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Abstract- This paper presents a study that evaluates 
the influence of the parallel genetic programming (GP) 
models in  maintaining diversity in a population. The  
parallel models used are the cellular and the multipop- 
d a t i o n  one. Several measures of diversity a re  consid- 
ered to.gain a deeper understanding of the conditions 
under  which the evolution of both models is successful. 
Three standard test problems a r e  used to illustrate the 
different diversity measures and analyze their correla- 
tion with performance. Results show that diversity is 
not necessarily synonym of good convergence. 

1 Introduction 

One of the major shortcomings of standard evolutionary al- 
gorithms (EAs) is their inability to maintain diversity in the 
population. This lack of diversity can lead to a number of 
problems such as converging to a rion-global optima or not 
heing ahle to react 10 changes in  the environment. The lack 
of diversity is especially evident when dealing with multi- 
modal prohlems or when using evolutionary algorithms to 
solve dwaniic problems. 

In Genetic Programming (CP), the process converges 
when the elements of the phenotypic pool are identical, or 
nearly so, in spite of the fact that the genotypic pool might 
still present some syntactical diversity. When this occurs, 
the crossover operator ceases to produce new individuals, 
and the algorithm allocates all of its trials i n  a v e y  small 
suhset of the program space. Unfortunately. this often oc- 
curs hefore the true optimum has been found: this hehav- 
ior is called premature convergence. The mutation operator 
provides a mechanism for reintroducing lost diversity, hut i t  
does it  at the cost of slowing down the learning process. 

Both genotypic and phenotypic diversity play a role in 
GP and the two are not necessarily correlated in a straight- 
forward manner. In particular, the phenomenon of "bloat". 
consisting in the tendency of code to grow in size over gen- 
eration is well-known. and it often gives rise to large non- 
functional tree portions that could increase genotypic diver- 
sity hut not the phenotypic one, nor the capability of the 
system to produce better solutions. 

Many approaches have been proposed for diversit) 
maintenance within a population. Among them fitness shar. 
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ing [ 5 ,  61 works with the idea of similarity between indi- 
viduals, thus requiring a consistent distance measure in the 
population, and multi-objective optimization [4], where fit-. 
ness, size and diversity are the ohjrctives to be satisfied. 

However. diversity in  parallel GP models has been lit- 
tle studied. One such study can .he found in [ 121 where a 
systematic experimental investigation of.how a multipopu- 
lation GP model helps in maintaining the phenotypic and. 
genotypic diversity is presented. . 

In  this work, W K  e x t e d t h e  previous analysis on mul- 
tipopulation GP model with additional experiments. new 
analysis. and new measures. We also study the, diversity 
in the cellular GP model. An interesting aspect of the paral- 
lel approaches is that diversity in  both models is maintained 
without any particular alporithm heyond the simple commu- 
nication among island or the diffusion principle of cellular 
systems. 

The paper is organized as follows. Section 2 presents a 
classification of the parallel GP models and provides some 
information on their parallel implementation on distrihuted- 
memory computers. Section' 3 presents the differenl di- 
versity measures used for.both models and those only for 
the cellular model. Section 4 describes the benchmark 
problems used and the experimental results obtained. Fi- 
nally, section 5 provides the conclusions and discusses fu- 
ture work. 

2 Parallel Genetic Programming Models 

Several approaches for speeding-up the GP implementa- 
tions have been recently proposed. They are directed to- 
wards two orthogonal directions: speeding-up by minimiz- 
ing the computational effort of GP. and improving the nu- 
merical performance of the algorithm itself by using pop- 
ulation structuring principles. A classification of the ap- 
proaches for parallelizinp GP includes three main models 
[ 161: the global model, the coarse-grained (island) model 
[ 131 and the fine-gruirred (also.called cellular or grid) 
model [14]. In  the follo'wing we consider only the island 
and the cellular models:. 

The island model divides a population P of M individ- 
uals into N subpopulations PI , .  . . ~ PN, called demes, of 
MlN individuals. A standard genetic programming algo- 
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rithm works on each deme and is 'responsible for initializ- 
ing. evaluating and evolving its own subpopulation. Sub- 
populations are interconnected according to different conr- 
moiiicafiorl topologies and can exchange information peri- 
odically by migrating individuals from one subpopulation 
to another. The number of individuals to migrate (nrigra- 
fiorr rate), the number of generations aftei which migration 
should occur (frequency), the migration topology and the 
number of subpopulations are all parameters of the method 
that have to be set. 

In [7] a systematic experimental investigation of the be- 
havior of semi:isolated populations in GP is presented. The 
model implemented consists of denies that evolve indepen- 
dently with the same parameters as panmictic GP, except 
for the.migration of the best p individuals every t iterations 
from a given island to  a randomly chosen one different from 
itself, where they replace the worst p individuals. All the ex- 
periments showed that p= 10% of the population size. and 
t=10 are suitable values, and thus they are used in this work. 
Sending and receiving blocks of individuals is done syn- 
chronously. Empirically, i t  has been observed in 171, as well 
as in other studies, that distributing the individuals among 
several loosely connected islands has the advantage to go 
beyond the obvious time savings when the system runs on 
multiple machines, since often multiple population also lead 
to statistically significantly hetter solution quality. 

In the cellular model each individual is associated with a 
spatial location on a low-dimensional grid.. The population 
is considered as a system of active individuals that interact 
only with their direct neighbors. Different neighborhoods 
can he defined for the cells. The most common neighbor- 
hoods in the two-dimensional case are the 5-neighbor (voir 
Neirnianrl neighborhood) consisting of the cell itself plus the 
North. South, East, West neighbors and 9-neighbor (Moore 
iieighborhood) consisting of the same neighbors augmented 
with the diagonal neighhors. Fitness evaluation is done si- 
multaneously for alI.the individuals and selection, reproduc- 
tion and mating take place locally within the neighborhood. 
Information slowly diffuses across the grid giving rise to 
the formation of semi-isolated niches of individuals having 
similar characteristics. The choice of the individual to mate 
with the central individual and the replacement of the latter 
with one of the offspring can he done in several ways. 

A scalable implementation of. the cellular GP model. 
called CAGE, is described in 191. 

CAGE is fully distributed with no need of any global 
control structure and it is naturally suited for implemen- 
tation on parallel computers. It introduces fundamental 
changes in the way G P  works. In the model, the individ- 
uals of the population are located on'a specific position in 
a toroidal 2-D grid and the selection and mating operations 
are performed, cell by cell. only among the individual as- 
signed to a cell and its neighhors. Three replacement poli- 

. 

cies have been implemented: direct (the best of the offspring 
always replace the current individual), greedy (the replace- 
ment occurs only if offspring is fitter) and probabilistic(the 
replacement happens according to difference of the fitness 
between parent and offspring). Experimental results on a 
variety of benchmark problems have substantiated the va- 
lidity of the cellular model over both the island model and 
panmictic GP model. In [8] it is showed that CAGE can re- 
duce the bloat phenomenon if used for classification prob- 
lems 

3 Diversity Measures 

Surveys of diversity measures in panmictic GP have been 
presented in [ I ,  21. The diversity measures that we use in 
this paper are based on the concepts of eirtropy and rzari- 
arm. Both these concepts are used to measure the pheno- 
typic (i.e. based on fitness) and genotypic (i.e. based on the 
syntactical structure of individuals) diversity of populations. 
Besides. we use another measure that takes into account the 
spatial structure of the population, denoted as thefreqireirc? 
of rransirioir introduced in [3]. that is meaningful only for 
the cellular model. Phenotypic diversity is related to the 
number of different titness values of the individuals. Here 
we use the pherionpic eritropy N,(P) [ 151 of a population 
P as a diversity measure: 

N 

~ p ( p )  = - fj M f j )  

where f j  is the fraction nj," of individuals in P having 
fitness j and N is the number of fitness values in P. 

j-1 

Here we use the eritropy as a genotypic diversity mea- 
sure. To be able to define structural diversity among trees, 
i t  is first useful to define a tree distance measure. A few 
tree distances have been proposed in the literature. We use 
EkArt's and Nemeth's definition [6]. The distance between 
two trees TI and TZ is calculated in three steps: ( I )  Tl and 
Tz are overlapped at the root node and the process is applied 
recursively starring from the leftmost subtrees. (2) For each 
pair of nodes at matching positions, the difference of their 
codes (possibly raised to an exponent) is computed. (3) The 
differences computed in the previous step are combined in 
a weighted sum. Formally. the distance of two trees TI and 
Tz with roots RI and Rz isdefined as follows: 

rn 
1 

dist(T1, Tz) = d(R1. R ~ ) + ~ C d i ~ t ( ~ h i l d , ( R ~ ) .  child;(R: 
,=1 

where: ~ ( R I > R Z )  = (Ic(R1) - c(Rz)\) ' ,  childi(Y) is 
the i th of the m possihle children of a generic node Y. if 
i 5 m. or the empty tree otherwise, and c evaluated on 
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the root of an empty tree is 0. Constant k is used to give 
different weights to nodes belonging to different levels 
and t is a constant usuallychosen in such a way that t t JV. 

The genotypic entropy H,(P) of a population P is de- 
fined as follows: 

N 
~ g ( p )  = - C g j  log(g j )  

j=1 

where. gj is the fraction of individuals having a given dis- 
tance from the origin, which has arbitrarily heen chosen as 
the empty tree. 

The variance of a population P is defined as follows: 

I n  
V ( P )  = - E(fi -?)* 

i d  

If we are considering phenotypic variance, 7 is the average 
fitness of the individuals in P ,  f; is the fitness of the i t h  
individual i n  P and n is the total numher of individuals in 
P. To define genotypic variance. we use the notion of tree 
distance. In this case, 7 is the average of all the individual 
distances from the origin tree, fi is the distance of the i th  
individual in P from the origin tree and n is the total num- 
her of individuals in  P. Then the standard deviation is the 
square root of the variance. 

The frequency of transition of a population P regards 
only the cellular model and it  is defined as the numher of 
borders between homogeneous blocks of cells (individuals) 
havingihe same genotype (phenotype), divided by the num- 
her of distinct couples of adjacent cells, i. e. the probability 
that two adjacent cells belong to different blocks: 

where [fi # fj] is I if fi  # fj,  otherwise is 0, and N(i )  
is the neighhorhood of individual i, where fi has the same 
meaning of the f i  introduced for the variance. 

4 Experiments 

In this analysis three well know problems, the €veil $-Parin. 
probleni, the Symbolic Regressioriproblenr and the Artificial 
Anr on fhe Sarira Fe trail problem ( [ IO ,  1 I]). are considered. 
The parity problem takes an input of 4 Boolean variables 
and it retums,TRUE only if an even numher of variables 
is true. The even 4-parity fitness is the numher of wrong 
guesses for the 2' combinations of 4-hit length strings. Thus 
a perfect individual has fitness 0, while.'the worst individual 
has fitness 16. 

The  Symholic Regression problem consists in  searching 
a program which matches a given equation, in  our case the 
polynomial equation f ( x )  = x4 + x 3 + x 2 + x .  The input set 
is composed of the values 0 to 999 (1000 fitness cases), and 
the set of functions used for GP individuals is F={",//,+.- 
}. where /I is like I hut returns 0 instead of errot when the 
divisor is equal to 0. The fitness is the sum of the square 
errors at each test point. 

In the Artificial Ant Problem 'on the Santa Fe Trail the 
goal is to find the hest strategy for picking up-food pellets 
along a trail on a 32 x 32 toroidal grid. We use the same set 
of functions and terminals as in  [IO]. The fitness function is 
the number of pellets missed hy the ant during his path. 

In all the experiments we use the same set of GP pa- 
rameters: generational GP, crossover rate: 95%. mutation 
rate: 0.1%. tournament selection of size: 10, ramped half 
and half initialization, maximum depth of individials for 
the creation phase: 6, maximum depth of individuals for 
crossover: 17, elitism (i.e. ~survjvgl of the best individual 
into the newly generated population for panmictic popula- 
tions. The same was done for each subpopulation in  the 
distributed case and in the cellular case). The size of the 
population was set to 500 for the even 4-parity problem, 250 
for the regression one, and to 1000 for the ant problem. We 
next present the results of our simulations. The curves rep- 
resent average values over 100 independent GP runs. Note 
that these population sizes have been found suitable in  [I?], 
where the sizing of the islands has heen thoroughly studied 
empirically. 

4.1 Phenotypic Diversity Betiavior 

We first discuss the phenotypic behavior. Figure I shows 
the phenotypic entropy for tlie three test problems. Entropy 
1151 represents the amount~of disorder of the population, 
thus low entropy means low diversity. However, since the 
phenotypic measure compares the numher of different'fit- 
ness values, it could he interpreted as the number of groups 
having the same fitness value. Thus high entropy could he 
considered as the presence in the population of a high num- 
ber of small groups of individuals, each group having the 
same fitness value, while low entropy wou!d mean a low 
number of large groups of individuals., 

In this perspective. the fact that the cellular mode! has 
always a lower phenotypic entropy with respect to both the 
island and the panmictic models, as figure I points out, can 
he interpreted as the presenc.e' in the population of .a low 
number of groups each containing many individuals having 
the same fitness value:This is confirmed by the low-phe- 
notypic standard deviation of the cellular model shown in 
figure 3 and by the frequency of transition, shown in fig- 

, ure 2 which counts the number of individuals having the 
same fitness value with their neighhorhoods. The jigged he- 
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Figure I: Phenotypic entropy for the artificial ant problem 
(a), the even 4 parity problem (b), the symbolic regression 
problem (c). .~ 

havior of the curves referring to the subpopulations in the 
island model is due to the sudden change indiversity when 
the new individuals enter the population at fixed generation 
numhers. 

Low phenotypic diversity in the cellular model can he 
explained by the diffusion of the information across the grid 
that induces groups of individuals having similar charac- 

...... ..... -. .......................... 
0 .si im ,a 

Genelation 

Figure 2: Phenotypic transition function for the artificial ant 
problem (a), the even 4 parity problem (h), the symbolic 
regression problem (c). 

teristics. It is worth to point out that low phenotypic en- 
tropy does not imply worst convergence of the method. In 
fact, though the figure shows the experiments for 200 gen- 
erations, actually the same near optimal fitness value was 
found at approximatively generations 80, 150,250 by using 
the cellular, island and panmictic models respectively for 
the ant problem, at generations 200, 150, 200 for the par- 
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Figure 3: Phenotypic standard deviation for the artificial ant 
problem (a). the even 4 parity problem (h), the symbolic 
regression problem (c). 

ity problem, and at generations 10, 20, SO for the symbolic 
regression problem. 

4.2 Genotypic Diversity Behavior ' 

As in the case of phenotypic entropy, figure 4 shows that 
genotypic entropy is lower for the cellular model with re- 
spect to both the island and the panmictic'ones, while geno- 

Islands Ceilular/ -Panmictic - 1 

__. Panmictic - lsiands - Cellular I 
_. , ,, , , , , . - ? 6 - 

o l  
0 5 0 . .  rm ' It0 

Generation 

6 1  , ~ _ .  ............................... 

4b 

*--q.-,,-,-,,c-c71???-e.-- 

Figure 4: Genotypic entropy for the artificial,an! problems 
(a), the even 4 parity problem (h), the symbolic regression 
problem (c). , . . ,  

typic entropy for the island model is almost the same of the 
panmictic model foi ant and parity problems, and lower for 
symholic regression. 

This behav,ior suggests that:' as Ceiards the cellular 
model. we have few groups of individuals having ihe'same 
distance from the empty tree, each group being 'composed 
by many trees. However,' as figure 5 suggests,' trees in 

1 0 . .  
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Figure 5 :  Genotypic standard deviation for the artificial ant 
problem (a), the even 4 parity problem (b), the symbolic 
regession problem (c). 

the population are very dissimilar among them because the 
standard deviation is high, tlius the distance of each tree 
from the origin !ree is substantially different from the av- 
erage distance of all the trees from the origin tree. High 
divergity in the tree structure is confirmed by the genotypic 
transition function which; as figure 6 shows. maintains val- 
ues near the optimum, that is 1. during the evolutionary pro- 

- Cellular 

(4 
ceiiuiar 

Figure 6:  Genotypic transition function for the artificial ant 
problem (a), the even 4 parity problem (h), the symbolic 
regession problem (c). 

cess. 
Having high genotypic diversity and low phenotypic 

diversity in the cellular model could seem contradictory. 
However this apparent confl ichg behavior can be ex- 
plained by the fact that though the trees.are structurally dif- 
ferent, thisdoes not imply that their fitness must he differ- 
ent too. In the cellular case it means that almost all the trees 
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have good fitness values and this explains the better conver- 
gence of the cellular model. 

5 Conclusions 

The  paper analyzed the phenotypic and genotypic diversity 
of a population in the island and cellular parallel genetic 
programming models with respect to the panmictic one. The 
experiments showed that. as regard the phenotypic diversity, 
rhe cellular model presents a lower value than the panmic- 
tic one, while the island model presents an higher value than 
the panmictic model. In any case the convergence of cellular 
and island models is faster. Thus a diversity measure based 
on fitness of individuals does not seem to give enough in- 
formation to infer that higher phenotypic diversity implies 
better performance. Genotypic diversity is again lower in 
the cellular model and almost the same for the island and 
panmictic models. However, in such a case. the genotypic 
standard deviation is higher for both the cellular and island 
models. This implies that the trees are much more dissim- 
ilar and this dissimilarity could explain the faster conver- 
gence of the parallel models. The study thus pointed out 
that diversity does not necessarily means that the system is 
capable to obtain fitter'solutions. Future work aims at con- 
sidering new diversity measures, and at a thorough investi- 
gation and furiher experiments on more problems to find a 
tight correlation hetween diversity and performance. 
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