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Abstract 
 

In this paper, a novel genetic programming named 
linear genetic programming with reusable gene (LGPRG) 
has been proposed. This new method absorbed the merits 
of many other linear genetic programming. It codes with a 
simple, nearly unrestrained string. Based on its character 
of reused, more expressions could be contained in one 
chromosome without the increase of computation task. 
Further more, the expression segments in a chromosome 
are always integrated. This method is proved to be 
effective and stable from the complexity analysis and 
experiment. 
 
1. Introduction 
 

After the birth of human beings, modeling has become 
an indispensable tools for people to explore the world. 
However, it is still too hard to handle modeling for 
complex problem. In 1990, J.Koza proposed genetic 
programming (GP) [1,2,3], a significant branch of 
evolutionary computation, inspired by biological 
evolution to find computer programs that perform a user-
defined task. Based on genetic programming, evolutionary 
modeling could easily evolve an expectant expression 
model by tree structure chromosome. Many applications 
have already proved its validity. But some times, tree 
structure is hard to control the illegal expressions which 
can be produced in any step of evolution. 

After 2000, many new genetic programming methods 
have been proposed especially for various linear genetic 
programming [4,5]. Ferreira proposed a linear gene 
expression programming (GEP) [6,7,8] in 2001. She took 
string structure chromosome instead of former tree 
structure to store expression. Although there are still some 
restrains for the string’s validity, it makes the expression 
simpler and its efficiency has also improved in some 
levels. In the year of 2003, M.Oltean proposed another 
linear genetic programming called multi expression 
programming (MEP) [9~13]. He introduced the conception 
of reused gene into chromosome, so more expressions can 

be contained in one chromosome without the increase of   
the computation task. Though more expressions are 
included in one chromosome, many of the expressions 
maybe short. In another words, longer expression are not 
easy to appear in one chromosome. Because the addresses 
of operation are hard to stay in a stage that makes the 
expression longer. Recently, a Chinese researcher Peng 
proposed multi-gene evolutionary algorithm based on 
overlapped expression (MEOE) [14]. Illegal chromosome 
disappeared in this linear genetic programming and it has 
reused character in some degree.  

Efficiency and results of genetic programming can be 
affected by many factors such as coding structure, genetic 
operation, parameter setting and so on. This paper mainly 
discussed  the coding factor for genetic programming. A 
new algorithm absorbed the merits of other genetic 
programmings are described. The new method presents a 
simple coding pattern and strong reused character. Further 
more, it is good at present long expression. 

In part 2, the new algorithm LGPRG is described in 
details from coding method, genetic operation, selection 
strategy and so on.. In part 3, experiment is given firstly. 
The following is quality and quantity analyzing for 
LGPRG and other algorithm. In part 4, conclusion and 
future expectation are described. 
 
2. Linear Genetic Programming with 
Reusable Gene  

 
2.1. Code Designing 
 

Efficiency and stability of genetic algorithm can be 
affected by the structures and decoding manner. Like the 
structure of GEP and MEOE, LGPRG also takes linear 
string to encode the expression, but the distinct decoding 
way makes algorithm different from others. 

Definition of the LGPRG chromosome coding can be 
described as follows: genes of chromosome are 
constituted by constant, variable and operator; assuming 
that the highest argument of the operators is n, the last 
genes in chromosome of size n should be variable or 
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constant. They should never change into operator during 
the evolution process; each gene stands for an expression 
in chromosome. Fig.1shows a example chromosome.  

 
Figure 1 A chromosome 

 
Define the chromosome decoding as following: decode 

the chromosome form the bottom to the top; if the gene is 
constant or variable, decode the gene as the same. If the 
gene is operator, its operation numbers are the former 
decoding genes next to its position. Fig.2 is the 
expressions according to each gene in Fig.1. Genes are in 
the left column, expressions are in the right column. 

 
chromosome expression 

* (a+(b-(a/b+a)}/b)*a 
+ a+(b-(a/b+a)}/b 
a a 
/ (b-(a/b+a)}/b 
- b-(a/b+a) 
b b 
+ a/b+a 
/ a/b 
a a 
b b 

Figure 2 Genes in chromosome and their expressions  
 
When coding the chromosome, the last n genes should 

be terminals such as constants or variables. It is sufficient 
but not necessary. The main purpose for this restrain is to 
keep the validity for chromosome. For instance, if the last 
gene is “+”, it will have no operation number for its last 
position. There is no other restrict for this coding method. 

While decoding the chromosome, direction should be 
confirmed. We set the direction from the bottom to the 
top.   For the last gene “b” in fig.2, its expression is “b”. 
For the upper gene “a” in fig.2, its expression is “a”. For 
the last third gene “/” in fig.2, its operation number is “a” 
and “b” just mentioned, which is next to it. Its expression 
is “a/b”. Further more, the last fourth gene “+” stands an 
expression “a/b+b”. Its operation numbers are last third 
gene “/”and last second gene “a”. Because the expression 
of gene “/” is “a/b”, the expression for gene “+” is 
“a/b+b”. The other gene’s expressions are also translated 
by this way. It can be proved that all functions can be 
expressed by this way.   

 
2.2. Recombination Designing 

 
New algorithm’s recombination designing is similar to 

genetic algorithm. There are many types of recombination 
such as one point recombination, two point recombination 
and so on. 

 
2.3. Mutation Designing 

 
There are many types of mutation such as one point 

mutation, two point mutation and so on. Assuming that 
the highest argument of the operators is n, to keep 
chromosome legal, the last n genes should not be changed. 

 
2.4. Transposition Designing 
 

Transposition means a part of the chromosome moved 
to another part of the same chromosome. There are many 
kinds of transposition operation for linear genetic 
programming with reusable gene. We can take reference 
from gene expression programming.  

 
2.5. Algorithm Flow 

 
LGPRG algorithm’s flow can be described in fig.3 like 

the traditional genetic algorithm. 
 
ALOGRITHM 
begin 
 t:=0; 
 initialize P(t); 
 P(t) = {x1(t), x2(t),…, xn(t)} 
 evaluate(t); 
 F (P(t)) = {F (x1(t)), F (x2(t)),…, F (xn(t))} 
 while (not termination condition) do 
  Pr(t) = recombination {P(t)}; 
  Pm(t)=mutation {Pr(t)}; 
  Pn(t)=transposition {Pm(t)}; 
  evaluate [Pn(t)]; 
  P(t+1) = select [Pn(t)]; 
  t:=t+1 
 print xbest, F (xbest); 
end 

Figure 3 Algorithm of LGPRG 
 

3. Experiment 
 
3.1. Success Rate Comparing Experiment o f 
Simple Function Finding 

 
Taking xxxxxy ++++= 1234 as the 

experimental function. We give a comparison experiment 
between several linear genetic programming – GEP, MEP, 
MEOE and LGPRG.  

 Data sets are in table 1, Considering that different 
algorithms need different parameter setting, we give the 
setting as table 2 to assure they can perform the best in 
each running. 

Table 1  Data sets 
x y 

2.81 95.2425 
6 1554 

7.043 2866.55 
8 4680 

*+a/-b+/ab 
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10 11110 
11.38 18386 

12 22620 
14 41370 
15 54240 
20 168420 

 
Table 2  Parameter setting 

Parameter name GEP MEP MEOE LGPRG 

Operator set + , - , * , 
/ 

+ , - , * , 
/ 

+ , - , * , 
/ 

+ , - , * , 
/ 

Terminal Set a a a a 

Length of  
chromosome 20 20 20 20 

Population size 50 50 50 50 

Recombination 
probability 0.66 0.70 0.70 0.70 

Mutation  
probability 0.044 0.10 0.10 0.10 

Transposition 
probability 0.10 0.10 0.10 0.10 

Generation for 
each run 50 50 50 50 

Runtimes 100,000 100,000 100,000 100,000 
Table 3 is the success rate of each algorithm. From the 

table, linear genetic programming with reusable gene 
performs well in stability. 

Table 3  Success Rate 
Algorithm 
Name Success Rate 

GEP 96.9% 
MEP 97.3% 

MEOE 95.4% 

LGPRG 97.0% 

 
3.2. Searching Efficiency Comparing Experiment 
o f Complex Function Finding 

 
The test function is 0010 ))log(tan( xxxxy ++= . 

We also give a comparison experiment between several 
linear genetic programmings as GEP, MEP, MEOE and 
LGPRG. The parameter setting is in table 4. The dataset is 
randomly selected in condition ]30,0[, 10 ∈xx . The 
number of sample data is 10. 

Table 4 Parameter setting 

Parameter name GEP MEP MEOE LGPRG 

Operator set + , - , * , 
/,tan,log 

+ , - , * , 
/,tan,log 

+ , - , * , 
/,tan,log 

+ , - , * , 
/,tan,log 

Terminal Set x0, x1 x0, x1 x0, x1 x0, x1 

Length of 
chromosome 20 20 20 20 

Population size 50 50 50 50 

Recombination 
probability 0.66 0.70 0.70 0.70 

Mutation 
probability 0.044 0.10 0.10 0.10 

Transposition 
probability 0.10 0.10 0.10 0.10 

Generation 1000 1000 1000 1000 

Fig.4 is the absolute error of each algorithm in 
different generation. From the figure, we can see that 
LGPRG is effective. Considering the effect of probability, 
we do several repeated experiment of above. The 
performance is nearly same. LGPRP still performs best in 
the above algorithms. 
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Figure 4 Absolute error in each generation 

 
3.3. Quality Analyzing for LGPRG and Other 
Linear Genetic Programming 

 
The obvious merit of genetic programming is the clear 

structure of the expression which has been presented. One 
expression could be presented to a multi layer tree. But 
genetic programming of tree structure is not convenient to 
store. During the process of evolution, illegal tree may 
always occur in initial step, recombination step and 
mutation step.  

Gene expression programming, which is a classic 
linear genetic programming, performs better than tree 
based genetic programming. Comparing GEP to GP, GEP 
take a simple coding method, which just use a simple 
string. GEP’s efficiency is usually higher than GP’s. But 
GEP still has some unfriendly character. First, there is a 
strong restrict for legal chromosome that chromosome 
should be divided into two part and operators can not exist 
in the tail part. Second, we can not get the fitness directly 
form the tree, it is necessary to change the tree to other 
structure. Third, genes in chromosome have not been 
reused in chromosome. If the first gene in GEP is a 
terminal, the expression of the chromosome is the 
terminal. The other genes in chromosome will have no 
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sense. In fact, the other genes still could be used to extend 
the presentation ability of chromosome.  

Multi expression programming, a highly reusable 
algorithm, could contain more expressions in a 
chromosome, but its computation task will not increase. 
Further more, it is unnecessary to change its string 
structure to other when computing the fitness. However, 
the expressions in multi expression programming are easy 
to be short in chromosome especially during the initial 
period. 

MEOE, a novel simple linear genetic programming, 
has reused character in some degree. A gene in MEOE 
could reuse its neighborhoods. 

LGPRG absorbs the merits of other linear genetic 
programmings while abandoning the shortcomings. It 
codes simply nearly without restrict. It takes has highly 
reused character than GEP and MEOE. Comparing to 
MEP, it could contain more completely expression.  But a 
chromosome in MEOE could only stand for an expression, 
some of gene nodes may be wasted for this restriction. 

 
3.4. Quantity Analyzing for New Algorithm and 
Other Linear Genetic Programming 
 

Considering from the expressing ability, we give the 
comparing result in table 5. Assuming there are n genes in 
a chromosome. 

Table 5 Ability of Expression for Chromosome 
Algorithm 
Name 

Number of 
expressions 

Number of 
fitness computation 

GEP 1 1 

MEP n 1 

MEOE 1 1 

LGPRG n 1 

An expression tree of genetic programming can be 
seen as a chromosome here. Genetic programming 
contains one expression in a chromosome. Gene 
expression programm-ing contains one expression in a 
chromosome. Multi ex-pression contains n expression in a 
chromosome. Multi-gene evolutionary algorithm contains 
one expression in a chromosome. The new algorithm in 
this paper contains n expression in a chromosome. 

 
4. Conclusion 
 

This paper proposed a novel reused linear genetic 
programming – LGPRU, which absorbed merits of other 
algorithm. Experiment and complex indicate that the new 
algorithm is stable and effective. However, genetic 
programming is not be influenced just by coding method. 
Many other aspects, such as designing of genetic 
operation, parameter setting and so on, are all the 
influencing factors for genetic programming. The 

algorithm will perform best just when all aspects 
cooperate well. 
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