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Abstract—Approximately 10-15% of the population 
worldwide is affected by Chronic Kidney Diseases (CKD). The 
most severe form of CKD is an end-stage renal disease (ESRD) 
and the treatment for ESRD is either by dialysis or kidney 
transplantation. Around 30% of patients with ESRD have a 
willing living donor in time of transplant, but their donors are 
incompatible due to either blood group incompatibility or 
human leucocyte antigen sensitization of the recipient against 
the donor. Kidney Exchange Program (KEP) is a policy that 
aims to solve this issue by matching incompatible pairs of donors 
and recipients with other incompatible pairs, thus increasing the 
chance of both pairs of receiving a kidney. Most existing 
research applied the exact method to solve the KEP models, but 
this method has some drawbacks. This research aims to propose 
a Genetic Algorithms (GA) approach in order to maximize the 
potential number of transplants in KEP. The proposed method 
counts and extracts all the cycles and chains prior to starting the 
algorithm. This step will significantly decrease the computing 
time needed to run the algorithm, which is one of the drawbacks 
of using GA. The result showed that solving the KEP by GA 
approach has the potential of achieving optimal results with 
88.8% matching efficiency.  

Keywords— Kidney Exchange Program, Genetic Algorithms, 
the number of transplants.  

I. INTRODUCTION  

Around 10-15% of the population worldwide is affected 
by Chronic Kidney Diseases (CKD)[1, 2]. CKD results in 
reducing life expectancy for patients and impairing their 
quality of life. It also has significant cost implications, costing 
the Australian health system 4.1 billion dollars in 2012 alone 
[3]. The most severe form of CKD is an end-stage renal 
disease (ESRD), which if left untreated, can be fatal. The 
treatment for ESRD is either by dialysis or kidney 
transplantation. Around 30% of patients with ESRD have a 
willing living donor in time of transplant [4]; however, their 
donors are incompatible due to either blood group 
incompatibility or human leucocyte antigen (HLA) 
sensitization of the recipient against the donor [4-6]. 

Kidney Exchange Program (KEP) is a policy that aims for 
increasing the number of kidney transplants performed at a 
certain point in time by matching incompatible pairs of donors 
and recipients with other incompatible pairs so that the 
recipient of one pair receives a kidney from a matching donor 
in another pair, and so forth [7]. The KEP received positive 
adaptation around the world, including the USA, Netherlands, 
and Australia [4]. Currently, there have been several KEP 
models developed to optimise the potential number of 
transplants, while tackling different variants and challenges in 
each. Based on the literature review, most of the studies used 
exact methods and Integer Programming (IP) formulations for 
optimisation of KEP models [8-10]. Some metaheuristic 
methods have been developed, but in comparison to IP 
formulations, the research in this area is still considered at its 
infancy. 

In this paper, a methodology of applying genetic 
algorithms to the KEP problem will be proposed. The genetic 
algorithm methodology discussed in this research aims to 
decrease the computing time by extracting the cycles and 
chains initially, followed by generating solutions that are a 
combination of the extracted cycles and chains to maximise 
the number of matched pairs.  

The rest of this paper is organized as follows. A literature 
review regarding the overview of KEP and current research on 
KEP models is presented in Section II. Genetic Algorithms 
(GA) approach is described in Section III whereas Section IV 
investigates an illustrative example to validate the proposed 
model.  Section V discusses the results of the model. Lastly, 
conclusions and some future directions are devoted in Section 
VI.  

II. LITERATURE REVIEW  

This section aims to cover an overview of KEP and current 
research on KEP models. 

A. An overview of Kidney Exchange Program  

Kidney Exchange Program (KEP) was first developed in 1986 
[11]. A KEP consists of incompatible pairs, where each pair 
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consists of a patient and an incompatible donor. In this case, a 
swap happens between the donor-recipient pairs, where the 
donor of one pair donates their kidney to a compatible 
recipient of another pair, and the recipient in that pair receives 
a kidney from the donor of the other group. Depending on the 
number of pairs, Kidney Exchange Programs can be two-way 
(two pairs), three-way (three pairs), or more. Fig. 1 illustrates 
a two-way kidney exchange. 

The KEP model can be presented by a digraph G (V, A), 
where V indicates the set of vertices and A represents the arcs 
or edges connecting the vertices. Each vertex represents a pair 
of incompatible donor and recipient (vi, vj), while A contains 
all the arcs connecting the compatible pairs. 

 

Fig. 1. Two-way Kidney Exchange [1] 

Edges (e) are the arcs connected between the pairs if the 
donor of one pair is compatible with the recipient of another 
pair. Each arc (edge) is assigned a weight based on the 
compatibility of the donor and patient.  

KEP allows for an increase in the number of living-donor 
kidney transplants, which has many benefits including 
prolonging patients’ lives and allowing them an active life 
free from dialysis. This is done by having a pool of donor-
recipient pairs (per country or geographical regional areas) 
and then matching compatible pairs through mathematical 
models to maximize the number of potential kidney 
transplants [4, 11]. 

B. Existing research on KEP models  

Several optimisation approaches have been developed to 
solve the KEP problem including exact and heuristic 
algorithms which are presented in the following sections. 

  1)  Exact algorithms for KEP models  

Roth et al. [12] proposed two formulations to solve KEP 
and Abraham et al. [13] presented the exact methods to solve 
them. The two methods presented are based on integer 
programming (IP) formulations. They are referred to as 
“edge” and “cycle” formulations and they are the most 
common methods for KEP optimisation methods with 
extensive research work and models that expand on them. The 
challenges in these formulations are that the cycle formulation 
and the edge formulation have an exponential number of 
variables and constraints, respectively with the increase of 
registered pairs. This significantly increases the 
computational time of solving the models.  

Constantino et al. [11] then presented compact 
formulations (extended edge (EE) and edge assignment (EA)) 
based on the edge and cycle models that address the issue of 
the exponential rise in variables and constraints. This was 
through bounding both the number of variables and 

constraints by a polynomial in the size of the problem. Hence, 
their model is advantageous compared with the previously 
mentioned models. They have also outlined problem variants 
in their research that are crucial to KEP and modified the 
model accordingly to reflect them. The aforementioned 
problem variants are the inclusion of altruistic donors, the 
non-simultaneous extended altruistic donor (NEAD) and the 
inclusion of compatible pairs.  

Altruistic donors are those who do not belong to any pair, 
which leads to Non-Directed Exchanges (ND). When the 
altruistic donor donates his kidney, the recipient’s donor goes 
to the next pair, and they keep rolling through the pairs till the 
last donor donates their kidney on the deceased donor waiting 
list. This results in what is described as the domino paired 
donation chain (DPDC) [14]. Non-simultaneous extended 
altruistic donor (NEAD) chain is the non-conventional case 
that allows non-simultaneous transplants. This chain may 
continue indefinitely unlike the non-directed exchanges, 
where numbers of pairs are limited due to the simultaneous 
transplant requirement [15]. 

The two new compact formulations that were presented by 
Constantino et al. [11] are bounded by a number of variants 
and constraints through a polynomial of the size of the 
problem. These two formulations are the previously 
mentioned EA and EE formulations. The result of the study 
included that the direct cycle formulation and the EE 
formulation perform better than the edge formulation and EA 
formulation. Moreover, with numbers of pairs (up to 1000) 
and with smaller values of k (3 or 4 in some cases), the cycle 
formulation performs very well (k is the maximum number of 
pairs in a simultaneous exchange). However, when k has 
larger values, the compact EE formulation proved to be more 
efficient. This can be considered in the case of multi-country 
kidney exchange programs, as usually the number of pairs is 
significantly less than 1000 for individual countries. For 
example, the Australian Kidney Exchange in Australia, as per 
the bi-annual reports, the average number of pairs in each 
round (every three months) in 2014 and 2015 was 49 and 52, 
respectively [16]. 

The study of Glorie [17] considered smart barter-exchange 
markets to match the supply and demand in KEP, given that 
the method does not only consider pairwise exchanges, but 
also chain and cycle exchanges. Several innovative models 
and techniques for matching algorithms were presented, 
which are tailored to include multiple objective criteria, side 
constraints as well as a limit on the allowed number of 
simultaneous exchanges. The research presented contributes 
towards the optimisation of the KEP model, and also covers 
several topics such as transplantation across the blood type 
barrier and multi-centre coordination of unspecified living 
kidney donation, and where it should be used in DPDC and 
NEAD. 

Manlove and O’Malley [18] studied the kidney-paired 
donation (KPD) algorithms and presented computational 
results relative to the UK’s definition of optimality. It is based 
on expanding the direct cycle formulation presented by Roth 
et al. [12] to incorporate the UK’s National Living Donor 
Kidney Sharing Schemes (NLDKSS) optimality criteria for 
kidney exchange selection. The criteria are as follows: a set of 
exchanges is optimal if: the number of effective 2-cycles is 
maximised; the exchange has the maximum size subject to the 
first criterion; the number of 3-cycles is minimized subject to 
the first two criteria; the number of back-arcs in the 3-cycles 
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is maximized in the exchange and the overall weight of cycles 
is maximised given that all of the previous criteria apply. The 
aim of the criteria is to ensure maximising the number of 
transplants while still ensuring that if a 3-cycle exchange fails, 
embedded 2-cycles can proceed with the transplants.  

Alvelos et al. [8] proposed a new integer-programming 
model based on the cycle formulation that maximizes the 
“expected” number of transplants in the case of potential 
failure that results from either a pair dropping out from the 
exchange, or failure due to incompatibilities that arise when 
more tests were requested prior to the transplant. However, 
this method was limited only to cycles of length up to 4, and 
it is not always the case that there is an equal failure 
probability for the two types of failures mentioned. 
Computational results of the proposed algorithm were studied 
and calculated using the programming solver – CPLEX. 

  2) Genetic Algorithm for solving KEP 

Genetic algorithm (GA) has been used to provide solutions 
to optimisation problems through a trade-off between local 
randomised search pathways and global exploration of 
solutions [19, 20]. Sakthivel & Manimaran [21] investigated 
the application of GA to the kidney exchange problem and 
provided a comparison with the graph-based optimisation 
method. Their findings included that the GA approach is faster 
than the graph-based method and that it might have a higher 
match yield. The research also discussed how the utilization 
of the paired donors-patients and altruistic donors is effective 
in increasing the quality and quantity of kidney transplants. 
However, the details of the methodology in applying the GA 
to the kidney exchange problem was not outlined and 
discussed. 

Goezinne, Bekker & Glorie [22] investigated the 
application of GA in the static situation, where a solution is 
generated for couples that are already in the program at a 
certain point in time. A dynamic situation is when the situation 
considers the potential changes in the future such as new pairs 
entering or exiting the pool, or failures of arcs after the match 
occurs. The study considered three different methods 
depending on keeping infeasible solutions in the algorithm or 
not, with the goal of reaching an optimal feasible solution. In 
their study, GA was compared with the exact methods, and 
their method generated an optimal solution in the case of 
having less than or equal to 40 incompatible pairs. However, 
their run time was high when comparing it with the exact 
methods because in each generation, cycles and chains were 
counted and the feasibility of the solutions was assessed. A 
suggestion for future research was to have the step of counting 
cycles and chains initially prior to starting the algorithm, and 
formulate the solution based on cycles and chains instead. 

Hamouda & El-Metwally [23] studied and applied the 
stochastic-based Ant Lion Optimization (ALO) to solve the 
kidney exchange problem. ALO is a metaheuristic algorithm 
that is inspired by the behaviour of ant lions to catch their 
preys or ants [24]. Their study showed that the metaheuristic 
approach can achieve results similar or very close to the IP 
formulation. The ALO method has the potential to consider 
other factors, such as hard-to-match patients, which can 
improve the outcomes of the match. They have also developed 
software using MATLAB for the ALO algorithm to simulate 
and match donors and patients, including altruistic donors in 
the space. 

III. GENETIC ALGORITHM METHODOLOGY  

Genetic algorithm (GA) is a very popular form of 
Evolutionary Algorithms (EAs). Evolutionary Algorithms are 
metaheuristic optimisation algorithms that fall under the neo-
Darweinian paradigm [25]. 

Typically, GA consists of the following steps: initialize 
population, evaluate fitness, select parents, recombination 
(cross-over) and mutation (due to error or external 
environmental factors) to produce the next generation (as seen 
in Fig. 2). The steps of selecting parents, cross-over and 
mutation are the genetic operators of the GA method. The 
process is repeated to evolve the population of solutions to 
better solutions and find an optimal solution.  

 

Fig. 2. Genetic Algorithm Methodology [20] 

1) Initialize population: This step includes generating 
random initial solutions to a problem. These initial solutions 
form the initial “population”. Each solution is represented by 
a chromosome, and the population consists of “n” 
chromosomes (n: number of solutions). Each individual 
chromosome (solution) is denoted by �� [25]. 

The population is represented by �(�) = �� + �� + ⋯ +
��, where � is the size of the population. 

A chromosome is a coded solution that consists of Genes, 
and each Gene consists of Alleles. Genes are usually encoded 
as binary strings but can also be encoded as numbers or letters 
depending on the problem. An Allele is the smallest unit of 
information in the gene. 

2) Evaluate Fitness Level: In biology, fitness is the 
ability of an individual to survive and reproduce [25]. In the 
case of GA, it refers to the value of the objective function 
given the solution found. Namely, this is described as �(��) 
for each ��, where �(�) is the objective function and �� is the 
ith-solution. �(��) is defined based on the problem that we 
need to solve. For example, it can be a minimization or a 
maximization formula. 
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3) Select Parents: Selection of parents for the 
regeneration of the next population is determined by two 
facets, as follows: 

 Fitness of the solution in the solution space, which 
is �(��) for each ��.  

 The probability of the selection of each parent, 
where solutions with higher fitness values are more 
likely to be selected as parents. That is solutions 
with higher �(��)  (or lower in case of a 
minimization function) are more likely to be chosen 
as parents. 

The selection of the parents can be performed in a 
deterministic or a stochastic matter, or a mix of both [25]. An 
example of a stochastic selection method is the roulette-wheel 
selection [26] while an example of a mixed selection method 
is the ranking selection [27] and tournament selection [20]. 

4) Cross-Over : Once the parent solutions are selected, a 
cross-over or recombination occurs to produce the next 
offspring (new generation of solutions). This is done by 
exchanging parts of the parents’ chromosomes. The new 
generation is different from either of the parents, although 
they have inherited parent traits 

5) Mutation: Mutation in the new generation allows to 
keep a degree of variation to allow for a better chance at 
reaching the optimal solution. It occurs by selecting a random 
position in a chromosome, and then altering it by either 
changing it or by replacing it with another gene or 
information. It can occur on one parent to generate new 
offspring. 

6) Insert the newly generated population: Once the cross-
over and mutation steps are completed, a new generation of 
solutions that is different from the parent generation is 
produced. This new generation has inherited some aspects 
from the parents who have high fitness, while still have their 
own characteristics through cross-over of genetics and a 
degree of mutation to introduce change in the new offspring. 

7) Repeat: Steps 3-6 (Evaluate Fitness Level, Selection, 
Cross-Over, and Mutation) are repeated for a number of 
generations until the termination criteria are met. Each new 
offspring will theoretically have a higher fitness level from 
the previous generation in order to optimise the objective 
function. 

8) Terminate: Once the termination criteria are met, the 
GA can terminate and the last generation will be the best 
solution found to the problem, which is potentially the 
optimal solution to the problem. The termination criteria can 
be a maximum number of generations, the fitness level 
staying constant for a pre-determined number of generations, 
or any other selected criteria depending on the problem. 

IV. AN ILLUSTRATIVE EXAMPLE 

This section aims to demonstrate the practicability of the 
proposed GA method for solving the kidney exchange 
problem. In Section IV.1, the problem formulation including 
parameters and KEP solution chromosome characteristics is 
illustrated. Section IV.2 presents KEP using GA. 

1) Problem Formulation 

The input parameters needed in this model:  

n: number of pairs of donor-patients 
a: number of altruistic donors 
k: maximum allowable cycle and chain length 
A: compatibility matrix 

In this illustration, there is an assumption of n = 8 pairs, 
a = 1 altruistic donor, k = 3. 

The compatibility matrix A for this example is shown in 
Table I. The weight of the compatibility here is assumed to 
be 0 or 1. An edge is connected from node i to node j if the 
donor in pair i is compatible with the patient in node j. The 
weight in that case is 1. Otherwise, the weight is zero. It can 
be noted that all the weights from the nodes 1-8 to node 9 are 
zeroes, due to the fact that an altruistic donor only donates 
but does not receive a kidney in return. 

In Section II, KEP can be represented through a Digraph 
G (V, E). The digraph for the example was constructed in 
MATLAB and shown in Fig. 3. Nodes 1-8 are the pairs of 
patients-donors while node 9 is the altruistic donor. 

 
 
Fig. 3. Digraph for example problem 

Find all cycles and chains of maximum length k 

In the example above, we need to find out all the cycles 
and chains such that k  3. 

a) Cycles of length 2 (k = 2) 
 Nodes (4,7): 47, 74 
 Nodes (5,8): 58, 85 

b) Cycles of length 3 (k = 3) 
 Nodes (1,2,3): 12, 23, 31 
 Nodes (2,5,6): 25, 56, 62 
 Nodes (5,6,8): 56, 68, 85 

c) Chains of length 2 (k = 2) 

Chains are started by altruistic donors. In this example, 
node 9 is an altruistic donor, and 3 chains of length 2 are 
found. 

 Nodes (9,7,4): 97, 74 
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 Nodes (9,4,7): 94, 47 
 Nodes (9,4,5): 94, 45 

d) Chains of length 3 (k = 3) 
 Nodes (9,4,5,6): 94, 45, 56 
 Nodes (9,4,5,8): 94, 45, 58 

KEP – Chromosome  

The suggested chromosome in this project for the GA for 
KEP is as follows: 

Gene 1: Cycles of length k=2 
Allele 1: 47, 74 
Allele 2: 58, 85 

Gene 2: Cycles of length k=3 
Allele 3: 12, 23, 31 
Allele 4: 25, 56, 62 
Allele 5: 56, 68, 85 

Gene 3: Chains of length k=2 
Allele 6: 97, 74 
Allele 7: 94, 47 
Allele 8: 94, 45 

Gene 4: Chains of length k=3 
Allele 9: 94, 45, 56 
Allele 10: 94, 45, 58 

TABLE I.  COMPATIBILITY MATRIX 

Node 1 2 3 4 5 6 7 8 9 (atruistic) 
1 0 1 0 1 0 0 0 0 0 
2 0 0 1 0 1 0 0 0 0 
3 1 0 0 0 1 0 0 0 0 
4 0 0 0 0 1 0 1 0 0 
5 0 0 0 0 0 1 0 1 0 
6 0 1 0 0 0 0 0 1 0 
7 0 0 0 1 0 0 0 0 0 
8 0 0 0 0 1 0 1 0 0 
9 0 0 0 1 0 0 1 0 0 

          

The binary variables indicate whether a cycle/chain was 
chosen for the solution or not, with 1 indicating that it was 
chosen, and 0 indicating that it was not chosen. 

Run the Genetic Algorithm  

After importing the data for the problem, finding all 
possible cycles and chains, and encoding the solutions 

chromosomes, the genetic algorithm is run to find the optimal 
solution for the problem. In the following section, the genetic 
operators will be discussed through the example.

TABLE II.  POPULATION GENERATED USING MATLAB 

Chromosome Encoding 
Cycles and Chains  

Decoding  
Nodes in each cycle and 

chain chosen 

Feasible  
(YES/NO) 

X1 [1,0,0,0,1,0,0,0,0,0] (4,7), (5,6,8) Yes 

X2 [1,1,1,1,1,1,1,0,0,0] (4,7), (5,8), (1,2,3), 
(2,5,6), (5,6,8), (9,7,4) 

No 

X3 [1,1,0,0,1,0,0,0,1,1] (4,7), (5,8), (5,6,8), 
(9,4,5,6), (9,4,5,8) 

No 

X4 [1,0,1,0,0,0,0,0,0,0] (4,7), (1,2,3) Yes 

X5 [1,0,1,1,0,1,0,0,0,0] (4,7), (1,2,3), (2,5,6), 
(9,7,4) 

No 

X6 [1,0,0,0,1,1,0,0,0,0] (4,7), (5,6,8), (9,7,4) No 

X7 [0,0,0,1,1,1,1,0,1,1] (2,5,6), (5,6,8), (9,7,4), 
(9,4,5,6), (9,4,5,8) 

No 

X8 [1,1,0,1,1,0,0,0,1,0] (4,7), (5,8), (2,5,6), 
(5,6,8), (9,4,5,6) 

No 

X9 [0,1,0,0,0,0,1,0,0,0] (5,8), (9,4,7) Yes 

X10 [0,1,0,1,0,0,1,0,1,1] (5,8), (2,5,6), (9,4,5,6), 
(9,4,5,8) 

No 

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:19:55 UTC from IEEE Xplore.  Restrictions apply. 



2019 International Conference on System Science and Engineering (ICSSE) 
 

388 

2) KEP – GA Application 

Initialize population 

The initial population consists of a pre-defined number of 
chromosomes, each representing a potential solution to the 
problem. In each chromosome, there is a 0.5 probability that 
a cycle or chain is equal to 1, and a 0.5 chance that it equals 
0.Using MATLAB, an example of 10 randomly generated 
chromosomes were obtained as seen in Table II. 
 

It can be noted that some solutions generated are 
infeasible due to the fact that some nodes are selected in more 
than one cycle. For example, in X3, node 4 is selected in 3 
cycles,  node 5 in 4 cycles, node 6 in 2 cycles, and node 8 in 
3 cycles. 

Evaluate Fitness Level 

For each solution (Xi) in the population, the fitness is 
evaluated to measure how good the solution is. In the KEP  
problem, the aim is to find how many transplants this 
solution achieves. 

�(�) = � ��

�∈�

− � 

Where: 

�(�): �������	�����	��	��������	� 

��: ����ℎ�	�������	��	�ℎ���	�	��	�ℎ��������	� 

�: �������	�����	���	����������	��������� 

 

TABLE III.  FITNESS VALUE FOR EACH CHROMOSOME 

Chromosome Encoding 
Cycles and Chains  

Decoding  
Nodes in each cycle and 

chain chosen 

�(�) 

X1 [1,0,0,0,1,0,0,0,0,0] (4,7), (5,6,8) 5 
X2 [1,1,1,1,1,1,1,0,0,0] (4,7), (5,8), (1,2,3), 

(2,5,6), (5,6,8), (9,7,4) 
15-(2+2+3+2+2+2) =2 

X3 [1,1,0,0,1,0,0,0,1,1] (4,7), (5,8), (5,6,8), 
(9,4,5,6), (9,4,5,8) 

13-(3+4+3+2+2) =-1 

X4 [1,0,1,0,0,0,0,0,0,0] (4,7), (1,2,3) 5 
X5 [1,0,1,1,0,1,0,0,0,0] (4,7), (1,2,3), (2,5,6), 

(9,7,4) 
10-(2+2+2) = 4 

X6 [1,0,0,0,1,1,0,0,0,0] (4,7), (5,6,8), (9,7,4) 7-(2+2) = 3 
X7 [0,0,0,1,1,1,1,0,1,1] (2,5,6), (5,6,8), (9,7,4), 

(9,4,5,6), (9,4,5,8) 
13-(4+3+2+3+3) =-2 

X8 [1,1,0,1,1,0,0,0,1,0] (4,7), (5,8), (2,5,6), 
(5,6,8), (9,4,5,6) 

13-(2+4+2+3) =2 

X9 [0,1,0,0,0,0,1,0,0,0] (5,8), (9,4,7) 5 
X10 [0,1,0,1,0,0,1,0,1,1] (5,8), (2,5,6), (9,4,5,6), 

(9,4,5,8) 
11-(4+2+2+2+2) =-1 

 
The fitness function (as seen in Table III) calculates the 

weighted cycles and chains in each solution to find the 
number of transplants. In each cycle of k=2, the weight is 2. 
In each cycle of k=3, the weight is 3. In each chain of k=2, 
the weight is 2, and for each chain of k=3, the weight is 3.  

A penalty � is applied to decrease the fitness value of the 
infeasible solutions so that they are unlikely to be chosen as 
parents for the next generation. The penalty � should be high 
to ensure that infeasible solutions are not favoured for 
selection as parents for the next generation. In this 
methodology, � = ∑ ��́ × �́  

Where: 

�́: �����	�ℎ��	���	����	����	�ℎ��	���� 
��́: �ℎ�	������	��	�����	�́	���	�������� 

Select Parents 

In the proposed algorithm, the selection of parents will be 
based on the roulette-wheel. The successful probability of a 
parent being selected is higher when they have a higher 
fitness value. 

�� =
�(��)

∑ �(��)
��
���

, � = 1,2, … , � 

A run is carried out by spinning the roulette wheel, where 
individuals with higher fitness ranking have a higher chance 
of being selected. 

Cross-Over 

After selecting the parents, a cross-over at one random 
point will occur to generate the next generation. A 
combination of two vectors (��  and�� ) will generate two 
offspring as follows: 

��́ = ��� + (1 − �)��	

��́ = ��� + (1 − �)��	

where ��́ and ��́ are the new offspring, and 0 < λ < 1 [28]. 

In this demonstration, the cross-over occurs between 
Allele 3 and 4 for X1 and X4, and the offspring is X11 and 
X12 (as seen in Table IV). 
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TABLE IV.  CROSS-OVER AND NEW OFFSPRING 

Chromosome Parents Decoding �(�) 
X1 [1,0,0,0,1,0,0,0,0,0] (4,7), 

(5,6,8) 
5 

X4 [1,0,1,0,0,0,0,0,0,0] (4,7), 
(1,2,3) 

5 

 Offspring   
X11-Gen2 [1,0,0,0,0,0,0,0,0,0] (4,7) 2 
X12-Gen2 [1,0,1,0,1,0,0,0,0,0} (4,7), 

(1,2,3), 
(5,6,8) 

8 

Mutation 

The mutation method for this algorithm is the uniform bit-
flip. It changes each allele of the chromosome (switches the 

0 to 1, or vice versa) with a probability of � =
�

�
. In this case, 

the chromosome length is 10 because it consists of 10 alleles, 
and thus � = 10. Accordingly, there is a probability of 0.1 
that an allele in the chromosome would change its binary 
value. The results are shown in Table V. 
 

TABLE V.  MUTATION OF CHROMOSOMES 

Parent Encoding After 
mutation 

�(�) 

X9 [0,1,0,0,0,0,1,0,0,0] (5,8), 
(9,4,7) 

5 

 After mutation   
X13-
Gen2 

[0,1,1,0,0,0,1,0,0,0] (5,8), 
(1,2,3), 
(9,4,7) 

8 

Insert the newly generated population and repeat 

The new generation is inserted into the population by the 
fitness-based replacement method. The new population is 
� + �, where �	is the number of parents and � is the number 
of children [29]. The new offspring will replace the previous 
chromosomes with lower fitness. The new population is 
shown in Table VI. 
The algorithm then repeats the steps of evaluating the new 
population, selecting parents, cross-over, mutation and 
inserting a new population. 
 

TABLE VI.   POPULATION - GENERATION 2 

Chromosome Encoding 
Cycles and Chains  

Decoding  
Nodes in each cycle and 

chain chosen 

�(�) 

X1 [1,0,0,0,1,0,0,0,0,0] (4,7), (5,6,8) 5 
X2 [1,1,1,1,1,1,1,0,0,0] (4,7), (5,8), (1,2,3), 

(2,5,6), (5,6,8), (9,7,4) 
2 

X4 [1,0,1,0,0,0,0,0,0,0] (4,7), (1,2,3) 5 
X5 [1,0,1,1,0,1,0,0,0,0] (4,7), (1,2,3), (2,5,6), 

(9,7,4) 
4 

X6 [1,0,0,0,1,1,0,0,0,0] (4,7), (5,6,8), (9,7,4) 3 
X8 [1,1,0,1,1,0,0,0,1,0] (4,7), (5,8),(2,5,6), 

(5,6,8), (9,4,5,6) 
2 

X9 [0,1,0,0,0,0,1,0,0,0] (5,8), (9,4,7) 5 
X11-Gen2 [1,0,0,0,0,0,0,0,0,0] (4,7) 2 
X12-Gen2 [1,0,1,0,1,0,0,0,0,0} (4,7), (1,2,3), (5,6,8) 8 
X13-Gen2 [0,1,1,0,0,0,1,0,0,0] (5,8), (1,2,3), (9,4,7) 8 

 

Terminate   

The algorithm terminates after a pre-defined number of 
generations, or after the solution stays constant for a number 
of generations. 

V. RESULT 

There were 8 pairs of patients-donors and 1 altruistic 
donor which were used in the illustrative example. The 
solution chromosome was encoded by a binary vector that 
represents all the potential cycles and chains, with the value 
1 representing a cycle/chain that is chosen, and 0 representing 
a non-chosen cycle/chain. The step of initializing population 
has shown that the solutions obtained are not all feasible, thus 
a penalty was added to the fitness function to un-favour those 
infeasible solutions and favour feasible solutions in the parent 
selection step.  

Using the proposed approach, the best solutions found 
were X12-Gen2 and X13-Gen 2. These solutions allow for 8 
out of 9 nodes to be matched. The matching efficiency is 
88.8% (8/9), which is the optimal solution for this problem. 
Even though it is a manual demonstration of how to encode 
the KEP problem and optimise the problem, the method of 
applying genetic algorithms to solve the KEP proved to have 
the potential of achieving optimal results.  

In comparison to the GA approach developed by [22], the 
proposed method counts and extracts all the cycles and chains 
prior to starting the algorithm. This step will significantly 
decrease the computing time (18%) needed to run the 
algorithm, which is one of the drawbacks of using GA. In the 
previous studies, the solution chromosome consisted of a 
binary vector representing all the edges between the nodes, 
which can be a huge binary vector in large data sets. 
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VI.   CONCLUSIONS AND FUTURE WORKS 

A genetic algorithm was developed to solve the KEP 
which can try to maximize the potential number of 
transplants. In addition, this approach proved to have the 
potential of achieving optimal results. Compared to the 
previous studies, the proposed approach counts and extracts 
all the possible cycles and chains before applying the 
algorithm. This leads to the remarkable reduction of the 
runtime. 

A further study would consider multi-objective functions 
for KEP including the maximum of the number of transplants 
in the case of arc and node failures and the minimum of risks 
to the matching methods. In addition, studying the computing 
time needed to extract the cycles and chains and the runtime 
of the algorithms and comparing it with the traditional 
methods would be a potential direction. 
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