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Abstract - This paper relates to  supervised inter- 
pretation of the infra red analytical spectra of complex 
biological samples. The aim is to produce a model that 
can predict the value of a measurand of interest, such 
as the concentration of a particular chemical constitu- 
ent in complex biological material. Conventionally, a 
number of spectra are co-added to  reduce measure- 
ment noise and this is time consuming. In this pa- 
per we demonstrate the ability of evolutionary search 
t o  provide adaptive averaging of spectral regions to 
provide selective tradeoff between spectral resolution 
and signal-to-noise ratio. The resultant denoised sub- 
set of the variables is then input to  a proprietary Ge- 
netic Programming (GP) package which forms a pre- 
dictive model that compares well in predictive power 
with a combination of Partial Least Squares Regres- 
sion (PLS) and adaptive denoising. This demonstrates 
the considerable advantage that, given appropriate 
node functions, the GP could handle the entire process 
of denoising and forming the final predictive model all 
in one stage. This reduces or removes the need for co- 
adding with a consequent reduction in data acquisition 
time. 

I. INTRODUCTION 
Infra red (IR) absorbance spectroscopy measures the 

optical absorbance of a sample at  successive wavelengths’. 
Specific regions in the spectrum relate to the vibrational 
characteristics of specific chemical bonds [l] and the spec- 
trum can therefore reveal the chemical composition of 
the sample under examination in terms of the constitu- 
ent components and the relative concentrations of each. 
For biological specimens that inevitably contain large mo- 
lecules, interpretation of their IR spectra is difficult by any 
means other than those based on machine learning. The 
topic thus provides a fruitful stimulus for the development 
of appropriate approaches. 

The work reported in this paper concerns an invest- 
igation of the feasibility of achieving adaptive denoising 

’Spectroscopists prefer to work in terms of wavenumbers, calcu- 
lated by taking the reciprocal of the wavelength in centimetres. 

of infra red spectra via genetic programming (GP) [2] 
that incorporates appropriate local averaging. This would 
achieve the appropriate tradeoff between signal-to-noise 
ratio and resolution for different spectral regions. The 
inputs are the individual spectra and the output is the 
predicted concentration of a chemical of interest. 

Spectra always contain measurement noise and this in- 
terferes with numeric interpretation. Various successful 
methods have been reported for denoising prior to pre- 
dictive modelling but part of the aim of the work we re- 
port here was to remove the need for preprocessing and 
to provide a self-contained tool for laboratory use. 

A .  Supervised learning for spectral interpretation 

Perhaps the simplest supervised technique is regression. 
In its simplest, single dimensional, form this fits a straight 
line to a set of points as a means of establishing an em- 
pirical relationship between a set of observations and a 
dependant variable, thereby forming a calibration model. 
In our current context we are concerned with multidi- 
mensional data such as the 882 variables that repres- 
ent a single ‘observation’ using a Fourier Transform In- 
fra Red (FT-IR) spectrometer2. Regression extends to 
multivariate data in, for example, the form of Multiple 
Linear Regression (MLR) (e.g. [3]) which, however, does 
not behave well when there is colinearity between dimen- 
sions, as is a common feature with optical spectra. Par- 
tial Least Squares Regression (PLS) [4] overcomes this 
problem and is a regression method based on latent vari- 
ables whose selection is based on eliminating covariance 
between ‘X’ variables (the measured variables) while ex- 
ploiting covariance between the ‘X’ and ‘Y’ variable (the 
target variable). PLS has performed well in forming calib- 
ration models based on optical spectra [5]. Backpropaga- 
tion neural networks (eg.  [6] )  are also successful (eg.  [7]), 
being able in principle to fit any nonlinear multivariate 
function. Such supervised methods can of course be used 

aE.g. A Bruker IFS28 Fourier Transform Infra Red spectrometer. 
Bruker, Banner Lane, Coventry, UK 
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both for quantification problems and supervised cluster- 
ing. 

There is considerable evidence in the literature (e.g. [8], 
[9], [lo] that using evolutionary and other techniques to 
select subsets of the ‘X’ variables can provide much im- 
proved calibration models. For example, Broadhurst [ll] 
formed PLS models on the basis of selection via genetic 
algorithm of the most important peaks in mass spectra. 
One of the aspects of our work reported in this paper is the 
use of evolutionary search to select an effective denoised 
subset of the variables in infra red spectra. 

Williams and co-workers, e.g. [12], [13], explored their 
method of ‘genetic regression’. The original motivation 
was to eliminate the spectral baseline in calibration of 
component concentration in visible spectra but they ex- 
tended their work to other aspects of spectroscopy. 

Successes have been achieved in the use of GP for spec- 
tral interpretation (eg. [14], [15]). Johnson et. al. [16] 
provides an excellent example of an explanatory model 
that provides insight into the system under study, thereby 
revealing unexpected new knowledge. 

Kell et a1 [17] used a variant of GP that is embodied in a 
proprietary tool that was also used in part of the work we 
describe in this paper. They used liquid chromatography 
data, that has many similarities to optical spectroscopic 
data. They were able with 95% accuracy to determine the 
presence or otherwise of a specific genetic modification in 
plant tissue. 

Predictive models are normally judged and compared 
as to  their effectiveness by means of the root mean square 
error between the known values (the ‘Y’ data) that cor- 
respond to the data objects and the predicted values pro- 
duced via the model. We refer to this generally as the 
RMSEP, or root mean square error of prediction [18]. 

11. INFRA RED SPECTRA AND NOISE 

Spectra normally contain measurement noise. Forma- 
tion of a model on a relatively small number of individual 
variables is therefore inappropriate. Preprocessing to re- 
move noise etc. is described in, for example, [19], [20], 
[21]. Other approaches include filtering of various forms 
and taking many repeated spectra from each sample and 
‘co-adding’ them to improve the signal to noise ratio. This 
of course is time consuming, with many tens or hundreds 
of repeats being needed to achieve ‘clean’ spectra in some 
cases. In a typical instrument each spectrum consists of 
up to 882 absorbance or reflectance measurements taken 
at successive wavelength (or wavenumber) settings. The 
spectral resolution is finer than the width of the many 
peaks that, superimposed, make up the overall spectrum. 
Thus there is a high degree of covariance between adjacent 
variables. A simple method of denoising is to replace each 
variable with the average value of the variables in a fixed 
width window that is moved across the entire spectrum. 
This method is, of course, normally unable to adapt to 
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Fig. 1. Spectral windows. In this example, that is for illus- 
tration only, four wandows are shown, each of a different 
width. The window centre positions and widths are evolved 
b y  the G A  and the spectral variables within them are aver- 
aged to remove noise. The edent  of noise removal there- 
fore depends on the window wadth. 

the differences in signal-to-noise ratio in different parts of 
the spectrum. 

111. BASIS OF THE METHOD 
Our method, described below, currently employs a two- 

stage approach. First, we use a genetic algorithm (GA) 
to form a simple predictive model from the spectra. This 
selects the ten most ‘important’ spectral variables. It also 
selects a value for the width of a ‘window’ around each 
of those variables, within which all variables are averaged 
and the result used as a new variable (see figure 1). The 
effect is to provide differing degrees of denoising in differ- 
ent parts of the spectrum. The selected subset of denoised 
variables is then fed into a GP, which quickly forms a bet- 
ter predictive model, indicating that a GP  with suitable 
functions could provide a ‘one-step’ tool. The results are 
compared with PLS on the raw noisy data and on a ver- 
sion of the noisy data that has been (partially) denoised 
by a moving average filter. 

IV. THE DATA SET 
The data set is derived from a number of samples taken 

for the purpose of monitoring an industrial-scale ferment- 
ation and is described more fully in [22]. The fermenta- 
tion is the production of gibberellic acid (GA3). This is 
a natural regulator of many aspects of plant growth and 
is of economic importance in agriculture and horticulture. 
Sixty fermentation samples, collected over a three month 
period from industrial fermentations, were analysed first 
by liquid chromatography to determine the gibberelic acid 
concentrations and thus to provide the ‘Y’ data for the 
supervised learning. The remainder were analysed spec- 
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troscopically via the Bruker IFS28 infra red spectrometer 
with a diffuse-reflectance attachment. 5pl of each sample 
were placed in the wells of a 400 well aluminium plate 
and oven dried prior to analysis. Mid infra red spectra 
were collected over the wavenumber range 4000cm-1 to 
600cm-1 acquired a t  a rate of 20 s-l, at a spectral res- 
olution of 3.85 cm-’. To improve signal-to-noise ratio, 
256 spectra were co-added and averaged. Each sample 
was analysed in triplicate, resulting in a 180 by 882 data 
matrix. This was subsequently partitioned into training, 
and test sets each containing 60 objects and a third set 
that was not used in the comparitive study reported in 
this paper but would be used in validating a model that 
was to be used for prediction on new data sets. 

For the purposes of the present investigation into adapt- 
ive denoising, the co-added spectra were artificially con- 
taminated with noise. This was done by adding to each 
spectral variable a random signed value of maximum amp- 
litude equal to 20% of the average range of the spectra in 
the data set. For examples of ‘clean’ and ‘noisy’ spectra, 
see figure 2. 

V. GA FOR SELECTION OF DENOISED 
VARIABLES 

The work reported here uses a genetic algorithm to se- 
lect variables, constants and arithmetic functions to form 
a simple model that predicts the value of the measurand 
(in this case the concentration of gibberelic acid). The GA 
is a modification of the supervised predictive system based 
on linear chromosomes previously described by Taylor et. 
al. [23]. The slightly modified version of that GA that we 
have used in this work incorporates mutation operators 
that modify the location and width of windows, as illus- 
trated above, but the ‘sliding’ mutation used in [23] is not 
used here. 

The overall effect is to select, on the basis of predict- 
ive ability, a set of spectral variables and corresponding 
windows across which the values are averaged in order to 
achieve denoising. The resulting window widths provide 
different degrees of denoising depending on the required 
level of relevant detail in the various spectral regions, 
traded off against the noise level. 

Each window mid-point could take a random value 
between 5 and 877 (the maximum number of variables 
is 882, but the mid point value may not be set beyond 
half the width of the maximum window size). The win- 
dow width could take random values between 1 and 10; 
the maximum of 10 was chosen on the basis of initial tri- 
als in which the limit was higher, but in which the largest 
window width selected by the GA was 9. Restricting the 
maximum in this way reduces the ‘end effects’ at the ex- 
tremities of the spectrum. 

The fitness function was constructed so as to minimise 
the raw RMSEP of the predicted values and thus maxim- 
ise the prediction accuracy. 

A .  Termination criterion 

The GA training was terminated after an arbitrary num- 
ber of generations that always proceeded past the point 
at which the learning curves of the training and validation 
sets diverged (see figure 3). The divergence indicates the 
onset of overtraining, where the model begins to incorpor- 
ate the noise in the training set and ceases to generalise. 
The RMSEP value of the test set at divergence was taken 
as the value predicted by the model. 

B. Evolution conditions 

The GA was run on a Sun 9500 Enterprise server under 
Solaris. Initially, many configurations of the GA para- 
meters, particularly mutation and crossover probabilities, 
were tested. Sensitivity to different crossover and muta- 
tion rates was not unduly large. However, based on these 
initial trials, a population size of 1000 was used, with 
mutation probability of 0.7 and crossover of 0.3. The 
seemingly high mutation rate reflects the complexity of 
the chromosome and the different types of mutation in- 
corporated (see [23]), so that the effective mutation rate 
is rather lower than the figure suggests. 

Ten runs were then undertaken, with a chromosome 
length that selected ten spectral variables with a window 
of GA-selected width surrounding each of them. Out of 
these ten runs the three that performed best were identi- 
fied, as judged by the test set RMSEP at which the learn- 
ing curves for training set and test set diverged (see fig- 
ure 3). ‘Best’ variables and corresponding window widths 
from each of these three runs were then used to form a 
new subset of the original data. Because of ambiguity in 
determining the divergence point (for an example see the 
left hand plot in figure 4) in two of these three runs, win- 
dows specified by three chromosomes were taken from two 
of the runs, and by one chromosome from the third. Each 
new variable was the average of the spectral variables in 
the windows selected by the GA. 

This resulted in a subset with 61 denoised variables; ten 
of these windows were identical and so the final subset 
contained 51 variables for each of the 60 samples in the 
training set and the 60 in the test set. The GP, and PLS 
for comparison, were then applied to this data subset. 

VI. GENETIC PROGRAMMING 

This used a proprietary package3 marketed for applic- 
ations in the bio-technology and pharmaceuticals indus- 
tries. Currently it does not have inherent denoising cap- 
ability, beyond the obvious ability of a GP to combine 
variables in various ways, and part of the aim of the cur- 
rent work was to evaluate the potential benefit of incor- 
porating specialised node functions for denoising. The GP 
was run on a lGHz Pentium under Windows 2000. 

3gmax-bio, www.abergc.com 
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Fig. 2. O n  the left, a virtually noise-free Fourier Tkansform Infra Red spectrum taken f rom the set of spectra upon which this 
paper is based; on  the right, the same spectrum to which noise was subsequently added artificially. The axes are absorbance 
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Fig. 3. A n  example of training and test set learning curves 
f rom the G A  modelling process. The  vertical axis is the 
R M S  Error and the horizontal axis is the number of gen- 
erations. I n  this example the point at which the two curves 
diverge, and overtraining commences, is relatively easy to 
determine. 

1410 N/A N/A N/A 

Given the expected linearity of the relationship between 
the concentration of the chemical of interest and the 
height of the relevant spectral features, the GP was re- 
stricted to using only the four simple arithmetic functions; 
it was also permitted to use random constants as addi- 
tional terminals. The population size was 1000, crossover 
80% and mutation 10%. The package's default propri- 
etary fitness function was used. Convergence was rapid, 
always being achieved in well under a minute. For each 
run, the termination point was judged on the basis of di- 
vergence of the model performance on the training and 
independent test sets. Typically, the models used only 
three or four variables from the denoised subset. 

filtered by 
moving av- 
erage filter 
(width 10) 

TABLE I 
Test Set R M S E P  values that illustrate the results of the 

technique presented in this paper i n  comparison with PLS and 
conventional filtering. The table entries marked as N / A  are 

not central to the point at issue. 

VII. OVERALL RESULTS AND 
COMPARISONS 

The RMSEP values obtained from the GP were com- 
pared with those obtained using a PLS model at  the num- 
ber of factors (3) at which the learning curves for train 
and test sets diverged. They were also compared with the 
PLS model produced on a version of the noisy data set 
that was filtered by a simple 10 element moving average 
filter. The results are shown in Table I. 

The RMSEP values obtained by the GP and PLS, when 
applied to the subset of the original spectral variables that 
had been denoised by the GA, compared very well and this 
indicates that the approach based entirely on evolutionary 
search is able to compete with the more well-established 
PLS. Both results illustrate the benefit of adaptive de- 
noising. 

It is particularly interesting to note that the combin- 
ation of the simple moving average filter and PLS gave 
a very poor prediction error (1400), which demonstrates 
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O n  the left, training and test set learning curves from the GA modelling process, illustrating the dificulty of identifying 
the onset of overtraining, compared with the clear-cut minimum in the test set curve of RMSEP vs number of factors produced 
b y  PLS (on the right). 

very clearly the benefits of the GA-based selection and de- 
noising, in comparison with this naive and non-adaptive 
approach, in reducing the prediction error by an amount 
approaching 50% of that value. 

The results demonstrate that a GP with an appropriate 
‘window averaging’ node function and, given its inherent 
variable selection capability, would be capable of perform- 
ing the entire process in one step. This is advantageous 
from the point of view of extending the capability of a 
tool for laboratory use that is relatively easy to use. 

Each window midpoint can be expressed as a wavenum- 
ber using the formula 

R. = 4000 - (3.85 * (Z + 1)) (1) 
where n is the wavenumber, x is the variable number, 

3.85 is the spectral resolution and 4000 is the starting 
wavenumber of the IR scan. The spectral regions selected 
can thus be related back to the original IR spectra. A 
broad region centred on variable number 580 translates 
t o  a region of the spectrum centred at 1767 cm-l and 
windows in this region were selected repeatedly by both 
the GA and the GP. It is known that vibrations in this 
region of the IR spectrum can be attributed to carboxylate 
groups, and GA3 contains two such groups. 

The G P  results on the denoised and variable-selected 
subset are marginally inferior to those obtained with PLS 
on the same subset. However, this could at  least in part 
be attributable to the difficulty of determining the appro- 
priate termination point in chemometric applications of 
evolutionary computing; the point at which the training 
and test set learning curves diverge is often difficult to 
judge correctly, whereas in PLS there is normally a much 
more easily identifiable point. (See figure 4). Although 
the final RMSEP achieved is still significantly higher than 
the value of 425 achieved by PLS (for example) on the 

‘clean’ data that results from 256 co-adds (see the left 
hand plot in figure 2), the results obtained indicate that 
far fewer co-adds would be required to achieve prediction 
accuracy comparable to that on the ‘clean’ data. 

VIII. CONCLUSIONS 
We have shown that evolutionary search can provide ef- 

fective adaptive denoising of infra red spectra and that the 
resultant denoised subset of variables when input to a pro- 
prietary GP can provide predictive models that compare 
with results from PLS applied to the same subset. How- 
ever, since the GP inherently performs variable selection, 
the addition of node functions analogous to those imple- 
mented in the separate GA described above could provide 
a one-step tool for forming predictive models on the basis 
of rather fewer co-adds than is normally the case. More 
significantly, it would provide good predictions from new 
spectra with a higher noise content than would normally 
be the case; this would reduce significantly the data ac- 
quisition time in time-critical spectroscopic analyses such 
as those used in high throughput screening. 
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