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Abstract—The goal of the CIFAR-10 benchmark is recast from
the perspective of discovering light-weight as well as accurate so-
lutions. Specifically, the image data, on which CIFAR-10 is based,
requires multiple practical issues to be addressed that are not
often considered collectively when applying genetic programming
to classification problems. Issues of particular interest include
cardinality, multi-class classification and diversity maintenance.
We demonstrate that diversity maintenance and cardinality can
be approached simultaneously by adopting a data subset to
compose pools of exemplars for lexicase selection. The issues of
multi-class classification and solution simplicity are addressed by
adopting the tangled program graph (TPG) approach to emer-
gent modularity. In addition, the mutation operator is modified
to ensure that class labels do not ‘die out’ during evolution.
The resulting benchmarking study demonstrates solutions that
are significantly more accurate than AutoML while providing
comparable accuracies with solutions from unsupervised feature
discovery, i.e. 70% accuracy. However, unlike the latter TPG
solutions are several orders of magnitude simpler.

Index Terms—CIFAR-10, Tangled program graphs, Modular-
ity, Lexicase Selection, k-armed Bandit

I. INTRODUCTION

Before deep learning frameworks became the norm for

classification tasks, it was increasingly recognized that factors

associated with unsupervised ‘feature construction’ – before

the application of a classifier – had the most impact on

classification performance (e.g. [1], [2]). Thus, factors such

as receptive field size, the number of hidden nodes (features),

stride between features, and the effect of feature whitening

were investigated. This resulted in solutions to image recog-

nition benchmarks such as CIFAR-10 that were based on

thousands as opposed to millions of parameters. In this work,

it is solutions at this level of complexity that we are interested

in explicitly evolving using genetic programming. The point

being that at this level of complexity, we are still able to do

so without recourse to specialized hardware platforms, e.g.

graphics processing units, hereafter a simple or light-weight

solution. Our underlying objective is to simulate research

into classification frameworks that might ultimately result in

complimentary approaches to that of deep learning.

Research supported by NSERC Discovery Grant 45009

The starting hypothesis of this work is that in order to

produce light-weight solutions to high-dimensional image

classification tasks, we need to embrace categorical forms

of modularity (reviewed in §II). This means that although

a candidate solution might be composed from millions of

instructions, only thousands of instructions are involved in

making each prediction. In short, the path of execution through

a candidate solution is contextually sensitive on the relation-

ship between (code) modules comprising a solution.

For the purposes of this motivating study we concentrate

on the CIFAR-10 dataset [3]. Making process in this task is

a challenge because multiple factors have to be simultane-

ously addressed: cardinality (50,000 records in the training

partition), multi-class classification (10 classes) and diversity

maintenance. An underlying constraint that we assume is that

a single champion classifier has to appear at the end of a trial

capable of labelling the CIFAR-10 dataset without resorting

to specialist hardware to accelerate training/ post training

operation.

The remainder of the paper is developed as follows. Section

II reviews modularity as used in this research. Modularity

will be assumed to facilitate the incremental construction

of programs, reuse and decomposition of the task. Section

III summarizes the tangled program graph (TPG) framework

assumed for supporting emergent modularity, where TPG has

previously demonstrated an ability for discovering solutions

to high-dimensional reinforcement problems [4]–[6] and a

capacity for operation under modest computing platforms [7].

Section IV summarizes the set of approaches adopted for si-

multaneously addressing cardinality and diversity maintenance

through the design of appropriate interfaces to the training

partition. Section V presents results that indicate that TPG

can achieve accuracies competitive with those from AutoML,

with the conclusion and future work appearing in Section VI.

II. CATEGORICAL MODULARITY

Modularity appears in multiple guises in genetic program-

ming (GP), with the most well known being that of subroutines

(e.g., Automatically Defined Functions [8]). In this context

modularity is synonymous with the decomposition of a task

into distinct functions [9], i.e. as used in software engineering.
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In contrast categorical modularity encourages multiple mod-

ules to exist with similar yet distinct properties [9]. In both

cases, it is necessary to generate a sufficiently diverse set of

modules while simultaneously learning how to deploy them.

Scaling to more difficult tasks potentially appears through

module reuse, but only if useful modules can be discovered.

Similar issues appear in various forms of ensemble learning

using GP [10], [11] and coevolution [9], [12].

In the context of this research, we are particularly inter-

ested in the case of categorical modularity in multi-class

classification. One simple approach to enforcing modularity

would be to assume a single module per class, as has been

the case in approaches based on ensemble learning [11] or

multi-trees [13]. However, such approaches often assume prior

knowledge regarding ensemble size. Conversely, this research

adopts the metaphor of teams of learners (e.g. [14], [15])

in which a learner is a program that represents action and

context (for its action) independently. As a consequence, team

composition is an emergent phenomena with different teams

adopting different numbers of programs and distributions of

terminal actions (class labels).

Switching between modules has also been articulated

through the guise of diversity maintenance in (competitive)

coevolution [9], [12]. In short, if an appropriate diversity main-

tenance scheme can be identified, then multiple specialists (aka

modules) are simultaneously maintained in the population.

Hypothetically, an appropriate team can then be composed

by learning a ‘gating function’ that learns to switch between

the relevant specialists under different stimuli. Neither [9],

[12] were able to develop an appropriate gating function,

but they were able to recommend specific types of diversity

maintenance w.r.t. the iterated prisoner’s dilemma task.

Recently, schemes have appeared for developing emergent

modularity through ‘teams-as-actions’ using the Tangled Pro-

gram Graph (TPG) framework [4], [5]. This enables a terminal

action to instead reference another team. This is useful when

a learner’s context has insufficient resolution to distinguish

between multiple actions. Instead, hierarchical relationships

are developed that enable teams of programs with more

specialist abilities to be referenced. This has the advantage

of not disturbing the pattern of contexts currently developed

at the calling team. The end result is a solution described

by ‘graphs of teams of programs’ discovered in an entirely

emergent manner [4], [5].

Another theme of significance when addressing practical

classification tasks is that of (training) data cardinality. One

approach might be to assume specialist computing support,

such as cloud or parallel computing infrastructure [16], [17].

The end result again being multiple models that are combined

using some form of voting. The approach adopted in this work

is to assume that fitness evaluation is performed against a

data subset (DS) of much lower cardinality than the training

partition. Biases can then be introduced to shape how the

records appearing in the DS are selected/retained/removed

[14], [15], [18], i.e. membership of the DS changes to re-

flect developments in the performance of the classifiers. The

specific mechanisms assumed for doing so are detailed in §IV.

III. TANGLED PROGRAM GRAPHS

Tangled Program Graphs (TPG) represents a GP frame-

work in which emergent modularity incrementally composes

programs into teams of programs into graphs of teams of

programs [4], [5], [19]. To date, the framework has been

demonstrated on visual reinforcement learning tasks1 as en-

countered in the Arcade Learning Environment [4], [5] or

ViZDoom first person shooter [6], [20]. As such, it might

be anticipated that TPG also represents a suitable starting

point for multi-class classification tasks described by visual

input data. Sections III-A through III-C summarize the TPG

framework, interpreting operation from the perspective of

multi-class classification.

A. Learners

A learner, L(i), defines an individual, i, in terms of a

program, prog, and terminal action, a where a ∈ C is

the set of classes in a multi-class classification problem, or

L(i) = 〈progi, ai〉. A program only produces a single output,

whether that be the root node of tree structured GP or register

R[0] in the case of linear GP. Actions are merely a scalar

corresponding to a terminal action (these will later evolve to

also encompass pointers to other teams §III-B). The purpose

of a program is to define context for the corresponding action.

The same program can appear in different learners if it is

partnered with a different action. A learner on its own does

not define anything useful. Learners only appear in the Learner

population, L.

B. Teams

An independent team population, T , conducts a search for

good combinations of learners to appear in teams using a

variable length representation. The following conditions are

enforced: 1) each team, tm(j) must consist of a unique

combination of learners; 2) the same learner, L(i), may appear

in multiple teams, subject to condition 1; 3) there cannot be

less than two learners in the same team; 4) there must be at

least two different actions represented by the complement of

learners within the same team.

In order to establish the output of team tm(j), all programs

from learners within this team are evaluated on training record,

pk, or ∀i ∈ tm(j) : yi = progi(pk). The program with

maximum output on pk is identified by i∗ = argmaxi(yi).
Such a program wins the right to suggest its corresponding

terminal action, a∗i , for comparison against the known class

label, ok. Thus, the outcome of the interaction between training

record, pk, and team tm(j) is,

G(pk, tm(j)) =

{

1, IF ok == a∗i
0, otherwise

(1)

Variation operators assume that the worst Gap teams have

been removed, or a breeder (§IV-A). Any learners that are not

1State defined in terms of pixel values from video input (e.g. 33,600 pixels
in [19] and 76,800 pixels in [6], [20]).
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associated with a team, are also deleted. The remaining pool

(of teams) represent potential parents, of which Gap are se-

lected and cloned. Only the cloned teams are modified through

crossover and mutation. Crossover selects parents pairwise

from the pool of surviving teams with uniform probability.

The learners common to both appear in the offspring. Learners

unique to each parent are selected to appear in an offspring

with probability Pcpy . Let the result of this process be the set

of Gap offspring teams, L′.

Mutation takes the form of stochastically adding (Pa) or

deleting (Pd) learners from the offspring pool, L′ (subject

to the above constraints). Variation is performed relative to

learners indexed by teams from L′ with probability Pm. Again,

should a learner be selected for variation, it is first cloned.

This means that only the offspring team inherits the modified

learner, L′(i), not any of the T −Gap grandfathered teams that

happened to use the same learner. Learner variation operators

include: instruction delete (Pdel), add (Padd), swap (Pswp) and

choose a new terminal action (Pmn).

C. Graphs

Section III-A defined a learner as the smallest ‘module’

whereas Section III-B provided a mechanism for organizing

learners into teams without prior parameterization for how

many learners should appear in a team.2 Different teams might

excel at labelling different subsets of exemplars. Typically, it

is assumed that cross-over will provide a sufficient mechanism

for recombining the properties from different teams. However,

an underlying assumption with such a process is that the

learners are always able to identify unique conditions under

which to out-bid other learners. TPG avoids this assumption

by enabling a learner to instead reference a different team, thus

devolving control to the referenced team under record pk.

The key to this process is to provide two types of learner

action mutation. At initialization all learners are initialized

with terminal actions (corresponding to the available class

labels). Thereafter, an action mutation consists of the following

sequence of tests:

1) IF rand > Pmn THEN no mutation

2) ELSE

a) IF rand > Paction THEN ai ← Choose(C)

b) ELSE ai ← Choose(T )

where Step 1 represents the decision to modify an action.

When true either the set of terminal actions, C, is chosen (Step

2a) or a pointer to another team, T , is established (Step 2b).

Two types of team are now recognized. Those that receive

at least one reference from another team and those that do not;

the latter define the set of ‘root teams’ Troot. At initialization

Troot = T . Evaluation may only commence from a root

team. Team evaluation is unchanged Section III-B. Should the

winning learner’s action be a terminal action, then comparison

against the class label is performed (Equ. (1)). Otherwise,

2Although a minimum of two learners (with different actions) is necessary
to avoid defining a degenerate team §III-B.

the action is a pointer to another team and the process of

determining the winning learner repeats at the identified team.

The set of eligible parents is also limited to the set of root

teams, or tm ∈ Troot. Thus, variation operators (§III-B) are

only applied to root teams with ratio of root to non-root teams

floating. Moreover, the non-root teams essentially behave as

if they have been archived, unless at some point the variation

operators remove all incoming references.

Naturally, it is also possible for loops to appear in the

path of evaluation, i.e. the halting problem. TPG avoids this

issue, by marking teams visited during the evaluation of a

root team. Should a learner identify a previously visited team,

then the learner with runner up bid is (recursively) selected.

By enforcing the constraint that all teams have to have a

minimum of one terminal action, TPG guarantees that loops

cannot result. Further details of the TPG algorithm appear in

tutorial form in [5], [19].

IV. SELECTION, CARDINALITY, AND DIVERSITY

MAINTENANCE

In this section, several forms of diversity maintenance

are introduced relative to the concept of a data subset. The

cardinality of the data subset is lower than that of the orig-

inal training partition, hence both diversity maintenance and

cardinality are addressed simultaneously. In the following, an

‘individual’ is synonymous with the TPG root team under

evaluation (§III-C).

Algorithm 1 Balanced Random Subset Selection (BRSS). The

loop of Step 1a retains (1−DSgap)% of DS content between

generations with uniform probability (Step 1(a)i). Each class

then has DSgap new content introduced (Step 1(a)ii). These

class specific samples are then concatenated to form the data

subset (Step 1b) used for fitness evaluation at generation t, Step

1c. Individuals from the team population can then be ranked

(Step 1d) and the worst performing Gap% of individuals

dropped (§III-B). Parents are sampled with uniform probability

from the surviving individuals and variation operators applied

to replace the Gap% of individuals deleted during Step 1e.

The new population, P (t + 1), is defined by the survivors

from fitness evaluation, P (t), and the offspring from Step 1g.

1) for (t = 0; t < MaxGen; t = t+ 1)

a) for (c = 0; c < |C|; c = c+ 1)

i) DS(c, t) = Cpy(DS(c, t), DSgap)
ii) DS(c, t) = DS(c, t) ∪ Sample(TP (c))

b) DS(t) = DS(0, t) ∪ ... ∪DS(C − 1, t);
c) EvalFitness(P (t), DS(t));
d) Rank(P (t));
e) Del(P (t), Gap);
f) parents = Select(P (t), Gap);
g) offspring = Variation(parents);
h) P (t+ 1) = cat(P (t), offspring);
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A. Balanced Random Data Subset

Cardinality is addressed by sampling from the original

training partition (TP) to construct a data subset (DS) where

|DS| << |TP | using Algorithm 1. Given that CIFAR-10

represents a balanced dataset consisting of 10 classes, the

DS is formed by sampling each class equally, i.e. we assume

that all classes are equally difficult to classify. This represents

our baseline approach for addressing cardinality; hereafter

Balanced Random (data) Subset Selection (BRSS). Algorithm

1 details the corresponding training cycle under a ‘breeder’

model of selection.

The fitness function assumed during Step 1c is merely the

classification count:

f(j, t) =
1

|DS|

∑

∀pk∈DS(t)

G(pk, tm(j)) (2)

where DS(t) is the data subset of training records at gener-

ation t; G(pk, tm(j)) represents the binary outcome of (root)

team ‘j’ on record ‘k’ as defined by Equ. (1). Note that as the

content of the data subset at each generation, DS(t), is always

balanced, then fitness reflects performance over all classes.

Individuals with larger f(j, t) are preferred.

B. Fitness Sharing

Fitness sharing (FS) builds directly on BRSS (§IV-A) by

introducing a weighting into fitness such that training exem-

plars that many other (few other) classifiers correctly label are

worth less (more) [21]. Thus, in this work, the only difference

between the algorithm for BRSS and fitness sharing is the

definition for fitness. Equation (2) in Step 1c of Algorithm 1

is therefore replaced by:

f(j, t) =
∑

∀pk∈DS(t)

G(pk, tm(j))
∑

∀tm(i)∈Troot
G(pk, tm(i))

(3)

where G(pk, tm(j)) assumes the same definition as in Equ.

(1). Naturally, individuals with larger f(j, t) are still preferred

during fitness ranking, but this time fitness has the potential

for maintaining diversity in the population by holding on to

‘specialist’ individuals for longer than in BRSS.

C. The k-Armed Bandit

The question of which class to compose the data subset

from can also be posed in the form of a k-Armed Bandit, one

for each of the C classes. Each ‘class bandit’ models the return

associated with choosing a record from class c from the data

subset as an estimate of future rewards Q(c). At generation

t = 0 each ‘class bandit’ has the same return, Q(c) = 0.

Thereafter, we use the average error on class ‘c’ w.r.t. the

champion team to define the reward, rc received by class

bandit ‘c’ at generation, t. Thus, more difficult classes see

a higher return, resulting in a proportionally higher number

of selections of training records from that class. With this in

mind, an ε-greedy method is assumed for class selection, as

per Algorithm 2.

Algorithm 2 Bandit selection of training record class. Re-

places Steps 1a through 1c in BRSS. Step 1 copies (1 −
DSgap)% of records currently represented in DS into the

next data subset (Step 2). TS is then incrementally sampled

to provide DSgap new training records, Step 3, under the

direction of the Bandit’s selection of classes (Step 3a). Step

4 returns the average error on class ‘c’ records present in

DS at generation ‘t’ relative to the champion team. Q(c)
denotes the estimate of cumulative rewards (error) on class

‘c’. Q(c) = 0 at generation zero. α(c) is the class-wise step

size parameter, initialized to 1
n(c)=1 at generation 0. Thereafter

α(c) = 1
n(c)+=1 with each action use. See also §2.4 of [22].

1) ∀c ∈ C : DS(c, t) = Cpy(DS(c, t), DSgap)
2) DS(t) = DS(0, t) ∪ ... ∪DS(C − 1, t);
3) for (k = 0; k < |DS(t)|; k = k + 1)

a) c =

{

argmaxi Q(i), with probability 1− ε

rand(0, C − 1), with probability ε

b) DS(t) = DS(t)∪ Select(DS(c));

4) EvalFitness(P (t), DS(t));
5) for (c = 0; c < |C|; c = c+ 1)

a) rc = ClassError(P (t), DS(c))
b) Q(c) = Q(c) + α(c)[rc −Q(c)]

Algorithm 3 Initializing Lexicase selection for classification.

The objective is to select the (P − Gap)% individuals that

survive from generation t to t+1. pool is the set of eligible

parents at generation t, i.e. Troot(t) in the case of TPG.

instances are the training cases used for fitness evaluation.

TP (c) represents the class specific (c ∈ {0, ..., C − 1})
training partition selected at epoch t. Note that the order of

instances is shuffled at each call.

1) parents = ∅;
2) c = rand(0, C − 1);
3) for (i = 0; i < P −Gap; i = i+ 1)

a) pool = P (t);
b) instances = shuffled(TP (c), t);
c) parents = parents ∪ Lexicase(pool,

instances);

D. Lexicase Selection

Lexicase selection represents a model of selection in which

individuals are ‘not selected’ as soon as they fail to provide the

correct outcome [23], [24]. This means that fitness evaluation

need not be performed across the entire training partition.

Moreover, in comparison to other diversity mechanisms, Lexi-

case selection has demonstrated a better ability to maintain di-

verse populations of solutions [23]. In order to apply Lexicase

selection to multi-classification tasks (Algorithm 3), we select

a class from the training partition with uniform probability

(Step 2) and initialize the class instances using a random

shuffle (Step 3b). The same class is used for selection for τ

generations. Algorithm 4 details the call to ‘Lexicase’ at Step

3c.
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Algorithm 4 Lexicase selection function (called by Algorithm

3). Step 2a selects a training pattern from instances.

Note that the order of training patterns was randomized in

Algorithm 3. Step 2b identifies all individuals remaining in

the ‘pool’. Step 2(b)i represents a misclassification, so the

individual is dropped from the pool of eligible individuals

(Step 2(b)ii). The loop exits when either pool = ∅ or all

individuals are tested against pk. Step 2c tests for a single

remaining individual in pool, which is then returned as a parent

(Step 2d). Step 2e removes pk from the patterns used at this

round of selection. If there are no further training instances

(Step 2f), then an individual is randomly selected from the

individuals remaining in the pool (Step 2g).

1) k = 0
2) while (!return)

a) Choose pk = instances(i)
b) for all (gp ∈ pool)

i) IF gp(pk)! = ok
ii) THEN delete(gp, pool)

c) IF size of(pool) == 1

d) THEN return select(pool)

e) delete(pk, instances)

f) IF size of(instances) == 0

g) THEN return select(rand(pool))

h) k = k + 1

Relative to Algorithm 1 this means that Steps 1a through

to 1e are replaced by Algorithm 3, i.e. Step 3c (Algorithm 3)

returns the surviving programs at generation ‘t’ from which

Gap reproducing parents and offspring are defined.

V. EMPIRICAL EVALUATION

A. Parameterization

Table I represents the common parameterization of TPG

assumed throughout the empirical evaluation. No claims are

made regarding its optimality, indeed the instruction set is very

simplistic. Additional parameters specific to each of the four

selection–diversity mechanisms from Section IV are detailed

in Table II. The choice for the data subset size and ‘gap’

reflects a balance between a desire to minimize the cost of

fitness evaluation while increasingly exposing surviving TPG

individuals to different exemplars as the number of generations

increases. The instruction set for learner programs is limited

to: {+,−,÷2,×2, cond(a, b) } where add and subtract

take two arguments, divide and multiply take one and the last

instruction is a two argument conditional of the form: a >

b ? a = a : a = -a.3

All benchmarking will be performed using the CIFAR-10

dataset4, which represents a 10 class image classification task.

There is a standard partition into training and test (Table

III) that will be assumed throughout. Given the size of the

3Definitions assumed for division and multiplication were assumed to
reduce the likelihood of extreme values being returned [25].

4https://www.cs.toronto.edu/∼kriz/cifar.html

TABLE I
TPG PARAMETERIZATION COMMON TO ALL EXPERIMENTS. FOR THE

MOST PART THIS FOLLOWS AN EARLIER WORK DEPLOYING TPG IN

VIZDOOM REINFORCEMENT LEARNING TASKS [6]. Gap IS THE % OF

ROOT TEAMS REPLACED. ω IS THE NUMBER OF LEARNERS PER TEAM AT

INITIALIZATION

Team Population Learner Population
Parameter Value Parameter Value

Pop. Size (P ) 360 Max. Instructions 128
Gap 50% Prob. Delete Instr. (Pdel) 0.5
ω 9 Prob. Add Instr. (Padd) 0.5
Pd 0.7 Prob. Mutate Instr. (Pmut) 1.0
Pa 0.7 Prob. Swap Instr. (Pswp) 1.0
Pm 0.2 Pmn, Patomic 0.2, 0.5

TABLE II
PARAMETERS SPECIFIC TO THE SELECTION–DIVERSITY MECHANISMS

(§IV)

BRSS, FS, Bandit
Size of the Data subset (DS) 120

Number of data records replaced per generation (Dgap) 50%
Lexicase

Consecutive generations of class selection (τ ) 10

dataset, three independent runs are performed for each of the

four selection / diversity heuristics (§IV) using a generation

limit of tmax = 10, 000; hereafter TPG(short). Under this

parameterization one run takes 1 to 1.5 weeks to complete

(single thread) and potentially iterates through the entire

training partition 10 times over the course of evolution. One

further run is then performed under the preferred configuration

with a generation tmax = 50, 000, i.e. a run time in the order

of 5 to 6 weeks (single thread); hereafter TPG(long). The R-

G-B three colour formate of the dataset is converted into a

single 24-bit integer by first representing each colour as an 8-

bit integer and then concatenating into a single 24-bit integer

using 8-bit bit-shifts [6].

B. Results

Section IV defined four configurations of TPG of increasing

complexity to address the issues of selection, cardinality and

diversity maintenance. In order to rank the training outcomes

from the TPG(short) runs under each configuration, the top 10

agents from each run are identified on the training partition.

These classifiers are then compared using a (two sample,

unequal variance) t-test with the case of BRSS as the control.

Table IV provides a summary of the resulting p-values, where

TABLE III
CIFAR-10 DATASET PROPERTIES. THE 10 CLASSES REPRESENT

AIRPLANES, AUTOMOBILES, BIRDS, CATS, DEERS, DOGS, FROGS, HORSES,
SHIPS AND TRUCKS.

Training Partition Test Partition Num. Classes Pixels per
(per class) (per class) (C) Image

5,000 1,000 10 32× 32 = 1024
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TABLE IV
BRSS VERSUS EACH ADDITIONAL TPG CONFIGURATION. THE

BONFERRONI-DONN POST HOC TEST FOR α = 0.05 SETS THE THRESHOLD

OF SIGNIFICANCE TO
α

k−1
= 0.0167 WHERE k = 4 IS THE NUMBER OF

CONFIGURATIONS.

BRSS versus FS BRSS versus k-AB BRSS versus Lexicase

1× 10−4 2.4× 10−6 2.7× 10−10

Fig. 1. Fitness of first 20,000 generations of TPG(long). Black indicates
performance above average, and red the average.

this reflects the rejection of the null hypothesis that the other

three methods are indistinguishable from the control. The p-

values indicate that even with the Bonferroni-Donn post hoc

correction, all three TPG configurations are better than the

control. Relative to overall accuracy the methods were ranked

as Lexicase > k-armed Bandit > Fitness sharing > BRSS on

both the training and test partition.

Figure 1 illustrates progress of fitness during the first 20,000

generations of TPG(long). A gradual improvement in the

performance is observed in the best (black) versus average

(red) performing individuals in the population. This contrasts

to the sudden increases with flat plateau’s often associated with

genetic programming. We attribute this to the partial / non-

stationary nature of fitness evaluation. That is to say, fitness

evaluation is no longer relative to an entire (stationary) training

partition, but now performed relative to some subset of training

records at any point in time.

Table V summarizes the average test performance where

it is apparent that the ranking identified under training is

retained. Moreover, the TPG(long) run was able to improve on

many of the class-wise accuracies. However, it also returned

a particularly poor accuracy on classes 3 and 8. In order to

gain more insight into this, the distribution of terminal actions

across the TPG(long) run champion was queried (Table V).

This indicates that the classes with low accuracy might also

correspond to classes with a low number of learners (see class

C3). This hypothesis is investigated further in Section V-C.

Table VI summarizes the complexity of the single best

champion from the TPG(short) runs (columns 1 through 4).

It appears that BRSS produced larger teams with less learn-

ers whereas the remaining configurations appear to employ

smaller teams, but a higher diversity of learners. Note also

that only a fraction of the teams are visited before a class

label prediction is made, further decreasing the computational

cost per decision. This issue will be revisited in §V-C when the

matter of learner actions prematurely ‘dying out’ is addressed.

C. Balanced Action Mutation

Section V-B indicated a preference for lexicase selection but

also hinted that learners representing specific classes might

‘die out’ during the course of a run (e.g. TPG(long) for class

C3 in Table V). With this in mind, action mutation (Step 2a)

from Section III-C is modified to introduce a bias to choose

an action in proportion to 1
fa

, i.e. the inverse of the frequency

with which each action appears within the Root team under

modification. The last row of Table V reports the average per

class test partition accuracy of three runs performed under

this new configuration. In short, the per class classification

accuracy is now more balanced, resulting in the highest overall

average accuracy and lowest standard deviation. The total

spread between worst and best classified class (on average)

is lower, implying good generalization across the classes. It is

also apparent that the number of learners appearing in the

champion solutions for each class is now also ‘balanced’,

although no attempt is made to a priori specify what the

number of learners should be per class.

Comparison is now performed against other sources of light-

weight solutions for the CIFAR-10 benchmark. As noted in

the introduction, prior to deep learning, there was consider-

able interest in the use of unsupervised methods for feature

construction. Such methods provided the basis for insights

used to deploy convolutional and max-pooling layers in deep

learning frameworks. Once unsupervised learning had de-

signed appropriate features, then a classifier is identified using

supervised learning. Particular examples including restricted

Boltzmann machines (RBM) and Support Vector Machines

(SVM) as well as ‘shallow’ convolutional neural networks

(CNN). More recently, there has also been a development

towards ‘AutoML’ in which a pool of base classifiers are

deployed with a Bayesian optimization routine to ‘automate’

the tuning of learning parameters for each base classifier [26],

[27]. An ensemble is then constructed using the trained set of

base classifiers.

Table VII summarizes test partition classification accuracies

and solution complexities for comparator and TPG (lexicase

selection and balanced action mutation). It is apparent that

both the unsupervised feature constructors and TPG per-

form significantly better than AutoML, i.e. the best AutoML

performance is no better than the worst performing TPG/

unsupervised feature constructor). It is not possible to say

anything specific about the complexity of AutoML solutions

as on the one hand there are tens of classification algorithms

involved, on the other hand some form of attribute reduction

takes place.
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TABLE V
AVERAGE test accuracy OF TPG WITH EACH SELECTION–DIVERSITY SCHEME. BEST OF COLUMN HIGHLIGHTED IN BOLD. BEST OF TPG(SHORT)
HIGHLIGHTED WITH AN UNDERLINE. Cx IS THE AVERAGE ACCURACY ON CLASS x. ‘AVG’ IS THE AVERAGE ACCURACY ACROSS ALL 10 CLASSES.

STDDEV IS THE STANDARD DEVIATION ACROSS ALL 10 CLASSES. #TERM. ACT. REFLECTS THE AVERAGE NUMBER OF TERMINAL ACTIONS OF EACH

CLASS IN THE CHAMPIONS FROM TPG(LONG)

TPG(short) : tmax = 10, 000
Scheme C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg SD

BRSS (§IV-A) 0.528 0.26 0.215 0.458 0.455 0.043 0.183 0.941 0.146 0.242 0.347 0.246
FS (§IV-B) 0.317 0.471 0.219 0.342 0.618 0.264 0.301 0.583 0.666 0.817 0.46 0.191

k-AB (§IV-C) 0.149 0.659 0.574 0.881 0.622 0.11 0.272 0.499 0.517 0.563 0.485 0.228
Lex (§IV-D) 0.618 0.549 0.575 0.129 0.699 0.348 0.347 0.497 0.516 0.782 0.506 0.18

TPG(long) : tmax = 50, 000
Lex (§IV-D) 0.705 0.767 0.001 0.707 0.752 0.572 0.557 0.232 0.746 0.75 0.579 0.247
#Term. Act. 21 42 3 16 96 49 29 44 8 74 38.2 29.5

TPG(long) with Balanced action mutation : tmax = 50, 000
Lex (§IV-D) 0.711 0.683 0.655 0.58 0.851 0.582 0.713 0.715 0.605 0.729 0.683 0.082

#Term. Act. 37 39 40 39 43 38 37 39 40 39 39 1.7

TABLE VI
COMPLEXITY OF CHAMPION. VALUES QUOTED FOR LEX(ICASE)

SELECTION ARE FOR ‘SHORT’ (LEX(S)) AND ‘LONG’ (LEX(L)) RUN

CHAMPIONS (LATTER WITH BALANCED ACTION MUTATION)
RESPECTIVELY. #INSTRUCTIONS REPRESENTS THE total NUMBER OF

INSTRUCTIONS ACROSS THE ENTIRE SOLUTION (WHERE FAR LESS ARE

EXECUTED PER DECISION).

Scheme BRSS FS k-AB Lex(S) Lex(L)
#Teams 21 14 14 15 81

#Learners 135 209 201 188 360
#Instructions 4,701 8,777 7,109 6,788 31,823

Avg #Learners/ Team 6.4 14.9 14.4 12.5 4.6
Avg #Instr./ Learner 34.8 42 35.4 36.1 83.0
Avg #Instr./ Team 223.9 626.9 507.8 452.5 371.9

TABLE VII
SUMMARY OF COMPARATOR ALGORITHM PERFORMANCE ON TEST

PARTITION. †AUTO-WEKA BEGINS WITH 27 (10) BASE (META-)
CLASSIFIERS. ‡AUTO-SKLEARN BEGINS WITH 15 BASE CLASSIFIERS. NOT

CLEAR HOW MANY APPEAR IN THE SOLUTION. K IS THE NUMBER OF

FEATURES WHERE EACH FEATURE HAS N PARAMETERS. * DOES NOT

INCLUDE CONTRIBUTION FROM CONVOLUTIONAL LAYERS. TPG
COMPLEXITY IS DEFINED IN TERMS OF THE AVERAGE NUMBER OF

INSTRUCTIONS EXECUTED PER CLASSIFICATION

Algorithm Avg. Test Solution
Accuracy Complexity

Auto-WEKA [27] 43.05% †
Auto-SkLearn [27] 48.3% ‡

Auto-WEKA+SMAC [26] 62.39% †

Gaussian RBM [1] 63.8% K = 10, 000
Gaussian RBM+Tuning [1] 64.8% K = 10, 000
3-Way Factored RBM [1] 65.3% K = 4, 096

Sparse RBM [2] 72.4% K = 1, 600
Sparse auto-encoder [2] 73.4% K = 1, 600
Fast Shallow CNN [28] 75.86% 4.2× 106*

TPG (long) + balanced action
worst 62% 763

median 70.0% 2,317
best 72.0% 1,284

In the case of unsupervised feature construction, both

Ranzato et al. [1] and Coates et al. [2] employ zero phase

whitening to the entire dataset as a pre-processing step. This

has the potential to ‘engineer out’ sources of variation from

the image data (e.g. difference in lighting conditions between

images). Given that the TPG results do not employ such a

preprocessing step, one avenue for future research would be

to investigate the impact of a whitening preprocessing step on

TPG. The solution complexities quoted in Table VII for the

unsupervised feature construction methods reflect the number

of features per patch. For example, in [2] the patch size,

N = w × w × d, was also independently optimized with

w = 6 and d reflecting the number of colour channels. As

such the actual computational cost of the unsupervised feature

construction approach is actually 106 × K, i.e. 2 orders of

magnitude higher.

Performance for each of the TPG solutions is quoted in the

bottom three rows of Table VII, essentially placing them at the

same point as the unsupervised feature constructors. However,

the complexity of TPG solutions is 2 to 3 orders of magnitude

lower. Specifically, the last column of Table VI summarizes

the typical ‘static’ complexity of the three champion TPG

solutions. However, only a faction of the number of teams and

learners comprising a TPG solution need be evaluated before

a class label is predicted. This is captured by the average

instruction counts for TPG in Table VII. It is this property

that enables TPG to operate on embedded computing platforms

(e.g. Raspberry Pi) [7].

Naturally, deep learning approaches to image classification

have reached the point where classification accuracy above

95% is common. Moreover, some attention has also been

applied to addressing complexity in deep learning solutions

using deterministic search algorithms (e.g. NASNet [29]) or

evolutionary computation (e.g. [30]). Although maintaining

accuracy, such frameworks still produce solutions composed

from millions of parameters, thus reliant on GPU computa-

tional support. It is not clear whether solution complexities

can be achieved that approach that of TPG while maintaining

classification accuracy.
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VI. CONCLUSIONS

The CIFAR-10 benchmark is revisited from the perspective

of evolving light-weight solutions. The goal is to promote the

investigation of alternative frameworks for solving image clas-

sification problems then presently the case, i.e. deep learning.

The characteristics of the CIFAR-10 benchmark are such that

multiple criteria have to be addressed. Specifically, multi-class

classification, high dimensionality and cardinality, where this

is not currently the norm, say, with genetic programming as

applied to supervised learning tasks. Moreover, the task is

interesting because the source data is highly variable, with

comparatively little attempt to control lighting conditions,

frame of reference, or diversity of source material (e.g. class

content may cover a wide range of species).

We motivate an approach based on tangled program graphs,

a genetic programming framework for the emergent discovery

of modules and their self-organization into graphs of teams

of programs. In order to decouple the process of fitness

evaluation from the underlying cardinality of the training data,

a data subset is adopted in which a pool of training records

is sampled every τ generations. In addition, we demonstrate

that lexicase selection is particularly effective at maintaining

population diversity. Finally, particular attention is also given

to the maintenance of class labels in the population of learners.

Comparison against other light-weight ML solutions to the

CIFAR-10 benchmark demonstrates that TPG performs signifi-

cantly better than AutoML, and comparable with unsupervised

feature construction while also being significantly simpler than

the latter (by 2 to 3 orders of magnitude). Future work will

consider the relative merits of image whitening and speedups

such as multi-threading or intron skipping.
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