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Abstract 

Genetic Programming (GP) is a method of automatically inducing S-expression in LISP to perform specified 
tasks. The problem of inducing programs can be reformulated as a search for a highly fit program in the space of 
all possible programs. This paper presents a framework in which the search space can be speccj?ed declaratively 
by a user. Its application in inducing sub-functions is detailed. The framework is based on a formalism of logic 
grammars and it is implemented as a system called LOGENPRO (the Logic grammar based GENetic 
PROgramming system). The formalism is powerful enough to represent context-sensitive information and 
domain-dependent knowledge. This knowledge can be used to accelerate the learning speed andor improve the 
quality of the programs induced. The system is also very flexible and programs in various programming 
languages can be acquired. 

Automatic discovery of sub-functions is one of the most important research areas in Genetic Programming. 
An experiment is used to demonstrate that LOGENPRO can emulate Koza's Automatically Defined Functions 
(ADF). Moreover, LOGENPRO can employ knowledge such as argument types in a unified framework. The 
experiment shows that LOGENPRO has superior performance to that of Koza's ADF when more domain- 
dependent knowledge is available. 

1 .  Introduction 

Genetic Programming (GP) is a method of 
automatically inducing S-expression in LISP to 
perform specified tasks [3] [4]. The problem of 
inducing programs can be reformulated as a search for 
a highly fit program in the space of all possible 
programs [5]. This space is determined by the syntax 
of S-expression in LISP and the sets of terminals and 
functions. Thus, the search space is fixed once the 
terminals and functions are decided. 

This paper presents a framework in which the 
search space can be specified declaratively by a user and 
describes its application in inducing sub-functions. For 
most complex problems, the problem representation 
has enormous influence on the difficulty of solving the 
problem using GP. Thus appropriate primitives and 
terminals must be determined to represent the problem. 
It is important and challenging that appropriate 
problem representation can be induced automatically 
because higher level primitives (sub-functions) can 
transform a hard problem into an easy one. 

This framework is based on a formalism of logic 
grammars and it is implemented as a system called 
LOGENPRO (the Logic grammar based GENetic 
PROgramming system). The formalism is powerful 
enough to represent context-sensitive information and 
domain-dependent knowledge. This knowledge can be 
used to accelerate the learning speed and/or improve 
the quality of the programs induced. The formalism is 
also very flexible and programs in various 
programming languages can be acquired. 

We present the formalism of logic grammars and 
LOGENPRO in the next section. In section three, we 
demonstrate the application of various knowledge to 
accelerate the learning of sub-functions in the 
framework. Section four is the conclusion. 

2 .  The L o g i c  grammars based 
GENetic PROgramming system 
(LOGENPRO) 

LOGENPRO can induce programs in various 
programming languages. This is achieved by accepting 
or choosing grammars of different languages in order 
to produce programs in these languages. Most modern 
programming languages are specified in the notation 
of context-free grammar (CFG). However, logic 
grammars are used in LOGENPRO because they are 
much more powerful than that of CFG, but equally 
amenable to efficient execution. In this paper, the 
notation of definite clause grammars (DCG) is used 
171. The details of logic grammars are described in the 
Appendix. 

In LOGENPRO, populations of programs are 
genetically bred [ 11 [2] using the Darwinian principle 
of survival and reproduction of the fittest along with 
genetic operations appropriate for processing 
programs. LOGENPRO starts with an initial 
population of programs generated randomly, induced 
by other learning systems, or provided by the user. 
Logic grammars provide declarative descriptions of the 
valid programs that can appear in the initial 
population. A high-level algorithm of LOGENPRO is 
presented in table 1.- - ~~~ ~ ~ _ _ _  
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Table 1: The high level algorithm of Logenpro 

1. Generate an initial population of programs. 
2. Execute each program in the current 

population and assign it a fitness value 
according to the fitness function 

3. If the termination criterion is satisfied, 
terminate the algorithm. The best program 
found in the run of the algorithm is 
designated as the result. 
Create a new population of programs from 
the current population by applying the 
reproduction, crossover, and mutation 
operations. These operations are applied to 
programs selected by fitness proportionate or 
tournament selections. 
Rename the new population to the current 
population. 
Proceed to the next generation by branching 
back to the step 2. 

4. 

5 .  

6. 

3 .  Learning sub-functions using 
LOGENPRO 

Automatic discovery of problem representation 
primitives is certainly one of the most challenging 
research areas in Genetic Programming. Automatically 
Defined Functions (ADF) is one of the approaches that 
have been proposed to acquire problem representation 
primitives automatically [3] [4]. In the ADF approach, 
each program in the population contains an 
expression, called the result producing branch, and 
definitions of one or more sub-functions which may 
be invoked by the result producing branch. The result 
producing branch is evaluated to produce the fitness of 
the program. A constrained syntactic structure and 
some special genetic operators are required for the 
evolution of the programs. To employ the ADF 
approach, the user must provide explicit knowledge 
about the number of available automatically defined 
sub-functions, the number of arguments of each sub- 
functions, and the allowable terminal and function sets 
for each sub-function. 

In this section, we demonstrate how to use 
LOGENPRO to emulate Koza’s ADF approach. 
Koza’s ADF has a limitation that all the variables, 
constants, arguments for functions, and values returned 
from functions must be of the same data type. This 
limitation leads to the difficulty of inducing even 
some rather simple and straightforward functional 
programs. In this experiment, LOGENPRO is 
expected to learn a sub-function that calculates dot 
product and employ this sub-function in the main 
program. In other words, it is expected to induce the 
following S-expression: 
(progn 
(defun ADFO (argO argl) 
(apply (function + )  
(mapcar (function * )  argO argl))) 

( +  (ADFO X Y) (ADFO Y Z ) ) )  

Table 2: Logic grammar for the sub-function problem 

start ->  [(progn (defun ADFO Largo arglll, 
s-exprl(number), [I], 
s-expr(number1, [ )  1 .  

-> [ (mapcar (function 1 ,  op2, [ ) 1 , 
s-expr( [list, number, ?nl), 
s-expr([list, number, ?nl),[ I 1 .  

s-expr( [list, number, ?nl I 

s-expr( [list, number, ?nl I 

s-expr(number1 
->  term(I1ist. number, ?nl). 

->  [ (apply (function I. 0 ~ 2 ,  [ I 1 , 

->  [ ( 1, op2, s-expr(number), 

s-expr([list, number, ?nll, [ I 1. 

s-expr(numbe~-I, [ ) 1 .  

s-expr([list, number, ?nll, 
s-expr([list, number, ?nll, I 1 .  

s-expr(number1 

s-expr(number1 
- >  [ (ADP0 I, 

term([list, number, nll - >  X. 
term([list, number. nl) - - >  Y. 

s-expr2([list, number, ?nl I 
term([list,, number, nll ->  Z. 

--> [ (mapcar (function 1 ,  op2, [ ) 1 , 
s-expr2(llist, number, ?nJ), 
s-exprZ([list, number, ?nll, [ I 1 .  

s-expr2( [list, number, ?nl I 

s-expr2(numberl 
->  term2( [list, number, ?nl I .  

->  [ (apply (function 1 ,  0 ~ 2 .  [ I 1 , 
s-exprZ([list, number, ?nll, [ I 1 .  

->  [ ( I, op2, s-expr2(number), 
s-expr2(numberl. [ ) I .  

term2([list, number, 1111 ->  argO. 
term2([list, number, nl) - >  argl. 
OP2 
0P2 
0P2 

s-expr2 (number) 

->  [ + 1. 
->  [ - I .  
->  I 1. 

To induce a functional program using 
LOGENPRO, we have to determine the logic 
grammar, fitness cases, fitness functions and 
termination criterion. The logic grammar for learning 
functional programs is given in table 2. In this 
grammar, we employ the argument of the grammar 
symbol s-expr to designate the data type of the 
result returned by the S-expression generated from the 
grammar symbol. For example, 

(mapcar (function + )  X 
(mapcar (function * )  X Y)) 

i s  generated from the grammar symbol 
s-expr ( [list, number, nl ) because it 
returns a numeric vector of size n. Similarly, the 
symbol s - e x p r  ( n u m b e r )  can produce 
(apply (function * )  X) that returns a 
number. The terminal symbols +, -, and * represent 
functions that perform ordinary addition, subtraction 
and multiplication respectively. 

Ten random fitness cases are used for training. 
Each case is a 4-tuples ‘Xi, Yi,  Zi ,  Ri>, where 
1 s i  510, Xi, Yi and Zi are vectors of size 3, and Ri 
is the corresponding desired result. The fitness 
function calculates the sum, taken over the ten fitness 
cases, of the absolute values of the difference between 
Ri and the value returned by the S-expression for Xi, 
Yi and Zi. A fitness case is said to be covered by an 
S-expression if the value returned by it is within 0.01 
of the desired value. A S-expression that covers all 
training cases is further evaluated on a testing set 
containing 1000 random fitness cases. LOGENPRO 
will stop if the maximum number of generations is 
reached or a S-expression that covers all testing fitness 
cases is found. 

For Koza’s ADF framework, the terminal set To 
for the automatically defined function (ADFO) is 

- ~ ~~~ ~ ~~ 
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{argO, argl} and the function set Fo is {protected+, 
protected-, protected*, vector+, vector-, vector*, 
apply+, apply-, apply"}, taking 2, 2, 2, 2, 2, 2, 1, 1 
and 1 arguments respectively. 

The primitive functions protected+, protected- and 
protected* respectively perform addition, subtraction 
and multiplication if the two input arguments X and Y 
are both numbers. Otherwise, they return 0. The 
functions vector+, vector- and vector* respectively 
perform vector addition, subtract and multiplication if 
the two input arguments X and Y are numeric vectors 
with the same size, otherwise they return zero. The 
functions apply+, apply- and apply* respectively 
perform the following S-expressions if the input 
argument X is a numeric vector: 
(apply (function protected+) X), 
(apply (function protected-) X) and 
(apply (function protected*) X), 

otherwise they return zero. 
The terminal set Tr for the result producing 

branch is (X, Y, Z} and the function set Fr is 
{protected+, protected-, protected*, vector+, vector-, 
vector*, apply+, apply-, apply*, ADFO}, taking 2, 2, 
2, 2, 2, 2, 1, 1, 1 and 2 arguments respectively. The 
fitness cases, the fitness function and the termination 
criterion are the same as the ones used by 
LOGENPRO. We evaluate the performance of 
LOGENPRO and Koza's ADF using populations of 
100 and 1000 programs respectively. 

I 14 GP with ADF: Podation = 1000 

I Generation 

Fig. 1 .  Fitness curves showing best fitness for the sub-function 
problem 

Thirty trials are attempted and the results are 
summarized in figures 1 and 2 Figure 1 shows, by 
generation, the fitness (error) of the best program in a 
population. These curves are found by averaging the 
results obtained in thirty different runs using various 
random number seeds and fitness cases. From these 
curves, LOGENPRO has superior performance to that 
of Koza's ADF. The curves in figure 2a show the 
experimentally observed cumulative probability of 
success, P(M, i), of solving the problem by 
generation i using a population of M programs. The 
curves in figure 2b show the number of programs 
I(M, i, z) that must be processed to produce a 
solution by generation i with a probability z of 0.99. 
The curve for LOGENPRO reaches a minimum 
value of 4900 at generation 6. On the other hand, the 

minimum value of I(M, i, z) for ADF is 5712000 at 
generation 41. This experiment clearly shows the 
advantage of LOGENPRO. By employing various 
knowledge about the problem being solved, 
LOGENPRO can find a solution much faster than 
ADF and the computation (i.e. I(M, i, z)) required by 
LOGENPRO is much smaller than that of ADF. 

I ]A GP with ADF: Pooulation = 1000 

(a) 

b GP with ADF: Population = 100 

Generation I 
(b) 

Fig. 2. Performance curves showing (a) cumulative probability of 
success P(M, i) and (b) I(M, i, z) for the sub-function problem 

The idea of applying knowledge of data type to 
accelerate learning has been investigated independently 
by Montana [6 ]  in his Strongly Typed Genetic 
Programming (STGP). He presents three examples 
involving vector and matrix manipulation to illustrate 
the operation of STGP. However, he has not compared 
the performance between traditional GP and STGP. 
Moreover, his STGP cannot be used with ADF nor to 
specify any domain specific knowledge. One advantage 
of LOGENPRO is that it can emulate the effects of 
STGP and ADF simultaneously and effortlessly. 

4 .  Conclusion 

Genetic Programming induces programs by searching a 
highly fit program in the space of all possible 
programs. We have proposed a framework that the 
search space can be declared explicitly. This framework 
is based on a formalism of logic grammars. To 
implement the framework, a system c a l l e d  
LOGENPRO (the Logic grammar based GENetic 
PROgramming systern&blre&a_deYeloPed. The 
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formalism can represent context-sensitive information 
and domain-dependent knowledge. 

Automatic discovery of sub-functions is one of 
the most important research areas in Genetic 
Programming. In Koza's ADF, the user must provide 
explicit knowledge about the number of available sub- 
functions, the number of arguments of each sub- 
functions, and the allowable terminal and function sets 
for each sub-function. An experiment has been 
performed to demonstrate that LOGENPRO can 
emulate Koza's ADF and represent the knowledge 
easily. Moreover, LOGENPRO can employ other 
knowledge such as argument types in a unified 
framework. This experiment shows that LOGENPRO 
has superior performance to that of Koza's ADF when 
more domain-dependent knowledge is available. 
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6 .  Appendix 

A logic grammar (table 3) differs from a CFG in that 
the logic grammar symbols, whether terminal or non- 
terminal, may include arguments. The arguments can 
be any term in the grammar. A term is either a logical 
variables, a function or a constant. A variable is 

represented by a question mark ? followed by a string 
of letters andlor digits. A function is a grammar 
symbol followed by a bracketed n-tuple of terms and a 
constant is simply a O-arity function. Arguments can 
be used in a logic grammar to enforce context- 
dependency. Thus, the permissible forms for a 
constituent may depend on the context in which that 
constituent occurs in the program. Another application 
of arguments is to construct tree structures in the 
course of parsing, such tree structures can provide a 
representation of the semantics (meaning) of the 
program. 

Table 3: A simple logic grammar 

The terminal symbols, which are enclosed in 
square brackets, correspond to the set of words of the 
language specified. For example, the terminal 
[ ( + ?x ? y  1 I creates the constituent 
( +  1. 0 2 . 0 ) of a program if ?x and ?y are 
instantiated respectively to 1 .O and 2.0. Non-terminal 
symbols are similar to literals in Prolog, 
"exp-1 ( ? x )  'I in table 3 is an example of non- 
terminal symbols. Commas denote concatenation and 
each grammar rule ends with a full stop. 

The right-hand side of a grammar rule may contain 
logic goals and grammar symbols. The goals are pure 
logical predicates for which logical definitions have 
been given. They specify the conditions that must be 
satisfied before the rule can be applied. For example, 
the goal member ( ?x, [X, Y I  ) in figure 1 
instantiates the variable ?x to either X or Y if ?x has 
not been instantiated, otherwise it checks whether the 
value of ?x is either X or Y. If the variable ?y has not 
been bound, the goal random( 0 ,  1 ,  ? y )  
instantiates ?y to a random floating point number 
between 0 and 1 .  Otherwise, the goal checks whether 
the value of ?y is between 0 and 1. The special non- 
terminal start corresponds to a program of the 
language. The number before each rule is a label for 
later discussions. It is not part of the grammar. 
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