. The other settings of
generating the real-world workflows are described as
follows:

1) Gaussian Elimination. Gaussian Elimination is an
algorithm used to solve systems of linear equations
in linear algebra. The algorithm is parallelized and
represented by a DAG [8]. The DAG consists of the
pivot column operation tasks and update operation
tasks. For a Gaussian Elimination DAG, the matrix
sizem determines the number of tasks which is equal
to ðm2þ m� 2Þ=2. In our experiment, the range of m
is set to be f5; 10; 15; 20g, i.e., the number of tasks is
f14; 54; 119; 209g.

2) Fast Fourier Transform. The fast Fourier transform
(FFT) algorithm computes the discrete Fourier trans-
form of a sequence, or its inverse. As described in
[8], [10], the FFT algorithm consists of recursive calls
and the butterfly operation. If the size of input vector
is m, there will be 2�m� 1 recursive call tasks and
m� log 2m butterfly operation tasks in an FFT graph.
The parameter m varies from 4 to 32 incrementing by
the power of 2 and the corresponding number of
tasks varies from 15 to 223.

3) Montage. Montage [1], [2] has been designed as a
toolkit for assembling Flexible Image Transport Sys-
tem image into custom mosaics. The DAG of Mon-
tage workflow in Fig. 7c is a sample graph with 20
tasks. In our experiment, the number of Montage
DAGs is set to be 25 or 50, which follows the settings
in PEFT [10].

4) Epigenomics. The Epigenomics workflow [2] is used
to map the epigenetic state of human cells on a
genome-wide scale. We consider the Epigenomics

TABLE 5
Friedman Test for RandomWorkflows at a ¼ 0:01

Algorithm LH PEFT Lookahead HEFT MSL PETS PSO

Average ranking 1.299 2.333 3.556 3.250 5.799 5.042 6.722

Friedman value 2512.420

x2
:01 16.81

CD 0.568

Threshold 1.867

Fig. 6. Bonferroni-Dunn graphic for randomly generated workflows.

Fig. 5. (a) Average SLR as a function of the tasks number, (b) average efficiency as a function of the resource number, and (c) average SLR as a
function of the link probability for randomly generated workflows.
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workflows with 24 and 46 tasks in the experiment,
following the setting in PEFT [10].

The experimental performance metrics of each algorithm
on real-world workflows test set are listed in Table 6, where
S and E represents speedup and efficiency respectively. The
results show that the LH obtains the best results in all cases.
The results indicate that the CCGP algorithm can learn bet-
ter high-level heuristics than human-made heuristics for the
real-world workflows. The PSO performs worst since it
doesn’t take the tasks’ execution order into consideration
as discussed in the random workflows case.

Similarly, the Friedman test is also applied to check
whether the obtained average SLR of all heuristics is signifi-
cantly different in the real-world workflow cases. The test
instances of four real-world workflows are divided into total
432 groups according to the different workflows and param-
eter setting combinations. The average ranks of the heuristics
are shown in Table 7. The obtained Friedman value is

2501.230, which is greater than the critical value
x2
:01 ¼ 16:81. Thus, the difference of the average SLR among

the heuristics is significant at level a ¼ 0:01. Bonferroni–
Dunn’s test is also used and the critical difference (CD) is
0.568 at level a ¼ 0:01. Fig. 8 illustrates the average ranks of
all heuristics and the results show that the LH is significantly
better than other methods.

7 CONCLUSION

In this paper, we have proposed a cooperative coevolution
hyper-heuristic framework to automatically learn high-level

TABLE 6
Comparison on Different Metrics for Real-World Workflows Case

Algorithm
Gaussian Elimination FFT Montage Epigenomics

SLR S E SLR S E SLR S E SLR S E

LH 2:452 4:360 0:465 2:716 7:163 0:683 2:554 3:628 0:408 2:368 4:163 0:465
PEFT 2.588 4.251 0.451 2.865 6.853 0.643 2.702 3.495 0.389 2.427 4.085 0.452
Lookahead 2.650 4.188 0.449 2.772 7.052 0.672 2.648 3.573 0.402 2.498 4.056 0.456
HEFT 2.874 4.057 0.437 2.953 6.926 0.665 2.856 3.468 0.392 2.750 3.898 0.443
MSL 3.197 3.601 0.370 3.479 5.547 0.511 2.920 3.384 0.377 2.791 3.740 0.411
PETS 3.170 3.608 0.370 3.419 5.561 0.517 2.860 3.419 0.384 2.832 3.699 0.407
PSO 3.972 2.693 0.314 4.232 4.041 0.445 3.204 2.831 0.335 3.292 3.112 0.375

TABLE 7
Friedman Test for Real Workflows at a ¼ 0:01

Heuristic LH PEFT Lookahead HEFT MSL PETS PSO

Average ranking 1:396 2.813 2.403 3.694 5.583 5.556 6.556

Friedman value 2501.230

x2
:01 16.81

CD 0.568

Threshold 1.964
Fig. 8. Bonferroni-Dunn graphic for real-world workflows.

Fig. 7. Examples of real-world workflows.
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heuristics to solve the WSP. In the proposed framework,
workflows are scheduled by the HBWS algorithm with the
given heuristics (i.e., TSR and RSR). At each step, the TSR is
used to select task, while the RSR is used to select resource
to execute the selected task. Furthermore, a CCGP algorithm
has been developed to automatically learn these two sub-
heuristics. To improve the learning efficiency, effective low-
level heuristics have been defined as building blocks to
construct the high-level heuristics. In addition, the SL-GEP
and the cooperative coevolution mechanism are adopted to
implement the CCGP algorithm. In the experimental study,
the randomly generated workflows and four real-world
workflows are used as the training and test cases. Five well-
known heuristics (i.e., the HEFT, Lookahead, PEFT, MSL
and PETS) and a recently published EA-based method have
been considered as the baselines for comparison. The exper-
imental results showed that the high-level heuristics
evolved by the proposed CCGP algorithm can offer very
promising performance in terms of SLR, speedup and
efficiency.

The advantage of the proposed cooperative coevolution
hyper-heuristic framework is that the heuristics learned by
the proposed algorithm are general enough to be applied to
different workflows. However, the interpretability of the
learned heuristics is not good enough. In the future, we plan
to extend our method by utilizing multi-objective optimiza-
tion techniques to optimize both accuracy and interpretabil-
ity of the heuristics. Meanwhile, we would like to design
more effective functions and terminals to further improve
the search efficiency. Furthermore, applying the proposed
framework to solve dynamic WSP is a promising research
direction.
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