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Abstract—The following article describes a novel 
implementation of a crossover operator for real-value encoded 
Genetic Algorithms (GA). The method, Gaussian Crossover 
Operator (GCO), utilizes the properties of Gaussian functions and 
Gaussian distribution for offspring generation. Each parent’s 
fitness is evaluated in the context of general population by a 
heuristic function, i.e. the devised operator is performance based –  
the parents’ individual fitness values act as a basis for a non-
deterministic weighing mechanism. The child’s gene value is a 
Gaussian Variable drawn upon the normal distribution 
determined by the overall state of the algorithm and the 
antecedent's evaluation. 

The performance of the algorithm is discussed and compared 
with the underlaying classical Genetic Algorithm and other GA 
implementations found in the literature; several test cases are 
considered. The results show that the proposed Gaussian 
Crossover Operator is feasible for solving optimization problems. 

Keywords—crossover operator, gaussian, normal distribution, 
value-based encoding, genetic algorithm 

I. INTRODUCTION 
Genetic Algorithm (GA) is one of the many nature-inspired 

metaheuristic algorithms used extensively in optimization 
problems. They attempt to imitate the evolution process that 
governs the gradual adjustment of entire species to the 
environment they inhabit. As its nature counterpart, the 
algorithm may span across multiple generations not necessarily 
yielding an optimal solution but a sufficiently good one. 

The many problems in which Genetic Algorithms are 
employed include: timetabling, system identification, device 
design and routing. Each of these problems may demand a 
different approach to the way in which a particular instance of 
the Genetic Algorithm is designed. This diversity led to 
numerous variations in how the solutions are encoded and how 
the three core operators (i.e. selection, crossover, mutation) are 
implemented. 

The authors propose a new approach to one of these 
operators  the crossover operator. The aim was the creation of a 
more diversified offspring population even in the case of a stale 
gene pool, thus enhancing the performance especially in the later 

iterations of GA. Also the method should aid the algorithm while 
searching for the extremes. This was achieved by applying an 
operator based upon the normal distribution and underlaying 
Gaussian functions and their properties, thus the name: Gaussian 
Crossover Operator. 

II. METHOD DESCRIPTION 

A. General Remarks 
The method relies heavily upon the product of Gaussian 

functions (1) and the fact that the result is also a Gaussian 
function. ݂(ݔ) = ܽ݁ି(௫ି௕)మଶ௖మ  (1) 

The probability density function (PDF) of normal 
distribution (also called Gaussian distribution) (2) is structurally 
related to the Gaussian functions as can be seen when comparing 
these formulas. ݂(ݔ) = ଶߪߨ2√1 ݁ି(௫ିఓ)మଶఙమ  (2) 

where ߤ – mean, ߪଶ – variance. 

However, the result of Gaussian PDF multiplication may be 
considered a Gaussian PDF only after a scaling factor is applied. 
This is due to the normalization of the resulting distribution. A 
more detailed mathematical description of these properties is 
provided in [1,2]; another important operation is the truncation 
of a continuous normal distribution to specific boundaries [3]. 

Before delving into the specifics of the designed operator it 
is necessary to briefly outline the properties of underlying 
Genetic Algorithm. The algorithm belongs to the family of real-
coded genetic algorithms (RCGA) [4] – each gene is represented 
by a single floating point number. The selection of parents for 
the crossover utilizes the roulette method, same pairs of parents 
may be chosen multiple times. Elitism is used to preserve the 
best individuals from being distorted either by mutation or the 
non-deterministic nature of the crossover operator. Mutation is 
based on uniform distribution with two mutation probabilities. 
The first one checks whether a child should be mutated at all. If 
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so, the second one decides the probability of mutation occurring 
in each gene (i.e. each gene is decided separately). 

B. Notation 
Each individual will be denoted as ௞ܲ with ݇ representing its 

unique identifier in the population. A set ܱܲܲ is defined to 
represent the entirety of the population comprised of ݊ 
individuals: ܱܲܲ = { ଵܲ, ଶܲ, ଷܲ, … , ௞ܲ, … , ௡ܲ}. (3) 

Each individual ܲ has one chromosome that contains the 
information kept in ݉ genes (4). Each gene ݔ stores real-
encoded value that represents a part of the solution. ܲ = ,ଵݔ} ,ଶݔ … , ,௜ݔ … ,  ௠} (4)ݔ

The values stored in the genes can be unbounded, i.e. defined in 
the entirety of ℝ, or bounded and thus limited to a specific range 
in ℝ. Possible values of gene ݔ௜ constitute its search space ௜ܵ. 

It is also useful to introduce a notation that will include 
information about the gene index (i.e. locus) and the individual 
it belongs to. ௞ܲ = ,௞,ଵݔ} ,௞,ଶݔ … , ,௞,௜ݔ … ,  ௞,௠} (5)ݔ

is an example of extending the more general form (4) using this 
convention. Subscript used to describe gene values informs 
about the indices of parent (݇) and gene (݅) in population and 
chromosome respectively. 

Fitness function is denoted in uppercase ܨ, while the value it 
returns uses the lowercase. The evaluation of k-th individual (i.e. 
its fitness value) is simply ௞݂ = )ܨ ௞ܲ). (6) 

C. The Algorithm 
In the proposed method the values of genes are treated as a 

normal distribution. The value of the gene determines the mean 
 can be interpreted as an algorithm's (ߪ) while the variance ,(ߤ)
confidence in this value. The function that determines the 
parent's ߪ value will be called Σ-function or big-sigma function Σ௞,௜ = Θ௜Ψ௞൫0.5 + ܷ(0,1)൯. (7) 

The overall crossover operator logic in an unbounded problem 
is as follows: 

1. For each parent's gene a PDF function is defined with ߤ as its current value and ߪ determined by the Σ-function. (Fig. 1). 

2. For each matching gene pair, i.e. same index in parents' 
chromosomes, a Gaussian product is calculated – as a 
result child's PDF is achieved (Fig. 2). 

3. A realization of Gaussian random variable ܺ~ࣨ(ߤ,  ଶ) is drawn based upon the distributionߪ
achieved in the previous stage – it becomes the child's 
gene value (Fig. 2). 

For a bounded problem with boundaries ܽ, ܾ the PDF 
achieved in the 2nd stage is converted to a truncated version [3]. 
In this particular case, when the variances are large, the normal 
distribution resembles a uniform one. This has profound 
consequences for the Σ-function that will be discussed later. 

Even though the mean of child's distribution is bounded by 
the means of its parents, the gene value is not necessarily so. The 
variable is drawn from the entirety of the i-th gene search space 
( ௜ܵ). This is demonstrated in Fig. 2 by the ݔଷ gene value, the 
outcome falls outside the range [ீߤ,ଷ,  .[ி,ଷߤ

The Σ-function (7) comprises two components. One is 
performance related (Ψ௞), evaluating the performance of the k-th 

Fig. 2. Child’s ݔଶ gene PDF is a result of multiplication of its parents' 
distributions. After the child's normal distribution is calculated a 
realization of Gaussian random variable ܺଶ is drawn – the value is 
assigned to its respective place in the genome. 

 

Fig. 1. Creation of ݔଶ gene PDFs for each of the parents. The mean (ߤ) 
is based on the parent's gene value while the variance depends on the Σ-function evaluation. 
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individual across the entire population; it serves as an weighing 
factor. The other (Θ୧) considers the general state of the algorithm 
and statistical properties of values held in genes at i-th locus. Its 
purpose is twofold, firstly, it serves as a scaling factor for the 
variance and, secondly, it monitors the overall state of the 
algorithm counteracting its stalling. 

௔݂௩௚ = (ܱܲܲ)௔௩௚ܨ = 1݊ ෍ ௞݂௡
௞ୀଵ  (8) 

௠݂௜௡ = (ܱܲܲ)௠௜௡ܨ = min ( ଵ݂, ଶ݂, … , ௡݂) (9) 

As mentioned before, the weighing of each parent’s 
performance is done in context of the entire population. The 
metrics defined to aid in this process are: average fitness value 
of the population (8) and minimum fitness value found in the 
population (9). The function itself is a modified logistical 
function normalized to return values from the range (0.5,1.5): Ψ௞൫ ௞݂, ௠݂௜௡, ௔݂௩௚൯ = 21 + ݁௙ೖି௙೘೔೙ି௙ೌ ೡ೒ − 0.5. (10) 

The minimal value of Ψ (and consequently Σ) is obtained when 
the parent is the best fitted individual in the population. 

Another important aspect is the Θ-function (11) that 
gradually increases variance for a specific gene when 
consecutive stall iterations occur (i.e. the overall population 
fitness is largely unchanging). Its value is decided by picking the 
lesser value of the two parameters: Θ୧ = min ቆߪߛ௜, | ௜ܵ|6 ቇ (11) 

where ߪ௜ is the standard deviation for genes located at i-th locus 
across the entire population and | ௜ܵ | is the length of the search 
space. 

The ߛ parameter (12) is increasing with each consecutive 
stale iteration (݃௦௧௔௟௟) after a threshold is met, it is reset 
whenever a better solution is found that overcomes the old one 
by some error margin. 

As ߛ can rise infinitely, the second parameter of Θ-function 
serves as a fallback value. It limits the influence of ߛ to a part of 
the gene's search space, thus preventing the algorithm from 
behaving in a completely random fashion.  

The Θ-function serves as a mean to introduce adaptability 
mechanism to the algorithm. Adaptive Genetic Algorithm 
(AGA) [5] adjusts its parameters (e.g. crossover rate, mutation 
rate, mutation strength) in accordance with the algorithm's 
overall state. In the devised method this is controlled by the ߛ 
parameter, increase in its value leads to higher Θ-function 
values. Consequently, this yields higher ߪ values and thus a 
gradual conversion of gaussian distribution to a uniform one can 
be observed. This reverses the trend of relying on the genetic 

information already stored in the population and leads to a more 
adventurous exploration of the search space.  

The effect of Θ-function is clearly visible in Fig. 3. The 
gradual increase in noisiness is attributable to increasing value 
of ߛ parameter as consecutive algorithm iterations show no 
improvement. However, in time this growth is halted. This in 
turn is the effect of threshold put on the Θ-function by the factor 
tied to the search space length. After a new solution was found, 
the ߛ parameter was reset resuming the normal operation of 
algorithm. It is noteworthy that the entire process occurred 
several times during single execution of the algorithm. 

Finally, an additional randomizing factor was introduced in 
(7). The goal of that uniform distribution was to further increase 
the diversity of children spawned by the same parent pair. 

D. Classifying the Algorithm 
Out of many crossover operators presented in [6] dedicated 

for real-value encoded Genetic Algorithms, some deserve 
special attention in context of the presented method. In [6] a 
taxonomy for organizing the crossover operators was proposed 
and of particular interest is the family of neighborhood-based 
crossover operators (NBCO). The main difference between the 
proposed methods and other NBCOs (SBX, FR, BLX-a) is not 
only the shape of their probabilistic functions but also the way 
in which offspring genes are determined, the focus is centered 
on the parents' genes. 

In [7] the author discusses different approaches to selection 
of the search regions while also providing insight into how some 
of the previously mentioned crossover operators work. This 
discussion also includes the BNDX and UNDX [8] operators; 
the former one is parent-focused, while the latter mean-focused. 
An analysis is made in [9] on striking the balance between these 
two approaches; as a compromise the author proposes ANDX 
method [7,9]. 

The proposed algorithm can be understood as a hybrid 
solution that employs a heuristic Σ-function for mean 
determination but also behaves as a mutation operator in close 
vicinity to the mean. 

ߛ = ቊ1.001൫݃ି݈݈ܽݐݏହ൯ , ݈݈ܽݐݏ݃ ݂݅ − 5 ≥ 01 , ݁ݏ݅ݓݎℎ݁ݐ݋  (12) 

 
Fig. 3. Illustration of Θ pressure on the ability of the GA to traverse the 
search space. As new, better gene values were found the pressure was 
removed (ߛ = 1) and a more calm approach adopted to browse the search 
space near the newly found minimum. 
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III. COMPARISON WITH THE CORE-GA 
In order to show the efficiency of the Gaussian Crossover 

Operator it was compared to the GA implementation it was 
based upon. The main difference is the crossover operator - base 
algorithm uses modified constant arithmetical crossover similar 
to the one found in [4]. The caveats being that only one child is 
generated, each gene has its own ߣ and the crossover allowed for 
multiple parents. For only two parents it translates simply to: ℎ௜ = ଵ,௜ݔ௜ߣ + (1 −  ଶ,௜ (13)ݔ(௜ߣ

where ℎ௜ – child’s i-th gene value, ݔ௞,௜ – k-th parent i-th gene 
value, ߣ௜-variable drawn for i-th gene from ܷ(0,1). 

Some of the tests were intentionally chosen to overlap with 
ones found in next section. The goal of this comparison is to 
discern the strength of the underlying core algorithm with and 
without the proposed operator. 

Both core algorithm and its GCO extension used the same 
set of parameters without fine-tuning them; each algorithm was 
run 30 times. Dimensionality (ܦ) of each problem was set to 30, 
population size (݊) to 20, number of iterations set to 10ହ (i.e. no 
premature stop criterion). The populations were identical in both 
cases as the same seed was used for their generation. Whenever 
a floating point precision value was reached an according 
remark is provided. 

The discussion of the benchmark functions will be omitted 
as their description is often provided by the referenced work; 
only their name and reference will be given. Boundaries match 
those found in referenced work as well as typical parameters. 

Results in Table I show notable performance differences 
between algorithms, further exemplified in Fig. 4 and Fig. 5. For 
further discussion see Section V. 

TABLE I.   PERFORMANCE COMPARISON OF CORE GA AND GCO 

 GA_CORE GA_GCO 
Test function Best Average Worst Best Average Worst 

F1* (Sphere) [10] 
0* 0* 0* 0* 0* 0* 

F2 (Axis paralel 
Hyper-ellipsoid) [10] 0* 0* 0* 0* 0* 0* 

F3 (Rotated Hyper-
Ellipsoid Function) 
[10] 

542.0973 1.8893e+03 5.1317e+03 4.6137e-09 3.1186e-07 1.4290e-06 

F4 (Schwefel) [10] -1.1577e+04 -1.1099e+04 -1.0446e+04 -1.1977e+04 -1.1397e+04 -1.0258e+04 
F5 (Rastrigin) [10] 0 0 0 0 1.2710 21.6051 
F6 (Rosenbrock) [10] 26.1034 28.3733 29.5263 25.0765 28.2775 28.8703 
F12 (Ackley) [11] 1.5099e-14 2.2441e-14 2.9310e-14 4.4409e-15 7.1645e-15 7.9936e-15 
F13 (Fifth function of 
De Jong) [11] 52.2022 83.0898 120.3298 51.2591 99.1676 142.5031 

F14 (Modified 
Schaffer #1) [12] 0.0437 0.1202 0.4309 4.3012 4.8784 5.3730 

F15 (Modified 
Schaffer #4) [12] 4.4097 4.4670 4.6196 6.4378 6.6399 6.8397 

F16 (Cross-leg table 
function) [12] -15 -14.0669 -2.0838 -1.0280 -0.2112 -0.0016 

*Floating point precision reached 
 

Fig. 4. Fitness value achieved by the GCO and core algorithm for 10000 
iterations for test function F3. 

 
Fig. 5. Fitness history for F14 test function; a different outcome – the core 
algorithm outperforms the new operator. 
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IV. COMPARISON WITH OTHER METHODS 
The results achieved by the devised method were also 

compared to the outcomes of other researchers who used their 
own solutions for a range of test problems. However, it is also 
crucial to note the fact that the algorithms presented in this 
section differ greatly. A novel binary encoding is used in [10] 
while Charibde [13,14] is not a GA at all. The comparison serves 
as a mean to prove the feasibility of GCO in solving optimization 
problems. 

In [10] authors compare their crossover operator (Ring 
Crossover) with other crossover methods. While the most 
relevant parameters (e.g. problem dimensionality, population 
size, maximum number of iterations, boundaries) were left the 
same, there are some differences that are more or less specific to 
the devised algorithm (e.g. mutation rate, selection method). The 
stop criterion was defined to be 10000 evaluations (i.e. fitness 
function evaluations), which translates to 555 iterations of the 
proposed algorithm. 

Table II contains the results achieved by GCO, its core 
algorithm and binary-encoded crossovers presented in [10]. In 
the latter case the result of best performing crossover operator is 
provided, not necessarily the Ring Crossover (RC) developed by 
the authors of the study. For reference of used abbreviations and 
test functions the reader is encouraged to read the original paper. 

In [13] authors confront their state-of-the-art solution to 
various solvers available in the NEOS server [15]. Similarly to 
the previous case, the GCO is compared to these results (Table 
III). This comparison, however, combines the approach taken in  
the previous ones, i.e. Core-GA and [10]. Twofold tests were 
run: fixed number of iterations (10000) and iterations limited by 
the calls to an evaluation function. This latter boundary was tied 
to the number of evaluations made by the PGAPack algorithm 
available in the NEOS server whose results were also presented 
in [13]. Each test function yielded different number of 
evaluations but on average it correlates to about 540 iterations 
run by the GCO. Also in order to remain consistent with 
PGAPack results, algorithm was run 5 times and only the best 
result is presented. 

As this study provides the time that was used by the 
algorithm to process a test function, the same was done for GCO.  
The simulations were conducted with the use of Matlab 2017b 
package on Lenovo Thinkpad X240 (CPU: Intel Core i7-4600U 
3.3 GHz, RAM: 8GB DDR3 1600 MHz). 

The test set in [13] is also quite different from the one found 
in [10].All of functions have a non-trivial global minimum. Data 
for parameters ܽ௜௝  and ܿ௜ for Shekhel Foxhole Problem is 
assumed to be consistent with that found in [16]. The Keane 
function was not considered by the GCO as it is a constrained 
optimization problem. 

TABLE III. COMPARISON WITH THE RESULTS PRESENTED BY VANARET ET AL. [13] 

 Vanaret et al. [13] GA_GCO 

Test function Min. Value Time PGAPack Best Average Worst Avg. run time 10000 iterations PGAPack limited 
F7 
(Michalewicz) -49.6248323 8.4s -37.60465 -35.480269 -31.434413 -29.986504 -27.179425 17.04s 

F8 
(Sine Envelope) -5.9659811 219s -5.569554 -5.9659811 -5.965976 -5.9659390 -5.9656547 6.12s 

F9 
(Shekel) -10.4039521 0.04s -1.829452 -3.294076 -3.294076 -2.299682 -1.833764 7.31s 

F10 
(Egg Holder) -3719.7248363 0.8s -3010.073 -3516.03687 -2879.7667 -2748.33093 -2069.196701 7.11s 

F11 
(Rana) -2046.8320657 17.8s -2091.068 -1924.57884 -1607.9953 -1604.29319 -1258.119689 7.96s 

 

TABLE II.   COMPARISON WITH THE RESULTS PRESENTED BY KAYA ET AL. [10] 

 Kaya et al. [10] GA_GCO GA_CORE 
Test function Best Average Worst Best Average Worst Average 

F1 (Sphere) 0.0027  
(RC) 

0.3299 
(RC) 

6.163 
(RC) 7.5449e-10 3.5381e-08 1.7380e-07 4.4212e-08 

F2 (Axis Parallel Hyper 
Ellipsoid Function) 

0.024 
(HC) 

5.706 
(HC) 

80.4 
(IC) 4.6653e-08 8.5077e-07 5.6467e-06 4.8261e-07 

F3 (Rotated Hyper-
Ellipsoid Function) 

2.36 
(HC) 

18.97 
(RC) 

47.94 
(IC) 321.7098 1.1429e+03 2.4744e+03 4.2747e+03 

F4 (Normalized 
Schwefel Function) 

-117.8 
(RC) 

-117.7 
(RC) 

-29.46 
(SPC) -8.8393e+03 -6.9396e+03 -4.6185e+03 -6.0527e+03 

F5 (Generalized 
Rastrigin Function) 

2.669 
(RC) 

3.691 
(RC) 

173.1 
(HC) 4.2491 20.4432 40.1336 5.8685 

F6 (Rosenbrock's Valley 
Function) 

27.08 
(AC) 

27.12 
(AC) 

260.3 
(AC) 26.3116 28.7471 30.0513 28.7201 

*Floating point precision reached 
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V. DISCUSSION 
The devised operator outperforms the core algorithm clearly 

for most of the simple problems (Fig. 4), especially convex 
functions and albeit not shown in this paper, it also works better 
for test problems with non-trivial minima [13]. However, it also 
has problems with getting stuck in local minima and in those 
cases the base version tends to outperform it (Fig. 4). 
Adjustments to the Θ-function and redesigning the mutation 
operator in order to specialize it for more aggressive activity in 
farther search space should be sufficient. 

It is also worth noting that the way those two algorithms 
operate is very different. Core GA has more abrupt shifts in 
fitness value while the GCO tends to generate a smoother path. 
Even though Fig. 4 looks like a cliff, the descent is made across 
hundreds of generations. Another proof of this behavior is 
visible when comparing data from Table I and Table II. In the 
first case, there was virtually no constraint put on the algorithms' 
resources – thousands of iterations were given to each of them. 
However, when applying test problems from [10], a serious 
computational restraint was put in place. The fitness values 
achieved by the GCO when ended much earlier are far from 
those presented in Table II; the most evident example is the F3 
test problem. 

As for the comparison with other methods, the GCO 
performed satisfactorily in test set presented in [10] in context 
of the results achieved by binary-encoded GAs. In no way 
should those results reignite the historical debate between 
RCGA and BCGA (binary coded genetic algorithm) [17,18]. 
Obviously, while performing the test set of [13] the GCO was 
no match to the state-of-the-art Charibde solver. However, a 
valuable insight into its overall performance is given by its GA 
counterpart – PGAPack. The results achieved by both these 
algorithms are somewhat comparable as shown in Table III. 

VI. FURTHER WORK 
The further refinement of the proposed method is an ongoing 

process and some of the new developments will be published in 
a future paper. Some of the current research topics regarding the 
developed algorithm include: 

- Development of a mutation operator that fully 
synergizes with the concept of the presented method. 

- Enabling the use of constraints in the optimization 
process. 

- Different types of Σ-function and ߛ-function, analysis 
of their influence on the algorithm's performance. 

- Multiparent crossover. 

- Consideration of epistasis and introduction of 
covariance in the algorithm. 

- Application of the algorithm to a real-world problem 
(i.e. robot path planning).  

Also more focus will be given to some of the more intrinsic 
mechanisms implemented in the algorithm. Finally, a more 
detailed algorithm's performance evaluation will be provided 
using recent CEC test suite and comparing the results to its 
counterparts. 
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