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Abstract—Multi-step Crossover Fusion (MSXF) and determin-
istic MSXF (dMSXF) are promising crossover operators that
perform multi-step neighborhood search between parents, and
applicable to various problems by introducing a problem-specific
neighborhood structure and a distance measure. Under their
appropriate definitions, MSXF and dMSXF can successively
generate offspring that acquire parents’ good characteristics
along the path connecting the parents. In this paper, we introduce
MSXF and dMSXF to genetic programming (GP), and apply
them to symbolic regression problem. To optimize trees, we define
a neighborhood structure and its corresponding distance measure
based on the largest common subtree between parents with con-
sidering ordered/unordered tree structures. Experiments using
symbolic regression problem instances showed the effectiveness
of a GP with the proposed MSXF and dMSXF.

I. INTRODUCTION

Crossover operators or recombination operators have been
considered to be the central component of population-based
optimization algorithms. Especially in optimizing combina-
torial structures such as a graph, it is important to design
the operator to consider problem-specific structures and char-
acteristics. Various operators focusing on the inheritance of
parents’ characteristics have been discussed in genetic al-
gorithms (GAs) [1], [2], [3]. The design of the crossover
operator is important also in genetic programming (GP) [4] of
which search mechanism is same as that of GA and focusing
on optimizing tree structures. A tree structure is a special
case of a graph; however it has some features, such as a
symmetric property, a self-similarity and an anisotropy in the
landscape of an objective function, which make the design of
genetic operators complex. There are various recombination
mechanisms to treat tree features in GPs [5], [6], [7], [8]. In
addition, it has been considered that mutation operators are
essential to acquire a characteristic not observed in population
with keeping good characteristics (building blocks), since
crossovers might bring a drastic change in solutions and break
favorable characteristics.
To treat complex constraints and the design variables depen-

dency in solving combinatorial optimization problems, Multi-
step Crossover Fusion (MSXF) [9] and deterministic MSXF
(dMSXF) [10] have been proposed. MSXF and dMSXF are
a kind of recombination operators and perform a sequence of
local search that moves the offspring from its initial point to

the other parent. The main difference of these procedures is
that the MSXF determines the transition in the local search by
Metropolis criterion while dMSXF advances the local search
in a deterministic rule. MSXF and dMSXF are defined in
a problem-independent manner, and have been successfully
applied to various combinatorial optimization problems [10],
[11], [12] since the incorporation of local searches into GAs
is essential in order to adjust the structural details of solutions
[13].
In this paper, we introduce MSXF and dMSXF to GP and

compare their search performances, using symbolic regression
problems. To optimize tree structures, we define both a neigh-
borhood structure focusing on graphical patterns observed
in trees and its corresponding distance metric, for MSXF
and dMSXF. In the local search, neighborhood solutions are
generated by keeping the largest common subtree between
parents in order not to break the parents’ characteristics. To
extract the largest common tree, two types of tree structures,
the ordered tree and the unordered tree, are examined. Through
the numerical experiments, we show the effectiveness of
MSXF and dMSXF and discuss how the definitions of the
neighborhood structure and the setting of parameters affect
the search performance.

II. MULTI-STEP CROSSOVER FUSIONS

A. Multi-Step Crossover Fusion
MSXF is one of the crossover operators which are fused

with a local search. In MSXF, a solution, initially set to be
one of the parents p1, is stochastically replaced by a relatively
good solution from the neighborhood, where the replacement
is biased toward the other parent p2. After a certain number
of iterations of this process, the best one among the generated
solutions is selected as an offspring.
The procedure of MSXF is summarized as follows. The

set of offspring generated by parents p1, p2 is defined as
C(p1, p2).

Procedure of MSXF
1. Let p1, p2 be parents and set their offspring C(p1, p2) = φ.
2. k=1. Set the initial search point x1 = p1 and add x1 into

C(p1, p2).
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3. /Step k/ PrepareN(xk) neighborhoods composed of μ solutions
generated randomly from the current solution xk. ∀yi ∈ N(xk).

4. Sort neighborhoods yi inN(xk) in ascending order according to
the distance d(yi, p2), and a member y is selected from N(xk)
randomly, but a smaller index is preferred.

5. The member y is probabilistically accepted as the next solution
xk+1 according to Metropolis criterion, i.e., y is accepted with
probability 1 if E(y) < E(xk); otherwise, with the probability

P (y) = exp(−ΔE/T ), (1)

where ΔE = E(y)−E(x). Let the next search point xk+1 be
y, and xk+1 is added into C(p1, p2) if the transition is accepted;
otherwise, go to 4.

6. Set k = k + 1 and go to 2., until k = kmax or xk equals p2.

MSXF requires two parameters, kmax and μ. kmax is the
number of steps of local search and μ is the number of
generated solutions at each step of the local search. In the
procedure of MSXF, at most kmax · μ solutions would be
generated, and C(p1, p2) is comprised of the best neighbor
solutions, i.e., {x1, x2, · · · , xkmax}.
MSXF is applicable to various problems by introducing

a problem-specific neighborhood structure and a distance
measure, and it has been shown to perform very well on job
scheduling problem (JSP).

B. Deterministic Multi-Step Crossover Fusion
dMSXF [10] is a specific case of MSXF. dMSMF has

been shown to outperform other heuristic methods under
the definition of sophisticated neighborhood structures and
distance metrics on JSP and traveling salesman problem (TSP)
[11].
dMSXF also performs multi-step local search from parent

p1 in the direction approaching the other parent p2. Each
transition in the local search is accepted by the deterministic
rule composed of a distance measure, while MSXF determines
it by Metropolis criterion according to the quality of a solution.
The procedure of dMSXF is as follows.

Procedure of dMSXF
1. Let p1, p2 be parents and set their offspring C(p1, p2) = φ.
2. k=1. Set the initial search point x1 = p1 and add x1 into

C(p1, p2).
3. /Step k/ Prepare N(xk) composed of μ neighbors generated
from the current solution xk. ∀yi ∈ N(xk) must satisfy
d(yi, p2) < d(xk, p2).

4. Select the best solution y from N(xk). Let the next search point
xk+1 be y, and xk+1 is added into C(p1, p2).

5. Set k = k + 1 and go to 2. until k = kmax or xk equals p2.

At step 3 of the procedure of dMSXF, every neighborhood
candidates yi (1 ≤ i ≤ μ) generated from xk must be closer
to p2 than xk. In addition, dMSXF necessarily moves its tran-
sition toward p2 even if all solutions in N(xk) are inferior to
the current solution xk. dMSXF requires two parameters, kmax

and μ and C(p1, p2) is comprised of {x1, x2, · · · , xkmax}.

C. Generation Alternation Model
The generation alternation model we used in this paper

is outlined below. This model focuses on a local search
performance and it showed effectiveness in combinatorial
optimization problems [3], [10], [11].

Flow of GP
1. Generate the initial population composed of Npop of random
solutions, individuals, {x1, x2, · · · , xNpop}.

2. Reset indexes {1, 2, · · · , Npop} to each individual randomly.
3. Select Npop pairs of parents (xi, xi+1) (1 ≤ i ≤ Npop) where

xNpop+1 = x1.
4. MSXF (dMSXF) is applied to each pair (xi, xi+1).
5. For each pair (xi, xi+1), select the best individual c from off-
spring C(xi, xi+1) generated by parents (xi, xi+1) and replace
the parent xi with c.

6. Go to 1 until some terminal criterion is satisfied, e.g., genera-
tions and/or the number of evaluations.

III. DESIGNS OF MSXF FOR TREE REPRESENTATION

To apply MSXF or dMSXF, a neighborhood structure and its
corresponding pair-wise distance measure should be defined.
Both multi-step crossover operators would work very well
with sophisticated definitions that can express characteristics
of problem-specific structures. Thus these definitions, espe-
cially the definition of the neighborhood structure, are most
important to improve the search performances of MSXF and
dMSXF.

A. Definition of Distance Measure
In tree structures, a graphical pattern, a motif, is one of

the most useful information to comprehend features of a tree.
Extracting important frequent patterns occurring from tree
structured data have been discussed in not only for the design
of the crossover in GP but also for a tree mining in the semi-
structured data such as large collections of web pages [14],
[15].
Here we introduce a distance measure based on different

nodes derived from both the largest common subtree (sub-
graph) and the subtrees consisting of different edges between
two trees. The largest common subtree is the connected subtree
that possesses the largest set of the common edges between
trees without considering the node’s symbols. Figure 1 shows
an example of the largest common subtree and the different
subtrees between two trees in a symbolic regression problem
instance. In this example, the symmetric property of the
relation between nodes, i.e., the order between the children
nodes, is ignored. Here, com(A) and com(B) denote the
largest common subtrees respectively in tree A and B, and
dif(A) and dif(B) indicate the different subtrees. These
different subtrees are calculated by removing edges (links) and
nodes included in com(A) or com(B) from A or B.
Using some definition of the largest common subtree and

the different subtrees, the distance between tree A and B,
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Fig. 1. The largest common subtree and the different subtrees (unordered
tree; UT)

d(A,B), is defined as

d(A,B) =
1

2
(|Ncomd(A)|+ |Ncomd(B)| (2)

+|Ndif(A)|+ |Ndif(B)|)
where Ncomd(A) and Ncomd(B) are the set of nodes that
possess a different node’s symbol located at the same
place respectively in the subtree com(A) and com(B),
and | · | means the number of components. Ndif(A) and
Ndif(B) indicate the set of nodes respectively included
in dif(A) and dif(B). In the example shown in Fig.
1, Ncomd(A) = {nA1 , nA2 , nA4 , nA7 , nA9 , nA11}, Ncomd(B)

= {nB1
, nB2

, nB8
, nB10

, nB12
, nB13

} and |Ncomd(A)| =
|Ncomd(B)|=6. The components in the difference subtrees are
respectively Ndif(A)={nA5 , nA6} (|Ndif(A)|=2) and Ndif(B)=
{nB3 , nB4 , nB5 , nB6} (|Ndif(B)|=4).
The calculation of the largest common subtree depends on

the intended tree structure. Here, two types of tree structures,
unordered tree (UT) and ordered tree (OT), are considered and
two kinds of the distance based on UT or OT are introduced.
UT and OT are kinds of a directed acyclic connected graph
with a fixed root node, and the former does not consider the
order of nodes among children nodes while the latter does. The
symmetric property in descendant nodes is ignored under the
definition of UT. Figure 1 is an example of com(A), com(B),
dif(A) and dif(B) under the definition of UT. In the difinition
of UT, for example, the tree “- + x 1 x” and the tree “- x +
x 1” are considered equal as shown in Fig. 2.
On the other hand, the children of each node have a

specific order in OT. This tree representation discriminates
the tree ”- + x 1 x” from the tree ”- x + x 1” as shown
in Fig. 2. Figure 3 illustrates the largest common subtrees
com(A) and com(B), and the different subtrees dif(A) and
dif(B) under the definition of OT. The trees in this example
are same as those of Fig. 1. The component of each subtree
is respectively Ncomd(A)={nA1 , nA2 , nA7 , nA9 , nA11},
Ncomd(B) ={nB1 , nB2 , nB8 , nB10 , nB12} (|Ncomd(A)|=
|Ncomd(B)|=5), Ndif(A)={nA4 , nA5 , nA6} (|Ndif(A)|=3) and
Ndif(B)={nB3 , nB4 , nB5 , nB6 , nB13} (|Ndif(B)|=5).
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Fig. 2. The symmetric property and the difference between UT and OT. t1
and t2 are extracted under UT, while st1 in “- + x 1 x” and st2 in “- x +
x 1” are regarded as the largest common trees under OT.
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The distance between A and B is 9 ( 12 (6+6+2+4)=9) if we
treat the tree as UT, while the distance is 9 (12 (5+5+3+5)=9) if
the tree is treated as OT1. com(A) and com(B) are calculated
at each step in the local search in MSXF and dMSXF;
nevertheless, they can be calculated by a simple dynamic
programming with the computation cost of O(|NA| · |NB |),
where |NA| and |NB | are the number of nodes respectively
included in tree A and B [16]. If several candidates of the
largest subtree exist, one subtree is randomly selected.

B. Neighborhood Structure
Here we propose three types of generation methods of

neighborhood solutions in the local search in MSXF and
dMSXF. In many cases in optimizing tree structures, one of the
most important constraints is to keep the number of children
nodes that any node should have. For example, in a kind of
symbolic regression problem, operations, such as arithmetic
operations or other numerical functions, should have 1 or 2
children nodes, while constants and variables have no children
nodes. A node that possesses illegal children nodes does not
work correctly as an operation, a program or a constant, even
if it is simply allowable as a component of an abstract tree

1The total distances on UT and OT are equal in the case of these two
simple trees but that does not necessarily occur in all cases.
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structure. In some tree structured problems, the existence of
nonterminal nodes of which the number of children nodes
can vary is allowed; however, in this paper, we assume that
the number of children nodes that each kind of node should
keep is defined in advance and does not change during the
optimization.
With considering the constraint about the number of chil-

dren nodes, the neighborhood solutions are generated based
on both the largest common subtree and the different subtree.
To describe the procedures of the generation methods briefly,
we first summarize the terms we use for the explanations and
introduce three operations.
1) Terms: The notations with regards to the largest common

subtree, different subtrees and relation between nodes are
described below.

• com(X) is the largest common subtree in tree X .
• dif(X) is the set of subtrees included in tree X that are
not observed in another tree Y . dif(X) is calculated by
subtracting com(X) from X .

• Ncom(X) is the set of nodes included in com(X).
• Ndif(X) is the set of nodes included in dif(X).
• Ncomd(X) is the set of nodes that possess a different
symbol located at the same place between the subtree
com(X) and the other tree’s largest common subtree
com(Y ).

• Ndifa(X) is the set of the nodes that are adjacent to a
node included in com(X).

• parent(n) denotes the parent node of node n.
• child(n) means the set of children nodes of node n.
• st(n) denotes a subtree of which the topmost node is n.
• narg means the number of children nodes that node n
should keep.

• root(X) denotes the root (topmost) node of tree (or
subtree) X .

2) Operations: Three operations, Replace, Delete and
Insert, with treating the constraint about the number of
children nodes are defined as follows.

• Replace(n1, n2) is an operation that replaces the sym-
bol of node n1 with the symbol of another node n2. After
the replacement, nodes ni (1 ≤ i ≤ narg

1 − narg
2 ) are

selected from child(n1) in some manner and subtrees
st(ni) are deleted from n1 if narg

1 > narg
2 , otherwise ran-

domly generated terminal nodes ni (1 ≤ i ≤ narg
2 −narg

1 )
are inserted to n1 as children nodes.

• Delete(n) is applied only if the node n is a nonterminal
node. Node n∗

c is selected from child(n) in some manner
and relinked to parent(n) as a child node. The node n
and subtrees st(nc) where nc ∈ {child(n) − n∗

c} are
deleted.

• Insert(n1, n2) is an operation that inserts the node n2

to the node n1 as a child node, which is applied only if
the insertion destination n1 is a nonterminal node. First
node n∗

c is selected from child(n1) in some manner and
the subtree st(n∗

c) is deleted from n1. The node n2 is
then inserted to n1 as a child node.

3) Generation Methods of Neighborhood Solutions: Here
we propose three types of generation methods of neighborhood
solutions derived from the current solution xk at step k of the
local search in MSXF and dMSXF. We refer to the proposed
method as follows.

• Node Replacement (R)
• Internal Node Deletion (D)
• Node Insertion (I)
These methods are consistently designed to generate neigh-

borhood solutions sn that satisfy the distance condition
d(sn, p2) < d(xk, p2) from xk, not to break the largest
common tree between xk and the parent p2. The parent p2 is
the targeted solution that the local search approaches step by
step starting from the other parent p1. This distance condition
is a specific constraint in the procedure of dMSXF, and in the
original proposed procedure of MSXF the neighborhood solu-
tions are generated randomly from the solution xk, however,
here we adopt the same generation manner in MSXF as that
of dMSXF. This is because the generation manner has been
shown to be effective in several combinatorial optimization
problems.
The procedure of the node replacement is as follows and

Fig. 4 shows the aspect of the replacement. This operation is
applied to the node included from com(xk).

Node Replacement (R):
1. Select a node n randomly from Ncomd(p2).
2. Find the node n′ ∈ Ncom(xk) of which the relative location
from the root of the largest common tree, root(com(xk)), in
xk is same as that of n from root(com(p2)).

3. Apply Replace(n′, n) to xk. Select a node nc randomly from
{child(n′) ∩ ¬Ncom(xk)} and delete the subtree st(nc) from
xk if n′arg > narg .

com(p )
2

n

n’

2Tree pkTree x

com(x )k

st

st

st

st

: terminal/nonterminal node with different symbol

: terminal/nonterminal node with the same symbol

s2

s2

n    =2arg
n’     =3arg

s1

Fig. 4. Aspect of the node replacement: The symbol s1 is replaced with the
symbol s2 and the redundant gray subtree is deleted in tree xk .

In the different subtrees observed only in xk, a part of nodes
and subtrees are deleted with the manner described below. This
operation is applied only to a nonterminal node. The aspect
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of the deletion operation is shown in Fig. 5. In this figure st
indicates an arbitrary subtree.

Internal Node Deletion (D):
1. Select a nonterminal node n randomly from Ndifa(xk).
2. Apply Delete(n) to xk. Either node relink manner (a) or (b) on
the deletion operation is applied in accordance with the location
relation between n and com(xk).
(a) If parent(n) ∈ Ncom(xk)

2, select a node randomly from
child(n) and relink it to parent(n) as a child node.

(b) If parent(n) /∈ Ncom(xk), i.e., root(com(xk)) ∈
child(n)3;
∗ if n �= root(xk), root(com(xk)) is relinked to

parent(n).
∗ if n = root(xk), a nonterminal node nc satisfying

narg
c > 1 is selected from {child(n)−root(com(xk))}
as a new topmost node of xk, and root(com(xk))
is relinked to nc. Then a node nd is selected from
{child(nc) − root(com(xk))} and the subtree st(nd)
is deleted.

If no nonterminal nodes nc that satisfy the condition exist
at step 2 (b), the subtree st(root(com(xk))) substitutes for
the tree xk, i.e., root(xk) and all the subtrees with regard
to children nodes of root(xk) except for root(com(xk)) are
deleted in xk.

n

com(x )k

com(x  )k

parent(n)

cn

dn

Ndif (x )ka

Relink

Relink
Delete

Delete

st st

st st

st…

Delete

st

kn=root(x )

Ndif (x )ka

k
n=root(x )case (b)case (a)

kTree x kTree x

Fig. 5. Aspect of the internal node deletion: Gray edges, nodes and subtrees
are deleted while the black bold edge is relinked.

The node insertion is the operation that copies a node, which
is not observed in xk, to xk from p2 as follows. Figure 6
illustrates the aspect of the insertion.

Node Insertion (I):
1. Select a node n randomly from Ndifa(p2).
2. Either procedure (a) or (b) is applied in accordance with the
location relation between n and com(p2).
(a) If parent(n) ∈ Ncom(p2),
(a-1) Find the node n′

p ∈ Ncom(xk) of which the relative
location from the root of the largest common tree,
root(com(xk)), in xk is same as that of parent(n)
from root(com(p2)).

(a-2) Apply Insert(n′
p, n) to xk. In the insertion, the order of

n among the children of parent(n) is kept also among
the children of n′

p
4. A node nc is randomly selected

2The case that n is connected to a leaf of the largest common tree com(xk)
3The case that the root node of com(xk) is connected to n
4For example, n is inserted to n′

p as the second child node if it is the
second child node of parent(n).

from {child(n′
p) ∩ ¬Ncom(xk)} as the redundant, and

the subtree st(nc) is deleted in xk.
(b) If parent(n) /∈ Ncom(p2)

5,
(b-1) Generate a nonterminal node n′ of which symbol is

same as that of node n and let n′ be a new root node
of xk.

(b-2) Connect root(com(xk)) to n′ as a child node. Insert
narg − 1 terminal nodes randomly generated to n as
children nodes.

At step 2 (a-2), if the insertion destination n′
p is a terminal

node, Replace(n′
p, parent(n)) is applied to xk in advance. If

the node n is a nonterminal node, random narg terminal nodes
are previously generated and connected to n as a children
nodes.

case (a)

case (b)

n    =3arg

com(p )
2

parent(n)

st

st st st

n Ndif (p )2a

2Tree pkTree x

2Tree pkTree x

: randomly generated terminal nodes

Insert

Delete
st st st…

com(x )k

pn’

cn

com(p )
2

parent(n)

st

st

st st

n    =2arg

n Ndif (p )2a

…

com(x )k

n’

st st st…

root(com(x ))k

= root(x )k

Fig. 6. Aspect of the node insertion: The gray subtree is deleted while the
subtree of black solid nodes is inserted.

4) Neighborhood generation in MSXF and dMSXF: The
neighborhood solution set N(xk), required at step 3 in both
MSXF and dMSXF, is calculated as follows.

Generation of neighborhood solution set
1. Let p1 and p2 be the starting parent solution and the tar-
geted parent solution, and set the neighborhood candidate
N(xk) = φ.

2. Calculate the largest common subtrees com(xk) and
com(p2) and the different subtrees dif(xk) and dif(p2).

3. Set a neighborhood solution sn=xk.
4. Apply Node Replacement (R), Internal Node Deletion
(D) or Node Insertion (I) to sn, by using the subtrees
calculated at step 2, and update the subtrees.

5In this case, by a feature of the largest common subtree, root(xk) is
identical to root(com(xk)).
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5. Go to 4 until the distance d(sn, xk) reaches
d(p1, p2)/kmax.

6. Add sn into N(xk).
7. Go to 3 until N(xk) = μ is satisfied.

As described in section III-A, we consider two kinds of
tree definitions, UT and OT. These definitions are used for the
calculation of the largest common subtree and the distance
at step 2, and strongly relate to the performance of gener-
ation methods of neighborhood. Hereafter the neighborhood
solutions generated by the procedure above are expressed as
UT neighbor or OT neighbor if the common subtree and the
distance are calculated under the definition of UT or OT.
At step 4, one of three generation methods is selected

stochastically with the ratio R : D : I , which is one of
parameters of the proposed method.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluated the search performances of
MSXF and dMSXF. First we show the search performance of
MSXF. MSXF with UT neighbor and MSXF with OT neighbor
are compared. We then discuss how the setting of the ratio
among Replacement, Deletion and Insertion (R:D:I) affects
obtained trees. Finally we compare the performances between
MSXF and dMSXF. To assess the performances of MSXF and
dMSXF, the results of 1 point crossover (1X) are shown as a
comparative criterion.

A. Problem domain and instances
We evaluated the performance of MSXF and dMSXF on

symbolic regression problem that is one of basic problem
domains for assessing the search performance. We picked two
kinds of functions of one variable as follows. The first is an
easy instance that can be expressed by only basic arithmetic
operators, while the second one consists of arithmetic opera-
tors and several numerical functions.

Instance (I): The function that should be identified is as
follows. The number of sample points is 21, and they are
placed at even interval in the domain [-1, 1]. This function is
unimodal.

fopt
1 = x4 + x3 + x2 + x (3)

Instance (II): The function that should be identified is as
follows. The number of sample points is 101, and they are
placed at even interval in the domain [0, 10]. This instance is
a multimodal function.

fopt
2 = x sinx(cosx− 1) (4)

To identify these instances, we adopted the following non-
terminal and terminal node sets. To make instances harder,
operators and constants not used in the correct functions shown
in Eq. (3) and Eq. (4) are included in the sets.

Nonterminal nodes: V NT={addition(+), subtraction(-), mul-
tiplication(*), division(/), modulo(%), sin, cos, exp, ln}; The
function sin, cos, exp and ln are unary and should have 1
child nodes, and other operators are binary and should have 2
children nodes.
Terminal nodes: V T={x, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0}; The variable is only x and others are constants.

The fitness function is the sum of error of each sample point
of fopt

1 or fopt
2 , and we assume that the population of GP

reaches the optimal solution when the fitness value becomes
less than 0.01 on Instance (I), and less than 2.0 on Instance
(II).

B. Effectiveness of MSXF
Using the two symbolic regression problem instances, we

discuss the performances of MSXFs using UT neighbor and
OT neighbor. For the comparison, the performance of 1X is
also shown.
In the experiments, the population size was set to 100. The

generation alternation model adopted for 1X was the same
as that of dMSXF described in section II-C. The objective
of the experiments is to examine the effect of crossovers,
therefore neither mutations or bloat controlling strategies were
applied. The number of offspring Ncross generated by each
pair of parents was set to 50, 100 and 200. For MSXF, kmax

was set to 2, 5 and 10. μ is calculated as Ncross/kmax.
The initial temperature T0 was set to 0.1 and updated as
Tt+1 = 0.1∗Tt every 2 generations. The ratio R:D:I was set to
1:1:1 in MSXFs. Initial solutions were generated randomly but
keeping the node generation rate as shown in Table I. All nodes
included in each kind were generated with equal probability.
The number of nodes included in each initial solution was
restricted to less than or equal to 25.

TABLE I
NODE GENERATION RATE

Nonterminal node unary 0.5
(V NT ) binary 0.5

Terminal node variable 0.8
(V T ) constant 0.2

Each run was terminated after 40 generations. These param-
eters were determined from several preliminary experiments.
Table II and Table III show the results on Instance (I) and

Instance (II). These results show the success rate, the average
of the number of the nodes constituting the obtained tree, and
the average depth of trees out of 50 trials. At each trial, the
same initial population was used in the GPs.
From Tables II and III, MSXFs perform better than the

conventional crossover and find compact trees. In both in-
stances, the size of tree, the number of nodes and the tree
depth, becomes smaller in accordance with increase in kmax

in any settings of parameters. In the easy instance, MSXF
completely outperforms 1X regardless of the settings of kmax.
A marked improvement in performance is found, especially in
OT distance, in the difficult instance by solving with large
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TABLE II
PERFORMANCE OF MSXF WITH THE DISTANCE MEASURES BASED ON UT AND OT ON INSTANCE (I)

MSXF
1X UT neighbor OT neighbor

Ncross=50 kmax=2 kmax=5 kmax=10 kmax=2 kmax=5 kmax=10
Success Rate 0.80 0.96 0.98 0.94 1.00 1.00 0.94
Number of nodes 41.63 22.64 17.88 15.85 20.03 17.40 15.95
Depth of tree 12.85 9.05 7.36 6.71 7.76 6.98 6.71
Ncross=100 kmax=2 kmax=5 kmax=10 kmax=2 kmax=5 kmax=10
Success Rate 0.74 0.94 1.00 0.98 1.00 1.00 0.98
Number of nodes 58.12 24.60 20.03 17.05 22.05 18.76 17.00
Depth of tree 16.73 9.55 8.05 7.01 8.28 7.34 6.79
Ncross=200 kmax=2 kmax=5 kmax=10 kmax=2 kmax=5 kmax=10
Success Rate 0.86 0.98 1.00 1.00 1.00 1.00 1.00
Number of nodes 83.72 27.93 21.06 17.93 25.16 19.97 17.81
Depth of tree 19.46 10.41 8.54 7.42 8.93 7.77 7.07

TABLE III
PERFORMANCE OF MSXF WITH THE DISTANCE MEASURES BASED ON UT AND OT ON INSTANCE (II)

MSXF
1X UT neighbor OT neighbor

Ncross=50 kmax=2 kmax=5 kmax=10 kmax=2 kmax=5 kmax=10
Success Rate 0.30 0.08 0.46 0.40 0.20 0.70 0.52
Number of nodes 53.29 23.55 16.26 14.15 22.51 15.24 13.91
Depth of tree 16.64 9.47 7.41 6.49 9.28 7.01 6.53
Ncross=100 kmax=2 kmax=5 kmax=10 kmax=2 kmax=5 kmax=10
Success Rate 0.50 0.24 0.56 0.56 0.30 0.84 0.84
Number of nodes 59.01 26.40 18.05 15.02 23.61 16.96 14.61
Depth of tree 17.51 10.33 8.22 6.96 10.11 7.67 6.71
Ncross=200 kmax=2 kmax=5 kmax=10 kmax=2 kmax=5 kmax=10
Success Rate 0.38 0.24 0.62 0.74 0.46 0.86 0.90
Number of nodes 110.65 30.71 19.13 15.35 27.57 17.66 15.34
Depth of tree 30.21 11.72 8.82 7.29 11.18 8.07 7.15

populations, but the performances of MSXFs become worse
in the case of small kmax. For the difficult instance, we can see
the setting of kmax has intensified impact on the performance
of MSXFs under a limited population size while the difference
in performance is not observed in the easy instance from the
perspective of the success rate.
From the comparison between UT neighbor and OT neigh-

bor in MSXF, the latter shows the superior success rate to
that of UT neighbor and can find smaller trees. The problem
instances adopted in this paper have nonterminal nodes that
work unsymmetrically on children nodes, e.g. the subtraction.
In such an operator, the numerical result is different between
st1-st2 and st2-st1. The definition of OT neighbor considers
the symmetric property between children nodes and can treat,
for example, the difference between st1-st2 and st2-st1, while
UT neighbor ignores the difference as shown in Fig. 2. This
would be one of reasons that OT neighbor works well on these
symbolic regression problem instances.

C. The Ratio Among Neighborhood Generation Methods
Table IV and V show the performances in the difficult

instance under the different settings of the ratio R:D:I in
MSXF with UT neighbor and MSXF with OT neighbor.
The number of offspring Ncross generated by each pair of

parents was set to 100 and kmax=5. Other parameters of the
GPs were the same as those described in the previous section.
Among the settings, the ratio 3:3:4 means that Insertion has

slightly high priority to other two operations. The ratio 3:4:3
indicates that Deletion is selected with some high possibility.
The last 4:3:3 is biased to Replacement. The ratio 3:3:4 makes
the tree larger by the insertion, while the ratio 3:4:3 reduces
the size of tree by the deletion.

TABLE IV
COMPARISON AMONG THE SETTINGS OF THE RATIO R:D:I (UT

NEIGHBOR)

R:D:I 1:1:1 3:3:4 3:4:3 4:3:3
Success Rate 0.56 0.40 0.44 0.60
Number of nodes 18.05 21.15 16.45 16.89
Depth of tree 8.22 8.76 7.63 7.73

TABLE V
COMPARISON AMONG THE SETTINGS OF THE RATIO R:D:I (OT

NEIGHBOR)

R:D:I 1:1:1 3:3:4 3:4:3 4:3:3
Success Rate 0.84 0.72 0.80 0.82
Number of nodes 16.96 19.80 15.36 15.17
Depth of tree 7.67 8.33 7.10 7.18

The relation of tree sizes, 3:3:4 > 4:3:3 > 3:4:3, is found
in both UT neighbor and OT neighbor, and we can see that
the setting of R:D:I affects directly to the tree size. From
the perspective of the success rate, the ratio biased to the
replacement outperforms other settings.
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TABLE VI
COMPARISON BETWEEN MSXF AND DMSXF

1X MSXF dMSXF
UT neighbor OT neighbor UT neighbor OT neighbor

Success Rate 0.50 0.56 0.84 0.36 0.66
Number of nodes 59.01 18.05 16.96 30.31 24.75
Depth of tree 17.51 8.22 7.67 10.40 10.14

D. Comparison of MSXF and dMSXF
Table VI compares the search performance of MSXF and

dMSXF in the difficult instance. For a comparative criterion,
the result of 1X is shown. In this experiment, the number of
offspring Ncross generated by each pair of parents was set
to 100 and kmax=5. The ratio R:D:I was set to 1:1:1. Other
parameters of the GPs were the same as those described in
section IV-B.
From Table VI, OT neighbor is superior to UT neighbor,

in dMSXF. dMSXF with OT neighbor also outperforms 1X
with obtaining compact trees; however, we can see MSXF is
more suitable for optimizing trees with proposed neighborhood
structures.

V. CONCLUSION
In this paper, we introduced MSXF and dMSXF to GP

with the neighborhood structures based on the largest common
subtree between parents, and examined their performance,
using symbolic regression problem instances. Two types of
tree structures, the ordered tree and the unordered tree, are
examined to extract the largest common trees and generate
neighborhoods. From the experiments, it has been shown that
the former that consider the symmetric property in trees is
suitable for the problem instances. In this paper, we only show
results of symbolic regression problem instances but they have
been shown to be effective on a simple artificial ant problem
in our preliminary experiments. For the examination we chose
a conventional crossover to assess the search performance but
we should compare them with some state-of-arts. This task is
left as a future goal.
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