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Abstract - In this paper, we consider two- 
level programming problems in which there are 
one decision maker (the leader) at the upper 
level and two or more decision makers (the fol- 
lowers) at the lower level and decision variables 
of the leader and the followers are 0-1 vari- 
ables. We assume that there is coordination 
among the followers while between the leader 
and the group of all the followers, there is no 
motivation to cooperate each other, and fuzzy 
goals for objective functions of the leader and 
followers are introduced in order to take fuzzi- 
ness of their judgments into consideration. The 
leader maximizes the degree of satisfaction (the 
d u e  of the membership function) and the fol- 
lowers choose in concert so as to  maximize a 
minimum among their degrees of satisfaction. 
A computational method, which is based on 
the genetic algorithms, for obtaining a solution 
to the above mentioned problem is developed. 
To demonstrate the feasibility and efficiency 
of the proposed algorithm, numerical experi- 
ments are carried out. 

KeyWords - Decentralized two-level 0-1 prob- 
lems, fuzzy goals, genetic algorithms. 

1. Introduction 

In this paper we consider situations where there 
are two or more decision makers at the same or 
different level of a hierarchy structure, with in- 
dependent and sometimes conflicting objectives, 
and each decision makers can directly control cer- 
tain variables. Such situations are referred to as 
multi-level problems. As an example of a two- 
level problem without cooperation between two 
decision makers, we cite the Stackelberg duopoly: 
Firm 1 and Firm 2 supply homogeneous goods to 
a market. Suppose Firm 1 dominates Firm 2 in 
the market, and consequently Firm 1 first deter- 
mines a level of supply and then Firm 2 decides 
its level of supply after it realizes Firm 1’s level of 
supply. This problem is often formulated as 

Ins (a  - b(q1 + 42))41 - C l Q l  

where q2  solves 
(a - b(q1 + 4 2 ) ) 4 2  - C2Q2,  
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where q; denotes Firm i’s level of supply, ci de- 
notes a unit cost of the good of Firm i, and a and 
b are constants. Objective functions of Firms 1 
and 2 are profits and a - b(ql+ q 2 )  denotes a price 
in the market. 

Each decision maker (firm) does not have a mo- 
tivation to cooperate each other in this situation. 
Studies on such a situation have been seen in the 
literature on game theory. This problem is mod- 
eled as the Stackelberg game, in which there are 
two decision makers, and one decision maker de- 
termines his/her strategy and thereafter the other 
decision maker decides his/her strategy [12]. Each 
decision maker completely knows objective func- 
tions and constraints of a,n opponent and him- 
self/herself, and the decision maker at the upper 
level (leader) first specifies his/her strategy and 
then the decision maker at the lower level (fol- 
lower) specifies his/her strategy so as to optimize 
his/her objectives with full knowledge of decision 
of the leader. According to the rule, the leader 
also specifies his/her strategy so as to optimize 
his/her own objective. Then a solution defined 
as the above mentioned procedure is called the 
Stackelberg strategy (solution). The Stackelberg 
strategy has been employed as a solution concept 
when decision problems are modeled as two-level 
programming problems. Even if objective func- 
tions of both the leader and the follower are linear 
and axe minimized subject to common linear con- 
straint functions, it is known that this problem is 
a non-convex programming problem with special 
structure. 

elberg solution to two-level linear programming 
problems are classified roughly into three cate- 
gories: the vertex enumeration approach taking 
advantage of a property that an extreme point of 
a set of best responses of the follower is also an 
extreme point of a set of the common constraints, 
the Kuhn-Tucker approach in which the leader’s 
problem with constraints involved optimality con- 
ditions of the follower’s problem is solved, and the 
penalty function approach which adds a penalty 
term to the leader’s objective function so as to 
satisfy optimality of the follower’s problem. 

Regarding studies on two-level programming 
problems with discrete variables, Bard and Moore 
develop algorithms based on the branch-and-bound 
technique for obtaining the Stackelberg solutions 
both to two-level 0-1 programming problems [5] 
and to two-level mixed integer programming prob- 

Computational methods for obtaining the Stack- 
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lems [4]. Wen and Yang [15] propose algorithms 
for obtaining the Stackelberg solution or its ap- 
proximate solution to a two-level programming 
problem in which decision variables of the leader 
are 0-1 variables while those of the follower are 
continuous variables. One of their algorithms is 
also based on the branch-and-bound technique, 
and it picks a 0-1 variable of the leader to make 
a node and creates two branches. Vicente, Savard 
and Judice [14] establish equivalences between two- 
level discrete linear programming problems and 
particular two-level linear programming problems 
by using penalty function methods. 

As for researches on two-level programming 
problems using genetic algorithms, Anandalingam 
et al. [2] present a genetic algorithm, which em- 
ploys a representation of individuals by not 0-1 
bit strings but a string of base-10 digits, for ob- 
taining the Stackelberg solution to two-level linear 
programming problems. 

are one decision maker (leader) at the upper level 
and two or more decision makers (followers) at 
the lower level, which are referred to as decentral- 
ized two-level problems. Especially, as an example 
of the problems, consider a problem relevant to 
Stackelberg duopoly. Suppose that there are n + 1 
firms supply homogeneous goods to a market, and 
a firm dominates the others, remaining n firms 
in the market, and consequently the dominating 
firm first determines a level of supply and then 
the remaining n firms decide their levels of supply 
simultaneously after they realize the dominating 
firm's level of supply. 

modeled such problems as follows. The leader first 
specifies his/her strategy and then the followers 
specifies their strategies so as to equilibrate their 
objectives for a given strategy of the leader. In the 
study of Shimize and Aiyoshi[ll], the leader op- 
timize his/her objective function under the condi- 
tions that decisions of the followers become Pareto 
optimal. 

We intend to devote this paper to examining 
situations when there is coordination among the 
followers while between the leader and the follow- 
ers, there is not a motivation to cooperate each 
other, and decision variables of the leader and the 
followers are 0-1 variables. We assume that fuzzy 
goals for objective functions of the leader and fol- 
lowers are introduced, the leader maximizes the 
degree of satisfaction (the value of the member- 
ship function) and the followers choose in concert 
so as to maximize a minimum among their degrees 
of satisfaction. A computational method, which 
is based on the genetic algorithms, for obtaining a 
solution to the above mentioned problem is devel- 
oped. To demonstrate the feasibility and efficiency 
of the proposed algorithm, numerical experiments 
are carried out. 

In this paper, we consider situations where there 

Simaan and Cruz 1131 and Anandalingam [l] 

2. Decentralized two-level0-1 programming 
problems 

Consider the following situation; the leader is 
a decision maker at the upper level and is denoted 
by DMO; the followers are p decision makers at 
the lower level and are denoted by DM1, ...7 DMp; 
DMO first determines his/her decision x E {O,l}"o 
and thereafter DM1, ..., DMp specify their deci- 
sions y j  E (0, l}"~, j = 1,. . . ,p simultaneously so 
as to optimize their objectives with full knowledge 
of decision x of DMO. According to  the rule, it is 
supposed that DMO determines his/her decision x 
so as to optimize his/her own objective. 

. . . .  
The followers 

Figure 1. Decentralized two-level structure 

A objective function of DMO, which is assumed 
to be minimized, is represented as 

20 = CO= + dolYl + . . * + dopyp, (1) 
where CO is no-dimensional row constant vector, 
and doj , j = 1, . . . , p are nj-dimensional row con- 
stant vectors j = 1,. . . ,p ,  respectively. Objective 
functions of DMi, i = 1,. . . , p ,  which are also as- 
sumed to be minimized, are represented as 

} (2) 

} (3) 

~1 = C1x + d l l y ,  + . . . + dlpYp, 

~p = C ~ X  + dply, + . . . + dppyp, 
................................ 

respectively, where ci, i = 1,. . . , p  are ni-dimen- 
sional row constant vectors, and d;j ,  i = 1,. . . ,p, 
j = 1,. . . , p  are nj-dimensional row constant vec- 
tors, respectively. 

All of the decision variables x and y l , .  . . , y p  
are constrained the following conditions in com- 
mon. 

Ax + B1yl + ... + Bpyp 2 e ,  
x E { O , l } " O ,  
y j  E (O,l}"J, j = 1,. . . ,p,  

where A is an m x no coefficient matrix, Bj, j = 
1,. - .  , p  are m x n; coefficient matrices and e is 
an m-dimensional column constant vector. Let S 
denote a feasible solution area expressed by (3). 

It is natural that decision makers have fuzzy 
goals for their objective functions when they take 
fuzziness of human judgments into consideration. 
For each of the objective functions zi, i = 0,1, . . . , 
p represented as (1) and (2), we assume that the 
decision makers have fuzzy goals such as "the ob- 
jective function zi should be substantially less than 
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or equal to some value pi." 

mum 
For DMi, i = 0,1,. . . ,p,  the individual mini- 

and the individual maximum 

zfax = max ciz + dily, + . . . + di,y,, (5) 

of the objective function are referred to when DMi 
elicits a membership function prescribing the fuzzy 
goal for his/her objective function zi, where y = 
(yl, . . . , y,). DMi determines the membership 
function pi (zi), which is strictly monotone decreas- 
ing for zi, consulting the variation ratio of degree 
of satisfaction in the interval between the indi- 
vidual minimum (4) and the individual maximum 
(5). The domain of the membership function is 
the interval [,pin, z y x ] ,  i = 0 , 1 , .  . . , p ,  and DMi 
specifies the values z! of the objective functions 
for which the degree of satisfaction is 0 and the 
value z: of the objective function for which the 
degree of satisfaction is 1. For the value undesired 
(larger) than z!, it is defined that pi(zi) = 0, and 
for the value desired (smaller) than z:, it is defined 
that pi(z i )  = 1. 

For the sake of simplicity, in this paper, we 
adopt a linear membership function, which char- 
acterizes the fuzzy goal of DMi. The correspond- 
ing linear membership function pi(zi) is defined 

=,V€S 

as: 
if zi > z: {: ' if zi 5 z t ,  

2. - 28 
z! - zP ' Pi(Zi) = - ' if z: < z; 5 z: (6 )  

where z! and z: denote the values of the objective 
function zi(z) such that the degree of membership 
function is 0 and 1, respectively, and it is assumed 
that the DMi subjectively assess z: and 2;. 

Figure 2. Linear membership function 

For the followers, suppose that applying the 
way suggested by Zimmermann [16], DMi specifies 
z: and z t  for i = 1, . . . ,p  in the following. That is, 

using the individual minimum zmin together with 

z r  = max{ciz + dily, + . . . + d;,y, I 
(z, y) E { (zOOPt, yoopt), . . . , @Popt, y"'"}}, (7) 

where ( & O p t ,  yjopt) denote an optimal solution to 
the individual minimum (4) for DMj, DMI de- 
termines his/her linear membership function as in 
(6 )  by choosing zt = zyin and z? = z r .  For the 
leader, suppose that DMO determines his/her lin- 
ear membership function by choosing z: = zrin 
and z: = zma. 

We assume that the followers (DM1, ..., DMp) 
choose in concert so as to maximize a minimum 
among degrees of their membership functions. 
Then we can model the situation as the'following 
decentralized two-level 0-1 programming problem: 

m ~ P o ( w  + &lYl + ... + dopyp) 
where y solves 
max.min pi(cix + &yl +-- .+di ,y , )  
s. t. Ax + Bly, + 

x E {O, lino, 

y z=l, . . . ,p  

+ Bpyp 2 e, 
.~ 

yj E {o,l}nj, j = 1 , .  . . ,p. I 
In this formulation, the followers (DM1, ..., 

DMp) maximize their aggregated degree of sat- 
isfaction mini=l,...,, pi(cix + &yl +. . . + d;,y,). 
This aggregated degree of satisfaction is nothing 
else but the fuzzy decision proposed by Bellman 
and Zadeh [SI, which is often employed as a solu- 
tion concept in fuzzy environments. 

3. Computational method using genetic al- 
gorithms with double strings 

We assume that all the coefficients (entries of 
A,  Bj, j = 1 , .  . . ,q and e )  of the constraints (3) 
are positive in order to effectively solve the prob- 
lem through genetic algorithms with double strings 
proposed by Sakawa et. al. [lo]. 

To solve the problem (8) ,  we intend to phase 
usage of genetic algorithms (GAS) with double 
strings. That is, the decision variables x of the 
leader (DMO) are reproduced according to the GAS 
and, for given z, the decision variables y of the 
followers (DMi, i = 1 , .  . . , p )  are also reproduced. 
We propose an algorithm summarized as follows: 

An algorithm for obtaining solutions to de- 
centralized two-level 0-1 programming prob- 
lems 

Step 1 Generate Nl initial individuals for the 
decision variable x of the leader at random. 

Step 2 For each individual of x, the following 
procedure is repeated. 
Step 2-1 Generate N f  initial individuals for 

the decision variable y of the followers at ran- 
dom. 

Step 2-2 Evaluate each individual for the de- 
cision variable y with the given x on the basis 
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of phenotype ((no+nl+. . -+np)-dimensional 
vector) decoding from genotype (string). 

Go to Step 3 after the procedure 
of the GA with respect to the followers is 
repeated M f  times, which is the number of 
generations specified in advance. 

Apply a reproduction operator, and 
thereafter apply a crossover operator and a 
mutation operator to y according to the prob- 
abilities of crossover and mutation. Return 
to Step 2-2. 

Evaluate each individual for the decision 
variable z with an optimal individual y(z) on 
the basis of phenotype decoding from genotype. 

Step 4 Stop the algorithm after the procedure 
of the GA with respect to the leader is repeated 
MZ times, which is the number of generations 
specified in advance. Regard an individual with 
the maximal fitness as an optimal individual 

Step 2-3 

Step 2-3 

Step 3 

(2, Y). 
Step 5 Apply a reproduction operator, and 

thereafter apply a crossover operator and a mu- 
tation operator to x according to the probabil- 
ities of crossover and mutation. Return to Step 
2. 

We will describe the above procedure in detail. 

3.1. Coding and decoding 

For solving 0-1 programming problems through 
genetic algorithms, an individual is usually rep- 
resented by a binary 0-1 string[8], [9]. This r e p  
resentation, however, may weaken ability of ge- 
netic algorithms since an individual whose phe- 
notype is feasible is scarcely generated under this 
representation. In this paper, as one possible ap- 
proach to generate only feasible solutions, a dou- 
ble string as is shown in Figure 3 is adopted for 
representing an individual, where s i z ( k )  E {1,0}, 
i z ( k )  E (1,. ..,no}, and i,(k) # iz(k’) for k # k’, 
and similarly s ~ : ~ ( k )  E {l ,O},  i y ( k )  E {l , . .  . , n 1  3- 
... + np}, and zy(k) # iy(k’)  for k # k’ [lo]. Note 
that 7 ~ 1  + . . . + np entries of the variable vectors 
yj, j = 1,. . . , p  are arranged in the second part 
of the double string without distinction of vectors 
Yj. 

Figure 3. Double string 

In the double string, regarding i, ( k )  , iy ( k )  and 
si,(k), s i Y ( k )  as the index of an element in a solu- 
tion vector and the value of the element respec- 
tively, a string s can be transformed into a solu- 
tion z = ( 2 1 , .  . . , zno) and yj = (yjl ,  . . . , yjnj),  

j = 1, . . . , p  as: 

G ( k )  = S i Z ( k ) ,  = 1,. . . ,720, 
Y l i ( k )  = S i Y ( k )  for 1 F iy@) 5 121, 

Y2i(k) = Siy@) for 721 + 15 i y ( k )  5 7 2 2 ,  

Y p i ( k )  = S i y ( k )  for n p - 1  + 1 5 iy(k) I n p .  

. . . . . . . . . 

Unfortunately, however, since this mapping 
may generate infeasible solutions, we propose the 
following decoding procedures for eliminating in- 
feasible solutions at the Steps 1 and 3 ,  and Step 
2-2 of the proposed algorithm. 

For Steps 1 and 3 of the proposed algorithm, 
it is possible for some individuals x to violate the 
constraints even if all the entries of y are one. As- 
suming all the coefficients are nonnegative, we can 
employ the following decoding procedure which 
suppresses birth of individuals generating infea- 
sible solutions. 

Step 0 Let e’ = e - E;==, EFL, b$, where qe 
denotes the l th  column vector of the matrix Bj. 

Step 1 Set IC = 1, C = Cy:, a.e, where a.e de- 
notes the l th  column vector of the matrix A. 

Step 2 If si,(&) = 0, set k = k + 1 and go to step 
3. Otherwise, i.e., if s i Z ( k )  = 1, set k = k + 1 
and go to step 4. 

2 e,  set z i z ( k )  = 0, E = 
E - and go to step 4. Otherwise, set 
iCiz(k)  = 1 and go to step 4. 

Step 4 If k > n o ,  stop and regard z as pheno- 
type of the individual represented by the double 
string. Otherwise, return to Step 2 .  

For Step 2-2 of the proposed algorithm, we can 

Step 3 If E - 

use the following similar decoding procedure. 

Step o Let e’ = e - CF21 a.!%. 
Step 1 Set k = 1, E: = E;=’=, EFL, ge. 
Step 2 If s ; ( k )  = 0, set IC = k + 1 and go to step 

3. Otherwise, i.e., if s q k )  = 1, set k = k+ 1 and 
go to step 4. 

If C - b3iy(k)  2 e for n j - 1 +  1 5 i y ( k )  5 
nj, set y j i y ( k )  = 0, C = E - @ i y ( k )  and go to 
step 4. Otherwise, set = 1 and go to step 
4. 

Step 4 If k > n1+ + np, stop and regard y 
as phenotype of the individual represented by 
the double string. Otherwise, return to Step 2.  

Note that a location of a variable in the string 
does not influence a value specified by the above 
decoding procedures. 

3.2. Evaluation and selection 

Step 3 

In the proposed algorithm, individuals for vari- 
ables y of the followers are evaluated for a given 
x in Step 2-2, and individuals for variable x of 
the leader with optimal individuals y(z) are also 
evaluated in Step 3. 
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A fitness of an individual for variable y of the 
followers is directly defined, for a given x,  as a 
value of the aggregated fuzzy goal 

min pi(cis + dil y1 + . . . + dipup). 
k l ,  ...,p 

(9) 

For an individual for variable x of the leader, 
a fitness is also defined as the fuzzy goal of the 
leader (DMO) 

Po(c0a: + 4 l Y l  + ... + dopyp). (10) 
In this paper, we employ the ranking selection 
proposed by Baker[3]. Ranks of individuals are 
arranged in decreasing order of the fitness, i.e., an 
individual with the largest fitness is determined as 
Rank 1. The probability p; that the individual si 
of Rank i is reproduced is 

where N is a population size, q+ is set at 2, and 
7- becomes 0 because 77- = 2 - r]+. Moreover 
the elitist preserving selection is also incorporated, 
that is, if the fitness of an individual in the past 
populations is larger than that of every individual 
in the current population, preserve this individual 
into the current generation. 

3.3. Crossover and mutation 

If a single-point or multi-point crossover oper- 
ator is applied to individuals represented by dou- 
ble strings, an index i,(k) (iy(k)) in an offspring 
may take the same number that an index i5 (k ' ) ,  
(iy(k'),) IC # k' takes. Recall that the same vio- 
lation occurs in solving traveling salesman prob- 
lems or scheduling problems through genetic al- 
gorithms. One possible approach to circumvent 
such violation, a crossover method called partially 
matched crossover (PMX) is useful. The PMX 
was first proposed by Goldberg and Lingle [7] for 
tackling a blind traveling salesman problem. It 
enables us to generate desirable offsprings with- 
out changing the double string structure unlike 
the ordinal representation. We employ the follow- 
ing crossover operation which is a revised version 
of PMX to deal with double strings [lo] and is car- 
ried out according to the prespecified probability 
P c  . 
Step 1 For two individuals SI and s 2  repre- 

sented by double strings, choose two crossover 
points. 

Step 2 According to the PMX, reorder upper 
strings of s1 and s 2  together with the corre- 
sponding lower strings which yields si and s;. 

Exchange lower substrings between two 
crossover points of si and si for obtaining the 
resulting offsprings s: and s; after the revised 
PMX for double strings. 

Step 3 

It is well recognized that a mutation operator 
plays a role of local random search in genetic al- 
gorithms. In this paper, for the lower string of 
a double string, mutation of bit-reverse type is 
adopted. We also introduce another genetic op- 
erator, an inversion. The inversion proceeds as 
follows: 

Step 1 For an individual s, choose two inversion 

. . . I i(Z) i(Z + 1) .. . i(m) I . . . i(n) 

Invert both upper and lower substrings 

. - .  I i(m) i (m - I) . . . i(Z) I . . . 

points at random, i.e., 

> -  
i(n) ) . 

= Y1) si(1) . . * I  si(^) si(1+1) * * .  si(m) I . . . si(n) 
Step 2 

between two inversion points, i.e., 

= Y) si(1) * . . I si(m) si(m-1) . . .  si(^) I . . . si(n) 
Either of these two genetic operations is carried 
out according to the prespecified probability pm 
and the constant value for splitting the two oper- 
ations. 

4. Numerical experiments 

To demonstrate the feasibility and efficiency 
of the proposed algorithm, consider the following 
decentralized two-level 0-1 programming problem 
with 40 variables and 5 constraints, in which there 
are one leader (denoted by DMO) at the upper 
level and three followers (denoted by DM1, DM2, 
and DM3) at the lower level. 

maxpdcoa: +do1yl + do292 + d0393) 

where yl ,  y2, y3 solves 

Y I ~ Y Z Y ~  i=1,2,3 
max min pi(cis + dily, + di2y2 + disy3) 

s. t. Ax + B1 y1 + B2y2 + B3y3 2 e ,  
2 E .lo, l P ,  . .  . . 

yj E (0, l}nj, j = 1,2,3, 

where x = (21,. . . , m O I T ,  y1 = (9117. .  - , Y I ~ ) ~ ,  
y2 = ( ~ ~ 1 , . . . , ~ 2 7 )  , and y3 = ( Y 3 1 , . .  . , 9 3 d T ,  T 

and denotes transposition; each entry of 5 x 20 
coefficient matrices A, 5 x 7 coefficient matrices 
B1 and Bz, and 5 x 6 coefficient matrices B3 is a 
random value in the interval [lo, 991; each entry of 
the right hand side constant column vector e is a 
sum of entries of the corresponding row vector of 
A, B1, B2 and B3 multiplied by a random num- 
ber in the interval [0.45,0.55]. The coefficients 
are shown in Table 1. Parameters of fuzzy goals 
for DMO, DM1, DM2 and DM3 are determined as 
shown in Section 2. 

In the proposed algorithm for obtaining an ap- 
proximate optimal solution to the problem, we set 
0.7 to the probability of the crossover, 0.10 to the 
probability of the mutation, 0.5 to the constant 
value for splitting into two types of mutation, 100 
to the population sizes for the GAS with respect 
to both the leader and the followers, 100 to the 
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zj’ 
zj” 

numbers of the generations for the GAS with re- 
spect to both the leader and the followers, and we 
made this computational trial ten times. The re- 
sult of the computational experiments are shown 
in Table 3. As seen in Table 3, we suppose that 
the proposed algorithm works well because vari- 
ances of the degree of satisfaction are sufficiently 
small. 

Leader Followers 
DMO DM1 DM2 DM3 
178 457 396 375 
1906 653 840 549 

Leader 
Followers 

Table 3. Results of computational experiments 

0.887 0.892 0.888 0.0000 
0.643 0.439 0.561 0.0031 

1 degree of satisfaction 
best worst mean variance 

5. Conclusions 

In this paper, we have considered decentralized 
two-level 0-1 problems, where there is coordina- 
tion among the followers while between the leader 
and the group of all the followers, there is no moti- 
vation to cooperate each other. To take fuzziness 
of judgments of the leader and the followers into 
consideration, fuzzy goals for objective functions 
of them have been introduced. We have consid- 
ered the situation when the leader maximizes the 
degree of satisfaction and the followers choose in 
concert so as to maximize a minimum among their 
degrees of satisfaction, and have developed a com- 
putational method through the genetic algorithms 
for obtaining a solution to the decentralized two- 
level 0-1 problem. Numerical experiments have 
been performed in order to demonstrate the feasi- 
bility and efficiency of the proposed algorithm. 
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