
A Method for Generating Mazes with Length Constraint
using Genetic Programming

Kiotaka Okano
Iwate University

Iwate, Japan
Email: tongari1123@outlook.jp

Katsutsugu Matsuyama
Iwate University

Iwate, Japan
Email: m18u@iwate-u.ac.jp

Abstract—We examine a method to automatically generate
mazes with length constraint. Assuming that the user creates
a text including branches, our prototype arranges the input
text on a maze space. In this study, we employ genetic
programming and define commands to structure our maze
generation program. We implemented our program, and as
a result, we were able to generate the desired maze for simple
input text.

Keywords-maze generation; genetic programming; text ar-
rangement;

I. INTRODUCTION

A mazes is a game or puzzle that aims to reach a goal
through complicated paths such as bending and branching.
Algorithms for generating mazes have been studied for a
long time, and there are many maze generation algorithms
[1]. There are some research focusing on adding secondary
functions to mazes. For example, Xu and Kaplan proposed
a method that generates mazes resemble to the input image
[2].

OHANASHI MEIRO (Story Maze series) created by
Akira Sugiyama [3] is one of mazes with secondary func-
tions. In Story Maze series, one letter is assigned to one
cell and the player follows the letters and proceeds through
the maze while reading the text. Fig. 1 shows an example
of Story Maze generated by our method. When the player
reaches the goal, one (main) story, such as a fairy tale, is
completed. At a location where the passage branches, a story
branch also occurs. That is, when the player reaches a dead
end other than the goal, a story different from the main story
is completed.

This study examines a method to support the creation of
story mazes. Assuming that the user creates a ”text tree”
including ”story branches”, we examine a prototype of a
system that arranges the input text tree on a maze. If we
focus on arranging the input text tree on a maze without
considering its story, this corresponds that the maze creator
specifies the passage lengths of the maze. In this paper, we
consider a method for automatically generating mazes with
length constraint.

Figure 1: an example of Story Maze generated by our method

II. RELATED WORKS

Algorithms for generating mazes using computers have
been studied for a long time, and there are many maze gen-
eration algorithms [1]. There are some researches focusing
on adding secondary functions to mazes, including methods
to generate a maze similar to the input image [2, 4], a maze
in which the shape of the solution is similar to the input
image [5], and a maze having the above two features [6].

There are several maze generation methods that consider
difficulty [7], and some of them takes into account the length
of the maze [8]. [8] introduces the length of passages and the
number of dead ends to the fitness function of the Genetic
Algorithm. However, the purpose of [8] is to generate a maze
according to the degree of difficulty, and it is not possible to
generate a maze with the target lengths. We could not find
methods that generate a maze considering length constraint,
which is the purpose of our study.

III. BASICS OF MAZE GENERATION

This section describes the basic maze generation methods.
Data structures and terms used for maze generation are also
described. For more details, see [1, 2].

For simplicity, we assume that the walls of a maze are
in a planar grid (Fig. 2 (left)). The planar grid is called a
”grid”, and the rectangular surfaces constituting the grid is

39

2020 Nicograph International (NicoInt)

978-1-7281-8771-6/20/$31.00 ©2020 IEEE
DOI 10.1109/NicoInt50878.2020.00014

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:05 UTC from IEEE Xplore. Restrictions apply.

called a ”cells”. A combination of multiple cells that do not
share a wall is called a ”passage”. Many maze generation
methods create passages by repeatedly erasing walls.

Introducing a cell graph, some of maze generation studies
reduce their problem into graph theory. Fig. 2 (right) shows
an example of a cell graph. Each node is corresponding to
one cell. If there is no wall between cells, the corresponding
cell graph nodes are connected.

A maze containing no cycles is called ”perfect”. An
example maze in Fig. 2 is also perfect.

Figure 2: data structure of mazes

IV. OUR METHOD

In this study, we consider a method for automatically
generating mazes with length constraint such as Story Maze
series. Our system proposed in this paper consists of: (1)
representation of a text tree which includes story branches,
and (2) generating mazes. Details of them are described in
the following sections. In this study, we assume the maze is
in a planar grid.

A. Representation and structuring of story branches

In this study, we introduce a tag < split >< /split > to
indicate branch parts in text. The text below is an example of
tag usage. The parts enclosed by the split tags are considered
as branch parts and our system interprets it as tree structure
shown in Fig. 3. In the tree structure, one node has one
letter.

The path from the first letter of the input text (”a” in Fig.
3) to the last letter (”e” in Fig. 3) in tree structure is called
a ”main path”, and represents a ”main story”. Paths other
than the main path are called ”branch paths”.

An example of input text

ab< split >fg< /split >
c< split >h< /split >de

Figure 3: text in tree structure

B. Generating mazes

We generate a maze by arranging a text tree on a maze.
It is necessary to form a maze while assigning one letter to
one cell.

In this study, we employ genetic programming [10].
Genetic programming is an optimization algorithm that ap-
plies evolutionary pressure. The difference from the genetic
algorithm is that a tree structure is treated as a gene.
Therefore, the genetic programming can handle programs
with complicated contents. We will explain details in section
5.

Figure 4: tree structure representing program

V. MAZE GENERATION USING GENETIC PROGRAMMING

This section describes our maze-generating program and
evaluation functions.

A. Maze-generating program

In order to generate a maze by genetic programming, it
is necessary to define a maze generation program in tree
structure. This section describes the commands defined in
our maze generation program.

Commands to erase walls (create passages):
We define commands that create a passage from the ”current
cell” to an adjacent cell. In the case of a grid maze, there
are four adjacent cells from the current cell. Therefore,
we define commands to erase the wall in each direction
(create a passage) and then move to the next cell. Specif-
ically, four commands dig north, dig south, dig west,
dig east: erase the wall of the north, south, west, and
east direction respectively and move to the cell in that
direction. These four commands are collectively called ”dig
commands”.

Fig. 5 shows an example of the dig commands. The black
cell on the cell graph represents the ”current cell”. By the
command dig east, the program creates a link to the east
cell and moves to it. Then, by the command dig south, it
creates a new link to the south cell and moves to it.

If the wall to be erased has already been erased (Fig. 6
upper), if cycles occur (Fig. 6 lower), if the wall to be erased

40

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:05 UTC from IEEE Xplore. Restrictions apply.

is outer wall of the maze, or if the length of the passage
exceeds the input length (Fig. 7), the commands are not
executed. In case of Fig. 7, the command dig east is not
executed, since the length of the cell graph will exceed 5,
the length of the main path.

Figure 5: an example of the dig commands

Figure 6: case not executed: a wall already erased (upper) and
cycles (lower)

Figure 7: case not executed: the length of the main path

Commands to create a maze fork:
In order to create a maze fork, we create a queue to store
branch source cells. By the dig commands, the nodes of the
input text tree are arranged in the cell one by one. Here,

when a node where a branch occurs is arranged in a cell,
the cell is enqueued.

Using the queue and the information of the current cell,
we create a maze fork. We define a branch command as a
command to change (jump) the current cell. The branch
command operates differently depending on the number
of times it is executed. Specifically, in the odd-numbered
execution, the cell is dequeued, and the dequeued cell is set
as the current cell. In the even-numbered execution, the cell
at the end of the main path in the cell graph is set to the
current cell (Fig. 8).

If the number of executions exceeds twice the number of
branches in the input text tree, if there are no cells in the
queue, the command branch is not executed.

Figure 8: an example of the command branch.

Commands to structure commands:
In this study, since we employ genetic programming, it
is necessary to represent programs in tree structure. We
define commands to contain multiple child nodes to structure
commands. Specifically, commands prog2 and prog3 are
defined, each having 2 or 3 child nodes. Commands prog2
and prog3 execute child nodes in order from left to right.

Fig. 4 shows an example of a program. When the program
in Fig. 4 is executed, the cell graph shown in Fig. 9 is
generated.

Genetic programming repeatedly applies crossover and
mutation to tree-structured programs (genes) to optimize.

Figure 9: cell graph generated by Fig. 4 program

41

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:05 UTC from IEEE Xplore. Restrictions apply.

B. Evaluation function

In this study, we define an evaluation function Emain for
the main path and an evaluation function Ebranch for the
branch paths.

The evaluation function Emain is

Emain = Egoal + Elen. (1)

Egoal evaluates the difference from the goal position

Egoal = dist(GoalPos,EndPos)2, (2)

where, dist() is the Manhattan distance function, GoalPos
is the goal position specified by the user, and EndPos is
the position of the terminal cell of the main path generated
by the program. Elen evaluates the difference between maze
lengths

Elen = (TgtMainLen− CrtMainLen)2, (3)

where, TgtMainLen is the length of the main path specified
by the user’s input, and CrtMainLen is the length of the
main path generated by the program.

The evaluation function Ebranch is

Ebranch =
n∑

i=1

(TgtBrLeni − CrtBrLeni)
2, (4)

where, TgtBrLeni is the length of the i-th branch path
specified by the user’s input, CrtBrLeni is the length of
the i-th branch path generated by the program, and n is the
number of branches.

Multi-objective optimization of these two evaluation func-
tions Emain, Ebranch is performed using genetic program-
ming. A program with an evaluation value of 0 can generate
a maze without defects.

VI. EXECUTION RESULTS

We implemented the above program and executed for
some input text. For example, Fig. 1 shows the execution
result of inputting the text 1. The start position of the maze
was specified in the upper left corner, and the goal position
was specified in the lower right corner. The number of
individuals in one generation was set to 100. The depth of
the tree-structured programs was set in the range 1 to 8. The
maze generation time was about 7 seconds and the number
of generations was 58. The start and goal positions of the
main path and the length of the maze matched the input
information, and the desired maze was generated. The bend,
which is a feature of the maze, could also be expressed.

A 6x6 size maze as shown in Fig. 1 could be generated
with about 100 individuals. It is considered that a larger
number of individuals is required to generate a maze of a
larger size. We also realized that some input text structures
can not fill in to the rectangle maze grid in principle (this
itself is a well known problem).

text1

I ␣ have ␣ a ␣ ha< split >bit.< /split >nd, ␣
I ␣ have ␣ a ␣ s< split >un.< /split >oap.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we examined a method for automatically
generating a maze with length constraint using genetic
programming. We executed our program on some input
text, and as a result, for simple input text, we were able
to generate the desired maze. Our future works include
improving our current method, considering design of user
interface to create mazes.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number JP17K00261.

REFERENCES

[1] Pullen, W., Think Labyrinth!, Retrieved Jan. 20, 2020, from
http://www.astrolog.org/labyrnth.htm

[2] XU, J., AND KAPLAN, C. S. 2007. Image-guided maze
construction. ACM Trans. on Graphics (Proc. SIGGRAPH) 26,
3, 29.

[3] Sugiyama, A., NAZONAZO KOUBOU, Retrieved Jan. 20,
2020, from https://sugiyama-akira.jp

[4] Wan, L., Liu, X., Wong, T.T., Leung, C.S., Evolving Mazes
from Images, IEEE Transactions on Visualization and Com-
puter Graphics, 16, 2. 2010.

[5] Okamoto, Y., Uehara, R., How to make a picturesque maze,
21st Canadian Conference on Computational Geometry. 2009.

[6] Wong, F.J., Takahashi, S., Flow ‐ Based Automatic Generation
of Hybrid Picture Mazes, Computer Graphics Forum. 2009.

[7] Viana, B.M.F., Santos, S.R., A Survey of Procedural Dungeon
Generation, 2019 18th Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames), pp.391-400.
2019.

[8] Adams, C., Louis, S., Procedural maze level generation with
evolutionary cellular automata, 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), pp.1-8. 2017.

[9] Segaran, T., Programming Collective Intelligence: Building
Smart Web 2.0 Applications, O’Reilly Media. 2007.

[10] DEAP 1.3.0 documentation, Retrieved Jan. 20, 2020, from
https://deap.readthedocs.io/en/master/

42

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:29:05 UTC from IEEE Xplore. Restrictions apply.

