

An Improved Genetic Algorithm for Nonlinear Programming Problems

Weiyi Qian Guojuan Chu
Department of Mathematics Department of Mathematics

Bohai University Bohai University
Jinzhou, 121000 China Jinzhou, 121000 China

 qianweiyi2008@163.com chuguojuan12@163.com

Abstract

In this paper, an improved genetic algorithm is

proposed for nonlinear programming problems. In
this algorithm, each individual is taken as a particle
with mass. The mass of each individual is defined and
the center of gravity is computed according to physical
formula. A simplex is formed randomly from the
population. One of the points of the simplex is reflected
in the center of gravity of the remaining points to
obtain a new trial point. The crossover operator, based
on above method, is modified to improve the efficiency
of genetic algorithm. To evaluate the efficiency of the
improved algorithm, the algorithm is applied to five
test problems, and our results are compared with other
methods. The numerical results illustrate the efficiency
of our method.

1. Introduction

Here we consider the global nonlinear programming
problems in the following form

 ..
)(min
Dxts

xf
∈

 (1)

where ,nRx ∈ RRf n →: is nonlinear function, and
{ | , , , 1,2, , }n i i i i iD x R a x b a b R i n= ∈ ≤ ≤ ∈ = . Such

problem arises in many practical applications, e.g. in
the risk management, economics, data analysis,
engineering design, financial planning, etc. Most cases
of practical interest are characterized by multiple local
optima. However, most optimization techniques
currently used are local methods, which easily fail, and
at best, find only one local optimum. The objective of
this study is to develop a global optimization algorithm
for solving the problem (1).
 A global optimization algorithm aims at finding a
global minimizer, or its close approximation of the
objective function f . A point x* is said to be a global
minimizer of f if f*=f(x*) f(x), Dx ∈∀ . For practical

interests, especially in applied sciences and in
engineering, it is required that an approximation *x̂ of
a global minimizer of f be found with

* *ˆ| () |f f x ε− < . However, in many applications the
function of interest is not differentiable. In recent year,
different stochastic optimization methods are proposed
for solving global optimization problems. These
approaches can roughly be classified into following
categories: random samp-ling, evolutionary algorithms,
simulated annealing, particle swarm algorithms, and so
on. In our study, we focus on one of these methods,
namely genetic algorithm (GA).

The GA, originally developed by Holland[1],
proved to solve various combinatorial optimization
problems efficiently. Later, some authors have propo-
sed GAs for continuous variables[2][3][4][5] . In
recent years, in order to improved effectiveness of the
GA , many heuristic methods have been incorporated
with the GA’s population initialization, reproduction
and selection, fitness evaluation, crossover or mutation
and so on. Recently, Hu, et al has proposed a new
version of real coded GA[6], we call it GA1. But GA1
has three drawbacks. The first drawback is that the
selection criterion is too biased towards the better
points and therefore it is too greedy and may only work
for easy problems[7]. The second drawback is that the
mutation operator is rather randomly chosen. If the
difference between ib and ia is high then this will
create a point far away from the point generated by
crossover operation[7]. The third is that the crossover
operator can not make GA more exploratory[7]. Ali et
al has been proposed modifications to GA1[7] , we
call it GA2. In GA2, the main modification is that one
of the points of the simplex is reflected in the centroid
of the remaining point to obtain the new trial point in
crossover.

In this paper, we take each point as a particle with
mass and define the mass of each point. The center of
gravity is computed according to physical formula. For

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

127

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

127

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

2009 Fifth International Conference on Natural Computation

978-0-7695-3736-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICNC.2009.281

131

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:53:40 UTC from IEEE Xplore. Restrictions apply.

problem (1), an improved genetic algorithm is
proposed, we call it GA3. The main difference
between GA3 and GA2 is that the center of gravity
replaces the centroid. The GA3 is applied to five test
problems, and our results are compared with GA1 and
GA2. The numerical results illustrate the efficiency of
our method.

2. Center of gravity calculation

Assume the population has N points, Nxxx ,,, 21 ,
we can think of each point as a particle with mass. The
mass of each point xi , mi , is evaluated by using the
objective function value of the point, xi , relative to the
objective function value of the current best point.

[]
Ni

xfxf

xfxf
nm

N

k
bestk

besti
i ,,2,1,

)()(

)()(
exp

1

=
−

−
×−=

=

 (2)

where },,2,1|)(min{arg Nixfx ibest == is the
current best point. From (2), we can see that the
smaller the objective function value of the point, xi , is,
the bigger the mass is. Reversely, the bigger the its
objective function value is, the smaller the mass is.

After determining the mass of each point, the center
of gravity G of n points, nxxx ,,, 21 , of the
population , is computed as follows

=

==
n

j
j

n

j
jj

m

xm

G

1

1 (3)

3. Improved genetic algorithm(GA3)

The GA consist of the binary coded GA and real
coded GA. The real coded GA is superior to its
conventional binary coded counterpart[6][8]. Several
versions of real coded GA have been proposed
[6][9][10]. Recently, Hu et al have proposed a new
version of real coded GA. Numerical studies were
carried out on a relatively large set of test problems
with the conclusion that the convergence of the
algorithm is rapid. The real coded genetic(GA1)
proposed by Hu can be described as follows .

The Genetic Algorithm(GA1)
Step 1 Generate the initial population P

},,,{ 21 NxxxP =
 were the individual ix , Ni ,,2,1= are

sampled randomly in D, evaluate),(xf at each

ix , i=1,2, , N. Take nN >> . Set generation
counter 0=k .

Step 2 Determine best, bad individual in P. Determine
the individuals badbest xx , and their function
values badbest ff , such that

)(min xff
Px

best ∈
= and)(max xff

Px
bad

∈
=

If the stopping condition(e.g. ε<− bestbad ff)
is , then stop.

Step 3 Generate new individuals to replace individuals
in P.
(1) Selection: using tournament selection to

select Nm < from P as parents.
(2) Crossover: take two selected individuals

),,,(21 N
iiii xxxx =

and
),,,(21 N

jjjj xxxx =
from parents and generate two new
individuals as follows

l
il

l
jl

l
j

l
jl

l
il

l
i

xxx

xxx

)1(~
)1(~

αα

αα

−+=

−+=
, nl ,,2,1= (4)

where lα are uniform random numbers in [-
0.5, 0.5]. The process is repeated until m
new feasible individuals are generated.

 (3) Mutation: for each child jx~ generated, the

mutation is carried out with probability uP
by setting

)(~~ iii
j

i
j abxx −×+= γ (5)

 for a randomly chosen component i
jx~ of

jx~ , where 1.0=γ , ib and ia are the upper

and lower bound of the element ix .
Step 4 Update P: the m children replace the m worst

individuals. Set k=k+1, and go to step 2.
Ali and TÖrn proposed a modified genetic

algorithm(GA2) to GA1[7]. We now describe their
works. They replaced the tournament selection with
random selection, and modified the mutation
operator(5) to

)(iiii abxx −+= γ (6)
where γ is a random number in [0.01, 0.01]. The
crossover operator was modified too, its method can be
described as follows. GA2 creates two children from
randomly selected n+2 parents, xp1, xp2, , xp(n+1),
xp(n+2), form P. The selected n+2 points are used to
calculate the centroid G of the n points remaining after
excluding the two worst points, say xp(n+1) and xp(n+2).
The centroid G is given by

128128132132132132132132132132132

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:53:40 UTC from IEEE Xplore. Restrictions apply.

=
=

n

j
jpx

n
G

1
)(

1 (7)

The first child is taken as the best point of { 21 ˆ,ˆ xx },
where

)1(1 2ˆ +−×= npxGx and)2(2 2ˆ +−×= npxGx (8)

If the j-th point (j=1,2) jx̂ is not in D then it is
calculated as

)(
2
1ˆ)(jnpj xGx ++= . (9)

The second child is found from the best point of { ,ˆ3x

4x̂ }, where 3x̂ and 4x̂ are obtained using the crossover
rule (4). This crossover is carried out between two
parents selected randomly from the n+2 points, again
excluding two worst points, say xp(n+1) and xp(n+2). If the
trial points fall outside D, random selection of

]5.0 ,5.0[−∈iα continues until 3x̂ , 4x̂ D∈ . For the
next pair of children n+2 points are again selected
randomly from P and above process continued.

The center in GA2 is the center of geometrical, it
has nothing to do with the objective function value.
The center of gravity G given by (3) is closely related
to the objective function value and it is biased towards
the better points of n points. Hence, in order to make
the GA2 more efficient, an improved genetic algorithm
(GA3) to GA2 is proposed. The GA3 differs from GA2
in two aspects. First, we make a random selection of
n+1 points in P and include the current best point
bringing the number of points up to n+2. Therefore, the
modification is that the n+1 distinct parents, xp2,
xp3, , xp(n+1), xp(n+2), are sampled from P and let xp1
denote the best point. Assume xp(n+1) and xp(n+2) are
two worst points, we calculate the mass of xp(i) (i=1,2,

, n) by (2) and the center of gravity by (3). Second,
the crossover rule (8) is replaced in the following form

<−×

≤−×
=

++

++

)()(,2

)()(,2
ˆ

1)1(

1)1(
1 Gfxf ifGx

xfG fifxG
x

)p(nnp

)p(nnp (10)

and

<−×

≤−×
=

++

++

)()(2

)()(,2
ˆ

22

2)2(
2 GfxfG, if x

xfGf if xG
x

)p(n)p(n

)p(nnp . (11)

The rule (10) and (11) are introduced in the crossover
phase to make GA3 more exploratory and the new
points bias to the better points. The others, such as the
section mutation and the second child and so on, are
the same as GA2.

4. Numerical results

To evaluate the efficiency of the GA3. we select
five test problems[11] , see table 1. In table 1, n
denotes the dimension of the problem, D the domain of
each variable, NLM number of known local minima,

*f the global minimum.

Table 1. The test problems
Problems n D NLM *f
Shekel5 4 100 ≤≤ ix 4 -10.1532
Shekel7 4 100 ≤≤ ix 7 -10.4029
Shekel10 4 100 ≤≤ ix 10 -10.5364
Hartman3 3 10 ≤≤ ix 4 -3.8627
Hartman6 6 10 ≤≤ ix 4 -3.3223

Table 2. Results of the GA1

 FE cpu TS
Shekel5 1374 0.19 15
Shekel7 1463 0.24 21
Shekel10 1702 0.31 26
Hartman3 578 0.14 92
Hartman6 1814 0.58 100

Table 3. Results of the GA2

 FE cpu TS
Shekel5 2163 0.34 67
Shekel7 2731 0.49 80
Shekel10 3384 0.61 85
Hartman3 1136 0.29 99
Hartman6 3597 1.18 100

Table 4. Results of the GA3

 FE cpu TS
Shekel5 1864 0.28 66
Shekel7 2702 0.42 82
Shekel10 2986 0.54 83
Hartman3 953 0.21 100
Hartman6 2897 0.87 100

We compare GA1, GA2 and GA3 using above

problems for 50 independent test runs. The results are
shown in table 2 , table 3 and table 4. In those tables,
FE denotes the average number of function evaluations,
cpu the average runtimes, TS the percentage of success.
Some parameters are given as follows: the population
size N=12n, mutation probability Pu=0.001, the
number of children m is the nearest even integer to
0.1N. Table 2 and table 3 show that number of
successes of GA2 superior to that of GA1. But FE and
cpu needed by GA2 are nearly twice that by GA1.
From table 2, table 3 and table 4, we can see that
number of successes of GA3 superior to that of GA1
and is nearly the same as that of GA2. FE and cpu

129129133133133133133133133133133

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:53:40 UTC from IEEE Xplore. Restrictions apply.

needed by GA3 superior to that by GA2, but inferior to
that by GA1. The numerical results illustrate the
efficiency of our method.

5. Conclusions

In this paper, we have shown that the improved
genetic algorithm can be efficiently applied to the
global optimization of the nonlinear programming
problems with box constraints. Our main contributions
defines the center of gravity and use new crossover
operator based on the center of gravity in improved
genetic algorithm. The improved genetic algorithm is
compared with GA1 and GA2. The numerical results
illustrate that our method superior to GA1 in number
of successes of algorithm, and it superior to GA2 in FE
and cpu needed by algorithm. Consequently, we feel
that the method could be used as a general purpose
global optimization technique. Research is continuing
to develop even more efficient GA.

 Acknowledges

This research was supported by the National
Science Foundation of China (10871033), the National
Science Foundation of China (10671126), and Educa-
tional Department Foundation of Liaoning province
(20080004).

References

[1] J.H. Holland, “Outline for a logical theory of adaptive
systems”, Journal of the Association for Computing
Machinery, 1962, 93(3), pp.297-314.

[2] J. Tang, and D. Wang, “A hybrid genetic algorithm for a
type of nonlinear programming problems”, Computers and
Mathematics with Application, 1998, 36(5), pp.11-21.
[3] R. Chelouah and P. Siarry, “continuous genetic algorithm
designed for the global optimization of multimode function”,
Journal of Heuristicsl, 2000, 6, pp.191-213.
[4] J. J. Mendes, J. F. Goncalves and M. G. C. Resendc, “A
random key based genetic algorithm for the resource
constrained project scheduling problem”, Computer and
Operations Research, 2009, 36, pp. 92-109.
[5] W. Y. Liang and C. C. Huang, “A hybrid approach to
constrained evolutionary computing case of product
synthesis”, Omega, 2008, 36, pp.1072-1085.
[6] Y.F. Hu, K. C. Maguire, D. Cokljat, and R. J. Blak,.
“Parallel controlled random search algorithms for shape
optimization”, Proceeding of the Parallel CFD Conferences,
Manchester United Kingdom, May,1997, pp. 345-352.
[7] M.M. Ali, and A. TÖrn, “Population set based global
optimization algorithms: some modifications and numerical
studies”, Computers and Operations Research, 2004,31(10),
pp. 1703-1725.
[8] Z. Michalewicz. “Genetic algorithms, numerical
optimization, and constraints”, In: Proceedings of the sixth
International Conference on Genetic Algorithms, San Mateo,
Morgan Kaufmann Publishers, April, 1995, 151-158.
[9] J. Yen and B. Lee, “A Simplex Genetic Algorithm
Hybrid”, Proceedings of the 1997 IEEE International
Conference on Evolutionary Computing, Indianapolis,
Indiana, April, 1997, pp. 175-180.
[10] R. Yang and I. Douglas, “Simple Genetic Algorithm
with Local Tuning : Efficient Global Optimizing Technique”,
Journal of Optimization Theory and Applications, 1998,
98(2), pp. 449-465.
[11] L. Wang, Interlligent Optimization Algorithms with
Applications, Tsinghua university Press, Beijing, 2003, pp.5-
20.

130130134134134134134134134134134

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:53:40 UTC from IEEE Xplore. Restrictions apply.

