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Abstract—Genetic programming (GP) has been applied as
an automatic programming tool to solve various kinds of
problems by genetically breeding a population of computer
programs using biologically inspired operations. However, it is
well known as a computationally demanding approach with
a significant potential of parallelization. In this paper, we
emphasize parallelizing the evaluation of genetic programs
on Graphics Processing Unit (GPU). We used a compact
representation for genotypes. This representation is a memory-
efficient method that allows efficient evaluation of programs.
Our implementation clearly distinguishes between an indi-
vidual’s genotype and phenotype. Thus, the individuals are
represented as linear entities (arrays of 32 bits integers) that
are decoded and expressed just like nonlinear entities (trees).

Index Terms—Parallel Processing, GPGPU, linear genetic
programming, symbolic regression

I. Introduction

In genetic programming as well as in evolutionary
algorithms, the most time-consuming part is the fitness
evaluation, because in every generation each one of the
individuals must be evaluated at least one time over
a single or many fitness cases according to the fitness
function especially in the case of classification or regression
tasks [16]. Due to the high number of fitness cases, this
fact limits the kind of problems that can be handled by
GP. There have been a big interest to achieve performance
gains by simultaneously evaluate candidate GP programs
using parallel computing architectures.

Newly introduced GPUs provide fast parallel hardware
that achieve significant improvements in the execution
speed of traditional parallel system and in particular
genetic programming system as well.

The processing power of the GPUs has become ac-
cessible with the recent frameworks such as CUDA and
OpenCl. GPUs are mainly designed to efficiently compute
graphics primitives in parallel to produce pixels for the
video screen, however they are able to handle general data-
parallel computations.

In this paper we present a method for using the GPU to
speed up the evaluation of a linear genetic programming
interpreter. The evolved symbolic regression is used as a
benchmark to evaluate the performance of the method.

II. Related work

In genetic programming, evaluating candidate GP pro-
grams in parallel is known as a “population parallel”
approach and evaluating fitness cases in parallel is known
as a “data parallel” approach. Improving the execution
speed of GP has been extensively studied because of the
high degree of computational complexity of this meta-
heuristic.

Over the last years, there have been a variety of
techniques for accelerating the evaluation of GP programs.
For example: in [6] the others used a divide and con-
quer strategy in order to minimize the computational
cost of the GP. Another strategy is to devise dedicated
crossovers for reducing the bloat of individuals and thus
the evaluation cost [7]. Distributing the computation of
GP through computational nodes is a common strategy
which is used in [7], [8]. Although, this distribution of
GP is an efficient technique, it is quite expensive because
distributed systems are not always available.

Taking advantage of the power of GPUs within the
framework of evolutionary computation has been done first
for genetic algorithms [9], [10].

Then, recently, implementation schemes for genetic
programming on graphics processing units were published,
depending on whether they were based on the dynamic
compilation of GP individuals or on interpretation of the
GP programs [11].

In the literature, the first data parallel approach im-
plementations of GP to use the processing power of
many-core GPUs were provided by Banzhaf [2], [3] and
Chitty [4]. Both used GPU kernel for executing individual
tree based candidate genetic programs. Inside the kernel,
candidate GP programs were evaluated sequentially with
the parallelization arising at the fitness case level. More
recently, M. Chitty [1] used a two-dimensional stack for
speeding up GPU-based genetic programming however,
the interpreter uses also a non-linear representation of in-
dividuals. A nontraditional heterogeneous hardware such
as XBox360 has been used in [5] to implement genetic
programming with small population sizes, the author
described the first instance of LGP implementation using
GPGPU, however the experiments are based on a very
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special commercial MiscoSoft console.

III. Linear Genetic Programming

Linear genetic programming (LGP) is a particular
subset of GP where each individual in the population is
expressed as a sequence of instructions from imperative
programming language or machine language [15]. Encod-
ing programs within sequences of imperative instructions
has many advantages over encoding them within trees.
The tree programs used in Koza-style genetic program-
ming is based on a functional programming language. [14].
This conventional approach is called tree-based genetic

X 13 Y

+

5.3 / cos11

*-

(5.3 - X/13) + 11*cos(Y)

genotype

phynotype

Fig. 1. Koza-style genetic programming representation

programming (TGP) “Fig. 1” where the inner nodes of
the tree hold functions, while leaves of the tree hold
input values or constants. In contrast, linear genetic
programming evolves sequences of instructions from an
imperative programming language. multiple registers are
required for performing these instructions and allowing
the partial results to be reused later [16].

phynotype

r[1] = X

r[2] = Y

r[4] = 5.3

r[5] = 13

r[6] = 11

r[0] = r[1] / r[5]

r[0] = r[4] - r[0]

r[3] = cos(r[2])

r[3] = r[6] * r[3]

r[0] = r[0] + r[3]

genotype

(5.3 - X/13) + 11*cos(Y)

expression

gene 0

<id(/),0,1,5>

gene 1

<id(-),0,3,0>

gene 2

<id(cos),3,2>

gene 3

<id(*),3,6,3>

gene 4

<id(+),0,0,3>

Fig. 2. Linear genetic programming representation

IV. Representation of Genotype
A linear genetic program is performed in a register

machine based on von Neumann architecture. Such a
machine is composed of multiple registers and operates
instructions to manipulate their content in order to
perform a computational task.

A genotype encodes a program composed of instructions
whose execution has to be performed in sequence. To
get a higher programming flexibility, a program with 3-
register instructions is considered. This choice is justified
by the fact that a program which consists of 3-register
instructions is more compacted than a program which
consists of 2-register instructions.

During program execution, constant and variable reg-
isters are addressed by indices in the internal program
representation. They all hold floating-point values, where
constants are stored in registers that are write-protected,
so may not become destination registers. Constant regis-
ters are only initialized once at the beginning of a run
with predefined values range. e.g. in “Fig. 2”, variable
registers are r[0], r[1], r[2], r[3] where constant registers are
r[4], r[5], r[6].

Instruction p

id 

i 
j

k 

:[0,255]

:[0,255]

:[0,255]

:[0,255]

:(8 bits)

:(8 bits)

:(8 bits)

:(8 bits)

<id,i,j,k> :(32 bits)

Instruction 1

Instruction 2

Instruction p

EOP

Linear Genetic Program

Fig. 3. Genome structure

In our implementation, an operation is held as a single
32-bit integer value as shown in “Fig. 3”. An individual is
then represented by an array of integers where each gene
of the genome is encoded in 32 bits and it consists of the
following four parts:

• id: the instruction identifier is incoded in 8 bits to
specify the instruction type. (with 8 bits we can
encode up to 256 functions).

• i: the destination register index is encoded in 8 bits.
• j: the first source register index is encoded in 8 bits.
• k: the second source register index is encoded in 8

bits.
In genetic programming, the crossover and mutation

have to maintain the syntactic correctness of newly created
programs. These operators must guarantee somehow that
only valid programs are created.

In this work, we used LGP for solving polynomial
regression problem. For that reason, we have defined a
set of arithmetic, exponontial and geometric functions as
shown in TABLE 1.
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TABLE I
LGP instruction set

Operation Id General Notation Codification
Add 0 ri = rj + rk <0,i,j,k>
Sub 1 ri = rj − rk <1,i,j,k>
Mul 2 ri = rj ∗ rk <2,i,j,k>
Div 3 ri = rj/rk <3,i,j,k>
Pow 4 ri = (rj)

rk <4,i,j,k>
Exp 5 ri = erj <5,i,j,-1>
Ln 6 ri = Ln(rj) <6,i,j,-1>
Sqrt 7 ri = Sqrt(rj) <7,i,j,-1>

In order to assure semantic correctness, the defined
functions may be protected by returning a non-numeric
value (MAX-DOUBLE-VALUE) for undefined input, e.g.
when the function Div is being called to divide by zero it
returns 1.8E308 for indicating an out-of-bounds.

V. Interpreting a LGP Expression
Typically interpreting a GP genome involves looking

over the genome’s array of genes subsequently “Algo-
rithm 1”. Each gene is a program step, where the in-
terpreter must extract the encoded components (function
identifier and registers indexes) in order to establish which
instruction should be executed on which registers as shown
in “Fig. 4”.

Genotype

Instruction p

<id,i,j,k> :(32 bits)

Gene 1

2

p

EOP

Gene

Gene

Read Gene (p)

extract (id, i , j, k)

switch(id)

{

case 0: r[i] = r[j] + r[k];

case 1: r[i] = r[j] - r[k];

case 2: r[i] = r[j] * r[k];

{

Fig. 4. LGP interpreter

In our implementation, we used a compact genome
representation, an array of 32 bits integers. Every element
of the array is a gene which encodes four 8 bits components
as depicted in “Fig. 3”. These components (id, i, j, k) are
easily extracted by means of an appropriate binary mask
and a logical operation (AND) as folow:

1) Extract the first component “id”.
• id = gene AND 0xFF000000.
• Shift_Right_Arithmetic(id, 24 positions).

2) Extract the second component “i”.

• i = gene AND 0x00FF0000.
• Shift_Right_Arithmetic(i, 16 positions).

3) Extract the third component “j”.
• j = gene AND 0x0000FF00.
• Shift_Right_Arithmetic(j, 8 positions).

4) Extract the fourth component “k”.
• k = gene AND 0x000000FF.

Once the genome is evaluated in a given input, it must
be re-evaluated for every input set in order to compute
its quality (the fitness function). Hence, for n test cases
the genome would be executed n times.

input : A genome: Array of n integer
for idx← 0 to n− 1 do

gene← genome[idx];
id← gene AND 0xFF000000;
Shift_Right_Arithmetic(id, 24 positions);
i← gene AND 0x00FF0000;
Shift_Right_Arithmetic(i, 16 positions);
j ← gene AND 0x0000FF00;
Shift_Right_Arithmetic(i, 8 positions);
k ← gene AND 0x000000FF;
switch(id):
case 0: r[i] = r[j] + r[k];
case 1: r[i] = r[j]− r[k];
case 2: r[i] = r[j] ∗ r[k];
case 3: r[i] = Protected(r[j]/r[k]);
case 4: r[i] = Pow(r[j], r[k]);
case 5: r[i] = Exp(r[j]);
case 6: r[i] = Protected(Ln(r[j]));
case 7: r[i] = Protected(Sqrt(r[j]));

end
Algorithm 1: LGP interpreter

Using the GPU we are able to parallelize the evaluation
of individuals, which means that in effect the genome
only has to be parsed once with the function evaluation
performed in parallel.

The CPU sends arrays of test cases to the GPU global
memory and loads kernel program into the processors. The
Accelerator performs each individuals GP program, and
the resulting data is converted back in to an array. The
fitness is determined as the sum of all errors from this
output array.

VI. Graphics Processing Unit Architecture
In order to effectively benefits from GPUs parallelism, it

is important to understand the GPU architecture and then
design an efficient program accordingly. In this section we
briefly summarize the GPU architecture for the reader to
be able to follow the discussion on the parallelization of
the algorithms.

Technically, GPUs are specialized stream processors
which were originally designed for application of time-
consuming graphics operations. They are able to per-
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form graphics manipulations much faster than a gen-
eral purpose CPU, as they are specifically designed to
handle certain primitive operations. Hence, any non-
graphic algorithm designed for GPU had to be written
in terms of graphics APIs such as OpenGL and DirectX.
This allowed the development of scalable applications for
computationally expensive problems [12].

The GPU consists of a number of multiprocessors that
are used for performing calculations on three-dimensional
information. These processors cooperate with each other
in parallel and in a pipeline fashion to solve the problem.

The GPU architecture is organized as a grid of highly
threaded streaming multiprocessors, each one is organized
as a set of SIMD processors. Each multiprocessor has a
private memory space and can communicate with other
multiprocessor through shared among its own processors.

The setup of the GPU is determined by its compute
capability which is a parameter related to GPU micro-
architecture that defines which hardware component will
be accessible for CUDA development. Multiple phases
of CUDA program are executed by either the CPU or
the GPU. In order to take advantage of data parallelism
in a SIMT (Single Instruction Multiple Thread) fashion,
the GPU code is implemented as C++ functions called
kernels that are launched in a compute grid using a CPU
code. A two-level hierarchy is used to organize the threads
in a grid, with the first level consisting of blocks that
are arranged in three dimensions and each of them may
hold up to 1024 threads. Each block is arranged in three
dimensions at the second level as well. The programmer
determines the dimensions of the grid, which must respect
the compute capability limitations of the device [13].

It becomes clear that GPUs could be used to execute
high performance general computing tasks for scientific
computing due to their capacity to perform parallel
operations using 3D data and graphics algorithms. Con-
sequently, a typical technique entails three crucial steps:

• Converting data to graphics textures.
• Constructing a program segment.
• Executing the program segment on the texture.

VII. LGP Parallel Interpreter
The population in LGP is made up of programs written

in an imperative programming language. Each program
is made up of a number of lines of code that must be
run in sequence. We use a register machine to evaluate
each LGP individual program. All individuals are typ-
ically represented in imperative programming language
just like C-style code. The code of each individual is a
set of instructions, each of which is composed of three
components: the operator, one or two arguments which are
manipulated by the operator, and the destination register.
The interpreter executes each instruction by applying the
operator to the arguments and then stores the result in
the destination register. The set of operators includes even
simple standard arithmetic operators and some predefined

functions for solving particular problems. An example of
LGP program is depicted in “Fig. 2”.

After executing a LGP program all destination register
will hold a valued number. In this work, the state of
the registers is represented by an array r. The values
stored in r are the outputs of the LGP program which
can be interpreted according to the problem at hand. The
individual structures that undergo adaptation in LGP are
represented by arrays of integers.

input : P : Array of virtual processors
q ← threadIdx.x+ blockIdx.x ∗ blockDim.x;
idx← 0;
while P [q].gene[idx] ̸= EOP do

gene← P [q].gene[idx];
id← gene AND 0xFF000000;
Shift_Right_Arithmetic(id, 24 positions);
i← gene AND 0x00FF0000;
Shift_Right_Arithmetic(i, 16 positions);
j ← gene AND 0x0000FF00;
Shift_Right_Arithmetic(i, 8 positions);
k ← gene AND 0x000000FF;
switch(id):
case 0: P [q].r[i] = P [q].r[j] + P [q].r[k];
case 1: P [q].r[i] = P [q].r[j]− P [q].r[k];
case 2: P [q].r[i] = P [q].r[j] ∗ P [q].r[k];
case 3: P [q].r[i] = Safe(P [q].r[j]/P [q].r[k]);
case 4: P [q].r[i] = Pow(P [q].r[j], P [q].r[k]);
case 5: P [q].r[i] = Exp(P [q].r[j]);
case 6: P [q].r[i] = Safe(Ln(P [q].r[j]));
case 7: P [q].r[i] = Safe(Sqrt(P [q].r[j]));
idx← idx+ 1;

end
Algorithm 2: LGP parallel interpreter

In our implementation, each parallel element (PE)
simulates a computing machine which is composed of the
following elements:

• A memory segment to store the LGP program.
• Data registers to store constants and variables.
• A set of registers: the instruction pointer (IP), and

general purpose registers: A1, A2, ..., An.

IP Instruction 0

Instruction 1

Instruction 2

Instruction n

Register Banks

Variables

Constants

Fig. 5. Virtual processor scheme
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“Fig. 5” presents the memory mapping and registers of
the virtual processor. To evaluate the population, in our
implementation, each PE is running a different genetic
program. In this paper the instruction cycle refers to the
process by which a virtual processor retrieves a genetic
program instruction from the genome, determines what
action is described by this instruction, and then carries
out this action. The cycle is repeated continuously by the
GP interpreter, from the first instruction until the entire
genome is traversed.

In most cases of GP problems the fitness of an individual
is computed by evaluating it through many inputs. Thus,
it is possible to use data parallel approach for evaluating
the expression of each individual in parallel [13].

VIII. Experimental Results
The results presented in this paper “Fig. 6” are gener-

ated using a 3.0GHz i7 processor with 16GB of memory.
The GPU used for the experimentation was an NVidia
GeForce 9700 which has 32 stream processors (SP). We
compared the results of GP implemented on GPU with
that implemented on CPU. All results were generated
using the configuration shown in “TABLE II”.

TABLE II
The parameters used for the experiments

Parameters Values
Population size 500
Max genome size 200
Crossover rate 90%
Mutation rate 40%

Probability of mutating non terminals 10%
Probability of mutating terminals 50%

Total number of runs 5000
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Fig. 6. Evaluation of 5OO genomes using CPU and GPU

As a benchmark, we have used the well known symbolic
regression problem. The idea behind symbolic regression
is to find a symbolic mathematical expression which maps
a given set of input to output values. The target functions
which we are looking for are described by (1) and (2).

f(x) = x4 + x3 + x2 + 3 with x ∈ [−1, 1] (1)

100

200

300

400

500

600

700

800

900

1000

1100

50 100 150 200 250 300

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of fitness cases

Fig. 7. Solving the regression problem using CPU and GPU

TABLE III
Parameters of example 1

Target function f(x) = x4 + x3 + x2 + 3
Terminals (variables) one single variable x
Terminals (constants) Constants randomly generated in

[-50,+50]
Non Terminals (operations) +, *, /, -, Ln, e,Pow, Sqrt

Fitness The sum of errors

f(x) = πx4 − x3 + 2.5x2 with x ∈ [−1, 1] (2)

Each of these benchmarks is tested 30 times with
50, 100, 150, 200, 250 and 300 fitness cases with the
parameters which are described in “TABLE III” and
“TABLE IV”.

In the first experience “Fig. 6”, the LGP interpreter
described in “Algorithm 2” is implemented in CUDA and
used to evaluate a population of 500 genomes, each of

TABLE IV
Parameters of example 2

Target function f(x) = πx4 − x3 + 2.5x2

Terminals (variables) one single variable x
Terminals (constants) Constants randomly generated in

[-50,+50]
Non Terminals (operations) +, *, /, -, Ln, e,Pow, Sqrt

Fitness The sum of errors

Authorized licensed use limited to: Wikipedia. Downloaded on October 10,2024 at 18:48:42 UTC from IEEE Xplore.  Restrictions apply. 



them is represented by an array of 200 integers (this is the
worst case according to “TABLE II” where the phenotype
is a LGP of 200 instructions). The same population is
evaluated using a CPU as well. In this experience, the
CPU version of the interpreter had to perform each LGP
program subsequently. In such a way, the evaluation of
the population takes a very long time that influence the
GP performance as shown in “Fig. 7”. However, the GPU
version of the interpreter had not to perform each LGP
program subsequently, because every LGP is assigned to
a separated thread to be performed. In such a way, all the
genomes are performed at the same time which can yield
a speed up of 2–8.

IX. Conclusion
In this paper we show that it is advantageous to use the

graphics processor to parallelize the evaluations of linear
genetic programming individuals. We have presented a
data parallel approach for performing linear genetic pro-
gramming as a general purpose computing on graphics
processor to solve the problem of symbolic regression.

By using a linear rather than a non linear (tree based)
representation, the recursive calls are replaced by a condi-
tion test to select which operation that must be performed
in a given time step. This technique enabled us to run
genetic programming with mega populations actually on
the GPU. Thus, using this approach we believe that we can
make efficient experimentation with a mega population of
developmental systems since the linear representation of
individuals is more compact and more efficient than tree
based representation.
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