2012 IEEE International Conference on Systems, Man, and Cybernetics

October 14-17, 2012, COEX, Seoul, Korea

Concurrency Control Program Generation by Decreasing Nodes of Program Trees
in Genetic Programming

Shinji Tamura

Teruhisa Hochin

Hiroki Nomiya

Graduate School of Science and Technology
Kyoto Institute of Technology
Kyoto, Japan
{hochin, nomiya}@kit.ac.jp

Abstract- This paper tries to generate an appropriate
concurrency control program by using genetic programming
(GP). In GP, a program is represented with a tree. Nodes of a
tree are selected from a symbol set. This paper tries two
symbol sets: the high-level symbol set and the reduced one. The
high-level one includes high-level symbols created by
combining conventional ones. In the reduced symbol set,
symbols are drastically decreased by changing the method of
implementing the concurrency control program. Automatic
defined functions (ADFs) are also used. Introducing high-level
symbols caused the increase of the number of symbols. This
made the program generation difficult. On the other hand, an
appropriate program could be generated with the reduced
symbol set. An ADF is also used in the program generated.

Keywords-concurrency control; program generation; genetic
programming; granurality

I. INTRODUCTION

Information and network technologies have rapidly and
widely spread. Databases have been used in various
application areas. Database management systems are used in
these areas. It tends to be difficult that a monolithic database
management system fits all of database application areas.
The database management system that could be adapted to
each database application area will be required [1, 2].

This paper focuses on the concurrency control
mechanism, which is a very important component of the
database management system because it guarantees the
reliability and influences the performance of database
processing [3]. A series of database operations could be
treated as a unit in the database management system. This
unit is called a transaction. Features of transactions differ
according to the database application areas. Examples of the
features are the number of operations, the ratio of write
operations to read ones, the number of tables manipulated,
and the time period of the first operation to the last one.
These features influence the concurrent execution of
database operations. When all of operations are read ones, all
of operations could concurrently be executed. When all
operations are the write one updating the value of the same
data item of the same table, all of the operations must serially
be executed. That is, no operations could concurrently be
executed. The concurrency control mechanism controls
concurrent execution of the operations. The concurrency
control mechanism suited to a database application area may

978-1-4673-1 714-6/1(?/$3,1 !09 ©2q(1 2 |EEE

Authorized licensed use limited to: Wi

ipedia. Downloaded on J

be different from that suited to another one. The database
management system, however, supports only one
concurrency control mechanism in spite of kinds of database
application areas. Overhead of concurrency control, which
may not be needed for a specific database application, may
have to be paid. This may degrade the performance of
database processing. The concurrency control mechanism
suited to each database application is preferred.

We have proposed a generation method of concurrency
control program suited to a specific database application by
using Genetic Programming (GP) [10,11]. The functions and
the terminals of program, and the fitness measure function
used in GP have been proposed. The functions and the
terminals include those for the management of concurrent
execution of database operations. This management is
captured as procedures using the variables attached to data
items and transactions. The experiments of the program
generation showed that the popular locking algorithm could
be generated under the concurrent environment, while the
algorithm better than the popular locking algorithm could be
generated under the not-so-concurrent environment [10].
Moreover, the generation method has been extended to
support semantic concurrency control [11].

Although some programs could be generated, the
programs generated are similar to the conventional
concurrency control programs. This may be due to the initial
program specified. If the initial programs are not specified,
the appropriate programs are not generated. This may be
caused by a large number of functions and terminals of
programs.

This paper tries to generate appropriate concurrency
control programs by using GP. The usage of automatic
defined functions (ADFs), the introduction of high-level
functions and terminals, and the reduction of the functions
and terminals are examined. It is experimentally shown that
the reduction of functions and terminals is effective, while
the others are not.

The remaining of this paper is as follows: Section II
describes GP and concurrency control mechanism. The
generation method of concurrency control mechanism is
described in Section III. Section IV describes several
approaches in order to generate appropriate concurrency
control programs by using GP. The experiments of the
program generation are conducted in Section V. Section VI
gives some considerations. Section VII concludes this paper.

&Qg§2,2024 at 14:36:22 UTC from IEEE Xplore. Restrictions apply.

II. PREPARATION

A. Genetic Programming

Genetic Programming (GP) is a biologically inspired
method that is able to create computer programs from a high-
level problem statement [8, 9]. GP works on populations of
solution candidates for a given problem and is based on
Darwinian principles of survival of the fittest (selection),
recombination (crossover), and mutation. GP generates the
program suited to the situation.

In GP, computer programs are represented with rooted,
labeled structure trees, which are called program trees in this
paper. Nodes of trees are functions or terminals. Terminals
are evaluated directly, while functions are evaluated after the
evaluation of children’s nodes. Functions and terminals are
called symbols in this paper. An example of a program is
shown in Fig. 1. The leaf nodes of the program tree are
terminals. The other nodes are functions. The root node,
which is the function /F, evaluates the condition specified at
the first argument, which is the left sub-tree. The left sub-tree
represents the condition whether the variable X is larger than
the variable Y. When the condition is satisfied, the second
argument, which is the right sub-tree, is invoked. In the right
sub-tree, the value of the variable Z is set to zero.

Before GP begins, a symbol set of program trees, a
fitness measure function, termination criterion, and
parameters are prepared. Based on them, the execution of GP
begins. At the beginning, the population of programs is
arbitrarily initialized. Then, the genetic programming cycle
begins. The fitness of a program in the population is
calculated by using the fitness measure function. Based on
the fitness obtained, some programs are selected. By
applying the genetic operations, i.e., mutation, crossover, and
copy, to the programs selected, the next population of
programs is created. When the termination condition, which
is usually on the number of generations, meets, the genetic
programming cycle terminates, and the best program is
obtained.

Figure 1. Example of a program used in GP.

Figure 2. A program tree including ADF definitions.

The automatic defined function (ADF) is one of the well-
known extensions to the basic program trees [9]. The main
idea of ADFs is that program code is organized into useful
groups (subroutines). This enables the parameterized reuse of
code. The data structure of a program using ADFs is shown
in Fig. 2. The program tree of the main program resides at
the right sub-tree of the root node. Sub-trees residing at the
left of the root node are for ADFs. The program of an ADF
resides at the sub-tree under the node VALUES. The ADFs
defined at the left of the root node could be used in the main
program. For example, in the case of ADFO, the function
named ADFO can be used in the main program.

Please note that genetic operations are applied to the
main programs, or the ith ADFs. That is, genetic operations
are applied to neither the main program and an ADF, nor the
ith ADF and jth ADF.

B. Concurrecy control

Transaction-processing systems usually allow multiple
transactions to run concurrently [3]. Here, a transaction is a
collection of operations that form a single logical unit of
work. Allowing multiple transactions to update data
concurrently causes several complications with consistency
of the data. Ensuring consistency in spite of concurrent
execution of transactions requires extra work. This work is
called concurrency control. As the serial execution of
transactions never violates consistency, it is the criterion of
keeping consistency. The schedule which is obtained by
putting the operations of transactions one transaction by one
transaction is called a serial schedule. When the effect of a
schedule is the same as that of a serial schedule, consistency
is kept. Such a schedule is called a serializable schedule.

The most popular method is to allow a transaction to
access a data item only if it is currently holding a lock on
that item. There are usually two kinds of mode: a shared-
mode lock, and an exclusive-mode lock. If a transaction 7i
has a shared-mode lock on a data item Q, then 7i could read
0, but could not write Q. Another transaction 7j could also
read Q. If a transaction 7i has an exclusive-mode lock on a
data item Q, then 7i could read and write Q. No other
transactions could read or write Q. A shared-mode
(exclusive-mode, respectively) lock is also called a read
(write) lock. One protocol ensuring consistency in spite of
concurrent execution of transactions is the two-phase locking
protocol (2PL). This protocol requires that each transaction
issues lock and unlock requests in two phases: the growing
phase and the shrinking one. Once a transaction releases a
lock, the phase of the transaction turns to the shrinking phase
from the growing one, and the transaction could not acquire
any new locks.

Another method is to select an ordering among
transactions in advance. The most popular method is a
timestamp-ordering protocol (TSO). In this protocol, a
timestamp is assigned to each transaction. The timestamp
may be a value of the system clock of the computer. The
timestamps of transactions determine the order of the
execution.

These protocols
serializable.

guarantee that the schedules are

Authorized licensed use limited to: Wikipedia. Downloaded on J&Qgé2,2024 at 14:36:22 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Outline of generation system of concurrency control program.

III. CONCURRENCY CONTROL PROGRAM GENERATION
SYSTEM

A. Outline

A concurrency control program controls transactions to
be concurrently executed with ensuring the consistency of
data. The concurrency control program suited to an
application program is tried to be generated by using GP

[10,11]. The outline of the generation system is shown in Fig.

3. The steps of this system are as follows:

(1) Parameters for specification of transactions and genetic
operations are specified.

(2) Transactions are invoked.

(3) A schedule is obtained by ordering the operations
issued from the transactions according to the order of the
generation time of the operations.

(4) Concurrency control programs generated revise a
schedule.

(5) Fitness of the concurrency control program is obtained
by evaluating the revised schedule.

(6) Concurrency control programs are selected from the
current ones based on the fitness.

(7) Genetic operations are applied to the concurrency
control programs selected in Step (6) to generate the next
generation’s programs.

(8) If the number of generations does not reach the limit,
then repeat from Step (4). Otherwise, the generation system
terminates, and the best concurrency control program is
obtained.

The roulette-wheel selection is used as the selection
method in Step (6). A selection is made with probability
proportional to the fitness value. A roulette-wheel, whose
sectors’ widths are proportional to the fitness value, is spun,
and the sector where the ball falls is selected [9].

Parameters specified in Step (1) are explained here after.
These are the parameters of specifying transactions and
genetic operations.

1) Specification of transactions: The parameters of the
features of transactions are the number of transactions
concurrently executed (pl), the number of data items
manipulated by a transaction (p2), the ratio of write
operations to all of operations (p3), the maximum number of
operations a transaction (p4), and the probability of abortion
of a transaction (p5). The larger pl and p3 are, the more
conflicts arise because many requests of writing data to the
same data item occur. The less p2 is, the more conflicts arise
because of the same reason described above.

The transactions invoked in Step (2) issue operations
according to these parameter values.

2) Specification of genetic operations: The parameters
of genetic operations are the maximum number of
generations (s1), the number of programs a generation (s2),
specification of the initial program (s3), the maximum depth
of a program (s4), the growing method of a program (s5), the
probability of crossover of functions (s6), the probability of
crossover of terminals (s7), the probability of copying a
program (s8), the number of schedules used in the learning
(s9), the number of schedules used in the evaluation (s10),
the preference of small programs (s11), specification of the
initial ADF program (s12), the maximum depth of ADFs
(s13), and the growing method of ADFs (s14).

When the existence of initial program is specified by s3,
a program written in S-expression is required. The growing
method specified by s5 is that the program randomly grows,
or that it grows until the depth specified by s4. The
possibility of mutation is calculated by the equation 1.0 — s6
— 87 — s8. The fitness calculation considers s9 and s10. The
parameters s12 to s14 are for ADFs. These correspond to s3
to s5 for the initial program, respectively.

The function and terminal sets as well as a fitness
measurement function have to be determined for using GP.
These are explained as follows.

B. Structure of program

As the concurrency control program uses the information
of the status of data items and transactions, a data item or a
transaction was enabled to have variables. These variables
are called control variables. The operations manipulating
control variables are adopted as the functions of program.

A transaction is often related to a data item. The variable
binding a transaction to a data item has been introduced. This
variable is called the shared control variable. All of the
operations except for the one setting a data value to a control
variable are the terminals of program.

Other terminals include the operations obtaining the
identifier of a transaction, and the identifier of a data item,
those obtaining a value, e.g., zero, and one, the one of
aborting a transaction, and the one making a transaction fall
in the waiting state.

The condition evaluation operations were also adopted as
functions because flow of program has to be branched
according to the wvalues in wvariables. Functions for
concurrency control are also included. Please refer to our
previous work [10].

Authorized licensed use limited to: Wikipedia. Downloaded on 3[119252,2024 at 14:36:22 UTC from IEEE Xplore. Restrictions apply.

C. Fitness measurement function

Fitness is calculated by using the following six factors:
serializability, the degree of concurrency, the response time
of a transaction, the abort ratio of transactions, the size of
program, and the degree of conflict equivalence.

The re-arranged schedules have to be serializable for
ensuring consistency in spite of concurrent execution of
transactions. This is very important for concurrency control.
When the serializability is not confirmed, the evaluation
value is set to zero.

The smaller the program is, the better it is when the
program is the same. The size of program is introduced for
this measure.

The other four factors are the popular measures of scaling
the goodness of the concurrent execution of transactions.
Please refer to our previous work [11,10] for further
information.

IV. APPROACH

A. Using ADFs

Control variables and shared ones have been introduced
in order to attain the generality of programs generated as
described before. This means that the programs are generated
rather than are combined with some building blocks. This,
however, leads the fine grained nodes of program trees. A
program must have many nodes in order to have appropriate
functionality. For example, the program of 2PL needs 177
nodes. The possibility of the creation of the proper program
by combining nodes is very low. The possibility must be
increased.

Here, ADFs make the reuse of code possible as described
in Section 2. By using ADFs, the same code does not have to
be combined many times. The code could be combined as an
ADF. This will decrease the number of nodes required for a
proper program. ADFs are introduced to program trees.

B. Symbol Sets

1) High-level symbol set: GP is usually used in creating
programs from high-level statements [8]. The symbols
proposed are not considered to be high-level statements. This
makes the program generation difficult. Proper programs are
very hard to be generated. The symbols are required to be
high-level statements.

To this end, high-level symbols are created by combining
conventional symbols, which are functions and terminals.
For example, the high-level function DataVallDOisStatel is
created by combining conventional functions and terminals.
This function invokes the argument if the value of the control
variable, whose ID is zero, is equal to one.

a) High-level functions: The functions checking a value
of a variable are introduced as the high-level functions. This
function invokes the argument specified if the value of the
variable whose ID is x is equal to y. Variables are control
and shared control ones. The tests include the equality-test
and the comparison. In the comparison, a value can be
compared with the identifier of a transaction.

We currently limit that the identifiers of control and
shared control variables are zero, one, or two, and the values
are also zero, one, or two.

The number of the high-level functions is 45.

b) High-level terminals: The terminals setting a value
to a variable are also introduced as the high-level terminals.
Variables are control and shared control variables. The high-
level terminals currently have the same limit as that of the
high-level functions.

The number of the high-level terminals is 21.

The total number of symbols becomes 112. The symbol
set including the high-level functions and terminals is called
the high-level symbol set.

2) Reduced symbol set: We have introduced control
variables and shared ones. This means that we must prepare
two sets of functions for the operations treating two kinds of
variables: control ones and shared control ones. This causes
the increase of functions. Shared control variables could not
be simulated by control variables, while control variables
could be simulated by shared ones. We decided not to use
control variables. Shared control variables are used instead
of control variables. For this purpose, six functions are
introduced. For example, one of the functions checks
whether the data manipulated by the current operation has a
shared control variable whose value is equal to one. Limiting
the usage of variables to shared control variables could
drastically decrease symbols. The number of symbols
becomes 47. This symbol set is called the reduced symbol set.

C. Revising the fitness function

The fitness measure function described in Section 3 is
very sensitive. The difference between the fitness of the
program, which is a little bit effective, and that of the one,
which is currently not effective but may become effective, is
very large. This prevents the program, which will become
effective, from being bred. This kind of program as well as
the program, which is not valuable, could not remain. In
order to decrease such difference, Equation (7) is adopted.

E'=(log, E)+1.0 (N

The base of a logarithm is determined to be four
according to the result of the pre-examination.

V. EXPERIMENTS

A. Procedure

Table I (Table II, respectively) shows the values of the
parameters on transactions (genetic operations). The values
of the parameters s3 and s12 are varied in the experiment.

Making the number of the values operated (p2) be less
than that of transactions (p1) and making the probability of
write operations be high result in the situation where
conflicts easily occur.

The concurrency control programs tried to be generated
are the semantic ones [11]. Semantic concurrency control
programs improve concurrency of executions of transactions
by considering the semantics of transactions. For example,
the operations of the transactions recording logs are the

Authorized licensed use limited to: Wikipedia. Downloaded on 3[119262,2024 at 14:36:22 UTC from IEEE Xplore. Restrictions apply.

APPEND operation rather than the UPDATE operation. The
APPEND operations do not conflict each other. Whereas this
operation is a kind of WRITE operation and usually conflicts
other operations, it does not conflict with other operations in
this case. By using this characteristic, concurrency could be
improved because two APPEND operations could
concurrently be executed. The extension for capturing the
semantic information on the operations has been introduced
in our previous work [11]. The experiment follows this
extension.

TABLE L. PARAMETERS FOR TRANSACTIONS
Param. Description Value
pl Number of transactions 10
p2 Maximum number of data items 3
p3 Ratio of write operations 0.8
p4 Maximum number of operations 10
pS Probability of abortion of a transaction 0.1
TABLE II. PARAMETERS FOR GP
Param. Description Value
sl Number of generations 1000
s2 Number of programs a generation 1000
s4 Maximum depth of a program 8
85 Growing method of a program random
s6 Probability of crossover of functions 0.1
s7 Probability of crossover of terminals 0.6
s8 Probability of copying a program 0.1
s9 Number of schedules used in the learning 900
s10 Number of schedules used in the evaluation 100
sl Preference of small programs 0.005
s13 Maximum depth of trees of ADFs 6
sl4 Growing method of ADFs random

The two symbol sets are used in the experiments.

1) Experiments with the high-level symbol set: The
following three experiments are conducted with the high-
level symbol set.

a) Experiment with initial programs: The programs of
the locking protocol, 2PL, and TSO are specified as initial
programs. One individual at the initial generation is the
initial program specified. As three kinds of programs are
specified, three individuals at the initial generation are the
programs specified.

b) Experiment without initial program: No initial
program is specified.

c) Experiment with initial ADFs: Initial ADFs are set
to the ADFs of a half of individuals at the initial generation.

Three kinds of ADFs are used as the initial ADFs. These are
obtained by decomposing the program of the locking
protocols. One is the main process of locking. That is, if the
data item is already locked, then the transaction waits for the
release of the lock. Otherwise, the transaction gets the lock
of the data item. Another is of the termination processing of
locking. This releases the variables used. The other is of a
kind of control. If a shared control variable is used, the
function or terminal specified is executed.

2) Experiment with the reduced symbol set: The
experiment is conducted with the reduced symbol set and no
initial program.

B. Experimental Result

1) Experiments with the high-level symbol set:

a) Using initial programs: The programs generated are
neither degraded from the initial programs, nor greatly
evolved. The average of the fitness scores is 5.8. That of 2PL
is also 5.8. The highest score is 6.0 for both of the programs.

b) No initial program: The program obtained aborts the
transaction if the operation is READ. This program is called
the READ abort program. The average of the fitness scores
is 5.1, while that of 2PL is 5.8.

¢) Using initial ADFs: The program generated is
almost the same as the READ abort program. This may be
caused by that this program is created before the program
obtained by combining ADFs is created. As the fitness of
this program is high, it is considered that this program could
survive. The average of the fitness scores is 4.5. That of 2PL
is 5.6. The highest score of the program generated is 5.0,
while that of 2PL is 5.9.

2) Experiment with the reduced symbol set: The
program could successfully be created. The program created
is not a trivial one. The main program only calls an ADF. In
the ADF, the value 0 is set to the shared control variable if its
value is 2. Next, it is tested whether the data manipulated by
the current operation has a shared control variable whose
value is equal to two. If so, the transaction is fallen into the
WAIT state. If the operation is the last one, all of the shared
control variables are deleted. Lastly, the value 2 is set to the
shared control variable. The program generated is a kind of
the locking protocol. Please note that an ADF is used
whereas initial ADFs are not specified. The average value of
the fitness scores is 4.3. That of 2PL is 5.9. The highest score
of the program obtained is, however, 5.8, while that of 2PL
is 6.0. The highest score of the program generated is nearly
equal to that of 2PL.

VI. CONSIDERATION

The numbers of symbols and those of the nodes of the
program of 2PL are shown in Table III. When the number of
symbols is large, the program having a few nodes such as the
READ abort program could be generated. It is, however,
considered that it is difficult to generate the program large

Authorized licensed use limited to: Wikipedia. Downloaded on 3[119252,2024 at 14:36:22 UTC from IEEE Xplore. Restrictions apply.

TABLE III. NUMBERS OF SYMBOLS AND NODES OF PROGRAMS

Number of Number of
Symbol set symbols nodes for 2PL
Conventional symbol set 40 177
High-level symbol set 112 72
Reduced symbol set 47 52

enough to have the sufficient functionality of concurrency
control. This may be caused by the huge number of
combination of symbols due to the large number of symbols.
When the number of symbols is less than 50, an appropriate
program could be generated as shown in Table III.

The high-level symbols are introduced in order to easily
generate appropriate programs. The number of the nodes
required for appropriate programs, e.g., 2PL program, could
be decreased. On the contrary, the number of the symbols in
the symbol set has increased. This results in the explosion of
combination of symbols. Introducing high-level symbols is
not a good approach.

The number of symbols could drastically be decreased by

limiting the usage of variables to the shared control variables.

This seems to be a good direction. The program, which may
become appropriate, could be generated.

Nodes of program trees that could be randomly selected
are used in many applications of GP. The program used in
system often proceeds works with managing information.
For this end, variables are used. For using a variable in a
program, the variable is required to be defined, initialized,
manipulated, and often used in the condition evaluation. For
example, a counter is used for counting a number of events.
When a variable X is used, the variable X must be defined or
declared. The variable X must usually be initialized. The
value stored in X is incremented when an event occurs. The
value stored in X may be used in testing whether the
condition is satisfied. In this way, the information is
managed with variables. Please note that all of declaration,
initialization, manipulation, and utilization are inevitable.
Lacking one of them makes the program no meaning. The
kind of system program including the concurrency control
one requires this kind of combination. It is considered to be
very difficult for the combination for the proper program to
be generated by randomly combining symbols. Easy
acquirement of proper combinations is required.

Although we considered the usage of initial programs
effective, it may not be correct. By using initial programs, it
may become easy to generate appropriate program. The
program generated, however, strongly receives the effect of
the initial programs. It seems to be hard for the programs to
escape from the initial states.

The fitness measure function is considered to be one of
the reasons why appropriate programs could not be
generated by using initial ADFs. As READ operations are
very few, aborting the transactions including the READ
operation may not affect the fitness. In this case, it may be
required that aborting transactions leads to low fitness. For
this end, weighting terms of the formula of calculating
fitness values may be required.

VII. CONCLUDING REMARKS

This paper tried to generate an appropriate concurrency
control program by using GP. We used ADFs and introduced
high-level symbols in order to make the symbols high-level.
Introducing high-level symbols results in increasing the
number of the symbols. This makes the program generation
difficult. On the other hand, decreasing the number of the
symbols caused the generation of appropriate programs.
ADFs are also used in the program generated.

By wusing only shared control variables, every
concurrency control program could not be implemented. For
example, TSO could not fully be implemented. In TSO,
timestamps are added to data items. Adding timestamps to
data items is difficult to be implemented with only shared
control variables, while it is easy with control variables.
Managing information on data items with shared control
variables is in future work. The previous section describes
that obtaining the proper combination of the operations to
variables is required. Easy acquirement of proper
combinations is also in future work. Weighting the terms of
the formula of calculating fitness values is required as
mentioned in the previous section. It is also in future work.

REFERENCES

[1] M. Stonebraker, and U. Cetintemel, “One size fits all : an idea whose
time has come and gone,” Proc. of the 21st Int’l Conf. on Data
Engineering (ICDE2005), 2005, pp. 2-11.

[2] M. Seltzer, “Beyond Relational Databases,” Commun. ACM, vol. 51,
no. 7, 2008, pp. 52-58.

[3] A. Silberschatz, H. Korth, S. Sudarshan: Database system concepts,
Mc-Graw-Hill, 2002.

[4] G. T. Heineman, and G. E. Kaiser, “The CORD approach to
Extensible Concurrency Control,” Proc. of the 13th Int’l Conf. on
Data Engineering (ICDE97), 1997, pp.562-571.

[5] C. Hasse and G. Weikum, “Inter- and Intra- Transaction Parallelism
for Combined OLTP/OLAP Workloads,” Advanced Transaction
Models and Architectures,” (S. Jajodia and L. Kerschberg eds.),
Kluwer Academic Publishers, 1997.

[6] B. R. Badrinath, and K. Ramamritham, “Semantics-Based
Concurrency Control: Beyond Commutativity,” ACM Transactions
on Database Systems, Vol. 17, No.1, 1992, pp. 163-199.

[7] R.S. Barga, and C. Pu, “A Reflective Framework for Implementing
Extended Transactions,” Advanced Transaction Models and
Architectures,” (S. Jajodia and L. Kerschberg eds.), Kluwer
Academic Publishers, 1997.

[8] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham, “Genetic
Algorithms and Genetic Programming: Modermn Concepts and
Practical Applications,” CRC Press, 2009.

[9] H.Iba, T. K. Paul, and Y. Hasegawa, “Applied Genetic Programming
and Machine Learning,” CRC Press, 2010.

[10] S. Tamura, T. Hochin, and H. Nomiya, “Generation Method of
Concurrency Control Program by Using genetic Programming,” Proc.
of 12th ACIS Int'l Conf. on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD2011), pp. 175-180, 2011.

[11] S. Tamura, T. Hochin, and H. Nomiya, “Generation of Semantic
Concurrency Control Program by Using genetic Programming,” to
appear in Proc. of 1st IIAI/ACIS Int’l Symposium on Innovative E-
Services and Information Systems (IEIS2012), 2012.

Authorized licensed use limited to: Wikipedia. Downloaded on J&Qg§2,2024 at 14:36:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

