
A Dynamic Programming Approach to Individual
Initialization in Genetic Programming

Tomáš Křen
Charles University in Prague

Faculty of Mathematics and Physics

Malostranské náměstı́ 25

Prague, Czech Republic

tom.kren@gmail.com

Roman Neruda
Institute of Computer Science

Academy of Sciences of the Czech Republic

Pod Vodárenskou věžı́ 2

Prague, Czech Republic

roman@cs.cas.cz

Abstract—In this paper we present a new initialization method
for genetic programming based on randomized exhaustive enu-
meration. It naturally enables complete sharing of subtrees
among individuals which in turn allows an efficient reuse of
computations. Moreover, it can be implemented as a random one-
pass initialization. We present experimental results on different
instances of simple symbolic regression exploring the landscape
of possible initializations based on our approach and confirming
the usability of these initializations.

Index Terms—Genetic programming, Initialization, Dynamic
programming.

I. INTRODUCTION

Genetic programming (GP) represents an efficient method

for automatic generating of programs by means of evolutionary

techniques [1], [2]. It is a population based search heuristics

that operates on a tree structures representing computer pro-

grams. The algorithm consists of several operators – the initial-

ization operator provides starting solutions for the search, that

is in turn realized by the selection operator mimicking natural

selection, and mutation and crossover operators recombining

and improving existing solutions. The initialization operator

is especially important in GP, as it should not only provide

suitable initial population but it is also utilized in mutation

operators. Moreover, in contrast to evolutionary techniques

working on linearly encoded individuals, there exist several

approaches how to initialize trees in GP.

A wide spectrum of initialization methods for GP can

be arranged by the amount of included randomness – from

random one-pass initializations (e.g. the standard ramped half-

and-half [1]) to systematic approaches (e.g. exhaustive enu-

meration). The exhaustive enumeration can be relaxed by

adding a random step, and it can be straightforwardly used

to faithfully simulate random one-pass initializations as will

be demonstrated further in this paper.

Our previous work with exhaustive-inspired initializations

in typed GP [3] have indicated that such approach can be

useful for standard GP, thus the motivation was to explore

this approach and examine its usefulness in standard GP.

The main advantage of the approach described here is the

reduction of time complexity of the initialization algorithm on

the account of space requirements that are still very reasonable

and negligible in practice.

Among the approaches to initialization procedures, the by

far most frequently used one is the so-called ramped half-and-

half, but several alternative methods are also used.
Authors of [4], [5] show how to perform uniform initializa-

tion which allows to sample trees uniformly based on Alonso’s

bijective algorithm [6]. Our method can be considered as a gen-

eralization of such uniform generating. Below, we introduce

a generating strategy as a parameter guiding our generating

method; the uniform generating method is equivalent to our

generating with a simple strategy p(d) = 1.
Our method can be also perceived as a generalization of

exhaustive enumeration by adding randomness into it. An in-

teresting relationship between GP and exhaustive enumeration

– which comes from the typed functional GP context – is

reported in [7]. The typed GP is also the original motivation

for our proposed method. The below described AND and OR

gadgets are designed so that they allow further generalization

for a typed case.
The structure of this work is as follows. In section II

we discuss the main principles of random and systematic

initializations. The main result of the paper is presented in

section III where our initialization method is described. The

algorithms proposal is tested on a simple symbolic regression

problem, the results are gathered in section IV. Finally, the

discussion of the results is presented in section V.

II. BACKGROUND

Genetic programming initialization methods fall into the

broader category of generating algorithms. One can imagine a

whole spectrum of such generating algorithms arranged by the

amount of included randomness. The standard method, called

ramped half-and-half [1], is on one end of the spectrum where

the amount of randomness is very high. On the opposite end

of this spectrum we can place the systematic enumeration of

all possible trees from the smallest towards the bigger trees.
The ramped half-and-half generating process produces one

complete individual, after which it restarts and starts again. It

iterates in this fashion until the desired number of individuals

is produced. We call this kind of initialization an one-pass
generating (cf. Fig. 1). This is in contrast with systematic meth-

ods which may share the substantial portion of the generating

process and substructures among many individuals.

2015 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-8697-2/15 $31.00 © 2015 IEEE

DOI 10.1109/SMC.2015.307

1752

2015 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-8697-2/15 $31.00 © 2015 IEEE

DOI 10.1109/SMC.2015.307

1752

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Examples of one-pass generation

For the sake of easier explanation, it is convenient to de-

scribe the generating process by means of the unfinished node
expansions. By a node expansion we mean the replacement

of the unfinished node by a more specific subtree; this new

subtree may be a terminal or a function with unfinished nodes

as its children (respecting the arity of the function).1

A straightforward approach to exhaustive enumeration can

be based on the priority queue data structure. At the beginning,

the queue contains only one unfinished tree that consists of

a single unfinished node. As described on Fig. 2, in every

step we retrieve the smallest unfinished tree2 from the queue,

and expand one of its unfinished nodes (e.g. the depth-first

search one) in all possible ways. Doing so, we obtain a set of

more specific trees – the successors. Some successors may

be finished trees (i.e. they do not contain any unfinished

node), while the rest are unfinished trees. We put the finished

successors to output and the unfinished successors back to the

queue. This way of generating trees produces them in the order

from the smallest to the largest.

The field of evolutionary computing relies on randomness,

thus it seems inappropriate to use fully systematic generating

for population initialization. On the other hand we believe that

it is worth exploring whether we can gain some benefit from

using higher level of systematic nature in the initialization.

So we can ask the following question: How to modify the

systematic generating in order to make it more random?

The fully systematic generating procedure uses all the

successor trees, i.e. it puts all the successors back to the queue

or it outputs them. One way to weaken the systematic nature

is to discard some of them. Formally, we can generalize the

systematic approach into this randomized version by adding a

parameter in the form of filter procedure, which decides for

each successor whether to keep it or discard it.

Since the generating is now randomized, the queue may go

empty before the wanted number of individuals is generated. If

this happens, a single unfinished node is added into the queue

and generating may continue. We call this event a restart.

1An unfinished node in its simple untyped form does not contain any
additional information, however for the typed version it is a convenient place
for storing useful information such as the type of the subtree to be generated
(or local variables information if anonymous functions are involved).

2The algorithm for exhaustive enumeration described here is an instance
of well-known A* algorithm [8]. The A* heuristic corresponds here to the
choice of how we deal with unfinished nodes. We count unfinished nodes as
one node in the simple untyped version (since we can always replace it with a
terminal). For the typed GP, the situation is more complicated, because there
may not be an applicable terminal.

Fig. 2. Systematic generating based on priority queue

It is possible to emulate one-pass generating by using a

filtration procedure that discards all but one successors. Such

filtration causes that the queue contains at most one unfinished

tree. Therefore the randomized systematic generating can be

seen as a generalization of both systematic and one-pass

generating.

In this paper we use a more specific form of the filtration

procedure defined by a function p : N → [0, 1] that assigns

probability of keeping a successor based on the depth of

the expanded unfinished node – let d be the depth of the

expanded node that produced the successor, then p(d) is the

probability of keeping the successor. We call such a function

p a generating strategy.

Example of such a strategy is our geometric strategy [3]

that is given by a simple formula p(d) = qd where q is a fixed

constant (we used q = 0.75).

The intuition behind the geometric strategy is that we

want the probability of keeping the successors produced by

expanding nodes in small depths to be high and we want it to

descend with increasing depth. We can imagine the generating

process as unsupervised exploration of the tree space. We want

to systematically explore all the possible roots (i.e. nodes with

d = 0), but with increasing depth we are more willing to

drop more successors. By dropping a successor we cut off a

portion of searched space; with increasing depth the portion of

the cut-off space is getting smaller. Experiments on three well

known benchmarks presented in [3] showed that the geometric

strategy have the same or better performance than the standard

ramped half-and-half with respect to success rate, best fitness

value, time consumption and average individual size.

III. OUR APPROACH

Our goal is to simulate the queue-based generating pro-

cedure by one-pass generating capable of complete subtree

sharing. We assume generating procedure is parameterized by a

17531753

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Simplified initialization procedure.

function generate(Int popSize)
population← ∅
n← 1
while |population| < popSize do

limit← min(|population|+ �e(n)�, popSize)
while |population| < limit do

tree← generateOne(n)
population← population ∪ {tree}

n← n+ 1

return population

search strategy, i.e. the filtration function defined by probability

function depending on depth of a node.

A search strategy function assigns probability to each node

in a tree. It is a probability of keeping a successor produced

by expanding that node. When a complete tree is produced

it means that each of its nodes survived the expansion. The

probability of this event is equal to the product of node

probabilities, provided that the generating procedure manages

to go through all of the trees with size less than or equal to n.

The queue-based approach generates trees in the order given

by the number of nodes of a tree. Assuming we have a

method for generating one tree of a given size (respecting the

whole-tree probability) and with the knowledge of the expected

number of generated trees for a given size, we can simulate the

systematic queue-based generating by a probabilistic one-pass

generating in the following way.

We proceed iteratively starting with the tree size n = 1.

In each iteration we compute the expected number e(n) of

generated trees of size n; and generate �e(n)� trees by the

one-pass generating. This is repeated until the required number

of trees is generated. Algorithm 1 describes this process in

greater detail. This is the core idea of our approach that will

be elaborated in this section. First we describe how to compute

the e(n) value.

In order to build a tree (of size n) we must first select a

root symbol (a terminal for n = 1, or a function for n > 1),

and after that we construct a subtree for each input argument

recursively. We call the symbol selection an OR-step (since we

choose one from many choices), and the subtree generation an

AND-step (since we must generate subtrees for all arguments).

Since we need to control the exact size of the constructed trees,

our OR-step is enriched with additional choice; in an OR-step

we also choose specific sizes for the subtrees (a so-called size
profile).

For a specific symbol with k arguments there is sp(n, k)
size profiles. For a terminal symbol (i.e. n = 1, k = 0) we

have sp(1, 0) = 1, for a function symbol (i.e. n > 1, k > 0) it

is:

sp(n, k) =

(
n− 2

k − 1

)
.

The total number of choices ch(n) for OR-step for size n is:

ch(n) =
∑
s

sp(ar(s), n),

where the sum ranges over all applicable symbols s (for n = 1,

s ranges over terminal set; for n > 1, s ranges over function

set) and ar(s) is the number of arguments of the symbol s. The

set of trees with size n is divided into ch(n) disjoint subsets,

each corresponding to one OR-choice (i.e. the choice of a root

symbol together with a size profile). Fig. 3 summarizes these

notions.

Fig. 3. Summary of OR and AND step.

In order to compute e(n) (the expected number of trees

of size n) we use auxiliary function e(n, d) which is the

expected number of (sub)trees of size n with root in depth

d. Analogically we can compute #(n), the total number of

trees of size n.

e(n) = e(n, 0), #(n) = #(n, 0).

In order to compute e(n, d) we use another auxiliary

function e(n, i, d) which is the expected number of (sub)trees

of size n with root symbol and size profile corresponding to

the i-th OR-choice with root in depth d. Since the OR-choice

subsets are disjoint we can compute the e(n, d) value as the

following sum:

e(n, d) =

ch(n)∑
i=1

e(n, i, d), #(n, d) =

ch(n)∑
i=1

#(n, i, d).

It remains to show how to compute e(n, i, d). We know the

root depth d, and since we know (n, i) we also know the root

symbol and the size profile. The AND-step is computed as the

following product:

e(n, i, d) = p(d)·
ar(n,i)∏
j=1

e(size(n, i, j), d+ 1),

#(n, i, d) =

ar(n,i)∏
j=1

#(size(n, i, j), d+ 1).

where ar(n, i) is the number of arguments of the root symbol,

and size(n, i, j) is the size of the j-th subtree in the i-th OR-

choice for tree of the size n. Fig. 4 show a simple example of

computing e and #.

17541754

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Example for simple T ∪ F with one terminal t, one unary function
f , one binary function g and one ternary function h.

Now we show how to generate one individual of size n
in a one-pass fashion. The generateOne(n) procedure gen-

erates one tree of size n. The generateOne(n, d) procedure

generates one (sub)tree of size n with root at depth d. Again,

generateOne(n) = generateOne(n, 0). Let us describe the

generateOne(n, d) procedure recursively. In order to generate

a root node for tree with n nodes at depth d, select one

index i from {1, . . . , ch(n)} (i.e. do an OR-choice) where the

probability of selecting an index i is:

p(n, i, d) =
e(n, i, d)

e(n, d)

The index i determines a choice of a node sym-

bol together with subtree sizes given by size(n, i, j) for

j = 1, . . . , ar(n, i). The j-th subtree is generated by

generateOne(size(n, i, j), d + 1). Algorithm 2 shows sim-

plified pseudocode for this procedure.

A nice property of this approach to tree generating is

that it allows for reusable generating, i.e. generating that

shares common subtrees among generated trees. Let us dive

more into the implementation details. During the generating

process, many computed values (e.g. e(n, i), e(n, i, j)) are

used repeatedly, so it is efficient to compute them only once

and store them for later use. To do so we introduce two data

structures associated with the OR-step and the AND-step; we

call them OR-gadget and AND-gadget. There is an OR-gadget

Algorithm 2: Simplified generation of one individual.

function generateOne(Int n, Int d)
i← select {1, . . . , ch(n)} with probability e(n,i,d)

e(n,d)

tree← new node with symbol(n, i)
for j ∈ {1, . . . , ar(n, i)} do

tree.addSon(generateOne(size(n, i, j), d+ 1))

return tree

Gn for each tree of size n. And there is an AND-gadget Gn
i for

each tree of size n and for each OR-choice i ∈ {1, . . . , ch(n)}.
So we have Gn.e[d] = e(n, d) and Gn

i .e[d] = e(n, i, d). An

AND-gadget Gn
i can be seen as a collection of trees of size

n with a root symbol and a size profile corresponding to the

i-th OR-choice (together with those useful values). So it is

a natural place where to store those already generated trees.

Analogically, an OR-gadget Gn can be seen as a collection of

AND-gadgets Gn
i .

We believe that the most important benefit of generating

trees that share identical subtrees is that it allows a natural way

for sharing not only the structure but also the computations.

For the sake of simplicity, suppose that we have a problem

with solutions of the type A → A and that fitness evaluates

them for N fitness cases. We can say that fitness has a type

(A → A) → R. Also, suppose that we have a terminal x
standing for an input variable (i.e. x : A), and functions from

the F set are unary or binary, i.e. A → A or A × A → A.

An individual is called N times during the evaluation by

the fitness function, once for each fitness case. We can now

reformulate such a problem to be suitable for computation

reuse. Alternative understanding is that an individual tree

represents a vector AN , the terminal x : AN is a constant

vector containing inputs for fitness cases, and functions from

F are AN → AN or AN × AN → AN . A fitness function

now has type AN → R. Each individual subtree represents a

AN vector – and this value can be stored in the root object of

the subtree. In order to compute a value of a tree we use the

values of its subtrees. In order to evaluate fitness of a tree we

compute fitness of its value. This is further discussed in the

example in the next section.

It is also important to state that this one-pass approach to

generating is not a completely faithful simulation of the queue-

based approach; the difference lies in the restarts of the queue-

based approach, and in the fact that the one-pass approach

may generate the same tree multiple times – so we perform

uniqueness check to avoid that. In our practice this uniqueness

checking is not an efficiency issue. The queue-based generating

never outputs the same tree several times, unless it restarts;

then there is possibility of generating one tree several times.

It would be interesting to investigate the exact relationship

between those two phenomena.

Let us conclude this section with remarks concerning the

space consumption of our method. Suppose we generate trees

up to size n. Then, there is n OR-gadgets and O(n2) values

for computing the e function. The number of AND-gadgets

17551755

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:21 UTC from IEEE Xplore. Restrictions apply.

Gn
i for OR-gadget Gn depends on maximal function arity k,

which is a small fixed number. We have O(
(
n−2
k−1

)
) = O(nk−1)

AND-gadgets for one OR-gadget, so O(nk) AND-gadgets in

total, therefore there is O(nk+1) values for e. Such space

consumption is fine for reasonable values of k since n is

usually a small number. These data may be generated once and

further shared for problems with the same ”shape” of T ∪ F .

IV. EXPERIMENTS

We made two experiments comparing the performance of

the standard ramped half-and-half method with our geometric
strategy p(d) = qd (with various values of parameter q).

In our previous experiments with geometric strategy [3]

implemented by the queue-based approach we showed that our

method outperforms the standard method on two benchmarks –

the (Artificial Ant and the Even Parity) – and performs the same

on the Simple Symbolic Regression (SSR) problem (described

in [1]), so we chose this benchmark to test our new approach

in greater detail.

The objective of the SSR problem is to find a function

f(x) that fits a sample of N given points (N = 20). The

standard target function is a polynomial function defined as

ft(x) = x4 + x3 + x2 + x. However, in our experiments we

use a wide range of automatically generated target functions.

The terminal set T consists of a single input variable x. The

function set F = {+,−, ∗, rdiv, sin, cos, exp, rlog} where:

rdiv(p, q) =

{
1 if q = 0

p/q if q �= 0
rlog(x) =

{
0 if x = 0

log(|x|) if x �= 0

The fitness function is computed as:

fitness(f) =
1

1 +
N∑
i=1

|f(xi)− ft(xi)|

where (xi, ft(xi)) are the input points.

Individual trees share common subtrees. In the case of SSR,

the same subtrees correspond to the same computation. We can

reformulate the SSR problem to be suitable for computation

reuse. An SSR individual tree represents a R → R function,

the terminal x is an input variable, and functions from F are

R → R or R × R → R. An individual is called N times

during evaluation by the fitness function, once for each input

point. Alternative understanding is that a SSR individual tree

represents a R
N vector, the terminal x = (x1, . . . , xN) is a

constant vector containing x-components of input points, and

functions from F are R
N → R

N or RN ×R
N → R

N . Fitness

function is then R
N → R. Each individual subtree represents

a R
N vector – and this value can be stored in the root object

of the subtree. In order to compute a value of a tree we use

the values of its subtrees. In order to evaluate the fitness of

a tree we compute the fitness of its value, i.e. distance from

target vector (ft(x1), . . . , ft(xN)).
In order to see how reusable computation speeds up the

evaluation, it is illustrative to observe how it works for the

simple case of exhaustive enumeration. Suppose we have

generated all the trees smaller than n, then we need to perform

just a single computation, whereas with no reuse we need to

perform n computations. With nonexhaustive generating the

speedup is smaller depending on the e(n) values. Note that

it is also important to implement computation reuse for trees

created by cross-over, but that is beyond the scope of this

paper.
Each of the two experiments presented here is divided

into several middle-experiments which are further divided into

several steps.
Each step tests a generating strategy on one generated SSR

problem. It consist of k = 10 runs of GP algorithm. Each run

has 51 generations with 500 individuals. We call the average

best individual fitness from those k runs a step-result.
A middle-experiment compares performances of various

generating methods on various SSR problems. The compared

strategies are standard method and our geometric strategy

p(d) = qd for q ∈ Q where Q = {0.01} ∪ {0.05 · i | i ∈
{1, . . . , 20}} ∪ {0.5 + 0.01 · j | j ∈ {1, . . . , 30}}, i.e. the

promising interval [0.5, 0.8] is explored more extensively than

the rest of [0, 1]. Each generating method is tested on a set

of m = 50 different generated SSR problems. So there is m
steps for each tested generating method. A middle-result for a

generating method is an average from those m steps.
The whole experiment consists of n = 10 middle-

experiments, each for a different set of generated SSR prob-

lems. We repeat the middle-experiments with different problem

sets because random problem sets tend to have fluctuating

difficulty, so this makes the result more general. The total

number of GP runs for the whole experiment is n∗m∗|Q|∗k =
10 ∗ 50 ∗ 45 ∗ 10 = 225000.

The two experiments differ in the method used for gener-

ating the target functions for the SSR problems. The graphs

(Figs. 5 and 6) show mean values of the middle-results

for various q values and contain error bars representing the

standard error of the mean (SEM). For easy comparison the

result of the ramped half-and-half is depicted as a horizontal

line. From each experiment a q value with maximal mean value

is selected and its performance is compared with the standard

method by statistically analyzing the difference by the paired

t-test.

A. Experiment 1
Target functions for this experiment are randomly gener-

ated from SSR’s T ∪ F by the standard ramped half-and-

half generating method. The best performing method is the

geometric strategy for q = 0.66. It performs slightly better

then the standard method, but this difference is not statistically

significant (cf. Table I). Fig. 5 shows the results.

B. Experiment 2
In the first experiment, the standard method has an advan-

tage in that it has to find the target functions generated by itself.

In the second experiment we turn the situation around, and let

the winner geometric strategy q = 0.66 generate the target

functions, again from from SSR’s T ∪ F . But now we have

the opportunity to better balance the difficulty of generated

problems by using generateOne(n) for sizes n ∈ {1, . . . ,m}.

17561756

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Results of the experiment 1.

TABLE I
STATISTICAL ANALYSIS - EXPERIMENT 1

Ramped half-and-half Geometric(0.66)
Mean 0.646009157360 0.649373590030
SD 0.033828586830 0.036479053197
SEM 0.010697538441 0.011535689499
N 10 10
t-value 0.3013 α = 0.05
p-value 0.7701 Not statistically significant.

The best performing method for this experiment was the

geometric strategy for q = 0.62. Fig. 6 shows that this problem

is significantly harder but the performance shape is similar.

Again the performance is better then the standard method, now

the difference is statistically significant according to the t-test

(cf. Table II).

Fig. 6. Results of the experiment 2.

V. CONCLUSIONS

In our previous work [3] we have shown that a one-pass

initialization can be simulated by an exhaustive approach

with a priority queue reduced to one element only. Here we

demonstrate how to simulate the queue behavior by a one-

pass initialization with pre-computed values of augmenting

variables by means of dynamic programming. In a sense, this

TABLE II
STATISTICAL ANALYSIS - EXPERIMENT 2

Ramped half-and-half Geometric(0.62)
Mean 0.353883524810 0.365299367810
SD 0.042564161852 0.044041303628
SEM 0.013459969815 0.013927083059
N 10 10
t-value 2.6191 α = 0.05
p-value 0.0279 Statistically significant.

problem represents the harder implication of the equivalence

we are trying to demonstrate. Thus, although the approach is

of direct use for the typed version of GP, here we deal with the

standard GP only. The important advantage of our approach

is that a large amount of subtrees can be shared, and thus the

fitness computations can be reused. This speedup is achieved

by sacrificing a reasonable space needed by the algorithm.
Our two experiments demonstrated that this generation pro-

cedure achieved comparable or better results than the ramped

half-and-half strategy for the symbolic regression benchmark.

A more thorough evaluations have been used to assess the

optimal value of the q parameter.
For the future work, we are currently developing the coun-

terpart of the generating procedure for the case of typed GP. It

seems that the AND-gadgets and OR-gadgets can be easily

augmented by all the necessary information for the more

complex typed trees.
It is interesting to note that the initialization procedure is

not used solely during the initialization part of the evolutionary

algorithm. The mutation operator makes use of generating a

random tree and replacing a certain subtree of the individual

by it. This context can hint about different kinds of systematic

approach which will be tailored for mutations.

ACKNOWLEDGMENTS

Tomáš Křen has been partially supported by the project

GA UK 187115 and by the SVV project number 260 224.

Roman Neruda has been partially supported by the Czech

Grant Agency grant GA15-18108S.

REFERENCES

[1] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. Cambridge, MA, USA: MIT Press, 1992.

[2] ——, Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[3] T. Křen and R. Neruda, “Generating lambda term individuals in typed
genetic programming using forgetful A*,” in Evolutionary Computation
(CEC), 2014 IEEE Congress on, July 2014, pp. 1847–1854.

[4] H. Iba, “Random tree generation for genetic programming,” in Parallel
Problem Solving from Nature — PPSN IV, ser. Lecture Notes in Computer
Science, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, Eds.
Springer Berlin Heidelberg, 1996, vol. 1141, pp. 144–153.

[5] W. Langdon, “Size fair and homologous tree crossovers for tree genetic
programming,” Genetic Programming and Evolvable Machines, vol. 1,
no. 1-2, pp. 95–119, 2000.

[6] L. Alonso and R. Schott, Random generation of trees: random generators
in computer science. Springer Science & Business Media, 1994.

[7] F. Briggs and M. O’Neill, “Functional genetic programming and exhaus-
tive program search with combinator expressions,” International Journal
of Knowledge-Based and Intelligent Engineering Systems, vol. 12, no. 1,
pp. 47–68, 2008.

[8] S. J. Russell and P. Norvig, Artificial Intelligence - A Modern Approach
(3rd Ed.). Prentice Hall, 2010.

17571757

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:21 UTC from IEEE Xplore. Restrictions apply.

