
A Study on Multimodal Genetic Programming
Introducing Program Simplification

Kei Murano
Ritsumeikan University

Shiga, Japan

is0284fv@ed.ritsumei.ac.jp

Shubu Yoshida
Ritsumeikan University

Shiga, Japan

is0242rv@ed.ritsumei.ac.jp

Tomohiro Harada
Ritsumeikan University

Shiga, Japan

harada@ci.ritsumei.ac.jp

Ruck Thawonmas
Ritsumeikan University

Shiga, Japan

ruck@is.ritsumei.ac.jp

Abstract—In this research, we introduce a program simplifi-
cation method into Multimodal Genetic Programming (MMGP)
and investigate its effectiveness on multimodal program opti-
mization benchmark. In recent years, multimodal optimization
that simultaneously acquires a global and multiple local op-
timum solutions is studied in evolutionary algorithms (EAs).
MMGP we proposed is an extension of genetic programming to
multimodal optimization that simultaneously acquires a global
and local optimum programs in a single run. However, since
MMGP divides the solution set to several clusters depending
on a tree similarity measurement, some programs cannot be
assigned to appropriate cluster when a redundant subtree is
generated in the optimization process. To overcome this problem,
this research introduces a simplification method of a program
into MMGP to remove redundant subtrees and appropriately
calculate similarity of programs. The experiment that compares
MMGP with and without the simplification method is conducted.
The experimental result reveals that the simplification does not
significantly improve the search ability of MMGP because the
simplification does not much affect the optimization process of
MMGP on the benchmark problem used in this research.

Index Terms—genetic programing, simplification, multimodal
optimization

I. INTRODUCTION

In recent years, multimodal optimization that simultane-

ously acquires a global and multiple local optimum solutions is

studied in the evolutionary algorithm (EA) domain. The local

optimum solution has a lower (worse) fitness than the global

one, but it is a solution that is optimal in the local search

region. Our previous research proposed Multimodal Genetic

Programming (MMGP) [2], which introduces the concept of

multimodal optimization into genetic programming (GP) [1].

In MMGP, programs or mathematical expressions, which

are represented as a tree structure, are optimized as same as

GP and MMGP aims to simultaneously acquire a global and

local optimum programs. To accomplish multimodal search

in GP, MMGP divides population (set of solutions) into a

several clusters based on the similarity of programs calculated

according to a tree similarity, and optimization is performed

for each cluster.

However, in MMGP, since a tree similarity is used for

clustering the population, the similarity of programs is not

properly evaluated if a redundant subtree (e.g., x − x) is

generated in the process of optimization. In order to solve this

problem, this paper applies a simplification mechanism [3]

to remove redundant subtrees of programs to MMGP. In the

simplification in GP, the tree structure of the program is

scanned from the terminal node, and if a redundant subtree

is found, the simplification is applied to the root node. Finally

the simplification method outputs a simplified program.

In order to analyze the influence of the simplification

in MMGP, this paper compares MMGPs with and without

the simplification on the benchmark problem of multimodal

program optimization proposed in the previous research. In

this paper, two methods are examined as MMGP with the

simplification. The first method is to apply the simplification

to all programs generated by genetic operations and evolve

simplified programs. The second one is, although the simplifi-

cation is applied when calculating tree similarity, optimization

is performed by not simplified programs.

The remaining of this paper is as follows. Section II

describes overview of GP and multimodal optimization. Sec-

tion III explains multimodal genetic programming, MMGP,

proposed in the previous paper. Section IV proposes MMGP

with the simplification method, and Section V conducts the

experiment that compares the conventional and proposed

MMGPs and discusses its result. Finally, Section VI describes

the summary of this paper and future works.

II. RELATED RESEARCH

A. Genetic Programing (GP)

GP [1] is an extension method of Genetic Algorithm

(GA) [5] invented by John Koza. GP handles mathematical

equations and programs as optimization targets. In GP, a

solution is expressed by using a tree structure. This makes

it possible to express a solution with structure such as mathe-

matical formulas and program codes which is hardly expressed

with a linear chromosome used in GA. Figure 1 shows an

example of a tree structure expressing a mathematical formula

(2×(x−x)). This tree structure consists of operators (“×” and

“−” in the figure), variables (“x” in the figure) and constant

value (“2” in the figure).

B. Multimodal optimization problem

Multimodal optimization problems do not only aim to obtain

a global optimal solution but also obtain all local optimal

solutions simultaneously. A local optimal solution is defined

as an optimal solution in a local search region. Figure 2

109

2018 Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium
on Advanced Intelligent Systems

978-1-5386-2633-7/18/$31.00 ©2018 IEEE
DOI 10.1109/SCIS-ISIS.2018.00029

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:49 UTC from IEEE Xplore. Restrictions apply.

Figure 1: An example of a tree structure used in GP

Figure 2: An example of multimodal optimization problem

shows an example of a multimodal optimization problem. In

Fig. 2, the vertical axis represents fitness, and the horizontal

axis represents search space. Higher fitness indicates better

solution. In this figure, since the solution indicated by the red

circle has the highest fitness in the whole search space, this is

the global optimum solution. While the solutions indicated by

the blue circle have inferior fitness to the global optimum one

but they have the best fitness in the local search region. For

this, these solutions are defined as local optimal solutions.

III. MULTIMODAL GENETIC PROGRAMMING (MMGP)

Multimodal GP (MMGP) our previous research [2] pro-

posed is an extension of GP to multimodal optimization.

MMGP can acquire a global and local optimal programs

simultaneously by dividing a population into several clusters

by clustering using the similarity of a tree structure as a

program expression. Optimization of MMGP is performed for

each cluster, thereby each different structure of program is

searched separately while maintaining multimodality.

In the following subsection, a benchmark problem of multi-

modal program optimization proposed in [2] is expressed, and

then, the algorithm of MMGP is described.

A. Multimodal program optimization problem

In this paper, we use a benchmark problem of the mul-

timodal program optimization problem proposed in the pre-

vious study [2]. This benchmark problem has four variables

x, y, z, w as inputs and is defined as a symbolic regression

problem based on input-output values given by the following

equation:

f(x, y, z, w) = x2 + y2, (1)

z = (x+ y + α)2 + δ, (2)

w = α2/2 + xy + xα+ yα+ δ, (3)

where α is a constant and δ is the error value given to the

variables z and w. If δ is 0, this equation is reconstructed as

follows:

f(x, y, z, w) = x2 + y2 (4)

= z − 2w, (5)

From Eq. (1), given input-output values can be expressed by

Eq. (5) using variables z and w instead of variables x and

y. If δ is not equal to 0 and an error is added to z and w,

the output value calculated by Eq. (5) is considered as a local

optimal solution because output values differ from the correct

ones given by the global optimum one expressed by Eq. (1)

due to error values. That is, when δ = 0, z − 2w and x2 + y2

have the same calculation result. However, when δ �= 0, the

calculation result of z−2w is a little different from the one of

x2 + y2, so that its accuracy decreases and it can be regarded

as a local optimal solution.

B. Algorithm of MMGP

Algorithm 1 shows the pseudo code of MMGP. In Al-

gorithm 1, Pg denotes the population of gth generation.

Cg denotes the clustered population of the gth generation

and Ci
g denotes the ith cluster of Cg . rand(a, b) gener-

ates random value from a to b. tournament(C) selects

one solution from C by using tournament selection, while

negative_tournament(C) selects one solution from C
by using negative tournament selection where one worst solu-

tion is selected from two randomly selected solutions from C.

crossover(p1, p2) and mutation(p) conduct crossover

and mutation operators, simultaneously. clusterint(P)
divides a population P into several clusters.

In MMGP, new individuals are generated from lines 5 to

18. In line 11, crossover is performed on the selected two

individuals. In line 14, mutation is performed on the selected

individual. In the crossover, parent p1 is selected from a certain

cluster Cg and another parent p2 is selected from randomly

selected cluster Cr. According to this selection, individuals

can be locally optimized within each cluster while evenly

referring to all the clusters. If the partner solution of crossover

is selected from the same cluster, it is hard to search a wide

range of search space and there is a high possibility to loss

opportunity to find local optimal solution. In the mutation,

a parent is selected from the cluster Ci. Next, in line 20,

clustering is performed based on the similarity calculation by

Rui et al. [4]. The hierarchical clustering is used in MMGP

and the population is divided until the minimum similarity of

clusters becomes less than a certain threshold d (see detail in

[2]). Using the current population Pg and the new population

group P i
g , individuals with lower evaluation values are deleted

until the population returns to the original population size in

lines from 24 to 32. At this time, in order to prevent the

individuals in the cluster from disappearing, limit the number

of individuals in each cluster not to be less than half, or not

less than 1. These processes are repeated until the number of

generations reaches to the maximum one.

110

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:49 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 A flow of multimodal GP

1: P0 ← random initialization
2: C0 ← clustering(P0)
3: for g = 0 to G do
4: P ′

g ← ∅
5: for i = 1 to |Cg| do
6: for j = 1 to |Pg|/|Cg| do
7: if rand(0, 1) < crossover probability then
8: p1← tournament(Ci

g)
9: r ← randInt(0, |Cg|)

10: p2← tournament(Cr
g)

11: o← crossover(p1, p2)
12: else
13: p← tournament(Ci

g)
14: o← mutation(p)
15: end if
16: P ′

i ← P ′
g ∪ {o}

17: end for
18: end for
19: Pg+1 ← Pg ∪ P ′

g

20: Cg+1 ← clustering(Pg+1)
21: for i = 1 to |Cg+1| do
22: Li ← max(1, |Ci

g|/2)
23: end for
24: while |Pg+1| > |Pg| do
25: for i = 1 to |Cg+1| do
26: if Pg+1 == |Pg| ∨ |Ci

g+1| ≤ Li then
27: break
28: end if
29: p← negative_tournament(Ci

g+1)
30: Ci

g+1 ← Ci
g+1\{p}

31: end for
32: end while
33: end for

IV. PROPOSED METHOD

In the previous MMGP, clustering based on tree structure

similarity plays an important role in order to acquire global

and local optimum solutions simultaneously. However, when

redundant subtrees (e.g., x − x) is included in a program,

an appropriate similarity of programs can not be calculated,

and a program including redundant subtrees is not assigned

to appropriate cluster. Specifically, programs having similar

functions except for including redundant subtrees are clas-

sified into different clusters, or programs having completely

different functions are classified into the same cluster due to

redundant subtrees. For example, considering programs like

(x2 + y2) + (x− x) and (z − 2w) + (x− x), these programs

are the global and local optimal program in the benchmark

shown in Section III-A, so that they should be classified into

different clusters to maintain both of them. However, due to

the redundant subtree x− x, the similarity of these programs

increases, and they may be classified into the same cluster.

Hence, it is possible to remove the local optimal program

Table I: Translation rules of simplification presented in [3]

Precondition Effective Result
if< 0(a,B,C) → B if a < 0, else C
if< 0(A,B,B) → B
a+ b → c, c = a+ b
a− b → c, c = a− b
a× b → c, c = a× b
a÷ b → c, c = a÷ b
a+ (b+ c) → c+ C, c = a+ b
a+ (b− c) → c− C, c = a+ b
a− (b+ c) → c+ C, c = a− b
a− (b− c) → c− C, c = a− b
a× (b× c) → c× C, c = a× b
a× (b÷ c) → c÷ C, c = a× b
a÷ (b÷ c) → c× C, c = a÷ b
a+ (B + c) → b+B, b = a+ c
a+ (B − c) → b+B, b = a− c
a− (B + c) → b−B, b = a− c
a− (B − c) → b−B, b = a+ c
a× (B × c) → b×B, b = a× c
a× (B ÷ c) → b×B, b = a÷ c
a÷ (B ÷ c) → b÷B, b = a× c
A÷ 1 → A
A÷A → 1
0÷A → 0
0×A = A× 0 → 0
A× 1 = 1×A → A
A+ 0 = 0 +A → A
A− 0 → A
A−A → 0

A× 1
B

= 1
B
×A → A

B
A× B

A
= B

A
×A → B

(z − 2w) + (x− x) from the population because it has lower

fitness than (x2 + y2) + (x− x) assigned to the same cluster.

In order to solve this problem, we introduce a simplification

method of program to remove redundant subtrees in MMGP.

A. Simplification

The purpose of the simplification of the program is to

obtain a smaller program by removing redundant subtrees

included in it. For example, subtrees such as x − x and

y/y can be simplified to 0 and 1, respectively. Although

various simplification methods have been proposed by many

researchers, this research employs a simplification method

proposed by Wong et al. [3] that is based on several translation

rules defined in advance.

Table I shows the translation rules of simplification pre-

sented in [3]. In Table I, constants are represented by low-

ercase letters (i.e., a, b, c), while variables and subtrees are

represented by uppercase letters (i.e., A,B,C). “Precondition”

column indicates a subtree before applying rule, while “Effec-

tive Result” indicates a simplified result after rule application.

This simplification method is firstly applied to terminal nodes

of the tree structure. If a rule in Table I that can be applied

is found, this rule is applied to a subtree. If all nodes are

checked and there are no applicable rules, the simplification

method completes and the simplified tree is outputted.

B. MMGP with program simplification

In this paper, the program simplification proposed by Wang

et al. is introduced into MMGP to realize appropriate cluster-

ing and to improve the search performance of MMGP. As the

111

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:49 UTC from IEEE Xplore. Restrictions apply.

Table II: Parameters

Maximum depth 4, 8
Threshold of clustering (d) 0.5, 0.6, 0.7, 0.8, 0.9
Maximum generations 500
Population size 500
Crossover probability 0.9

timing of introducing the simplification, this study examines

two methods. The first method is to apply simplification to

all programs during the optimization process and to evolve

simplified program. This method is named as MMGP with

full simplification (MMGP-FS in short). The second method

is to apply simplification only when calculating the similarity

of programs for clustering and to optimize programs without

the simplification. This method is named as MMGP with

simplification for clustering (MMGP-SC in short).

V. EXPERIMENT

A. Settings

In order to investigate the effectiveness of the simplification

method in MMGP, this paper conducts an experiment using

the multimodal program optimization problem presented in

Section III-A. In the experiment, we compare MMGP with and

without the simplification, and two approaches of introduction

of the simplification, MMGP-FS and MMGP-SC.

Table II shows the parameter settings used in this ex-

periment. The maximum depth of the program tree is set

as 4, which is employed in the previous research [2], and

8, which allows to generate more complex programs. In

MMGP, since the result of MMGP depends on the thresh-

old d for terminating clustering, we compare with thresh-

old d = {0.5, 0.6, 0.7, 0.8, 0.9}. 20 independent trials are

performed and the number of generations is set to 500

generations. The population size is 500, while the crossover

probability is 0.9. Four variables x, y, z, w, four function nodes

+,−,×,% (protected devision), and the real constant value c
are used.

The training data has 121 input-output pairs calculated by

variables of x and y by increasing them from -1 to 1 with

step 0.2, while α in Eqs. (2) and (3) is 2. δ is randomly given

depends on the normal distribution with the mean of 0 and the

standard deviations of 0.01. The following equation is used as

the fitness function:

fitness =
D∑

i=1

|resulti − targeti| , (6)

where D is the number of the training data (D = 121), resulti
is the calculation result of the program for the ith input value,

and targeti is the correct output value of the ith training data.

Depending on the value of the standard deviation, the fitness of

the local optimal solution is about 20, 2, and 0.2, respectively.

B. Evaluation criteria

In order to evaluate whether the proposed method and

MMGP can acquire the global and local optimal solutions

simultaneously, this experiment confirms the best individual

Table III: Success rate of solution (δ = 0.01 Depth4)

MMGP MMGP-FS MMGP-SC
d global local global local global local
0.5 100% 100% 100% 100% 100% 100%
0.6 100% 100% 100% 100% 100% 100%
0.7 100% 100% 100% 100% 100% 100%
0.8 100% 100% 100% 100% 100% 100%
0.9 100% 90% 100% 80% 100% 90%

Table IV: Success rate of solution (δ = 0.01 Depth8)

MMGP MMGP-FS MMGP-SC
d global local global local global local
0.5 100% 100% 100% 100% 100% 100%
0.6 100% 100% 100% 100% 100% 100%
0.7 100% 100% 100% 100% 100% 85%
0.8 100% 95% 100% 100% 100% 70%
0.9 100% 60% 100% 80% 100% 40%

when one of the variables is restricted. Specifically, the best

fitness among programs in the population that do not contain

one variable of x, y, z or w obtained by each trial is confirmed.

For example, in the case where the local optimal solution

shown in Eq. (5) is acquired, solutions with lower (better)

fitness can be found even if the variable x or y is restricted.

In other words, when the variable x or y is restricted, the

best fitness represents the one of the local optimal program,

while when the variable z or w is restricted, the best fitness

represents the one of the global optimum program.

C. Experimental result

Tables III and IV show the success rate of finding the

global and local optimum solution in MMGP with and without

simplification when the maximum depth of programs is 4 and

8. In these tables, “d” column indicates the difference of the

threshold of the clustering.

From these results, it can be indicated that the global and

local optimum solution can be acquired at a high rate by

appropriately setting the threshold d in all methods. Especially,

when d = 0.6, 0.7 all method achieve the success rate of

100%. On the other hand, when d = 0.8, 0.9, it is found

that the success rate of the local optimum solution decreases.

In particular, it can be seen that MMGP-SC which applies

simplification only at the clustering shows that the success

rate of the local optimal solution is lower than other methods.

Next, Figs. 3, 4 show the transition of the best fitness with-

out each variable. The vertical axis shows the fitness, while

the horizontal axis shows the generation. In these figures, the

results of the clustering threshold d = 0.6 are shown. The

light blue, orange, gray, yellow, and blue lines represent the

results with no variable restriction (No restriction), restricting

x (without x), restricting y (without y), restricting z (without

z), and restricting w (without w), respectively.

The reason why the result of the threshold d = 0.6 is

only shown in this paper is that the speed of discovering the

local optimal solution is relatively faster than other thresholds.

From these figures, the higher the threshold, the slower the

speed of finding the local optimal solution, and the further the

MMGP-SC when the threshold d = 0.6 is slower than the

112

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:49 UTC from IEEE Xplore. Restrictions apply.

(a) Original MMGP (d = 0.6) (b) MMGP-FS (d = 0.6) (c) MMGP-SC (d = 0.6)

Figure 3: Transition of the best fitness Without each variable (Maximum depth = 4). Light blue: No restriction. Orange: Without

x. Gray: Without y. Yellow: Without z. Blue: Without w.

(a) Original MMGP (d = 0.6) (b) MMGP-FS (d = 0.6) (c) MMGP-SC (d = 0.6)

Figure 4: Transition of the best fitness Without each variable (Maximum depth = 8). Light blue: No restriction. Orange: Without

x. Gray: Without y. Yellow: Without z. Blue: Without w.

other methods. However, in all other cases, there is not much

difference in the transition, and it can be seen that the local

optimum solution can be acquired.

From these results, it is revealed that the simplification does

not significantly affect the search performance of MMGP. In

addition, it is shown that the search performance of the local

optimal solution significantly decreases when the clustering

threshold is set large value.

D. Discussion

The experimental results showed that the program simplifi-

cation does not significantly affect the search performance of

MMGP. In this section we will discuss this reason. Figure 5

shows the number of clusters during the search process. In

Figure 5, the vertical axis represents the number of clusters,

while the horizontal axis represents the number of generations.

On the other hand, Figure 6 shows the number of simplifi-

cations applied per generation. In Figure 6, the vertical axis

represents the number of simplifications applied, while the

horizontal axis represents the number of generations. In both

figures, light blue color indicates the result of MMGP without

simplification, orange color indicates that of MMGP-FS, while

gray color indicates that of MMGP-SC. In both cases, the

results are shown when the maximum depth is 8, and the

threshold d = 0.6.

In the following subsections, we discuss the results of two

proposed method separately.
1) MMGP-FS: From Figure 5, it can be seen that, by in-

troducing simplification, the number of clusters of MMGP-FS

is smaller than that of conventional MMGP. This is because,

in the conventional MMGP, programs that contain redundant

subtrees have possibility to have low similarity among them,

and they are possibly classified into the different clusters. On

the other hand, in MMGP-FS, such programs are simplified

every generations and are classified into the same cluster. By

this, the number of clusters in MMGP-FS decreases rather than

the conventional MMGP.

However, from Figure 6, it is confirmed that the simplifi-

cation of the program is applied mostly at the initial stage

of the evolution process (especially before 10th generation).

After that, the simplification is hardly applied. Specifically,

the simplifications are applied to about 25 individuals out

of 500 ones generated every generation, which is about 5%

per one generation. From this analysis, it is indicated that

the simplifications affects the search progress only in the

initial stage of the search in MMGP-FS. This causes that no

difference is found between MMGP-FS and the conventional

one.
2) MMGP-SC: Similar to MMGP-FS, MMGP-SC, which

applies simplification only in the clustering phase, also de-

creases the number of clusters at the beginning of the search

113

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:49 UTC from IEEE Xplore. Restrictions apply.

Figure 5: The number of clusters in d = 0.6. Light blue:

Original MMGP, Orange: MMGP-FS. Gray: MMGP-SC

Figure 6: The number of applications of simplification in d =
0.6. Orange: MMGP-FS. Gray: MMGP-SC

as shown in Fig. 5. However, the number of clusters increases

as the search progress proceeds. On the other hand, the number

of simplifications has been in the range of 150 to 200 from

Fig. 6. This is because the simplification is applied only in

the clustering phase but programs are evolved as the structure

without being applied the simplification.

The reason why there is no big difference in optimization

performance compared with the conventional MMGP is that

the simplification does not significantly affect the result of

survival selection or genetic operation in MMGP. For example,

in the case where there are two programs of a program x2+y2

and a program x2 + y2 + z− z including a redundant subtree,

these programs are not classified into the same cluster in the

conventional MMGP. Both of them have high fitness and there-

fore have a high probability of survive in the next generation.

On the other hand, in MMGP-SC, these programs are classified

into the same cluster, but since both have high fitness, they are

not eliminated. Additionally, in genetic operations (especially

crossover), parent individuals are selected from a target cluster

and a randomly selected cluster. According to this selection

method, if the number of clusters is large, the result of a

crossover operator is not so different whether two programs

with and without redundant subtree are classified into the same

cluster or not. From this, it is considered that no significant

difference was found between the results of the conventional

MMGP and MMGP-SC.

VI. CONCLUSION

This paper introduced the simplification method to MMGP

in order to solve the problem that the similarity of tree struc-

tures (programs) is not properly evaluated due to redundant

subtrees. Specifically, this paper proposed two approaches of

introduction of the simplification, one applies the simplifica-

tion to all programs and evolve simplified programs (named

as MMGP-FS), while another applies the simplification only

when calculating similarity of programs in the clustering

process and evolves programs before being simplified (named

as MMGP-SC).

To analyze the influence of the simplification in MMGP,

the experiments were conducted on the multimodal program

optimization benchmark problem proposed in the previous

research. In the experiment, MMGPs with and without the

simplification are compared. The experimental results showed

that there is no big difference in the search performance among

all MMGP variants. This is because in MMGP-FS, simplifica-

tion is hardly applied except for the initial generation, and the

influence is small. On the other hand, in MMGP-SC, clustering

results due to simplification have little influence on survival

selection and genetic operation results, especially when the

number of clusters is large.

In this experiment, it was clarified that the introduction

of simplification for deleting redundant subtrees has a small

influence on the search performance of MMGP. However,

this result may change depending on genetic manipulation

changes and characteristics of multimodal program optimiza-

tion problem dealt with. Therefore, from now on, we will

analyze the influence of genetic operations and the effect of

simplification, and apply MMGP to more complex multimodal

program optimization problems other than benchmark problem

used in this research.

REFERENCES

[1] John Koza, “Genetic Programming On the Programming of Computers
by Means of Natural Selection,” MIT Press, 1992.

[2] Shubu Yoshida, Tomohiro Harada, Ruck Thawonmas, “Multimodal Ge-
netic Programming by Using Tree Structure Similarity Clustering,” IEEE
10th International Workshop on Computational Intelligence and Applica-
tions (IWCIA2017), pp. 85-90, 2017.

[3] Phillip Wong and Mengjie Zhang, “Algebraic simplification of GP pro-
grams during evolution,” GECCO ’06 Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pp. 927-934, 2006.

[4] Yang Rui, Panos Kalnis, and Anthony KH Tung, “Similarity evaluation
on tree-structured data,” Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, ACM, pp. 754-765, 2005.

[5] David E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning,” Addison-Wesley Long man Publishing Co., Inc.,
Boston, MA, USA, 1989.

114

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:27:49 UTC from IEEE Xplore. Restrictions apply.

