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Brief Papers

Combining Mutation Operators in Evolutionary Programming
Kumar Chellapilla

Abstract—Traditional investigations with evolutionary pro-
gramming (EP) for continuous parameter optimization problems
have used a single mutation operator with a parameterized proba-
bility density function (pdf), typically a Gaussian. Using a variety
of mutation operators that can be combined during evolution
to generate pdf’s of varying shapes could hold the potential for
producing better solutions with less computational effort. In view
of this, a linear combination of Gaussian and Cauchy mutations
is proposed. Simulations indicate that both the adaptive and
nonadaptive versions of this operator are capable of producing
solutions that are statistically as good as, or better, than those
produced when using Gaussian or Cauchy mutations alone.

Index Terms—Cauchy mutation, evolutionary programming,
Gaussian mutation, variation operators.

I. INTRODUCTION

EVOLUTIONARY algorithms, such as evolutionary pro-
gramming (EP), evolution strategies (ES), and genetic

algorithms (GA’s), operate on a population of candidate so-
lutions and rely on a set of variation operators to generate
new offspring. Selection is used to probabilistically promote
better solutions to the next generation and eliminate less-fit
solutions. Conventional implementations of EP [1] and ES [2]
for continuous parameter optimization use Gaussian mutations
to generate offspring.

Recently, Cauchy mutations have been proposed for use
with EP and ES [4], [5], inspired by fast simulated an-
nealing [3]. The lognormal self-adaptation scheme [6], [7]
was extended for evolving scale parameters for these Cauchy
mutations. Empirical studies showed that on the tested mul-
timodal functions with many local minima, EP using Cauchy
mutations outperformed EP using Gaussian mutations, whereas
on multimodal functions with few local minima the differences
were not statistically significant [6], [7]. The fatter tails of the
Cauchy distribution generate a greater probability of taking
large steps, which could help in escaping local optima, and
this has been offered as a possible explanation for its enhanced
performance [6]. These studies, however, limited mutations to
a single class of parameterized probability density functions
(pdf’s), namely either Gaussian or Cauchy.

In view of the fact that Cauchy mutations might be more
useful in escaping local optima while Gaussian mutations
provide relatively faster local convergence on convex functions
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[8], mutation strategies consisting of combinations of these
two operators that can exploit their desirable properties have
been proposed [9]–[11]. Two mutation operators are offered
here that consist of linear combinations of the Gaussian and
Cauchy mutation operators. Their performance both in terms
of the quality of the solutions produced and the rate of
optimization is empirically investigated on a suite of well-
known test functions.

II. BACKGROUND

Evolutionary algorithms address the problem of global
optimization (minimization or maximization) in the presence
of multiple local optima. A global minimization problem can
be formalized as a pair , where is a bounded
set on and is an -dimensional real-valued
function. The problem is to find a point such that

is a global minimum on . More specifically, it is
required to find an such that

(1)

Here does not need to be continuous but it must be bounded.

A. Conventional Evolutionary Programming

Conventional evolutionary programming (CEP) using the
Gaussian mutation operator (GMO) and lognormal self-
adaptive mutation for continuous parameter optimization is
implemented as follows.

1) Initialization: Generate an initial population of indi-
viduals, and set the generation numberto one. Each
individual is taken as a pair of real-valued vectors,

. The ’s give the th mem-
ber’s object variables and ’s the associated strategy
parameters. The object variables typically are the real
parameters to be optimized and the strategy parameters
represent standard deviations of the associated Gaussian
mutations [see Step 3)].

2) Evaluate the objective function, , for each individ-
ual, .

3) Mutation: Creates a single offspring from each
parent by

(2)

(3)

for , where , and
denote the th component of the vectors , and
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, respectively. denotes a normally distributed
one-dimensional random number with mean zero and
standard deviation one. indicates that a different
random number is generated for each value of. The
factors and are commonly set to and

, respectively [2], [6].
4) Fitness: Calculate the objective function value of

each offspring .
5) Selection: Conduct pairwise comparison over the

union of parents and offspring
. For each individual, opponents

are chosen randomly from all the parents and offspring
with equal probability. For each comparison, if the
individual’s objective function value is no greater
than the opponent’s, it receives a “win.” Select the
individuals out of and ,
that have the most wins to be parents of the next
generation.

6) Stop if the halting criterion is satisfied; otherwise, in-
crement the generation number, , and go to
Step 3).

In the current simulations, since the amount of computing
time required to obtain solutions of a desired quality were
not known a priori, the halting criterion was taken to be a
certain maximum number of generations .

Self-adaptive update schemes, in conjunction with selection,
favor strategy parameters that yield a higher probability of
improving the quality of the parent. For convex objective
functions, when using mutations drawn from a zero mean sym-
metric density function, this probability of improvement peaks
at 0.5 for infinitesimally small step sizes. Thus self-adaptation
can be biased toward lowering the standard deviations too
quickly resulting in stagnation (described as an extremely low
rate of convergence). As a safeguard against such stagnation,
a lower bound for the strategy parameters has been proposed
[2], [6], used [4], [5], [7], and investigated [12]. When a
lower bound is used, all ’s that fall below in (2)
are reset to .

B. Mutation Operators

CEP with the Cauchy mutation operator (CMO) is obtained
by replacing the object variable update equation given in (3)
with

CMO (4)

where denotes a Cauchy random number centered at
zero with a scale parameter of one.

Two new mutation operators are introduced, namely
mean and adaptive mean mutation operators (MMO’s and
AMMO’s, respectively). Both of these operators consist of a
linear combination of Gaussian and Cauchy mutations.

The MMO uses two random variables (RV’s). The first
is distributed , and the second is distributed .
The mean of samples from these two RV’s is scaled by the
self-adaptive parameter and used to perturb theth
component of the parent to obtain theth component of the
offspring. The object variable update equation for the MMO

Fig. 1. The pdf of the mean random numbers in comparison with the
standard Gaussian and Cauchy pdf’s. Among the three pdf’s there exists a
tradeoff between the probabilities of generating very small (0.0–0.6), small
(0.6–1.2), medium (1.2–2.0), large (2.0–4.8), and very large(>4:8) mutations.

TABLE I
PROBABILITY OF GENERATING DIFFERENT DEGREES OF

MUTATIONS USING THE GMO’S, CMO’S, AND MMO’ S

is given by

(5)

These mean random numbers follow a pdf given by the
convolution of the Gaussian and Cauchy pdf’s followed by
scaling. Mathematically

PDF PDF PDF

(6)

where denotes the convolution operator. Fig. 1 shows the
pdf of the mean random numbers. The standard Gaussian and
Cauchy pdf’s are also plotted for comparison. For analysis,
based on Fig. 1, the range of mutations (absolute values)
in [0, ) is split into five categories, very small (0–0.6),
small (0.6–1.2), medium (1.2–2), large (2–4.8), and very large
( 4.8). There exist tradeoffs among the three distributions
between the probabilities of generating very low, low, medium,
large, and very large mutations. These are summarized in
Table I. In comparison with Gaussian mutations, the mean
of a Gaussian and a Cauchy generates more very small
and large mutations. In comparison with Cauchy mutations,
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it generates more very small and small mutations. Thus
the MMO generally produces mutations that are larger than
Gaussian mutations but smaller than Cauchy mutations.

During evolution, the shape of the pdf that produces mean
mutations is fixed and the pdf parameters are self-adapted.
Self-adaptation of the pdf shape also, along with its param-
eters, could make the self-adaptation scheme more robust to
the type of objective function being optimized. Therefore, the
MMO is extended to an AMMO where the object variable
update equation is given by

(7)

The AMMO has two sets of self-adaptive parameters
and that act as standard deviations and scale parameters
of the Gaussian and Cauchy parts, respectively. The mutation
step can be rewritten in terms of and as given in
(7), wherein plays the role of the overall scaling parame-
ter and determines the shape of the pdf. Mathematically,

and . For low values of
the pdf resembles a Cauchy, whereas for large values

of it resembles a Gaussian. Thus with the variation of
the and parameters (through the self-adaptation of

and ) it is possible to generate a large number
of different pdf’s that have a shape between a Gaussian and
a Cauchy. Since the AMMO contains twice as many strategy
parameters as the other operators, however, the time taken to
find good strategy parameters through self-adaptation might
be expected to increase.

III. M ETHOD

CEP, with the above-described operators, was tested on a
set of nine well-investigated function minimization problems

(8)

(9)

(10)

(11)

where is a uniform random variable in

(12)

(13)

(14)

(15)

(16)

Function is the sphere function, and is a modified version
of the Ackley function [13], with the term added to move
the global optimum function value to zero. Functionis the
extended Rosenbrock function [6], is the noisy quadratic
function, and is the Rastrigin function [14]. Functions

, and , are test problems numbered 2.22, 1.2, and 2.21
from [6, pp. 341, 326, and 340], respectively. Functionis
the Griewank function [15].

Simulations were conducted with Gaussian, Cauchy, mean,
and adaptive mean mutation operators using a population size
of 50 and an opponent size . Alternative choices could
be offered but these follow typical implementations. For all
the nine benchmark functions,was set to 30. For functions

and , all components were initialized uniformly in 100,
100]. For , and , all components
were initialized in [ 30, 30],[ 1.28, 1.28],
[ 10, 10], [ 100, 100], [ 100, 100], and [ 600, 600],
respectively. The self-adaptive parameters were initialized to
three. The termination criterion varied with the function being
optimized. The EP trials for and were terminated after
3000 generations and for – were terminated after 5000
generations. The above simulation parameters were chosen
following [4], [5], [7], and [9]–[11].

Two sets of 50 independent trials were conducted on each
of the nine test functions for each of the four mutation
operators (GMO, CMO, MMO, and AMMO). The first set
of experiments did not use a lower bound for the strategy
parameters, whereas the second set used a lower bound of

[4], [5].

IV. RESULTS

The mean best scores and the associated results of the-
test for statistical significance [16], taken over 50 independent
trials for – with and without the lower bound on the
strategy parameters, are presented in Table II. Based on these
results, EP with the four different operators was ranked
as shown in the last two columns of Table II (G, C, M,
and A representing EP with the GMO, CMO, MMO, and
AMMO, respectively). The operator ranked first (shown to
the left of the table column) had the lowest mean (i.e.,
best) function value. As an example, the entry “A, (M, G,
C)” for the results on without a lower bound indicates
that EP with the AMMO operators generated solutions that
had the lowest mean function value and that these val-
ues were unambiguously statistically significantly better than
those generated by EP with the MMO, GMO, or CMO. The
keyword unambiguously means that the EP with AMMO
results were statistically significantly better in all compar-
isons with the other operators. The parentheses grouping M,
G, and C indicate that the pair-wise-test results for the
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TABLE II
THE MEAN BEST SCORES AND THEUNAMBIGUOUS RANK RESULTS OF THEt-TEST FORSTATISTICAL SIGNIFICANCE [16] FOR THE EP TRIALS WITH THE DIFFERENT

MUTATION OPERATORS, NAMELY GMO’S, CMO’S, MMO’ S, AND AMMO’ S. BASED ON THE t-TEST RESULTS, EP WITH THE FOUR DIFFERENT OPERATORSWAS

RANKED AS SHOWN IN THE LAST TWO COLUMNS (G, C, M, AND A REPRESENTINGEP WITH THE GMO, CMO, MMO, AND AMMO, RESPECTIVELY). THE

OPERATOR RANKED FIRST (SHOWN TO THE LEFT OF THE TABLE COLUMN) HAD THE LOWEST MEAN FUNCTION VALUE AT THE END OF THE TRIAL. AS AN EXAMPLE,
THE ENTRY “A,(M,G,C)” FOR THE RESULTS ONF1 WITHOUT A LOWER BOUND INDICATES THAT EP WITH THE AMMO OPERATOR GENERATED SOLUTIONS THAT

HAD THE LOWEST MEAN FUNCTION VALUE AND THAT THESE VALUES WERE STATISTICALLY SIGNIFICANTLY UNAMBIGUOUSLY BETTER THAN THOSE GENERATED

BY EP WITH THE MMO’ S, GMO’S, OR CMO’S. THE KEYWORD UNAMBIGUOUSLY MEANS THAT THE EP WITH AMMO RESULTS WERE

STATISTICALLY SIGNIFICANTLY BETTER IN ALL COMPARISONS WITH THEOTHER OPERATORS. THE PARENTHESESGROUPING M, G, AND C
INDICATE THAT THE t-TEST RESULTS FOREP WITH MMO, GMO, AND CMO WERE NOT ALL STATISTICALLY SIGNIFICANTLY DIFFERENT

EP with MMO, GMO, and CMO were not all statistically
significantly different.

Space considerations preclude presenting all of the results
obtained. Fig. 2(a)–(c) graphs the rate of optimization of EP
with the four different mutation operators without a lower
bound for the functions , and , respectively. Fig. 2(d)
and (e) presents the corresponding results with a lower bound
for and , respectively. The rate of optimization curves
for the other functions were similar and are available on line1

for the interested reader.
When a lower bound was not used, EP with AMMO showed

faster convergence than all other operators and found solutions
that were as good as (, and ) or statistically significantly
better ( , and ) than those found by the
other operators.

When a lower bound was used, the optimization trajectories
for – and saturated as their strategy parameters reached
the lower bound. In these trials, the solutions found were
several orders of magnitude better than those found without a
lower bound (see Table II). In trials wherein the strategy pa-
rameters did not saturate (and ), the differences between
the performance of EP with and without a lower bound were
not statistically significant.

1All the figures, tables, and results presented in this paper along
those omitted due to space constraints are available at http://vision.ucsd.
edu/�kchellap/IEEETECV1N4.ps.

In the trials with a lower bound, even though EP with
AMMO showed faster convergence it stagnated earlier. This
was caused by the restrictions that the lower bound generated
on the allowed shape of the pdf of the AMMO mutations.

The parameter [see (7)] yields insight as to which
form of the pdf produced beneficial mutations during different
phases of evolution. Large values of imply a pdf
that closely resembles a Gaussian pdf, whereas small values
of imply a pdf that closely resembles a Cauchy.
A value of represents the midpoint, corresponding
to the MMO. The parameters started out at one (as the
strategy parameters and were both initialized
to three) in each trial. For all test problems when a lower
bound was not used, there was a gradual increase in
from one to a value between four and ten during the first
1000–2000 generations. After the initial phase of growth,
the value oscillated about the final value. Thus, the
AMMO mutations followed a pdf whose form resembled that
of the MMO at the beginning of the search and gradually
resembled the Gaussian. Pure Cauchy mutations were found
to be less efficient than MMO and Gaussian mutations at the
beginning of the search. Moreover, as solutions were obtained
that were closer to the global optimum, Gaussian mutations
were increasingly preferred over Cauchy mutations.

Fig. 3 shows the mean value as a function of the num-
ber of generations (averaged over all the dimensions and the
50 trials) for the sphere and Rosenbrock functions both with

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:59:08 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 2, NO. 3, SEPTEMBER 1998 95

(a) (b)

(c) (d)

(e)

Fig. 2. The rate of optimization (averaged over 50 trials) of EP with the four mutation operators for the (a) sphere function(f1), (b) Ackley function(f2),
(c) function 2.21(f8) from [6], (d) sphere function(f1) when using a lower bound of 0.0001 on the strategy parameters, and (e) Griewank function(f9)
when using a lower bound of 0.0001. Without a lower bound, EP with AMMO shows faster convergence than the other operators and the final mean best
solution found by the AMMO is as good as or statistically significantly better than those found by using the other operators. With a lower bound, all the
function value trajectories, with the exception of those forf8, saturate as their strategy parameters reach the lower bound. With a lower bound, however,
even though EP with AMMO shows faster convergence than EP with any of the other operators, it stagnates earlier. The addition of a lower bound enhanced
the quality of the final solutions by several orders of magnitude for most of the examined functions.

and without a lower bound. When using a lower bound, as both
the and parameters reached that lower bound the

value moved toward a value of one, and degraded the
performance of the AMMO operator. When all the strategy

parameters reached the lower bound, the AMMO operator be-
came equivalent to the MMO, and the GMO was better suited
for local optimization due to its larger probability of generating
smaller mutations in comparison with the MMO and CMO.
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Fig. 3. The mean trajectory of the best member’s�0

i
(j) (averaged over all

dimensions,j, and over the 50 trials) parameter during the EP with AMMO
trials for the sphere(f1) and Rosenbrock(f3) functions with and without a
lower bound on the strategy parameters. Without a lower bound (i.e.,b = 0),
the�0

i
(j) values grew during the first 1000–2000 generations from one (which

was the value on initialization) to a value between four and ten (with the
exception of the outlier forf1; b = 0). The corresponding�0

i
(j) values when

using a lower bound showed a similar increase early in the trials, but were later
forced to lower values as the strategy parameters became close to the lower
bound. If evolution were carried on for a sufficiently long time and a lower
bound was used, all the strategy parameters would reach the lower bound
and the�0

i
(j) values would converge to 1.0. Similar results were observed in

experiments with the other test functions.

V. SUMMARY

Without a lower bound, the MMO and AMMO mutations
consistently produced solutions that were as good as or better
than those produced by Gaussian and Cauchy operators acting
alone. In seven of the nine test functions, the differences
between the quality of the solutions produced by the AMMO
and those produced by all other operators (GMO, CMO, and
MMO) were statistically significant. In addition, in eight of
the nine test functions, the MMO produced solutions that
were statistically better than those produced by using Gaussian
mutations alone.

With a lower bound, on eight of the nine test problems,
either the MMO or the AMMO mutations (or both) consis-
tently generated solutions that were as good as or statistically
significantly better than those produced by the GMO or CMO
mutations. The degradation in performance of AMMO relative
to that of the other operators when using a lower bound was
caused by the resulting constraints on the ratio of the Gaussian
and Cauchy parts of the AMMO mutations toward the end of
the trial. Such lower bounds must be designed in view of
their interactions with the mutation operators being used. The
addition of a lower bound on the strategy parameters did not
statistically significantly degrade solution quality on any of
the test functions as compared without using a lower bound.
In most cases, the lower bound actually enhanced the solution
quality by several orders of magnitude.

The success of the AMMO could be attributed to its ability
to adapt the shape of the pdf that generates the mutations

during the trial. These results indicate that self-adapting not
only the scaling factors but also the shape of the mutation pdf
can significantly enhance the quality of the solutions obtained,
and reduce the time taken to reach such solutions. Areas
for future investigation include other methods of combining
mutation operators and designing dynamic lower bounds that
can better interact with the utilized mutation operators.
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