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Abstract—Genetic Network Programming(GNP) is a newly
developed evolutionary computation method. A GNP based rule
accumulation method(GNP-RA) is also proposed to generate
decision rules and accumulate them into the rule pool, which
serves as an experience set for agent control problems. Elite
individuals are regarded as evolving rule generators and the
extracted rules are viewed as solutions, which is different from
the conventional evolutionary computation methods. However,
even the best individual could generate some bad rules, thus the
interesting rules and uninteresting rules are hard to distinguish.
This paper proposed a method to prune the uninteresting rules
in the rule pool so that the interesting ones could stand out,
which helps to increase the accuracy of decision making. The
efficiency and effectiveness of the proposed method is verified
by the tile-world problem, which is an excellent benchmark in
multi-agent systems.
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I. INTRODUCTION

Genetic Network Programming[1] is an extension of GA[2]
and GP[3]. Unlike the string structure of GA and the tree
structure of GP, GNP adopts a directed graph structure as
its chromosome, which is its unique feature. The advantages
of GNP over other EC methods are: 1), the nodes of GNP
are categorized into judgment nodes and processing nodes,
thus the gene structure is very compact. 2), GNP’s nodes
could be reused many times during the node transition, which
helps to reduce the memory occupation. 3), GNP uses only
the necessary environment information and is competent for
dealing with partially observable problems. Recently, GNP is
adopted to many real world applications, such as: elevator
supervisory control systems, stock market prediction, traffic
volume forecasting, online auction system, and class associa-
tion rule mining in data mining field, ect.

Conventional GNP method has no memory scheme, so that
the past experiences could not be recorded and used later. The
elite individuals could not experience all the situations, thus
the generalization ability of GNP is not satisfactory. In order
to solve this, GNP-RA[4] has been proposed in the previous
work to accumulated good experiences of elite individuals
(rules) generation by generation into the rule pool, and reuse
them for guiding agent’s actions. The intrinsic feature of GNP-
RA is to record various rules in the evolutionary period and
use them for decision making in the future. Related research
could be Case-Based Reasoning (CBR)[5] and Memory-Based
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Fig. 1. Phenotype and genotype of GNP

Reasoning (MBR)[6], which aims to store historical informa-
tion on good examples and used them later. However, a very
different point of GNP-RA is, in stead of directly storing
the elite individuals as cases, it extracts and accumulates
generalized rules into the rule pool, which represent good
solutions. Currently, GNP-RA has been applied to the stock
prediction problem for generating stock trading rules[7].

The disadvantage of GNP-RA is that good rules and bad
rules are hard to distinguish because of the following reasons.
Firstly, since the reward is obtained by a series of actions
which correspond to different rules, but how much they con-
tribute to the reward is a bit hard to determine. Secondly, be-
cause of the e-greedy policy of Sarsa-learning, some unimpor-
tant branches with low Q-values could be visited, generating
some unimportant rules, which decreases the quality of the rule
pool. Thirdly, because the fitness value is obtained at the end of
the generation, it fails to represent the importance of each rule
generated during evolution. This brings difficulties to the rule
evaluation. Currently, we merely extract rules from the elite
individuals and use them as good experiences, however, the
experiences from the worst individuals are ignored. Even the
best individual could generate bad rules. Therefore, pruning
of the accumulated rules in the rule pool becomes necessary.

The rest of the paper is organized as follows. Section II
presents some work that is related to the current research.
Section IIT designed a framework for the proposed method
and shows the detailed algorithm. Section IV introduces the
simulation environment and analyzes the simulation results.
Finally, Section V is devoted to the conclusion and future
work.



II. RELATED WORK
A. Genetic Network Programming

The gene structure of GNP is composed of three types of
nodes, i.e., a start node, judgment nodes and processing nodes.
The start node with no particular function is used to choose the
entry of the program. Judgment nodes are designed to judge
the partial information from the environments. Processing
nodes are used for agents to take actions which enable agents
to respond to the changing environments. These nodes are
connected by directed links to form a compact graph structure,
so that they could be reused many times, which helps to
reduce the memory cost. The number of nodes and their
function set are predetermined by designers before running the
program, and their links are changed by evolution to generate
optimal solutions. Fig. 1 shows the phenotype and genotype of
GNP. A two-dimensional array is adopted to store the gene of
nodes which contains both node information and connection
information. In the node gene segment, N'T; represents the
node type of node i. NT; =0 means it is a start node, NT;
=1 means it is a judgment node and N7T; =2 means it is a
processing node. ID; is the identification number of node
i. d; is the time delay for judgment and processing, {d;=1
for judgment; d;=5 for processing and d;=0 for connection in
the simulations}. In the connection gene segment, C;1, C;
...represent the nodes connected from node i firstly, secondly
and so on and d;; , d;o, ... represent the time delays spent on
the transition from node i to node Cjq, Cjo, ..., respectively.

Genetic operators of GNP are similar to those of GA and
GP. For crossover, two parents are selected and exchange
their gene segments to generate two new offspring for the
next generation. For mutation, the connection or function of
a particular node is changed randomly to another one, so that
a new individual could be generated. At the end of each
generation, the elite individuals with higher fitness values
are selected and preserved, while the rest individuals are
replaced by the new ones generated by crossover and mutation.
Tournament Selection and Elite Selection are adopted as the
selection policies in this paper.

The node transitions of GNP correspond to the behaviors
of agents. However, not all the nodes and connections are
used equally in the execution of GNP. It is noticed that some
transitions of judgments and processing appear frequently in
elite individuals, which serve as “if-then” decision rules. These
rules represent the good experiences of agents’ past behaviors,
and could be reused for guiding their future actions. We
proposed a GNP based Rule Accumulation method (GNP-
RA) to make use of them in the previous research, however,
this method needs to be improved since good rules and bad
rules are hard to distinguish. This paper focuses on how to
distinguish them to improve the quality of the rule pool.

B. Memory Scheme

The research on discovering historical experiences on good
examples and reuse them later has been conducted for many
years, among which the most famous ones are Case-based
Reasoning (CBR) and Memory-based Reasoning (MBR). CBR
is an Artificial Intelligence approach to learning and problem

solving based on past experiences. It combines the aspects
from the knowledge-based systems with the ones from the
machine learning field. The intrinsic feature is to solve new
problems by retrieving relevant prior cases and adapting them
to new situations. Similarly, MBR intensively uses memory
to recall specific episodes from the past instead of rules.
Two important factors of MBR are Distance Function and
Combination Function. Distance Function is designed to find
the most similar episodes in memory, while Combination
Function is used to combine the attributes of the similar
episodes for future prediction. The advantage of this memory
scheme is that the past experiences could be retrieved and
reused. The disadvantage is that it needs a large number
of historical data, otherwise it is incompetent for accurate
prediction. Storing and retrieving these data cost time. Another
disadvantage is that it is more suitable for static environments
or simple problems. For highly dynamic environments and
very complicated problems, it is impossible to store all the
cases into the memory because the solution space becomes
almost infinite. In this case, memory scheme should be com-
bined with rule based approaches, that is, inductive reasoning
and deductive reasoning should be integrated.

C. Reinforcement Learning

Sarsa-learning is brought into GNP-RA to improve the
quality of rule generators and generate reasonable decision
rules. One advantage is that it can produce rules using the
current information during task execution. The other advantage
is a combination of the diversified search of evolution and
the intensified search of RL, which contributes to generating
better solutions. In order to realize Sarsa-learning, sub-nodes
are introduced into the judgment and processing nodes, as
described in Fig.2 using the tile-world model. The notation
ID;; is the identical number of subnode j in node i, and
Q;; is the Q-value of this subnode; C;;‘-, 05 , ... denote the
next nodes to which subnode j in node i connects according
to different judgment results A, B, .... In this structure, each
node is a “’state” and selection of a sub-node is regarded as
an “action”. Q-values estimate the sum of discounted rewards
to be obtained in the future. The selection of the sub-node is
based on the e-greedy policy, that is, the sub-node with the
highest Q-value is selected with the probability of 1-¢, or a
sub-node is selected randomly with the probability of ¢.

Nevertheless, because of the e-greedy policy of Sarsa, some
unreasonable connections could be visited, bringing some
unimportant or even misleading rules. Therefore, pruning of
these rules becomes necessary. In the previous research, we
only extract the rules from elite individuals and store them
as good experiences. In this paper, we also extract the rules
from the worst individuals, which could be viewed as bad
experiences. Rules in the good rule pool and bad rule pool are
checked one by one and their common rules are picked up.
These rules include some random actions or even misleading
behaviors of agents. Thus, they should be deleted or their
strength should be decreased. In this paper, we simply delete
these rules and use the rest of the high quality rules in the
rule pool for making decisions.
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Fig. 2. Node structure and transition of GNP-Sarsa

III. THE PROPOSED METHOD

The proposed method consists of three stages: 1), evolve
GNP individuals using Sarsa-learning and generate rules. 2),
prune rules to improve the quality of the rule pool. 3), use
the rules to guide agent’s actions by using a unique matching
calculation. The following three subsections will show the
detail of them.

A. Rule Generation

The rule of GNP-RA is defined as a sequence of successive
judgment nodes together with their judgment results and the
subsequent processing node. The anticipant part of the rules
represents the information on the judgment results of the
environments, which is necessary for taking a particular action.
The consequent part denotes what the agent should do under
such environments. In Fig. 1, the node transition of 3—4—7
could be regarded as a rule, and 1 +6—8—12 could be viewed
as another rule.

We extract the rules from the elite individuals throughout
the generations and store them into the GOOD rule pool,
which represents the good experience set of agent’s historical
behaviors. Meanwhile, we also extract rules from the worst
individuals and store them into the BAD rule pool, which
represents the bad experiences, i.e., the passive precepts that
tell the agent to avoid some particular actions. Rules are stored
into the memory in the form of one-dimensional strings.

Then, the strength of the rule is defined to represent its
importance by Eq. (1).

str(r) = fit(r) + C = N(r), (1)

where, str(r) is the strength of rule r; fit(r) is the fitness of
the elite individual from which rule r is extracted and N(r) is
the number of extracted times of rule r.

B. Rule Pruning

Generally speaking, the rules in the GOOD rule pool are
good experiences which are helpful for guiding agent’s actions.
Howeyver, it also contains some bad rules which contribute to
nothing, or even mislead the agent. On the other hand, among
all the rules in the rule pool, it is hard to tell which one is
good and which one is bad. We notice that the bad rules appear

more frequently in the worst individuals. Thus, we could use
the BAD rule pool to find out the bad rules in the GOOD rule
pool. A simple method is to check the rules in the GOOD and
BAD rule pool one by one, and find the common rules. These
common rules are pruned from the GOOD rule pool, so that
the really good ones could stand out and contribute more to
the final reward. Fig. 3 shows an example of rule pruning.

BAD

GOOD

Fig. 3. An example of rule pruning.

C. Rule Matching

A unique average matching degree calculation is designed to
make use of the good rules in the pruned rule pool. Firstly, we
separate all the rules in the rule pool into |C| classes according
to their processing nodes, i.e., each class represents a specific
action, where C is the set of suffixes of classes. Then, the
matching degree of the new environment data d with rule r in
class k is calculated as follows.

N, k (d7 T)

Matchy(d,r) Ne(r) )
where, Ni(d,r) is the number of matched judgment nodes
with data d in the antecedent part of rule r in class k; Ny(r)
is the number of judgment nodes in the antecedent part of rule
r in class k.

Then, the mean and standard deviation of the matching
degrees of data d with the rules in class k is calculated in
order to set the threshold T}, to filter the lower matched rules
in class k as follows. Only the rules whose matching degree is
higher than the threshold could be picked up for the average
matching degree calculation.

meany =

Z Matchy(d, ), 3)

1
|Rk| reRy

1
Stdk_\/R| E (Matchy(d,r) — meang)?, (4)
k
reRy

T, = meany + 0.1 *x stdy, (5)

where, Ry, is the set of suffixes of rules in class k.
After that, the average matching degree of environment data
d with the picked up rules in class k is calculated as follows.

! Z Matchy(d,r) = stri(r), (6)
e /

| Ry
reR

k

where, R;C is the set of suffixes of picked up rules in class k.
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Finally, class k that has the highest average matching degree
is selected and its corresponding action is taken by the agent.

k=arg max my(d), (7

After the agent takes actions, the environment is updated
and a new environment data d is obtained. As a result, agents
could take the next action. Fig. 4 shows the flowchart of the
proposed method, in which A, B and C correspond to the
subsection A, B and C of Section III, respectively.

Average Matching
Calculation

N

Fig. 4. Flowchart of the proposed method.

IV. SIMULATION
A. Simulation Environment

Tile-world problem[8] is a good test-bed for the multi-agent
problems, and is chosen as the simulation environment to
confirm the effectiveness of the proposed method. Tile-world
is a two-dimensional grid which contains five types of objects:
tiles, holes, obstacles, floors and agents. Agents could move
each time step and push a tile to its neighboring cell. The
task of agents is to move tiles into holes as many and quickly
as possible without hitting obstacles or dropping itself into
holes. When a tile is dropped into a hole, they disappear to
form a floor, and a new tile and a new hole appear at random
positions. This dynamic tile-world is a great challenge to agent
control problems because the world information is unknown
beforehand and agents have limited sight. Fig. 5 shows an
example of the tile-world whose size is 22x22. We set 8§ kinds
of judgment nodes (J1~J8) and 4 kinds of processing nodes
(P1~P4) for the tile-world problem. J1 to J4 return the object
information {1: floor, 2: obstacle, 3: tile, 4: hole, 5: agent},
and J5 to J8 return the direction information {1: forward, 2:
backward, 3: left, 4: right, 5: nothing}. Table I shows the
function set of GNP nodes.

We extract rules from the best five individuals and store
them into the GOOD rule pool. Likewise, the rules extracted
from the worst five individuals are stored into the BAD
rule pool. The evolution of GNP lasts for 1500 generations,
and 300 time steps are assigned for agents to take actions.
The number of agents is initialized to 3. 10 tile-worlds are
used as training instances in order to extract enough rules,
where 30 tiles and 30 holes are randomly distributed at the

floor

agent

tile

HE»OH

hale

Fig. 5. An example of the tile-world
TABLE I
FUNCTION SET OF GNP NODES

Node | Symbol Function
J1 JF Judge Forward
J2 JB Judge Backward
I3 JL Judge Left
J4 JR Judge Right
J5 TD Judge direction of the nearest Tile
J6 HD Judge direction of the nearest Hole
J7 THD Judge direction of nearest Hole from nearest Tile
J8 STD Judge direction of the second nearest Tile
P1 MF Move Forward
P2 TL Turn Left
P3 TR Turn Right
P4 ST Stay

beginning of evolution. In the rule application stage, 10 new
tile-worlds with different locations of tiles and wholes are used
to test the performance of the proposed method. The parameter
configuration for the simulation is described by Table II.

B. Results and Analysis

Fig. 6 shows the training results of the proposed method
with € being 0.1 and 0.2, respectively. From the results, it
is noticed that the case of ¢ being 0.2 increases faster in
earlier generations. This is because relatively larger ¢ enables
GNP to search for optimal solutions in a broader space,
which helps to increase the possibility of generating good
individuals. In other words, the exploration ability of GNP is
strengthened. However, the results are not satisfactory in later
generations due to the lack of exploitation ability. e=0.1 could
get comparatively better results in later generations probably
because it can well balance the exploration and exploitation.

TABLE II
SIMULATION CONDITIONS

Evolution Sarsa-learning
Population 300
Mutation 170
Crossover 120
Elite Number 5
Worst Number 5
Mutation Rate Py, 0.01 Learning Rate o 0.9
Crossover Rate P. 0.1 Discount Rate ~ 09
Generations 1500 € 0.1, 0.2
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Fig. 6. Training results of the proposed method

TABLE III
AVERAGE FITNESS VALUE OF THE TESTING RESULTS

€ GNP | GNP-RA | GNP-RA(Pruning) | Improvement Rate
0.1 | 6.05 7.84 8.46 7.91%
02 | 542 6.54 7.92 21.10%

Fig. 7 and Fig. 8 show the testing results of the proposed
method under different es. Three approaches, i.e., the conven-
tional GNP method, GNP-RA without rule pruning and GNP-
RA with rule pruning are compared and their performances
are evaluated. The x axis is the testing tile-world 1-10 and
the y axis is the fitness. Generally speaking, the results of
GNP-RA is better than that of GNP. This is because the rule
accumulation mechanism enables GNP to obtain the historical
experiences from evolution, and many rules could be generated
for making decisions. Furthermore, GNP-RA with rule pruning
is better than GNP-RA without rule pruning in 7 cases out of
10. This could be explained by the fact that GNP-RA with rule
pruning deleted the bad rules existing in the good rule pool,
so that the good rules could stand out and contribute more to
the final reward. Moreover, the average fitness value of GNP-
RA with rule pruning is higher than that of the conventional
GNP and GNP-RA without rule pruning, which demonstrates
the effectiveness of the rule pruning approach. In the case
of ¢ being 0.2, the improvement is more apparent. This is
because £=0.2 generates more random actions, bringing more
common rules between the GOOD rule pool and the BAD rule
pool. These rules decrease the quality of the GOOD rule pool
and affect the process of decision making, thus pruning them
becomes necessary. Table III shows the average fitness values
of the three methods, and Table IV shows the number of rules
in the GOOD and BAD rule pool as well as the proportions
of the common rules under different es.

Another simple pruning method could rank all the accu-
mulated rules in the GOOD rule pool and delete the lowest
ranking ones. For fair comparison, we select 7.94% of the
rules in the GOOD rule pool as the worst ones and delete
them, which is the same amount as the common rules between
the GOOD rule pool and the BAD rule pool when £=0.1. The
performance of this ranking and deleting approach and GNP-
RA without rule pruning is compared in Fig. 9. The ranking
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Fig. 7. Testing results of the proposed method when ¢ is 0.1
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Fig. 8. Testing results of the proposed method when ¢ is 0.2

and deleting approach outperforms the conventional GNP-RA
method in 4 cases out of 10, shows almost no difference in
3 cases and worse than the conventional method in 3 cases.
The average fitness value of the ranking and deleting method
is 8.02 and that of GNP-RA without rule pruning is 7.84.
The improvement is not satisfactory in comparison with the
proposed method. This is because the ranking and deleting
approach may delete some good rules generated in earlier
generations, during which the strength of the rules are low.
This comparison demonstrates the efficiency and effectiveness
of the proposed method from another point of view.

V. CONCLUSION AND FUTURE WORK

A unique pruning method is designed in this paper to
distinguish the good rules and bad rules accumulated by GNP-
RA. The novel point is that not only good rules extracted from
the best individuals are considered, but also the bad rules
from the worst individuals are used to prune the bad rules
in the GOOD rule pool. The rules representing random and
misleading actions are removed from the GOOD rule pool, so
that the quality of the rule pool is improved. The efficiency and
effectiveness of the proposed method are proved in comparison
with the conventional GNP-RA method without rule pruning
and ranking and deleting method.

In the common rules between the GOOD rule pool and
the BAD rule pool, there exit some neutral rules which don’t
directly contribute to the reward, but are essential to make
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Fig. 9. The performance of rule pruning by ranking and deleting

TABLE IV
NUMBER OF RULES UNDER DIFFERENT &S

5 GNP | GOOD Pool | BAD Pool | Common Rules | Proportion
0.1 0 4983 5576 396 7.94%
0.2 0 7453 8626 865 11.61%

decisions. In the future work, other ways for dealing with the
common rules between the GOOD rule pool and the BAD rule
pool are worth trying. For example, rather than simply deleting
them, we could reduce their strength because they contribute
both to the good behaviors and bad behaviors. In addition, we
could extract rules from different number of individuals to see
how it affects the proposed method.
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