
A Linear Genetic Programming with Reusable Gene

Zongyue Wang 1,2, Hongchao Ma 2
1School of Computer Engineering College,

Jimei University, Xiamen, Fujian 361021 P.R.China
2 School of Remote Sensing & Information Engineering,

Wuhan University, Wuhan, Hubei 430079 P.R.China
wangzongyue1979@163.com, hchma@whu.edu.cn

Abstract

In this paper, a novel genetic programming named
linear genetic programming with reusable gene (LGPRG)
has been proposed. This new method absorbed the merits
of many other linear genetic programming. It codes with a
simple, nearly unrestrained string. Based on its character
of reused, more expressions could be contained in one
chromosome without the increase of computation task.
Further more, the expression segments in a chromosome
are always integrated. This method is proved to be
effective and stable from the complexity analysis and
experiment.

1. Introduction

After the birth of human beings, modeling has become
an indispensable tools for people to explore the world.
However, it is still too hard to handle modeling for
complex problem. In 1990, J.Koza proposed genetic
programming (GP) [1,2,3], a significant branch of
evolutionary computation, inspired by biological
evolution to find computer programs that perform a user-
defined task. Based on genetic programming, evolutionary
modeling could easily evolve an expectant expression
model by tree structure chromosome. Many applications
have already proved its validity. But some times, tree
structure is hard to control the illegal expressions which
can be produced in any step of evolution.

After 2000, many new genetic programming methods
have been proposed especially for various linear genetic
programming [4,5]. Ferreira proposed a linear gene
expression programming (GEP) [6,7,8] in 2001. She took
string structure chromosome instead of former tree
structure to store expression. Although there are still some
restrains for the string’s validity, it makes the expression
simpler and its efficiency has also improved in some
levels. In the year of 2003, M.Oltean proposed another
linear genetic programming called multi expression
programming (MEP) [9~13]. He introduced the conception
of reused gene into chromosome, so more expressions can

be contained in one chromosome without the increase of
the computation task. Though more expressions are
included in one chromosome, many of the expressions
maybe short. In another words, longer expression are not
easy to appear in one chromosome. Because the addresses
of operation are hard to stay in a stage that makes the
expression longer. Recently, a Chinese researcher Peng
proposed multi-gene evolutionary algorithm based on
overlapped expression (MEOE) [14]. Illegal chromosome
disappeared in this linear genetic programming and it has
reused character in some degree.

Efficiency and results of genetic programming can be
affected by many factors such as coding structure, genetic
operation, parameter setting and so on. This paper mainly
discussed the coding factor for genetic programming. A
new algorithm absorbed the merits of other genetic
programmings are described. The new method presents a
simple coding pattern and strong reused character. Further
more, it is good at present long expression.

In part 2, the new algorithm LGPRG is described in
details from coding method, genetic operation, selection
strategy and so on.. In part 3, experiment is given firstly.
The following is quality and quantity analyzing for
LGPRG and other algorithm. In part 4, conclusion and
future expectation are described.

2. Linear Genetic Programming with
Reusable Gene

2.1. Code Designing

Efficiency and stability of genetic algorithm can be
affected by the structures and decoding manner. Like the
structure of GEP and MEOE, LGPRG also takes linear
string to encode the expression, but the distinct decoding
way makes algorithm different from others.

Definition of the LGPRG chromosome coding can be
described as follows: genes of chromosome are
constituted by constant, variable and operator; assuming
that the highest argument of the operators is n, the last
genes in chromosome of size n should be variable or

International Symposium on Intelligent Information Technology Application Workshops

978-0-7695-3505-0/08 $25.00 © 2008 IEEE

DOI 10.1109/IITA.Workshops.2008.184

328

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:48:32 UTC from IEEE Xplore. Restrictions apply.

constant. They should never change into operator during
the evolution process; each gene stands for an expression
in chromosome. Fig.1shows a example chromosome.

Figure 1 A chromosome

Define the chromosome decoding as following: decode

the chromosome form the bottom to the top; if the gene is
constant or variable, decode the gene as the same. If the
gene is operator, its operation numbers are the former
decoding genes next to its position. Fig.2 is the
expressions according to each gene in Fig.1. Genes are in
the left column, expressions are in the right column.

chromosome expression

* (a+(b-(a/b+a)}/b)*a
+ a+(b-(a/b+a)}/b
a a
/ (b-(a/b+a)}/b
- b-(a/b+a)
b b
+ a/b+a
/ a/b
a a
b b

Figure 2 Genes in chromosome and their expressions

When coding the chromosome, the last n genes should

be terminals such as constants or variables. It is sufficient
but not necessary. The main purpose for this restrain is to
keep the validity for chromosome. For instance, if the last
gene is “+”, it will have no operation number for its last
position. There is no other restrict for this coding method.

While decoding the chromosome, direction should be
confirmed. We set the direction from the bottom to the
top. For the last gene “b” in fig.2, its expression is “b”.
For the upper gene “a” in fig.2, its expression is “a”. For
the last third gene “/” in fig.2, its operation number is “a”
and “b” just mentioned, which is next to it. Its expression
is “a/b”. Further more, the last fourth gene “+” stands an
expression “a/b+b”. Its operation numbers are last third
gene “/”and last second gene “a”. Because the expression
of gene “/” is “a/b”, the expression for gene “+” is
“a/b+b”. The other gene’s expressions are also translated
by this way. It can be proved that all functions can be
expressed by this way.

2.2. Recombination Designing

New algorithm’s recombination designing is similar to

genetic algorithm. There are many types of recombination
such as one point recombination, two point recombination
and so on.

2.3. Mutation Designing

There are many types of mutation such as one point

mutation, two point mutation and so on. Assuming that
the highest argument of the operators is n, to keep
chromosome legal, the last n genes should not be changed.

2.4. Transposition Designing

Transposition means a part of the chromosome moved
to another part of the same chromosome. There are many
kinds of transposition operation for linear genetic
programming with reusable gene. We can take reference
from gene expression programming.

2.5. Algorithm Flow

LGPRG algorithm’s flow can be described in fig.3 like

the traditional genetic algorithm.

ALOGRITHM
begin
 t:=0;
 initialize P(t);
 P(t) = {x1(t), x2(t),…, xn(t)}
 evaluate(t);
 F (P(t)) = {F (x1(t)), F (x2(t)),…, F (xn(t))}
 while (not termination condition) do
 Pr(t) = recombination {P(t)};
 Pm(t)=mutation {Pr(t)};
 Pn(t)=transposition {Pm(t)};
 evaluate [Pn(t)];
 P(t+1) = select [Pn(t)];
 t:=t+1
 print xbest, F (xbest);
end

Figure 3 Algorithm of LGPRG

3. Experiment

3.1. Success Rate Comparing Experiment o f
Simple Function Finding

Taking xxxxxy ++++= 1234 as the

experimental function. We give a comparison experiment
between several linear genetic programming – GEP, MEP,
MEOE and LGPRG.

 Data sets are in table 1, Considering that different
algorithms need different parameter setting, we give the
setting as table 2 to assure they can perform the best in
each running.

Table 1 Data sets
x y

2.81 95.2425
6 1554

7.043 2866.55
8 4680

*+a/-b+/ab

329

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:48:32 UTC from IEEE Xplore. Restrictions apply.

10 11110
11.38 18386

12 22620
14 41370
15 54240
20 168420

Table 2 Parameter setting

Parameter name GEP MEP MEOE LGPRG

Operator set + , - , * ,
/

+ , - , * ,
/

+ , - , * ,
/

+ , - , * ,
/

Terminal Set a a a a

Length of
chromosome 20 20 20 20

Population size 50 50 50 50

Recombination
probability 0.66 0.70 0.70 0.70

Mutation
probability 0.044 0.10 0.10 0.10

Transposition
probability 0.10 0.10 0.10 0.10

Generation for
each run 50 50 50 50

Runtimes 100,000 100,000 100,000 100,000
Table 3 is the success rate of each algorithm. From the

table, linear genetic programming with reusable gene
performs well in stability.

Table 3 Success Rate
Algorithm
Name Success Rate

GEP 96.9%
MEP 97.3%

MEOE 95.4%

LGPRG 97.0%

3.2. Searching Efficiency Comparing Experiment
o f Complex Function Finding

The test function is 0010))log(tan(xxxxy ++= .

We also give a comparison experiment between several
linear genetic programmings as GEP, MEP, MEOE and
LGPRG. The parameter setting is in table 4. The dataset is
randomly selected in condition]30,0[, 10 ∈xx . The
number of sample data is 10.

Table 4 Parameter setting

Parameter name GEP MEP MEOE LGPRG

Operator set + , - , * ,
/,tan,log

+ , - , * ,
/,tan,log

+ , - , * ,
/,tan,log

+ , - , * ,
/,tan,log

Terminal Set x0, x1 x0, x1 x0, x1 x0, x1

Length of
chromosome 20 20 20 20

Population size 50 50 50 50

Recombination
probability 0.66 0.70 0.70 0.70

Mutation
probability 0.044 0.10 0.10 0.10

Transposition
probability 0.10 0.10 0.10 0.10

Generation 1000 1000 1000 1000

Fig.4 is the absolute error of each algorithm in
different generation. From the figure, we can see that
LGPRG is effective. Considering the effect of probability,
we do several repeated experiment of above. The
performance is nearly same. LGPRP still performs best in
the above algorithms.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

Generation

A
bs

ol
ut

e
er

ro
r

Absolute error in generations

GEP
MEP
MEOE
LGPRG

Figure 4 Absolute error in each generation

3.3. Quality Analyzing for LGPRG and Other
Linear Genetic Programming

The obvious merit of genetic programming is the clear

structure of the expression which has been presented. One
expression could be presented to a multi layer tree. But
genetic programming of tree structure is not convenient to
store. During the process of evolution, illegal tree may
always occur in initial step, recombination step and
mutation step.

Gene expression programming, which is a classic
linear genetic programming, performs better than tree
based genetic programming. Comparing GEP to GP, GEP
take a simple coding method, which just use a simple
string. GEP’s efficiency is usually higher than GP’s. But
GEP still has some unfriendly character. First, there is a
strong restrict for legal chromosome that chromosome
should be divided into two part and operators can not exist
in the tail part. Second, we can not get the fitness directly
form the tree, it is necessary to change the tree to other
structure. Third, genes in chromosome have not been
reused in chromosome. If the first gene in GEP is a
terminal, the expression of the chromosome is the
terminal. The other genes in chromosome will have no

330

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:48:32 UTC from IEEE Xplore. Restrictions apply.

sense. In fact, the other genes still could be used to extend
the presentation ability of chromosome.

Multi expression programming, a highly reusable
algorithm, could contain more expressions in a
chromosome, but its computation task will not increase.
Further more, it is unnecessary to change its string
structure to other when computing the fitness. However,
the expressions in multi expression programming are easy
to be short in chromosome especially during the initial
period.

MEOE, a novel simple linear genetic programming,
has reused character in some degree. A gene in MEOE
could reuse its neighborhoods.

LGPRG absorbs the merits of other linear genetic
programmings while abandoning the shortcomings. It
codes simply nearly without restrict. It takes has highly
reused character than GEP and MEOE. Comparing to
MEP, it could contain more completely expression. But a
chromosome in MEOE could only stand for an expression,
some of gene nodes may be wasted for this restriction.

3.4. Quantity Analyzing for New Algorithm and
Other Linear Genetic Programming

Considering from the expressing ability, we give the
comparing result in table 5. Assuming there are n genes in
a chromosome.

Table 5 Ability of Expression for Chromosome
Algorithm
Name

Number of
expressions

Number of
fitness computation

GEP 1 1

MEP n 1

MEOE 1 1

LGPRG n 1

An expression tree of genetic programming can be
seen as a chromosome here. Genetic programming
contains one expression in a chromosome. Gene
expression programm-ing contains one expression in a
chromosome. Multi ex-pression contains n expression in a
chromosome. Multi-gene evolutionary algorithm contains
one expression in a chromosome. The new algorithm in
this paper contains n expression in a chromosome.

4. Conclusion

This paper proposed a novel reused linear genetic
programming – LGPRU, which absorbed merits of other
algorithm. Experiment and complex indicate that the new
algorithm is stable and effective. However, genetic
programming is not be influenced just by coding method.
Many other aspects, such as designing of genetic
operation, parameter setting and so on, are all the
influencing factors for genetic programming. The

algorithm will perform best just when all aspects
cooperate well.

Acknowledgement

This project is supported by Ministry of Education of
the People’s Republic of China (Project
No.A1420060213).

References

[1] J.Koza, Genetic programmingⅠ,The MIT Press,1992.
[2] J.Koza, Genetic programmingⅡ,The MIT Press,1994.
[3] J.Koza, Genetic programmingⅢ,The MIT Press,1999.
[4] Ryan C,Collins JJ, O'Neill M (1998). “Grammatical

evolution: Evolving programs for an arbitrary language”.
Proceedings of the First European Work- Shop on Genetic
Programming. Springer-Verlag, pp.83-95.

[5] Brameier M, Banzhaf W (2001). “A comparison of linear
genetic programming and neural networks in medical data
mining”. IEEE Transactions on Evolutionary Computation.
No. 5, pp.17-26.

[6] Ferreira C. (2001). “Gene expression programming: a new
adaptive algorithm for solving problems”. Complex
Systems. Vol . 13, No.2, pp.87-129.

[7] Ferreira C. (2002). “Gene expression programming:
Mathematical Modeling by an Artificial Intelligence”.
Angra do Heroismo, Portugal.

[8] Ferreira C.(2006). “Gene expression programming:
Mathematical modeling by an Artificial Intelligence”. 2nd
Edition, Springer-Verlag, Germany.

[9] Oltean Mihai, D. Dumitrescu (2002). “Multi expression
programming”. technical-report.

[10] Oltean Mihai, Grosan C.(2003). “A Comparison of Several
Linear Genetic Programming Techniques”. Complex-
Systems. Vol. 14, No. 4, pp. 285-313.

[11] Mihai Oltean, Crina Grosan, Mihaela Oltean (2004).
“Encoding Multiple Solutions in a Linear Genetic
Programming Chromosome”. In Marian Bubak and Geert
Dick van Albada and Peter M. A. Sloot and Jack Dongarra
editors, Computational Science - ICCS 2004: 4th
International Conference, Part III, volume 3038, pages
1281-1288, Krakow, Poland, 2004.

[12] Oltean Mihai, Grosan C. (2003). “Evolving Evolutionary
Algorithms using Multi Expression Programming”. The 7th
European Conference on Artificial Life, September 14-17,
2003, Dortmund, Edited by W. Banzhaf (et al), LNAI
2801, pp. 651-658, Springer-Verlag, Berlin, 2003.

[13] Grosan C, Abraham (2005). “Multi-expression
programming for intrusion detection system”. International
Work-conference on the Interplay between Natural and
Artificial Computation. Span: J. Mira and J.R. Alvarez
(Eds.),pp.163-172.

[14] Jing Peng, Changjie Tang, Changan Yuan (2007). “Multi-
gene evolutionary algorithm based on overlapped
expression”. Journal of computer (in Chinese).Vol 25 No
12,pp.775-785

331

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:48:32 UTC from IEEE Xplore. Restrictions apply.

