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ABSTRACT

In this paper, we explore new Adapted Geometric Seman-
tic (AGS) operators in the case where Genetic programming
(GP) is used as a feature generator for signal classification.
Also to control the computational complexity, a devolution
scheme is introduced to reduce the solution complexity with-
out any significant impact on their fitness. Fisher’s criterion
is employed as fitness function in GP. The proposed method
is tested using diabetes and breast cancer datasets. According
to the experimental results, GP with AGS operators and devo-
lution mechanism provides better classification performance
while requiring less training time as compared to standard GP.

Index Terms— Genetic programming, genetic operator,
breast cancer diagnosis, diabetes detection

1. INTRODUCTION

Signal classification is an important application of Genetic
Programming (GP). Since the introduction of GP [1], re-
searchers have tried to exploit its potential in many classifi-
cation problems [2]. In this paper, we focus on using GP as
a feature selector and generator. As a feature generator, GP
is given a set of original features and undergoes a supervised
learning process to select and combine these original features.
The combination is expected to produce a new feature which
will enhance classification performance. The actual classi-
fication can then be completed with a suitable classifier. It
has been successfully implemented in some existing literature
which report better classification performance as compared to
other classification solutions [3-7]. Though GP has yielded
superior performance in these cases, its demand for high
computational power and long training time has always been
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an issue. Therefore, a more efficient GP is needed.

A standard GP comprises several key parts: population
initialization, fitness evaluation, parent selection, and repro-
duction. There are some studies which contribute to the
improvement of the first three [§—10]. However, few consider
alternatives to the standard reproduction operators (standard
mutation and crossover). It is mostly due to the difficulty
in understanding how genotype (solutions) and phenotype
(fitness) are related. Standard genetic operators are based
on syntax of solutions and operate in a random way. It is
easy to doubt their efficiency considering the trial and error
style. Meanwhile, some researchers have started to adopt a
new perspective in establishing a connection between genetic
operators and fitness landscapes [11-13]. The outcomes are
promising new operators which use solution semantics in-
stead of syntax.

In one of the recent works [13], Moraglio et al. give de-
tailed analysis on semantic geometric operators and semantic
fitness landscapes. Definition of Geometric Semantic (GS)
operators are given for different problems. However, these
GS operators are designed with fitness functions based on
Euclidean and Manhattan distances in mind. Feature gener-
ation with Fisher’s criterion evaluation is a rather different
matter. Therefore we propose new Adapted Geometric Se-
mantic (AGS) operators. The design of the AGS operators is
largely inspired by the GS operators as well as the problem
at hand. As the development of these operators is only on an
experimental level, theoretical proof has not yet been estab-
lished. Most of the conclusions drawn in this paper will be an
abstract interpretation of the experimental results.

During the design of the AGS operators, it was found
that they are prone to growth which creates continuously
increasing demand for computational resource. To enable
the operators to function in a sustainable style, a devolution
mechanism is proposed to mimic the devolution of organs in
the natural world where trivial organs are removed to reduce
the individual’s complexity as well as reducing the overall re-
source consumption. Some simplification method developed
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in the past can fulfill the same job [14]. However, we choose
to adopt a new approach which is better tailored for the AGS
operator and operates in a more intuitive way.

2. METHODOLOGY

2.1. Fitness Evaluation

Before the AGS operators and devolution mechanism could
be discussed, it is helpful to establish the fitness evaluation
method first. In this paper, Fisher’s criterion is employed as
a measure of feature quality. The combination of GP and
Fisher’s criterion for feature generation was first introduced
in [15] by Guo et al. The actual expression of fitness function
is given in Equation (1)
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where S and S JB are data samples from class A and B re-
spectively. The variables m and n denote the total number
of samples available to the training task from class A and B.
Fisher’s criterion is useful in feature generations to encour-
ages between-class scatter while limiting within-class scatter.
There are other ways of evaluating quality of generated fea-
tures. Conducting mini classification tasks and using the re-
sults as fitness values could be a more accurate evaluation of
feature quality. However, due to the need for multiple runs
and large number of generations for analyzing the new oper-
ators, Fisher’s criterion is preferred because of its relatively
simple form. It is a balanced approach to evaluate feature
quality without overburdening the GP program.
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2.2. Adapted Geometric Semantic Operators

In [13], Moraglio et al. gave the definition of Geometric
Semantic (GS) operators for fitness functions based on Eu-
clidean and Manhattan distances. The expression of GS
crossover is given as

T3 = (T1-PR)+ ((1— PR)-T2) )

where T3 is the child tree produced with parent trees 7'1 and
T'2. Itis a linear combination with a random factor PR in the
domain of [0,1].

In the case of feature generation, as the fitness function
is based on neither of these two mentioned distance metrics,
a new definition of GS operators is needed to exploit their
potential in the new scenario. Treating each reproduction as
a combination of two existing features, we relax the linear
combination rule in [13] by replacing the addition with an
operator randomly chosen from a pre-defined function pool.
Then we end up with the following AGS crossover definition
expressed in Equation (3)

T3 =g.(PR-T1,(1 — PR)-T2) 3)

where g. is a mathematical operator drawn randomly from
a pool with two-input operators. In the paper, the pool is
limited to four basic types of operators: plus, minus, multi-
plication and division (protected). When two parent trees are
combined, their output terminals are first multiplied by PR or
(1 — PR) then attached to the inputs of g.. The output of g,
then becomes the new output terminal for the combined child
tree. The graphical illustration of AGS crossover is shown in
Figure 1.

In a similar way, we present an AGS mutation which is
given in Equation (4)

T3 = gm(T1,TR) 4)

where T'R is arandomly generated branch and g,,, is a random
mathematical operator. Figure 2 shows how this operation is
done.
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Fig. 1: AGS Crossover: The two trees on the left side are par-
ent trees. The operator in dashed circle is the random opera-
tor. The right side tree gives the child of the AGS crossover.
A, B, C, D are the input terminals (original features).
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Fig. 2: AGS Mutation: The most left side tree is the parent
tree. The branch in dashed lines is a random branch. The right
side tree gives the child tree of the AGS mutation. A, B, C,D
are the input terminals (original features).

2.3. Devolution for AGS Operators

Based on the definition of AGS operators, it is not difficult
to see that the child tree always has increased depth (num-
ber of layers between top input terminal and output terminal)
as compared to its parents. As the growth is inevitable, the
computational complexity of AGS-GP after certain number of
generations will be difficult to handle. Without a simplifica-
tion mechanism, the implementation of such genetic operator
is unpractical. For this reason, a devolution module is added
to GP to control the growth.

Devolution or degeneration is a concept borrowed from
biological evolution theory. It is believed that some time the
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evolution of a species can change into a more primitive”
form. In many cases it means certain organs disappearing or
being transformed into a less complex form. There is much
evidence that such a process is beneficial for the overall fit-
ness of a species and helps their chance of survival.

In this study, we implement the devolution on bloat trees
where some trivial parts can be removed to off load the de-
mand for computation power. When searching for the less
significant parts, the branches at the furthest distance from
the output terminals are considered as tail branches and have
little impact on the overall fitness of an individual. There are
different ways of defining a notion of distance between tail
branches and output terminals. In this research, we use depth
as the sole parameter for distance measurement. It is the
authors’ understanding that this notion of distance becomes
more robust with increased depth in a tree. Therefore, only
the trees reaching the maximum depth limitation are quali-
fied for devolution. In Figure 3, it is demonstrated that with
sufficient tree size, as indicated by realmaxdepth (maxi-
mum depth allowed) in the GP program, the impact of devo-
lution can be significantly reduced. In addition, it also shows
that when compared to the standard resource control method,
which reject children larger than the limited tree size, our de-
volution mechanism enables the AGS operator and achieves
much better fitness improvement.

Having located the tail branches to remove, the actual
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Fig. 3: Fitness records applying devolution at different
realmaxdepth and with standard resource control averaged
over 30 runs in each case using 70% WBCD data for training.

devolution is executed by replacing the tail branches with one
of its input terminals. The selection of replacing terminals is
random. The process is illustrated in Figure 4.

3. EXPERIMENTS AND GP PARAMETERS

To evaluate the actual performance of the proposed AGS op-
erators, Wisconsin Breast Cancer Dataset (WBCD) [16] and
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Fig. 4: Devolution: The left side tree is the individual before
devolution. Nodes in dashed outlines are tail branch. The
right side tree is the devolved form.

Pima Indians Diabetes Dataset (PIDD) [16] are used. Train-
ing and testing datasets are generated in three different ra-
tios (train/test): 50%/50%, 70%/30% and 80%/20%. Using
50%/50% for WBCD as an example, in a total number of 569
samples which contain 212 malignant cases and 357 benign
cases, 106 samples from malignant cases and 179 samples
from benign cases are selected randomly as training samples.
The rest are used as testing data.

The actual development of GP with AGS operators and
devolution model is based on Silva’s GPlab toolbox for MAT-
LAB [17]. GP parameters have been tuned for establishing
a fair ground for standard GP and AGS GP as well as for
achieving a better overall performance. Some key parameters
are listed in Table 1. The explanation of each term can be
found in [17].

Table 1: Parameters Used In Experiments

Parameters Values
generations 1000
population 25
operatorprobstype fixed
initialfixedprobs 50% 50%
reproduction 10%
functions plus, minus, times, divide
PR factor 0.5
inicmaxlevel 3
realmaxlevel/realmaxdepth | 8

sampling lexictour
elitism halfelitism

There are three operator combinations presented and ana-
lyzed in this paper: standard mutation and standard crossover,
AGS mutation and AGS crossover, as well as standard mu-
tation and AGS crossover. Other combinations will be in-
vestigated in future. For each operator combination, 30 GP
runs are executed where population status including tree in-
formation, population fitness and population complexity are
recorded at each generation. When testing the classification
accuracy, linear discriminant analysis (LDA) is used to clas-
sify the testing samples using the same training data as in GP
runs.
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4. RESULTS AND ANALYSIS

In Figure 5, fitness improvement over 1000 generations using
different operator combinations is shown. The fitness values
are averaged “best so far’fitness values (best fitness value in
all previous generations in current run) over 30 runs. When
using AGS mutation and AGS crossover, the fitness value sees
a sharp improvement in the first 30 generations. However, the
improvement of fitness slows down significantly after 30 gen-
erations. An early convergence is reached before 100 gener-
ations. At the same time, while having a more modest fitness
improvement at first 30 generations, GP with standard muta-
tion and crossover maintains a healthy increment rate. The
rate becomes slower gradually but shows no obvious sign of
convergence even at 1000th generations. The different results
between purely AGS GP and purely standard GP indicate that
the AGS operators are quick to find local optimum with ini-
tial building block, though, the lack of ability to maintain the
population diversity leads to a premature conclusion in the so-
lution searching process.

In order to utilize the strength of AGS operators and
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Fig. 5: Fitness records from each operator combination av-
eraged over 30 runs in each case using 70% WBCD data for
training.

complement their weaknesses, AGS mutation is replaced by
standard mutation to achieve better searching distance and to
maintain the diversity in later generations. The new combi-
nation will be named as AGS-GP in the rest of this paper.
According to the results in Figure 5, the AGS-GP delivered
a quick burst of fitness improvement in the first 100 genera-
tions. The rate of improvement is much faster than either of
the two previous operator combinations at any point. Between
100 and 300 generations, it is clear that the fitness achieved by
the AGS-GP is significantly higher than the standard mutation
and crossover combination (standard GP). After 300 genera-
tions, the evolution of fitness slows down, yet it remains on a
similar level as standard GP. At 1000th generation, AGS-GP
still maintains a superior fitness over the standard GP while

both carry on improving at a much slower speed.

As the fitness improvement is only part of the story, the
actual classification performance need to be investigated to
verify if the performance of GP generated features coincide
with their behavior in the Fisher’s criterion evaluation. In this
experiment, we extract the best so far solution, which is the
best solution found from all previous generations in each run,
and use LDA classifier along with the testing data to obtain
the classification performance at each generation. The classi-
fication accuracy is averaged over 30 runs and plotted in Fig-
ure 6. It can be seen that the performance plot echoes what
has been seen in the fitness plot. The only difference is that,
after 500 generations, even though fitness values are still im-
proving, the actual classification accuracy from all operator
combinations sees no obvious improvement.

Experiments with the same setup are repeated for different
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Fig. 6: Classification results from each operator combination
averaged over 30 runs in each case using 30% WBCD data
for testing.

Table 2: Breast Cancer Classification Test Results

Classifier Data Ratio | Average | Best Std

AGS-GP 50% / 50% | 97.0% 98.6% | 0.4%
Standard GP | 50% /50% | 96.7% 97.9% | 1.2%
AGS-GP 70% /30% | 95.9% 98.8% | 1.4%
Standard GP | 70% /30% | 95.7% 98.2% | 1.9%
AGS-GP 80% /20% | 96.5% 99.2% | 0.8%
Standard GP | 80% /20% | 95.8% 98.3% | 1.8%

data subsets. The final classification results are collected and
presented in Table 2 and Table 3. It is shown that, in all cases,
AGS-GP outperforms the standard GP. It is worth mentioning
that if less training time is given, AGS-GP would have a big-
ger advantage as demonstrated in Figure 6.
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Table 3: Diabetes Classification Test Results

Classifier Data Ratio | Average | Best Std

AGS-GP 50% /50% | 75.2% 78.7% | 1.3%
Standard GP | 50% / 50% | 74.6% 76.8% | 1.4%
AGS-GP 70% /1 30% | 75.7% 79.1% | 1.4%
Standard GP | 70% /30% | 75.1% 77.4% | 1.0%
AGS-GP 80% /20% | 75.5% 791% | 2.2%
Standard GP | 80% /20% | 73.9% 76.4% | 2.7%

5. CONCLUSION

New AGS genetic operators are proposed for the specific
task of using GP as feature generator for diabetes and breast
cancer classification. With the added devolution mechanism,
the growth of GP using AGS operators are successfully con-
trolled. The interpretation of experimental results is that AGS
operators are good for searching optimum in a limited space.
However, they lack the ability to explore more globally. This
weakness can be overcome with the addition of traditional
mutation. The end results show that the the propose AGS-GP
classifier is superior to the stand GP classifier in all aspects
and provides a potentially improved solution for many clas-
sification problems. Extended research will be conducted to
validate the propose method with more datasets and compar-
ison with more existing classifiers.
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