
Applying logic grammars to induce sub-functions in
genetic programming

Man h u n g Wong
Department of System Engineering and

Engineering Management
The Chinese University of Hong Kong

Kwong Sak Leung
Department of Computer Science

The Chinese University of Hong Kong
Hong Kong

mlwong @se.cuhk.hk ksleung@cs.cuhk.hk

Abstract

Genetic Programming (GP) is a method of automatically inducing S-expression in LISP to perform specified
tasks. The problem of inducing programs can be reformulated as a search for a highly fit program in the space of
all possible programs. This paper presents a framework in which the search space can be speccj?ed declaratively
by a user. Its application in inducing sub-functions is detailed. The framework is based on a formalism of logic
grammars and it is implemented as a system called LOGENPRO (the Logic grammar based GENetic
PROgramming system). The formalism is powerful enough to represent context-sensitive information and
domain-dependent knowledge. This knowledge can be used to accelerate the learning speed andor improve the
quality of the programs induced. The system is also very flexible and programs in various programming
languages can be acquired.

Automatic discovery of sub-functions is one of the most important research areas in Genetic Programming.
An experiment is used to demonstrate that LOGENPRO can emulate Koza's Automatically Defined Functions
(ADF). Moreover, LOGENPRO can employ knowledge such as argument types in a unified framework. The
experiment shows that LOGENPRO has superior performance to that of Koza's ADF when more domain-
dependent knowledge is available.

1 . Introduction

Genetic Programming (GP) is a method of
automatically inducing S-expression in LISP to
perform specified tasks [3] [4]. The problem of
inducing programs can be reformulated as a search for
a highly fit program in the space of all possible
programs [5]. This space is determined by the syntax
of S-expression in LISP and the sets of terminals and
functions. Thus, the search space is fixed once the
terminals and functions are decided.

This paper presents a framework in which the
search space can be specified declaratively by a user and
describes its application in inducing sub-functions. For
most complex problems, the problem representation
has enormous influence on the difficulty of solving the
problem using GP. Thus appropriate primitives and
terminals must be determined to represent the problem.
It is important and challenging that appropriate
problem representation can be induced automatically
because higher level primitives (sub-functions) can
transform a hard problem into an easy one.

This framework is based on a formalism of logic
grammars and it is implemented as a system called
LOGENPRO (the Logic grammar based GENetic
PROgramming system). The formalism is powerful
enough to represent context-sensitive information and
domain-dependent knowledge. This knowledge can be
used to accelerate the learning speed and/or improve
the quality of the programs induced. The formalism is
also very flexible and programs in various
programming languages can be acquired.

We present the formalism of logic grammars and
LOGENPRO in the next section. In section three, we
demonstrate the application of various knowledge to
accelerate the learning of sub-functions in the
framework. Section four is the conclusion.

2 . The L o g i c grammars based
GENetic PROgramming system
(LOGENPRO)

LOGENPRO can induce programs in various
programming languages. This is achieved by accepting
or choosing grammars of different languages in order
to produce programs in these languages. Most modern
programming languages are specified in the notation
of context-free grammar (CFG). However, logic
grammars are used in LOGENPRO because they are
much more powerful than that of CFG, but equally
amenable to efficient execution. In this paper, the
notation of definite clause grammars (DCG) is used
171. The details of logic grammars are described in the
Appendix.

In LOGENPRO, populations of programs are
genetically bred [11 [2] using the Darwinian principle
of survival and reproduction of the fittest along with
genetic operations appropriate for processing
programs. LOGENPRO starts with an initial
population of programs generated randomly, induced
by other learning systems, or provided by the user.
Logic grammars provide declarative descriptions of the
valid programs that can appear in the initial
population. A high-level algorithm of LOGENPRO is
presented in table 1.- - ~~~ ~ ~ _ _ _

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:28 UTC from IEEE Xplore. Restrictions apply.

Table 1: The high level algorithm of Logenpro

1. Generate an initial population of programs.
2. Execute each program in the current

population and assign it a fitness value
according to the fitness function

3. If the termination criterion is satisfied,
terminate the algorithm. The best program
found in the run of the algorithm is
designated as the result.
Create a new population of programs from
the current population by applying the
reproduction, crossover, and mutation
operations. These operations are applied to
programs selected by fitness proportionate or
tournament selections.
Rename the new population to the current
population.
Proceed to the next generation by branching
back to the step 2.

4.

5 .

6.

3 . Learning sub-functions using
LOGENPRO

Automatic discovery of problem representation
primitives is certainly one of the most challenging
research areas in Genetic Programming. Automatically
Defined Functions (ADF) is one of the approaches that
have been proposed to acquire problem representation
primitives automatically [3] [4]. In the ADF approach,
each program in the population contains an
expression, called the result producing branch, and
definitions of one or more sub-functions which may
be invoked by the result producing branch. The result
producing branch is evaluated to produce the fitness of
the program. A constrained syntactic structure and
some special genetic operators are required for the
evolution of the programs. To employ the ADF
approach, the user must provide explicit knowledge
about the number of available automatically defined
sub-functions, the number of arguments of each sub-
functions, and the allowable terminal and function sets
for each sub-function.

In this section, we demonstrate how to use
LOGENPRO to emulate Koza’s ADF approach.
Koza’s ADF has a limitation that all the variables,
constants, arguments for functions, and values returned
from functions must be of the same data type. This
limitation leads to the difficulty of inducing even
some rather simple and straightforward functional
programs. In this experiment, LOGENPRO is
expected to learn a sub-function that calculates dot
product and employ this sub-function in the main
program. In other words, it is expected to induce the
following S-expression:
(progn
(defun ADFO (argO argl)
(apply (function +)
(mapcar (function *) argO argl)))

(+ (ADFO X Y) (ADFO Y Z)))

Table 2: Logic grammar for the sub-function problem

start -> [(progn (defun ADFO Largo arglll,
s-exprl(number), [I],
s-expr(number1, [) 1 .

-> [(mapcar (function 1 , op2, [) 1 ,
s-expr([list, number, ?nl),
s-expr([list, number, ?nl),[I 1 .

s-expr([list, number, ?nl I

s-expr([list, number, ?nl I

s-expr(number1
-> term(I1ist. number, ?nl).

-> [(apply (function I. 0 ~ 2 , [I 1 ,

-> [(1, op2, s-expr(number),

s-expr([list, number, ?nll, [I 1.

s-expr(numbe~-I, [) 1 .

s-expr([list, number, ?nll,
s-expr([list, number, ?nll, I 1 .

s-expr(number1

s-expr(number1
- > [(ADP0 I,

term([list, number, nll - > X.
term([list, number. nl) - - > Y.

s-expr2([list, number, ?nl I
term([list,, number, nll -> Z.

--> [(mapcar (function 1 , op2, [) 1 ,
s-expr2(llist, number, ?nJ),
s-exprZ([list, number, ?nll, [I 1 .

s-expr2([list, number, ?nl I

s-expr2(numberl
-> term2([list, number, ?nl I .

-> [(apply (function 1 , 0 ~ 2 . [I 1 ,
s-exprZ([list, number, ?nll, [I 1 .

-> [(I, op2, s-expr2(number),
s-expr2(numberl. [) I .

term2([list, number, 1111 -> argO.
term2([list, number, nl) - > argl.
OP2
0P2
0P2

s-expr2 (number)

-> [+ 1.
-> [- I .
-> I 1.

To induce a functional program using
LOGENPRO, we have to determine the logic
grammar, fitness cases, fitness functions and
termination criterion. The logic grammar for learning
functional programs is given in table 2. In this
grammar, we employ the argument of the grammar
symbol s-expr to designate the data type of the
result returned by the S-expression generated from the
grammar symbol. For example,

(mapcar (function +) X
(mapcar (function *) X Y))

i s generated from the grammar symbol
s-expr ([list, number, nl) because it
returns a numeric vector of size n. Similarly, the
symbol s - e x p r (n u m b e r) can produce
(apply (function *) X) that returns a
number. The terminal symbols +, -, and * represent
functions that perform ordinary addition, subtraction
and multiplication respectively.

Ten random fitness cases are used for training.
Each case is a 4-tuples ‘Xi, Yi, Zi , Ri>, where
1 s i 510, Xi, Yi and Zi are vectors of size 3, and Ri
is the corresponding desired result. The fitness
function calculates the sum, taken over the ten fitness
cases, of the absolute values of the difference between
Ri and the value returned by the S-expression for Xi,
Yi and Zi. A fitness case is said to be covered by an
S-expression if the value returned by it is within 0.01
of the desired value. A S-expression that covers all
training cases is further evaluated on a testing set
containing 1000 random fitness cases. LOGENPRO
will stop if the maximum number of generations is
reached or a S-expression that covers all testing fitness
cases is found.

For Koza’s ADF framework, the terminal set To
for the automatically defined function (ADFO) is

- ~ ~~~ ~ ~~

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:28 UTC from IEEE Xplore. Restrictions apply.

{argO, argl} and the function set Fo is {protected+,
protected-, protected*, vector+, vector-, vector*,
apply+, apply-, apply"}, taking 2, 2, 2, 2, 2, 2, 1, 1
and 1 arguments respectively.

The primitive functions protected+, protected- and
protected* respectively perform addition, subtraction
and multiplication if the two input arguments X and Y
are both numbers. Otherwise, they return 0. The
functions vector+, vector- and vector* respectively
perform vector addition, subtract and multiplication if
the two input arguments X and Y are numeric vectors
with the same size, otherwise they return zero. The
functions apply+, apply- and apply* respectively
perform the following S-expressions if the input
argument X is a numeric vector:
(apply (function protected+) X),
(apply (function protected-) X) and
(apply (function protected*) X),

otherwise they return zero.
The terminal set Tr for the result producing

branch is (X, Y, Z} and the function set Fr is
{protected+, protected-, protected*, vector+, vector-,
vector*, apply+, apply-, apply*, ADFO}, taking 2, 2,
2, 2, 2, 2, 1, 1, 1 and 2 arguments respectively. The
fitness cases, the fitness function and the termination
criterion are the same as the ones used by
LOGENPRO. We evaluate the performance of
LOGENPRO and Koza's ADF using populations of
100 and 1000 programs respectively.

I 14 GP with ADF: Podation = 1000

I Generation

Fig. 1 . Fitness curves showing best fitness for the sub-function
problem

Thirty trials are attempted and the results are
summarized in figures 1 and 2 Figure 1 shows, by
generation, the fitness (error) of the best program in a
population. These curves are found by averaging the
results obtained in thirty different runs using various
random number seeds and fitness cases. From these
curves, LOGENPRO has superior performance to that
of Koza's ADF. The curves in figure 2a show the
experimentally observed cumulative probability of
success, P(M, i), of solving the problem by
generation i using a population of M programs. The
curves in figure 2b show the number of programs
I(M, i, z) that must be processed to produce a
solution by generation i with a probability z of 0.99.
The curve for LOGENPRO reaches a minimum
value of 4900 at generation 6. On the other hand, the

minimum value of I(M, i, z) for ADF is 5712000 at
generation 41. This experiment clearly shows the
advantage of LOGENPRO. By employing various
knowledge about the problem being solved,
LOGENPRO can find a solution much faster than
ADF and the computation (i.e. I(M, i, z)) required by
LOGENPRO is much smaller than that of ADF.

I]A GP with ADF: Pooulation = 1000

(a)

b GP with ADF: Population = 100

Generation I
(b)

Fig. 2. Performance curves showing (a) cumulative probability of
success P(M, i) and (b) I(M, i, z) for the sub-function problem

The idea of applying knowledge of data type to
accelerate learning has been investigated independently
by Montana [6] in his Strongly Typed Genetic
Programming (STGP). He presents three examples
involving vector and matrix manipulation to illustrate
the operation of STGP. However, he has not compared
the performance between traditional GP and STGP.
Moreover, his STGP cannot be used with ADF nor to
specify any domain specific knowledge. One advantage
of LOGENPRO is that it can emulate the effects of
STGP and ADF simultaneously and effortlessly.

4 . Conclusion

Genetic Programming induces programs by searching a
highly fit program in the space of all possible
programs. We have proposed a framework that the
search space can be declared explicitly. This framework
is based on a formalism of logic grammars. To
implement the framework, a system c a l l e d
LOGENPRO (the Logic grammar based GENetic
PROgramming systern&blre&a_deYeloPed. The

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:28 UTC from IEEE Xplore. Restrictions apply.

formalism can represent context-sensitive information
and domain-dependent knowledge.

Automatic discovery of sub-functions is one of
the most important research areas in Genetic
Programming. In Koza's ADF, the user must provide
explicit knowledge about the number of available sub-
functions, the number of arguments of each sub-
functions, and the allowable terminal and function sets
for each sub-function. An experiment has been
performed to demonstrate that LOGENPRO can
emulate Koza's ADF and represent the knowledge
easily. Moreover, LOGENPRO can employ other
knowledge such as argument types in a unified
framework. This experiment shows that LOGENPRO
has superior performance to that of Koza's ADF when
more domain-dependent knowledge is available.

5 . Reference

[l] Goldberg, D. E. (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning.
MA: Addison-Wesley.

[2] Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor: The University of
Michigan Press.

[3] Koza, J. R. (1992). Genetic Programming: on the
Programming of Computers by Means of Natural
Selection. MA: MIT Press.

[4] Koza, J. R. (1994). Genetic Programming ZZ.
MA: MIT Press.

[5] Mitchell, T. M. (1982). Generalization as
Search, Artificial Intelligence, 18, pp. 203-226.

[6] Montana, D. J. (1993). Strongly Typed Genetic
Programming. Bolt, Beranek, and Newman
Technical Report no. 7866.

[7] Pereira, F. C. N. and Warren, D. H. D. (1980).
Definite Clause Grammars for Language Analysis
- A Survey of the Formalism and a Comparison
with Augmented Transition Networks, Artificial
Intelligence, 13, pp. 231-278.

6 . Appendix

A logic grammar (table 3) differs from a CFG in that
the logic grammar symbols, whether terminal or non-
terminal, may include arguments. The arguments can
be any term in the grammar. A term is either a logical
variables, a function or a constant. A variable is

represented by a question mark ? followed by a string
of letters andlor digits. A function is a grammar
symbol followed by a bracketed n-tuple of terms and a
constant is simply a O-arity function. Arguments can
be used in a logic grammar to enforce context-
dependency. Thus, the permissible forms for a
constituent may depend on the context in which that
constituent occurs in the program. Another application
of arguments is to construct tree structures in the
course of parsing, such tree structures can provide a
representation of the semantics (meaning) of the
program.

Table 3: A simple logic grammar

The terminal symbols, which are enclosed in
square brackets, correspond to the set of words of the
language specified. For example, the terminal
[(+ ?x ? y 1 I creates the constituent
(+ 1. 0 2 . 0) of a program if ?x and ?y are
instantiated respectively to 1 .O and 2.0. Non-terminal
symbols are similar to literals in Prolog,
"exp-1 (? x) 'I in table 3 is an example of non-
terminal symbols. Commas denote concatenation and
each grammar rule ends with a full stop.

The right-hand side of a grammar rule may contain
logic goals and grammar symbols. The goals are pure
logical predicates for which logical definitions have
been given. They specify the conditions that must be
satisfied before the rule can be applied. For example,
the goal member (?x, [X, Y I) in figure 1
instantiates the variable ?x to either X or Y if ?x has
not been instantiated, otherwise it checks whether the
value of ?x is either X or Y. If the variable ?y has not
been bound, the goal random(0 , 1 , ? y)
instantiates ?y to a random floating point number
between 0 and 1 . Otherwise, the goal checks whether
the value of ?y is between 0 and 1. The special non-
terminal start corresponds to a program of the
language. The number before each rule is a label for
later discussions. It is not part of the grammar.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:22:28 UTC from IEEE Xplore. Restrictions apply.

