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ABSTRACT
The huge wealth of data in the health domain can be exploited to
create models that predict development of health states over time.
Temporal learning algorithms are well suited to learn relationships
between health states and make predictions about their future devel-
opments. However, these algorithms: (1) either focus on learning one
generic model for all patients, providing general insights but often
with limited predictive performance, or (2) learn individualized mod-
els from which it is hard to derive generic concepts. In this paper, we
present a middle ground, namely parameterized dynamical systems
models that are generated from data using a Genetic Programming
(GP) framework. A fitness function suitable for the health domain
is exploited. An evaluation of the approach in the mental health
domain shows that performance of the model generated by the GP is
on par with a dynamical systems model developed based on domain
knowledge, significantly outperforms a generic Long Term Short
Term Memory (LSTM) model and in some cases also outperforms
an individualized LSTM model.
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1 INTRODUCTION
Within the domain of health we are faced with an ever increasing
amount of data that can be exploited for the benefit of the patient.
There are many examples of insights that can be obtained from such
data. One case is gaining understanding into how health states evolve
over time and how they influence each other. Take the domain of
mental health for instance, we might be interested to know what the
mood of a depressed patient will be like in a few days time, and how
the sleep quality influences this future mood. To derive such patterns
from the data, we can apply temporal learning algorithms. When
doing so, we have to make a choice in whether we are aiming for a
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one-size-fits-all model or models per individual (cf. [10]). One-size-
fits-all models provide generic insights, but often suffer from limited
predictive value due to the inherent heterogeneity among patients.
Individual models are tailored towards a person, but deriving useful
information across all patients is difficult. In addition, limited data is
typically available per patient, making it difficult to generate models
that generalize well.

A technique that provides a middle ground between generic and
individual models is dynamical systems modeling. These models
represent the health states of a patient as a numerical value, and spec-
ify influence relationships between the states over time by means of
difference equations. The equations include parameters that express
the strength of the relationships. Hence, equations model the generic
relationships and parameter values allow for individual tailoring.
Unfortunately until now these kind of models need to be specified
by exploiting domain knowledge rather than finding relationships
in the data automatically (see e.g. [1, 3, 4, 19]). This makes the
development time consuming, open to interpretation (as theories are
often not precise enough to specify a difference equation), and it
does not allow one to find new relationships in the data.

In this paper, we propose an approach that is able to generate
dynamical systems models for health using Genetic Programming
(GP). While several approaches have been proposed to generate
these types of models using GPs (see e.g.[5, 17]) the health domain
poses very different challenges. Rather than fitting these models
towards a single dataset, in the health domain models should pre-
dict well across sets of patients, and should be able to cope with
the variability of the patients by means of their parameter values.
This has implications for the fitness function used by the GP. To
develop such an approach for the health domain, we take an existing
GP approach as a basis (cf. [5]). We extend the approach with a
fitness function which is based on an evaluation framework for more
knowledge driven dynamical systems models for the health domain
(cf. [20]). Overall, this results in an approach to develop accurate
and insightful predictive models for the domain of health. We refer
to the approach as GP-HD (for GP Health-state Dynamics). We aim
to answer the following research question in this paper:

Is the predictive performance of models generated by GP-HD better
than state-of-the-art data-driven and knowledge-driven approaches
for a real-life case study in the health domain?

To answer this question we evaluate the approach by means of a case
study in mental health using a real dataset: forecasting the mood
and perceived sleep quality of depressed patients up to three days
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ahead. We compare the resulting model with an existing knowledge-
driven dynamical systems models [1], individualized Long-Short
Term Memory (LSTM) neural networks (cf. [9]) and a single generic
LSTM model. We also evaluate the influence of several of the key
hyperparameters of the system, while fixing others to values reported
in prior literature.

This paper is organized as follows. First, we introduce our ap-
proach to generate the dynamical systems models in Section 2. We
then present the dataset we use to evaluate our approach in Section
3, while Section 4 provides the experimental setup. The results are
presented in Section 5, and finally Section 6 concludes the paper
with a discussion.

2 APPROACH
Before going into detail on GP-HD itself, let us first consider the
dynamical systems models we aim to learn. As said, we focus on
the development of health states over time, i.e. we are faced with
time series per patient and want to predict future values based on
historical values. We assume that the equations of the dynamical
systems model to make these predictions express the value of a
state at time point t +Δt based on values of states at t, for example:
s1t+Δt = s1t+γ1 ·s2t. The right hand side can contain a combination
of states and parameters. As we are interested in not just modeling
a single state, but a whole range of states, we have a system of
such difference equations. Next, we will explain the GP part of the
approach, followed by an explanation of the fitness function used.

2.1 Genetic Programming approach
Let us first focus on the generic GP loop, shown in Figure 1. This
approach is taken from [5] with a few minor modifications.

Individual representation: We encode the individuals that repre-
sent the systems of equations by means of a vector of trees. Each
tree Ti in the vector represents the difference equation to compute
the new values for state i. Assuming m states we have a vector of
m trees: < T1, . . . ,Tm >. A tree can have mathematical operators as
nodes (we use ∗, +, and −) while the leaves of the tree can either
contain a parameter or a state. We put a limit to the depth of the tree
(dmax) and the number of parameters used in the total vector of trees
(λmax).

Population initialization: We create an initial population of n in-
dividuals. For each tree, we start with an empty tree and randomly
select one of the mathematical operators (with probability pop) or
randomly select one of the terminals with probability 1− pop (termi-
nals are states or parameters) in case we have not reached dmax yet.
In the event that we have reached dmax we always select a terminal.

Parent selection: We select parent(s) based on a standard tourna-
ment selection approach of size ts.

Variation operators: According to the standard GP loop (cf. [8]) we
perform either mutation, crossover, or we copy the original solution.
We start by selecting one parent. We copy the parent with a fixed
probability pr. The mutation rate depends on the fitness of the parent
that has been selected. Assuming the fitness of the parent being f

and the fittest one in the population being fmax we take the mutation
probability as (based on [5]): pm = 0.1+0.2 ·(1−( f

fmax

))
. Crossover

is performed with the remaining probability (i.e. pc = 1− pm − pr).
In case of mutation, a random tree of the parent is selected from

which we pick a random node or leaf, and replace it by a randomly
generated subtree with a depth such that dmax is not exceeded. In
case the crossover operator is selected, we select an additional parent
using the same parent selection approach. After that, we apply either
tree level crossover or vector level crossover with equal probabil-
ity. In tree level crossover we merge the two parent trees for each
position in the vector while in the vector level crossover for each
position we randomly select a tree of the two parents with equal
probability. Merging of trees is done by selecting a crossover point
in each one of the two trees, and substituting the subtree from the
crossover point of the first parent by the subtree at the crossover
point in the second parent. Since it can result in trees that exceed the
maximum depth, we try this φ times and in case we do not succeed
the crossover fails and we select different parents.

Next Generation: We create a new population, and add the best
individual of the previous generation (elitist approach). We generate
children using the variation operators and fill up the new population
until we reach the desired population size (n).

2.2 Determining the Fitness Value
Determining a fitness value is certainly not trivial for the type of
health data we assume. We use the evaluation framework presented
in [20] to determine the fitness value of a dynamical systems model.
To make the paper self-containing the most important aspects of the
approach are presented below.

In the evaluation framework, it is assumed that we have data which
expresses the discretized measured values of all relevant states m of
p patients over time. Here, the step size equals the step size used
in the models (Δt), i.e. {xitstart ,xitstart + Δt, . . . ,xitend}. We split
this data up into a training, validation, and test set, taking the first
fraction as training data, the middle part as validation set, and the
last part as test data. The goal of our models is to predict n time steps
ahead and minimize the difference (in terms of the mean squared
error) between the values of the states in the model and the real data.
Depending on the goal of the model either all measured health states
should be predicted well, or a subset thereof (this is a choice for
the user of the model in the end). Hence, it is very likely that we
want to optimize the predictive performance of multiple health states.
This is known as a multi-objective optimization problem. Given the
individual candidate model we have (as part of the population in the
GP) and the criteria we want to optimize, we need to find values
for the set of parameter that are present in the model {γ1, . . . ,γk}
(where k ≤ λmax). We do this per patient. A model with instantiated
parameter values is called a model instance. Since this is a multi-
objective optimization problem, multiple model instances can result
that reside on a Pareto front. Each of these model instances obtains
a certain score on each objective while not being dominated by
other model instances (not scoring worse on one criterion while not
performing better on any other). To derive such model instances, we
use NSGA-II (cf. [7]). We run the algorithm r times per patient.
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Figure 1: Genetic Programming loop for our framework.

Using these model instances, we compute a score for the candi-
date model M based on four criteria (see [20] for a more precise
formulation and the rationale for each aspect):

2.2.1 Descriptive Capability. As said, multiple model instances
result from the optimization process, each having their own niche
(and error score) in terms of the objectives, none being dominated
by another. To compute the score for the descriptive capability (i.e.
the error on the training set) we compute the hypervolume from
the worst point in the error space (an error of 1 on all evaluation
criteria, as values are assumed to be normalized) to the Pareto front.
This is called the dominated hypervolume. A value of 1 is the best
value (i.e. the Pareto front including model instances with all zero
error values). We compute the average dominated hypervolume per
patient (remember, we run the algorithm r times) and compute the
average over all patients p (μd) as well as the standard deviation σd .
The descriptive score of an individual M (i.e. model) is:

descriptive_scoreM = μd1−σd (1)

Hence, the higher and more consistent the score is over all patients,
the higher the score in terms of descriptive capabilities.

2.2.2 Predictive Capability. In order to compute the predictive capa-
bility, we apply the model instances we have found for the training
data to unseen validation data (and again, predict n steps ahead for as
long as we have validation data, starting from the real initial values).
This results in an error associated with each criterion for each model
instance for each patient. We compute the mean μap and standard
deviation σap over all of these errors and compute the predictive
score:

predictive_scoreM = 1−μap1−σap (2)

2.2.3 Parameter Sensitivity. Parameters should be useful and have
an impact on the performance of the model. A correlation analysis
is performed between the parameter values and the error on the
training set for each objective. A parameter is deemed useful in
case the highest found correlation (of all correlations over all model
instances, patients, and objectives) is above 0.35. The total number of
useful parameters is then divided by the total number of parameters:

sensitivity_scoreM =

k
l=1

use f ulM,λl

k
(3)

2.2.4 Model Complexity. Finally, model complexity is weighed, the
more complex the model, the lower the score for this aspect will be.
It is defined by the number of parameters in the model, divided by
the maximum (since we always have all states in the model):

complexity_scoreM =
k

λmax
(4)

These scores are combined using a weighed sum:

f itnessM = w1 ·descriptive_scoreM +w2 · predictive_scoreM+

w3 · sensitivity_scoreM +w4 · complexity_scoreM
(5)
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3 DATASET
We want to investigate how well our approach performs compared
to alternative models. For this comparison, we require a dataset that
includes a substantial number of patients for whom measurements
of multiple health states have been performed over time. In our case,
we have obtained such a dataset from the domain of mental health.
Nowadays, interventions in mental health are becoming more and
more digitized. For example, apps are being developed that can aid
depressed patients to battle their depression (see e.g. [16]). Next
to cost effectiveness, such apps also bring benefits when it comes
to tracking the health state of patients as people carry their phone
with them all the time. The tracking involves asking patients to score
various aspects of their mental health on a regular basis (e.g. their
mood) using pop ups on their mobile device. This is commonly re-
ferred to as Ecological Momentary Assessment (EMA). Our dataset
originates from the E-COMPARED project. This project is focused
on studying the effectiveness of interventions for depression. Within
the project, a comparison is made between treatment as usual and
blended care. The blended care setup features an app the depressed
patients can use. Table 1 shown an overview of the questions posed
to the patients. Note that not all questions are posed on a daily basis.

Table 1: The EMA questions that are present in the dataset.

Abbreviation EMA question
Mood How is your mood right now?
Worry How much do you worry about things at the

moment?
Self-Esteem How good do you feel about yourself right

now?
Sleep How did you sleep tonight?
Activities done To what extent have you carried out enjoy-

able activities today?
Enjoyed activi-
ties

How much have you enjoyed the days activ-
ities?

Social contact How much have you been involved in social
interactions today?

We obtain a dataset of 60 patients from the project. These are
patients that have a long enough history to make up an interesting
time series (at least 40 days of measurements). Some of the questions
are posed multiple times a day (the mood), while others are only
posed once a day or even less. To create a suitable dataset we: (1)
normalize them on a scale in the range 0,1; (2) aggregate the values
per question on a daily basis by averaging in the event of multiple
answers per day, and (3) in case a question does not have any answer
on a day we linearly interpolate it based on the last known value and
the first value in the future.

The resulting dataset contains on average 119.66 days of data per
patient, with a large standard deviation of 70.55 days. Figure 2 shows
a boxplot covering the different questions and the distribution of the
answers the patients gave. Mood shows the narrowest distribution
while the sleep and worrying questions seem to have the largest
spread in answers.

Figure 2: Distributions of the responses to the EMA questions.

4 EXPERIMENTAL SETUP
In our experimental setup, two phases are distinguished: (1) ex-
ploring hyperparameters of the GP framework and generating a
dynamical systems model with the best settings, and (2) comparing
the performance of the resulting model with alternative approaches.
Before diving into those details, we first explain how we further
prepare the dataset.

4.1 Dataset preparation
We select all data from a random sample of 30 patients as an in
sample dataset and the 30 remaining patients as out of sample dataset.
The data of each patient is split in a training, validation, and test set,
containing 60, 20, and 20% of the data respectively, in a time ordered
fashion. We evaluate the performance for two states in the dataset:
mood and sleep, both deemed highly relevant by domain experts.
The others are less important to predict in the future, but could
contain important predictive information. The root mean squared is
used as an evaluation metric. We predict 1, 2, and 3 time points (i.e.
days) ahead.

4.2 Parameter Settings and GP runs
GP-HD contains a number of hyperparameters. An overview is
shown in Table 2. Some hyperparameters we fix based on the litera-
ture (those that have been shown to work well for multiple types of
problems), while we study the influence of others.

To optimize the varied hyperparameters of the NSGA-II algorithm
we perform a number of runs with a small (random) sample of 10
patients from the in sample dataset. We create a fixed population
of individuals and consider the mean and standard deviation of the
fitness values we obtain over multiple runs of the NSGA-II algorithm.
For the hyperparameters of the GP algorithm, we have based most
of the settings on literature and performed some initial runs to set
the more problem dependent hyperparameters appropriately. Initial
experiments using the in sample data with λmax and dmax showed
that one parameter per state (i.e. 7 in total) works best, as well as a
maximum depth of 6 (simple, yet sufficiently powerful models). We

4
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Table 2: Parameter settings for GP-HD.

Parameter Meaning Values
Fixed

pop Probability to select operator in random generation
of (sub)trees

0.5 (cf. [5])

ts Tournament size 3 (cf. [5])
rmax number of NSGA-II runs per patient 3 (cf. [20])
pr probability of retaining a copy of a parent 0.1 (cf. [5])
φ Number of tries for crossover 3 (cf. [5])
w1, . . . ,w4 Weight of evaluation criteria All set to 0.25 (cf. [20])

Varied
λmax Maximum number of parameters various (7 selected)
dmax Maximum depth of tree that represents model various (6 selected)
popnsga_II population size of the NSGA-II algorithm {5, 10, 20, 50}
gennsga_II number of generations for the NSGA-II algorithm {5, 10, 20, 50}
popgp population size of the GP {50, 100}
gengp number of generations of the GP {50, 100}

study the influence of two hyperparameters in more detail, namely
the population size and numbers of generations. We report results of
experiments for those hyperparameters and focus on the convergence
and the overall quality of the solutions in terms of fitness. We select
the best hyperparameter setting, run it 10 times using the in sample
data and select the best individual (i.e. model) we encounter. We
continue with this model in the next phase.

4.3 Performance evaluation
We compare the best individual we have generated with three alter-
native approaches:

(1) a dynamical systems model we obtained from the literature
(cf. [1], referred to as the literature model). This does not
predict sleep but does include nearly all other states we have
in our dataset. It includes a total of 25 parameters.

(2) an LSTM model per individual patient (individual LSTM).
(3) a single LSTM model across all patients (generic LSTM).
To train the dynamical systems models (GP model and the litera-

ture model), we optimize the parameters for each patient individually,
by applying NSGA-II on the training portion of the data of that pa-
tient, and select the model instance for the patient that minimizes
the sum of the errors on the validation set. We do this for both the in
sample and out of sample data. Note that the GP model itself has of
course been generated using only the in sample data.

We have chosen an LSTM model as benchmark machine learning
model as this has shown to work best on this type of data (see [14]).
For the LSTM models we use the combination of the training and
validation part of the patient data as training set. Six output neurons
are used (we have three future time points we want to predict for
two states). We have experimented with various parameter settings
of the LSTM in some initial runs, which showed that taking a batch
size of 7 combined with a single layers of 128 hidden neurons work
best. We train for 30 epochs. Here, the individual LSTM is trained
and applied per patient (both for the in sample and out of sample
patients), while the generic LSTM is trained on all patients in the in
sample data.

We measure the performance of all algorithms on the test set part
of the data of each patient, both for the in sample and out of sample
data. We perform only single runs of the algorithms per patient as
the number of patients will allows us to tackle the stochasticity.

5 RESULTS
In the results, we first focus on the parameter settings of our GP-HD
approach, followed by the resulting behavior of the algorithm and
the best model we find. We then compare the performance of that
model to the benchmark algorithms.

5.1 Parameter Settings and GP runs

Figure 3: Development of the fitness values over the generations
over 10 runs, note that the y-axis does not start at 0.

When we consider the influence of the hyperparameter settings
of NSGA-II on the fitness values found, we hardly see any differ-
ence between the different parameter settings we identified, neither
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in terms of the absolute fitness value, nor in terms of the standard
deviation. Hence, we select the cheapest option in terms of com-
putation (popNSGA_II = 5 and genNSGA_II = 5). When we look at
the hyperparameters of the GP, we see that the process converges
before 50 generations independent of the population size. During the
initial runs, the larger population size seemed slightly better, which
we therefore use (so, popgp = 100 and gengp = 50). Figure 3 shows
the median fitness values over 10 runs and the 25-and 75% inter
quartile ranges. We see that the fitness nicely converges and obtain
best fitness values of around 0.92.

The best model we obtain has a fitness value of 0.9372 (not
remarkably higher compared to other models we observe in the same
run or other runs of our framework). The model has the following
specification:

smoodt +1 = smoodt + γ1 · ssleept · γ1 − smoodt (6)

ssleept +1 = ssleept (7)

sworryingt +1 = sen joyedt − ssocialt·
sen joyedt − ssel f _esteemt · sen joyedt−
ssocialt · ssocialt (8)

ssocialt +1 = sworryingt − γ1 − ssocialt · sworryingt·
ssleept + sworryingt − γ1 − ssocialt·
ssleept ∗ ssleept + γ1 (9)

sactivitiest +1 = ssocialt (10)

sen joyedt +1 = ssel f _esteemt (11)

ssel f _esteemt +1 = smoodt (12)

The model only has one parameter (γ1). Furthermore, we see
that for sleep an extremely simple relationship is found (just take
the previous value). While one could argue this does not show the
benefit of our approach for this aspect, it does show that it does
not generate unnecessarily complex models. For the mood, a more
complex relationship is observed, drawing advantage of the previous
values measured for both mood and sleep. A relationship between
mood and sleep has been reported in the psychological literature
(see e.g. [18]). When comparing the outcome to the literature model
([1] only focusing on mood), we see the literature model being much
more complex and less insightful (with 25 parameters) while the
prediction of mood depends on three factors that are not included in
the resulting GP model: the social interactions, number of activities,
and how much the patient enjoyed the activities, whereas the litera-
ture model does not use sleep. A remarkable difference that will be
analyzed in more detail with clinical psychologists.

5.2 Performance Evaluation
Let us explore how well the model performs compared to other
approaches. Table 3 shows the errors we obtain over the different
algorithms, evaluation criteria and number of time steps ahead. We
have statistically compared the difference in performance of the
other algorithms compared to our GP-HD model using a Wilcoxon
ranked sum test (p = 0.05), the results of the significance test are
also shown in the table.

Figure 4: Ranked RMSE’s for prediction of mood at time t + 1
for all algorithms (in and out of sample).

We observe that our approach is not significantly outperformed
by any other approach, while it significantly outperforms the generic
LSTM in all cases and the individual LSTM for the sleep state. The
literature model and our GP-HD model perform equally well. Our
approach also seems to generalize well (considering the performance
on out of sample patients), especially for the mood state. Figure 4
shows the difference in performance over different patients for mood
at t + 1 (other prediction intervals show similar patterns) for both
the in sample and out of sample patients. We can observe similar
patterns across all algorithms, though performance of the generic
LSTM model is a lot poorer for unseen patients.

Finally, Figure 5 shows an example out of sample patient (the
patient with the highest variation in performance scores) and the
accompanying predictions for mood at time t +1 using the different
approaches. It can clearly be observed that the GP and literature
model predict quite reasonable. The LSTM individual model how-
ever does follow the trends, but provides a prediction closer to the
average value. This holds even more extreme for the generic LSTM
model.

6 DISCUSSION
In this paper, we have presented GP-HD to generate dynamical
systems models for predicting developments of health states over
time. This approach tailored an existing GP approach (cf. [5]) using
a fitness function based on an evaluation framework for dynamical
systems models (cf. [20]). The research question we posed was: Is
the predictive performance of models generated by GP-HD better
than state-of-the-art data-driven and knowledge-driven approaches
for a real-life case study in the health domain? Based on the results
we have obtained for the mental health case studied in this paper
we can answer this question with a partial yes. The approach is on
par with a literature based dynamical systems model (while being a
simpler and more insightful model), outperforms a generic LSTM
model, and scores at least as well as individual LSTM models. Of
course, it is hard to generalize these results over other datasets. The
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Table 3: Median RMSE performances of algorithms. Scores in italics indicates that the performance is significantly worse (p < 0.05,
Wilcoxon ranked sum test) than the performance of the GP, significantly better compared to the GP is not observed.

Algorithm t+ RMSE (in sample) RMSE (out of sample)
mood sleep mood sleep

GP
1 0.129 0.030 0.130 0.078
2 0.162 0.068 0.148 0.122
3 0.173 0.093 0.169 0.158

Literature
1 0.132 - 0.113 -
2 0.149 - 0.148 -
3 0.174 - 0.172 -

LSTM ind.
1 0.153 0.189 0.156 0.198
2 0.155 0.190 0.167 0.207
3 0.154 0.185 0.184 0.226

LSTM gen.
1 0.242 0.283 0.291 0.302
2 0.239 0.295 0.265 0.283
3 0.292 0.254 0.309 0.307

Figure 5: Illustration of predictions for mood at time t + 1 for the out of sample patient with the highest variation in performance
(black dots are the predictions of the models). Note that the training set is the combination of the training and validation part of the
data. Upper left: GP; upper right: literature, lower left: individual LSTM, lower right: generic LSTM.
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relationships that are used in the resulting GP model are in line with
literature in the psychological domain (e.g. [18]).

A lot of research has been devoted to data-driven predictive mod-
els for health. Specifically, a variety of LSTM based approaches
have been proposed for modeling temporal data in the health do-
main (see e.g. [12]). In addition, ways to engineer temporal features
are seen (e.g. [2, 10])). However, none make the combination we
present in this paper: a generic model with parameters that can be
tailored towards individuals. Of course, more GP-based approaches
have been developed (e.g.[17]), but none are focused on the specific
setting with multiple datasets (one per patient) we have. For the
domain of mental health there are only few models that have been
developed to provide more fine grained (e.g. daily) predictions of
the mental health state, see e.g. [6, 11, 15]. Due to the differences
in the characteristics of these groups as well as the measurements
performed performances are difficult to compare.

For future work, we want to apply the proposed approach to
other health datasets that are larger and contain more variability. We
also want to explore the influence of the hyperparameter settings
of the evaluation approach more rigorously. On top, we will focus
on making the framework more efficient using racing (cf. [13]) and
study the scalability of the approach in more depth. Finally, we
want to study how we can improve the LSTM performance further.
The generic LSTM only has access to the in sample data while
the individual LSTM can only use the data of the specific patient.
Studying a hybrid solution of the LSTM (e.g. using transfer learning)
where we tailor the generic LSTM model based on a small portion
of the data of a specific patient is therefore a next step we want to
take.
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