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Abstract 

 
In this paper, an improved genetic algorithm is 

proposed  for nonlinear programming problems. In 
this algorithm, each individual is taken as a particle 
with mass. The mass of each individual is defined and 
the center of gravity is computed according to physical 
formula. A simplex is formed randomly from the  
population. One of the points of the simplex is reflected 
in the center of gravity of the remaining points to 
obtain a new trial point. The crossover operator, based 
on above method,  is modified to improve the efficiency 
of  genetic algorithm. To evaluate the efficiency of the 
improved algorithm, the algorithm is applied to five 
test problems, and our results are compared with other 
methods. The numerical results illustrate the efficiency 
of our method. 
 
1. Introduction 
 

Here we consider the global nonlinear programming 
problems in the following form 

   .. 
)( min
Dxts

xf
∈

                                  (1) 

where ,nRx ∈ RRf n →: is nonlinear function, and 
{ | , , , 1,2, , }n i i i i iD x R a x b a b R i n= ∈ ≤ ≤ ∈ = . Such  

problem arises in many practical applications, e.g. in 
the risk management, economics, data analysis, 
engineering design, financial planning, etc. Most cases 
of practical interest are characterized by  multiple local 
optima. However, most optimization techniques 
currently used are local methods, which easily fail, and 
at best, find only one local optimum. The objective of 
this study is to develop a global optimization algorithm 
for solving the problem (1). 
     A global optimization algorithm aims at finding a 
global minimizer, or its close approximation of the 
objective function f . A point x* is said to be a global 
minimizer of  f  if f*=f(x*) f(x), Dx ∈∀ . For practical 

interests, especially in applied sciences and in 
engineering, it is required that an approximation *x̂ of 
a global minimizer of  f  be found with 

* *ˆ| ( ) |f f x ε− < . However, in many applications the 
function of interest is not differentiable.  In recent year, 
different stochastic optimization methods are proposed 
for solving global optimization problems. These 
approaches can roughly be classified into following 
categories: random samp-ling, evolutionary algorithms, 
simulated annealing, particle swarm algorithms, and so 
on. In our study, we focus on one of these methods, 
namely genetic algorithm (GA). 

The GA, originally developed by Holland[1], 
proved to solve various combinatorial optimization 
problems efficiently. Later, some authors have propo-
sed GAs for continuous variables[2][3][4][5] . In 
recent years, in order to improved effectiveness of the 
GA , many heuristic methods have been incorporated 
with the GA’s population initialization, reproduction 
and selection, fitness evaluation, crossover or mutation 
and so on. Recently, Hu, et al has proposed a new 
version of real coded GA[6], we call it GA1.  But GA1 
has three drawbacks. The first drawback is that the 
selection criterion is too biased towards the better 
points and therefore it is too greedy and may only work 
for easy problems[7]. The second drawback is that the 
mutation operator is rather randomly chosen. If the 
difference between ib and ia is high then this will 
create a point far away from the point generated by 
crossover operation[7]. The third is that the crossover 
operator can not make GA more exploratory[7]. Ali et 
al  has been proposed modifications to GA1[7] , we 
call it GA2. In GA2, the main modification is that  one 
of the points of the simplex is reflected in the centroid 
of the remaining point to obtain the new trial point in 
crossover.  

In this paper, we take each point as a particle with 
mass and define the mass of each point. The center of 
gravity is computed according to physical formula. For 
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problem (1), an improved genetic algorithm is 
proposed, we call it GA3.  The main difference 
between GA3 and GA2 is that the center of gravity 
replaces the centroid. The GA3 is applied to five test 
problems, and our results are compared with GA1 and 
GA2. The numerical results illustrate the efficiency of 
our method. 
 
2.  Center of gravity calculation 
 

Assume the population has N points, Nxxx ,,, 21 , 
we can think of each point as a particle with mass.  The 
mass of each point xi , mi , is evaluated by using the 
objective function value of the point, xi , relative to the 
objective function value of the current best point.  

[ ]
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where },,2,1|)(min{arg Nixfx ibest == is the 
current best point. From (2), we can see that  the 
smaller the objective function value of the point, xi , is, 
the bigger the mass is. Reversely, the bigger the its 
objective function value is, the smaller  the mass is. 

After determining the mass of each point, the center 
of gravity G of n points, nxxx ,,, 21 , of the 
population ,  is computed as follows 
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3. Improved genetic algorithm(GA3) 
 

The GA consist of the binary coded GA and real 
coded GA. The real coded GA is superior to its 
conventional binary coded counterpart[6][8]. Several 
versions of real coded GA have been proposed 
[6][9][10].  Recently, Hu et al have proposed a new 
version of real coded GA. Numerical studies were 
carried out on a relatively large set of test problems 
with the conclusion that the convergence of the 
algorithm is rapid. The real coded genetic(GA1) 
proposed by Hu can be described as follows . 

The Genetic Algorithm(GA1) 
Step 1 Generate the initial population P 

},,,{ 21 NxxxP =  
            were the individual ix , Ni ,,2,1= are 

sampled randomly in D, evaluate ),(xf  at each 

ix , i=1,2, ,  N. Take nN >> . Set generation 
counter 0=k . 

Step 2 Determine best, bad individual in P. Determine 
the individuals badbest xx ,  and their function 
values badbest ff ,  such that 

)(min xff
Px

best ∈
=  and )(max xff

Px
bad

∈
=  

If the stopping condition(e.g. ε<− bestbad ff ) 
is , then stop. 

Step 3 Generate new individuals to replace individuals 
in P.  
(1) Selection: using tournament selection to 

select Nm <  from P as parents. 
(2) Crossover: take two selected individuals  

),,,( 21 N
iiii xxxx =  

and  
       ),,,( 21 N

jjjj xxxx =  
from parents and generate two new 
individuals as follows 
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where lα  are uniform random numbers in [-
0.5, 0.5]. The process is repeated until m 
new feasible individuals are generated.  

      (3) Mutation: for each child jx~ generated, the 

mutation is carried out with probability uP  
by setting 

)(~~ iii
j

i
j abxx −×+= γ                  ( 5) 

            for a randomly chosen component i
jx~  of  

jx~ , where 1.0=γ , ib  and ia are the upper 

and lower bound of the element ix . 
Step 4  Update P: the m children replace the m worst 

individuals. Set k=k+1, and go to step 2. 
Ali and TÖrn proposed a modified genetic 

algorithm(GA2) to GA1[7]. We now describe their 
works. They replaced the tournament selection with 
random selection, and modified the mutation 
operator(5) to  

)( iiii abxx −+= γ                       (6) 
where γ  is a random number in [ 0.01, 0.01]. The 
crossover operator was modified too, its method can be 
described as follows. GA2 creates two children from 
randomly selected n+2 parents, xp1, xp2, ,  xp(n+1), 
xp(n+2),  form P. The selected n+2 points are used to 
calculate the centroid G of the n points remaining after 
excluding the two worst points, say xp(n+1) and xp(n+2). 
The centroid G is given by 
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The first child is taken as the best point of { 21 ˆ,ˆ xx }, 
where  

)1(1 2ˆ +−×= npxGx  and )2(2 2ˆ +−×= npxGx        (8) 

If the j-th point (j=1,2) jx̂  is not in D then it is 
calculated as  

)(
2
1ˆ )( jnpj xGx ++= .                      (9) 

The second child is found from the best point of { ,ˆ3x  

4x̂ }, where 3x̂ and 4x̂  are obtained using the crossover 
rule (4). This crossover is carried out between two 
parents selected randomly from the n+2 points, again 
excluding two worst points, say xp(n+1) and xp(n+2). If the 
trial points fall outside D, random selection of 

]5.0  ,5.0[−∈iα  continues until 3x̂ , 4x̂ D∈ . For the 
next pair of children n+2 points are again selected 
randomly from P and above process continued. 

The center in GA2 is the center of geometrical, it 
has nothing to do with the objective function value. 
The center of gravity G given by (3) is closely related 
to the objective function value and it is biased towards 
the better points of n points. Hence, in order to make 
the GA2 more efficient, an improved genetic algorithm 
(GA3) to GA2 is proposed. The GA3 differs from GA2 
in two aspects. First, we make a random selection of 
n+1 points in P and include the current  best point 
bringing the number of points up to n+2. Therefore, the 
modification is that the  n+1 distinct  parents, xp2, 
xp3, ,  xp(n+1), xp(n+2), are sampled from P and let xp1 
denote the best point. Assume xp(n+1)  and  xp(n+2) are 
two worst points, we calculate the mass of  xp(i) (i=1,2, 

, n) by (2) and the center of gravity by (3). Second, 
the crossover rule (8) is replaced in the following form    

<−×

≤−×
=

++

++

)()(   ,2

)()(     ,2
ˆ

1)1(

1)1(
1 Gfxf  ifGx

xfG fifxG
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and  
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≤−×
=
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2 GfxfG,    if x

xfGf  if xG
x

)p(n)p(n
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The rule (10) and (11) are introduced in the crossover 
phase to make GA3 more exploratory and the new 
points bias to the better points. The others, such as the 
section mutation and the second child and so on, are 
the same as GA2.  
 
4. Numerical results  
 

To evaluate the efficiency of the GA3. we select 
five test problems[11] , see table 1. In table 1, n 
denotes the dimension of the problem, D the domain of 
each variable, NLM number of known local minima, 

*f the global minimum.    
 

Table 1. The test problems 
Problems       n            D          NLM         *f  
Shekel5         4      100 ≤≤ ix      4       -10.1532 
Shekel7         4      100 ≤≤ ix      7       -10.4029 
Shekel10       4      100 ≤≤ ix    10       -10.5364 
Hartman3      3      10 ≤≤ ix         4       -3.8627 
Hartman6      6      10 ≤≤ ix         4       -3.3223 

 
Table 2. Results of  the GA1  

 FE           cpu         TS   
Shekel5            1374         0.19         15  
Shekel7            1463         0.24         21  
Shekel10          1702         0.31         26  
Hartman3           578         0.14         92   
Hartman6         1814         0.58       100   

 
Table 3. Results of  the GA2  

 FE           cpu         TS   
Shekel5            2163         0.34         67  
Shekel7            2731         0.49         80  
Shekel10          3384         0.61         85  
Hartman3         1136         0.29         99   
Hartman6         3597         1.18       100  

 
Table 4. Results of  the GA3  

 FE           cpu         TS   
Shekel5            1864         0.28         66  
Shekel7            2702         0.42         82 
Shekel10          2986         0.54         83 
Hartman3           953         0.21       100   
Hartman6         2897         0.87       100  

 
We compare GA1,  GA2 and GA3 using above 

problems for 50 independent test runs. The results are 
shown in table 2 , table 3 and table 4. In those tables, 
FE denotes the average number of function evaluations, 
cpu the average runtimes, TS the percentage of success. 
Some parameters are given as follows: the population 
size N=12n, mutation probability Pu=0.001, the 
number of children  m  is the nearest even integer to 
0.1N. Table 2 and table 3 show that number of 
successes of GA2 superior to that of  GA1. But FE and 
cpu needed by GA2 are nearly twice that by GA1. 
From table 2, table 3 and table 4, we can see that 
number of successes of  GA3 superior to that of  GA1 
and is nearly the same as that of GA2. FE and cpu 
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needed by GA3 superior to that by GA2, but inferior to 
that by GA1. The numerical results illustrate the 
efficiency of our method. 
 
5. Conclusions 
 

In this paper, we have shown that the improved 
genetic algorithm can be efficiently applied to the 
global optimization of the nonlinear programming 
problems with box constraints. Our main contributions 
defines the center of gravity and use new crossover 
operator based on  the center of gravity in improved 
genetic algorithm.  The improved genetic algorithm is 
compared with GA1 and GA2. The numerical results 
illustrate that our method superior to GA1 in number 
of successes of algorithm, and it superior to GA2 in FE 
and cpu needed by algorithm. Consequently, we feel 
that the method could be used as a general purpose 
global optimization technique. Research is continuing 
to develop even more efficient GA. 
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