
A Comparison of Genetic Programming Representations for Binary
Data Classification

Emmanuel Dufourq

School of Mathematics, Statistics & Computer Science
University of KwaZulu-Natal

South Africa
edufourg@gmail.com

Abstract-The choice of which representation to use when
applying genetic programming (GP) to a problem is vital.
Certain representations perform better than others and thus
they should be selected wisely. This paper compares the three
most commonly used GP representations for binary data
classification problems, namely arithmetic trees, logical trees,
and decision trees. Several different function sets were tested to
determine which functions are more useful. The different
representations were tested on eight data sets with different
characteristics and the findings show that all three
representations perform similarly in terms of classification
accuracy. Decision trees obtained the highest training accuracy
and logical trees obtained the highest test accuracy. In the
context of GP and binary data classification the findings of this
study show that any of the three representations can be used
and a similar performance will be achieved. For certain data
sets the arithmetic trees performed the best whereas the logical
trees did not, and for the remaining data sets the logical tree
performed best whereas the arithmetic tree did not.

Keywords-data ciassficaition, genetic programming, data
mining, optimization

I. INTRODUCTION

When implementing a genetic programming (GP) [15]
algorithm for data classification the first thing a researcher
has to consider is the representation. There are a vast number
of existing representations which have been studied in the
past however there exists three major ones, arithmetic trees,
logical trees, and decision trees. GP is inspired by Darwin's
theory of evolution. Each program is represented as an
individual in a population. The individuals are encoded by a
certain representation. GP in the domain of data
classification has been successful. Researchers have been
able to create models which obtain high classification
accuracies [6, 18] . In the review of [18] several research
works were surveyed for each of the three representations.
There were a total of 24 studies for GP and binary
classification using arithmetic trees, and a total of 11 studies
which made use of logical trees. There were also a vast
number of studies which used decision trees. Similarly in
the review of [6] there were a vast number of papers
surveyed for each of the three representations. In the
previous studies researchers provided no justification for
their choice of representation. This leads to an immediate

978-1-4799-3230-6113/$3l.00 ©2013 IEEE 134

Nelishia Pillay

School of Mathematics, Statistics & Computer Science
University of KwaZulu-Natal

South Africa
pillayn32@ukzn.ac.za

question, why was that representation selected over another?
Does a particular representation result in models which
obtain higher accuracies? These questions are the rationale
behind this study.

This study compares the three major representations in
the context of GP and binary data classification. Different
function sets were used to determine which combination of
functions would yield better results. The representations
were tested on eight publicly available data sets.

The rest of the paper is organized as follows. Section II
presents the rationale for this research. This is followed by
section III which presents the relevant literature and a
description on how each representation is investigated in this
study. Section IV describes the experimental setup. The
results are presented and discussed in section V, and finally
section VI concludes this paper.

II. RATIONALE

Researchers have successfully used GP to solve data
classification problems using either arithmetic trees,
decision trees, or logical trees. There is no doubt as to the
capabilities of GP in the domain of data classification to
create models which can obtain high accuracies. However
there is a research gap when it comes to a comparison of GP
representations for binary data classification and is the
rationale driving this study. A new researcher entering the
field of GP and binary data classification will have to decide
which representation to use. Such a decision can be difficult
to make without a comparison of the available
representations. In previous studies researchers do not state
a reason for their choice of representations. In certain cases
authors will state that a representation was used because of
its apparent capabilities of handling the data. Such a reason
can be seen in [12] whereby they argue that since most data
sets consist of numerical data it is appropriate to make use
of arithmetic functions rather than Boolean functions. The
objectives of this study are listed as follows:

• Implement the arithmetic tree, decision tree, and the
logical tree representations for GP and binary data
classification.

• Compare their performance in terms of
classification accuracy and the size of models.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

• To determine if a particular representation results in
a higher classification accuracy when compared to
the others.

This will enable new researchers to have a greater
understanding of which representation is more suitable for
binary data classification.

III. GP REPRESENT A nONS FOR OAT A CLASSIFICA nON

A. Arithmetic trees

Arithmetic trees represent mathematic expressions which
can discriminate between classes. In the case of binary
classification one tree can discriminate between two classes
using a threshold value. The function set consists of
mathematic operators such as +, -, *, I, log, tan, expo Leaf
nodes represent attributes whereas the non-left nodes are the
mathematical operators. A tree represents a single
mathematical expression which outputs a single real valued
number. The output is then compared to a threshold value.
Assume a classification problem has classes "a" and "b".

If the output is less than the threshold value, then the class
value "a" is the resulting classification value for that
particular tree. If the output is greater than or equal to the
threshold value, then the class value "b" is the classification
value. Thus in this representation the tree does not directly
encode the class value. Figure 1 illustrates an example of a
GP arithmetic tree for data classification. In the example
"x20" represents attribute 20. There are two mathematical
functions in this example, the addition and multiplication
operators. The tree represents the following expression (x20
* x4) + xIS.

Figure 1. Arithmetic tree representation for GP.

Etemadi et al. [4] apply a different approach to a binary
classification problem. A 0/1 rounding threshold with a
rounding threshold value of 0.5 was applied. When a tree
outputted a value greater of equal to the rounding threshold
the instance of data was classified as bankrupt firm,
otherwise the instance was classified as non-bankrupt firm.
The function set consisted of {+, -, *, A, NOT, L T} . The
NOT operator has an arity of one and returns the result
obtained by subtracting the argument from 1, and the L T
operator has an arity of 2 and returns a value of 1 if the first
argument is smaller than the second variable, otherwise the

operator returns O. The researchers do not mention how the
rounding threshold value of 0.5 was obtained.

Gray et at. [5] make use of 20 Varimax scores as
terminals to evolve trees to classify brain tumors. The class
values + 1 and -1 used to represent non-meningioma and
meningioma instances. The function set consisted of {+, -,
*, I, myAND, myOR, myNOT, tan} where the logical
operators returns either 0 or 1 based on their logical
evaluation. The researchers point out the tan function was
not present in the best individual and that only three
functions were present. A threshold value of 0 was used to
determine the class of an individual. A positive output
corresponded to + 1, and a negative output corresponded to -
l.

A simple threshold value of 0 is used in [20] to
distinguish between the two classes for binary classification
problems. In addition a small function set consisting of {+, -
, *, I, if} was used. Hennessy et al. [9] investigate the use of
GP for the binary classification task of determining if a
solvent is present or absent in a mixture of solvents in a
Raman spectra. The data set used consisted of 1024
attributes and only 24 instances. Each GP individual was
represented by an arithmetic expression consisting of only
{+, -} operators. A threshold value of 0 was used to map the
output of an individual to either presence, or absence of a
solvent.

In our study a threshold value of zero is used similarly to
other methods found in previous studies. An iffunction was
added into the function set to allow for conditional checks.
The function takes three parameters. The first is a Boolean
check and this check is achieved using either the less than
equality or the greater than equality operator. The GP
algorithm is free to create any sub-tree for the first
parameter provided the top most node is an inequality node.
If the first parameter results in a value of "true", then the
second branch is traversed, and if the first parameter results
in a value of "false" the third branch is traversed. The if
function has been included into the function set in previous
studies [17, 20, 21] . However no comparisons have been
made in order to determine the usefulness of the function.
Certain studies [22, 23] do not include the iffunction.

B. Decision Trees

Decision trees do not represent an expression like arithmetic
trees or logical trees do. Decision trees represent a path from
the root node to one leaf node. Each node within the tree
represents one attribute and the leaf nodes represent one
class value. When a decision tree is traversed a choice as to
which branch will be visited next is determined by the
attribute. Figure 2 illustrates a simple decision tree. The root
node is the attribute temperature. Thus for any instance in a
data set if the temperature value is hot, the left node is
visited next, if the temperature value is cold, then the right
node is visited next. The class values are directly encoded
into the tree. In figure 2, when the left branch is visited a

2013 Third World Congress on Information and Communication Technologies (WICT) 135
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

leaf node is reached and the classification output value is
"class 1".

Tur and Guvenir [3] used genetic programming to evolve
decision trees. The fitness function used considers both the
size in terms of the number of nodes and the accuracy of the
classifier, furthermore the function makes use of weights to
select which of the size or accuracy has a greater impact on
the fitness of a tree. The method was applied to a single
binary classification problem. Koza [14] presents how GP
was used to create decision trees in solving the Saturday
Morning problem presented by Quinlan.

Figure 2. Decision tree representation.

The attribute in figure 2 is categorical and in such a case
a branch is created for each possible value for the attributes.
However when dealing with continuous data such an
approach is infeasible as this will result in trees have a large
number of branches. This will create a large program space
and will hinder the performance of the GP algorithm.
Discretization is used to overcome this problem as is
defmed as the process of transforming a continuous attribute
into a discrete one with a finite number of intervals [7, 19] .
In this study an adaptive discretization technique is used to
create decision trees which can handle continuous data.
Adaptive discretization was introduced by Bacardit and
Garrell [24] . Their proposed method was tested on eight
data sets. The adaptive approach obtained higher
classification accuracies on six data sets when compared to
a simple uniform width interval approach. Bacardit and
Garell further improved the research in [25] . When a node is
created the GP algorithm randomly creates two intervals.
Figure 3 presents an example of two randomly created
intervals for some attribute, in this case the attribute data
ranged from 0.0 to 6.0. The first interval ranges from [0.0 to
3.25) and the second interval from [3.25 to 6.0] . The GP
algorithm is free to create any two random intervals.

I interval 1 intervol2
0.0 2.0 4.0 6.0

(min value for attribute) (max value for attribute)

Figure 3. Illustrating two randomly created intervals

A genetic operator was implemented in order to evolve
the intervals dynamically within the GP evolution. At each
generation when the tournament selection is applied to
obtain a parent, a random node is then selected from that
tree. The two intervals for that particular node are randomly
created ten times. If the classification accuracy of the tree is
improved during any of those ten attempts then this process
is stopped and the genetic operator inserts the modified tree
into the population.

C. Logical trees

Logical trees represent a logical expression which is
constructed from several logical operators. The function set
consists of the logical operators and is typically made up of
the AND, OR, and the NOT operators. Inequality operators
are included into the function to create a comparison
between values and return a Boolean value. Similarly to
arithmetic trees this representation does not directly encode
the class values into the tree.

Kuo et al. [1] evolve tree structures using GP. The fitness
function makes use of the accuracy and the complexity the
tree. The complexity of a tree is defined as the ratio of the
nodes in the tree compared to those in the initial trees. The

function set consisted of {AND, OR, NOT, >, ? , <, :S, If­
Then, If-Then-Else} . The terminals consisted of the values
that each attribute could take as well the class values. Two
operators were developed to resolve the issues of
redundancy and subsumption. The eliminator operator dealt
with identifying sub-trees within a single tree which encode
the same rule, if two sub-trees were found then the one
deepest in the tree was removed. The merge operator
attempted to remove rules that subsumes another by
examining if two rules had the same classes and if the
features of one was a subset of the other. The proposed
method was applied to a binary classification problem and
was compared against the performance of C5.0 and a
standard GP algorithm. The performance of the proposed
method outperformed the other two.

De Falco et al. [10] investigate the use of classification
rules by making use of trees. The GP algorithm creates an
initial population and evolves the population over several
generations. This is repeated until a classifier is found for
each class. The function set consisted of {AND, OR, NOT,

<, :S;, >, ?, IN, OUT} . The IN and OUT functions take 3
arguments and are used to represent internal and external
intervals. The terminal set consisted of the attributes. The
authors developed a distance measure to resolve instances
which resulted in a clash when an instance of data was
allocated to more than one class or in the case whereby an
instance was not allocated to any class.

Logical trees can be created for each class and a tree
should output a true value for instances belonging to that
class and a false values for those which do not belong to that
class. Thus if there are two classes, the GP algorithm will
result in two trees, one for each class. The shortcomings of
this approach occurs when two trees output a true value for

136 2013 Third World Congress on Information and Communication Technologies (WICT)
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

a particular instance which means that the instance belongs
to both classes. Similarly if two trees output a value of false
for an instance then the instance belongs to neither of the
two classes. When using such an approach of creating a tree
for each class, a mechanism for dealing with clashes has to
be incorporated.

In this study a similar approach to the arithmetic
representations was used. Assume a classification problem
has classes "a" and "b". If a tree outputs a true value, then
the classification output is class "a ", and if the tree outputs
a false value then the output is class "b". This allows a
single tree to discriminate between two classes in a similar
manner to arithmetic trees. This approach also avoids the
extra complexity of dealing with clashes. This proposed
approach has not been investigated in previous studies.

The terminal set consists of the attribute values. In this
study random constant values were added to the terminal
set. These random values were generated between the
minimum and maximum value which exists in the training
data which the GP algorithm takes in as input

Figure 4 illustrates an example of a logical tree. In this
example the tree first checks if x20 is less than x4. Then the
tree checks if x8 is greater than x12. The OR operator is
applied to the result of the two comparisons.

Figure 4. Logical tree representation for GP.

Typically inequality functions are used with this
representation. A between function was proposed in order to
allow an attribute to be compared to two values
simultaneously. Figure 5 illustrates an example of the
between node.

Figure 5. The between GP operator for logical tree representations.

The between function takes three parameters of which the
first parameter is always an attribute and the other two can
be attributes or constants. The function is defined as follows:

Between (xl, yl, y2) = true
false

if yl:::;; xl :::;; y2,
otherwise.

A similar function to the between function was used by
De Falco et al. [10]. They created two functions, IN and
OUT which compare an attribute value with two range
values. These functions also take three parameters. The OUT
function checks if an attribute value is outside of the range of
the two parameters. In this study the OUT function can be
achieved when a NOT function precedes the between
function. However in the study of De Falco et al. they do not
determine whether or not these additional functions are
useful in evolving classifiers.

D. Additional representations

There exist several other representations which are found in
the literature. Jabeen and Baig [26] present a novel approach
for dealing with mixed attributes for binary classification.
The proposed method consists of a two layer approach, an
outer layer and an inner layer. The outer layer conists of
functions {AND, OR, NOT} and their terminals correspond
to the inner layer trees. The researchers allow for two kinds
of inner layers, one being a logical inner layer and the other
an arithmetic inner layer. The logical inner layer consists of
functions {AND, OR, NOT} and the terminals consist of the

categorical attributes attached with an " = " or ""*"

sign, thus a terminal could be C 1=' a' . The arithmetic
inner layer makes use of {+, -, *, /} functions and the
terminals correspond to the numerical attributes. The
proposed method was tested on five datasets yielded better
results than methods that use different approaches for
handling mixed attributes.

In the work of [27] , a two stage learning approach makes
use of arithmetic expressions to create classifiers for classes
within a dataset. A population of trees is created for each
class. The first stage of their proposed method consists of
creating the populations of trees for each class. In this stage
the function set consisted of {+, -, /, *} and the terminal set
consisted of the real attributes and an ephemeral constant.
The second stage of the proposed method consists of
creating a chromosome which corresponds to each classifier
for all the classes. Thus if there are n classes, the
chromosome has length n where each gene represents a
classifier for each class. A new population of chromosomes
is created in this stage by applying the tournament selection
to the populations created in the first stage. The proposed
method was tested on 5 datasets and achieved better results
when compared to a binary decomposition method.

IV. EXPERIMENTAL SETUP

A. Experiments

Five experiments were carried out in order to compare the
three different represents but also to compare how certain
elements of the function set impact the performance of the
GP algorithm. Table I lists the five different experiments
along with their function set and terminal set. The GP

2013 Third World Congress on Information and Communication Technologies (WICT) 137
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

algorithm is run several times on all the data sets, this is
further discussed in the following section. The experiment
using the "arithmetic tree with If' representation was
performed to determine the usefulness of the if statement.
Similarly the experiment using the "logical tree without

Bet" representation was performed to investigate
effectiveness of the between function. The GP algorithm
was programmed in Java 6. Each GP run was executed on
the CHPC's cluster [2] and was limited to 4 CPU cores per
run.

TABLET. FIVE DIFFERENT EXPERIMENTS TESTED.

Representation Function set Terminal set
Arithmetic tree I +, -, *, /
Arithmetic tree with Attributes
If

+. -. *. I. if, <, >

Decision tree Attributes Class values

Logical tree I AND, OR, NOT, BET,
<,> Attributes and

Logical tree without AND, OR, NOT, <, > random constants
Bet

B. Data sets and model validation

Table II presents the eight data sets which were used in this
study. These data sets were selected due to their popularity
in binary data classification research and because of their
differences in characteristics. The climate model simulation
crashes (Climate) and fertility data sets were selected due to
their recent inclusion to the repository. These data sets were
obtained from the UCI Machine Learning Repository [8] .

TABLE II. CHARACTERISTICS OF THE DATA SETS.

Data set Number of Number of Class balance instances attributes
Climate 540 18 8.52/91.48

Fertility 100 9 88.00/12.00

Ionosphere 351 34 35.90/ 64.10

Parkinsons 195 22 75.38/24.62

Pima Indians 768 8 65.10/34.90

Sonar 208 60 53.37/46.63

Spectf 267 44 79.40/20.60

WDBC 569 32 62.74/37.26

In order to examme the success of the expenments and to
remain consistent to methods found in the literature the 10-
cross fold validation [11, 13, 16] method was used. This
involves separating the data into ten random folds of equal
size. When the GP algorithm is run the first fold is used for
testing and the remaining nine folds are used for training.
The GP algorithm is run again this time with the second fold
as a test set and once again the remaining folds are used for
training. This is repeated in such a way that each fold is
used exactly once for testing. When the data is separated
into ten folds it is possible that some of the folds contain
data which can impact the learning phase. For this reason
the entire process is repeated five times. At each repetition
the data is separated into ten new random folds. For each
iteration exactly one fold is used for testing as described and

in tum each fold is used as a test set once. On each of the
data sets the GP algorithm was run a total of fifty times and
each execution of the GP algorithm was run on a unique
random seed.

C. GP parameters

The GP parameters used through all the experiments are
listed in table III. These parameters were determined
empirically through trial runs. Parameter tuning was
performed by investigating different values for the
population size, tournament selection size, maximum
offspring size, and the maximwn nwnber of generations.
The crossover and mutation rates were selected to be 70%
and 30% respectively as those values are widely used in
literature. Allowing the GP algorithm to run beyond 200
generations did not necessarily improve the accuracy of the
classifiers. Amongst the different initial popUlation
generation methods, namely the full method and the grow
method, it has been observed that in the existing literature
across numerous application domains that the ramped half
and half method results in a diverse initial population which
permits the GP algorithm to potentially search the correct
program space.

TABLE Ill. GP PARAMETERS USED IN THIS STUDY

GP Parameter Value
Population Size 700

Parent Selection Method Tournament selection, size: 7

Maximum Initial Population Tree
7

Size
Initial Population Generation

Ramped half and half
Method

Maximum Offspring Size 7

Crossover 70

Mutation 30

Maximum Number of Generations 200

GP Control Model Generational model

V. RESULTS AND DISCUSSION

The 10 cross-fold validation results for the experiments are
presented in table IV. From the five representations tested
the arithmetic trees and logical trees without the between

function are the two methods which obtained the highest
results over several data sets. The arithmetic tree ranked 1 sl

in four data sets and the logic tree without the between
function ranked 1 S\ in three data sets. The arithmetic trees
with the if function and the decision trees did not rank 1 S\ in
any data set. The logical tree representation ranked 1 sl only
in the Ionosphere data set.

The results obtained by for the Ionosphere, Sonar, Pima

and Fertility data sets were of interest. For those four data
sets the arithmetic tree representation performed poorly in
comparison to the performance of both the logical
representations. The two logical representations obtained
the highest accuracy for those data sets when compared to
the other representations.

138 2013 Third World Congress on Information and Communication Technologies (WICT)
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

TABLE IV. CLASSIFICATION ACCURACY RESULTS (%) OF EXPERIMENTS FOR THE EIGHT DATA SETS. THE AVERAGE TEST RESULTS ARE PRESENTED. THE
IO-CROSSFOLD VALIDATION WAS USED. VALUES IN BOLD REPRESENT THE BEST RESULT FOR A DATA SET.

Representations Climate lono Park
Train 97.42 95.83 91.99

Arithmetic trees Test 94.33 88.71 86.70
Size 26.88 35.56 29.12

Train 97.43 95.97 92.24
Arithmetic trees with

Test 94.15 88.94 84.72
if

Size 28.42 37.10 33.12

Train 96.64 98.06 89.85
Logical trees Test 92.15 92.02 84.83

Size 33.94 45.18 23.68
Train 97.19 97.96 89.61

Logical trees without
Test 92.78 92.01 85.17

between
Size 37.72 41.90 21.04

Train 96.86 96.42 95.31
Decision trees Test 90.78 90.93 86.69

Size 35.32 25.04 26.00

However the complete opposite observation can be made
for the remaining data sets. For the Spectj, WDBC, Climate,

and Parkinson's data sets the arithmetic representation
obtained the highest accuracy. This was not always the case
for the arithmetic tree representation with the if function.
For those four data sets the arithmetic representation
obtained higher results than the arithmetic representation
with the if function. Additionally when the if function was
added the average tree size was always larger than without
the if function. There was no data set whereby any of the
arithmetic representations and logical representations
obtained high results simultaneously. The results show that
whenever one of the two arithmetic representations
performed well, one of the logical representations would not
perform as well.

TABLE V. TRAINING AND TEST AVERAGE RESULTS (%) ACROSS ALL
THE DATA SETS.

Train Test

Representations Accuracy Rank Accuracy
Ran

k

Arithmetic trees 90.88 ± 1.30 5 83.30 ± 6.47 3
Arithmetic trees

91.63 ± 1.51 4 83.15±6.97 5
with if
Logical trees 92.24 ± 2.31 2 83.84 ± 6.70 2
Logical trees

92.00 ± 2.10 3 84.17 ± 6.72 1
without between
Decision trees 93.72 ± 1.49 1 83.22 ± 6.70 4

There are no apparent characteristics within the data sets
that would stand out as a possible reason for this difference
in performance between the arithmetic and logical trees.
Arithmetic trees perform well in the WDBC, Spectj,
Parkinson's and the Climate data sets. These have attributes
varying from 18 to 44 and the sizes of the data sets vary
from 195 to 569. The minority class percentage varies from

Pima Fertility Sonar Spectf WDBC

74.94 95.20 87.84 86.62 97.20
69.30 82.00 72.47 77.77 95.15
41.08 26.64 30.28 33.16 25.72
75.79 95.96 90.05 88.31 97.28
69.29 82.20 74.30 76.87 94.76
49.20 28.34 38.48 43.46 32.70

77.94 94.09 94.04 91.96 95.32
73.67 84.20 75.16 75.97 92.76
31.90 28.36 50.36 45.72 30.84
78.75 93.40 93.88 89.58 95.60

73.96 84.80 75.28 76.83 92.51
43.14 21.54 53.30 36.68 30.06
81.92 95.87 94.70 91.15 97.52
73.62 80.20 73.00 76.58 93.99
51.24 19.76 47.60 38.60 28.84

8.52 to 37.26. The logical trees achieve good results in the
Sonar, Ionosphere, Fertility and Pima data sets.

In those data sets the attribute values range from 8 to 60
and the size of the data sets vary from 100 to 768. The
minority class value ranges from 12.00 to 46.63. The
characteristics of the eight data sets are very similar in
nature and cannot be the cause for such a difference in
performance.

The decision tree representation performed well in certain
data sets and poorly in others. There was no observable
trend similar to that found with the arithmetic and logical
representations.

Decision trees worked well in both the Parkinson's and
Pima data sets. The decision trees obtained a slightly lower
performance to the best result on the Parkinson's data set by
0.01%, and a lower performance to the best result for the
Pima data set by 0.36%. The decision tree representation
obtained the highest overall accuracy for the training data
sets. Table V presents both the training and testing average
accuracy across all the data sets. A ranking is also provided
whereby a smaller number denotes a better performing
method.

VI. CONCLUSION

This study compared the performance of three major
representations for GP and binary data classification.
Several variations of these representations were proposed in
order to determine which function set would yield better
results. The representations were tested on eight data sets.

Based on the findings from this study when GP is being
used for binary data classification a researcher may pick any
of the three representations and obtain good results.
However due to the slightly weaker performance of decision
trees this representation is not recommended. Additionally
this representation requires discretization. Logical tree
representations with the function set {AND, OR, NOT, <,

2013 Third World Congress on Information and Communication Technologies (WICT) 139
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

>} and arithmetic trees with the function set {+, -, *, /}
generally perform well and thus these representations are
recommended. Arithmetic trees with the iffunction does not
improve the perfonnance and thus is not necessary.
Similarly for the logical trees, the between function does not
improve the overall performance. The rationale behind this
study was that researchers did not provide sufficient
justification for their choice of representations. Furthermore
a researcher would not want to select a representation that
would perform poorly. This study empirically shows that
researchers investigating the domain of GP and binary data
classification can select an arithmetic or logical
representation without being concerned about the
performance of either of those two representations.

There was no consistency between the arithmetic and
logical representations. When one performed well the other
did not, and thus future research will aim at detennining the
cause for such an observation. Future research also includes
extending this study to multiclass classification problems in
order to determine which representation is the most suitable.

ACKNOWLEDGMENT

The financial assistance of the National Research
Foundation (NRF) towards this research is hereby
acknowledged. Opinions expressed and conclusions arrived
at, are those of the author and are not necessarily to be
attributed to the NRF. The authors would like to thank the
CHPC [2] for granting access to their resources.

REFERENCES

[I] c.-s. Kuo, T.-P. Hong, and c.-L. Chen, "Applying genetic
programming technique in classification trees, " Soji Computing, vol.
11, no. 12, pp. 1165-1172, 2007.

[2] Centre for high performance computing [Online]. Available:
http://www.chpc.ac.za/

[3] G. Tur and H. A. Guvenir, "Decision tree induction using genetic
programming, " in Proceedings of the Fifth Turkish Symposium on
Artificial intelligence and Neural Networks.

[4] H. Etemadi, A. A. Anvary Rostamy, and H. F. Dehkordi, "A genetic
programming model for bankruptcy prediction: Empirical evidence
from iran, " Expert Systems with Applications, vol. 36, no. 2, pp.
3199-3207, 2009.

[5] H. Gray, R. Maxwell, I. Martinez-Perez, C. Arus, and S. Cerdan,
"Genetic programming for classification of brain tumours from
nuclear magnetic resonance biopsy spectra, " Genetic Programming,
p. 424, 1996.

[6] H. Jabeen and A. R. Baig, "Review of classification using genetic
programming, " international journal of engineering science and
technology, vol. 2, no. 2, pp. 94-103, 2010.

[7] H. Liu, F. Hussain, C. 1. Tan, and M. Dash, "Discretization: An
enabling technique, " Data mining and knowledge discovery, vol. 6,
no. 4, pp. 393-423, 2002.

[8] K. Bache and M. Lichman, "UCI machine learning repository, " 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[9] K. Hennessy, M. G. Madden, 1. Conroy, and A. G. Ryder, "An
improved genetic programming technique for the classification of

raman spectra, " Know. -Based Syst., vol. 18, no. 4-5, pp. 217-224,
Aug. 2005.

[10] 1. De Falco, A. Della Cioppa, and E. Tarantino, "Discovering
interesting classification rules with genetic programming, " Applied
Soji Computing, vol. I, no. 4, pp. 257-269, 2002.

[11] 1. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2011.

[12] 1. Fitzgerald and C. Ryan, "Exploring boundaries: optimising
individual class boundaries for binary classification problem, " in
Proceedings of the fourteenth international conference on Genetic
and evolutionary computation conference, ser. GECCO '12. New
York, NY, USA: ACM, 2012, pp. 743-750.

[13] K. J. Cios, 1. A. Kurgan, W. Pedrycz, and R. W. Swiniarski, Data
Mining: A Knowledge Discovery Approach. Springer Science+
Business Media, LLC, 2007.

[14] J. R. Koza, "Concept formation and decision tree induction using the
genetic programming paradigm, " in Parallel Problem SolVing from
Nature. Springer, 1991, pp. 124-128.

[15] J. R. Koza, Genetic programming: on the programming of computers
by means of natural selection. Cambridge, MA, USA: MIT Press,
1992.

[16] M. Bramer, Principles of data mining. Springer, 2007.

[17] W. Smart and M. Zhang, "Classification strategies for image
classification in genetic programming, " in Proceeding of image and
vision computing conference, pp. 402-407, Palmerston North, New
Zealand, 2003.

[18] P. Espejo, S. Ventura, and F. Herrera, "A survey on the application of
genetic programming to classification, " Systems, Man, and
Cybernetics, Part C: Applications and ReViews, IEEE Transactions
on, vol. 40, no. 2, pp. 121-144, 2010.

[19] S. Garcia, J. Luengo, 1. Saez, V. Lopez, and F. Herrera, "A survey of
discretization techniques: Taxonomy and empirical analysis in
supervised learning, " Knowledge and Data Engineering, iEEE
Transactions on, vol. 25, no. 4, pp. 734-750, 2013.

[20] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, "Evolving diverse
ensembles using genetic programming for classification with
unbalanced data, " 2011.

[21] T. Loveard and V. Ciesielski, "Representing classification problems
in genetic programming, " in Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, vol. 2, pp. 1070-1077, IEEE,
2001.

[22] B.-C. Chien, 1.-y. Lin, and W.-P. Yang, "A classification tree based
on discriminant functions, " Journal of information science and
engineering, vol. 22, no. 3, p. 573, 2006.

[23] H. Jabeen and A. R. Baig, "Two-stage learning for multi-class
classification using genetic programming, " Neurocomputing, 2013.

[24] J. Bacardit and J. M. Garrell, "Evolution of multi-adaptive
discretization intervals for a rule-based genetic learning system, " in
Advances in Artificial Intelligence-iBERAMiA 2002, pp. 350-360,
Springer, 2002.

[25] J. Bacardit and J. M. Garrell, "Evolving mUltiple discretizations with
adaptive intervals for a pittsburgh rule-based learning classifier
system, " in Proceedings of the 2003 international conference on
Genetic and evolutionary computation: Partfl, ser. GECCO'03,
(Berlin, Heidelberg), pp. 1818-1831, Springer-Verlag, 2003.

[26] H. Jabeen and A. R. Baig, "Two layered genetic programming for
mixed attribute data classification, " Appl. Soji Computing., vol. 12,
pp. 416-422, Jan. 2012.

[27] H. Jabeen and A. R. Baig, "Two-stage learning for multi-class
classification using genetic programming, " Neurocomputing, 2013.

140 2013 Third World Congress on Information and Communication Technologies (WICT)
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

