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Abstract-Artificial bee colony (ABC) algorithm is a rela­
tively new optimization technique that simulates the intelligent 
foraging behavior of honey bee swarms. It has been applied 
to several optimization domains to show its efficient evolution 
ability. In this paper, ABC algorithm is applied for the first 
time to evolve a directed graph chromosome structure, which 
derived from a recent graph-based evolutionary algorithm 
called genetic network programming (GNP). Consequently, it 
is explored to new application domains which can be efficiently 
modeled by the directed graph of GNP. In this work, a 
problem of controlling the agents's behavior under a well­
known benchmark testbed called Tileworld are solved using 
the ABC-based evolution strategy. Its performance is compared 
with several very well-known methods for evolving computer 
programs, including standard GNP with crossover/mutation, 
genetic programming (GP) and reinforcement learning (RL). 

Keywords-artificial bee colony; genetic network program­
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I. INTRODUCTION 

Swarm intelligence is an evolutionary computation (EC) 

technique that studies the collective behaviors of decentral­

ized, natural, and artificial systems. Numerous algorithms 

have been developed in this area which have been shown 

to outperform other algorithms in many applications, such 

as particle swarm optimization (PSO) [1], ant colony op­

timization (ACO) [2] and artificial immune systems (AIS) 

[3], etc. 

Artificial bee colony (ABC) [4] algorithm is a relatively 

new swarm-based technique that simulates the foraging 

behavior of honey bee swarm. ABC algorithm imitates 

three types of bees to search the space, i.e., employed 

bees, onlooker bees and scout bees. The employed bees are 

associated with the existing food sources and are designed 

to modify the associated food sources to explore the search 

space. Employed bees share their nectar information with 

the onlooker bees, where the onlooker bees select some of 

the food sources based on their qualities, which are further 

modified to explore the search space. If some food sources 

are recognized to be obsolete, they are abandoned and the 

scout bees are sent to search (generate) a new food source. 

ABC algorithm is fairly simple and easy for implementation. 
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Numerous studies have been conducted to compare the 

performance of ABC algorithm with the other EC tech­

niques, such as genetic algorithm (GA), PSO, ACO and dif­

ferential evolution (DE) [5] on the problems of function op­

timization, which demonstrated its competitive performance 

with an advantage of requiring fewer control parameters [6], 

[7]. 

Like the other swarm-based algorithms, ABC algorithm 

is directly applied to optimize the variables of the given 

problems. In other words, there is no chromosome encoding 

scheme in ABC algorithm, unlike the evolutionary algo­

rithms (EAs) such as GA [8] with bit-string chromosomes, 

and genetic programming (GP) [9] with tree chromosomes, 

etc. This results in that up to date, ABC algorithm is gener­

ally applied to solve the problems of function optimizations 

or some related variants. 

Recently, researchers have explored ABC algorithm to 

evolve tree structure based chromosomes, like that of GP. 

This extension, called ABC programming (ABCP) [10], ex­

plicitly employs the advantages of ABC algorithm to evolve 

the tree based candidate solutions of GP, which is capable 

of exploring to solve more different sorts of problems. It 

is shown that ABCP can achieve superior performance on 

symbolic regression problems comparing with the state­

of-the-art GP algorithms using traditional crossover and 

mutation. 

In EAs, there are recently some interests in developing 

more complicated chromosome encoding schemes to extend 

GA and GP, like graph structure chromosomes [11], [12]. 

Explicitly, the more complicated the chromosomes are, the 

higher the expression ability of modeling complicated sys­

tems is. Genetic network programming (GNP) [13], [14], 

[15], originated by K. Hirasawa, is such a kind of graph­

based EA that develops a directed graph based chromosome 

encoding scheme to model complicated systems. GNP is a 

fairly simple algorithm that directly applies the traditional 

crossover and mutation to evolve the directed graph for 

global search. It has been successfully utilized to solve 

many different kinds of complicated problems, such as the 

problems of controlling the agents' behavior [16], robot 

control [17], [18], [19], data mining [20], [21], financial 
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Figure 1: Directed graph based chromosome encoding 

engineering [22], [23], and so on. 

In this paper, ABC algorithm is introduced to GNP that 

replaces its traditional crossover/mutation based evolution 

mechanisms by the foraging behavior of honey bees. With 

the unique directed graph based chromosome encoding, 

ABC algorithm is explored to solve complicated problems, 

that is, evolving the strategies on the problems of controlling 

the agents' behavior. The performance of the proposed 

algorithm is compared with several very well-known meth­

ods evolving computer programs, including standard GNP 

with crossover/mutation, genetic programming (GP) and 

reinforcement learning (RL), under a well-known benchmark 

testbed called Tileworld [24]. 

II. DIRECTED GRAPH BASED CHROMOSOME ENCODING 

The most distinguished feature of GNP is that it develops 

a directed graph structure to encode the chromosomes, as 

shown in Figure 1. The directed graph consists of judgment 

and processing nodes. The nodes of GNP can be connected 

arbitrarily, while these node connections are subject to 

evolution, which allows the flexible expression and high 

evolution ability for modeling some complex problems. 

Judgment nodes work as "IF-THEN" decision-making 

functions to judge the environments. Processing nodes with­

out any conditional branch consist of the actions. By sepa­

rating judgment and processing, the evolution can efficiently 

evolve the compact programs by only transiting the nec­

essary judgments and processing. Such a property named 

transition by necessity [16] makes GNP an efficient rule 

generator for decision-making. 

A. Chromosome encoding 

Though illustrated as a complicated graph, the directed 

graph is encoded into bit-strings, defined by a tuple G 
(Nnode, B, LIBRARY), where 

• Nnode: the set of nodes in one graph 

• B: the set of branches in one graph 

1 initialization () ; 
2 for individual if-I to popSize do 

3 I execute (i) ; 
4 end 

5 for generation 9 f- 1 to maxGeneration do 
6 for employBee if-I to popSize do 
7 i' =sendEmployedBee (i) ; 
8 execute (i') ; 
9 greedySelection(); 

10 end 

11 for onlookerBee t f- 1 to popSize do 
12 i =tournamentSelection () ; 
13 i' =sendOnlookerBee (i) ; 
14 execute (i'); 

� greedySelection(); 
16 end 

17 sendScoutBee () ; 
18 end 

• LIBRARY: the set of judgment/processing functions 

Each node, i.e., node i, is defined by a tuple 

(NTi' N Fi, di, B(i), Ci). 
• NTi: the node type, where 1 or 2 for judgment or 

processing node, respectively. 

• N F( the function of node i loaded from the LIBRARY. 
• di: the time delay spent on the judgment or processing 

of node i. 
• B (i) : the set of branches of node i. 
• Ci: consisting of a set of Cik and dik. Cik indicates 

the node connected from node i by its kth branch, and 

dik is the time delay spent on this node transition (1 ::; 
k::; IB(i)I). 

When executing a GNP individual, we start the node 

transition by a predefined start node (generally a judgment 

node), where the hereafter node transitions are carried out 

based on the interaction with the environment. 

B. Search variables 

The aim of evolution is to find the optimal directed graph 

by evolving the node connections C of each node, where 

the other parameters are defined in advance and fixed. In 

other words, the number of search variables corresponds to 

the number of branches in one graph, that is IBI. 
For example, there are total 8 search variables (branches) 

in the directed graph of Figure 1. Evolution pressure is 

employed to evolve the directed graph by changing the node 

connections. Each node's branch is possible to connect to 

any other node of the graph except itself. 

III. ARTIFICIAL BEE COLONY BASED EVOLUTION 

In standard GNP, the node connections are determined by 

traditional crossover and mutation. In this paper, we develop 
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a new evolution mechanism based on ABC algorithm to 

replace the traditional crossover and mutation. The detailed 

pseudo-code of the proposed algorithm, named GNP with 

ABC (GNP-ABC) is given in Algorithm l. 

A. Food source (individual) 

Initially, GNP-ABC generates a population of food 

sources, where each food source is an individual. The initial 

popSize individuals are randomly generated by randomly 

determining the node connections of the directed graph. 

B. Employed bee phase 

At the beginning of each generation, popSize employed 

bees are sent to the food sources. Each employed bee i is 

associated with a particular food source i (individual). It 

searches a new individual i' in the neighboring space of its 

existing individual. 

In order to create the new individual i', the employed 

bee applies an information sharing mechanism. Firstly, it 

randomly selects an individual called neighbor. Afterwards, 

one node j in the directed graph is randomly selected. All 

the node connections of j, i.e., Cjk (k = 1,2, ... , IB(j)I), 
in individual i is replaced by that of individual neighbor 
to create the new individual it. (This process corresponds to 

line 7 of Algorithm 1) 

After the creation of the new individual i', it is executed to 

evaluate the fitness. A greedy selection is hereafter applied. 

If the quality of i' is better than i, the new individual i' is 

survived in the next generation by replacing i. Otherwise, 

the old individual i is remained. 

C. Onlooker bee phase 

After sending the employed bees to search the neighboring 

space, onlooker bees are sent to further explore the promis­

ing region of the search space. 

Firstly, each onlooker bee applies tournament selection to 

select one individual i to process. A new individual i' is 

created by modifying the selected individual i as follows. 

1) Select node j +-- 1; 
2) Produce a random value rand E [0,1]; 
3) If rand < modi! Jate 

Randomly set Cjk> (k = 1,2, ... , IB(j)I); 
4) Set j +-- j + 1; 
5) Go back to 2) until j > I NnocteI· 
Here, modi! _rate is a user-defined parameter to control 

the modification rate, which should be generally small. 

Similar to the employed bees, onlooker bees apply greedy 

selection to select the better individual between i and i' to 

the next generation. 

D. Scout bee phase 

If the selected individual i is not improved by the em­

ployed bees and onlooker bees for a certain number of trials, 

i.e., defined by a threshold limit, a scout bee is sent to 

abandon this individual and generate a new individual. 

The new individual can be generated in many ways. One 

is by random, which is used in the original ABC algorithm. 

However, in our study we find that it is not efficient when 

evolving the directed graph of GNP. In this paper, we replace 

the abandoned individual by another existing individual 

in the population using tournament selection. In order to 

improve the population diversity, the selected individual is 

slightly modified using the process shown in the onlooker 

bee phase. 

IV. EXPERIMENTAL STUDY 

The proposed algorithm is applied to solve a new prob­

lem different from the existing ABC algorithms, that is 

the problem of controlling the agents' behavior. A well­

known benchmark testbed called Tileworld [24] is selected 

to conduct the experimental study. 

Tileworld is a parameterized testbed, which consists of a 

grid of cells including agents, tiles and holes. It has been 

widely used for the development of multi-agent systems and 

the evolution of computer programs (control strategies) [25], 

[26], [27], [28], [29]. A 12 * 12 grid world consisting of 

3 tiles and holes is designed for experiments, as shown 

in Figure 2. In the world, 3 agents are created, which 

are capable of judging the surrounding environment and 

interacting with it by taking the appropriate actions. The 

target of Tileworld is to control the agents to cooperate 

with each other to push the tiles into the holes as many as 

possible, using steps as less as possible, or pushing the tiles 

towards the holes as close as possible if there are remaining 

tiles that cannot be pushed into the holes in a given steps. 

Accordingly, the fitness function of Tileworld can be defined 

as follows. 

! = 100DT + 3(ST - Sused) + 20 [L (D(t) - d(t)) ] , 
tETile 

(1) 

where, 

DT: number of tiles that have been pushed into the holes. 

ST: user-defined constrained steps. 

Sused: number of steps that have been used. 

Tile: set of tiles. 

D(t): original distance from tile t to its nearest hole. 

d( t): distance from tile t to its nearest hole after ST steps. 

The user-defined constrained steps ST can be set flexibly 

to define the problem complexity of Tileworld. In this paper, 

ST is set to 60. 

The agent is designed to have 8 sensor abilities to perceive 

the state of its neighboring cells and the direction informa­

tion of the tiles and holes, as shown in Table I. Based on the 

sensor results, the agent can move forward, turn left, turn 

right or stay (4 processing functions). 
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Figure 2: Tileworld 

Table I: Judgment functions for Tileworld 

Function Description Content of Branches 

J1 Judge Forward 0: Empty I: Obstacle 

Jz Judge Backward 
2: Tile 3: Hole 

h Judge Left 

J4 Judge Right 4: Agent 

J5 
Judge the Direction of the nearest 

Tile from the agent 
0: Forward I: Backward 

J6 
Judge the Direction of the nearest 

Hole from the agent 
2: Left 3: Right 

17 
Judge the Direction of the nearest 

Hole from the nearest Tile 
4: Cannot find 

J8 
Judge the Direction of the Second 
nearest Til e from the agent 

A. Compared algorithms and parameter settings 

Several very well-known methods for evolving computer 

programs, including standard GNP with crossover/mutation 

[13], genetic programming (GP) [9] and reinforcement learn­

ing (RL) [30], are selected for comparison to evaluate the 

performance of the proposed GNP-ABC algorithm. 

1) GNP and GNP-ABC: GNP and GNP-ABC uses a 

directed graph to design the chromosomes. The directed 

graph is defined based on the suggestions of literature [15]. 

The node size I NnodeI = 60, including 40 judgment nodes 

and 20 processing nodes (5 nodes per each judgment and 

processing function). GNP applies uniform crossover and 

mutation [13] to evolve the directed graphs, which include 

two evolutionary parameters: crossover rate Pc = 0. 1 and 

mutation rate Pm = 0.01. In the proposed GNP-ABC, ABC 

algorithm is designed to replace crossover and mutation. 

The parameters of GNP-ABC include the modification rate 

modi! Jate = 0.02 in onlooker bee phase and the threshold 

limit = 200 in scout bee phase. Tournament selection with 

size 2 is used for both GNP and GNP-ABC. 

2) GP: GP uses tree structure for chromosome encoding. 

The maximum tree depth of GP is defined to 4. FULL 

method is used to initialize the GP individuals. The crossover 

and mutation rates of GP is set to Pc = 0.9 and Pm = 0.01. 
3) RL: Sarsa learning (Sarsa) [30] is selected as a state­

of-the-art RL algorithm. In Sarsa, the learning rate is set 

to 0.2, the discount factor is set to 0.9 and E-greedy with 

E = 0. 1 is used for action selection. 
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Figure 3: Fitness curves 
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Figure 4: Fitness curves under different limit values 

4) Additional parameters: The population sizes popSize 
of GNP, GP and GNP-ABC are set to 300. The terminal con­

dition of each algorithm is defined by the maximum number 

of fitness evaluations, where 300 000 is used in this paper. 

All the results shown in this paper is the average values 

of 30 independent experiments to eliminate the evolutionary 

randomness. 

Table II: Fitness values and student t-test results (the t 
symbol in the t-test column indicates that there is statistically 

significant difference between GNP-ABC and the compared 

algorithm) 

GP 

Sarsa 

GNP 

GNP-ABC 

II Fitness value I Standard deviation I t-test 

478,9 151.6 t 
396,8 114,3 t 
586,5 69.8 t 
620.4 8.4 
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B. Experimental results 

In the experimental environment of Figure 2, theoretically 

the agents need at least 15 steps to push all tiles into holes. 

Accordingly, the maximum fitness value is 635. 
The fitness curves of the compared algorithms are plotted 

in Figure 3. It is realized that the directed graph structure is 

capable of modeling the complicated strategies for Tileworld 

efficiently, where GNP and GNP-ABC achieve much better 

fitness values than that of GP and Sarsa. 

Comparing with standard GNP with crossover and mu­

tation, it is clear that the proposed GNP-ABC achieves 

better performance. This indicates that ABC algorithm based 

evolution can achieve higher evolution efficiency than the 

traditional crossover and mutation based evolution when 

evolving the directed graph of GNP. When looking at the 

landscapes of the fitness curves, it is found that GNP­

ABC shows slower evolution speed than GNP in the early 

generations. This is due to that in GNP-ABC, both of the 

employed bees and onlooker bees applies the greedy selec­

tion to produce new individuals, which somehow restrict the 

exploration ability of evolution. Scout bees start to affect 

the evolution by exploring the search space only after a 

certain number of unsuccessful trials, i.e., limit = 200. 
However, with the deepening of the evolution, GNP-ABC 

can gradually find better results than GNP. 

C. Statistical analysis 

The detailed fitness values and the standard deviations are 

listed in Table II. The results show that the proposed GNP­

ABC can achieve the highest fitness value with smallest 

standard deviations, which indicates its powerful and stable 

evolution ability. 

Student t-test (two-tailed, paired) is applied to evaluate 

the statistical significance of the experimental results. In t­

test, 95% confidence level is used, where the test results 

show that GNP-ABC outperforms the compared algorithms 

with statistical significance. 

D. Impact of scout bees 

We further analyze the impact of the scout bees on the 

performance of GNP-ABC. 

In GNP-ABC, if one individual is not improved after 

a certain number of trials by sending employed bees and 

onlooker bees, this individual is considered as an abandoned 

individual. The abandoned individual will be eliminated 

from the population, and a scout bee will be sent to generate 

a new individual. In other words, the scout bee phase works 

as a exploration strategy to try to explore the search space. 

The signal of sending scout bees is designed by a param­

eter limit, which defines the number of unsuccessful trials 

by employed bees and onlooker bees. Explicitly, if limit is 

set towards the maximum number of generations, the scout 

bees will be less sent. On the other hand, if limit is set 

towards 0, the scout bees will be more frequently sent. 

Figure 4 plots the fitness curves of GNP-ABC under 

different limit values. In the studied experiments, the max­

imum number of generation is 1000. Therefore, if limit = 

1000, the scout bee phase will never be activated. In that 

sense, the exploration is not encouraged in GNP-ABC. The 

fitness curves show that GNP-ABC with limit = 1000 
achieves the worst results, and its evolution speed is rel­

atively slow in the early generations. 

With the decrease of limit values, the evolution speed 

will be increased in the early generations, since more ex­

ploration is encouraged, which can significantly improve the 

population quality from its initial stage. For example, when 

limit = 0, scout bees will be sent regardless of whether the 

individuals are improved or not. This will largely increase 

the population diversity, however, which will also cause too 

much evolutionary randomness that make GNP-ABC hard 

find the optimal solutions. 

Under different settings, it is found that limit = 200 can 

achieve the best balance of exploitation-exploration in GNP­

ABC that realizes the best performance. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, artificial bee colony (ABC) algorithm is 

applied to evolve a directed graph chromosome structure 

developed in genetic network programming (GNP). The 

complicated directed graph is capable of modeling many 

complicated systems, such as the problems of controlling 

the agents' behavior studied in this paper. With the ABC 

based evolution, the proposed algorithm, called GNP-ABC, 

can significantly improve the evolution efficiency of standard 

GNP which applies the traditional crossover and mutation 

for evolution. In the future, the proposed GNP-ABC will be 

improved by further developing the suitable ABC variants 

to balance the exploitation-exploration of evolution, as well 

as being applied to more complicated problems. 
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