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Abstract—Genetic algorithm is a kind of common method to 
solve nonlinear programming problems. To improve the 
computational efficiency of the algorithm, a genetic algorithm 
based on a new real code (NRCGA) was proposed, which could 
solve a class of nonlinear programming problems. The new 
real coded strategy can be used to repair all of the infeasible 
chromosomes by simply sorting and keeping search within the 
feasible region. NRCGA is more accurate than the existing 
methods on equality constraint handling. Many examples show 
that the new algorithm has high search efficiency and strong 
robustness. 

Keywords-genetic algorithm; penalty functions; nonlinear 
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I. INTRODUCTION  
Genetic algorithm (GA), which simulates the evolution 

process of creature, was first introduced by Holland in the 
1970s [1]. Because GA can solve optimization problems in 
which objective function is continuous or discontinuous and 
has inherent parallelism and strong robustness, it is very 
useful to deal with nonlinear programming problem. 
     To avoid the shortcoming of weak local search ability of 
traditional genetic algorithm, many researchers have 
improved the genetic algorithm in the last decade. GA based 
on migration and the artificial selection was proposed by [2], 
which could overcome the premature phenomena of GA. [3] 
proposed a generic parent-centric recombination operator 
(PCX) in order to improve crossover operator. To further 
expand its application scope, PCX was improved by 
reference [4], and based on PCX, [5] designed so-called 
Laplace Crossover. A novel mutation operator based on the 
wavelet was proposed in [6]. [7] introduced a new mutation 
operator called power mutation for real coded genetic 
algorithms (RCGA), which outperformed all other GAs 
considered in his study. To solve constrained optimization 
problems, constraint-handling technique is as significant as 
evolutionary algorithm (including genetic algorithm). 
Penalty function method and multi-objective method are two 
main measures of constraint handling.  
       Because Penalty function method is simple and 
convenient to implement, it is a common constraint-handling 
technique with wide application. For instance, [8] proposed a 
segregated genetic algorithm with two different penalized 
fitness functions, which try to achieve a balance between too 
large and too small punishment. In 2007, a cooperative 
evolutionary algorithm was proposed by reference [9]. In 
[10], a self-adaptive fitness formulation method is presented. 
However, a main limitation of the penalty function methods 

is that most of them require a careful fine-tuning of 
parameters to obtain competitive results. 
       In the last decade, many scholars tried to handle 
constraint with multi-objective method. In [11], Runarsson 
and Yao (RY) introduced a stochastic ranking method to 
achieve a balance between objective function and penalty 
functions stochastically, which was regarded as the most 
classic constraint-handling technique based on evolutionary 
algorithm [12]. In 2005, this algorithm was further improved 
by Runarsson and Yao [13]. In [14], Takahama and Sakai 
proposed a constrained optimization technique by applying 
the α-constrained method to the nonlinear simplex 
optimization (αSimplex). Afterward, Cai and Wang [15] 
proposed CW algorithm in 2006. To handle constraint, these 
multi-objective methods perform better property than 
penalty function methods, but these methods increase 
additional parameters and require fine-tuning these 
parameters carefully. 

  To meet the condition of constraint and avoid adding 
additional parameters, this paper introduced a genetic 
algorithm based on a novel real coding approach (NRCGA). 
This method adopts a new kind of real coding strategies to 
keep all the offspring feasible after selection, crossover, 
mutation, simple sorting, encoding and decoding. The new 
algorithm has significant features. Firstly, the new algorithm 
has no additional parameters and requires encoding and 
decoding. Secondly, it can handle a kind of constraints 
independently and solve complex constrained optimization 
problems combining with other constraint-handling 
techniques. Besides, NRCGA is accurate and just has 
rounding error when it handles equality constraint. 
Moreover, it searches for solutions within feasible region all 
the time, converges to the global optimal solution rapidly 
and has strong robustness. 

II. PROBLEM MODEL  
The first nonlinear programming model is described as: 
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mj,  and n  are all positive integers. +R  indicates 

nonnegative real number set. ijg  is a nonnegative 

continuous function of +R  and the range of its value is 
)],0([ +⊆⊆ RSaS iii . f  is a function of n  variables. 

At least one function of f  and ijg  is nonlinear function. 
      The second nonlinear programming model is described 
as: 
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mj,  and n  are all positive integers. ijg  is a nonnegative 

continuous monotone increasing function of +R  and the 
range of its value is )],0([ +⊆⊆ RSaS iii . f  is a 

function of n  variables. At least one function of f  and 

ijg  is nonlinear function. At least one of ijb  is a finite 
nonnegative real number. 
   The distinction of model (1) and model (2) is that there 

are upperbound-constraint of variables and the requirements 
of ijg ’s monotonicity in model (2), and there are no these 
requirements in model (1). 

III. A GENETIC ALGORITHM BASED ON A NOVEL CODING 
APPROACH (NRCGA) 

A. New Encoding and Decoding 
Encoding: Suppose any feasible solution of model (1) or 

(2) is 

  ),...,,,...,,...,,( 2111211 1 mmkmmk xxxxxxx = ,     

let ),...,,( 21 iikiii xxxx = , in that way 
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),...,,( 21 myyyy =  is model (1) or (2)’s encoding. 

       Remark 1: Because all of ijg  are nonnegative 

functions, we can see iikii ayyy
i

≤≤≤≤≤ ...0 21 . 

Therefore, we need to generate ik  random-uniform 

numbers ranging from 0 to ia  and sorting these numbers 
from small to large order.  
      Decoding: Suppose model (1) or (2)’s chromosome after 
encoding is ),...,,( 21 myyyy = . For any mi ≤≤1 , 
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Then, we can solve n  single-variable equations 

ijijij zxg =)( . It can conclude that 

ijiijij ayyz ≤−=≤ −10  from Remark 1 . Besides, ijg  is 
a nonnegative continuous function of  +R  and the range of 

ijg ’s value is )],0([ +⊆⊆ RSaS iii . Therefore, equation 

ijijij zxg =)(  has at least one nonnegative root *
ijx . Let 

)1(
ij
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chromosome of model (1) after decoding. The chromosome 
of model (2) after decoding is 
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B. Other Operaters of GA 
Population initialization: suppose the size of initial 

population is P . Firstly, for every i , we generate ik  

random-uniform numbers ranging from 0 to ia , sort these 
numbers from small to large order and then get an array 

iy = ),...,,( 21 iikii yyy . Secondly, let 

array [ ]myyyz ,...,, 21= , which is a chromosome of model 
(1) or (2) after encoding. Finally, repeat this process P  
times and you can get P  chromosomes which compose the 
initial population.  
     Fitness function: we just choose objective function as 
fitness function in this paper. 

 Selection, crossover and mutation: offspring is selected 
according to stochastic universal sampling. Hybrid 
crossover operator is adopted, which consists of linear 
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recombination with mutation features and two-point 
crossover. We choose mutbga which is a real value 
variation function from reference [16] for mutation 
function. 

   Repair: First, nP ×  matrix namely P  chromosomes 
are partitioned into m parts and each part is a ikP ×  

( mi ≤≤1 , nk
m

i
i =∑

=1

) submatrix. Then we sort the 

elements of every rows of all of the submatrixes from small 
to large order and then get a new nP ×  matrix namely P  
chromosomes of offspring.  
     Handling equality constraint: 

iiky  is replaced by ia  in 
all of the genetic operations once the i-th inequality 
constraint of model (1) or (2) becomes equality constraint. 

  Remark 2: The algorithms proposed in this paper can 
handle model (1) or model (2) independently. If we add 
even more complex equality constraints or inequality 
constraints to model (1) or model (2), the additional 
constraints could be handle with penalty function method or 
multi-objective method. 

Procedure NRCGA: 
population initialization; 
Setting maximum number of generations is genmax ; 

0=t ; 
while gent max<  do 

selection; 
                crossover; 

mutation; 
repair; 

1+= tt ; 
end. 

IV. NUMERICAL EXPERIMENTS 
NRCGA will be compared with traditional real-coded 

genetic algorithm (RCGA) and standard genetic algorithm 
(SGA) firstly. NRCGA and RCGA adopt the same 
selection, crossover and mutation operators, of which the 
key distinction is population initialization, encoding, 
decoding and fitness function. RCGA generates initial 
population according to traditional method and doesn’t 
require decoding operator. RCGA and SGA add penalty 
function )(xp  to fitness function,  
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),...,,( 21 mcccc = and c  is m  dimension coefficient 
vector. 
      Test problems 1-5 can be solved by the new algorithm 
independently. Table 1 records simulation results of 
problems 1-4 and Table 2 records simulation results of 
problem 5. Problems 1-4 are typical nonlinear programming 

problems from reference [17-19]. Problem 5 is the third 
problem (g03) of 13 well-known benchmark problems (g01-
g13). The remaining 12 benchmark problems can be solved 
by the algorithm combining NRCGA with other constraint-
handling techniques.  

All computational experiments were conducted on a 
notebook HP CQ40-406 with matlab2009. 
      In Table 1, we set three algorithms’ initial population 
size P =100, maximum number of generations G =50, 
genetic generation gap GGAP =0.9, the times of 
independent runs of each algorithm Gtime =10. For 
NRCGA and RCGA, we set probability of linear 
recombination with mutation feature 8.01 =p , two-point 
crossover probability 3.02 =p , mutation probability 

05.03 =p . For SGA, we set crossover probability 
8.04 =p , mutation probability 01.05 =p . Penalty 

coefficients c  of RCGA and SGA for problems 1-4 are set 
by a careful fine-tuning. 
     Because the constraints of problems 1-4 are very simple, 
extra computation time of decoding and repair operator of 
NRCGA is relatively small when it is compared with the 
entire runtime of the algorithm. Similarly, computation cost 
of penalty term of RCGA and SGA is also very small. 
Consequently, the computational complexity of these three 
algorithms is very nearly the same. The number of 
evaluations of the objective function for these three 
algorithms is all 5000. 
      Table 1 shows velocity of convergence of NRCGA is 
much faster than that of RCGA and SGA. Compared with 
RCGA and SGA, NRCGA remarkably outperforms them in 
terms of the best, mean, and worst objective function values 
and the standard deviations. In addition, NRCGA can find 
all of the global optimal solutions of problems 1-4, but 
RCGA and SGA can’t. 
Problem 1 [17] 
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The global minimum is =*x (4/3, 7/9, 4/9), where 
*( )f x =1/9 and 2=c . 

Problem 2 [18] 

0,,
132..

)(max

321

2
3

2
2

2
1

321

≥
≤++

++=

xxx
xxxts

xxxxf
 

The global maximum is =*x (0.63409848, 0.39945701, 
0.30484275), where *( )f x =  1.98045479 and 10−=c . 

Problem 3 [19] 
2 2

1 1 2 2max ( ) 5 8 2f x x x x x= − + −  
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The global maximum is )5.1,1(* =x ， where 
*( ) 11.5f x =  and 20−=c . 

Problem 4 [19] 
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The global maximum is =*x (0, 0, 0, 0.25, 0.25, 0.25, 
0.25, 0, 0, 0), where *( )f x =  0.375 and 10−=c . 
Problem 5 [11] 
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where 10=n . The global minimum is at 
( )ninxi ,...,2,1/1* == , where *( ) 1f x = . 

 

Table.1   Computational results of problem 1-4 
 Problem 1[17] Problem 2[18] Problem 3[19] Problem 4[19] 

optimal 0.111111 1.980455 11.5000 0.3750 

 
 

SGA 

best 0.111151 1.979552 11.4996 0.2902 

mean 0.113536 1.977024 11.4585 0.2587 

worst 0.116891 1.971903 11.2411 0.2254 

St.dev 2.4e-3 2.3e-3 7.7e-2 2.0e-2 

 
 

RCGA 

best 0.111135 1.979214 11.4989 0.3663 

mean 0.111698 1.975347 11.4802 0.3314 

worst 0.113514 1.962437 11.4344 0.2962 

St.dev 6.9e-4 5.0e-3 2.2e-2 2.2e-2 

 
 

NRCGA 

best 0.111111 1.980455 11.5000 0.3750 

mean 0.111111 1.980450 11.5000 0.3747 

worst 0.111111 1.980439 11.5000 0.3737 

St.dev 7.2e-9 5.8e-6 2.4e-7 3.7e-4 

 
Table.2   Computational results of problem 5 

 SAFF[10] RY[11] IRY[13] αSimplex[14] CW[15] NRCGA NRCGA2 
best -1.000 -1.000 -1.001 -1.001 -1.000 -1.000 -1.000 

mean -1.000 -1.000 -1.001 -1.001 -1.000 -1.000 -1.000 
worst -1.000 -1.000 -1.001 -1.001 -1.000 -1.000 -1.000 
St.dev 7.5e-5 1.9e-4 6.0e-9 8.5e-14 2.8e-16 5.3e-11 2.9e-16 

δ   Y Y Y Y N N N 
Max_FES 1400000 350000 350000 330000 350000 350000 50000 

 
NRCGA2 has evolved from NRCGA and is almost the 

same as NRCGA. The key distinction between NRCGA2 
and NRCGA is their crossover operator and repair operator. 
The initial population of NRCGA2 is the decoding of the 
initial population of NRCGA. With regard to crossover 
operator, NRCGA2 only adopt intermediate recombination. 
Repair operator of NRCGA2 is divided into two steps. The 

first step is to take absolute value of corresponding real 
number of each chromosome genes. The second step is to 
get unit vector of the corresponding real vector of each 
chromosome. 
     In table 2, for NRCGA, we set initial population size 
P =100, maximum number of generations G =3500, 
genetic generation gap GGAP =0.9, times of independent 
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runs of the algorithm Gtime =30, probability of linear 
recombination with mutation feature 8.01 =p , two-point 
crossover probability 3.02 =p , mutation probability 

05.03 =p . For NRCGA2, we set initial population size 
P =100, maximum number of generations G =500, 
genetic generation gap GGAP =0.9, times of independent 
runs of the algorithm Gtime =30, probability of 
intermediate recombination 8.01 =p , mutation 
probability 05.03 =p . From the sixth row in Table 2, 
‘Y’ means that it needs δ  and ‘N’ means that it doesn’t 
need δ . If parameter δ  is added, equality constraints have 
been converted into inequality constraints, such as 

( ) δ≤xh1 , using the degree of violation 0001.0=δ . 
Missing parameter δ  means that the algorithm just has 
rounding error when it handles equality constraint. 
‘Max_FES’ signifies the maximum number of function 
evaluations for problem 5.  
      The sixth row in Table 2 shows that CW, NRCGA and 
NRCGA2 needn’t use parameter δ  and almost have no 
constraint violation, while the remaining four algorithms’ 
constraint error are all 0.0001. The second, third and fourth 
rows in Table 2 suggest that IRY andαSimplex can find 
the optimal solution (not global optimal solution) with the 
degree of constraint violation 0001.0=δ , but the 
remaining five algorithms can reach the global optimal 
solution in theory accurately. From line 7 in Table 2, we can 
see that NRCGA2 has minimum computational cost, but 
SAFF has maximum computational cost. From line 5 in 
Table 2, it is obvious that NRCGA2 and CW have strongest 
robustness because of their minimum standard deviation. 
NRCGA has stronger robustness than SAFF, RY and IRY. 
From references [10-15], RY, IRY, αSimplex and CW are 
all algorithms requiring several additional parameters, while 
SAFF, NRCGA and NRCGA2 don’t need additional 
parameters. In a word, for problem 5, NRCGA2 is the best 
algorithm, NRCGA and CW are second. 

V. CONCLUSIONS 
A genetic algorithm based on a new real coding 

approach (NRCGA) was proposed in this paper. As solving 
model (1) or model (2), it has high search efficiency and 
strong robustness, and keeps searching within the feasible 
region and doesn't need additional parameters. If we add 
even more complex equality constraints or inequality 
constraints to model (1) or model (2), the additional 
constraints can be handled with penalty function method or 
multi-objective method. So the new algorithm can be 
considered as an efficient auxiliary algorithm of penalty 
function method or multi-objective method for constrained 
optimization problems. 
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