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Abstract-The choice of which representation to use when 
applying genetic programming (GP) to a problem is vital. 
Certain representations perform better than others and thus 
they should be selected wisely. This paper compares the three 
most commonly used GP representations for binary data 
classification problems, namely arithmetic trees, logical trees, 
and decision trees. Several different function sets were tested to 
determine which functions are more useful. The different 
representations were tested on eight data sets with different 
characteristics and the findings show that all three 
representations perform similarly in terms of classification 
accuracy. Decision trees obtained the highest training accuracy 
and logical trees obtained the highest test accuracy. In the 
context of GP and binary data classification the findings of this 
study show that any of the three representations can be used 
and a similar performance will be achieved. For certain data 
sets the arithmetic trees performed the best whereas the logical 
trees did not, and for the remaining data sets the logical tree 
performed best whereas the arithmetic tree did not. 

Keywords-data ciassficaition, genetic programming, data 
mining, optimization 

I. INTRODUCTION 

When implementing a genetic programming (GP) [15] 
algorithm for data classification the first thing a researcher 
has to consider is the representation. There are a vast number 
of existing representations which have been studied in the 
past however there exists three major ones, arithmetic trees, 
logical trees, and decision trees. GP is inspired by Darwin's 
theory of evolution. Each program is represented as an 
individual in a population. The individuals are encoded by a 
certain representation. GP in the domain of data 
classification has been successful. Researchers have been 
able to create models which obtain high classification 
accuracies [6, 18] .  In the review of [18] several research 
works were surveyed for each of the three representations. 
There were a total of 24 studies for GP and binary 
classification using arithmetic trees, and a total of 11 studies 
which made use of logical trees. There were also a vast 
number of studies which used decision trees. Similarly in 
the review of [6] there were a vast number of papers 
surveyed for each of the three representations. In the 
previous studies researchers provided no justification for 
their choice of representation. This leads to an immediate 
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question, why was that representation selected over another? 
Does a particular representation result in models which 
obtain higher accuracies? These questions are the rationale 
behind this study. 

This study compares the three major representations in 
the context of GP and binary data classification. Different 
function sets were used to determine which combination of 
functions would yield better results. The representations 
were tested on eight publicly available data sets. 

The rest of the paper is organized as follows. Section II 
presents the rationale for this research. This is followed by 
section III which presents the relevant literature and a 
description on how each representation is investigated in this 
study. Section IV describes the experimental setup. The 
results are presented and discussed in section V, and finally 
section VI concludes this paper. 

II. RATIONALE 

Researchers have successfully used GP to solve data 
classification problems using either arithmetic trees, 
decision trees, or logical trees. There is no doubt as to the 
capabilities of GP in the domain of data classification to 
create models which can obtain high accuracies. However 
there is a research gap when it comes to a comparison of GP 
representations for binary data classification and is the 
rationale driving this study. A new researcher entering the 
field of GP and binary data classification will have to decide 
which representation to use. Such a decision can be difficult 
to make without a comparison of the available 
representations. In previous studies researchers do not state 
a reason for their choice of representations. In certain cases 
authors will state that a representation was used because of 
its apparent capabilities of handling the data. Such a reason 
can be seen in [12] whereby they argue that since most data 
sets consist of numerical data it is appropriate to make use 
of arithmetic functions rather than Boolean functions. The 
objectives of this study are listed as follows: 

• Implement the arithmetic tree, decision tree, and the 
logical tree representations for GP and binary data 
classification. 

• Compare their performance in terms of 
classification accuracy and the size of models. 
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• To determine if a particular representation results in 
a higher classification accuracy when compared to 
the others. 

This will enable new researchers to have a greater 
understanding of which representation is more suitable for 
binary data classification. 

III. GP REPRESENT A nONS FOR OAT A CLASSIFICA nON 

A. Arithmetic trees 

Arithmetic trees represent mathematic expressions which 
can discriminate between classes. In the case of binary 
classification one tree can discriminate between two classes 
using a threshold value. The function set consists of 
mathematic operators such as +, -, *, I, log, tan, expo Leaf 
nodes represent attributes whereas the non-left nodes are the 
mathematical operators. A tree represents a single 
mathematical expression which outputs a single real valued 
number. The output is then compared to a threshold value. 
Assume a classification problem has classes "a" and "b". 

If the output is less than the threshold value, then the class 
value "a" is the resulting classification value for that 
particular tree. If the output is greater than or equal to the 
threshold value, then the class value "b" is the classification 
value. Thus in this representation the tree does not directly 
encode the class value. Figure 1 illustrates an example of a 
GP arithmetic tree for data classification. In the example 
"x20" represents attribute 20. There are two mathematical 
functions in this example, the addition and multiplication 
operators. The tree represents the following expression (x20 
* x4) + xIS. 

Figure 1. Arithmetic tree representation for GP. 

Etemadi et al. [4] apply a different approach to a binary 
classification problem. A 0/1 rounding threshold with a 
rounding threshold value of 0.5 was applied. When a tree 
outputted a value greater of equal to the rounding threshold 
the instance of data was classified as bankrupt firm, 
otherwise the instance was classified as non-bankrupt firm. 
The function set consisted of {+, -, *, A, NOT, L T} . The 
NOT operator has an arity of one and returns the result 
obtained by subtracting the argument from 1, and the L T 
operator has an arity of 2 and returns a value of 1 if the first 
argument is smaller than the second variable, otherwise the 

operator returns O. The researchers do not mention how the 
rounding threshold value of 0.5 was obtained. 

Gray et at. [5] make use of 20 Varimax scores as 
terminals to evolve trees to classify brain tumors. The class 
values + 1 and -1 used to represent non-meningioma and 
meningioma instances. The function set consisted of {+, -, 
*, I, myAND, myOR, myNOT, tan} where the logical 
operators returns either 0 or 1 based on their logical 
evaluation. The researchers point out the tan function was 
not present in the best individual and that only three 
functions were present. A threshold value of 0 was used to 
determine the class of an individual. A positive output 
corresponded to + 1, and a negative output corresponded to -
l. 

A simple threshold value of 0 is used in [20] to 
distinguish between the two classes for binary classification 
problems. In addition a small function set consisting of {+, -
, *, I, if} was used. Hennessy et al. [9] investigate the use of 
GP for the binary classification task of determining if a 
solvent is present or absent in a mixture of solvents in a 
Raman spectra. The data set used consisted of 1024 
attributes and only 24 instances. Each GP individual was 
represented by an arithmetic expression consisting of only 
{+, -} operators. A threshold value of 0 was used to map the 
output of an individual to either presence, or absence of a 
solvent. 

In our study a threshold value of zero is used similarly to 
other methods found in previous studies. An iffunction was 
added into the function set to allow for conditional checks. 
The function takes three parameters. The first is a Boolean 
check and this check is achieved using either the less than 
equality or the greater than equality operator. The GP 
algorithm is free to create any sub-tree for the first 
parameter provided the top most node is an inequality node. 
If the first parameter results in a value of "true", then the 
second branch is traversed, and if the first parameter results 
in a value of "false" the third branch is traversed. The if 
function has been included into the function set in previous 
studies [17, 20, 21] . However no comparisons have been 
made in order to determine the usefulness of the function. 
Certain studies [22, 23] do not include the iffunction. 

B. Decision Trees 

Decision trees do not represent an expression like arithmetic 
trees or logical trees do. Decision trees represent a path from 
the root node to one leaf node. Each node within the tree 
represents one attribute and the leaf nodes represent one 
class value. When a decision tree is traversed a choice as to 
which branch will be visited next is determined by the 
attribute. Figure 2 illustrates a simple decision tree. The root 
node is the attribute temperature. Thus for any instance in a 
data set if the temperature value is hot, the left node is 
visited next, if the temperature value is cold, then the right 
node is visited next. The class values are directly encoded 
into the tree. In figure 2, when the left branch is visited a 
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leaf node is reached and the classification output value is 
"class 1". 

Tur and Guvenir [3] used genetic programming to evolve 
decision trees. The fitness function used considers both the 
size in terms of the number of nodes and the accuracy of the 
classifier, furthermore the function makes use of weights to 
select which of the size or accuracy has a greater impact on 
the fitness of a tree. The method was applied to a single 
binary classification problem. Koza [14] presents how GP 
was used to create decision trees in solving the Saturday 
Morning problem presented by Quinlan. 

Figure 2. Decision tree representation. 

The attribute in figure 2 is categorical and in such a case 
a branch is created for each possible value for the attributes. 
However when dealing with continuous data such an 
approach is infeasible as this will result in trees have a large 
number of branches. This will create a large program space 
and will hinder the performance of the GP algorithm. 
Discretization is used to overcome this problem as is 
defmed as the process of transforming a continuous attribute 
into a discrete one with a finite number of intervals [7, 19] . 
In this study an adaptive discretization technique is used to 
create decision trees which can handle continuous data. 
Adaptive discretization was introduced by Bacardit and 
Garrell [24] . Their proposed method was tested on eight 
data sets. The adaptive approach obtained higher 
classification accuracies on six data sets when compared to 
a simple uniform width interval approach. Bacardit and 
Garell further improved the research in [25] . When a node is 
created the GP algorithm randomly creates two intervals. 
Figure 3 presents an example of two randomly created 
intervals for some attribute, in this case the attribute data 
ranged from 0.0 to 6.0. The first interval ranges from [0.0 to 
3.25) and the second interval from [3.25 to 6.0] . The GP 
algorithm is free to create any two random intervals. 

I interval 1 intervol2 
0.0 2.0 4.0 6.0 

(min value for attribute) (max value for attribute) 

Figure 3. Illustrating two randomly created intervals 

A genetic operator was implemented in order to evolve 
the intervals dynamically within the GP evolution. At each 
generation when the tournament selection is applied to 
obtain a parent, a random node is then selected from that 
tree. The two intervals for that particular node are randomly 
created ten times. If the classification accuracy of the tree is 
improved during any of those ten attempts then this process 
is stopped and the genetic operator inserts the modified tree 
into the population. 

C. Logical trees 

Logical trees represent a logical expression which is 
constructed from several logical operators. The function set 
consists of the logical operators and is typically made up of 
the AND, OR, and the NOT operators. Inequality operators 
are included into the function to create a comparison 
between values and return a Boolean value. Similarly to 
arithmetic trees this representation does not directly encode 
the class values into the tree. 

Kuo et al. [1] evolve tree structures using GP. The fitness 
function makes use of the accuracy and the complexity the 
tree. The complexity of a tree is defined as the ratio of the 
nodes in the tree compared to those in the initial trees. The 

function set consisted of {AND, OR, NOT, >, ? , <, :S, If­
Then, If-Then-Else} . The terminals consisted of the values 
that each attribute could take as well the class values. Two 
operators were developed to resolve the issues of 
redundancy and subsumption. The eliminator operator dealt 
with identifying sub-trees within a single tree which encode 
the same rule, if two sub-trees were found then the one 
deepest in the tree was removed. The merge operator 
attempted to remove rules that subsumes another by 
examining if two rules had the same classes and if the 
features of one was a subset of the other. The proposed 
method was applied to a binary classification problem and 
was compared against the performance of C5.0 and a 
standard GP algorithm. The performance of the proposed 
method outperformed the other two. 

De Falco et al. [10] investigate the use of classification 
rules by making use of trees. The GP algorithm creates an 
initial population and evolves the population over several 
generations. This is repeated until a classifier is found for 
each class. The function set consisted of {AND, OR, NOT, 

<, :S;, >, ?, IN, OUT} . The IN and OUT functions take 3 
arguments and are used to represent internal and external 
intervals. The terminal set consisted of the attributes. The 
authors developed a distance measure to resolve instances 
which resulted in a clash when an instance of data was 
allocated to more than one class or in the case whereby an 
instance was not allocated to any class. 

Logical trees can be created for each class and a tree 
should output a true value for instances belonging to that 
class and a false values for those which do not belong to that 
class. Thus if there are two classes, the GP algorithm will 
result in two trees, one for each class. The shortcomings of 
this approach occurs when two trees output a true value for 
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a particular instance which means that the instance belongs 
to both classes. Similarly if two trees output a value of false 
for an instance then the instance belongs to neither of the 
two classes. When using such an approach of creating a tree 
for each class, a mechanism for dealing with clashes has to 
be incorporated. 

In this study a similar approach to the arithmetic 
representations was used. Assume a classification problem 
has classes "a" and "b". If a tree outputs a true value, then 
the classification output is class "a ", and if the tree outputs 
a false value then the output is class "b". This allows a 
single tree to discriminate between two classes in a similar 
manner to arithmetic trees. This approach also avoids the 
extra complexity of dealing with clashes. This proposed 
approach has not been investigated in previous studies. 

The terminal set consists of the attribute values. In this 
study random constant values were added to the terminal 
set. These random values were generated between the 
minimum and maximum value which exists in the training 
data which the GP algorithm takes in as input 

Figure 4 illustrates an example of a logical tree. In this 
example the tree first checks if x20 is less than x4. Then the 
tree checks if x8 is greater than x12. The OR operator is 
applied to the result of the two comparisons. 

Figure 4. Logical tree representation for GP. 

Typically inequality functions are used with this 
representation. A between function was proposed in order to 
allow an attribute to be compared to two values 
simultaneously. Figure 5 illustrates an example of the 
between node. 

Figure 5. The between GP operator for logical tree representations. 

The between function takes three parameters of which the 
first parameter is always an attribute and the other two can 
be attributes or constants. The function is defined as follows: 

Between (xl, yl, y2) = true 
false 

if yl:::;; xl :::;; y2, 
otherwise. 

A similar function to the between function was used by 
De Falco et al. [10]. They created two functions, IN and 
OUT which compare an attribute value with two range 
values. These functions also take three parameters. The OUT 
function checks if an attribute value is outside of the range of 
the two parameters. In this study the OUT function can be 
achieved when a NOT function precedes the between 
function. However in the study of De Falco et al. they do not 
determine whether or not these additional functions are 
useful in evolving classifiers. 

D. Additional representations 

There exist several other representations which are found in 
the literature. Jabeen and Baig [26] present a novel approach 
for dealing with mixed attributes for binary classification. 
The proposed method consists of a two layer approach, an 
outer layer and an inner layer. The outer layer conists of 
functions {AND, OR, NOT} and their terminals correspond 
to the inner layer trees. The researchers allow for two kinds 
of inner layers, one being a logical inner layer and the other 
an arithmetic inner layer. The logical inner layer consists of 
functions {AND, OR, NOT} and the terminals consist of the 

categorical attributes attached with an " = " or ""*" 

sign, thus a terminal could be C 1=' a' . The arithmetic 
inner layer makes use of {+, -, *, /} functions and the 
terminals correspond to the numerical attributes. The 
proposed method was tested on five datasets yielded better 
results than methods that use different approaches for 
handling mixed attributes. 

In the work of [27] , a two stage learning approach makes 
use of arithmetic expressions to create classifiers for classes 
within a dataset. A population of trees is created for each 
class. The first stage of their proposed method consists of 
creating the populations of trees for each class. In this stage 
the function set consisted of {+, -, /, *} and the terminal set 
consisted of the real attributes and an ephemeral constant. 
The second stage of the proposed method consists of 
creating a chromosome which corresponds to each classifier 
for all the classes. Thus if there are n classes, the 
chromosome has length n where each gene represents a 
classifier for each class. A new population of chromosomes 
is created in this stage by applying the tournament selection 
to the populations created in the first stage. The proposed 
method was tested on 5 datasets and achieved better results 
when compared to a binary decomposition method. 

IV. EXPERIMENTAL SETUP 

A. Experiments 

Five experiments were carried out in order to compare the 
three different represents but also to compare how certain 
elements of the function set impact the performance of the 
GP algorithm. Table I lists the five different experiments 
along with their function set and terminal set. The GP 
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algorithm is run several times on all the data sets, this is 
further discussed in the following section. The experiment 
using the "arithmetic tree with If' representation was 
performed to determine the usefulness of the if statement. 
Similarly the experiment using the "logical tree without 

Bet" representation was performed to investigate 
effectiveness of the between function. The GP algorithm 
was programmed in Java 6. Each GP run was executed on 
the CHPC's cluster [2] and was limited to 4 CPU cores per 
run. 

TABLET. FIVE DIFFERENT EXPERIMENTS TESTED. 

Representation Function set Terminal set 
Arithmetic tree I +, -, *, / 
Arithmetic tree with Attributes 
If 

+. -. *. I. if, <, > 

Decision tree Attributes Class values 

Logical tree I AND, OR, NOT, BET, 
<,> Attributes and 

Logical tree without AND, OR, NOT, <, > random constants 
Bet 

B. Data sets and model validation 

Table II presents the eight data sets which were used in this 
study. These data sets were selected due to their popularity 
in binary data classification research and because of their 
differences in characteristics. The climate model simulation 
crashes (Climate) and fertility data sets were selected due to 
their recent inclusion to the repository. These data sets were 
obtained from the UCI Machine Learning Repository [8] .  

TABLE II. CHARACTERISTICS OF THE DATA SETS. 

Data set Number of Number of Class balance instances attributes 
Climate 540 18 8.52/91.48 

Fertility 100 9 88.00/12.00 

Ionosphere 351 34 35.90/ 64.10 

Parkinsons 195 22 75.38/24.62 

Pima Indians 768 8 65.10/34.90 

Sonar 208 60 53.37/46.63 

Spectf 267 44 79.40/20.60 

WDBC 569 32 62.74/37.26 

In order to examme the success of the expenments and to 
remain consistent to methods found in the literature the 10-
cross fold validation [11, 13, 16] method was used. This 
involves separating the data into ten random folds of equal 
size. When the GP algorithm is run the first fold is used for 
testing and the remaining nine folds are used for training. 
The GP algorithm is run again this time with the second fold 
as a test set and once again the remaining folds are used for 
training. This is repeated in such a way that each fold is 
used exactly once for testing. When the data is separated 
into ten folds it is possible that some of the folds contain 
data which can impact the learning phase. For this reason 
the entire process is repeated five times. At each repetition 
the data is separated into ten new random folds. For each 
iteration exactly one fold is used for testing as described and 

in tum each fold is used as a test set once. On each of the 
data sets the GP algorithm was run a total of fifty times and 
each execution of the GP algorithm was run on a unique 
random seed. 

C. GP parameters 

The GP parameters used through all the experiments are 
listed in table III. These parameters were determined 
empirically through trial runs. Parameter tuning was 
performed by investigating different values for the 
population size, tournament selection size, maximum 
offspring size, and the maximwn nwnber of generations. 
The crossover and mutation rates were selected to be 70% 
and 30% respectively as those values are widely used in 
literature. Allowing the GP algorithm to run beyond 200 
generations did not necessarily improve the accuracy of the 
classifiers. Amongst the different initial popUlation 
generation methods, namely the full method and the grow 
method, it has been observed that in the existing literature 
across numerous application domains that the ramped half 
and half method results in a diverse initial population which 
permits the GP algorithm to potentially search the correct 
program space. 

TABLE Ill. GP PARAMETERS USED IN THIS STUDY 

GP Parameter Value 
Population Size 700 

Parent Selection Method Tournament selection, size: 7 

Maximum Initial Population Tree 
7 

Size 
Initial Population Generation 

Ramped half and half 
Method 

Maximum Offspring Size 7 

Crossover 70 

Mutation 30 

Maximum Number of Generations 200 

GP Control Model Generational model 

V. RESULTS AND DISCUSSION 

The 10 cross-fold validation results for the experiments are 
presented in table IV. From the five representations tested 
the arithmetic trees and logical trees without the between 

function are the two methods which obtained the highest 
results over several data sets. The arithmetic tree ranked 1 sl 

in four data sets and the logic tree without the between 
function ranked 1 S\ in three data sets. The arithmetic trees 
with the if function and the decision trees did not rank 1 S\ in 
any data set. The logical tree representation ranked 1 sl only 
in the Ionosphere data set. 

The results obtained by for the Ionosphere, Sonar, Pima 

and Fertility data sets were of interest. For those four data 
sets the arithmetic tree representation performed poorly in 
comparison to the performance of both the logical 
representations. The two logical representations obtained 
the highest accuracy for those data sets when compared to 
the other representations. 
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TABLE IV. CLASSIFICATION ACCURACY RESULTS (%) OF EXPERIMENTS FOR THE EIGHT DATA SETS. THE AVERAGE TEST RESULTS ARE PRESENTED. THE 
IO-CROSSFOLD VALIDATION WAS USED. VALUES IN BOLD REPRESENT THE BEST RESULT FOR A DATA SET. 

Representations Climate lono Park 
Train 97.42 95.83 91.99 

Arithmetic trees Test 94.33 88.71 86.70 
Size 26.88 35.56 29.12 

Train 97.43 95.97 92.24 
Arithmetic trees with 

Test 94.15 88.94 84.72 
if 

Size 28.42 37.10 33.12 

Train 96.64 98.06 89.85 
Logical trees Test 92.15 92.02 84.83 

Size 33.94 45.18 23.68 
Train 97.19 97.96 89.61 

Logical trees without 
Test 92.78 92.01 85.17 

between 
Size 37.72 41.90 21.04 

Train 96.86 96.42 95.31 
Decision trees Test 90.78 90.93 86.69 

Size 35.32 25.04 26.00 

However the complete opposite observation can be made 
for the remaining data sets. For the Spectj, WDBC, Climate, 

and Parkinson's data sets the arithmetic representation 
obtained the highest accuracy. This was not always the case 
for the arithmetic tree representation with the if function. 
For those four data sets the arithmetic representation 
obtained higher results than the arithmetic representation 
with the if function. Additionally when the if function was 
added the average tree size was always larger than without 
the if function. There was no data set whereby any of the 
arithmetic representations and logical representations 
obtained high results simultaneously. The results show that 
whenever one of the two arithmetic representations 
performed well, one of the logical representations would not 
perform as well. 

TABLE V. TRAINING AND TEST AVERAGE RESULTS (%) ACROSS ALL 
THE DATA SETS. 

Train Test 

Representations Accuracy Rank Accuracy 
Ran 

k 

Arithmetic trees 90.88 ± 1.30 5 83.30 ± 6.47 3 
Arithmetic trees 

91.63 ± 1.51 4 83.15±6.97 5 
with if 
Logical trees 92.24 ± 2.31 2 83.84 ± 6.70 2 
Logical trees 

92.00 ± 2.10 3 84.17 ± 6.72 1 
without between 
Decision trees 93.72 ± 1.49 1 83.22 ± 6.70 4 

There are no apparent characteristics within the data sets 
that would stand out as a possible reason for this difference 
in performance between the arithmetic and logical trees. 
Arithmetic trees perform well in the WDBC, Spectj, 
Parkinson's and the Climate data sets. These have attributes 
varying from 18 to 44 and the sizes of the data sets vary 
from 195 to 569. The minority class percentage varies from 

Pima Fertility Sonar Spectf WDBC 

74.94 95.20 87.84 86.62 97.20 
69.30 82.00 72.47 77.77 95.15 
41.08 26.64 30.28 33.16 25.72 
75.79 95.96 90.05 88.31 97.28 
69.29 82.20 74.30 76.87 94.76 
49.20 28.34 38.48 43.46 32.70 

77.94 94.09 94.04 91.96 95.32 
73.67 84.20 75.16 75.97 92.76 
31.90 28.36 50.36 45.72 30.84 
78.75 93.40 93.88 89.58 95.60 

73.96 84.80 75.28 76.83 92.51 
43.14 21.54 53.30 36.68 30.06 
81.92 95.87 94.70 91.15 97.52 
73.62 80.20 73.00 76.58 93.99 
51.24 19.76 47.60 38.60 28.84 

8.52 to 37.26. The logical trees achieve good results in the 
Sonar, Ionosphere, Fertility and Pima data sets. 

In those data sets the attribute values range from 8 to 60 
and the size of the data sets vary from 100 to 768. The 
minority class value ranges from 12.00 to 46.63. The 
characteristics of the eight data sets are very similar in 
nature and cannot be the cause for such a difference in 
performance. 

The decision tree representation performed well in certain 
data sets and poorly in others. There was no observable 
trend similar to that found with the arithmetic and logical 
representations. 

Decision trees worked well in both the Parkinson's and 
Pima data sets. The decision trees obtained a slightly lower 
performance to the best result on the Parkinson's data set by 
0.01%, and a lower performance to the best result for the 
Pima data set by 0.36%. The decision tree representation 
obtained the highest overall accuracy for the training data 
sets. Table V presents both the training and testing average 
accuracy across all the data sets. A ranking is also provided 
whereby a smaller number denotes a better performing 
method. 

VI. CONCLUSION 

This study compared the performance of three major 
representations for GP and binary data classification. 
Several variations of these representations were proposed in 
order to determine which function set would yield better 
results. The representations were tested on eight data sets. 

Based on the findings from this study when GP is being 
used for binary data classification a researcher may pick any 
of the three representations and obtain good results. 
However due to the slightly weaker performance of decision 
trees this representation is not recommended. Additionally 
this representation requires discretization. Logical tree 
representations with the function set {AND, OR, NOT, <, 
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>} and arithmetic trees with the function set {+, -, *, /} 
generally perform well and thus these representations are 
recommended. Arithmetic trees with the iffunction does not 
improve the perfonnance and thus is not necessary. 
Similarly for the logical trees, the between function does not 
improve the overall performance. The rationale behind this 
study was that researchers did not provide sufficient 
justification for their choice of representations. Furthermore 
a researcher would not want to select a representation that 
would perform poorly. This study empirically shows that 
researchers investigating the domain of GP and binary data 
classification can select an arithmetic or logical 
representation without being concerned about the 
performance of either of those two representations. 

There was no consistency between the arithmetic and 
logical representations. When one performed well the other 
did not, and thus future research will aim at detennining the 
cause for such an observation. Future research also includes 
extending this study to multiclass classification problems in 
order to determine which representation is the most suitable. 
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