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Abstract- This paper presents a stady that evaluates
the influence of the parallel genetic programming (GP)
models in maintaining diversity in a population, The
parallel models used are the cellular and the multipop-
ulation one. Several measures of diversity are consid-
ered to-gain a deeper understanding of the conditions
under which the evolution of both models is successful.
Three standard test problems are used to illustrate the
different diversity measures and analyze their correla-
tion with performance. Results show that diversity is
not necessarily synonym of good convergence.

1 Introduction

One of the major shoricomings of standard evolutionary al-
gorithms (EAs) is their inability to maintain diversity in the
population. This lack of diversity can lead to a number of
problems such as converging to a non-global optima or not
being able to react to changes in the environment. The lack
of diversity is especially evident when dealing with muli-
madal problems or when using evolutionary algorithms 1o
solve dvnamic problems.

In Genetic Programming (GP), the process converges
when the elements of the phenotypic pool are identical, or
nearly so, in spite of the fact that the genotypic pool might
still present some syntactical diversity. When this occurs,
the crossover operator ceases to produce new individuals,
and the afgorithm allocates all of its trials in a very small
subset of the program space. Unfortupately, this often oc-
curs before the true optimum has been found: this behav-
ior is called premature convergence. The mutation operator
provides a mechanism for reintroducing lost diversity, but it
does it at the cost of slowing down the learning process.

" Both genotypic and phenotypic diversity play a rele in
GP and the two are not necessarily correlated in a straight-
forward manner. In particular, the phenomenon of “bloat”,
consisting in the tendency of code to grow in size over gen-
eration is well-known, and it ofien gives rise to large non-
functional tree portions that could increase genotypic diver-
sity but not the phenotypic one, nor the capability of the
system to produce better solutions.

Many approaches have been proposed for diversity
maintenance within a population. Among them fitness shar-
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ing [5. 6] works with the idea of similarity between indi- .
viduals, thus requiring a consistent distance measure in the
population, and multi-objective optimization [4], where fit-
ness, size and diversity are the objectives to be satisfied.

However. diversity in parallel GP models has been lit-
tle studied. One such study can be found in [12] where a
syslematic experimental investigation of how a multipopu-
lation GP model helps in maintaining the phenotypic and.
genotypic diversity is presented. .

In this work, we extendthe previous analysis on mul-
tipopulation GP model with additional experiments, new
analysis, and new measures. We also study the diversity
in the cellular GP model. Aninteresting aspect of the paral-
lel approaches is that diversity in hoth models is maintained
without any particular algorithm beyond the simple commu-
nication among island or the diffusion principle of celiular
systems. ‘ . :

The paper is organized as follows. Section 2 presents a
classification of the parallel GP models and provides some
information on their parallel implementation on distributed-
memory computers. Section' 3 presents the different di-
versity measures used for.both models and those only for
the cellular model. Section 4 describes the benchmark
problems used and the experimental results obtained. Fi-
nally, section 5 provides the conclusions and discusses fu-
ture work. :

2 Parallel Genetic Programming Models

Several approaches for speeding-up the GP implementa-
tions have been recently proposed. They are directed to-
wards two orthogonal directions: speeding-up by minimiz-
ing the computational effort of GP. and improving the nu-
merical performance of the algorithm itself by using pop-
ulation structuring principles. A classification of the ap-
proaches for parallelizing GP includes three main models
[16]: the global model, the coarse-grained (island) model
[13] and the fine-grained (also-called ceflular or grid)
model [14]. In the following we consider only the island
and the cellular modeis:- .

The island model divides a population P of A individ-
uals into N subpopulations Py, .. .; Py, called demes, of
AN individuals. A standard genetic programming algo-
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rithm works on each deme and is ‘responsib]e for initializ-
ing, evaluating and evolving its own subpopulation. Sub-
populations are interconnected according o different com-
munication topologies and can ex;:harige information peri-
odically by migrating individuals from one subpopulation
1o another. The number of individuals (0 migrate (migra-
tion rate), the number of generations after which migration
should occur (frequency), the migration topology and the
number of subpopulations are all parameters of the method
that have 1o be set. ; : : .

In [7] a systematic experimental investigation of the be-
havior of semi-isolated populations in GP is presented. The
model implemented consists of denies that evolve indepen-
dently with the same parameters as panmictic GP, except
for the. migration of the best p individuals every ¢ iterations
from a given island to a randomly chosen one different from
itself, where they replace the worst p individuals. All the ex-
periments showed that p= 10% of the population size. and
=10 are suitable values, and thus they are used in this work.
Sending and receiving blocks of individuals. is done syn-
chronously. Empirically, it has been observed in {7], as well
as in other studies; that distributing the individuais among
several loosely connected islands has the advantage to go
beyend the obvious time savings when the system runs on
multiple machines, since often mulitiple population also lead
to statistically significantly better solution quality.

In the cellular model each individual is associated with a
spatial lecation on a low-dimensional grid. The population
is considered as a system of active individuals that interact
only with their direct neighbors. Different neighborhoods
can be defined for the cells. The most common neighbor-
hoods in the two-dimensional case are the 5-neighbor (von
Neumann neighborhood) consisting of the cell itself plus the
North, South, East, West neighbors and 9-neighbor (Moore
neighborhoad) consisting of the same neighbors augmented
with the diagonal neighbors. Fitness evaluation is done si-
multaneously for all the individuals and selection, reproduc-
tion and mating take place locally within the neighborhood.
Information slowly diffuses across the grid giving rise to
the formation of semi-isolated niches of individuals having
similar characteristics. The choice of the individual to mate
with the central individual and the replacement of the latier
with one of the offspring can be done in several ways.

A scalable implementation of. the cellular GP model.
called CAGE, is described in [9].

CAGE is fully distributed with no need of any global
contro} structure and it is naturally suited for implemen-
tation on parallel computers. It introduces fundamental
changes in the way GP works. In the model, the individ-
uals of the population are located on ‘a specific position in
a torcidal 2-D grid and the selection and mating operations
are performed, cell by cell, only among the individual as-
signed to a cell and its neighbors. Three replacement poli-

- cies have been implemented: direct(the best of the offspring

always replace the current individual), greedy (the replace-
ment occurs only if offspring is fitter) and probabilistic(the
replacement happens according to difference of the fitness
between parent and offspring). Experimental resuits on a
variety of benchmark problems have substantiated the va-
lidity of the cellelar model over both the island model and
panmictic GP model. In {8] it is showed that CAGE can re-
duce the bioat phenomenon if used for classification prob-
lems

3 Diversity Measures

Surveys of diversity measures in panmictic GP have been
presented in [1, 2]. The diversity measures thal we use in
this paper are based on the concepts of entropy and vari-
ance. Bolh these concepts are used to measure the pheno-
typic (i.e. based on fitness) and genotypic (i.e. based on the
syntactical structure of individuals) diversity of populations.
Besides. we use another measure that takes into account the
spatial structure of the population, denoted as the freguency
of rransition introduced in [3]. that is meaningful only for
the celtular model. Phenotypic diversity is related to the
number of different fitness values of the individuals. Here
we use the phenorvpic entropy Hp(P) [15] of a population
P as a diversity measure:

N
Hy(P) ==Y f;log(f;)
=t o
where f; is the fraction n;/N of individuals in P having
fitness j and & is the number of fitness values in P.

Here we use the entropy as a genotypic diversily mea-
sure. To be able to define structural diversity among lrees,
it is first useful to define a tree distance measure. A few
tree distances have been proposed in the literature. We use
Ekart’s and Németh's definition [6]. The distance between
two trees 71 and T is calculaied in three steps: (1) Ty and
T, are overlapped at the root node and the process is applied
recursively starting from the leftmost subtrees. (2) For each
pair of nodes at matching positions, the difference of their
codes (possibly raised o an exponent) is computed. (3) The
differences computed in the previous step are combined in
a weighted sum. Formally, the distance of two trees T and
T, with roots Ry and Ry is defined as follows:

) .
dist(T\, Ts) = d(Ry. Ro) 7 3 dist(child:( Ry ), childi(Ry)

i=1

where: d{R1,Rz) = {(lc(B1) — e(R2)|)?, childi(Y) is
the it? of the m possible children of a generic node Y. if
1 < m, or the empty tree otherwise, and ¢ evaluated on
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the root of an empty tree is 0. Constanl k is used to give
different weights 10 nodes belonging to different levels
and z is a constant usually chosen in such a way that 2 € A

The genatypic entropy H (P} of a population P is de-
fined as follows:

Z g5 log(g;)

j=1

where, g; is the fraction of mdlwduals havmﬂ a given dis-
tance from the origin, which has arbitrarily been chosen as
the empiy tree.

The variance of a population P is defined as follows:

1 & -
:;{Z(fi_

i=l

If we are considering phenotypic variance, ¥ is the average
fitness of the individuals in P, f; is the fitness of the ¢**
individual in P and 7 is the total number of individuals in
P. To define genotypic variance. we usc the notion of tree
distance. In this case, f is the average of all the individual
distances from the origin ree, f; is the distance of the ¢t
individual in P from the origin tree and n is the total num-
ber of individuals in P. Then the standard deviation is the
square root of the variance.

The frequency of transition of a populatlon P regards
only the cellular model and it is defined as the number of
borders between homogeneous blocks of cells (individuals)
having the same genotype (phenotype), divided by the num-
ber of distinct couples of adjacent cells, i. e. the probability
that two adjacent cells belong to different blocks:

2": Z [fi # fi]

i=1 jeN(i)
S NG T
where [f; # f;]is 1if fi # f;. otherwise is 0, and N (i)

is the neighborhood of individual i, where f; has the same
meaning of the f; introduced for the variance.

Ju(p) =

4 Experiments

In this analysis three well know problems, the Even 4-Parity
problem, the Svmbolic Regression problem and the Artificial
Ant on the Santa Fe irail problem ([10, 11]). are considered.
The parity problem takes an input of 4 Boolean variables
and it returns TRUE only if an even number of variables
is true. The even 4-parity fitness is the number of wrong
guesses for the 2¢ combinations of 4-bit lencth strings. Thus
a perfect individual has fitness 0, while the worst individual
has fitness 16.

The Symbolic Regression problem consists in searching
a program which matches a given equation, in our case the
polynomial equation f(z) = z? 423+ 2?+z. The input set
is composed of the values 0 to 999 (1000 fitness cases), and
the set of functions used for GP individuals is F={*// +,-
}. where // is like / but returns 0 instead of errof when the
divisor is equal to 0. The fitness is the sum of the square
errors at each test point.

In the Artificial Ant Problem ‘on lhe Santa Fe Trail the
goal is to find the best strategy for picking up food pellets
along a trail on a 32 x 32 toroidal grid. We use the same set
of functions and terminals as in [10]. The fitness function is
the number of pellets missed by the ant during his path.

In all the experiments we use the same set of GP pa-
rameters: generational GP, crossover rate: 95%, mutation
rate: (.1%. tournament selection of size: 10, ramped half
and half initialization, maximum depth of individuals for
the creation phase: 6, maximum depth of individuals for
crossover: 17, elitism (i.e. survival of the best individual
into the newly generated population for panmictic popula-
tions. The same was done for each subpopulation in the
distributed case and in the cellular case). The size of the
population was set to 500 for the even 4-parity problem, 250
for the regression one, and to 1000 for the ant problem. We
next present the results of our simulations, The curves rep-
resen| average values over 100 independent GP runs. Note
that these population sizes have been found suitable in {12],
where the sizing of the islands has been thoroughly studied
empiricaltly.

4.1 Phenotypic Diversity Behavior

We first discuss the phenotypic behavior. Figure | shows
the phenotypic entropy for the three test problems. Entropy
[15] represents the amount-of disorder of the population,
thus low entropy means low diversity. However, since the
phenotypic measure compares the number of different-fit-
ness values, it could be interpreted as the number of groups
having the same fitness value. Thus high entropy could be
constdered as the presence in the population of a high num-
ber of small groups of individuals, each group having the
same fitness value, while low entropy would mean a low
number of large groups of individuals.

In this perspective, the fact that the cellular model has
always a lower phenotypic entropy with respect to both the
island and the panmictic models, as figzure | points out, can
be interpreted as the presence in the population of a low
number of groups each containing many individuals having
the same fitness value.” This is confirmed by the Jow .phe-
notypic standard deviation of the cellular model shown in
figure 3 and by the frequency of transition, shown in fig-

.ure 2 which counts the number of individuals having the

same fitness value with their neighborhoods. The jigged be-
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Figure 1: Phéno[ypic entropy for the artificial ant problem
(a), the even 4 parity problcm (b), the symbohc regression
problem (c)

havior of the curves referring to lhe subpopulanons in the
island model is due to the suddén change in-diversity when
the new individuals enter the population at fixed generation
numbers.

Low phenotypic diversity in the cellular model can be
explained by the diffusion of the information across the grid
that induces groups of individuals having similar charac-
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Figure 2: Phenotypic transition function for the artificial ant
problem (a), the even 4 parity problem (b), the symbolic
regression problem (c).

teristics. It is worth to point out that low phenotypic en-
tropy does not imply worst convergence of the method. In
fact, though the figure shows the experiments for 200 gen-
erations, actually the same near optimal fitness value was
found at approximatively generations 80, 150, 250 by using
the celiular, island and panmictic models respectively for
the ant problem, at generations 200, 150, 200 for the par-
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Figure 3: Phenotypic standard deviation for the artificial ant
problem (a), the even 4 parity problem (b), lhe symbolic
regression problem (c).

ity problem. and at generations 10, 20, 30 for the symbolic
regression problem.

4.2 Genotypic Diversity Behavior '

As in the case of phenotypic entropy, figure 4 shows that
genotypic entropy is lower for-the cellular model with re-
spect to hoth the island and the panmictic'ones, while geno-
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Figure 4: Genotypic entropy for the artificial ant problems
{a), the even 4 parity problem (h) the symbollc rec'ressnon
problem (c).

typic entropy for the island model is almost the same of the
panmacuc model for ant and panly problers, and Iower for
symbolic regression.

This behavior suggests that.” as regards the cellular
model, we have few groups of individuals having the’same
distance from the empty tree, each group being composed
by many trees. Howeverq as ﬁoure 5 suggests trees in
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Figure 5: Genotypic standard deviation for the artificial ant
problem (a), the even 4 parity problem (b), the symbolic
regression problem (c). '

the populatlon are very dissimilar among them because the
standard deviation is high, thus ‘the distance of each iree
from the origin tree ls_.subst_annallylelfferenl from the av-
erage distance of atl the trees from the origin tree. High
diversity in the tree siructure is confirmed by the genotypic
transition function Wthh as figure 6 shows, maintains val-
ues near the optimum, that is 1, during the evolutionary pro-
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Figure 6 Genotypic transition function for the artificial ant
problem (a), the even 4 parity problem (b), the symbohc
regression problem (¢).

Ccess.

Having high genotypic diversity and low phenotypic
diversity in the cellular model could seem contradictory.
However this apparent conflicting behavior can be ex-
plained by the fact that though the trees are structurally dif-
ferent, this-does not imply that their fitness must be differ-
ent t0o. In the cellular case it means that almost all the trees
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have good fitness values and this explqiné the better conver-
gence of the cellular model.

5 Conclusions

The paper analyzed the phenotypic and genotypic diversity
of a population in the island and cellular parallel genetic
programming models with respect to the panmictic one. The
experiments showed that, as regard the phenotypic diversity,
the cellular model presents a lower value than the panmic-
1ic one, while the island model presents an higher value than
the panmictic modei. In any case the convergence of cellular
and island models is faster. Thus a diversity measure based
on fitness of individuals does not seem to give enough in-
formation to infer that higher phenotypic diversity implies
better performance. Genotypic diversity is again lower in
the cellular model and almost the same for the island and
panmictic models. However, in such a case. the genotypic
standard deviation is higher for both the cellular and island
maodels. This implies that the trees are much more dissim-
ilar and this dissimilarity could explain the faster conver-
gence of the parallel models. The study thus pointed out
that diversity does not necessarily means that the system is
capable to obtain fitter solutions. Future work aims at con-
sidering new diversity measures, and at a thorough investi-
gation and further experiments on more problems to find a
tight correlation between diversity and performance.
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