
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015 359

Analysis of Cartesian Genetic Programming’s
Evolutionary Mechanisms

Brian W. Goldman and William F. Punch

Abstract—Understanding how search operators interact with
solution representation is a critical step to improving search. In
Cartesian genetic programming (CGP), and genetic program-
ming (GP) in general, the complex genotype to phenotype map
makes achieving this understanding a challenge. By examining
aspects such as tuned parameter values, the search quality of
CGP variants at different problem difficulties, node behavior, and
offspring replacement properties we seek to better understand
the characteristics of CGP search. Our focus is two-fold: creating
methods to prevent wasted CGP evaluations (skip, accumulate,
and single) and creating methods to overcome CGPs search lim-
itations imposed by genome ordering (reorder and DAG). Our
results on Boolean problems show that CGP evolves genomes that
are highly inactive, very redundant, and full of seemingly use-
less constants. On some tested problems we found that less than
1% of the genome was actually required to encode the evolved
solution. Furthermore, traditional CGP ordering results in large
portions of the genome that are never used by any ancestor of
the evolved solution. Reorder and DAG allow evolution to utilize
the entire genome. More generally, our results suggest that skip-
reorder and single-reorder are most likely to solve hard problems
using the least number of evaluations and the least amount of
time while better avoiding degenerate behavior.

Index Terms—Analysis, Cartesian genetic programming.

I. INTRODUCTION

WHILE effective evolutionary methods are often sim-
ple to design and implement, discerning the reason

that system leads to effective search can be challenging. This
is exceptionally true for genetic programming (GP), which
often employs both nontrivial genotype to phenotype maps
and operators that act on genotypes without regard to pheno-
typic impact. Yet understanding the root causes of evolutionary
success and failure is critical to improving existing techniques,
designing new techniques, and understanding how and where
to apply each optimization system.

There have been a number of previous studies into various
aspects of GP evolution. For instance, [1] showed how a tree’s
shape effects its evolvability regardless of phenotype, result-
ing in the use of new grammar-based operations [2]. Analysis
of the root cause of bloat has helped to inform methods for
controlling bloat [3].

Manuscript received July 24, 2013; revised December 6, 2013 and
April 4, 2014; accepted May 6, 2014. Date of publication May 14, 2014;
date of current version May 27, 2015.

The authors are with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824-1226 USA (e-mail:
brianwgoldman@acm.org; punch@msu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2014.2324539

In this paper, we set out to develop a deeper understand-
ing of what makes Cartesian genetic programming (CGP) an
effective evolutionary optimizer. Previous studies of CGPs
evolutionary mechanisms have focused on bloat [4], neutral-
ity [5], and structural bias [6]. We shall focus on the interaction
between mutation and genome ordering, both generally and
how they specifically apply to the Boolean problem domain.
While these features of CGP have trivial definitions, we will
argue, using experimentation and analysis of alternatives, that
they have a great deal of impact on search success.

II. CARTESIAN GENETIC PROGRAMMING

CGP was originally proposed as a method for general GP
in [7]. While its name comes from its original application
evolving circuits on a 2-D grid, modern CGP can represent any
directed acyclic graph (DAG), and has been utilized in appli-
cations such as binary circuits [8], robot controllers [9], neural
networks [10], image classifiers [11], and regression [12].

CGP represents DAGs using a linear genome of integer val-
ues. Each node in the DAG is encoded as a tuple of genes,
with one gene specifying the function the node applies to its
inputs, and the remaining genes expressing where the node
takes input from. Nodes can take input from either a prob-
lem input or any node preceding them in the linear genome.
Restricting connections in this way prevents the creation of
cycles, while still allowing CGP to reuse values. This is in
contrast to tree-based GP, which must duplicate functionality
everywhere the same value is needed. To complete the repre-
sentation, a set of extra genes are included at the end of the
genome to specify which nodes or input locations to use as
function outputs.

As both output locations and information flow in the DAG
are evolvable, often only a tiny fraction of the genome partic-
ipates in creating the output values. These nodes are referred
to as “active,” with the nodes not being used to create out-
put values referred to as “inactive.” Inactive nodes allow for
genetic drift, as individuals can be mutated without effect-
ing their fitness. These mutations can then be incorporated, as
future mutations can change the DAG structure causing previ-
ously inactive nodes to become active. Previous work suggests
CGP is most efficient when up to 95% of the genome is inac-
tive [13], while more recent work suggests this may be a result
of hidden parsimony pressure in CGP [14].

CGP uses very simple evolutionary mechanisms. The most
common evolutionary strategy is μ + λ where μ ← 1 and
λ← 4. This means during each generation a single parent pro-
duces four offspring using mutation. The best offspring then

1089-778X c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

360 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

competes with the parent,1 with the offspring replacing the
parent if it is no less fit. This replacement strategy encour-
ages neutral drift. In CGP mutation is done in a myriad of
nearly synonymous ways. Here we mutate each gene of each
node at a set probability, where mutation involves changing
a gene randomly to some different valid value. For example,
if a function gene is chosen for mutation, its new value is
randomly chosen from all possible functions, excluding the
gene’s current value. This version of mutation was chosen to
allow precise prediction of changes in gene value necessarily
in later sections. Combined, this form of CGP can be viewed
as a stochastic hill climber with neutrality. For a more in depth
description of CGP, see [15].

III. DUPLICATE EVALUATION AVOIDANCE

CGPs mutation operator is traditionally applied to both
active and inactive genes uniformly. This has the potential
to create offspring who’s only mutated genes are in inactive
nodes. These offspring are actively identical (contain identi-
cal active genes) to their parents, and therefore by definition
have identical fitness to their parents. As such, reevaluating
these individuals is computationally wasteful as their fitness
is known. Detecting duplicated individuals can be done with-
out significant overhead since finding the set of active nodes is
already done prior to evaluation [16]. Our previous work [17]
has taken an initial look at the effect this waste can have, and
proposed skip, accumulate, and single as methods for avoiding
or preventing these duplicate evaluations.

A. Skip

The skip method for avoiding duplicate evaluations involves
the least amount of modification from CGPs normal behavior.
After an offspring is produced and its set of active nodes is
determined but before it is evaluated, it is compared with its
parent. Each gene in each active node is compared for equiva-
lence with the corresponding gene in the offspring’s parent. If
all active genes are found to be equal then the offspring is not
evaluated and is instead given the same fitness as its parent.
Note that since inactive genes are not compared for equiva-
lence it is still possible for offspring to genetically differ from
their parents.

Because skip does not modify any evolutionary mecha-
nisms found in traditional CGP, it will produce identical
individuals, with a potential reduction in evaluations. If the
mutation probability is high enough relative to the num-
ber of active genes, skip will require the same number of
evaluations as traditional CGP, since the probability of an
offspring being actively identical to its parent is effectively
zero. When the mutation probability is low enough relative
to the number of active genes, some number of offspring
will be actively identical to their parents, resulting in a
reduction in evaluations but no change in the evolutionary
trajectory.

This technique incurs a minor increase in runtime, as each
active gene in the offspring must be compared against the

1Ties are broken randomly.

parent’s gene at the same locus. This operation is at most linear
in genome size. Yet on problems where evaluation is even
somewhat expensive, the evaluations prevented by performing
this check will result in a net reduction in runtime.

We would expect both intuitively and from our initial exper-
imentation [17] that skip will be less sensitive to the mutation
probability than normal CGP. We would also expect skip to
use a lower mutation probability than normal CGP when both
are optimized to reduce evaluations. The former comes from
the fact that in normal CGP any mutation probability that
has a significant chance of creating offspring actively iden-
tical to their parents wastes evaluations. In skip there are
only two penalties for reducing the mutation probability. From
an evolutionary standpoint, if search becomes trapped in a
local optima, low mutation probabilities may have increased
difficulty escaping to find the global optimum. From a per-
formance standpoint, exceptionally low mutation probabilities
may spend a prohibitive amount of time attempting to produce
an evaluable offspring. Note that these penalties also exist in
normal CGP.

B. Accumulate

Similar to skip, accumulate works by adding a step between
offspring creation and offspring evaluation. Instead of skip-
ping evaluations when offspring are determined to be actively
identical to their parents, accumulate enters into a cycle of
repeated mutation until an individual worth evaluating is cre-
ated. To understand this technique, consider an example where
the parent P produces the offspring F0 using mutation. If F0
is actively identical to P, F0 creates its own offspring F1 using
mutation. This process of Fi producing Fi+1 continues until
Fn is produced, where Fn is not actively identical to P. Fn is
then evaluated. If Fn is no worse than P, it replaces F0, and
evolution continues as though P had produced Fn directly. If
Fn is worse than P, Fn−1 replaces F0, as Fn−1 has accumu-
lated the most mutations to inactive genes without reducing
fitness. Note that the mutation used each time is identical to
normal CGPs mutation, such that Fn will have one or more
active genes different from P. Furthermore, even though this
technique produces n + 1 individuals, only Fn is evaluated.
Viewed in another way, accumulate performs a micro evolu-
tion on each offspring before it is evaluated, with an emphasis
on encouraging neutral drift.

Previous experimentation has shown that accumulate acts
very similarly to skip [17], with the exception that accumulate
favors lower mutation probabilities when tuned to reduce eval-
uations to success. While at first these algorithms may appear
quite different, further consideration shows how they are sim-
ilar. In skip any actively identical offspring that is produced
is likely to be selected as we expect mutations to active genes
to more often reduce fitness than improve it. In the next gen-
eration this actively identical offspring is then mutated again,
with its lineage likely continuing until it finally does mutate
one or more active genes. At this point, if the mutant is better it
replaces the parent, otherwise the parent, which has been accu-
mulating mutations to inactive genes, is kept. In this way skip
mirrors accumulate, except skip acts over multiple generations
instead of compressed into a single generation.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

GOLDMAN AND PUNCH: ANALYSIS OF CARTESIAN GENETIC PROGRAMMING’S EVOLUTIONARY MECHANISMS 361

Similar to skip, accumulate incurs a minor computation cost
in order to prevent wasting evaluations. Generating each Fi

requires at most O(AN), where A is the arity of the nodes
and N is the number of nodes. While accumulate may pro-
duce many Fi in the process of creating a single offspring,
conceptually skip using the same mutation rate will create a
similar number of total individuals when performing the same
number of evaluations. As such, we suggest accumulate will
take no more than a constant factor more runtime to produce
the same number of evaluable individuals as skip. As before,
this increase is likely eclipsed when solving problems with
sufficiently time consuming evaluation functions.

C. Single

While skip and accumulate save evaluations by not eval-
uating offspring which are actively identical to their parents,
single changes mutation to ensure that only evaluable offspring
are created. Instead of mutating each gene at a set probability,
single mutates genes at random until exactly one active gene
is mutated.

This modification gives single three properties distinct from
the other forms of duplicate avoidance. First, single forces off-
spring to have an active gene which differs from their parent.
This limits drift as the mutated active gene must either be to
an intron or represent another way to code a solution of equal
quality. Second, as a benefit of forced changes, single avoids
the overhead of repeatedly generating individuals without cre-
ating an evaluable offspring. Third, single does not require a
mutation parameter, effectively setting the mutation probabil-
ity to 1/a for active genes and 1/(a+ 1) for inactive genes,
where a is the number of active genes.

In encodings without inactive genes, limiting mutation to
changing exactly one gene could prevent an algorithm from
escaping some types of local optima. Yet because CGP allows
for inactive genes, single is still able to escape most local
optima using sufficient drift of inactive genes. When a high
percentage of the genome becomes active or when single is
otherwise limited in its ability to drift due to lack of introns,
it does have an increased potential to become stuck. As will
be discussed in Section IV and as shown in [14] this problem
of highly active genomes is very unlikely.

Conceptually this method could be extended to mutate some
number of active genes before terminating. Doing so would
reintroduce a parameter to govern how many active genes to
mutate. Our choice of a single mutation allows for the minimal
amount of change to ensure the individual should be evalu-
ated, while mutations made to inactive genes still give CGP
sufficient power in each mutation to escape local optimums.

IV. GENOME ORDERING

As was discussed in Section II, CGP uses node ordering in
the genome to prevent cycles, by ensuring nodes only receive
input from sources that precede them in the genome. This
restriction does not limit CGPs ability to represent DAGs, as
all DAGs can be serialized to fit this requirement. However,
this representation is likely having an impact on CGPs ability
to evolve specific DAGs [14].

Primarily, enforcing node ordering adds artificial limitations
to CGPs ability to connect nodes. Nodes which can be con-
nected without creating a cycle may still be prevented from
forming that connection because of random genome order-
ing. Similarly, it is impossible for adjacent nodes to ever be
connected through an intermediate node. As a result, useful
structures in the genome may need to be evolved repeatedly in
order to find the best location for that structure in the genome.

Ordering, when combined with the mutation’s uniform
resetting of connection genes, may be the cause of CGPs
immensely inactive genomes. As was rigorously defined in
this paper [14], the number of active genes in a genome
is expected to scale logarithmically with genome size, inde-
pendent of problem application. Furthermore, the less active
a genome, the lower the likelihood of structure ordering
preventing structure connection.

As an extension to the theory presented in [14], we have
derived the formula which predicts the probability a node is
active based on its index, given in

p(i)← 1 −
(

N + I − 1

N + I

)O

·
N∏

j=i+1

1− p(j) ·
(

1−
(

j+ I − 1

j+ I

)A
)

. (1)

In this equation, i is the index of the working node, N is the
genome size, I is the number of input locations, O is the num-
ber of output locations, and A is the arity of each node. This
equation is constructed as a negation, such that we determine
the probability the node is not active due to each potential
source that could make it active. The product term calculates
the probability that the node at index j is connected to the
node at index i, multiplied by the probability that the node
at index j is active. This is negated to determine the prob-
ability node i is not active because of node j. All together,
the product term calculates the probability that no active node
is connected to the node at index i. Nodes can also become
active if they are directly connected to by an output location.
As such the product is scaled by the probability that all out-
put locations connect to inputs or nodes not at index i. This
formula assumes only operator bias, not selective pressure, is
acting on the genome.

Substituting N = 2000, A = 2, I = 6, O = 6 into (1) (cho-
sen to match experimental values used in Section VI) predicts
only 160 active nodes, or 8% of the total genome. Positionally,
80% of the first 100 nodes are expected to be active while just
4% of the remaining 1900 nodes are expected to be active.

To rectify these issues and examine CGP without ordering
bias, [14] created reorder and DAG as methods for genome
ordering. For clarity, we shall refer to CGPs historical ordering
method of enforcing only forward connections as normal.

It is important to note that (1) does not apply to all vari-
ants of CGP. For instance, the early versions of CGP [15]
which utilize a levels back parameter L will have a flat active
probability for all nodes at least L nodes from the start and
L nodes from the end of the genome. Yet this does not remove
the issue of artificially limiting connections, and in fact adds

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

362 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

Fig. 1. Algorithm which converts any DAG into a random serial ordering
such that all nodes take input from nodes that precede them in the genome.
Used by reorder to determine new node locations and DAG to determine node
evaluation ordering.

many new limitations. More recently, [18] proposed a method
which reassembled the genome using semantic cues, which
circumvents the forward only limitation in normal.

A. Reorder

The reorder method shuffles an existing genome’s node
ordering without changing node behavior. This is possible
because for a given node, there can be a large number of
other nodes which have no required ordering, as they neither
take input (directly or indirectly) from the node nor provide
their output (directly or indirectly) to the node. In general,
this process works by assigning nodes new locations in the
genome at random once all of the nodes they take input from
have been assigned locations earlier in the genome.

The first step in performing reorder on a genome is to create
data structures to store direct connection relationships. These
structures are used to determine in constant time all connec-
tions incident on a node, and can be built in order O(AN)

time, where A is the arity of the nodes and N is the number
of nodes.

With this preprocessing complete, the
RANDOMSERIALIZATION algorithm given in Fig. 1 is
used to assign each node a new location in the modified
genome. It starts by constructing the addable set, which
contains all nodes who’s direct dependencies have already
been added. Initially this contains only the input locations.
Once a node is assigned a location, all of the nodes that
depend on its output have that dependency marked as
satisfied. Once all of a node’s dependencies are satisfied, it
can be put into addable. In this way, nodes are randomly
removed from addable, assigned the next location in the
genome, with new nodes added to addable as they becomes
semantically viable. Iteration ends when all nodes have been

assigned new locations. RANDOMSERIALIZATION requires
O(AN), as there can be only N iterations, with each iteration
updating a distinct subset of the AN dependencies.

The final step in reorder is to use the list of new locations
to convert the existing genome into the reordered genome.
This can be done by converting connection genes and out-
put location genes using the new_loc map returned from
RANDOMSERIALIZATION. This also requires O(AN) time, as
all connection genes in all nodes must be converted. As this
is the final step unique to reorder, and no previous steps are
of higher complexity, it is also the complexity of the reorder
algorithm as a whole. Furthermore, it is of the same complex-
ity class as copying the entire genome, meaning it does not
change CGPs overall complexity.

Reorder is used once each generation to shuffle the nodes
of the parent’s genome. As the shuffling does not seman-
tically change the parent, it does not require reevaluation.
Furthermore, as shuffling does not change the requirement that
nodes only depend on those preceding them in the genome,
shuffling does not require any changes to any other CGP meth-
ods, such as evaluation and mutation. It is important to note,
however, that the potential mutations that can be applied to
the parent have changed. Consider two nodes X and Y which
are in the genome, and have no dependent relationship. As X
does not take input from Y and Y does not take input from X,
either can be placed before the other in the genome. Without
shuffling, the initial ordering of nodes is fixed. No operation
in normal is capable of making X take input from Y . Reorder’s
shuffling can allow subsequent mutations to make the
connection.

Reorder has the potential to reduce node reinvention. In nor-
mal, if X preceded Y , mutation would have to recreate either
X or Y in new locations in order to make the required con-
nection. Reorder provides the opportunity to examine different
orderings of the genome without such costs.

The price reorder pays for this potential improvement is
a larger mutational search space. Though a shuffled indi-
vidual is phenotypically unchanged, its mutational adjacency
can be significantly different. As such the variety of off-
spring an individual can create is increased when using
reorder. Therefore creating a specific offspring that improves
upon the parent is less likely, in that the number of alter-
natives is increased. Yet many of these additional alter-
natives may also be improvements upon the parent. This
may increase the likelihood of producing an offspring that
improves upon the parent, allowing reorder to overcome this
drawback.

B. DAG

Normal and reorder use node location in a linear genome to
create an efficient protection against cycles: nodes must con-
nect forward. DAG removes this restriction and allows forward
and backward connections, relying on other, more complex,
methodologies to prevent cycles. To accomplish this goal,
modifications must be made to how CGP performs mutation
and evaluation.

As in normal and reorder, when a connection gene is cho-
sen for mutation, its value is chosen randomly. However, the

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

GOLDMAN AND PUNCH: ANALYSIS OF CARTESIAN GENETIC PROGRAMMING’S EVOLUTIONARY MECHANISMS 363

Fig. 2. Algorithm used by DAG to determine valid connection gene values.

options to choose from are only limited to those connections
which do not create cycles. To achieve this, we incrementally
determine which nodes transitively depend on the mutating
node and which do not, with information stored in a known
map data structure. This data structure is initialized with the
information that the node is dependent on itself and that
all input locations are not dependent on the mutating node.
Nodes are then tested in a random order for dependence using
the ISDEPENDENT algorithm given in Fig. 2. The first node
returned at the top level that is not dependent on the mutat-
ing node is then used as the new connection gene value. As a
result, mutating a connection gene cannot introduce a cycle.

ISDEPENDENT is a nonrepeated recursive depth first search
of the individual’s DAG. Search terminates as soon as a depen-
dent node is found, and information from previous searches
is memorized to prevent repeated search. Each recursion level
results in a node being added to known. As such initial calls
will likely result in lots of recursion, but subsequent calls will
find answers more quickly. In the worst case, this algorithm
may need to examine all nodes in the genome to deter-
mine if working is dependent on the mutating node, giving
ISDEPENDENT a complexity of O(AN). In the worst case, this
algorithm may be called on all possible nodes in the genome to
check their dependence. Yet cumulatively those calls can only
take O(AN) time due to the nonrepeating nature of the search.
As a result, the expected worst case run time for DAG muta-
tion is O(mA2N2), where m is the mutation probability. We
expect mAN connection genes to be mutated, each requiring a
worst case of N dependency checks each taking A time. This
is in contrast to normal and reorder which require O(mAN) to
perform mutation, as individual mutations can be performed
in constant time.

The method for evaluating DAG individuals is very similar
to the method for efficiently evaluating normal and reorder
individuals. As before, preprocessing is done to determine
which nodes are active, and only those nodes are executed
during evaluation. Also as before, the process begins from the
output locations, recursively following connection genes and
marking nodes as active until the input locations are reached.
At this point, the process changes. In DAG, we must deter-
mine not only the set of nodes that are active, but also the
order in which those nodes should be executed.

RANDOMSERIALIZATION can be reused to determine the
order in which nodes should be executed during evaluation.
Instead of using new_loc to reorder the genome, we can use
this map to specify the order in which nodes should be exe-
cuted. For instance, if a node was given the new location of X,
we know that once all nodes at locations preceding X have
been evaluated, the node at X can be evaluated. Stripping the
inactive nodes from new_loc and inverting the map results in
an efficient, valid ordering in which to execute the nodes.

The process of determining which nodes are active requires
O(AN) time, regardless of node ordering. As was discussed
in Section IV-A, getting the new_loc map requires O(AN)

time. Finally, converting the map into an ordering of the
active nodes takes O(N) time. Each of these steps are sequen-
tial, meaning DAG does not increase the runtime complexity
of evaluation preprocessing. Furthermore, once the prepro-
cessing step is done, DAG takes identical time to evaluate
as the other methods, regardless of the number of input
combinations.

With these modifications, there is no longer any meaning
to the location of a node in the genome. In normal, the num-
ber of valid values for a connection gene is related to the
number of nodes preceding that gene, and independent of the
number of nodes following that gene. In DAG a connection
gene’s valid values only depends on the current solution rep-
resented by the individual, independent of the genes location
in the genome. As such, there are fewer artificial limitations
on how DAG can modify solutions.

While reorder and DAG both reduce mutational limitations,
DAGs changes are more sweeping. Though both can create
any connection that does not form a cycle, reorder maintains
a bias toward certain kinds of connections. Consider again two
nodes X and Y such that neither is dependent on the other. If
X is transitively dependent on very few nodes, and Y is tran-
sitively dependent on many nodes, reorder is more likely to
shuffle X to precede Y . This is true because at any point during
the construction of the new ordering, the probability that all of
Xs dependencies have been added is higher than for Ys depen-
dencies. As a result we expect X to be put into addable sooner,
and therefore we expect it to be added sooner. The greater the
discrepancy in the dependency set sizes the less likely the
order between the nodes will be reversed. Conversely, DAG
has no such bias. It is always possible to mutate X to connect
to Y .

The probability of connecting X to Y is also influenced by
how many nodes transitively depend on X and Y . For example,
assume X has more nodes transitively dependent on it than Y .
In reorder, X is again more likely to be placed before Y , this
time because the number of possible nodes preceding it is
reduced. DAG is biased in the reverse, such that X will have a
higher chance of connecting to Y than Y to X. This is because
X can connect to fewer nodes, so each mutation has a higher
chance of choosing Y .

V. QUALITATIVE COMPARISONS

All told we have proposed three new methods for avoiding
duplicate evaluations (skip, accumulate, and single) and two
new methods for genome ordering (reorder and DAG). See

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

364 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

TABLE I
SHORT DESCRIPTIONS OF EACH OF THE ALGORITHM VARIANTS

Table I for a short description each variant. As these two sets
are nonoverlapping, and there is no intuitive groupings, we
chose to test all possible combinations in our empirical anal-
ysis. As a control we included normal genome ordering, as it
provides insight to how each of the duplicate prevention tech-
niques work if applied alone. Similar measures are not needed
in testing the genome ordering techniques, as skip has no
impact on evolutionary search, and is strictly an improvement
to using no duplication detection at all.

In total this creates nine algorithm combinations. Of these,
our previous work has shown the effectiveness of the dupli-
cation methods with normal ordering [17] as well as analysis
of all three ordering methods with single [14]. This means
there remain four novel combinations to be tested. This is
also the first time the ordering methods have been rigorously
tested for quality, as much of the work in [14] was analysis
oriented.

A. Problem Set

In order to provide test landscapes for evolution, we chose
problems common to the CGP literature and previous work
with the duplication prevention and ordering techniques. We
have chosen four binary circuit problems, as the binary repre-
sentation allows for some of the precise analysis performed in
Section VI. For all problems, we used the function set {AND,
OR, NAND, NOR}. To cover a range of different binary prob-
lems, each of the four chosen have different numbers of inputs,
different number of outputs, and different levels of difficulty.

The first problem, 3-bit parity, represents the most common
application for CGP [8], [13], [19]. We include this problem
purely for backward comparison, as we agree that in general it
is too simple of a problem to merit its own conclusions [20].
Yet as part of the group it may help yield understanding about
how each variant performs on simple problems.

As representatives of binary problems with varying input
and output sizes, we reuse the 16-4-bit encode and 4-16-bit
decode proposed in [17]. In these problems, the circuit evolved
must either convert a 4-bit encoded integer to a 1 on the cor-
responding output line (decode), or take a 1 on one of the

16 input lines and convert it back into a 4-bit encoded integer
(encode). These problems share properties with the commonly
used multiplexer problem, but include multiple output lines,
and can be evaluated quicker as each only requires 16 possible
test points.

Finally we chose the 3-bit multiply to represent hard binary
problems, as was suggested in [20] and used by [5], [8],
and [13]. This problem is very difficult by comparison to
the other problems, and has the largest number of test
points.

B. Parameter Setting

To perform a fair comparison, we ensure proper parameter
configuration to avoid potential bias that might benefit a spe-
cific method. While tuning can lead to the alternative issue of
methods only being effective after extensive problem specific
tuning, we set out to use rough-grained values and provide
each technique with equal tuning time to alleviate that bias.

We focus on two parameter values in our configuration:
mutation probability and genome size. While there are other
potential configurable parameters (population size, offspring
size, etc.), we feel the CGP literature has converged on set-
tings for those parameters (1, 4). Furthermore, as duplication
detection explicitly deals with the relationship between muta-
tion probability and number of active genes, and the number of
active genes depends on the genome size and ordering method,
mutation probability and genome size seem to be the most
likely to impact results.

To set parameter values, we started by defining a grid
of parameter values: 50, 100, 200, 500, 1000, 2000, 5000,
10 000 for genome size and 0.05, 0.02, 0.01, 0.005, 0.002,
0.001, 0.0005, 0.0002 for mutation probability. Note that here
a genome size of 50 means there are 50 nodes, each com-
posed of multiple genes, plus the required genes to specify
output locations. Also note that a mutation probability of 0.05
is used here to mean each gene has a 5% probability of being
mutated in a single application of mutation. These ranges
were chosen to completely cover the range of previously used
parameter settings. The grid is formed by trying all possible
mutation probabilities with all possible genome sizes, result-
ing in 64 potential configurations for each of the algorithm
combinations. Finally note that as single does not use a muta-
tion probability, only the eight configurations with different
genome sizes were used when single was employed.

To choose which parameter configuration to use with each
algorithm combination for each problem, we used an itera-
tive process of performing runs, comparing medians, removing
configurations, and repeating. For each algorithm combination
and problem, we first ran all potential parameter configura-
tions five times (320 runs if not using single, 40 otherwise).
The parameter configurations are then sorted based on their
median. The best half are then each run four more times, with
the best half of that group chosen. In this way, 32 config-
urations are run five times, 16 are run nine times, 8 are run
13 times, 4 are run 17 times, 2 are run 21 times, and 2 are run
25 times. For algorithm combinations using single, all eight
parameter configurations were run 17 times before any were

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

GOLDMAN AND PUNCH: ANALYSIS OF CARTESIAN GENETIC PROGRAMMING’S EVOLUTIONARY MECHANISMS 365

removed. This iterative reduction allows us to focus tuning
on those parameter configurations most likely to be effective,
with more information gathered before choosing between high
quality configurations. We chose to run each initially five times
to reduce the chance of eliminating a configuration due to
outliers. We incrementally added four to provide enough infor-
mation to significantly update estimates, while keeping the
number of runs odd, allowing the median to be a represen-
tative run and not an interpolation. As a final consideration
the number of experiments were set to make the total number
of runs feasible. In total this means 15 696 complete runs are
required to set the parameter configuration for all algorithm
configurations for all problems.

To ensure termination, all runs were limited to 10 000 000
evaluations, well beyond the expected time to completion.
As the median was used to compare configurations, selection
should be insensitive to this limit unless a large portion of
runs failed to optimize.

To prevent undue biasing in the final results, these tuning
runs were not used in the subsequent data analysis. Effectively,
the runs used to set the parameter configuration were consid-
ered the training runs for that configuration. As a result, our
final results were gathered from a completely independent set
of runs to test the configuration’s general characteristics. Each
configuration was run 50 times to ensure statistical power. All
told over 11.5 billion evaluations were performed to gather
our results. The source code used to produce our results is
available from our website.2

C. Results

The results from running each tuned parameter config-
uration for each algorithm combination on each problem
are summarized by Table II. Rows for each problem are
ordered by that algorithm combination’s median evaluations to
success (MES), with the best algorithm combination appear-
ing at the top of each section. The highlighted rows mark
skip-normal, the control algorithm combination representing
traditional CGP performance. All configurations for each prob-
lem were then tested using Kruskal–Wallis3 to determine if
any configuration was statistically different from any other.
All problems were determined to be highly significant. As
such, each algorithm combination was then compared with
the control to determine statistical significance using pairwise
Mann–Whitney U4 tests. The resulting p-value for each test is
reported in the table.

As discussed in Section V-B, the genome size and mutation
probability for each algorithm combination was extensively
optimized. In line with previous research [13], this led to mas-
sive genome sizes for almost all algorithm combinations on all
problems. With the exception of some combinations using sin-
gle, all algorithm combinations used over 1000 nodes. Half of

2https://github.com/brianwgoldman/Analysis-of-CGPs-Mechanisms
3Kruskal-Wallis, a nonparametric equivalent of ANOVA, determines if sam-

ples were drawn from the same distribution. If this test is significant, at least
one of the samples differs from the others.

4Mann–Whitney U, a nonparametric equivalent of student’s t-test, deter-
mines if two populations were drawn from the same distribution. If this test
is significant, the populations are not equal.

all combinations without single used 10 000 nodes. As this
was the maximum allowed by our tuning, these combinations
may work better with even larger genomes.

Of the 12 configurations including single, 11 used a genome
size smaller than all configurations not using single. The
exception was single-normal on multiply. No other algorithm
had as much impact on genome size tuning as the inclusion
or exclusion of single. In our previous work [14] it appeared
that reorder and DAG allowed CGP to use smaller genomes. In
light of our current results, this conclusion should be amended.
It appears that single is most effective when the genome size
is small and that reorder and DAG are best able to cope with
smaller genome sizes. Independent of duplication method, the
ordering methods do not seem to create any pressure on which
genome size is chosen.

Unlike genome size, all configurations choose approxi-
mately the same mutation probability for each problem. With
the exception of parity, there appears to be a general consen-
sus that each gene should be mutated with probability 0.002,
independent of genome size. Parity used a higher mutation
probability, but this is likely because 3-bit Parity is by far
the easiest problem tested and therefore likely benefits from
higher exploration.

On many of the problems, many of the configurations have
little to no statistical difference from the control in their eval-
uations required to reach the global optimum. On parity and
encode it is probably safe to conclude that single is worse
than the control. As these are the easiest problems tested, that
difference may have little real world meaning. DAG is almost
certainly worse than the control on decode. Its results are so
much worse that we can also likely conclude that DAG is
worse than all non DAG configuration on that problem, even
though no statistical tests are presented here. The control on
multiply did by far the worst of all configurations, with only
accumulate normal likely failing statistical significance.

By ordering the algorithm combinations by MES and exam-
ining that ordering across each problem, we can look for
general trends. From the table, it appears that on easier prob-
lems the method of duplication used is the strongest predictor
of rank, while the ordering methods are more predictive on
harder problems. This comes from the observation that in par-
ity and encode (upper half of Table II) the first column is
effectively sorted, while for decode and multiply (lower half
of Table II) the second column is sorted. Each table includes
coincidentally one exception to these rules. On parity and
encode, pairings with DAG are ranked lower than other order-
ing methods, so much so as to break the ordering once on
both problems. On decode accumulate-reorder ranks worse
than expected. Finally on multiply single-DAG does far better
than expected.

On almost every problem, DAG required more evaluations
to success than reorder, and it only outperformed normal on
multiply. Combined with its’s algorithmic overhead described
in Section IV-B, DAG is therefore not likely to be useful for
anything but comparison purposes.

On all four problems, reorder finds the solution in either
comparable or significantly less evaluations than normal order-
ing, independent of the duplicate method in use. Combined

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

366 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

TABLE II
RESULTS FOR ALGORITHM CONFIGURATION ON EACH PROBLEM. HIGHLIGHTED ROW IS THE CONTROL CONFIGURATION SKIP-NORMAL. MES =

MEDIAN EVALUATIONS TO SUCCESS; CONFIDENCE INTERVAL = 95% BOOTSTRAPPED CONFIDENCE INTERVAL; ACTIVE = MEDIAN

NUMBER OF ACTIVE NODES IN EVOLVED SOLUTION; USED = MEDIAN NUMBER OF NODES ACTIVE IN EVOLVED SOLUTION

AFTER APPLYING SIMPLIFY (SEE SECTION VI-B); p-VALUE = RESULT FROM MANN–WHITNEY U
COMPARISON WITH CONTROL

with the complexity analysis in Section IV-A which shows it
is no more asymptotically complex, we would suggest reorder
as an alternative to normal on hard problems.

The difference between using skip and accumulate remains
negligible [17], even in combination with different ordering
methods. This supports the idea that the two are actually
achieving synonymous behavior through different means. As
accumulate is far more complex in terms of algorithm function
than skip, we would suggest skip be used over accumulate for
any future applications.

As a final check that our results do not somehow unfairly
handicap traditional CGP, we compared our MES with pre-
vious publications. The results reported for traditional CGP
in [8] for 3-bit parity required six times as many evalua-
tions as skip-normal. On the 3-bit multiplier problem using a

slightly different operator set, the same source had traditional
CGP requiring 4 million evaluations to success, as opposed to
our skip-normal requiring 600 thousand, also a factor of six
improvement. To determine the effect the difference in func-
tion set had on results, we ran skip-normal and skip-reorder
using their functions but our parameters. The former improved
to 453 684 while the latter increased to 303 657, maintaining
a statistically significant difference. These results make sense
as the operator set in [8] is able to more compactly represent
the solution than our set. This puts less strain on normal to
deal with complex solutions, while reorder’s extremely large
genome size is likely made unnecessary. Note that as we did
not tune using their operator set, our results should be con-
sidered a lower bound on quality for using skip-normal and
skip-reorder to solve 3-bit multiplier with their operators.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

GOLDMAN AND PUNCH: ANALYSIS OF CARTESIAN GENETIC PROGRAMMING’S EVOLUTIONARY MECHANISMS 367

Our parameter tuning focused on minimizing the number
of evaluations each algorithm combination required to solve
problems, as that is the primary measure of runtime for CGP
and GP in general. As such, comparing the true runtime of
the tuned parameters is likely to give potentially misleading
results. In using profilers and examining general trends, one
of the largest indicators of runtime per evaluation was genome
size. This makes sense as each time an offspring is generated
all of the parent’s genes must first be copied. Furthermore,
all genetic operations in CGP scale with genome size. Also,
larger genome sizes correlate with more active nodes, each of
which must be executed on each input tested during individual
evaluation.

With these caveats, the observed runtime for each algo-
rithm combination follows what we would expect given the
number of evaluations performed and the genome size. When
reorder and normal use the same genome sizes, they require
nearly the same amount of time per evaluation, with reorder’s
added steps and increased number of active nodes constituting
a relatively small increase. In general this difference in time
per evaluation is trumped by differences in actual number of
evaluations, which remains the primary cause of differential
total runtime. As predicted, DAG does take longer than the
other algorithms to perform each evaluation, reinforcing the
conclusion that DAG should not be used for applications.

As our implementation of skip and accumulate required
each gene to generate a random number to determine if it
should mutate, these methods took significantly longer per
evaluation than single. Utilizing a binomial distribution, iden-
tical behavior could have been achieved in effectively constant
instead of linear time. Further skewing the comparison is
that single’s tuning resulted in far smaller genomes, giving
it a significant edge over the other techniques in runtime per
evaluation.

If we had tuned using runtime instead of evaluations, we
would expect whichever technique is most effective at small
genome sizes to obtain the best results. From theoretical work
in [14], we would expect reorder to work better with this limi-
tation than normal. Assuming the tuned values we obtained are
any gauge, single-reorder will likely require the least amount
of runtime when tuned to reduce runtime.

VI. ANALYSIS OF EVOLUTIONARY MECHANISMS

Comparing how many evaluations each algorithm requires
to solve benchmark problems provides very little understand-
ing of why one is more efficient than another. Thus we must
turn to a more detailed view to support theorized capabilities
of each variant and to discover hidden aspects of CGP. To
accomplish this task we have devised novel metrics to expose
what makes a CGP run successful.

A. Never Active Nodes

In line with the suggestions made in [13], the evolved
number of active nodes across all problems and all algo-
rithm configurations in Table II was significantly lower than
the genome size. With the exception of a few combinations
with DAG and single, the evolved genomes were over 50%

inactive. Skip-normal, our control representing normal CGP,
had only 1%, 3%, 20%, and 9% of nodes in the genome active
in the median runs of parity, encode, decode, and multiply,
respectively. These final results fall in line with the predic-
tions made in [14], in that if the problems are ordered based
on their number of output locations, their evolved percentage
of active nodes is also ordered. Furthermore, if (1) is used
to calculate the expected number of active nodes for config-
urations using normal ordering, we find that in all cases the
evolved number is only marginally higher than the expectation.

With such a small percentage of the final genome active,
what is the rest of the genome for? Just because a node is
not active in the final solution does not mean it was never
useful. For a node to be truly of no use to search, we must
consider nodes that were never active. Never active nodes are
nodes such that for all ancestors of the final solution (the
line of descent), no parent had that node active. Note that
for reorder this demarcation of node activity follows the node
through each shuffle, such that if a node was marked as never
active before the genome was shuffled it is marked as never
active after the shuffle, and vice versa. This is in contrast to
marking locations as never active, which was not done in this
paper.

Table III provides information about never active nodes for
each algorithm combination on the 3-bit multiply problem.
The horizontal axis in each of the nine plots shows different
genome locations, while the vertical axis denotes the level
of fitness the recorded individual obtained. The shading of
each coordinate gives the percentage of 50 runs in which the
first individual of the given fitness level had no ancestor in
which the node at a given location was active. While only
multiply is shown here, all of the other problems tested had
similar behavior, with allowances for differences in number of
evaluations performed.

Examining the columns of Table III makes it clear that each
of the ordering methods had significantly different never active
behavior. Looking at normal we see that only at very high
fitness levels does evolution begin to activate nodes in the
latter half of the genome. Even by the final solution large
percentages of the genome were never activated, with skip,
accumulate, and single having median percentages of never
active nodes of 43.35%, 42.05%, and 56.17%, respectively.
This is in stark contrast to reorder and DAG, which never had
a median higher than 0.05%.

Compared to the difference in columns, the difference in
the rows of Table III caused by the different duplication meth-
ods were almost nonexistent. Only single has a distinguishable
behavior, but this is almost certainly the result of the genome
size and not the duplication method. Single-normal used a
genome size 2.5 times larger than normal did with the other
techniques, so the resulting increase in never active nodes
makes sense. When single was paired with reorder and DAG
the genome sizes were far smaller, resulting in noisier graphs
with less never active nodes.

In Section IV we used (1) to suggest normal has a strong
bias on the location of active nodes regardless of fitness land-
scape, and that reorder and DAG would likely have less or no
bias. The example inputs used in that section match those of

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

368 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

TABLE III
LOCATION OF NEVER ACTIVE NODES ACROSS ALL 50 RUNS FOR ALL NINE ALGORITHM COMBINATIONS ON THE MULTIPLY PROBLEM

normal’s tuned configuration on 3-bit multiply. The predicted
number of active nodes and their location in the genome match
almost exactly the behavior displayed in all three normal plots
in Table III.

Examining the progression in fitness across the different
ordering methods shows the effect of initialization on each.
All three order methods share the same initialization method,
and as such all have very similar never active node behavior
early in evolution. This initialization similarity explains why
DAG has any positional bias at all, even though its evolution-
ary mechanisms have none. Similarly reorder diverges from
normal given sufficient time, eventually losing its positional
bias.

This early similarity may be part of the reason normal and
reorder have such similar behavior on relatively easy problems.
After relatively few evaluations both have explored similar
sections of their genome. Yet on hard problems that require

further exploration, reorder is able to do so, while normal
remains positionally limited.

B. Node Behaviors

In order to understand how each node is being used by
CGP, we first determine the semantics of each node [21]. By
semantics we mean that for each input to an individual, each
node will produce a single output. These output values can
be recorded and ordered. As the domain in use is binary,
the outputs can be viewed as a bit string, where each bit
indicates the value a node outputs when an individual is pre-
sented with a specific input. Similar recording can be done
for other domains, but binary allows for by far the simplest
encoding.

This semantics representation of a node is a complete
description of its functionality. Any two nodes with an iden-
tical semantic representation have identical behavior, even if

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

GOLDMAN AND PUNCH: ANALYSIS OF CARTESIAN GENETIC PROGRAMMING’S EVOLUTIONARY MECHANISMS 369

Fig. 3. Algorithm to ensure each active node calculates a unique semantic.

their method for encoding that behavior is drastically different.
From this perspective, we can view CGP evolution as attempt-
ing to evolve a node who’s semantics match the desired output
semantics. Doing so allows us to examine how the evolution-
ary operators change the behavior of nodes, not just their gene
values.

Utilizing semantic analysis, we can extract the useful por-
tions of an individual, a subset of the active nodes. Consider
two active nodes X and Y with the same semantics such that
X proceeds Y in the genome. As CGP is a graph representa-
tion, only one of these nodes is actually necessary. Any node
that reads the output of Y can instead read the output of X,
removing the need to include Y in the solution.

The SIMPLIFY algorithm given in Fig. 3 is designed to
efficiently remove redundancy encoded in a genome. This
algorithm moves all connections to the first node that produces
the desired semantic. After application, and recalculation of
which nodes are still active, each active node produces a
unique semantic string. Any node that is transitively dependent
on its own semantic will always be removed from the active
set. In general, if a set of nodes all produce the same semantic,
whichever is predicted to have the least transitive dependencies
will be kept. Note that this does not guarantee the minimum
possible genome, as that would require exponential runtime.
The SIMPLIFY algorithm requires O(AN) time, since the final
for all loop is the most expensive step. As before, this means
SIMPLIFY is no more complex than copying a genome.

In CGP it is common to report what fraction of the genome
is active, as this represents the easiest estimate of solution size.
By utilizing semantic comparison and the SIMPLIFY algo-
rithm, we can get a much better estimate of what purpose each
node in the genome serves. Table II provides two columns rel-
evant to node behavior: active and used. The former gives the
traditional measure of the median amount of active nodes in
the solution found. The latter is the median number of nodes
still active after applying the SIMPLIFY algorithm.

On all problems and for all algorithm combinations, the
number of active nodes is far smaller than the genome size,
and the number of used nodes is far smaller than the number

of active nodes. In some extreme cases less than 1% of active
nodes in the evolved solution are actually necessary. Only the
most extreme configurations have even 50% of active nodes
in use by the simplified solution.

Tables IV and V help illustrate the behavioral breakdown
of nodes for each algorithm combination on the encode and
multiply problems, respectively. These two problems were
chosen as they represent different ends of the quality spec-
trum for skip-normal and because together they are sufficiently
representative of behaviors seen on the other problems.

Each diagram describes node behavior as falling into eight
distinct categories split between active and inactive nodes.
Nodes are put into the first category they satisfy.

1) Constant: Independent of problem input, constant nodes
produce a fixed output.

2) Used: Nodes still active after applying SIMPLIFY.
3) Useful: Nodes with identical semantics to a “used”

node.
4) Intron: Any node with semantics identical to a node that

was active before applying SIMPLIFY, but was inactive
afterward.

5) Explore: All remaining nodes.
Used nodes are by definition only in the active portion of

the genome. Similarly Explore nodes can only be in the inac-
tive portion of the genome. Note that all never active nodes
are ignored by these plots, as their behavior is meaningless.

The first striking feature of these tables is how many nodes
produce constant outputs. As the instruction set used in our
genomes never require constant values to produce any non
constant behavior (TRUE NAND X ⇔ X NAND X) and
most operations with constants result in pass through nodes
(FALSE OR X ⇔ X), we would not expect evolution to pro-
liferate these constant nodes. If these constants are in fact of no
use, future work could likely improve CGPs performance by
reducing their prevalence. Yet it is possible they serve an evo-
lutionary function by allowing mutation more flexibility. For
instance, pass through nodes may be allowing mutation to cre-
ate adjustments not easily done if this behavior was forbidden.

As with previous analysis, skip and accumulate have nearly
identical plots, regardless of ordering method and problem.
Single again has a significantly different plot when paired
with reorder or DAG, with some hits of a change on Encode
with normal. These combinations were also the most likely to
have significantly smaller genome sizes. From Table II we see
that the number of used nodes on each problem is relatively
constant across the combinations even though the number of
active nodes and the genome sizes changed significantly. As
such, the proportion of nodes in the used category will vary
as these other features change.

From Tables IV and V, having the plurality of active nodes
in the “used” category appears to correlate with increase eval-
uations to success in Table II. Notice that in all single plots
the tallest bar for active nodes is “used,” and the only non
single plots where this is true are normal on multiply. On
encode, single runs had the highest MES, with normal runs
doing similarly on multiply. This appears to imply that having
duplication of node behavior in the active nodes, and not just
inactive nodes, is beneficial to search. If this is true, it may

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

370 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

TABLE IV
AVERAGE NODE BEHAVIOR FOR ALL NINE ALGORITHM COMBINATIONS ON THE ENCODE PROBLEM. EXCLUDES NEVER ACTIVE NODES

help explain why CGP uses such large genomes, as normal is
only able to achieve enough active nodes to allow duplication
when the genome size significantly exceeds the actual solution
size. Also the success of reorder and DAG on multiply may
also be partially be attributable to this ability to increase the
number of active nodes.

One significant difference in behavior between the two prob-
lems is proportion of explore nodes. A potential explanation
is that on 16-4-bit encode there are only 216 = 65 536 unique
semantics while on 3-bit multiply there are 264 = 1.845 · 1019

unique semantics. Combined with the fact that not all seman-
tics are equally likely to be produced, the difference may just
be that on Encode nodes are that much more likely to recreate
existing behavior. Another possibility is that CGP increases the
semantic diversity of inactive nodes over evolutionary time. As
such, the fact that multiply required approximately an order
of magnitude more evaluations to solve would lead to the
discrepancy.

C. Parent Replacement
An important aspect of CGP is its replacement strategy

that allows for neutral drift. In each generation the best
offspring replaces its parent if it is no less fit. Previous
research has shown the negative impact removing this fea-
ture can have on performance [19]. However, how it interacts
with the different variants of CGP has not been investigated
previously.

Table VI provides a novel look at CGPs replacement behav-
ior. Each time an offspring replaced a parent in 50 runs, we
recorded how the behavior of each node differed between the
parent and the offspring.

The active unchanged column reports how often all active
nodes in the offspring have identical semantics to the corre-
sponding nodes in the offspring’s parent. This goes beyond the
concept of actively identical offspring and checks if the behav-
ior of any active node was modified by the mutation. The rows
in each of the four tables are sorted using this column. Smaller

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

GOLDMAN AND PUNCH: ANALYSIS OF CARTESIAN GENETIC PROGRAMMING’S EVOLUTIONARY MECHANISMS 371

TABLE V
AVERAGE NODE BEHAVIOR FOR ALL NINE ALGORITHM COMBINATIONS ON THE MULTIPLY PROBLEM. EXCLUDES NEVER ACTIVE NODES

values indicate an algorithm combination that produced more
changes in active node behavior.

The no reactivation column uses the word reactivation to
refer to nodes that were active in some ancestor of the off-
spring, were inactive in the offspring’s parent, but are now
again active in the offspring. Reactivation is a measure of how
often CGP reuses previously useful active nodes. Reported in
the table is how frequently an offspring replaces its parent
such that is has no reactivated nodes. Smaller values indi-
cate an algorithm combination that frequently reuses nodes, as
opposed to including randomly generated nodes (never active
nodes) or ignoring inactive nodes entirely.

The reactivated changed column shows the percentage of
reactivated nodes that have a different semantic from the last
time they were active. Conversely, reactivated nodes without
a change mean that CGP has taken a previously active behav-
ior, stored it in the inactive space, and reactivated it in later

mutations. Smaller values indicate an algorithm combination
that more often preserve node behaviors while inactive.

Combined these three measures provide some surprising
insights. Most notably is that single, a technique designed
to force offspring to be actively different from their par-
ents, produces offspring with no changes in active node
behavior 20%–40% of the time. This further exposes CGPs
ability to have genetically different yet phenotypically iden-
tical individuals. Even more surprising is that single appears
to increase the chance of producing offspring without chang-
ing active behavior. Somewhat unexpectedly normal appears
to also reduce changes to active node behavior, causing the
largest effect after single.

The likely cause of both is the number of active nodes
receiving mutations each generation. Even though single
forces a gene in an active node to be mutated, it limits
mutation to only one change. If this one change does not

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

372 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

TABLE VI
BEHAVIOR OF OFFSPRING REPLACEMENT FOR EACH ALGORITHM

COMBINATION ON EACH PROBLEM. ACT-UN = ACTIVE

UNCHANGED; NO REACT = NO REACTIVATION; REACT

CHANGED = REACTIVATION CHANGED

change that node’s behavior, the offspring will be marked as
active unchanged. Conversely, skip and accumulate can mutate
any number of active genes each generation, improving their
chance of a change in behavior. Similarly, even though normal
makes no explicit change in mutation, it is characterized by a
significantly smaller number of active nodes than reorder or
DAG. More active nodes means more chances for mutation to
change the behavior of at least one.

Somewhat unintuitively, node reactivation and active node
semantic changes appear to be highly correlated. This is appar-
ent in the fact that the no reactivation column in each table is
almost perfectly sorted, even though rows were sorted by the
active unchanged column. Again the number of active nodes is
the likely cause. Having fewer active nodes reduces the num-
ber of introns, making it more difficult for inactive nodes to
become active. Fewer active nodes also decreases how many
inactive nodes could have ever been active.

Potentially the most interesting results come from the
control combination of skip-normal. As problem difficulty
increases, skip-normal produces an increasingly large number
of offspring with no change in active node behavior, with little
node reactivation, and a high chance of changing nodes before
they are reactivated. This suggests two important features: skip
is likely saving a significant number of evaluations, and normal
CGP is likely using inactive nodes primarily to inject random
behavior. The former comes from the argument that most of
the active unchanged individuals are also likely actively iden-
tical to their parents. The latter is supported by the fact that
skip-normal infrequently reactivates a node with tested behav-
ior with offspring frequently connecting in untested inactive
nodes.

VII. CONCLUSION

Generally, CGP appears to require the least number of eval-
uations when the genome size far exceeds what is necessary
for the problem at hand. When properly tuned, almost all vari-
ants had only a tiny fraction of the genome active in their
final solution. Furthermore, a significant portion of these active
nodes were found to be redundant; removable using a very
simple reduction algorithm. The only algorithm combinations
that preferred more reasonable genome sizes were those using
single, especially when paired with reorder or DAG. Yet we
theorize this may have more to do with single scaling poorly
with the number of active nodes than with it overcoming
whatever causes traditional CGP to prefer enormous genomes.

Compared on MES, normal and reorder are likely to be
equally good for simple problems, with some suggestion that
reorder performs better as problems become more difficult. In
general DAG was found to be unnecessarily time consuming,
as it required higher algorithmic complexity without any per-
formance gain. As such we would suggest reorder for general
future CGP use.

In line with the results from [17], skip and accumulate con-
tinued to show no significant difference in effectiveness or
behavior. As skip is simpler to understand and implement, we
suggest accumulate be ignored in all future CGP applications.
Single’s behavior continues to be enough different from skip
to warrant further study, especially with problems requiring
higher numbers of active genes. In general though, if evalu-
ation time is significantly impacted by the number of active
nodes or the total size of the genome, we suggest single. While
mutation probability appears relatively independent of problem
and algorithm combination (all of our tuning resulted in 0.002
being optimal or close to it), single still has the advantage of
not requiring this parameter at all.

As to actual behavior, CGP genomes include a surprising
amount of redundant and unused nodes. As theoretically pre-
dicted in [14], normal ordering leaves large sections of the
genome completely unused while reorder and DAG are more
likely to utilize the whole genome. Further analysis showed
that CGP, at least with our function set, produced a large num-
ber of constant nodes, such that their output is independent of
problem inputs. As the binary domain only has two constants
(always true and always false), each genome at most should

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

GOLDMAN AND PUNCH: ANALYSIS OF CARTESIAN GENETIC PROGRAMMING’S EVOLUTIONARY MECHANISMS 373

require two constant nodes. Even so these behaviors were
found duplicated in both the active and inactive portions of
final solutions for all algorithm variants. Also common was
duplication of node behavior, even though CGPs encoding
does not require any duplication to produce any value. Yet
attempting to prevent or remove this behavioral duplication
may hinder CGPs evolutionary success, as it will limit neutral
drift.

CGPs use of neutrality has become one of its cornerstone
arguments for its success. Yet the reason for neutrality’s impor-
tance appears to be different from previous arguments. In our
testing of traditional CGP we found large sections of the
genome were never used by any ancestor of the final solu-
tion. Furthermore, offspring almost never include active nodes
that were inactive in their direct parent, but active in a previ-
ous ancestor. Even when reactivation does happen, the node
has almost always changed behavior significantly from when
it was active. As such we suggest the advantages of neutrality
in regards to inactive nodes is not that it allows the storage of
previously useful structures, but that it allows inactive nodes
to be constantly changed facilitating mutational inclusion of
what are effectively random nodes. Under this theory, CGP
would likely benefit from periodically resetting all inactive
nodes. Note that with reorder and DAG these conclusions do
not hold as a reasonable amount of node reactivation occurs.

While this analysis was limited to boolean problems by
necessity of some of the analysis methods, most of the con-
clusions have no obvious reason to be limited to the boolean
domain. Still, applying semantic analysis to detect changes in
behavior and behavior duplication, along with looking at never
active nodes and tuned parameter settings, on other domains
will help solidify our conclusions.

REFERENCES

[1] J. M. Daida, H. Li, R. Tang, and A. M. Hilss, “What makes a problem
GP-hard? Validating a hypothesis of structural causes,” in Genetic and
Evolutionary Computation—GECCO-2003 (Lecture Notes in Computer
Science), vol. 2724. Chicago, IL, USA: Springer-Verlag, pp. 1665–1677.

[2] N. X. Hoai, R. I. B. McKay, and D. Essam, “Representation and struc-
tural difficulty in genetic programming,” IEEE Trans. Evol. Comput.,
vol. 10, no. 2, pp. 157–166, Apr. 2006.

[3] S. Luke and L. Panait, “A comparison of bloat control methods for
genetic programming,” Evol. Comput., vol. 14, no. 3, pp. 309–344, 2006.

[4] J. Miller, “What bloat? Cartesian genetic programming on Boolean
problems,” in Proc. 2001 Genet. Evol. Comput. Conf. Late Breaking
Papers, San Francisco, CA, USA, pp. 295–302.

[5] V. K. Vassilev and J. F. Miller, “The advantages of landscape neutral-
ity in digital circuit evolution,” in Proc. 3rd Int. Conf. Evolvable Syst.,
Edinburgh, U.K., 2000, pp. 252–263.

[6] A. J. Payne and S. Stepney, “Representation and structural biases in
CGP,” in Proc. 2009 IEEE Congr. Evol. Comput., Trondheim, Norway,
pp. 1064–1071.

[7] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.
Genet. Program. (EuroGP), vol. 1802. Edinburgh, U.K., Apr. 2000,
pp. 121–132.

[8] J. A. Walker and J. F. Miller, “The automatic acquisition, evolution and
reuse of modules in Cartesian genetic programming,” IEEE Trans. Evol.
Comput., vol. 12, no. 4, pp. 397–417, Aug. 2008.

[9] S. Harding and J. F. Miller, “Evolution of robot controller using
Cartesian genetic programming,” in Proc. 8th Eur. Conf. Genet.
Program., vol. 3447. Lausanne, Switzerland, Mar./Apr. 2005, pp. 62–73.

[10] M. M. Khan and G. M. Khan, “A novel neuroevolutionary algorithm:
Cartesian genetic programming evolved artificial neural network
(CGPANN),” in Proc. 8th Int. Conf. Frontiers Inf. Technol., Islamabad,
Pakistan, 2010, pp. 48.1–48.4.

[11] S. Harding, V. Graziano, J. Leitner, and J. Schmidhuber, “MT-CGP:
Mixed type Cartesian genetic programming,” in Proc. 14th Int.
Conf. Genet. Evol. Comput. Conf. (GECCO), Philadelphia, PA, USA,
Jul. 2012, pp. 751–758.

[12] S. Harding, J. Miller, and W. Banzhaf, “Self modifying Cartesian genetic
programming: Fibonacci, squares, regression and summing,” in Proc.
12th Eur. Conf. Genet. Program. (EuroGP), vol. 5481. Tuebingen,
Germany, Apr. 2009, pp. 133–144.

[13] J. F. Miller and S. L. Smith, “Redundancy and computational efficiency
in Cartesian genetic programming,” IEEE Trans. Evol. Comput., vol. 10,
no. 2, pp. 167–174, Apr. 2006.

[14] B. W. Goldman and W. F. Punch, “Length bias and search limitations
in Cartesian genetic programming,” in Proc. 15th Int. Conf. Genet.
Evol. Comput. Conf. (GECCO), Amsterdam, The Netherlands, Jul. 2013,
pp. 933–940.

[15] J. F. Miller, “Cartesian genetic programming,” in Cartesian Genetic
Programming (Natural Computing Series). Berlin, Germany: Springer,
2011, ch. 2, pp. 17–34.

[16] Z. Vasicek and K. Slany, “Efficient phenotype evaluation in Cartesian
genetic programming,” in Proc. 15th Eur. Conf. Genet. Program.
(EuroGP), vol. 7244. Malaga, Spain, Apr. 2012, pp. 266–278.

[17] B. W. Goldman and W. F. Punch, “Reducing wasted evaluations
in Cartesian genetic programming,” in Proc. 16th Eur. Conf. Genet.
Program. (EuroGP), vol. 7831. Vienna, Austria, Apr. 2013, pp. 61–72.

[18] X. Cai, S. L. Smith, and A. M. Tyrrell, “Benefits of employing an
implicit context representation on hardware geometry of CGP,” in
Proc. 6th Int. Conf. Evolvable Syst. (ICES), vol. 3637. Sitges, Spain,
Sep. 2005, pp. 143–154.

[19] T. Yu and J. Miller, “Neutrality and the evolvability of Boolean function
landscape,” in Proc. Genet. Program. (EuroGP), vol. 2038. Lake Como,
Italy, Apr. 2001, pp. 204–217.

[20] D. R. White et al., “Better GP benchmarks: Community survey results
and proposals,” Genet. Program. Evolvable Mach., vol. 14, no. 1,
pp. 3–29, Mar. 2013.

[21] N. F. McPhee, B. Ohs, and T. Hutchison, “Semantic building blocks
in genetic programming,” in Proc. 11th Eur. Conf. Genet. Program.
(EuroGP), Naples, Italy, Mar. 2008, pp. 134–145.

Brian W. Goldman received the B.S. and
M.S. degrees in computer science from Missouri
University of Science and Technology, Rolla, MO,
USA, in 2010 and 2012, respectively. He is cur-
rently working toward the Ph.D. degree from the
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, USA.

His research interests include evolutionary com-
putation and genetic programming.

William F. Punch received the Ph.D. degree from
The Ohio State University, Columbus, OH, USA.

He is an Associate Professor with the Computer
Science and Engineering Department, Michigan
State University (MSU), East Lansing, MI, USA. He
is also the Director of the MSU High Performance
Computing Center. His research interests include
evolutionary computation, high performance com-
puting, and computing pedagogy. He co-directs
the Genetic Algorithms Research and Application
Group and is on the Executive Committee of the

NSF Science and Technology Center, BEACON, Center for the Study of
Evolution in Action, MSU. His book with Rich Enbody entitled The Practice
of Computing Using Python (Addison-Wesley, Boston, MA, USA) is now in
its second edition.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

