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Abstract—2D glass cutting is an important problem for glass 
manufacturers. The objective of 2D glass cutting is to minimize 
the amount of waste when cutting a whole glass sheet into several 
pieces according to given cutting orders. In this paper, three 
different algorithms applied for the solution of 2D glass cutting 
problem. The performances of solutions are compared. The 
genetic algorithm with initial population strategy improves the 
performance of the algorithm and provides better results. 

Keywords- Genetic algorithms, cutting, optimization, flat glass. 

I.  INTRODUCTION 
Glass production manufacturers deal with two different 

kinds of productions. One is the production of hollow glasses 
like bottle, cups, and other similar shaped glasses. Another 
kind is the production of flat glasses like window, mirror, and 
so on [1]. 2D flat glass cutting problem is a special case of 
general problem called 2D packing or stock cutting problem. In 
glass production, the objective is to minimize the amount of 
waste while cutting a glass sheet into requested pieces.  

 The algorithmic complexity of flat glass cutting problem is 
classified as non-deterministic polynomial (NP Hard). So the 
optimal solution of the problem couldn’t be found in an 
acceptable amount of time. The execution time of the solution 
increases exponentially as the number of pieces increases. For 
many years, researchers have proposed various kinds of 
solutions to this problem. The solution methods can be divided 
into two major categories: deterministic and heuristic.  

Deterministic methods consist of linear programming 
[2][3], integer programming with branch and bound [4], 
dynamic programming [5] and so on. In the linear 
programming approach, the objective is to minimize waste 
while cutting a whole glass sheet into pieces [2][3]. Integer 
programming is a variation of linear programming. It 
eliminates of inappropriate results from solution space. For 
example, there should not be a fractional result while cutting 
requested pieces. With deterministic methods, all possible 
cutting patterns have to be generated in order to find optimal 
solution. Therefore, the execution time of these algorithms 
grows exponentially with the problem size. These methods are 
usually complex and require extensive computation time, and 
are only practical for small problems. 

Many of the computationally extensive NP-hard problems 
are solved by using heuristic methods. Heuristic methods are 
used when it is difficult to find an optimal solution. The 
heuristic methods produce near optimal solutions. In recent 
years, many heuristic based methods have been proposed. In 
2D glass cutting problem, heuristic methods include Bottom 
left [6], bottom left fill [11][12], First fit [7][8], genetic 
algorithm [9][10]. In this paper, we apply a heuristic method to 
find a near optimal solution to the flat glass cutting problem.  

Cutting problems can be divided into two categories 
according to the shapes of pieces. The shapes of pieces can be 
regular shaped (like rectangular or round)  or irregular shaped 
(like asymmetric or non-convex). Rectangular shaped glass 
cutting can also be divided into two categories as guillotine and 
non guillotine cutting. In guillotine cutting, the cutting process 
continues until the end of the entire sheet of glass. It means that 
it cuts glass sheet on the parallel edges of rectangular pieces in 
one way (figure 1). If there is no cutting from one edge to other 
opposite edge, then it is called non-guillotine cutting (figure 2). 

 
Figure 1.  Guillotine rectangular stock cutting 

 
Figure 2.  Non- guillotine rectangular stock cutting 

There are two major problems in glass cutting. One 
problem is the scheduling of the orders. The system should 
select the required orders in an optimum way depending on 
their priorities. Once the orders are selected and scheduled, the 
second problem is to cut selected orders with minimum waste 
of glass.  In this study, we deal with the second type of problem 

359

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:18:37 UTC from IEEE Xplore.  Restrictions apply. 

dserifoglu
Text Box
978-1-61284-922-5/11/$26.00 ©2011 IEEE



and assume that guillotine cutting is used. We applied three 
heuristic methods in order to solve glass cutting problem. 
These heuristic methods are: 

• First fit algorithm (FF) 

• Bottom left algorithm (BL) 

• Genetic algorithm  with bottom left (GA-BL) 

 

The algorithms input the following parameters.  

• N is the number of different sized pieces 

• ki is the number of pieces in each different size 
(i=1,2,..N) 

• wi, hi is the width and height of ith piece (i=1,2,..N) 

• W,H is width and height of the given glass sheet to be 
cut  

Table I shows an example of cutting request order that is 
given as an input to the algorithms. In this order set, there are 
22 pieces with N=4 different sizes.  

TABLE I.  AN EXAMPLE OF ORDERS 

Piece no Width 
wi 

Height 
hi 

Quantity 
ki 

1 60 14 12 

2 71 112 5 

3 153 201 2 

4 50 105 3 

 

II. FIRST FIT ALGORITHM 
The first fit algorithm first sorts the requested pieces 

according to their height and then sorts by their width. The 
pieces are cut according to their sorting sequence. This 
algorithm is usually called as First fit decreasing height 
decreasing width (FFDHDW).  The flow chart of FFDHDW 
algorithm is shown in Figure 3. 

Korf used first fit algorithm in his study[8]. In 1974, 
Johnson mentions about the complexity of the first fit 
algorithm. The complexity of this algorithm is O(nlogn) [7]. 

III. BOTTOM LEFT ALGORITHM 
Bottom left algorithm tries to cut pieces beginning with 

bottom left of a glass sheet. Each time the pieces is cut from 
bottom left if there is enough space on the given glass sheet [6].  

The bottom left algorithm in some cases leaves gaps among 
the pieces. The normal algorithm determines the pieces to be 
cut in order without checking any gaps that is left before. 
Bottom left Fill algorithm includes a function that checks the 
gaps among the pieces and removes those gaps if possible 
[11][12].  Figure 4 shows a sample layout of pieces generated 
by bottom left fill algorithm. The bottom left fill algorithm is 
illustrated in Figure 5.  

 

 
Figure 3.  Flow chart of First fit decreasing height decreasing width 

(FFDHDW) algorithm 

 
Figure 4.  Bottom left fill algorithm sample 

IV. GENETIC ALGORITHM 
Genetic Algorithm (GA) is first described by Holland in 

1975 [8]. Jacob [6] used Bottom left algorithm with genetic 
algorithm in 1996 on his study. Goldberg is used this algorithm 
on packing and cutting problems [9]. And many researchers 
made some improvement on genetic algorithm. Genetic 
algorithm is based on Darwin’s evolution theory. 
Chromosomes pullulate by crossover. And good individuals 
pullulate by crossover of the good individuals. And bad 
individuals die by the natural selection.  

 1 

2 

3 

4 5 

6 

Enter order information (N, ki, wi, hi) 
Enter width and height of glass sheet (W,H) 

BEGIN 

Select the next item and flag as 
selected 

Does it fit? 

Sort items according to 
its height and width 

Try to fit in lowest 
level of the glass sheet.

Try to fit in to a new 
level of the glass sheet.

Is there any 
unflagged item? 

END 

YES 

YES 

NO 

NO 
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Figure 5.  Flow chart of Bottom left Fill (BLF) algorithm 

Genetic algorithms are usually used for complex 
optimization problems that do not require exact solution.  It can 
be applied to solve many complex problems independent from 
problem area. In genetic algorithms, the most important thing 
is how to represent a problem using chromosome data structure 
and how to build coding scheme for genes.  Binary or 
permutation encoding is generally used to encode genes of a 
chromosome.  

In binary encoding, every chromosome is a string 
of 0’s or 1’s as in Figure 6. Each bits represents a binary 
variable in a problem domain.  

Chromosome A 101100101100101011100101

Chromosome B 111111100000110000011111

Figure 6.  Binary encoding of chromosomes 

 

In permutation encoding, every chromosome is a string of 
numbers, which represents number in a sequence. Permutation 
encoding is usually used in ordering problems like cutting 
problems.  

Chromosome A 1  5  3  2  6  4  7  9  8 

Chromosome B 8  5  6  7  2  3  1  4  9 

Figure 7.  Permutation encoding of chromosomes 

Genetic algorithms try to find new and better solutions to a 
problem. The quality of each solution is measured by a fitness 
function. 

A. Encoding of Chromosomes 
The first step in genetic algorithm is to transform a real 

problem into chromosome data structure as in Figure 7. Each 
chromosome represents a different solution to a 
problem. Genetic algorithms begin with a set of solutions 
(chromosomes) called population. At the beginning, population 
is usually generated randomly.  

In our study, we used permutation encoding and each 
element (gene) in chromosome represents the order of pieces to 
be cut. For example, if we have 9 pieces as in Figure 7, the 
order of genes gives the pieces to be cut.  

B. Selecting Population 
Population is a set of chromosomes that represents 

solutions. Solutions are taken from one population and used to 
generate a new population. The objective is to have a better 
population than the old one. The number of chromosomes in a 
population is called as population size. Population size is given 
as an input. In this study, we run the algorithm with the 
population sizes of  25, 50, 75 and 100. 

In genetic algorithms, the next population is generated from 
previous population. Generally, initial population is generated 
randomly. In this study, in order to improve the solution of the 
problem, the solution of bottom left algorithm and the solution 
of the first fit algorithm is added as initial chromosomes to the 
genetic algorithm. This provides that at least some of our initial 
population has good solutions. The rest of the chromosomes in 
the population are generated randomly. 

A new population, called as generation, is formed at each 
iteration of genetic algorithm. The maximum number of 
generations is given as an input to the algorithm. In this paper 
we assumed maximum 1000 generations to stop the algorithm.  

C. Fitness function 
Fitness function is very important in order to determine the 

optimality of the solution. Fitness function depends on problem 
type. To find a optimum solution, fitness function must be 
defined properly.  

The value returned from fitness function is named fitness 
value. Fitness value must be calculated for each chromosome at 
each iteration. The optimality of Chromosomes depends on 
their fitness value. The chromosomes with the better fitness 
values are the better chromosomes (individuals) in the 
population. As explained in the next section, the better 
chromosomes are selected to generate a new solution set at 
each step.  

In glass cutting problem, the objective is to reduce amount 
of wasted glass during production. Therefore fitness function is 
defined as a function of the wasted amount. We used the 
following fitness function:  ݂݅ݏݏ݁݊ݐ ൌ  ∑ .௜ݓ ݄௜௜ܹ . ܪ  

Select the next item and flag as 
selected 

BEGIN 

Enter order information (N, ki, wi, hi) 
Enter width and height of glass sheet (W,H) 

Is this item 
unflagged? 

Place bottom left corner of glass 
sheet and flag it as placed 

Is there any 
unflagged item?

END 

NO 

YES 

NO 

YES 
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Where W is the width of a whole glass sheet to be cut, H is 
the height of space occupied with the processed pieces, and ݓ௜  
and ݄௜  are the width and height of each of the processed pieces 
until that step.   

D. Chromosome Selection 
At each iteration of genetic algorithm, a part of population 

is selected to generate a new and better population using 
crossover and mutation operations. To make a crossover, pairs 
of chromosomes are needed. Chromosomes with better fitness 
values are usually selected to generate new chromosomes. 

In this paper, we use roulette wheel method [14] in order to 
select the chromosomes to make crossover. In this method, the 
fitness value of each chromosome is normalized so that the 
sum of fitness values of all chromosomes is 100. The 
chromosomes are distributed around the wheel by their 
normalized fitness values.  Then, a random number between 0-
100 is generated and this random number is used to select a 
chromosome from the wheel as shown in Figure 8. The 
chromosomes with the higher fitness values have greater area 
on the wheel. Therefore, the probability of selection of the 
better chromosomes is higher than other chromosomes.  

 
Figure 8.  Roulette wheel example 

E. Crossover 
After a pair of chromosomes is selected, new individuals 

are generated by using crossover operation. Genes of the two 
chromosomes are interchanged during crossover operation. 
There are various kinds of crossover methods. The most 
popular ones are single point and uniform crossover methods.  

Figure 9 shows single point crossover where a point is 
chosen to swap the genes of chromosome after starting from 
that point. The previous genes of the chromosome before the 
chosen point are unchanged.  

 
Figure 9.  Single point crossover 

In Figure 10, uniform crossover method is illustrated. The 
genes are selected randomly from the pair of chromosomes. In 
Figure 10, the unshaded and shaded genes are selected 
randomly from chromosome A and B respectively to generate 
chromosomes ܣԢ and ܤԢ. 

 
Figure 10.  Uniform crossover 

In this paper, we used uniform crossover. A probability of 
crossover is given as a parameter to genetic algorithms that 
determines regeneration ratio. In each step, some of the 
chromosomes sometimes pass to the next population without 
crossover by this way. In this study, we used the value of 80% 
as crossover probability.  

F. Mutation 
After crossover operation, there is a chance that the values 

of some genes at particular positions will not change in new 
generations. To avoid this undesirable situation a mutation 
operator is used.  The mutation operator enables the random 
alteration of some of genes. This action provides stepping over 
local optimum points. Figure 11 shows a sample mutation 
operation. In this study, only one gene of the chromosome is 
interchanged randomly with the mutation probability of 20%.  

 
Figure 11.  Mutation operation 

G. Elitism 
Crossover and mutation operations may lead to the loss of 

good solutions. The elitist selection allows some of the better 
chromosomes from current generation to carry over to the next 
generation as unaltered. In our case, the elitist selection rate is 
selected as 10%. During each successive generation, 10% of 
the chromosomes with the best fitness values are retained 
without any changes.    

Table II shows the summarization of the values of the 
parameters of the genetic algorithm that used in this study. 

TABLE II.  GA PARAMETERS. 

Parameter Name Value 

Population Size 25, 50, 75, 100 

Crossover Probability 80% 

Mutation Probability 20% 

Elitism 10% of the population size 
Generation size 1000 

 

V. EXPERIMENTAL RESULTS 
In our study, we implemented bottom left fill (BLF) 

algorithm, first fit decreasing height decreasing width 
(FFDHDW) algorithm, and genetic algorithm (GA).  To 
analyze these algorithms, 7 different glass cutting orders are 
generated randomly. These 7 orders include 10, 20, 40, 60, 
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100, 150, 200 pieces of various width and h
glass sheet size is assumed   to be 240 x 3000

Figure 12 and Figure 13 shows layo
determined to be cut by BLF and FFD
respectively.  In this sample run, allocat
different with the same amount of waste. 

Figure 14 shows a solution produced by 
for the same 20 pieces. In this case we 
amount of 16,06%.  

Figure 12.  Bottom left algorithm layout for

Figure 13.  FFDHDW algorithm layout for 

Figure 14.  Genetic Algorithm layout for 2

Table III compares the minimum a
calculated 10 times by applying BLF, FF
algorithms on different cutting request order
60, 100, 150, and 200 pieces.  When 
algorithms, different population sizes are se
analyze and to decide the best population si
GA75, and GA100 stand for Genetic al
population size of 25, 50, 75, and 100 respect

The first step in genetic algorithms is to 
population. This initial population is u
randomly. Initial population strategies c

height. The whole 
0 units. 

out of 20 pieces 
DHDW algorithms 

tion of pieces is 

genetic algorithm 
obtained a waste 

 
r 20 pieces 

 
20 pieces 

 
20 pieces 

amount of waste 
FDHDW, and GA 
rs with 10, 20, 40, 

applying genetic 
elected in order to 
ize. GA25, GA50, 
gorithm with the 
tively.  

generate an initial 
usually generated 
can improve the 

performance of genetic algo
algorithm solution, an initial p
improve the performance of ge
two solution obtained by BLF 
initial population. This provide
are included in population befo
solutions to the problem. 

In Table III, GA25-RND s
algorithm on an initial populati
randomly without using initial p
with title GA25 shows the resu
initial population strategy. As 
strategy results in better values
reduced.  

TABLE III.  THE PERCENTAGE O
POPULATION OF 25,50,75, A

Pieces GA25-RND GA25 GA50 

10 31,9967 31,9967 31,9967

20 35,2160 18,1676 23,9493

40 18,9721 8,9098 11,0417

60 18,2023 7,3706 7,6517 

100 16,0927 4,8359 5,4655 

150 19,7437 4,2003 4,2584 

200 13,3012 3,0775 3,5290 

 

We also tested the genetic a
strategy on different population
can be seen in Table II, the b
population size of 25. So the i
not reduce the amount of waste
on different population sizes a
over BLF and FFDHDW 
FFDHDW are compared, FFD
results.  

Figure 15.  Graphics of r

As shown in Figure 15
population strategy produces th
the other hand, the performan
better, and the best performance

orithms [15]. In our genetic 
population strategy is applied to 
enetic algorithm. The results of 
and FFDHDW are added to the 

es that at least 2 good solutions 
fore generating successive better 

stands for application of genetic 
ion that is completely generated 
population strategy. The column 
ult of waste obtained with using 
it is seen, the initial population 

s so that the amount of waste is 

OF WASTE RESULTS FOR GA WITH THE 
AND 100 AND BLF, FFDHDW. 

GA75 GA100 BLF FFDHDW

7 31,9967 31,9967 31,9967 31,9967 

 25,9612 25,9612 26,7365 26,7365 

7 11,4186 10,0851 12,3471 12,3471 

8,8960 8,2089 9,7070 9,3033 

5,3761 5,9986 6,6130 6,6130 

4,4323 4,4323 4,8355 4,7781 

3,7531 3,2134 4,2426 4,1983 

algorithm with initial population 
n sizes: 25, 50, 75, and 100. As it 
best result is obtained with the 
increase of population size does 
e.  Application of GA algorithms 
always gives better performance 

algorithms. When BLF and 
DHDW produces slightly better 

 

results of BLF, FFDHDW 

5, GA25-RND without initial 
he worst results among them. On 
nce of the other algorithms is 
e is obtained with GA25. 
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VI. CONCLUSION 
2D glass cutting is a complex problem whose complexity is 

classified as non-deterministic polynomial (NP Hard). It is 
almost impossible to obtain an optimal solution to this problem 
because of the large number of alternatives in the solution 
space for large size problems.  These kinds of problems are 
usually solved by using heuristic algorithms.  

In this paper, we applied three different heuristic algorithms 
to solve the 2D flat glass cutting problem. We used an initial 
population strategy in genetic algorithm solution. This method 
improved the performance of the genetic algorithm and 
resulted in best results among the other applied algorithms.  

This research work started after talking one of the glass 
manufacturers in Turkey. We learned that defects on the 
surface of glass sheets are an important issue when cutting the 
orders. The defected area should be excluded while cutting 
pieces. As a future work, we would like to add additional 
constraints like defects, apply other optimization methods, and 
develop new algorithms to the 2D cutting problem. Eventually, 
the glass manufacturer will use these developed algorithms if 
better solutions in both the amount of wasted glass and 
execution time are obtained.  
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