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Abstract—The number of drivers using on-board systems to
navigate through urban areas is increasing. Drivers get real
time information regarding traffic conditions and change their
routes accordingly. Adapting a route clearly enables drivers to
avoid closed roads or circumvent major hotspots. However, given
the non-linearity of the traffic dynamics in urban environments,
choosing a route based only on current traffic load or current
average vehicle speed is not a guaranty of a lower overall travel
time. In this work, we design an evolutionary system to search for
better surrogate travel cost that drivers could optimise in their
rerouting to achieve better overall travel times. Our system uses
the Grammar-Guided Genetic Programming algorithm to evolve
surrogate travel cost expressions and evaluate their performances
on a micro traffic simulator. Our system is able to evolve
different expressions that meet characteristics of specific urban
environments instead of a one size fits all expression. We have
seen in our experimental study on a traffic scenario representing
Dublin city centre that our system is able to evolve surrogate
travel cost expressions with ∼34% and ∼10% improvements in
average travel time over the no rerouting and the average travel
speed based rerouting algorithms.

Index Terms—Evolution Computation, Grammar-Guided Ge-
netic Programming, Simulation of Urban MObility, Traffic
Rerouting, Surrogate Travel Cost.

I. INTRODUCTION

Vehicle navigation systems have large impacts that go beyond
our personal daily lives. Designing a good vehicle navigation
system is crucial for enabling an efficient and sustainable
development of our cities’ mobility and transportation [1]. This
importance attracts the attention and the resources of various
stakeholders from governments to industrials, researchers, and
general public drivers, among others.

An increasing number of drivers are nowadays using on-
board on-line and real-time systems to navigate urban environ-
ments [2]. Vehicles (represented by either their drivers or their
traffic agent systems) plan routes dynamically, and react in
real-time to their received traffic information: routing directives,
traffic conditions and network congestions [3].

While, there has been a large number of works in the
literature that propose different vehicle navigation systems
to attempt to improve drivers’ travel time and increase the
efficiency of city-wide road networks, routing in urban areas
is still an ongoing problem [4].

Many works in the literature consider one or multiple
perceived traffic network conditions as a cost to inform
their routing and rerouting strategies and are called time-
dependent [5]. For instances, Cao et al. [6] propose a routing
algorithm based on a multi-agent approach which considers

the real-time travel time. Pan et al. [7] propose a (re-)routing
system which considers the real-time traffic load on each road.
Despite the sizeable number of time-dependent works, traffic
networks are dynamic and it is still not clear what cost function
(if it exists) yields better total travel time.

Some more recent works propose to use historical on-road
driving performance data to informed the navigation decision-
making [8] or attempt to predict traffic conditions using
complex features from multiple sources and combined using
advance models (e.g., [9]), but this raises several issues related
to data collection [10], data storage [11], data quality [12], and
data processing [13].

In this work, we propose to use Grammar-Guided Genetic
Programming (G3P [14]) to evolve a time-dependent cost
function that drivers would aim to optimise (i.e., a surrogate
travel cost) in their navigation in order to optimise their overall
travel time. We make the assumption that drivers only have
access to some basic map information and real-time traffic
network conditions, and that drivers do not have access to any
historical data.

This paper makes the following contributions:

• We show that the choice of the rerouting surrogate travel
cost function is of a high importance as it might lead to
a worse travel time than with the no rerouting strategy.

• We design a system that evolves better rerouting surrogate
travel cost functions and evaluates their performances on
a well-known micro traffic simulator.

• The evolved surrogate travel cost functions are in the form
simple mathematical formulas which makes them more
interpretable than other black/grey box strategies.

• The system could easily be used to evolve surrogate
travel cost functions on an urban environment basis (thus
better matching their characteristics) rather than having
a one size fits all expression. For example, Dublin city
centre and Manhattan have different map and traffic load
characteristics. Therefore, evolving a different surrogate
travel cost function for each of them seems to be more
appropriate.

The remainder of this paper is organised as follows: Sec-
tion II presents the background of our study. Section III defines
our problem. Section IV describes our proposed system and
approach. Section V presents the design of our experiments.
Section VI reports and discusses our experimental results.
Finally, Section VII concludes the paper.
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II. BACKGROUND

This section presents the background to our research in four
parts: (i) routing, (ii) rerouting, (iii) micro-simulation of urban
mobility, and (iv) SUMO.

A. Routing

Routing is also sometimes referred to as Route Assignment
or Traffic Assignment.

Let V be the set of all vehicles in the system. Each vehicle
v ∈ V departs from its origin o(v) at the time t0(v) and
attempts to arrive to its destination d(v) in a way that minimises
its considered total travel cost (often considered to be the travel
time).

The travel time on every segment is hard to accurately
quantify (as travel time on each road segment is dynamic).
Therefore, other more deterministic cost functions are often
employed as a surrogate cost function c with more less accuracy
(e.g., length of the road segment, current travel time on the
road segment, etc).

We define the route r(v) ∈ R of the vehicle v ∈ V by a list
of road segments {sv0, sv1, ..., svn} such that:
• sv0 = o(v)
• svn = d(v)
• for every i ∈ {1, ..n}, svi−1 is connected to svi by a road

junction.
The objective from the perspective of every vehicle v ∈ V is

then to find the route r(v) = {sv0, sv1, ..., svn} that minimises its
total surrogate travel cost function c (r(v)), which corresponds
to the sum of the surrogate travel cost function of each road
segment c(svi ), with svi ∈ r(v):

c (r(v)) =
∑

svi ∈{sv0 ,sv1 ,...,svn}

c(si) (1)

B. Rerouting

Let’s consider a vehicle v ∈ V with an assigned route
r(v) = {sv0, ..., svi , ..., svk, svk+1..., s

v
j , ..., s

v
n} and located at

the road segment svk at the time tk. The rerouting of the
vehicle v with respect to its surrogate travel cost function c
at the time tk is a routing problem for the vehicle v from
the origin svk to its destination svn which minimises its same
surrogate travel cost function c. The rerouting of v will yield
a route r′ ∈ R′, such that r′(v) = {svk, s′vk+1..., s

′v
j , ..., s

v
n}. In

total, if we consider no further rerouting, when the vehicle v
reaches its destination, it would have travelled the total route
{sv0, ..., svi , ..., svk, s′vk+1..., s

′v
j , ..., s

v
n}.

C. Micro Simulation of Urban Mobility

Simulators are commonly used in urban road traffic research
as it is costly to verify new methodology under the realistic ur-
ban infrastructure. In general, there are two types of simulation
in road traffic study, microscopic and macroscopic simulation.
The underlying simulation unit of macroscopic simulation is the
road segment. In contrast, the scope of microscopic simulation
can be narrowed down to the behaviour of each different

vehicles running on separate lanes of the road segment. Micro-
simulation requires a lot more computation resources than
macro-simulation due to its much finer granularity. However,
the micro-simulation is getting more popular as researchers
can have access and control to more details (e.g. vehicle types,
the changes of vehicle route, etc.) to study their impact on the
traffic.

D. SUMO

Simulation of Urban Mobility (SUMO) [15] is the most
widely used open-source microscopic road traffic simulator. It
supports various map data formats such as shapefiles and open
street map. Based on these map data, SUMO can generate
the quasi-realistic traffic from the demographics of a city, or
the synthetic traffic from a list of configurable parameters,
for instance, the number of vehicles and the distribution
of origin and destination locations. The general workflow
with SUMO is that researchers prepare required inputs, such
as maps, traffic demands, traffic light timing plans, to start
running the simulation. When the simulation is finished, the
key measurements of this simulation (e.g. vehicle travel time,
travel distance, fuel consumption, etc.) can be collected and
analysed using tools or APIs provided by SUMO. During the
execution of the SUMO simulation, with the help of Traffic
Control Interface (TraCI), a Python Library based on SUMO,
researchers can retrieve the simulation status on-line (e.g. the
current location or speed of a particular vehicle), and apply
new control policies (e.g. change the route of a vehicle) before
the simulation finishes. In this study, we use SUMO combined
with TraCI for evaluating vehicular rerouting strategies with
different surrogate travel cost functions.

III. PROBLEM DEFINITION

This section describes the problem we are dealing with in
this paper: designing a ‘good’ surrogate travel cost function
that vehicles would use to inform their rerouting algorithm in
order to achieve a better (lower) overall travel time.

This problem could be seen as a two level-problem where:
(i) in the lower level every vehicle repetitively optimises its
own surrogate travel cost function, and (ii) in the upper level
we would like to optimise the average travel time.

A. Fitness Function: Upper Level

We aim at optimising the average travel time of all the
vehicles in the system. Let t(v, c) be the total travel time
(found by SUMO) of the vehicle v ∈ V between its origin
o(v) and destination d(v), and performing its rerouting in a
way that optimises its surrogate travel cost function c. Then
the fitness function (FF (V, c)) is:

FF (V, c) =
∑

v∈V t(v, c)

|V|
(2)

B. Designing Surrogate Travel Cost Function: Lower Level

Considering that our objective is to optimise the average
travel time, it seems intuitive to reroute vehicles to road
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segments with the lowest travel times (or eventually, to shortest
road segments) using the Dijkstra algorithm[16]. However in
practice, travel time is constantly varying and road segment
size do not inform on their load.

We would like design a better surrogate travel cost function
c that vehicles could optimise from their own perspective
when performing their rerouting, while improving the global
fitness function (i.e., average travel time). The surrogate travel
cost function that we are searching for has to be measurable
for every road segment. This will enable us to exploit basic
rerouting algorithms (e.g., Dijkstra[16], A*, etc.) which find
the optimal route for every vehicle though the additive process
of the surrogate travel cost on every road segment.

Overall, our problem is to find the best surrogate travel cost
function for road segments that vehicles could optimise in their
rerouting in order to achieve the lowest average travel time.

IV. PROPOSED APPROACH: EVOLVING SURROGATE
TRAFFIC COST FUNCTIONS

We propose using a Grammar-Guided Genetic Programming
(G3P [17], [18]) algorithm to evolve better rerouting surrogate
travel cost functions in order to achieve better average travel
times.

G3P has been successfully used to evolve algorithms to
solve problems from various domains ranging from swarm
algorithms design [19], to scheduling wireless communication
networks [20], [21], to link allocation in 5G networks [14], to
associative classification in Big Data [22].

The fitness function (in terms of average travel time) of
every surrogate travel cost function c is evaluated by a SUMO
simulation. For every surrogate travel cost function c, vehicles
are simulated with the ability to be rerouted at every time tr
using some routing algorithm (in our case Dijkstra[16]) and
by evaluating the cost of every road segment based on the
surrogate travel cost function c.

A. G3P Algorithm

G3P is an algorithm that belongs to the family of Evolution-
ary Algorithms. G3P is an extension to Genetic Programming
(GP). G3P can evolve programs/functions/expressions in any
language/context that is described in a grammar–often in the
Backus-Naur Form (BNF). Grammars allow us to specify the
correct syntactic structure of the evolved expression. They
also allow us to include expert domain-knowledge into the
representation (e.g., in our case traffic related statistics).

B. Grammar Design

We would to evolve expressions that represent expressions
which could be mapped to surrogate travel cost functions.
Therefore, we design a grammar that enables us to formulate
expressions: (i) of different sizes, (ii) that are composed of
common mathematical operators, and (iii) that include various
traffic related statistics.

Designing a suitable grammar is of utmost importance and
a hot topic in genetic programming, with researcher proposing
meta-grammars [23] and multi-level grammars [17]. In our
work, we manually design a single grammar for our evolution.

Figure 1 shows the BNF grammar that we use in our work.
In our BFN an expression can be composed of one of the four
binary mathematical operators: addition (+), subtraction (-),
multiplication (*), and protected division (pdiv, returns 0 in case
of division by 0). It can also be composed of one of the three
common unary mathematical operators: protected square route
(psqrt, square route of absolute value), trigonometric sine (sin),
and hyperbolic tangent (tanh). In our expressions, we allow
two types of terminals: constants (numbers from 1 to 9) and
nine road segment traffic statistics that are deterministic values
that could easily be extracted/retrieved from the simulation.

Table I describes each of the nine road segment traffic
statistics that are used in out BNF grammar as terminals. These
traffic statistics can be extracted from SUMO for every road
segment. We distinguish two types of statistics:
• Statistics that are static and do not change during the sim-

ulation: length and noNextRoadChoices(i.e. the number
of next road choices).

• The rest of the statistics are changing during the simula-
tion.

In our case, we measure the changing statistics in the time
interval that starts from the time of the last rerouting (or start
of the simulation) and end at the time when we conduct the
new rerouting.

Note that G3P’s evolved expressions are in the form of math-
ematical formulas. Therefore, each expression could be directly
used as a surrogate travel cost function without performing
any complicated mapping. Hence, we could interchangeably
refer to a surrogate travel cost function as a surrogate travel
cost expression.

C. Sumo-Based Cost Evaluation

Figure 2 shows an overview of our system. It shows on the
left side details of our G3P algorithm. G3P receives a grammar
in a BNF form. G3P randomly generates an initial population
(set) of surrogate travel cost expressions and evaluates their
respective fitness. Then, G3P repeatedly iterates through the
selection, crossover and mutation operators to evolve newer
populations until exceeding its execution time budget (or in
our case, the number of generations). G3P uses SUMO for
the fitness evaluation of every surrogate travel cost expression.
Providing a map, a list of vehicles (with their respective origins,
destinations, and starting times), and a surrogate travel cost
expression, SUMO simulates the trips of vehicles with their
rerouting and returns the overall average travel time to G3P.
This average travel time is considered in G3P as the fitness of
the given surrogate travel cost expression.

In particular, the interaction between G3P and SUMO
is described as follows: when a new surrogate travel cost
expression is evolved by G3P, it is sent to SUMO, along with
the map and traffic demand definition to simulation the scenario.
Every fixed time interval (e.g., in our case every 60 seconds),
our strategy will use TraCI to retrieve the up-to-date traffic
metrics shown in Table I. These metrics will be used to (i)
compute the travel cost with the evolved expression, and (ii) to
reroute all vehicles based on these updated travel costs. When
the simulation is finished, the average travel time of the whole
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<e> ::= <e>+<e> | <e>-<e> | <e>*<e> | pdiv(<e>,<e>) | psqrt(<e>) | sin(<e>) |
tanh(<e>) | <terminal>

<terminal> ::= <constant><constant>.<constant><constant>*<stat> | <stat>
<stat> ::= avgSpeed | maxSpeed | roadOccupancy | minSubsequentOccupancy |

avgSubsequentOccupancy | maxSubsequentOccupancy | avgTravelTime |
noNextRoadChoices | length | <constant>

<constant> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 1. Grammar in the Backus-Naur Form used in our Grammar-Guided Genetic Programming algorithm. The grammar include common mathematical unary
and binary operators, in addition to some useful traffic related statistics as a mean to introduce expert domain-knowledge.

TABLE I
DESCRIPTION OF THE ROAD SEGMENT TRAFFIC STATISTICS THAT ARE USED AS TERMINALS IN THE GRAMMAR OF OUR GRAMMAR-GUIDED GENETIC

PROGRAMMING ALGORITHM.

Traffic Statistic Description
avgSpeed The average speed of all vehicles that travel the road segment in the considered time period.
maxSpeed The maximum speed of all vehicles that travel the road segment in the considered time period.
roadOccupancy The percentage of the total length of all vehicles on the road divided by the length of that road.
minSubsequentOccupancy The minimum occupancy of all subsequent roads to the current road.
avgSubsequentOccupancy The average occupancy of all subsequent roads to the current road.
maxSubsequentOccupancy The maximum occupancy of all subsequent roads to the current road.
avgTravelTime The length of the road divided by the average speed of the vehicles running on the same road.
noNextRoadChoices The number of down stream road segments that are adjacent to the current one.
length The length of the road segment.

simulation is obtained and used as a fitness for expression.
This cost will inform which travel cost expression is better and
worth keeping for the evolution of future expressions.

At the end of this process, G3P returns the expression with
the best found fitness. This expression could then be used
for the rerouting in other similar situations (similar maps and
vehicle lists) without a need to re-run the evolution.

V. EXPERIMENT DESIGN

In this section, we describe our experimental design in three
parts: (i) the data set of traffic scenarios on which we are
basing our experiments, (ii) the algorithms we are comparing
against, and (iii) the setup of our system and the values defined
for the parameters of our algorithms.

A. Data Set

We evaluate our proposed method on two data sets: a
randomly generated map and an urban area in Dublin city
centre as shown in Figure 3. The key features/characteristics
of the two traffic scenarios used in our experimental evaluation
are summarised in Table II.

Instead of using a standard grid map, we are using a
randomly generated grid map 1 that is widely used by the
SUMO community. The Random Grid traffic scenario avoids
perfectly shaped/angled roads and symmetrically distributed
number of junctions and roads. Therefore, it enlarges the travel
cost difference for various routing choices and makes it more
reasonable for us to study the impact of different rerouting
strategies. In addition to the random grid map, we also use a
realistic traffic scenario which encompasses a subset map of
Dublin city centre that is obtained from OpenStreetMap.

1https://github.com/lcodeca/PyPML/tree/master/examples/random grid

Fig. 2. Overview of our evolutionary system. On the right is the G3P
algorithm which evolves surrogate travel cost expressions. On the right is the
SUMO simulation process which takes in a list of vehicles (with their origins,
destinations and starting travel times) and a surrogate travel cost expression
for G3P, and returns the average travel time.

The traffic demand generation of these two traffic scenarios
are uniformly distributed over 3600 simulation seconds. The
generated traffic is neither too low nor too high, as we expect
some congested roads, but not all roads are congested.
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Random Grid Dublin City
Fig. 3. Maps of the two traffic scenarios used in our experimental evaluation (left: a randomly generated Grid map; right: a subset map of Dublin city centre).

TABLE II
THE KEY CHARACTERISTIC OF TWO INSTANCE TRAFFIC SCENARIOS: A

RANDOM GRID, AND A PART OF DUBLIN CITY CENTRE. WE REPORT THE
NUMBER OF ROADS (# ROADS), THE AVERAGE ROAD LENGTH (AVG. ROAD
LENGTH), AND THE NUMBER OF JUNCTIONS (# JUNCTIONS) IN THE MAP OF
EACH TRAFFIC SCENARIO. WE ALSO REPORT THE NUMBER OF VEHICLES

SIMULATED IN EACH TRAFFIC SCENARIO.

Characteristic Random Grid Dublin City
# roads 536 6297

avg. road length (m) 82.35 37.00
# junctions 200 3129
# vehicles 2048 1755

B. Algorithms

To evaluate the performance of the rerouting algorithm with
our evolved surrogate travel cost expressions, we compare it
against three other algorithms: No Rerouting, Travel Time
Based Rerouting, and Occupancy Based Rerouting.

1) No Rerouting (NRR): This algorithm is the default
algorithm provided by SUMO (i.e. duarouter). We consider it
as a baseline as it considers no rerouting for any vehicle during
the simulation. Vehicles are assigned the route with the least
possible estimated travel time, which is calculated as the road
length divided by the maximum allowed travel speed limit on
this road. Once the route is determined for each vehicle, this
algorithm offers no possibility to change any vehicle’s route
during its trip.

2) Travel Time Based Rerouting (TTBRR): This algorithm is
also provided within SUMO as the default rerouting mechanism.
TTBRR enables the rerouting of all the vehicles at every fixed
time period (we set this period to 60 seconds similarly to
our proposed approach). Vehicles are assigned their initial
route in a similar way as in the NRR algorithm. Every 60
seconds, all vehicles that started their trip and did not reach
their destination are rerouted. This algorithm routes the vehicles
using the Dijkstra algorithm [16] with the estimated travel time
on each road segment in the last simulation step taken as its
cost. SUMO estimates this travel time using the road length
divided by the average vehicle speed on this road. The possible
range of this average speed value is between 0.1 m/s when

all vehicles on this road are standing still, and the maximum
allowed speed limit on this road when there is no vehicle. As
shown in the previous work [24], this default estimation used
in SUMO can lead to excessive errors when a small number
vehicles waiting for red traffic light in a long road. Our system
will overcome this limitation that directly lead to reduction of
total travel time.

3) Occupancy Based Rerouting (OBRR): This algorithm
follows the same principal as TTBRR. However, OBRR bases
its rerouting on road segment occupancy to avoid overloaded
roads. Therefore, the objective of every vehicle is to minimise
the total route occupancy. A reminder here that a road
occupancy generally means the percentage of a road that is
occupied by vehicles.

Note that TTBRR and OBRR could be considered as
instances (special cases) from our system. Both road travel
time and road occupancy could be expressed by the grammar
designed to our G3P algorithm. Therefore G3P is able to evolve
them as surrogate travel cost expressions in its search process.

C. Setup

In our experiment, we use the implementation of G3P that
is provided in the PonyGE 2 framework [25] with a tree
representation for the evolved surrogate travel cost expressions.
We also define the evolutionary parameters of G3P as shown
in Table III. We generate an initial population of expressions
with a maximum tree depth of 10 using the Ramped Half-Half
(RHH [26]) algorithm, and evolve expressions with that same
maximum tree depth (i.e., 10). For the evolutionary process,
we use the sub-tree crossover with a probability 0.7 and the
sub-tree mutation with a probability 0.3.

In our experiments, we set the size of the population to 30
and evolve it for 30 generations. This limited population size,
number of generations and number of runs is mainly motivated
by the fact that simulating the traffic with a surrogate travel
cost expression in SUMO requires a non-negligible execution
time (between 5 and 10 minutes). Therefore, limiting these
parameters enables us to conduct our experiments in a timely
manner.
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However, it deserves to be noted that if there is a need to
increase the population size and the number of generations, it
is possible to parallelise our evolutionary process to keep the
execution time reasonable (several SUMO simulations could
be run at the same time as they are not inter-related within
the same generation). Furthermore, in order to handle larger
traffic scenarios, it is also possible the use some distributed
implementation of SUMO (e.g., dSUMO [27]).

TABLE III
EVOLUTIONARY PARAMETERS USED FOR OUR G3P ALGORITHM.

Parameter Value
Initialisation Ramped Half-Half

Max initial tree depth 10
Overall max tree depth 10

Population size 30
Number of generations 30

Selection Tournament
Tournament size 2

Replacement Generational
Crossover type Sub-tree with a 70% probability
Mutation type Sub-tree with a 30% probability

In our experiment, we also define some simulation param-
eters. Particularly, we set the rerouting period to 60 seconds.
Therefore, all vehicles that are travelling undergo a rerouting
with the provided surrogate travel cost expression.

To limit the number of varying variables in our work, we
have chosen to use the same rerouting algorithm as the one
provided in SUMO, thus only leaving travel cost of the road
segments as the variable element.

Rerouting algorithms such as Dijkstra[16] are known to not
behave properly in presence of negative costs (the algorithms
suffer from the non-halting problem). Therefore, to avoid
negative surrogate travel costs affecting affecting our rerouting
algorithm, we put a lower bound on the travel cost of each
road segment as 0. Therefore, the surrogate travel cost of a
road segment is the maximum between 0 and the result of its
surrogate travel cost expression.

VI. EVALUATION

This section reports our experimental results in terms of
overall performance (average travel time for all vehicles) and
performance per vehicle.

A. Improvement in Terms of Average Travel Time

In this section, we would like to study the ability of the
G3P approach to evolve more efficient surrogate travel cost
expressions.

Table IV compares the performance in terms of average
travel time (in seconds) achieved by the best surrogate travel
cost expression found by G3P and other algorithms described
in Section V (i.e., NRR, TTBRR, and OBRR).

We see from Table IV that G3P finds surrogate travel cost
expressions that achieve the best average travel time on both
traffic scenarios. G3P finds surrogate travel cost expressions that
achieves 4.12% and 9.85% improvement over the best rerouting
algorithm (i.e., TTBRR) on Random Grid and Dublin City
respectively. G3P also finds surrogate travel cost expressions

TABLE IV
COMPARISON OF THE PERFORMANCE IN TERMS OF AVERAGE TRAVEL TIME

(IN SECONDS) ACHIEVED BY THE BEST SURROGATE TRAVEL COST
EXPRESSION FOUND BY G3P AND THE ALGORITHMS NRR, TTBRR, AND
OBRR. WE PUT IN BOLD THE BEST PERFORMANCE ACHIEVED ON EACH

TRAFFIC SCENARIO.

Traffic Scenario NRR TTBRR OBRR G3P
Random Grid 1632.39 1498.41 2035.18 1436.59
Dublin City 426.25 308.50 882.62 278.11

that achieve 11.99% and 34.75% improvement over NRR on
Random Grid and Dublin City respectively.

We also see from Table IV that the choice of the surrogate
travel cost function has a drastic impact on the average travel
time in comparison with NRR. We clearly see that using travel
time as the surrogate travel cost function in TTBRR achieves
a better performance than using occupancy in OBRR (26.37%
on Random Grid and 65.04% on Dublin City). Furthermore,
the rerouting algorithm TTBRR achieves a better performance
than NRR (8.20% on Random Grid and 27.62% on Dublin
City) whereas OBRR achieves a worse performance than NRR
(19.79% on Random Grid and 51.70% on Dublin City).

Figures 4 show the evolution of performance in terms of
average travel time (in seconds) of the best surrogate travel
cost expression at every generation of the G3P algorithm on
both considered traffic scenarios.

We see that G3P successfully evolves surrogate travel cost
expressions with better fitness (average travel time in second)
over generations on both traffic scenarios.

We also see that G3P generates initial populations which
contain at least one surrogate travel cost expression with a better
performance than NRR and OBRR on both traffic scenarios.
These initial populations also contain surrogate travel cost
expressions that are better than TTBRR on the Dublin City
traffic scenario and expressions with a performance close to
TTBRR’s performance on Random Grid one. This clearly shows
that outperforming the standard (re-)routing algorithms is not a
very hard task and even a random algorithm is able to achieve
it.

After the initialisation, G3P achieves a steep improvement of
the fitness function over the first third of the generations. Then,
the performance stabilises over the following two thirds of the
generations. However, on the Dublin City traffic scenario, we
see that G3P continues to find some improved surrogate travel
cost expressions even at the end of the evolution, which might
indicate that the algorithm did not fully converge on this traffic
scenario.

B. Impact on Vehicle Travel Time

Beyond improving average travel time, we would like to
improve travel time for the largest number of vehicles and not
drastically worsen the travel time for the rest (in comparison
to the no rerouting algorithm). In this section, we would like
to evaluate the evolution of travel time on a vehicle basis.

For each traffic scenario, we compare the changes of trip
time (or travel time) for every vehicle under different rerouting
strategies. In particular, we choose NRR as the baseline, then
present the results of the trip time difference for each vehicle
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Random Grid Dublin City
Fig. 4. Evolution of performance in terms of average travel time (in seconds) of the best surrogate travel cost expression at every generation of the G3P
algorithm on both considered traffic scenarios.

between each rerouting strategy (i.e., TTBRR, OBRR, and
G3P’s best evolved expressions) and the baseline NRR.

As shown in Table V, in the Random Grid traffic scenario,
our G3P rerouting system has improved most of vehicles’ trip
time under all main statistics, though a little less trip time
improvement (i.e. 1.68%) than TTBRR in terms of the largest
trip time reduction. The maximum trip time sacrifice for a
single vehicle using G3P is 16.11% less than TTBRR, and
52.24% than OBRR. OBRR is the worst rerouting system that
can only improve trip time for a small portion of vehicles while
a lot other vehicles have to increase their trip time considerably.
Similar conclusions can be drawn from the results obtained on
the Dublin City traffic scenario shown in Table VI, on which
our G3P rerouting system demonstrates its superiority over
all main percentile statistics, including the largest trip time
reduction.

Our findings can also be confirmed by the kernel density
distribution of the trip time difference for each vehicle between
each rerouting system and baseline system NRR. As shown in
Figure 5, on both traffic scenarios, our G3P system (in blue
color) is the most left-skewed and has the shortest right tail,
which implies that it improves trip time for the majority of
vehicles, while only increases trip time for a small number of
vehicles.

TABLE V
ON RANDOM GRID TRAFFIC SCENARIO, THE COMPARISON OF THE TRIP
TIME DIFFERENCE (IN SECONDS) FOR EACH VEHICLE UNDER TTBRR,

OBRR, AND G3P, IN WHICH NRR IS THE BASELINE. A NEGATIVE VALUE
INDICATES THAT VEHICLE TRIP TIME IS REDUCED UNDER A CERTAIN

REROUTING STRATEGY. A POSITIVE VALUE INDICATES THAT THE TRIP TIME
FOR A SPECIFIC VEHICLE IS INCREASED AFTER BEING REROUTED.

Statistic TTBRR-NRR OBRR-NRR G3P-NRR
mean -133.98 402.80 -195.68
min -2257.00 -2044.00 -2219.00
25% -294.25 -12.00 -355.00

median -86.00 280.50 -134.00
75% 8.25 771.25 -20.00
max 2291.00 4024.00 1922.00

TABLE VI
ON DUBLIN CITY TRAFFIC SCENARIO, THE COMPARISON OF THE TRIP TIME

DIFFERENCE (IN SECONDS) FOR EACH VEHICLE UNDER TTBRR, OBRR,
AND G3P, IN WHICH NRR IS THE BASELINE. A NEGATIVE VALUE

INDICATES THAT VEHICLE TRIP TIME IS REDUCED UNDER A CERTAIN
REROUTING STRATEGY. A POSITIVE VALUE INDICATES THAT THE TRIP TIME

FOR A SPECIFIC VEHICLE IS INCREASED AFTER BEING REROUTED.

Statistic TTBRR-NRR OBRR-NRR G3P-NRR
mean -117.75 456.37 -148.14
min -2960.00 -2359.00 -2960.00
25% -82.00 6.00 -99.50

median 0.00 176.00 -1.00
75% 1.00 624.50 1.00
max 721.00 4321.00 209.00

VII. CONCLUSION AND FUTURE WORK

In absence of large data sets of traffic historical data
and with the arduousness of designing efficient prediction
algorithms, leveraging time-dependent traffic metrics is the
solution for optimising drivers’ travel time. However, choosing
a surrogate travel cost function that combines available traffic
metrics for travel time is still an open challenge for the traffic
rerouting in urban environments, especially given that the urban
environments differ drastically from a city to another. Therefore,
designing a surrogate travel cost function on a city basis seems
to be more appropriate.

We designed a G3P system to evolve surrogate travel
cost functions on the urban environment basis. For more
accuracy between in-lab and applied results, G3P evaluates
the performance of its surrogate travel cost expressions on a
well-known simulator for urban mobility.

We evaluated our evolved surrogate travel cost functions
on two traffic scenarios. We showed that our system is
able of evolving surrogate travel cost functions with ∼34%
improvements in average travel time over the no rerouting
algorithm on a Dublin city traffic scenario. We also showed
that our system able to evolve a ∼10% better surrogate travel
cost function than travel time for the rerouting algorithm on
the same Dublin city centre traffic scenario.

Additionally, when compared with TTBRR and OBRR, we
have seen that G3P rerouting system was able to improve the
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Random Grid Dublin City
Fig. 5. The distribution of trip time difference for each vehicle between each rerouting strategy (G3P, TTBRR, OBRR) and the baseline NRR.

travel time for the largest group of vehicles, and only a small
number of vehicles needed to sacrifice a little of their travel
time to achieve this overall gain.

Our future work will investigate means to include a temporal
dimension into the grammar to inform our routing algorithm
about the pertinence of cost value at various stages of the trip.
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