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Abstract—This paper deals with a class of interval linear
bilevel programming problems, in which some or all of the
leader’s and follower’s objective function coefficients are spec-
ified in terms of intervals. The focus of solving this class of
problems is on determining the optimal value range when
different coefficients of objectives are taken in intervals given.
In order to obtain the best and the worst optimal solutions
to this class of problems, an efficient genetic algorithm is
developed. Firstly, the objective coefficients of the lower level
are encoded as individuals using real coding scheme, and the
relative intervals are taken as the search space of the genetic
algorithm. Secondly, for each encoded individual, a simplified
interval linear bilevel program is obtained, in which interval
coefficients are simply in the upper level objective function.
Finally, the simplified problem is further divided into two
linear bilevel programs without interval coefficients and solved
by using the optimality theory of linear programming. The
optimal values are taken as fitness values, by which the best
and the worst optimal solutions can be obtained. In order to
illustrate the efficiency of the proposed algorithm, two examples
are solved and the results show that the algorithm is feasible
and robust.

Keywords-Interval linear bilevel program; genetic algorithm;
best optimal solution; worst optimal solution;

I. INTRODUCTION

Many real-world and theoretical problems may be mod-

eled as traditional mathematical programming problems in

which all coefficients involved are exactly known and can be

dealt with by using some optimization techniques. However,

in practice, it is very common for the coefficient values to be

only approximately known because relevant data is nonexis-

tent or scarce, difficult to obtain or estimate, etc. Therefore,

mathematical programming models must take explicitly into

account the intrinsic uncertainty associated with the model

coefficients. Uncertainty can be handled mainly in three

manners: interval programming, stochastic programming or

fuzzy numbers. Since it is not always easy to specify the

membership function or probability distribution in an inexact

environment, as a result, interval programming is the most

concerned one of the approaches to tackle uncertainty in

mathematical programming models. Mathematical programs

with interval coefficients in the objective function and/or in

the constraints have been addressed in the literature. For

this problem, one always needs to compute the optimal

value range between the best and the worst optimal objective

values. These two extreme values allow the decision maker

to better understand the risk involved.

The interval linear program can be viewed as a multi-

parametric linear programming with interval domains for

parameters, and based on the view point, some efficient

approaches have been developed[1]. Lai discussed a class

of linear programming problems with interval coefficients in

both the objective function and constraints, the noninferior

solutions to such problems are defined based on two order

relations between intervals. One can obtain the solution

by solving a parametric linear programming problem[2].

Molai and Khorram introduced a satisfaction function and

defined a satisfactory solution to the problem[3]. Chinneck

and Ramadan proposed an approach for a class of linear

programming with interval coefficients by analyzing all

kinds of variables and constraints[4]. Hladik presented a

general approach to the situation the feasible set is described

by an arbitrary linear interval system[5].

For nonlinear case, very few results have been obtained.

Hladik considered a generalized linear fractional program-

ming problem with interval data and presented an efficient

method which reduces the problem to solving from two to

four real-valued generalized linear fractional programs[6].

Bilevel programming problem (BLPP) is a hierarchical

optimization problem, in which two levels of optimization

problems are involved, the leader’s problem and the fol-

lower’s problem[7], [8]. The general bilevel programming

problem can be formulated as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x∈X

F (x, y)

s.t. G(x, y) ≤ 0
min
y∈Y

f(x, y)

s.t. g(x, y) ≤ 0

(1)

In this problem,

{
min
x∈X

F (x, y)

s.t. G(x, y) ≤ 0
(2)
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and {
min
y∈Y

f(x, y)

s.t. g(x, y) ≤ 0
(3)

are the leader’s and the follower’s problems,respectively.

Unlike other mathematical programs, any feasible solution

to the bilevel program (1) must satisfy the optimality of the

follower’s problem when the leader’s variables are fixed.

In the problem, when the coefficients are interval numbers,

this problem is known as an interval bilevel program.

Calvete addressed a linear bilevel problem whose objective

coefficients are assumed to lie between specific bounds and

developed two enumerative algorithms to compute optimal

value range based on the k-th best method[9]. However, one

has to execute two different algorithms to compute the upper

and lower bounds of optimal objective values, respectively.

In this paper, we concentrate on the linear bilevel pro-

gramming problems in which the coefficients of the upper

and lower level objective functions are all intervals, and

presents an efficient genetic algorithm for solving the prob-

lem. In the proposed algorithm, the coefficient intervals of

the lower level objective are taken as the search space and

the optimality conditions of linear program are adopted to

evaluate each individual.

This paper is organized as follows. The discussed problem

and some notations are presented in Section II, and a real

encoding genetic algorithm is given based on the optimality

conditions of linear program in Section III. Experimental

results are presented in Section IV. We finally conclude our

paper in Section V.

II. DISCUSSED PROBLEM

In this paper a linear BLPP with interval coefficients

in both the upper and lower level objective functions is

considered. Let us denote the problems by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x≥0

F (x, y) = [cl, cu]x + [dl, du]y

s.t. A1x + B1y ≤ b1

min
y≥0

f(x, y) = [el, eu]y

s.t. A2x + B2y ≤ b2

(4)

where x ∈ Rn, y ∈ Rm; A1 is a p × n-matrix and B1 is

a p × m-matrix; A2 is a q × n-matrix, and B2 is a q × m-

matrix, and b1 ∈ Rp, b2 ∈ Rq; cl, cu, dl, du, el and eu are

lower and upper bound vectors of objective coefficients c, d
and e, respectively. For simplicity, we denote the bilevel

program by LBIC(c, d, e) when the objective coefficients

are taken as c, d, e, respectively. Now we introduce some

related definitions.

1) Constraint region: S = {(x, y) | Aix + Biy ≤ bi, i =
1, 2;x, y ≥ 0}.

2) For x fixed, the feasible region of follower’s problem:

S(x) = {y | A2x + B2y ≤ b2, y ≥ 0}.

3) Projection of S onto the leader’s decision space:

S(X) = {x | ∃y, (x, y) ∈ S}.

4) For LBIC(c, d, e), the follower’s rational reaction set

for each x ∈ S(X): M(x) = {y | y ∈ argmin{ev, v ∈
S(x)}}.

5) For LBIC(c, d, e), inducible region: IR = {(x, y) ∈
S | y ∈ M(x)}.

Furthermore, we give:

Definition 1 (Optimal solution): (x, y) is called an opti-

mal solution to (4) if there exist c ∈ [cl, cu], d ∈ [dl, du]
and e ∈ [el, eu] such that (x, y) is an optimal solution to

LBIC(c, d, e).
Definition 2 (Best optimal solution): An optimal solution

(x∗, y∗) is called the best optimal solution to (4) if for any

optimal solution (x, y), the inequality

F (x∗, y∗) ≤ F (x, y)

holds.

Definition 3 (Worst optimal solution): An optimal solu-

tion (x∗, y∗) is called the worst optimal solution to (4) if

for any optimal solution (x, y), the inequality

F (x∗, y∗) ≥ F (x, y)

holds.

Since in a linear programming any inequality constraint

can be transformed into the equality by adding a slack

variable. Hence, we re-written (4) as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x≥0

F (x, y) = [cl, cu]x + [dl, du]y

s.t. A1x + B1y ≤ b1

min
y≥0

f(x, y) = [el, eu]y

s.t. A2x + B2y = b2

(5)

The purpose of solving (4) or (5) is to obtain the best and

the worst optimal solutions as well as the corresponding

objective coefficient values.

III. PROPOSED GENETIC ALGORITHM

In the section, we introduce a real coding scheme, and

design the fitness function based on a double evaluation

technique, which can obtain both the best and the worst

optimal solutions in once run of the algorithm.

A. Chromosome Encoding

We begin with the coefficients of the follower objective

function, and encode each individual using a real-number-

coding scheme in the space [el, eu].
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B. Fitness Evaluation

For each individual e = (e1, e2, · · · , em) ∈ [el, eu], the

following bilevel program is taken into account⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x≥0

F (x, y) = [cl, cu]x + [dl, du]y

s.t. A1x + B1y ≤ b1

min
y≥0

f(x, y) = ey

s.t. A2x + B2y = b2

(6)

The problem can be further divided into two linear bilevel

programs as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x≥0

F (x, y) = clx + dly

s.t. A1x + B1y ≤ b1

min
y≥0

f(x, y) = ey

s.t. A2x + B2y = b2

(7)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x≥0

F (x, y) = cux + duy

s.t. A1x + B1y ≤ b1

min
y≥0

f(x, y) = ey

s.t. A2x + B2y = b2

(8)

One can evaluate the individual e by solving (7) and (8), in

which the objective values provide two evaluation criteria.

C. Solving Linear Bilevel programs

In fact, it is very difficult to solve (7) and (8), especially

when the scale is very large. Here, we simply consider the

problems with a small number of follower variables. Since

both (7) and (8) are linear bilevel programs, considering that

(8) can also be solved by the same procedure as done in (7),

we only present the algorithmic procedure for (7).

First, all potential bases of the follower linear program

are denoted by B1
2 , · · · , Bk

2 , which only means Bi
2, i =

1, · · · , k, are nonsingular. Further, for each Bi
2, we have

yB = (Bi
2)

−1(b2 − A2x), here, yB is basic variable vector,

whereas the nonbasic variables are 0. In addition, we replace

y by yB and the follower’s problem by the optimality

conditions, as a result, a linear programming problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
x≥0

clx + dlByB

s.t. A1x + B1ByB ≤ b1,

(Bi
2)

−1(b2 − A2x) ≥ 0,

e − eB(Bi
2)

−1B2 ≥ 0

(9)

is obtained, where dlB , B1B and eB are basic components

of dl, B1 and e, respectively. When one consider all Bi
2, i =

1, · · · , k, k linear programs can be gotten. Finally, we solve

these linear programs, compare the objective values and take

the minimum one as the optimal value of (7).

D. Crossover and Mutation Operators
In the designed algorithm the arithmetical crossover and

Gaussian mutation are adopted.
1) Crossover Operator: Let l1 and l2 be crossover par-

ents. For ∀α ∈ (0, 1), the offspring can be generated as

follows:

o1 = αl1 + (1 − α)l2

o2 = αl2 + (1 − α)l1

2) Mutation Operator: l̂ is taken for mutation, then the

offspring is given as follows:

om = l̂ + N(0, σ2)

here N(0, σ2) is a variable distributed normally with mean

0 and variance σ2.

E. Description of the Proposed Algorithm
In the subsection we propose a genetic algorithm for

interval linear bilevel programs (GA-IBP).

• Step1 (Initial population) Randomly generate N initial

points to form the initial population pop(0). Let g = 0.

• Step2 (Fitness) Evaluate each point by solving (7) and

(8), and record the best solution (xb, yb) regarding the

fitness using (7) and the worst (the largest one) solution

(xw, yw) regarding the fitness using (8).

• Step3 (Crossover and mutation) The arithmetic

crossover and Gaussian mutation operators are adopted

to generate all genetic offspring.

• Step4 Evaluate the fitness values of all offspring, and

update (xb, yb) and (xw, yw).
• Step5 For each fitness the best [N/2] individuals are

selected from both pop(g) and offspring set. The total

of 2∗ [N/2] individuals are put into the next generation

population pop(g + 1).
• Step6 If the termination condition is satisfied, then the

algorithm is stopped; otherwise, let g = g + 1, go to

Step 3.

Noting that (7) and (8) can be solved exactly and the

elitism preservation scheme is applied in the section process,

one can obtain the following convergence result:
Theorem 1: The proposed algorithm GA-IBP is conver-

gent with probability one.

IV. COMPUTATIONAL EXAMPLES

In the section, In order to illustrate the performance

of GA-IBP, we execute the proposed algorithm on two

examples (Ex.1 and Ex.2) from [9]. Also, for the purpose

of comparison we denote the known best and worst optimal

values by Fb and Fw, respectively.

[Ex.1]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
2≥x≥0

x + y1 + y2

min
y≥0

[−1, 2]y1 + [1, 3]y2,

s.t. − 3x − 3y1 + 2y2 ≤ 1,

x + 2y1 ≤ 4, y2 ≤ 2

(10)

434343434343
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Table I
BEST OPTIMAL SOLUTIONS PROVIDED BY GA-IBP.

No. F b
b F m

b F w
b (xb, yb) Fb

Ex.1 0 0 0 (0, 0, 0) 0

Ex.2 0.5 0.5 0.5 (0, 0, 0.5) 0.5

Table II
WORST OPTIMAL SOLUTIONS PROVIDED BY GA-IBP.

No. F b
w F m

w F w
w (xw, yw) Fw

Ex.1 2 2 2 (0, 2, 0) 2

Ex.2 7 7 7 (0, 1, 2) 7

[Ex.2]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
2≥x≥0

[1, 4]x + [1, 3]y1 + [1, 2]y2

min
y≥0

[2, 5]y1 + [−3,−1]y2,

s.t. − 3x − 3y1 + 2y2 ≤ 1,

x + 2y1 ≤ 4, y2 ≤ 2

(11)

The parameters are taken as follows: N = 5, the crossover

probability pc = 0.8, the mutation probability pm = 0.1,

and the maximum number of generations Gm = 10. GA-

IBP is executed 20 runs on a PC, and record the best

optimal solutions (xb, yb) as well as the worst optimal

solutions(xw, yw) . In all 20 runs the best ones (F b
b , F b

w),

mean values (Fm
b , Fm

w ), and worst ones (Fw
b , Fw

w ) of two

classes of solutions are shown in Tables I-II, and the

values of e corresponding to the best and the worst optimal

solutions are also shown in Table III, in which ebest and

eworst mean the values of e corresponding to the best and

the worst optimal solutions, respectively.

From Tables I-II, one can see that GA-IBP found the same

optimal results as those provided by the literature for these

examples. Considering that the results including the best and

the worst optimal solutions can be got in one execution of

GA-IBP, we can conclude that the proposed algorithm is

feasible and efficient.

V. CONCLUSION

In this paper a BLPP with interval coefficients in both

the leader’s and the follower’s objectives is discussed. It

should be noted that the change of the follower’s objective

will cause the different feasible region, which causes the

problem more complex than other cases with specified

follower’s coefficients. We design an GA based on a real

coding scheme, which makes the best and the worst optimal

solutions can be obtained in one execution of the algorithm.

Table III
VALUES OF e CORRESPONDING TO THE BEST AND THE WORST RESULTS

No. ebest eworst

Ex.1 (1.7882, 2.5514) (1.7882, 2.5514)

Ex.2 (4.4442,−1.1884) (3.8971,−2.8049)

Since there exist the solution procedure of linear bilevel

programming problems in the fitness evaluation, hence, the

proposed algorithm can not be easily extended to nonlinear

cases. In the future work, we will try to introduce the hybrid

coding scheme to design GA for solving nonlinear bilevel

programming problems with interval coefficients.
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