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Abstract—This paper describes a new proposed strategy of
Adaptive Plan System using Differential Evolution (DE) with
Genetic Algorithm (GA) called APGA/DE to solve large scale
optimization problems, to reduce a large amount of calculation
cost, and to improve stability in convergence to an optimal
solution. This is an approach that combines the global search
ability of GA and Adaptive Plan (AP) for local search ability.
The proposed strategy incorporates new concept of AP using
DE for Adaptive System (AS) with GA. The APGA/DE is
applied to several benchmark functions with multi-dimensions
to evaluate its performance. It is shown to be statistically
significantly superior to other Evolutionary Algorithms (EAs),
and Memetic Algorithms (MAs). We confirmed satisfactory
performance through various benchmark tests.

I. INTRODUCTION

Evolutionary Algorithms (EAs) have been developed for
solving combinatorial and numeric optimization problems.
The most popular EA, Genetic Algorithm (GA) [1], [2], has
been applied to various multimodal optimization problems
with multi-dimensions. The validity of this method has been
reported by many researchers. However, it requires a huge
computational cost to obtain stability in the convergence to an
optimal solution. To reduce the cost and to improve stability,
a strategy that combines global and local search methods
becomes necessary. As for this strategy, current research has
proposed various methods. For instance, Memetic Algorithms
(MAs) [3]–[7] are a class of stochastic global search heuristics
in which EAs-based approaches are combined with local
search techniques to improve the quality of the solutions cre-
ated by evolution. MAs have proven very successful across the
search ability for multimodal functions with multi-dimensions
[8]. These methodologies need to choose suitably a best
local search method combining with a global search method
within the optimization process. Furthermore, since genetic
operators are employed for a global search method within
these algorithms, design variable vectors (DVs) which are
renewed via a local search are encoded into its genes many
times at its GA process. These certainly have the potential to
break its improved chromosomes via gene manipulation by GA
operators, even if these approaches choose a proper survival
strategy.

To solve these problems and maintain the stability of the
convergence to an optimal solution for multi-peak optimization
problems with multiple dimensions, Hasegawa et al. proposed
a new evolutionary algorithm called an Adaptive Plan system
with Genetic Algorithm (APGA) [9].

A new evolutionary algorithm known as Differential Evo-
lutionary (DE) was recently introduced and has garnered
significant attention in the research literature with improved
performance [10]–[12]. DE operates through similar com-
putational steps as employed by a standard EA. However,
compared with other forms of EAs [13], it hardly requires
any parameter tuning and is very efficient and reliable. DE
has many advantages including simplicity of implementation,
robust, and is generally considered as an effetive global opti-
mization algorithm. Neverthless, DE also has shortcomings as
all other intelligent techniques such as local search ability, pre-
mature convergence, stagnation problems, control parameters,
etc. Therefore, many researchers have done several attempts
to overcome these problems and to improve the performance
of the DE algorithm [14]–[19].

In this paper, we purposed a new strategy of Adaptive Plan
System using DE with GA to solve large scale optimization
problems, to reduce a large amount of calculation cost, and
to improve the convergence to the optimal solution called
APGA/DE.

The remainder of this paper is organized in the following
manner. The basic concepts of DE is described in Section
2, Section 3 explains the algorithm of new proposed strategy
(APGA/DE), and Section 4 discusses about the convergence
to the optimal solution of multimodal benchmark functions.
Finally, Section 5 includes some brief conclusions.

II. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is an EA proposed by Storn and
Price [10], also a population-based heuristic algorithm, which
is simple to implement, requires little or no parameter tuning
and is known for its remarkable performance for combinatorial
optimization. DE is similar to other EAs particularly GA
in the sense that it uses the same evolutionary operators
such as selection, recombination, and mutation. However the
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significant difference is that DE uses distance and direction
information from the current population to guide the search
process. The performance of DE depends on the manipulation
of target vector and difference vector in order to obtain a trial
vector.

A. Mutation Operator

Mutation becomes the main operator in DE. For a D-
dimensional search space, each target vector Xi,G, the most
useful strategies of a mutant vector are
DE/rand/1

Vi,G = Xr1,G + F · (Xr2,G −Xr3,G) , (1)

DE/best/1

Vi,G = Xbest,G + F · (Xr2,G −Xr3,G) , (2)

DE/target-to-best/1

Vi,G = Xi,G + F · (Xbest,G −Xi,G)

+F · (Xr2,G −Xr3,G) , (3)

DE/best/2

Vi,G = Xbest,G + F · (Xr1,G −Xr2,G)

+F · (Xr3,G −Xr4,G) , (4)

DE/rand/2

Vi,G = Xr1,G + F · (Xr2,G −Xr3,G)

+F · (Xr4,G −Xr5,G) , (5)

where r1, r2, r3, r4, r5 ∈ [1, 2, . . . , NP ] are mutually
exclusive randomly chosen integers with a initiated population
of NP , and all are different from the base index i. G denotes
subsequent generations, and F > 0 is a scaling factor which
controls the amplification of differential evolution. Xbest,G is
the best individual vector with the best fitness (lowest objective
function value for a minimization) in the population.

B. Crossover Operation

To enhance the potential diversity of the population, a
crossover operation is introduced. The donor vector exchanges
its components with the target vector to form the trial vector

Uij,G+1 =

{
Vij,G+1, (randj ≤ CR) or (j = jrand)

Xij,G+1, (randj ≥ CR) and (j ̸= jrand)
,

(6)
where j = [1, 2, . . . , D]; randj ∈ [0.0, 1.0]; CR is the
crossover probability takes value in the range [0.0,1.0], and
jrand ∈ [1, 2, . . . , D] is the randomly chosen index.

C. Selection

Selection is performed to determine whether the target
vector or the trial vector survives to the next generation. The
selection operation is described as

Xi,G+1 =

{
Ui,G, f (Ui,G) ≤ f (Xi,G)

Xi,G, f (Ui,G) > f (Xi,G)
. (7)

 

Fig. 1. APGA/DE Conceptual Strategy

III. NEW EVOLUTION STRATEGY: APGA/DE

With a view to global search, we proposed the new
algorithm of Adaptive Plan system using DE with GA
(APGA/DE). The proposed APGA/DE aims at incorporating
new concept of AP to adjust into adaptive system of APGA
using alternative operator of DE scheme.

A. APGA/DE Algorithm

The APGA/DE generates a new candidate solution with
adaptive system of APGA using the binomial crossover opera-
tion (6), and the conditions given by (7) of DE. The flow-chart
of APGA/DE algorithm is shown in Fig. 1.

Algorithm 1 The APGA/DE Pseudocode
1: Initialize population with CVs;
2: Generate initial DVs;
3: Evaluate individuals with initial DVs;
4: while (Termination Condition) do
5: Generate DVs via AP with DE;
6: Evaluate individuals with DVs;
7: Select parents;
8: Recombine to produce offspring for CVs;
9: Mutate offspring for CVs;

10: if (Restructuring Condition) then
11: Restructure chromosome of offspring for CVs;
12: end if
13: end while

B. Adaptive Plan (AP)

Adaptive Plan with Genetic Algorithm (APGA) [9] that
combines the global search ability of a GA and an Adaptive
Plan with excellent local search ability is superior to other
EAs, MAs [8]. The APGA concept differs in handling Design
variable vectors (DVs) from general EAs based on GAs.
EAs generally encode DVs into the genes of a chromosome,
and handle them through GA operators. However, APGA
completely separates DVs of global search and local search
methods. It encodes Control variable vectors (CVs) of AP into
its genes on Adaptive system (AS). Moreover, this separation
strategy for DVs and chromosomes can solve MA problem
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of breaking chromosomes. The control variable vectors (CVs)
steer the behavior of adaptive plan (AP) for a global search,
and are renewed via genetic operations by estimating fitness
value. For a local search, AP with DE generates next values
of DVs by using CVs, scaling factor F and current values of
DVs according to the formula

Xi,G+1 = Xi,G +AP (Ci,G, Fi,G) , (8)

where AP (), X , C, F , and G denote a function of AP, DVs,
CVs, scaling factor of DE scheme and subsequent generations,
respectively.

It is necessary that the AP realizes a local search process
by applying various heuristics rules. In this paper, the plan
introduces a DV generation formula using the alternative
scheme of DE/target-to-best/1 (3) as in

AP (Ci,G, Fi,G) = F ′
i,G · [(Xbest,G −Xi,G)

+ (Xk,G −Xq,G)] , (9)

F ′
i,G = SP · Fi,G , (10)

SP = 2 · Ci,G − 1 , (11)

where F ′
i,G is given as a new control parameter. SP and

Fi,G ∈ [0.0, 1.0] denote step size and scaling factor, respec-
tively. Xbest,G is the best individual with the best fitness. k, q
are randomly chosen index from population, and k ̸= q ̸= i.

A step size SP is defined by CVs for controlling a
global behavior to prevent it falling into the local optimum.
C = [ci,j , . . . , ci,p]; (0.0 ≤ ci,j ≤ 1.0) is used so
that it can change the direction to improve or worsen the
objective function, and C is encoded into a chromosome by
10 bit strings (shown in Fig. 2). In addition, i, j and p are
the individual number, design variable number and its size,
respectively.

C. Self-adaptive Control Parameters
Recently, Brest et al. [15] proposed a self-adaption scheme

for the DE control parameters. The scaling factor F and
crossover probability CR are encoded into the individual and
adjusted by introducing new parameters τ1, τ2. In this paper,
we computed the new control parameters for next generation
as

Fi,G+1 =

{
Fl + rand1 ∗ Fu with probability τ1

Fi,G else
,

(12)

CRi,G+1 =

{
rand with probability τ2

CRi,G else
, (13)

where Fl and Fu are the lower and upper limits of F , Fl = 0.1
and Fu = 0.9, and τ1 = τ2 = 0.1. The new F and CR,
obtained before the mutation is performed, take value from
[0.0,1.0].

 

0  0  0  1  0  1  0  0  0  0 1  1  1  0  0  1  0  1  0  0 

c 
i, 1 
= 80/1023 = 0.07820 c 

i, 2 
= 916/1023 = 0.8954 

Individual i 

Step size c i, 1 of x 1: Step size c i, 2 of x 2 :

SP=2c i,1 – 1= – 0.8436 SP=2c i,2 – 1= 0.7908 

Fig. 2. Step size that defined by CVs for controlling a global behavior to
prevent it falling into the local optimum
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Fig. 3. Elite strategy, where the best individual survives in the next
generation, is adopted during each generation process

D. GA Operators

1) Selection: Selection is performed using a tournament
size of 2 strategy to maintain the diverseness of individuals
with a goal of keeping off an early convergence.

2) Elite Strategy: An elite strategy, where the best in-
dividual survives in the next generation, is adopted during
each generation process. It is necessary to assume that the
best individual, i.e., as for the elite individual, generates two
behaviors of AP by updating DVs with AP, not GA operators.
Therefore, its strategy replicates the best individual to two elite
individuals, and keeps them to next generation. As shown in
Fig. 3, DVs of one of them (∆ symbol) is renewed by AP,
and its CVs which are coded into chromosome arent changed
by GA operators. Another one (◦ symbol) is that both DVs
and CVs are not renewed, and are kept to next generation as
an elite individual at the same search point.

3) Crossover and Mutation: In order to pick up the best
values of each CV, a single point crossover is used for the
string of each CV. This can be considered to be a uniform
crossover for the string of the chromosome. Mutation are
performed for each string at mutation ratio on each generation,
and set to maintain the strings diverse.

4) Recombination of Genes: At following conditions, the
genetic information on chromosome of individual is recom-
bined by uniform random function

• One fitness value occupies 80% of the fitness of all
individuals.

• One chromosome occupies 80% of the population.
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TABLE I
PARAMETER SETTINGS FOR BENCHMARK TESTS

Operator Control Parameter Set value

DE Initial scaling factor F = 0.1

Initial crossover CR = 0.5

Limits of scaling factor Fl = 0.1; Fu = 0.9

Probability τ1 = τ2 = 0.1

GA Selection 1.0
Crossover 0.8
Mutation 0.1

The population size: 100; The terminal generation: 1500

IV. NUMERICAL EXPERIMENTS

The numerical experiments are performed 50 independent
trials for each function. The parameter settings used in solving
the benchmark functions are given in Table I. The initial seed
number is randomly varied during every trial. The lower and
upper limits of scaling factor F , Fl = 0.1 and Fu = 0.9, the
initial control parameters F and CR are respectively set by
0.1 and 0.5 for the performance of DE. The GA parameters,
selection ratio, crossover ratio and mutation ratio are 1.0, 0.8
and 0.1, respectively. The population size is 100 individuals
and the terminal generation is 1500 generations.

A. Benchmark Functions

For the APGA/DE, we estimated the stability of the conver-
gence to the optimal solution by using five benchmark func-
tions with 30, and 100 dimensions: Rastrigin (RA), Griewank
(GR), Ridge (RI), Ackley (AC), and Rosenbrock (RO). These
functions are given as follows

RA : f1 = 10D +
D∑
i=1

[x2
i − 10cos(2πxi)] , (14)

RI : f2 =
D∑
i=1

 i∑
j=1

xj

2

, (15)

GR : f3 = 1 +

D∑
i=1

x2
i

4000
−

D∏
i=1

cos

(
xi√
i

)
, (16)

AC : f4 = −20 exp

−0.2

√√√√ 1

D

D∑
i=1

x2
i


− exp

(
1

D

D∑
i=1

cos (2πxi)

)
+ 20 + e , (17)

RO : f5 =
D∑
i=1

[
100(xi+1 + 1− (xi + 1)2)2 + x2

i

]
. (18)

Table II lists their characteristics, including the terms epis-
tasis, multimodal, and steepness. A more detailed description
of each function is given in [20].

TABLE II
CHARACTERISTICS OF BENCHMARK FUNCTIONS

Function Epistasis Multimodal Steepness

RA No Yes Average

RI Yes No Average

GR Yes Yes Small

AC No Yes Average

RO Yes No Big

TABLE III
DESIGN RANGE AND OPTIMUM VALUE OF BENCHMARK FUNCTIONS

Function Design Range Optimum Value

RA [−5.12, 5.12]D f1(0) = 0

RI [−100, 100]D f2(0) = 0

GR [−600, 600]D f3(0) = 0

AC [−32, 32]D f4(0) = 0

RO [−30, 30]D f5(0) = 0

TABLE IV
AVERAGE RESULTS, OVER 50 TRIALS WITH 30 DIMENSIONS. ”MEAN

BEST” INDICATES AVERAGE OF OPTIMUM VALUES OBTAINED AND ”STD
DEV” STANDS FOR STANDARD DEVIATION

Function Gen. NFE Mean Best Std Dev

RA 113 11,300 0.00E+00 0.00E+00

RI 553 55,300 0.00E+00 0.00E+00

GR 101 10,100 0.00E+00 0.00E+00

AC 144 14,400 4.44E-16 0.00E+00

RO 355 35,500 0.00E+00 0.00E+00

TABLE V
AVERAGE RESULTS, OVER 50 TRIALS WITH 100 DIMENSIONS. ”MEAN

BEST” INDICATES AVERAGE OF OPTIMUM VALUES OBTAINED AND ”STD
DEV” STANDS FOR STANDARD DEVIATION

Function Gen. NFE Mean Best Std Dev

RA 133 13,300 0.00E+00 0.00E+00

RI 795 79,500 0.00E+00 0.00E+00

GR 129 12,900 0.00E+00 0.00E+00

AC 199 19,900 4.44E-16 0.00E+00

RO 478 47,800 0.00E+00 0.00E+00

Their design range and optimum value are summarized
in Table III. All functions are minimized to zero (ESP =
1.7e − 308), when optimal DVs X = 0 are obtained. If the
search point attains an optimal solution or a current generation
process reaches the termination generation, the search process
is terminated.

B. Experiment Results

The experiment results, average generations required to
reach the global optimum of all benchmark functions by the
APGA/DE are given in Table IV, and Table V. ”Mean best”
indicates average of optimum values obtained and ”Std Dev”
stands for standard deviation. The solution of all benchmark
functions reach their global optimum solutions, and the success
rate of optimal solution is 100%.
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TABLE VI
COMPARISON OF DE, JDE, ADE AND APGA/DE ALGORITHM (D = 30,

POPULATION SIZE 100, AND MAX GENERATION 1500)

Function DE [10] jDE [15] ADE [19] APGA/DE
Mean best Mean best Mean best Mean best
(Std Dev) (Std Dev) (Std Dev) (Std Dev)

RA 173.405 1.5E-15 0.0E+00 (1) 0.00E+00
(13.841) (4.8E-15) (0.0E+00) (0.00E+00)

RI 1.630860 0.090075 – 0.00E+00
(0.886153) (0.080178) (0.00E+00)

GR 2.9E-13 0 0.0E+00 (2) 0.00E+00
(4.2E-13) 0 (0.0E+00) (0.00E+00)

AC 9.7E-08 7.7E-15 6.93E-11 4.44E-16
(4.2E-08) (1.4E-15) (3.10E-11) (0.00E+00)

RO 7.8E-09 3.1E-15 3.75E-05 (3) 0.00E+00
(5.8E-09) (8.3E-15) (8.90E-05) (0.00E+00)

(1) Gen. No 5000; (2) Gen. No 2000; (3) Gen. No 3000
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Fig. 4. Convergence, average fitnesses of all individuals by APGA/DE with
30 dimensions and population size 100

Next, Fig. 4 shows diagram for the convergence, average
fitness values of all individuals in the population until the
APGA/DE reaches the global optimum solutions with all
benchmark functions, again to confirm above mentioned re-
sults.

As a result, its validity confirms that this strategy can
dramatically reduce the computation cost and improve the
stability of the convergence to the optimal solution more
significantly.

C. Comparison for Robustness

To show the effects of the APGA/DE, we compared to
other EAs such as original DE [10], Self-adaptive DE (jDE)
[15], Advanced DE (ADE) [19], GA [21], Particle Swarm
Optimization (PSO) [21], and Artificial Bee Colony (ABC)
[22] that used maximum number of generations and the
population size as in [13], [21]. From the comparison as given
in Table VI and Table VII, we confirmed that APGA/DE
algorithm outperformed other techniques, and it converged the
global optimal solution with a high probability.

In particular, it showed that the computation cost could be
reduced dramatically, and the convergence towards the optimal
solution could be improved more significantly.

TABLE VII
COMPARISON OF GA, PSO, ABC AND APGA/DE ALGORITHM (D = 30,

POPULATION SIZE 125, AND MAX GENERATION 1000)

Function GA [21] PSO [21] ABC [22] APGA/DE
Mean best Mean best Mean best Mean best
(Std Dev) (Std Dev) (Std Dev) (Std Dev)

RA 10.4388 32.476 0.033874 0.00E+00
(2.6386) (6.9521) (0.181557) (0.00E+00)

RI – – – 0.00E+00
(0.00E+00)

GR 1.2342 0.011151 2.87E-09 0.00E+00
(0.11045) (0.014209) (8.45E-10) (0.00E+00)

AC 1.0989 1.49E-06 3.00E-12 4.44E-16
(0.24956) (1.86E-06) (5.00E-12) (0.00E+00)

RO 166.283 402.54 0.219626 0.00E+00
(59.5102) (633.65) (0.152742) (0.00E+00)

Overall, the APGA/DE was capable of attaining robustness,
high quality, low calculation cost, and efficient performance on
many benchmark problems.

V. CONCLUSION

In this paper, overcome the computational complexity, a new
strategy of Adaptive Plan system using Differential Evolution
with Genetic Algorithm called APGA/DE has been proposed
to solve large scale optimization problems, to reduce a large
amount of calculation cost, and to improve the convergence
to the optimal solution. Then, we verified the effectiveness of
APGA/DE algorithm by the numerical experiments performed
five benchmark tests.

We confirmed that the APGA/DE reduces the calculation
cost and dramatically improves the convergence towards the
optimal solution. Moreover, it could solve large scale opti-
mization problems with high probability.

About a solution of the problem of cost reduction, minimum
time and maximum reliability, it is a future work.

Finally, this study plans to do a comparison with the sensi-
tivity plan of the AP by applying other methods on constrained
real-parameters and dynamic optimization problems.
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