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Abstract—Action scheduling optimization is a problem that
involves chronologically organizing a set of actions, jobs or
commands in order to accomplish a pre-established goal. This
kind of problem can be found in a number of areas, such
as production planning, delivery logistic organization, robot
movement planning and behavior programming for intelligent
agents in games. Despite being a recurrent problem, selecting the
appropriate time and order to execute each task is not trivial, and
typically involves highly complex techniques. The main objective
of this work is to provide a simple alternative to tackle the action
scheduling problem, by using Cartesian Genetic Programming as
an approach. The proposed solution involves the application of
two simple main steps: defining the set of available actions and
specifying an objective function to be optimized. Then, by the
means of the evolutionary algorithm, an automatically generated
schedule will be revealed as the most fitting to the goal. The
effectiveness of this methodology was tested by performing an
action schedule optimization on two different problems involving
virtual agents walking in a simulated environment. In both cases,
results showed that, throughout the evolutionary process, the
simulated agents naturally chose the most efficient sequential
and parallel combination of actions to reach greater distances.
The use of evolutionary adaptive metaheuristics such as Cartesian
Genetic Programming allows the identification of the best possible
schedule of actions to solve a problem.

Index Terms—Cartesian Genetic Programming, Action
Scheduling, Evolutionary Computation, Optimization

I. INTRODUCTION

Action scheduling optimization is a problem that involves

chronologically organizing a set of actions, jobs or commands

in order to accomplish a pre-established goal. This kind of

problem can be found in a number of areas, such as production

scheduling [1], delivery logistic organization [2], robot motion

planning [3], behavior programming for intelligent agents

in games [4], [5], and even synthesizing feasible sequences

of movements for a mobile arm-equipped robot for space

exploration [6]. A classic example of a scheduling problem

is the Job-Shop Scheduling Problem [7]. The objective of

this problem is to schedule the execution of multiple jobs on

several machines. There are many variations of this problem,

each one defining different constraints, such as a limited

number of machines that can operate simultaneously, or the

specification of a dependency order for each job. In addition,

each variation defines a main objective, such as to minimize

the length of the schedule or to optimize the total number

of performed jobs. Recent instances of the action scheduling

optimization problem seek to define the best sequence of

commands that must be passed to a robot so it performs

some complex operations. For example, what should be the

rotations to be applied to robot joints, and at what times, to

make it walk great distances with a natural motion [8], [9], or

to make its mechanical arm to move an object to a different

location [10]. Despite being a recurrent problem, developing

an algorithm to select the appropriate time and order to execute

each task is not trivial, and typically involves highly complex

techniques, as Dynamic Programming. The main objective of

this work is to provide a simple alternative to tackle the action

scheduling problem, by using Cartesian Genetic Programming

as an approach.

II. PROBLEM DESCRIPTION

A. Action Scheduling Optimization

Scheduling problems are defined by the need to organize

various tasks in a particular order in a timeline. The schedule

must optimize some specified value, such as total elapsed time,

total energy cost or total machine idle time, while satisfying

a set of pre-defined constraints. In general, the space of

possible solutions for most real problems is far too large to

brute-force or undirected search methods be feasibly applied.

These characteristics make them NP-complete problems [7].

This means there is no known deterministic algorithm for

an optimal solution. The first proposed solutions to these

problems adopted the Dynamic Programming search method

[7], but the combinatorial nature of most scheduling problems

encourages the use of meta-heuristics as Simulated Annealing

[11], Tabu Search [12] or Bottleneck Heuristics methods [13].

In addition, schedule optimization has become a major appli-

cation field for evolutionary computation [14]. For example,

Genetic Algorithms (GA) has been applied to task planning

optimization [15] and multi-criteria scheduling optimization

[1], while Genetic Programming (GP) has been applied in the

Job-Shop Scheduling Problem [16] and in the classic one-

machine scheduling problem [17].

B. Intelligent Agents Action Control

The goal of an intelligent agent is to build an action script

that must be executed in order to accomplish an objective task.

Thus, this problem can also be seen as a scheduling problem.

For example, a possible action is to command a virtual robot

to rotate the right elbow clockwise. In this case, an action can

be seen as the rotation of one joint of the agent, clockwise
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or counter-clockwise. Another action is to rotate the left knee

counter-clockwise. Every action must be performed in a fixed

number of time steps. In the present work, each time step

represents one second. The time step can vary depending on

the granularity and precision needed to complete the task. The

goal is to define how long and at what time each action must

be performed by the robot in order for it to travel greater

distances. The solution to the problem is an optimal script

of actions that contains the timetable of actions the robot

must perform in order to complete the task. The present paper

studies two simplified action control scheduling test cases

involving simulated robot agents. In order to make possible

to control all external factors and to test only the effects of

the application of the proposed technique, both robots were

created and simulated in a bi-dimensional virtual environment.

Fig. 1 shows both robots, for case I and case II, respectively.

Fig. 1. Virtual simulation of two bi-dimensional robots. a) Case I: simple
robot with two legs and two rotational joints. b) Case II: humanoid robot with
eleven rotational joints.

The first test case involves a simple virtual robot having only

two joints, one for each leg (Fig. 1a). In this case, the only

possible actions the robot can perform are to rotate each joint

clockwise or counter-clockwise, making four possible actions

in total. The second test case involves a humanoid robot having

eleven joints: one for each shoulder, one for each elbow, one

for the lumbar, one for each leg, one for each knee and one

for each ankle, making 22 possible actions in total (Fig. 1b).

The goal for both instances of this problem is to determine

the script of actions the robots must execute in order to walk

as far as possible. In other words, the optimization problem is

to maximize the travelled distance of each virtual robot.

III. METHODOLOGY

Manually inputting a sequence of action commands into a

robot, or into a game character, is an ordinary task. Conversely,

to identify an optimum script of action commands that will

make the agent to achieve certain goal is a real challenge. The

present paper proposes the application of a simple and efficient

modeling strategy of Cartesian Genetic Programming.

A. Cartesian Genetic Programming

Genetic Programming (GP), an extension of Genetic Al-

gorithms, is an evolutionary computation approach, originally

developed by Koza [18], and also relying on the Darwinian

principle of natural selection. Genetic Programming submits

a population containing a number of individuals to an evo-

lutionary process. These individuals are randomly generated

candidate programs in an iterative process that, over the course

of generations, selects promising individuals for procreation

and the formation of new offspring through genetic operators.

To model a problem by using Genetic Programming (GP), the

most important step is to find the best individual representation

of a solution candidate. In an action scheduling problem,

each individual of a GP population can represent a different

action script, describing which action must be performed in

a timeframe. Throughout the generations, the action scripts

will evolve until the best-fitted individual emerges. In order

whether to apply the classic Genetic Programming or its Carte-

sian variation, it is essential to specify two critical factors: a

function set and a terminal set. These sets establish the basic

instructions that, when combined for an individual, express a

solution candidate.

The function set establish the collection of available opera-

tors for each individual to use. The output of each operation

must be compatible as operand to any other operator in

the function set. This makes possible to randomly generate

individuals by combining these elements in different ways. The

elements of the terminal set are the basic operands available

for the program. These operands can act as entries to the

problem, and must be compatible to any operators described

in the function set. The initial individuals of a GP population

are simple random combinations of the elements of function

set and terminal set. For GP to be successful, it suffices that

the solution to the problem could be expressed in the form

of a combination of elements of the function set and terminal

set. If enough terminals or operators are not made available,

the solution may never be found. On the other hand, if the

elements are sufficient, the method will have the potential to

generate solutions that are competitive with those of human

specialists [19].

In the present work, each individual represents a different

action schedule. Thus, all possible actions each agent can

perform were chosen as terminals. Each joint of the robots

can be rotated clockwise or counter clockwise, originating

two actions per joint. For simplification purposes, the angular

velocity of each rotation was fixed and constant throughout all

simulations. Table 1 shows the elements of the terminal set.

The elements of function set must be operators that can

receive as entries and combine the direct actions described by

terminals or the result of another combination of actions. Thus,

to make the construction of a wide variety of action schedules

possible, the elements chosen to compose the function set

denotes the following operations: sequential execution and

parallel execution, as shown in Table 2. These functions accept

only two entries, which can be another function or an action
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TABLE I
TERMINAL SET

Test Case Joint
Available Terminals

Clockwise Counter Clockwise
Action Symbol Action Symbol

I
Left leg LLC LLCC
Right leg RLC RLCC

II

Left Elbow LEC LECC
Right Elbow REC RECC
Left Shoulder LSC LSCC
Right Shoulder RSC RSCC
Lumbar LC LCC
Left leg LLC LLCC
Right leg RLC RLCC
Left Knee LKC LKCC
Right Knee RKC RKCC
Left Ankle LAC LACC
Right Ankle RAC RACC

TABLE II
FUNCTION SET

Sequential execution Parallel execution

Description
Execution of one action Execution of one action

starts only after the starts simultaneously
finalization of the other. with the other.

Symbol – – //

of the terminal set. When activated, an action will be executed

for exactly one time step. In the present work, each time step

corresponds to 60 frames of the simulation, which translates

to a second.

The main difference between classic GP and CGP is the

individual representation. In traditional GP, each individual is

a direct implementation of an expression tree [18]. CGP, on the

other hand, represents each individual in form of an acyclic

directed graph, as a two-dimensional grid of computational

nodes [20]. Because of its natural graph structure, CGP has

been successfully applied in the design of logical [21] and

electrical [22] circuit’s optimal topology.

Each computational node has a number of genes, which

represents one between three things: an input, the operator

that will be used on the inputs, or a node output. Fig. 2 is

an example of a particular node, with two inputs. The CGP

genotype is composed by node columns. The first column

corresponds to terminals.

Fig. 2. Example of CGP node: a simultaneous execution of left leg clockwise
rotation with right knee clockwise rotation.

All following columns of the individual grid are formed

by common CGP nodes (Fig. 2). These nodes are direct

applications of an operator from the function set on nodes of

prior columns. The CGP graph is directed and feed-forward,

i.e., a node can only have its inputs connected to a node from

a column on its left. The output of a complete individual is

taken at the output of the first node on the last column. The

phenotype of a CGP genotype is the actual action schedule

it represents. The decoded form of the genotype can be

illustrated as the correspondent expression tree, dynamically

generated during the method execution. Fig. 3 shows an

example of the genotype and phenotype of a complete CGP

individual for the problem under study. In this example, the

CGP grid was configured with 2 lines, 4 columns and only 2

actions on the terminal set.

Fig. 3. Complete genotype and phenotype of a CGP individual representing
an action schedule: a) acyclic directed graph genotype; b) numerical repre-
sentation; c) expression tree representation; d) individual phenotype.

Lastly, it is necessary to define the fitness function that will

evaluate the individuals. The fitness function considered in the

present work is the sum of the total distance traveled by the

head of the robot with the final height of it, as described in

(1). No other objectives were given to the individual, so each

virtual agent will try to find the most efficient way to walk

great distances while maintaining its head up.

fitness = robot headx + robot heady (1)

The CGP algorithm is similar to any other evolution-based

optimization method, as described in [20]. First, an initial

population of randomly generated individuals is created. Then,

genetic operators are applied on each individual, generating

offspring. In the present paper, the following genetic operators
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were applied: mutation, crossover and selection. Mutation and

selection works as described in the original formulation of

CGP [20]. On the other hand, the crossover technique was not

originally part of the CGP method. There are many variations

of crossover implementations for CGP, but the one described

in [23] was chosen for the present work, due to its good results

in comparison with others and low impact on the original CGP

structure.

The best individuals between old and new ones are selected

to form a new generation of individuals. This process contin-

ues until a predetermined maximum number of generations is

met. One of the greatest advantages of CGP is the presence

of nodes that can be ignored in the decoding of the genotype

into phenotype. For example, in Fig. 3, nodes 3, 5, 6 and 9

are completely inactive on the phenotype. This phenomenon

is often called neutrality, and has been shown to be extremely

beneficial to the evolutionary process [24], [25]. The descrip-

tion of CGP configuration parameters and the adopted values

for each case are shown in Table 3.

Those values were selected empirically, after several test

runs, and considering the suggestions of Miller et al. [21]. The

most important settings are those involving the graph structure.

If enough nodes are not available, the process might never

achieve the required result. On the other hand, an excess of

available nodes can cause evolution to take more time than

necessary to optimize the objective function.

TABLE III
CGP CONFIGURATION PARAMETERS VALUES AND DESCRIPTION.

Parameter Description Value
Case I Case II

Population size
Total number of individuals

40 100
in a population.

Mutation rate
Percentage of genes that will

0.02 0.02
mutate.

Selection rate
Percentage of the best fitness

0.7 0.7that is necessary to survive to
the next generation.

Crossover rate
Percentage of population that

0.2 0.2
will have genes crossed over.

nº of rows
Number of rows in the graph

2 2
structure.

nº of columns
Number of columns in the

20 100
graph structure.

Levels back
Indicates how many levels of

5 50previous columns a node can
be connected to.

Function set size
Number of operations in the

2 2
function set.

Terminal set size
Number of terminals in the

4 22
terminal set.

Max. generations
Limit number of evolution

100 300
generations.

Every fitness evaluation of an individual corresponds to an

execution of a complete action schedule in a simulated envi-

ronment. Therefore, a set of constraints were also stipulated for

the simulations. First, the maximum elapsed time the virtual

robots have to execute the designated action script was of 30

seconds. In addition, if the head of the robots gets below a

fixed limit of 80% of the robot’s total height, the individual

execution is terminated and the fitness value is measured at

that point. These constraints makes the evolutionary process

faster and enhances the probability that the action schedule

describes a more natural stand-up walking movement.

IV. RESULTS AND DISCUSSION

The effectiveness of the proposed methodology was tested

by performing an optimization on two different action schedul-

ing problems of virtual walking agents, running in a simulated

environment. For each case, 10 repetition runs of the CGP

application were executed. Table IV shows the statistical

results for these runs. Fig. 4 and Fig. 5 shows the convergence

evolution for cases I and II, respectively.

TABLE IV
STATISTICAL RESULTS FOR 10 RUNS OF CASE I AND II.

Case I Case II
Best Fitness 13.9930 11.2981
Worst fitness 10.3856 7.3151
Mean 12.5388 9.0577
σ 1.0502 1.1190

Fig. 4. Convergence evolution for case I.

The phenotypes of the best solution from each case are

presented in Fig. 6 and Fig. 7, in the form of an action schedule

for the respective simulated robot. Fig. 7 shows CGP was able

to identify an action pattern that is efficient to make the virtual

robot to steadily walk forward, for case I. The same action

pattern was performed repeatedly, with the only exception

being at 27 seconds of execution. Possibly, if more generations

were made available, the action scheduling would repeat the

pattern also in that moment. On the other hand, no obvious

pattern was identified for case II. As it is a much more complex

case, having 22 degrees of freedom, further exploration of the

CGP configuration parameters might be needed. Some possible

exploratory strategies would be to increase the population size

and the maximum number of generations. Either way, the
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Fig. 5. Convergence evolution for case II

results for case II are satisfactory, since the virtual human-like

agent was able to make complex simultaneous movements that

enabled it to stand upright and move a few steps forward.

At the end of the evolutionary process, the virtual agent

executes the best obtained action script. As this is an NP-

complete problem, there might be no optimal solution. The

obtained script represents only a sub-optimal solution. Fur-

thermore, there is no known feasible deterministic way to find

the best script. A subtle movement of one arm can collaborate

for a small advance forward, or influence the entire balance

of the system to cause a total collapse.

The best trajectories traversed by the head of each robot at

the end of theirs evolutionary processes can be seen in Fig. 8

and Fig. 9, for cases I and II, respectively. In both cases, results

showed the simulated robots naturally chose the most efficient

sequential combination of actions to reach greater distances,

improving on each generation of the evolutionary process.

V. CONCLUSIONS

The use of evolutionary adaptive metaheuristics such as

Cartesian Genetic Programming on action scheduling prob-

lems allows the identification of the best possible combination

of action sequences to achieve a goal. Through a series of

evolutionary generations, only the best scripts were able to

survive and evolve into a potential solution. At the end of the

evolutionary process, ingenious combinations of actions were

revealed as the most effective way to make each agent move

longer distances forward while keeping his head in an elevated

height.

On the present work, the fitness function being optimized

described, as a single goal, to walk forward as far as possible,

maintaining the head up. The same CGP methodology can be

applied on other practical cases, with any other constraints or

goals, like climbing up stairs or avoiding obstacles. After a

simulated evolution, CGP generates the best possible action

script and the agent would only have to follow the commands

to achieve the goal. As this is an NP-complete problem,

even the best solution found is only a sub-optimal solution.

Therefore, further investigations are needed to explore the

limits of this strategy.
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