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Abstract—Experimental results show that parallel programs can
be evolved more easily than sequential programs in genetic parallel
programming (GPP). GPP is a novel genetic programming para-
digm which evolves parallel program solutions. With the rapid de-
velopment of lookup-table-based (LUT-based) field programmable
gate arrays (FPGAs), traditional circuit design and optimization
techniques cannot fully exploit the LUTs in LUT-based FPGAs.
Based on the GPP paradigm, we have developed a combinational
logic circuit learning system, called GPP logic circuit synthesizer
(GPPLCS), in which a multilogic-unit processor is used to evaluate
LUT circuits. To show the effectiveness of the GPPLCS, we have
performed a series of experiments to evolve combinational logic
circuits with two- and four-input LUTs. In this paper, we present
eleven multi-output Boolean problems and their evolved circuits.
The results show that the GPPLCS can evolve more compact four-
input LUT circuits than the well-known LUT-based FPGA syn-
thesis algorithms.

Index Terms—Circuit design, digital circuits, evolvable hard-
ware, genetic programming (GP), parallel programming.

I. INTRODUCTION

GENETIC programming (GP) [4], [5], [52], [53] is a
branch of evolutionary computation that evolves so-

lutions in computer-program form. GP uses a many-to-one
genotype-phenotype mapping [83] that increases evolvability
[85]. There are two major streams in GP, tree structured GP
(tree-based GP) [52] and linear structured GP (linear GP) [6],
[35], [69]. In tree-based GP, a genetic program is represented in
a tree structure. Genetic operators (e.g., crossover and mutation)
are used to manipulate branches and leaf nodes of program
trees. In linear GP, a genetic program is represented in a linear
list of program instructions. Genetic operators manipulate
instructions, opcodes, and operands directly. Based on linear
GP, we have developed a genetic parallel programming (GPP)
paradigm [14] in which multiple instructions perform multiple
operations in parallel.

To design a modern computer with millions of logic gates, we
need efficient CAD tools. We have well-developed optimization
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techniques based on Boolean algebra to optimize combinational
logic circuits. However, these techniques are restricted by as-
sumptions such as gate types and circuit structures. In recent
years, a new type of reprogrammable very large scale integra-
tion (VLSI) device, known as lookup-table (LUT)-based field
programmable gate arrays (FPGAs) [81], has been developed
rapidly and is used widely in prototyping and medium-volume
products. LUT-based FPGAs use LUTs to implement Boolean
functions. Since the conventional sum-of-products (SOPs) and
product-of-sums (POSs) representations of Boolean functions
usually cannot make full use of the advantages of LUTs, we
propose a GPP system that is able to evolve compact LUT cir-
cuits from a truth table.

In the last decade, evolvable hardware (EHW) [36], [37], [39],
[74], [84] has become an important topic in automatic circuit
design. EHW refers to a piece of hardware that can change
its architecture to adapt to its environment. EHW uses bio-in-
spired methods, e.g., genetic algorithms (GAs) [32], [40], GP,
etc., to design hardware [10], [27], [34], [45], [46], [54], [63],
[67]. There are two categories of EHW: 1) extrinsic EHW [48]
simulates evolution by software, i.e., chromosomes are evalu-
ated on a software simulator of its hardware, and only the best
chromosome is downloaded to the hardware and 2) intrinsic
EHW [75] performs evolution directly in its hardware and every
chromosome is downloaded to the hardware. EHW can also be
subdivided into gate-level [16], [36], [62] and function-level
[38], [66] representations. Gate-level EHW evolves solutions
for simple problems with low-level logic gates, whereas func-
tion-level EHW evolves solutions for more complicated prob-
lems with high-level functional units. One of the usages of EHW
is to learn combinational circuits directly from truth tables [19],
[20], [43], [64], [76], [78]. Most EHW researches adopt two-di-
mensional (2-D), fixed geometric phenotypes to represent com-
binational circuits. The main disadvantage of using a fixed geo-
metric phenotype is that it needs to determine the geometry be-
fore starting the evolution. Determining a suitable geometry for
a Boolean problem is not a trivial task because the complexity of
the problem is usually unknown. Using too large a geometry in-
creases the search space unnecessarily, whereas using too small
a geometry is inadequate to solve the problem.

In this paper, we propose a combinational circuit learning
system—the GPP logic circuit synthesizer (GPPLCS). We use
a variable-length parallel program structure to represent combi-
national circuits in order to preserve introns (instructions which
do not contribute to the final output of a genetic program) in the
early stages. Although introns do not affect the function of the
final solution program, research results show that the existence
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of introns in genetic programs in the early and middle stages of a
run can benefit evolution [3]. Nevertheless, programs bloat con-
tinuously in the final stage. We tackle the bloating problem with
a two-stage approach [2], [17], [47]. In the first stage, the GP-
PLCS aims at finding a 100% functional program (correct pro-
gram) using a fitness function which is concerned only with the
functional correctness of genetic programs. The first stage ter-
minates as soon as the first correct genetic program is evolved.
In the second stage, the GPPLCS uses another set of genetic op-
erators together with an optimization-oriented fitness function
to improve the qualities of correct programs.

The main purpose of this paper is to show the effectiveness
and applicability of the GPPLCS. We have performed experi-
ments on 11 benchmark Boolean problems. Experimental re-
sults show that the GPPLCS can synthesize and optimize multi-
output LUT circuits automatically. The qualities of the evolved
LUT circuits are comparable to those using conventional design
methods.

The rest of this paper is organized as follows: Section II states
the problem; Section III gives a brief overview of the GPP and
its MAP; Section IV describes the GPPLCS; Section V gives
details of the experiments and their settings; Section VI presents
the results; and finally, Section VII presents our conclusions.

II. BACKGROUND OF PROBLEM

This paper investigates the problem of designing a compact
combinational circuit by using two- and four-input LUTs
(2-LUTs and 4-LUTs). Although a Boolean function can be
represented in many different forms, the most popular one is
the SOP form. Frequently, the goal of logic synthesis is to
find a SOP form in the simplest way by reducing the numbers
of product terms and literals. Boolean algebra can be used to
simplify Boolean expressions; however, the algebraic simplifi-
cation process depends entirely on a designer’s intuition, and
the final solutions are seldom unique.

A combinational circuit is a feed-forward hardware gate net-
work which implements a Boolean function. In order to improve
the performance and/or reduce the production and running costs,
additional optimization criteria (e.g., power consumption, prop-
agation gate delay, etc.) are usually taken into account. Unfor-
tunately, it is very difficult to find such minimal expressions/cir-
cuits or to prove that a given expression/circuit is minimal [9]. In
spite of this, many systematic techniques for combinational cir-
cuit optimization have been developed. The two most famous
Boolean function simplification techniques are the Karnaugh
Map [49] and the Quine–McCluskey Algorithm [65], [71].

A Karnaugh Map represents a Boolean function in a 2-D
array of cells. It can be used to minimize a Boolean function in
SOP form. The Karnaugh Map has two disadvantages: 1) there
are too many different methods of groupings 1s on a Karnaugh
map which generate different Boolean expressions and 2) the
size of a map grows exponentially to the number of input
variables. The Quine–McCluskey Algorithm is an exhaustive
search method which systematizes the procedures used to
simplify a Boolean function. It can be programmed easily.
Theoretically speaking, the Quine–McCluskey Algorithm is
useful for Boolean functions with any number of input vari-
ables. Practically, it is only useful for Boolean functions with

a small number of input variables. Besides the Karnaugh Map
and the Quine–McCluskey Algorithm, there are other heuristic
methods (e.g., ESPRESSO [7]) that can be used to produce
minimal (or near-minimal) SOP expressions. Although the
SOP form is a widely accepted form for most of the Boolean
functions, it is not an effective representation form for some
Boolean functions such as -parity functions. There are some
other algorithms (e.g., Reed–Muller canonical form [33]) that
can handle XOR operators. However, a disadvantage of these
approaches is their exponential complexity.

The optimization algorithms mentioned above can produce
combinational circuits in a two-level minimal SOP form. How-
ever, in some cases, the main design concern is to minimize
the gate count rather than the propagation gate delay. For ex-
ample, the propagation gate delay of a BCD-to-seven-segment
LED-display decoder is not the main concern because the out-
puts of the circuit are used to drive LED-display for human vi-
sion. If the main objective is to minimize the gate count, it is
often better to design a multilevel combinational circuit. To de-
sign a compact multilevel combinational circuit, we need to fac-
torize and decompose a Boolean function into multiple levels of
subfunctions. A sophisticated heuristic minimization algorithm
for multilevel logic synthesis has been proposed in [8]. This al-
gorithm aims to reduce the number of literals in a multilevel
Boolean expression.

A. Multilevel LUT Circuit

Conventional combinational circuit design techniques are
based on some assumptions of restrictions (e.g., gate types
and the circuit structure). The invention of LUT-based FPGA
redefines the rules. LUT-based FPGA is a novel type of re-
programmable VLSI. It has been developed rapidly and used
widely in prototyping circuits or products with higher-cost but
lower-volume productions. One of the major differences be-
tween LUT-based FPGAs and the conventional programmable
logic devices is that the former use -input lookup-tables
( -LUTs), whereas the latter is based on a fixed AND–OR
(or OR–AND) matrix that implements Boolean functions. A

-LUT is a -bit memory module, which uses the address
lines as its inputs and returns the contents of the addressed
location as the output of a Boolean function. The Boolean
function is implemented by loading different bit patterns into
the -LUT. In other words, a -LUT can implement any

-input-1-output Boolean function with a fixed hardware cost
and gate delay. Unfortunately, conventional representation
forms of Boolean functions (e.g., SOP form) usually cannot
maximize the advantages of -LUTs. It was shown that for

, the problem of area-optimal -LUT mapping is NP-hard
[28].

The simplest way to accomplish the task is to divide a large
truth table into a number of smaller truth tables so that they can
be stored in -LUTs individually. Then, the outputs of these

-LUTs are merged by multiplexers [78] (see Fig. 1).
As shown in Fig. 1, the four low-order inputs – are

used as the four address lines of all 4-LUTs. The outputs of the
4-LUTs are selected by 2-to-1 multiplexers which are config-
ured as a binary tree. The remaining inputs – are con-
nected to the multiplexer network to select outputs from the
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Fig. 1. Implementation of an n-input Boolean function with only 4-LUTs and
2-to-1 multiplexers.

4-LUTs. Since a 2-to-1 multiplexer has three inputs and one
output, it can also be implemented by a 4-LUT. Therefore, the
total number of 4-LUTs needed to implement an -input-
-output truth table is given by

(1)

and the number of LUT delay levels is given by

(2)

As shown in (1), the LUT count is to the number of
inputs .

Many LUT logic synthesis techniques have been proposed to
generate LUT circuits for LUT-based FPGAs [24]. Most tech-
niques include two steps, Logic Optimization and Technology
Mapping. The Logic Optimization aims to produce an equiva-
lent gate-level circuit that will possess a good mapping solution
according to one or several mapping objectives, such as smaller
numbers of LUTs (area minimization) or LUT-levels (delay
minimization). ESPRESSO and DOGMA [26] are commonly
used minimization algorithms for Logic Optimization. The
Technology Mapping aims to cover the optimized gate-level
circuit with -LUTs based on the structural representation
of the circuit. Existing LUT-based mapping algorithms can
be roughly divided into three major categories, according to
their optimization objectives: 1) area minimization algorithms
include Chortle [29], Chortle-crf [30], MIS-pga [68], Xmap
[50], Vismap [82], and TechMap [73]; 2) delay minimiza-
tion algorithms include Chortle-d [31], TechMap-L [73], and
FlowMap [22]; and 3) delay and area minimization algorithms
include FlowMap-r [23] and CutMap [25], FlowSYN [21], and
DAOMap [15]. Amongst these algorithms, the FlowMap family
algorithms, i.e., FlowMap-r, FlowSYN, etc., were shown to be
superior to the others in terms of both execution performance
and resulting LUT circuits [21], [22].

In this paper, we propose a GPP system that is able to evolve
more compact LUT circuits from truth tables. Comparisons of
the results of our GPP system and the FlowMap family algo-
rithms are given in Section VI.

B. Evolving Combinational Circuits

Different research groups have proposed various bio-inspired
methods for multilevel combinational circuit design. Simple ge-
netic algorithms (SGAs) [16], [41], [67], [77] encode a com-
binational circuit by using a fixed-length chromosome. Vari-
able-length genetic algorithms (VGA) [43], [44] are extension
of SGAs. A chromosome encodes only the effective part of
the architecture bits of a combinational circuit. Compared with
SGAs, VGA chromosomes are smaller. Thus, it is possible for
VGAs to evolve larger circuits in a shorter evolutionary time.
Tree-based GP [2], [52] uses a tree structure to represent an in-
dividual combinational circuit. Aside from these, evolutionary
strategy [64], ant colony algorithms [1], [18], particle swarm
optimization [19], genetic algorithms with simulated annealing
[51], and case injected genetic algorithms [60] have also been
used to design combinational circuits.

Most of the existing representations for combinational cir-
cuits adopt 2-D geometric structures. Higuchi et al. [37] adopted
the structure of a programmable logic device (PLD) to evolve
combinational circuits. A PLD consists of a fused array and an
OR logic cell. The fused array can be programmed to represent
product terms of a Boolean function. Multiple product terms are
connected to the OR logic cell. In Cartesian GP [63], a combina-
tional circuit is represented by a 2-D array of logic gates. Each
gate has some inputs and one output. All inputs to the circuit
and outputs of the gates can be connected to their higher level
gates. The final outputs can be extracted from any initial inputs
of the circuit and/or outputs of gates at any levels. Louis [60]
and Coello et al. [16] have adopted a 2-D array of two-input
logic gates. Except for the first level gates, a gate (the
th gate in the th level) gets its first input from

and second input from either or .
The outputs of the circuit are always connected to the outputs of
the highest-level gates. This representation reduces the genotype
length by restricting the connectivity of a circuit. Torresen [77]
has used a different gate array which relaxes the restrictions im-
posed in Louis’s array. A gate input can be connected to any one
gate output at its previous level. Murakawa et al. have proposed
a function-based FPGA [66] to evolve hardware solu-
tions for calculation-intensive applications such as digital signal
processing [38]. In a , there are multiple layers of pro-
grammable floating processing units that can perform different
high-level mathematical functions.

III. GENETIC PARALLEL PROGRAMMING (GPP)

Until now, only a few GP researchers have investigated
parallel program representations. One example is the Paragen
system [72] that uses tree-based GP to parallelize a sequential
program to a parallel program. Based on linear GP, we have
developed a GPP paradigm [14] that evolves parallel programs
directly. There are some similarities between GPP and parallel
distributed genetic programming (PDGP) [70]. Both GPP and
PDGP are suitable for a high degree of parallelism. They can
efficiently and effectively reuse partial results. PDGP represents
programs in direct graphs without using genotype-phenotype
mapping. It uses sophisticated crossover and mutation to ma-
nipulate subgraphs. GPP represents programs in a linear list
of parallel instructions with a specific genotype-phenotype
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Fig. 2. The block diagram of GPP.

mapping. It uses simple and efficient genetic operators (e.g., bit
mutation) to manipulate genotypes directly.

We have used GPP to evolve compact parallel programs to
solve different types of problems. Some results have been pub-
lished in a number of papers. In [57] and [58], we have pre-
sented the details of the GPP paradigm together with a number
of benchmark problems which include numeric function regres-
sion, artificial ant, and recursive definition functions. In [12], we
have presented an application of GPP to learn parallel programs
to classify medical data. In [11] and [59], we have reported on
preliminary studies on the GPP accelerating phenomenon. It re-
veals that parallel programs can be evolved with less compu-
tational effort relative to their sequential counterparts. In the
summary paper [14], we have presented the details of the GPP
paradigm and a sophisticated investigation on the GPP accel-
erating phenomenon by using 14 benchmark problems. A GPP
system consists of an evolution engine (EE) and a multi-arith-
metic-logic-unit (multi-ALU) processor (MAP), as shown in
Fig. 2.

A. Evolution Engine (EE)

The EE performs all genetic operations, manipulates genetic
programs in the population, and loads genetic programs to the
MAP for fitness evaluation. The EE produces solutions in a
parallel assembly program form (MAP program). An example
of a MAP program, which calculates the Fibonacci sequence
[57], is shown in Fig. 29. The program was evolved on a
4-ALU MAP. The input and output are stored in
and , respectively. The parallel instruction “0:” performs
decement-by-1 (dec), increment-by-1 (inc), and addition (add)
in parallel in different ALUs. The branch subinstruction “jgt
alu0 0” performs a conditional branch.

B. Multi-Arithmetic-Logic-Unit (multi-ALU) Processor (MAP)

The MAP is a general-purpose, tightly coupled, multiple in-
struction-streams multiple data-streams (MIMD) architecture
(see Fig. 3). It is designed to allow execution of multiple op-
erations in parallel in each clock cycle. Since MAP is designed

Fig. 3. The block diagram of the MAP.

for genetic program evaluation, it is able to interpret an arbitrary
bit pattern as a valid instruction without causing processor fatal
errors. This closure property is especially important for GPP be-
cause of its random nature, based on GP. In other words, genetic
programs generated from the EE can be executed without pree-
valuation error correction. It speeds up the evolutionary process
significantly.

The MAP consists of four core components: ALUs, regis-
ters, ports, and a crossbar switching-network. The ALUs per-
form arithmetic or logic operations specified in their function
sets. Each ALU receives register values through the crossbar
switching-network and ports and writes back a result to a vari-
able register. The output register sets of ALUs are mutually ex-
clusive. This prevents multiple ALUs from writing to a single
register simultaneously. Each ALU also maintains status flags
which are used to determine program flows. The registers are
further subdivided into variable and read-only registers. Vari-
able registers store working variables that can be written by
ALUs. Read-only registers store program constants and inputs
which are preloaded by the EE. The ports transfer values from
registers to the inputs of ALUs through a crossbar switching-
network. In each clock cycle, each port selects and transfers the
value of a register. The crossbar switching-network distributes
port values to ALUs. All switches in the crossbar switching-net-
work are programmable (either closed or opened) so that it can
provide enough flexibility to share port values.
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Fig. 4. Flattening of the probability distribution of different problems. p is the
probability of a given problem which can be solved by a randomly generated
MAP program.

Fig. 5. Two-stage evolution with GPP.

C. GPP Accelerating Phenomenon

For a given problem, writing a fully optimal parallel program
that can make use of the parallelism of the MAP is a difficult
task. It involves four complicated tasks: 1) write a sequential al-
gorithm for the problem; 2) map out the dependences of sequen-
tial instructions of the sequential algorithm; 3) resolve processor
resources constraints (e.g., the numbers of ports and ALUs);
and 4) assign multiple subinstructions to parallel instructions.
This gives us an initial impression that evolving a parallel pro-
gram is more difficult than evolving a sequential program. To
our surprise, experimental results contradict our intuition. After
performing a series of preliminary experiments on some bench-
mark problems with different numbers of ALUs, we observed
that the evolutionary efficiency (in terms of both Koza’s compu-
tational effort [52] and wall-clock evolutionary time) increases
when the number of ALUs increases [14]. We call this GPP ac-
celerating phenomenon. For further investigation into the phe-
nomenon, a random search experiment was performed. The ex-
perimental results revealed that the parallel program representa-
tion based on the MAP could flatten the probability distribution
of Boolean problems [11] (see Fig. 4).

In other words, using more ALUs in a MAP can increase
the probabilities of finding solutions to hard problems. The par-
allel program representation slightly redistributes the probabil-
ities from easy problems to hard problems. This phenomenon
creates a novel approach to evolving a sequential (1-ALU) pro-
gram in two stages: 1) a learning stage to evolve a highly par-
allel ( -ALU) program with the GPP in less evolution time

- - and 2) a serialization stage to se-
rialize the evolved parallel program into a sequential program
(see Fig. 5).

The architecture of a 1-ALU MAP is equivalent to the ar-
chitecture of a single-ALU register machine commonly used
in machine-code linear GP. Thus, evolving programs in 1-ALU
GPP is the same as evolving programs in machine-code linear

Fig. 6. A 4-MLP used to perform all 4-LUT experiments in this paper.

TABLE I
THE 16 BOOLEAN FUNCTIONS THAT CAN BE REPRESENTED BY A 2-LUT.

EACH FUNCTION IS DENOTED BY “bX ,” WHERE X IS THE

HEXADECIMAL VALUE OF ITS CONTENTS

GP, i.e., - . The serializa-
tion stage is straightforward and spends linear processing time

with respect to the size of the parallel program.
Relative to the evolution time - spent in the learning
stage, is insignificant. Thus, the whole evolutionary
process can be sped up greatly [see (3)]

- - (3)

IV. GPP WITH A MULTILOGIC-UNIT PROCESSOR (MLP)

Based on the architecture of the MAP, we developed a new
Boolean function processor, known as a MLP [13].

A. Multilogic-Unit Processor (MLP)

By eliminating the crossbar switching-network and replacing
all ALUs by -LUTs in the MAP, we obtain a -LUT MLP
( -MLP). For example, a 4-MLP is shown in Fig. 6. It consists
of 16 4-LUTs, 16 variable registers – , and 16 read-only
registers – .

In a MLP, each variable register can only be modified by a
dedicated LUT (e.g., as shown in Fig. 6, writes to
only). In each processor clock cycle, multiple LUTs take input
values from registers and then perform Boolean operations si-
multaneously. Finally, LUTs write single-bit results to their cor-
responding output variable registers. For example, the 4-MLP
shown in Fig. 6 can perform up to 16 operations in each clock
cycle, and 16 intermediate results can be carried forward to
subsequent parallel instructions through variable registers. The
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Fig. 7. The genotype of a maxL-parallel-instruction (PI -PI )
16-subinstruction (SI -SI ) MLP program. SI denotes the subinstruc-
tion for LUT in the ith parallel-instruction (PI ).

function of a -LUT can be changed by modifying its con-
tents. For a 2-LUT, different Boolean functions can be imple-
mented (see Table I). For a 4-LUT, different Boolean func-
tions can be implemented.

Since MLP is designed to manipulate single-bit logic values,
the width of data buses and registers are small (relative to
MAP). For example, the 4-MLP shown in Fig. 6 occupies
32 single-bit registers, 16 4-LUTs, 64 32-to-1 multiplexers,
and 64 single-bit data paths. We have implemented a 4-MLP
on a Xilinx XCV1000E FPGA. The FPGA-based 4-MLP runs
at 100 MHz. Experimental results shown that the FPGA-based
4-MLP can speed up the pure software GPPLCS by over 20
times [55]. Since the FPGA-based 4-MLP utilizes only 20%
of the hardware resources available in an XCV1000E, four
4-MLPs can be placed on a single XCV1000E. All the four
4-MLPs can be driven by a single MLP program to evaluate
multiple training cases in parallel. With the rapid development
of FPGAs, more MLPs can be implemented on new FPGA de-
vices. The actual wall-clock evaluation time of a MLP program
(P) can be estimated by

(4)

where

program length (in parallel instructions) of P;

processor clock speed (in Hz);

number of rows in the truth table;

is the number of MLPs.

In (4), the ratio calculates the number of itera-
tions needed to evaluate a MLP program for all rows in a truth
table. The maximum speedup will be achieved when

.

B. Genotype-Phenotype Mapping

A MLP is a generic evaluation engine for LUT circuit de-
sign. Theoretically speaking, any -LUT circuit can be repre-
sented by a -MLP program. Like a MAP, a MLP can accept an
arbitrary bit pattern (genotype) as a valid program (phenotype)
without causing processor fatal errors. The genotype of a ge-
netic parallel program can be loaded and executed in the MLP
directly without preevaluation correction. This saves unneces-
sary processing time. Fig. 7 shows the genotype of a MLP pro-
gram for a MLP with 16 LUTs. It is represented by a sequence
of parallel instructions.

TABLE II
CONTROL CODES IN 2- AND 4-MLP SUBINSTRUCTIONS

Fig. 8. The 1-bit binary full-adder (ADD1) shown in Fig. 30.

For a 2-MLP, each subinstruction consists of a 5-bit opcode
and two 5-bit operands (see Table II). Since the 2-MLP consists
of 16 2-LUTs, a total of 240 bits are used
to encode a parallel instruction. If we allow at most 25 parallel
instructions in a MLP program, the genotype
may contain up to 6000 (240 25) bits. For a 4-MLP, there are

different Boolean functions for a 4-LUT. Each subinstruc-
tion consists of a 17-bit opcode and four 5-bit operands (see
Table II). Similar to the 2-MLP case, if the maximum program
length is 25 parallel instructions, the genotype may contain up
to 14 800 bits.

In this paper, we represent phenotypes of MLP programs in
parallel assembly form. A 2-MLP program example of a 1-bit
binary full-adder is shown in Fig. 30. It consists of two sections,
a #data section and a #program section. The #data section de-
fines constant, input, and output variables. Before starting an
execution, a MLP always initializes all variable registers (i.e.,

– ) to logic “0.” The CONSTANTS line in the #data sec-
tion initializes read-only registers – to logic “0” and

– to logic “1.” The INPUTS line defines input variables
(i.e., Cin, , and ) and assigns them to read-only registers
(i.e., , , and ). The OUTPUTS line defines output
variables (i.e., Cout and ) and assigns them to variable regis-
ters (i.e., and ). The #program section contains parallel
instructions that perform Boolean operations. For example, the
numbered lines in the #program section in Fig. 30 list out three
parallel instructions. For easy interpretation, all nop (no-op-
eration) subinstructions are hidden from the original 2-MLP
program. In each parallel instruction, subinstructions are sep-
arated by commas. Each subinstruction consists of three parts:
1) a function name (i.e., - and nop); 2) input registers; and
3) an output register. For example, the “b6 r14 r00 r00” subin-
struction in parallel instruction “2:” performs (XOR) on
and , and then stores the result back to . Fig. 8 shows the
corresponding 2-LUT circuit of the 2-MLP program. Obviously,
each 2-LUT matches to a 2-LUT subinstruction in the 2-MLP
program.

Fig. 31 shows a 2-bit binary full-adder evolved by the GP-
PLCS with a 4-MLP. The Boolean function of each 4-LUT
subinstruction is denoted by a four-digit hexadecimal number
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Fig. 9. The 2-bit full-adder (ADD2) shown in Fig. 31.

TABLE III
11 BENCHMARK BOOLEAN PROBLEMS. N , N , N , AND N DENOTE THE

NUMBERS OF INPUTS, OUTPUTS, ROWS, AND TRAINING CASES, RESPECTIVELY,
IN INDIVIDUAL TRUTH TABLES

which represents the 16-bit memory contents of the 4-LUT. For
example, as shown in Fig. 31, the “ ” subinstruction in
parallel instruction “0:” is implemented by loading “1111 0110
1110 0000” to the 16 memory-bits of the 4-LUT. The corre-
sponding 4-LUT circuit is shown in Fig. 9.

V. EXPERIMENTS AND SETTINGS

In order to investigate the effectiveness of the GPPLCS, we
have used the system to evolve LUT circuits for different bench-
mark Boolean problems. In this section, we describe these ex-
periments and their settings. Table III lists eleven benchmark
Boolean problems presented in this paper.

The ADD1 and ADD2 are 1- and 2-bit binary full-adders, re-
spectively. The CEX1, CEX2, and CEX3 are Boolean problems
adopted from [20]. Their truth tables are shown in Table IV. The
MUX6 is a single-bit 4-to-1 multiplexer that consists of six input
bits (i.e., a 4-bit data and a 2-bit selection). The CMP3 has two
3-bit binary inputs (i.e., and ). It compares the two 3-bit bi-
nary values and gives three output bits (i.e., “ ”, “ ”
and “ ”). The OCN6 counts the total number of 1’s in its
six inputs and represents the count in a 3-bit binary output. The
PSL6 is a priority-selector which encodes six prioritized inputs
to a 3-bit binary output (see Table V). The MUL2 and MUL3
are 2- and 3-bit binary multipliers, respectively.

A. The Two-Stage Approach

The main objective of this research is to evolve compact mul-
tilevel LUT circuits. As we mentioned in Section I, the exis-

TABLE IV
THE TRUTH TABLES OF CEX1, CEX2, AND CEX3

TABLE V
TRUTH TABLE OF PSL6 (� = DON’T CARE)

tence of introns in the early and middle stages of a GP evolu-
tion is helpful. In order to evolve the correct programs with GP-
PLCS, we retain introns in the genetic programs until we find
the first correct program. However, the first correct program is
usually not a compact solution in terms of quality measurements
(e.g., the LUT count and the propagation LUT delay). To tackle
this problem, we adopt a two-stage (i.e., design and optimiza-
tion stages) approach with a multiobjective fitness function sim-
ilar to that proposed in [17] and [47]. The GPPLCS is meant
to improve the functionality of the genetic programs before the
first correct genetic program is found. Whenever a correct ge-
netic program is found, it changes its fitness calculation criteria
to incorporate optimization-oriented measurements. Besides the
multiobjective fitness function, the GPPLCS uses a different set
of genetic operators in the two stages. In the design stage, the
GPPLCS aims at finding a 100% functional program (correct
program). Its raw fitness is given by

(5)

The design stage raw fitness is used to evaluate the func-
tional fitness of a genetic program. As shown in (5), a partially
correct genetic program has a value of greater than zero (i.e.,
some unmatched training cases exist), whereas a correct pro-
gram has a value of equal to zero (i.e., all training cases
are matched). Having found the first correct genetic program,
the evolution proceeds to the optimization stage to optimize the
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correct genetic program based on some optimization-oriented
criteria. In the optimization stage, the raw fitness is given by

(6)

As shown in (6), the optimization stage raw fitness of
a correct genetic program is calculated from three qualitative
indices: 1) the LUT count (i.e., the total number of non-
nop subinstructions); 2) the propagation LUT delay ; and
3) the program length in terms of the number of parallel
instructions. Since a genetic program consists of nop and in-
trons, the represents the number of LUT levels in the logical
circuit diagram but not the actual LUT delay in hardware. This
is because the nop and introns will not be placed in real hard-
ware and their LUT delays will not be counted. Thus, we have

. The , , and are the maximum al-
lowed values for the LUT count, the propagation LUT delay and
the program length, respectively. For example, in a tournament
of two genetic parallel programs, the one with a smaller will
win. If the two genetic parallel programs have the same value,
the one with a smaller will win. If the two genetic parallel pro-
grams have the same and values, the one with a smaller
will win. In other words, the main objective of the optimization
stage is to reduce the LUT count, and then the propagation LUT
delay. The last multiplication term in (6) guides the evolution to
shorten the lengths of the correct genetic programs. Normally,
a shorter program has smaller and values.

By combining the two-stage raw-fitness functions ( and
), a multiobjective fitness function of the whole evolutionary

process is given by

if
if

(7)

In (7), the constant 1.0 is used to distinguish the two stages.
With this combined fitness function, a partially correct genetic
program has an greater than 1.0, whereas a correct genetic
program has an less than 1.0. In the design stage, whenever
the EE finds the first genetic program with an equal to 1.0, it
proceeds to the optimization stage.

B. Genetic Operators

The GPPLCS inherits most genetic operators (e.g., subin-
struction swapping) from GPP. Some of these operators will
only be used in either the design or the optimization stage. A
brief description of these operators is given as follows.

Parallel-Instruction Level Crossover—This is a two-point
crossover to exchange two segments of parallel instructions
from two parent MLP programs. All subinstructions in a par-
allel instruction will always be kept as a whole, as shown in
Fig. 10. The probability to take this operator is .

Bit Mutation—It mutates individual bits in the genotype of a
MLP program based on a probability .

Subinstruction Swapping—It swaps two subinstructions
inside a MLP program based on a probability (see

Fig. 10. Two-point parallel-instruction level crossover.

Fig. 11. Subinstruction swapping.

Fig. 12. LUT rewiring.

Fig. 11). It can pack more non-nop subinstructions into fewer
parallel instructions so as to increase the parallelism of a MLP
program. This operator will only be used in the optimization
stage since its goal is to improve the performance of a correct
genetic program.

Subinstruction Deletion—This simply replaces a non-nop
subinstruction with a nop subinstruction based on a probability

. This operator can delete inactive subinstructions (in-
trons) from a correct genetic program, and therefore it is used
only in the optimization stage.

Dynamic Sample Weighting (DSW) [56]—Training cases
(samples) in a truth table are usually biased. For example, let
us consider an -input-1-output Boolean function with
exactly one minterm equal to “1,” whereas all other
minterms are equal to “0.” If we use the ratio of unmatched
training cases as a fitness function for a genetic program

[see (5)], a correct genetic program will have a
fitness value equal to zero . For a genetic program

that represents a zero constant function , this has
an extremely good fitness . Obviously, it is a
local optima on the fitness landscape. Although the difference
of fitness between and is only ,
it is very difficult for the GPPLCS to evolve from .
This is because and have a great genotype difference.
DSW adjusts the weights of training cases dynamically
based on their past frequency of hits . At the beginning
of every tournament, all are recalculated (i.e.,

), and then all are reset to zero. In other words,
DSW balances the contributions of training cases to speed up
the evolution. This operator is only used in the design stage.
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Fig. 13. The 3-bit binary comparator (CMP3) shown in Fig. 32.

Preselection [61]—In each tournament, two new genetic pro-
grams (children) will be born. The GPPLCS will test the simi-
larity of each child to its parents. If a child is functionally equiv-
alent to either one of its parents (i.e., it matches the same set of
the training cases), it will be discarded. This operator maintains
a reasonable diversity of search and is used only in the design
stage.

LUT Rewiring—This is a heuristic LUT-elimination operator
that intends to remove a redundant LUT in a correct circuit by
rewiring an input of a LUT to one of its predecessor inputs. As
shown in Fig. 12, the function of a LUT is mutated from to

and one of its inputs is rewired to one of its predecessor inputs.
The example in Fig. 12 shows how a redundant NOT gate can
be eliminated. The probability to take this operator is . It
is used only in the optimization stage.

C. Experiment Settings

As mentioned before, a FPGA-based MLP can significantly
speed up the evolution by parallelizing fitness evaluations of
multiple training cases. Since the speedup is caused purely by
hardware parallelization, it does not change the fundamental
functionality of the GPPLCS. Since the main purpose of this
paper is to demonstrate that the GPPLCS can evolve compact
LUT circuits directly from their truth tables, we ran all experi-
ments on software emulators of MLPs, which are written in C
programming language.

Table VI shows the GP parameters and the settings of all ex-
periments presented in this paper. Having investigated the diffi-
culties of the 11 Boolean problems shown in Table III, we set the
maximum program length to 25 parallel instructions

. This provides enough subinstructions (for both effective
operations and introns) to evolve correct programs. Hence, at
most, 400 (25 16) operations can be used to build a solution
MLP program.

In general, we do not know the truly optimal solution circuits
for individual benchmark problems. Thus, we set an unachiev-
able success predicate in the optimization stage (see
the last row in Table VI). It forces the system to optimize correct
genetic programs to the greatest extent possible. Thus, a run is
set to terminate after 20 000 000 tournaments.

VI. RESULTS AND EVALUATIONS

In this section, we detail the experimental results. From 50
runs of the GPPLCS on each of the 11 benchmark Boolean

TABLE VI
GP PARAMETERS AND EXPERIMENTAL SETTINGS. “�” DENOTES THAT THOSE

OPERATIONS ARE NOT USED IN THE SPECIFIC STAGE

Fig. 14. The 3-bit binary comparator (CMP3) shown in Fig. 33.

problems listed in Table III, we obtained many high-quality
solutions. We have already shown two simple examples of the
evolved MLP programs, i.e., the best 2-MLP program for 1-bit
full-adder (ADD1) and 4-MLP program for 2-bit full-adder
(ADD2) in Section IV.
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Fig. 15. The 3-bit binary multiplier (MUL3) shown in Fig. 34.

Fig. 16. The 3-bit binary multiplier (MUL3) shown in Fig. 35.

A. Evolved Solutions

This section presents the evolved MLP programs of two se-
lected problems, the 3-bit binary comparator (CMP3) and the
3-bit multiplier (MUL3). The MLP programs of the remaining
nine problems are shown in Figs. 17–28 and Figs. 36–47.

Fig. 32 shows the best 2-MLP program evolved by the
GPPLCS for 3-bit comparator (CMP3). The program consists
of six inputs (i.e., A0–A2, B0–B2), three outputs (“ ,”
“ ,” and “ ”) and five parallel instructions (“0:”

to “4:”). For easy interpretation, all nop subinstructions are
hidden. The corresponding multilevel 2-LUT circuit is shown in
Fig. 13. As we can see, both “ ” and “ ” share two
common subfunctions (marked by X and Y in the figure). This
circuit demonstrates that the GPPLCS can factorize and extract
common factors of multiple Boolean functions. The circuit is
a smart and complicated design. It is unlikely that a human
designer would be able to work out such a design for CMP3.
Having presented a multilevel 2-LUT circuit evolved with a
2-MLP, we shall further investigate a result with a 4-MLP. The
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Fig. 17. The 2-bit full-adder (ADD2) shown in Fig. 36.

Fig. 18. Coello’s example 1 (CEX1) shown in Fig. 37.

Fig. 19. Coello’s example 2 (CEX2) shown in Fig. 38.

best 4-MLP program for CMP3 evolved by the GPPLCS is
shown in Fig. 33. The program consists of six 4-LUT subin-
structions in three parallel instructions. The corresponding
4-LUT circuit is shown in Fig. 14.

Similar to the 2-MLP case, this is a multilevel combinational
circuit in which the “ ” output reuses the other outputs
(i.e., “ ” and “ ”) produced in the lower levels. By
investigating the circuit shown in Fig. 14, we can find that some
4-LUTs have constant inputs (e.g., the one labeled by “7314”).
These 4-LUTs can be replaced by LUTs with a smaller number
of inputs. Thus, the LUT circuit can be further simplified with
fewer-input LUTs.

Having presented the solutions for CMP3, we are going to de-
scribe the solutions to a more complex problem, that of the 3-bit
binary multiplier (MUL3). It is generally acknowledged that bi-
nary multipliers are hard problems in evolutionary computation
and are widely used to benchmark problems in the automatic
circuit design and evolutionary computation communities [16],
[42], [62]. A compact 2-MLP program for MUL3 is shown in
Fig. 34. The program consists of 26 non-nop subinstructions in
six parallel instructions. The program has two 3-bit binary in-
puts (i.e., A0–A2, B0–B2) and a 6-bit binary output (P0–P5).
The corresponding 2-LUT circuit is shown in Fig. 15.

A compact 4-MLP program and the corresponding 4-LUT
circuit for MUL3 are shown in Figs. 16 and 35, respectively. The

Fig. 20. Coello’s example 3 (CEX3) shown in Fig. 39.

Fig. 21. The 4-to-1 multiplexer (MUX6) shown in Fig. 40.

program consists of 15 non-nop subinstructions in four parallel
instructions.

B. Evaluations and Comparisons

In order to show the effectiveness of the GPPLCS, we adopt
Koza’s minimum computational effort measurement ( -mea-
sure) method [52]. It estimates the minimum number of genetic
programs which would have to be bred and evaluated to give
a certain probability of success. Since the computational effort
for the initial population evaluation is small relative to the whole
evolution process, we ignore this portion of the effort.

Let be the expected probability of success, and be the
experimental cumulative probability of success for a run to yield
satisfactory solutions at or before the tournament . The number
of independent runs required to satisfy the success predicate by
tournament with the probability of is given by

if

otherwise (8)

The total number of tournaments that need to be processed in
order to yield a satisfactory solution with a specific value of
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Fig. 22. The 1s counter (OCN6) shown in Fig. 41.

Fig. 23. The 6-bit priority-selector (PSL6) shown in Fig. 42.

Fig. 24. The 2-bit multiplier (MUL2) shown in Fig. 43.

Fig. 25. Coello’s example 2 (CEX2) shown in Fig. 44.

Fig. 26. The 4-to-1 multiplexer (MUX6) shown in Fig. 45.

is given by

(9)

Fig. 27. The 1s counter (OCN6) shown in Fig. 46.

Fig. 28. The 6-bit priority-selector (PSL6) shown in Fig. 47.

The minimum number of tournaments (computational effort
) required to yield a satisfactory solution for the problem is

given by

(10)
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Fig. 29. A MAP program for calculating the Fibonacci sequence. nop is no-op-
eration.

Fig. 30. The best 2-MLP program for 1-bit binary full-adder (ADD1).

Fig. 31. The best 4-MLP program for 2-bit binary full-adder (ADD2).

Fig. 32. The best 2-MLP program for 3-bit binary comparator (CMP3).

Fig. 33. The best 4-MLP program for 3-bit binary comparator (CMP3).

In (10), is equal to the minimal value of over all the
tournament between 0 and the maximum allowed tournament

.
Based on the results of 50 runs, three performance indices

are calculated: 1) Koza’s minimum computational effort

Fig. 34. The best 2-MLP program for 3-bit binary multiplier (MUL3).

Fig. 35. The best 4-MLP program for 3-bit multiplier (MUL3).

Fig. 36. The best 2-MLP program for the 2-bit full-adder (ADD2).

Fig. 37. The best 2-MLP program for Coello’s example 1 (CEX1).

(with ); 2) the LUT count ; and 3) the propa-
gation LUT delay . The experimental results for 2-MLP
are shown in Table VII. For comparison, published results of
Cartesian GP (CGP), conventional design (CON), and GA with

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:14 UTC from IEEE Xplore.  Restrictions apply. 



516 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 4, AUGUST 2007

Fig. 38. The best 2-MLP program for Coello’s example 2 (CEX2).

Fig. 39. The best 2-MLP program for Coello’s example 3 (CEX3).

Fig. 40. The best 2-MLP program for 4-to-1 multiplexer (MUX6).

Fig. 41. The best 2-MLP program for 1s counter (OCN6).

Fig. 42. The best 2-MLP program for 6-bit priority-selector (PSL6).

simulated annealing (GASA) are also included. All these pub-
lished results used for comparison are produced with their re-
spective optimized system parameters. In all the cases, the fig-
ures shown in the “ avg ” column are very

Fig. 43. The best 2-MLP program for 2-bit multiplier (MUL2).

Fig. 44. The best 2-MLP program for Coello’s example 2 (CEX2).

Fig. 45. The best 4-MLP program for 4-to-1 multiplexer (MUX6).

Fig. 46. The best 4-MLP program for 1s counter (OCN6).

Fig. 47. The best 4-MLP program for 6-bit priority-selector (PSL6).

large. It is clear that the correct genetic programs evolved in
the design stage contain numerous introns. By comparing the
figures in the “ avg ” and “ avg

” columns, we notice that both the “avg ” and “avg ”
decrease significantly in the optimization stage. For example, in
the “Total” row of Table VII, the total “avg ” decreases from
2172 to 152 2-LUTs and the total “avg ” decreases from 189 to
56 levels. This demonstrates the effectiveness of the optimiza-
tion stage. For ADD1, ADD2, and MUL2, the circuits evolved
by the GPPLCS have the smallest and . For MUL3, al-
though GPPLCS utilizes three more 2-LUTs than CGP, its delay
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TABLE VII
SUMMARY OF 2-MLP EXPERIMENTAL RESULTS. THE GPPLCS AND GPPLCS COLUMNS LIST THE RESULTS OF THE DESIGN AND OPTIMIZATION STAGES,
RESPECTIVELY. THE “GPPLCS E” COLUMN LISTS THE MINIMUM NUMBERS OF TOURNAMENTS REQUIRED TO YIELD THE CORRECT GENETIC PROGRAMS OF

THE INDIVIDUAL PROBLEMS IN THE DESIGN STAGE. THE “AVG G(D)” COLUMNS SHOW THE AVERAGE VALUES OF G AND D OF ALL EVOLVED CIRCUITS. THE

“BEST G(D)” COLUMNS SHOW THE G AND D VALUES OF THE BEST-EVOLVED2-LUT CIRCUITS. THE CGP AND CON COLUMNS LIST THE PUBLISHED RESULTS

OF CARTESIAN GP [64] AND CONVENTIONAL DESIGN [80], RESPECTIVELY. THE GASA COLUMN LISTS THE RESULTS OF GA WITH SIMULATED ANNEALING

PUBLISHED IN [20]. THE UNDERLINED VALUES ARE THE SMALLEST IN INDIVIDUAL ROWS

TABLE VIII
SUMMARY OF FOUR-MLP EXPERIMENTAL RESULTS. THE PART COLUMN LISTS THE G AND D VALUES [CALCULATED BY (1) AND (2)] FOR DIRECTLY

PARTITIONING INDIVIDUAL TRUTH TABLES IN 4-LUTS AND MERGING OUTPUTS OF 4-LUTS USING 2-TO-1 MULTIPLEXERS. THE FLOWMAP,
FLOWMAP-r (WITH r = 1), FLOWSYN, CUTMAP, AND DAOMAP COLUMNS LIST RESULTS OF THE CORRESPONDING

LUT MAPPING ALGORITHMS. THE UNDERLINED VALUES ARE THE SMALLEST IN INDIVIDUAL ROWS

is better by two—it is 6, compared with 8 in CGP. The un-
derlined figures listed in the “ best ” column
show that the GPPLCS can design compact combinational cir-
cuits for these problems both in terms of LUT count and prop-
agation LUT delay.

Having presented the evolved 2-LUT circuits with 2-MLP, we
are going to describe the 4-MLP results. We have selected seven
problems with more than four inputs listed in Table III to test the
evolution of solutions with 4-MLP. We do not test the remaining
four problems because a truth table with four or fewer inputs
can be loaded to a 4-LUT directly. The results of the 4-LUT and
other five mapping algorithms, i.e., FlowMap, FlowMap- (with

), FlowSYN, CutMap, and DAOMap, are summarized
in Table VIII. All experiments on the five mapping algorithms
were run on the UCLA RASP FPGA/CPLD Technology Map-
ping and Synthesis Package [79]. First, we used ESPRESSO to
optimize the truth tables of the seven Boolean problems into
optimal (or near-optimal) SOP expressions. Then, the resulting
SOP expressions were passed to produce 4-LUT circuits for the
five LUT mapping algorithms. Obviously, all the values in

the “ best ” column are smaller than those
of the other columns. The “Total” row in Table VIII shows
that the GPPLCS produces 4-LUT circuits in the smallest total
number of 4-LUTs. The FlowSYN algorithm, which has
the closest performance to the GPPLCS, produces all the seven
4-LUT circuits with 1.6 times the total number of
4-LUTs to the GPPLCS. Since the GPPLCS used gate count
minimization as its primary objective [see (6)], the total 4-LUT
delay (19 levels) is slightly larger than those of the FlowMap (18
levels) and FlowSYN algorithms (16 levels) which are delay-op-
timized. Except for the FlowMap and the FlowSYN, 4-LUT cir-
cuits produced by GPPLCS were shown to be superior to those
of FlowMap- , CutMap, and DAOMap algorithms in terms of
LUT count. The values shown in Table VIII demonstrate that
the GPPLCS can evolve very compact 4-LUT circuits directly
from their truth tables.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a GPP system, known as
a GPPLCS, for combinational logic circuit design. It uses a
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MLP that is based on the multi-arithmetic-logic-unit processor
of GPP. The MLP is a multiple logic function unit, register-
based architecture that can perform multiple logic operations
in a processor clock cycle. The MLP is used to execute MLP
programs, which can be used to represent any combinational
logic circuits. A MLP program consists of a sequence of par-
allel instructions. Each parallel instruction consists of a fixed
number of subinstructions (16 subinstruction MLPs are used in
this paper) which perform logic functions to manipulate the con-
tents of the registers.

The GPPLCS adopts a two-stage approach to separate the de-
sign and the optimization stages. In the design stage, the system
evolves genetic programs based on a fitness function which aims
at evolving a 100% functional program (correct program). In the
optimization stage, the GPPLCS uses another set of genetic op-
erators to optimize correct programs. Experimental results show
that the GPPLCS can evolve compact 2-LUT and 4-LUT cir-
cuits. The qualities of the evolved circuits are in general better
than existing published results. The advantages of the GPPLCS
are summarized as follows.

1) It uses a generic register machine architecture which can
emulate any -LUT circuits. The architecture of MLP is so
simple that numerous MLPs can be placed in a FPGA. With
this highly parallelized, hardware-assisted fitness evalua-
tion engine, the evolution will speed up significantly.

2) It employs a variable-length genotype so that introns can
be built up in the early and middle stages of a run to assist
evolution.

3) A 100% functional program evolved in the design stage
can be saved as a seed program for different runs in the
optimization stage. In the optimization stage, different op-
timization-oriented genetic operators and fitness criteria
such as gate count and propagation gate delay are used to
guide the optimization.

Experimental results show that the GPPLCS is superior to
well-known LUT-based FPGA synthesis algorithms. This is be-
cause all these synthesis algorithms are based on a fixed gate-
level implementation of a truth table with some primitive logic
gates (e.g., AND, OR, and NOT). Building a LUT circuit with
such a gate-level circuit actually limits the optimization capaci-
ties in the LUT mapping stage. The GPPLCS relaxes the restric-
tions on these primitive logic gates so that more compact LUT
circuits can be evolved (see Table VIII).

The GPPLCS is a very flexible system. By changing the LUTs
to other logic units, the system can also be used to evolve circuits
for other FPGA devices.

According to the experimental results of the MUL3, the pure
software GPPLCS can evolve 4-LUT circuits on any 6-input
6-output truth tables in reasonable time. However, evolving
large circuits directly from a truth table is still a time-consuming
problem in evolutionary computation. The actual complexity of
a Boolean problem depends on the distribution of 1’s and the
number of “don’t care” designations in the outputs of its truth
table. For example, ADD2 has six times the number of outputs
of ADD1 (see Table III), and the evolution time ratio is seven

times that of ADD1 (see Table VII). However,
MUL3 also has six times the number of outputs of MUL2, and
the total evolution time ratio is 205 times.

Currently, we are building a FPGA-based multi-MLP. The
initial results show that it can speed up the software simula-
tion at least 20 times [55], and hence more complex Boolean
problems (e.g., 4-bit multiplier) can be evolved. Further studies
will be conducted to explore the effect of different settings on
MLP configurations (e.g., the numbers of registers and inputs of
LUTs).
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