
CYCLIC GENETIC ALGORITHMS FOR EVOLVING
M ULT I-LOOP CONTHOL PROGRAMS

GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu
1VO 1. PARASHKEVOV, CONNECTICUT COLLEGE, USA, ilpar@conncoll.edu

H. JOSEPH BLUMEN’I’HAL CONNECTtCUT COLLEGE, USA, hjblu@conncolt.edu
TERRENCE W. CUILDMAN, CONNECTICUT COLLECE, USA, twgul@conncoll.edu

ABSTRACT
The Cyclic Genctic Algorithm (CGA) has proven to be an effective method Tor evolving single loop
control programs such as ones used for gait generation. Thc current limitation of the CGA is that it does
not allow for conditional branching or a multi-toop program. which is required io integnte sensor input.
In this work, we extend the capabilities of the CGA to Evolve the program for a controller that
incorporates sensors. To test our new method, we chose to evolve a robot in simulation that is capable of
efficiently finding a statinnary target.
KEYWORDS evolutionary rohorics, gencric algorithms, sensors, learning, search, hcxapod

I . INTRODUCTION
The Cyclic Genetic AlgorIthrn [CCiA), a variant of the traditional CA, has successfulty been used to

evolve single loop control programs for hexapod gaits and area coverage path planning. However, in
order for a robot to react properly to sensor input, the controller must he running a multi-loop program,
which is only possihle i f a system of conditional branching can be implemented. In this paper we modify
the gene structure of the CGA chromosome to implement a system of conditional branching. To show the
success o f a CGA evolving multi-loop control program we chose a search task in which an agent is
charged with locating a randomly placed target. To test our new method, we chose to evolve a robot in
simulation that is capable of eficiently finding a stationary target. The evolved behavior must enable the
rohot to properly interpret sensor inpot to avoid walls and locate the desired target. The agent modeled in
simulation is a hexapod robot equipped with four sensors. The task of learning search behavior for
autonomous robots has been approached in several ways.

A common approach to evolve intelligent agents is to use Genetic Programming (GP) [I]. Busch et
al. [2] used GP to evolve robot contmllcrs to prcducc gaits for simulated robots. This SlGEL system was
able to produce gaits for robots independent of their specific morphology. G P has also becn used to
integrate sensor input into a learning system. One example is Lazarus and Hu [3] who simulated robots
with sensors to perform wall-following and obstacle avoidance tacks. Nordin et al [4] also evolved wall-
following agents which performed successfully both in simulation and on a Khepera robot.

Another method for learning controllers responding to sensor input is the evolution of an anificial
neural network for autonomous agents. This method involves employing the evolutionary algorithm to
evolve connection weights and/or archiiectures for arrificial neural networks [SI. Beer and Gallagher [6]
demonstrated that genetic algorithms can be used to evolve effective neural networks, and successfully
evolved chemo-taxis and legged locomotion controtlen. Floreanno and Mondada [7] evolved neural
networks io control homing and navigation on a Khepera robot. The robot’s task was to navigate through
a corridor while performing obstacle avoidance and locating a charging station before thc robot’s batteries
lost power. This was a challenging task given that the robot was never told the coordinates ofthe charging
station nor did the fitness function directly reward the individual for reaching the station itself. Lund and
Orazio [8] evolved a neural network controller for a Khepera robot capable of avoiding walls and
obstacles in an enclosed area. They then successfully transferred the neural network conrrol system from
simulation to the actual Khepera robot for further evotution.

347

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:01 UTC from IEEE Xplore. Restrictions apply.

mailto:parker@conncoll.edu
mailto:ilpar@conncoll.edu
mailto:hjblu@conncolt.edu
mailto:twgul@conncoll.edu

The goal oC our work is to use a CCA to evolve the controller For a hexapod robot equipped with four
sensors to eiiable the agent to scarch a given space while avoiding the walls. Cyclic Genetic Algorithms
have been applied to several areas of research, but have not yet been used to evolve control programs
which incorporate sensor input. In this paper, we propose a method o f arranging the genes o f the CGA
chromosome such that it can implcmrnt conditional branching to allow for the processing of sensor
information in a multi-loop program.

2. CYCLIC GENETIC ALGORITHM
The genetic algorithm (GA) was introduced by John I Iolland [9] as a parallel search algorithm which

simulated the process OF natural selection and survival of the fittest. In a GA, the three main genetic
operators of selection, crossover, and mutation are used to evolve a randomly generated population into a
set that includes a near optimal solution. Each individual in the population represents a possible solution
to the problem, usually encoded as a bit string called a chromosome. Groups of bits in this chromosome
can be considered lo be traits of the solution. Every individual in the population is evaluated objectively
using a mathematical formula called a fitness function. The probability of selection for crossover is based
on the individual’s fitness relative to the other members o f its population. Crossover is applied to two
selected individuals by splitting the chromosomes in a random place, and combining the first part of one
of the chromosomes with the second part of the other. Mutation i s then applied to the new chromosome
and a random bit or collection of bits can be altered based on some probability.

A Cyctic Genetic Algorithm (CGA) is much like a regular GA except that the gene groupings ofthe
chromosoine represent tasks to be complcwd as opposed to traits o f the solution. These tasks can be
anything fiom a single action to a sub-cycle of-tasks. Using this method of representation, it is possible to
break up a chromosome into multiplc genes with each gcnc acting as a cycle. Using this method of
representarion, it is possible to break up a chromosome into multiple genes with each gene acting as a
cycle. Each gena or sub-cycle contains two distinct scctions, one part representing an action or sct of
actions, and the second pari representing the number o f times that action is to be repeated. Thc entire set
of genes in the chromosome can also be executed repetitively, in which case the whole chromosome
becomes a cycle.

Parker used CGAs to evolve single-loop programs for robotic control of individual leg cycles [IO],
gait cycles for hexapod robots 11 I] , and area coverage patterns [IZ]. The CGA was well suited for these
problems because the solutions are cyclic in nature and required a single loop for control. Problems that
require dynamic changes in behavior depending on sensor input call for multi-loop control programs for
which a system of conditional branching must be implemented in the CCA.

3. THE SEARCH SIMULATION
The searching agent modeled in simulation is the ServoBot, which was developed for legged robot

and colony experimentation. It is a smatl inexpensive hexapod robot constructed from masmite (a hard
pressed wood), with mororized servos for actuators and a BASIC Stamp I I for coordinating the motion of
all six legs.

The simulation area i s a square with each side of length 500 units. The agent’s position in the
simulation area is described by i t s X and Y coordinates, as well 8s a number between 0 and 359 that
represents its heading. Since we are evolving searching behavior the target remains stationary, the target’s
position can be represeiited using only X and Y coordinates. At the start of each simulated evaluation, the
agent and the target are placed randomly In the square area. The evaluation ends as won as the agent
locates the target or il reaches the predefined limit of 400 steps.

The agent can execute one of thirty-two possible gait cycles. For more information see [12]. A gait
cycle i s deiined as the timed and coordinaled motion of the legs of a robot, such that the legs retum to the
positions from which they began the motion. The resultant position of the agent after executing a fu11 gait
cycle is a simulation of the measured movements of an actual ServoBot. It is calculated from a tabte of
stored values that show the change of the robot’s X and Y coordinates and heading. In the tahle of values,

348

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:01 UTC from IEEE Xplore. Restrictions apply.

fifteen of these gait cycles result in a lef t turn, another fifteen result in B right turn, and one gait is
designed to move the robot straight forward. The agent can remain motionless for the time it takes to
complete a full gait cycle and represents the robot's 32" gait. Unless the robot stands still it faces a trade-
ofT between large displacement and small rotation, or vice versa.

The agent is equipped with two types of sensors, one that would enable i t to detect the presence of a
wall within its range, and the other is capable of detecting the target when it is within range. The two
simulated sensors for wall detection are modeled alter sonar sensors. The other two sensors on the robot
are simulated to detect a light source that is the target. The robot has two sensors of each type or a total of
four sensors. Since each sensor has two possible states - U (inactive) and I (active). there are sixteen
possible comhinations o f sensor inputs. Although the robot bas four sensors, the chromosoine is designed
with only four different states because the two sensors dedicated for light detection end the simulation i f
either or both are triggered. The activation distance for each sensor is 80 units and the range uf its vision
spans 45 degrees. The two sensors of each type are situated at the front of the robot with their ranges
overlapping I O degrees. Thus the robot has a total sight range of 80 degrees and can detect walls or the
target at a maximum distance of 80 units away.

The agent and the target started the simulation from random positions for every evaluation. We
assigned 8 fitness score for each individual based on its performance avcraged over a fixed number of
trials, with the random starting positions. To ensure that the score of each individual was representative of
its fitness relative to the other individuals of the population, alt individuals in the same generation started
the simulation from the same randomly generated positions. Those starting positions were then reset
every generation.

To evaluate the performance of each individual we used the maximum nutnbe~ of steps the agent was
allowed to take and subtracted the number of steps i t actually took before i t detected the target. We then
took the average of that number for a l l tuns with different starting positions, and squared it. The resulting
fitness function is shown in Eq. (I) , where n was the number of starting positions for each generation. I f
the agent could not find the target once during a generation oftraining, it was assigned a nominal fitness.

4. CCA WITH CONDITIONAL BRANCHING
In order to produce an efficient search, we modify the standard CGA so that i t evotves a multi-loop

program that would switch from one loop to another depending on sensor inputs. The resulting algorithm
we call cyclicgenetic algorithm wiih conditional branching.

The chromosome shown in Figure 1 is a representation of a chromosome thai can be used for CGAs
with conditional branching. Each segment represents a control loop, a cycle that the rohot repeats as long
as the sensors' inputs stay the same. Each segment is linked to any number of other segments. This means
that one segment must be dedicated to every possible combination ofsensor inputs.

Figure 2 shows how the chromosome is represented and shows the breakdown of one of these
segments. The genes consist of a fixed number of pairs of integers. The first integer of the gene
determines which action is 10 he taken and the other dictates the number of repetitions of that action.
After performing one action the specilicd number of repetitions, the robot checks the state of the sensors.
If the sensor states are the same as the las t time they were checked, the robot goes on wiih the next gene
in the same segment. If it reaches the last gene in the segment, i t continues to cycle by begilining again
with the cxecution of the first gene in the segment. II'the sensor inputs are different than the last ones, the
robot halts the cyclc and jumps to the first gene of the segment that corresponds to the new sensor inputs.

349

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:01 UTC from IEEE Xplore. Restrictions apply.

oheok ;ensom

Figitre I. CGA wifh Coirdiitional Bvurrching Chromosome and a detailed view ofone oJ its segments.
The eraoiple chroniosvnie shown contains 5 segments. Each segment is a loop.

Our design requires one chromosome segment for each possible combination of sensor inputs. Since
the simulation of the search ended as soon as the agent found the target, only the two wan sensors were
implemented in the chromosome. This givcs four possible sensor input combinations and requires the
chromosome to have four segments, each with four genes. A gene is 8 hits long; 5 bits for the denoted
gait (32 possible actions), and 3 bits for the number of repetitions ofthat gait cycle. Thus the robot could
repeat the wmc action a maximum ofseven times before i t checked its sensor inputs. Each segmcnt had a
resulting size of 32 bits. and rhe enlire chromosome had 128 birs. Figure 6 gives a schematic of' the
chromosome.

Figure 2. The chroniusotne.

S. RESULTS
Initial experiments wrre done using ten, thirty, and fifty trials per individual per generation. I t was

determined that the best trade-off between computation time and objective representation of the overall
performance of each individual was obtained at ten trials per generation. To conduct a test of this mcthod
we randomly generated livc populations, each consisting of 64 individuats and evolved them for 2048
generations. Each individual was evaluated ten times, from ten randomly generated starting posirions. All
individuals from ihe same generation ran the simulatioii from the same ten positions. The fittest
individual from each generation was automatically included in the ncxt generation of training. The resi
were produced through the application of the CGA operators. The populations at generations 0, 32, 64,
128, 256, 512, 768, 1024, 1408, and 2048 were saved during training. Since the individuals from the
din'erent generations aarted the simulaion from different starting positions, the direct comparison oftheir
fitness score5 would not bc representative of their relative performance. Therefore we used a test program
that generated 100 random starting posirions, and had all individuals from all saved generations run the
simulation from them.

Figure 3 summarizes the results by comparing the average number of steps taken to find the target by
the hest individual of each generation of training. The fittest randomly generated solution (generation 0)

350

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:01 UTC from IEEE Xplore. Restrictions apply.

needed 201 steps on average, hut hy the 2048Ih generation the best solution needed only 154.2. The
oscillations of the curves on the graph demonstrate how the outcome of the evolution is affected by the
starting positions of the set of trials. Overall, the graphs show a steady learning process through time, and
a significant improvement o f performance.

n E x IOW 150D 2LxIn
Generations __ -

Figure 3. The results of the evoliirion c$/ive popidations with 64 brdividrtals, fbr. 2048 generations.
R e s u b were recordedalgenerarion 1. 32. 64. 128. 256, 384. SIZ, 11124, 14118, arid 2048. The besf

individual a1 each gemraliofi is shown. The average of'fhe besf./iorn euch of'fhc./ive yopilafions is shown
in hold.

When reviewing the results of these tests, one needs to take into consideration that the robot could
always randomly run into the target from the very beginning, regardless of the leve[of sophistication o f
i t s searching behavior. In addition, even a perfect solution would necessitatc taking a large number of
steps if the robot and the target started the simulation far apart, or if the robot simply did not face in the
direction ofthe target from the beginning.

Visuat obsewations of the performance of best individual from later generations showed that they had
successfully learned to avoid the walls of the square area. In the case of the best individual from
generation 2048 from Population 3, thc agent makes a sharp turn left upon wall detection. When the
sensors detect no walls the agent swings out in a wide circle tuming to the right hy using a zigzag motion
that enables it to maximize the area covered by its sensors. Figure 4 shows two of its resulting search
patterns. I t is evident that the robot is able to cover most orthe area without doubting hack into an area it
has already covered.

6. CONCLUSIONS
Our results demonstrate that we were successful in accommodation sensors in control programs

evolved by a CGA. The implementation of conditional branching allowed us to evolve a multi-loop
program that would jump from one loop to another depending on sensor inputs. In the future we plan to
apply this design to problems with greater complexity, Specifically, we plan on extending the current
simutation inlo a predator-prey Scenario by replacing the target with another simulated agent that will
attempt to elude the predator.

35 I

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:01 UTC from IEEE Xplore. Restrictions apply.

” . .
T i t agent j. position anddireclion ajiw each siep is shown,

7. REFERENCES
[I] J. K o a , Genelic P r o m ” m g , MIT Press, Cambridge, MA, 1992.
[23 J. Busch, J. ZiegIer, C. Aue. A. Ross, U. Sawitzki, and W. Banzhaf, “Automatic Generation of Control
Programs for Walking Robots Using Genetic Programming,” EuroGP 2002, LNCS 2278, 2002, pp. 258-
267.
[3] C. Lazarus and H. Hu, “Using Genetic Programming to Evolve Robot Behaviours,” Proc. Third
British Conference on Autonomous Mobile Robotics & Au~onomous Systems, Manchester, UK 2001.
[4] P. Nardin, W , Banzhaf, and M. Bramrizr, “Evolution of a World Model for a Miniature Robot using
Genetic Programming,” Rubdm urd Airlonamoirs Svstems, Vol. 25, 1998, pp. 105-1 16.
[5] Yao, X. “Evolving artificial neural networks,” Proc. IEEE, Vol. 87, No. 9, 1999, pp.1423-1447.
[6] R. D. Beer and J . C. Gallagher, “Evolving Dynamical Neural Networks For Adaptive Behavior,”
A- Vol. 1,No. I , 1992,pp. 91-122.
[7J D. Floreano and F. Mondada, “Evolution of Homing Navigation in a Real Mobile Robot,” E E
Transaclians on Sw/ems, Adan and Cvbernefics, Val. 26, No. 3, 1996, p p 3961107.
[rCJ H. H. Lund and 0. Miglino, “From Simulated to Real Robots,” Proc. IEEE Third Intcmationsl
Conference on Evolutionary Cmqx“ion, NJ, 19%.
[9] I. H. Ilollaad, n s , Ann Arbor, MI, The University of
Michigan Press, 1975.
[I O] G.B. Parker, “Evolving Leg Cycles to Produce Hexapod Gaits,” Proc. World Automation Congress,
Vol. IO, Robotic and Manufacturing Systems, 2000, pp. 250-255,
[f 13 G . E. Parker and G. J. E. Rawlins “Cyclic Genetic Algorithms for thc Locomorion of Hexapod
Robots,” Proc. World Automation Congress, Vol, 3, Robotic and Manufacturing Systems, 1996, pp . 617-
622.
1121 G. E. Parker, ‘‘Learning Control Cycles for Area coverage with Cyclic Genetic Algorithms,” Proc.
Sccond WSBS lnternarioiial Conference on Evolutionary Computation, 2001, pp. 283-289.

352

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:00:01 UTC from IEEE Xplore. Restrictions apply.

